CINXE.COM

Search results for: feed production

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: feed production</title> <meta name="description" content="Search results for: feed production"> <meta name="keywords" content="feed production"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="feed production" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="feed production"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8235</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: feed production</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8235</span> Progress, Challenges, and Prospects of Non-Conventional Feed Resources for Livestock Production in Sub-Saharan Africa: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clyde%20Haruzivi">Clyde Haruzivi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20Oyebade%20Ikusika"> Olusegun Oyebade Ikusika</a>, <a href="https://publications.waset.org/abstracts/search?q=Thando%20Conference%20Mpendulo"> Thando Conference Mpendulo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feed scarcity, increasing demand for animal products due to the growing human population, competition for conventional feed resources for humans and animal production, and ever-increasing prices of these feed resources are major constraints to the livestock industry in Sub-Saharan Africa. As a result, the industry is suffering immensely as the cost of production is high, hence the reduced returns. Most affected are the communal and resource-limited farmers who cannot afford the cost of conventional feed resources to supplement feeds, especially in arid and semi-arid areas where the available feed resources are not adequate for maintenance and production. This has tasked researchers and animal scientists to focus on the potential of non-conventional feed resources (NCFRs). Non-conventional feed resources could fill the gap through reduced competition, cost of feed, increased supply, increased profits, and independency as farmers will be utilizing locally available feed resources. Identifying available non-conventional feed resources is vital as it creates possibilities for novel feed industries and markets and implements methods of using these feedstuffs to improve livestock production and livelihoods in Sub-Saharan Africa. Hence, this research work analyses the progress, challenges, and prospects of some non-conventional feed resources in Sub-Saharan Africa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-conventional" title="non-conventional">non-conventional</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20resources" title=" feed resources"> feed resources</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock%20production" title=" livestock production"> livestock production</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=Sub-Saharan" title=" Sub-Saharan"> Sub-Saharan</a> </p> <a href="https://publications.waset.org/abstracts/156542/progress-challenges-and-prospects-of-non-conventional-feed-resources-for-livestock-production-in-sub-saharan-africa-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8234</span> Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengying%20Wang">Mengying Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohui%20Wang"> Xiaohui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun%20Deng"> Chun Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=Bei%20Liu"> Bei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Changyu%20Sun"> Changyu Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Guangjin%20Chen"> Guangjin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20El-Halwagi"> Mahmoud El-Halwagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gas%20production" title="Gas production">Gas production</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrate" title=" hydrate"> hydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20integration" title=" process integration"> process integration</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20reforming" title=" steam reforming"> steam reforming</a> </p> <a href="https://publications.waset.org/abstracts/102169/process-integration-of-natural-gas-hydrate-production-by-ch4-co2h2-replacement-coupling-steam-methane-reforming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8233</span> Egg Production Performance of Old Laying Hen Fed Dietary Turmeric Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Rahardja">D. P. Rahardja</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahman%20Hakim"> M. Rahman Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sri%20Lestari"> V. Sri Lestari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment was conducted to elucidate the effects of turmeric powder supplementation on egg production performance of old laying hens (104 weeks of age). There were 40 hens of Hysex Brown strain used in the study. They were caged individually, and randomly divided into 4 treatment groups of diet containing 0 (control), 1, 2 and 4 % oven dried turmeric powder for 3 periods of 4 weeks; Egg production (% hen day) and feed intake of the 4 treatment groups at the commencement of the experiment were not significantly different. In addition to egg production performance (%HD and egg weight), feed and water intakes were measured daily. The results indicated that feed intakes of the hen were significantly lowered when 4% turmeric powder supplemented, while there were no significant changes in water intakes. Egg production (%HD) were significantly increased and maintained at a higher level by turmeric powder supplementation up to 4% compared with the control, while the weight of eggs were not significantly affected. The research markedly demonstrated that supplementation of turmeric powder up to 4% could improve and maintain egg production performance of the old laying hen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curcumin" title="curcumin">curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20and%20water%20intake" title=" feed and water intake"> feed and water intake</a>, <a href="https://publications.waset.org/abstracts/search?q=old%20laying%20hen" title=" old laying hen"> old laying hen</a>, <a href="https://publications.waset.org/abstracts/search?q=egg%20production" title=" egg production"> egg production</a> </p> <a href="https://publications.waset.org/abstracts/32902/egg-production-performance-of-old-laying-hen-fed-dietary-turmeric-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8232</span> Effect of Sweet Potato (Ipomoea batatas) Leaves on Wheat Offal Replacement for Chicks Feed Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Okafor">C. C. Okafor</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Ezeh"> T. M. Ezeh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of addition of sweet potato leaves in replacement of wheat offal in the production of broiler chicks feed was studied. 72 day-old marshal strain chicks were used and brooded for two weeks with a normal commercial feed in Nigeria called top feed and weighed separately at the end of the two weeks, complete randomized design (CRD) was used. The weighed broiler chicks were randomly allocated to four dietary treatments. Each treatment was replicated to twice with eighteen birds per replicate. The four dietary treatment identified as T1, T2, T3 and T4. T1 served as control diet with 21% crude protein content, while T2 was prepared with Enzyme and in T3 and T4, wheat offal was replaced with sweet potato leaves and in T4 with inclusion of enzyme. Growth performance was studied using the following daily feed intake, daily weight gain and feed efficiency. The result in daily weight gain showed that chicks fed with T2 feed had the highest weight gain (93.75) while chicks fed with T3 had the least weight gain of (34.5 gm). In daily feed intake chicks fed with T4 fed more (53.06 gm) than chicks fed with T2 (51.08 gm). In feed efficiency T3 had the highest value of 30% while the T2 had the least efficiency of 22%. There was no significant difference (P≥ 0.05) in all the three parameter tested. Sweet potato leaves can replace wheat offal in broiler feed production without any adverse effect on the growth performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler" title="broiler">broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=diet" title=" diet"> diet</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary" title=" dietary"> dietary</a>, <a href="https://publications.waset.org/abstracts/search?q=potato%20leaves" title=" potato leaves"> potato leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20offal" title=" wheat offal "> wheat offal </a> </p> <a href="https://publications.waset.org/abstracts/33351/effect-of-sweet-potato-ipomoea-batatas-leaves-on-wheat-offal-replacement-for-chicks-feed-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8231</span> A Transition Towards Sustainable Feed Production Using Algae: The Development of Algae Biotechnology in the Kingdom of Saudi Arabia (DAB-KSA Project)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emna%20Mhedhbi">Emna Mhedhbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Fuentes%20Grunewald"> Claudio Fuentes Grunewald</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to preliminary results of DAB-KSA project and considering the current 0.09-ha microalgae pilot plant facilities, we can produce 2.6 tons/year of microalgae biomass for proteins applications in animal feeds in KSA. By 2030, our projections are to reach 65,940,593.4 tons deploying 100.000 ha's production plants. We also have assessed the energy cost (industrial) in KSA (€0.061/kWh) and compared to (€0.32/kWh)in Germany, we can argue a clear lower OPEX for microalgae biomass production cost in KSA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae" title="microalgae">microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20production" title=" feed production"> feed production</a>, <a href="https://publications.waset.org/abstracts/search?q=bioprocess" title=" bioprocess"> bioprocess</a>, <a href="https://publications.waset.org/abstracts/search?q=fishmeal" title=" fishmeal"> fishmeal</a> </p> <a href="https://publications.waset.org/abstracts/146969/a-transition-towards-sustainable-feed-production-using-algae-the-development-of-algae-biotechnology-in-the-kingdom-of-saudi-arabia-dab-ksa-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8230</span> Silage for Dairy Production: A Case Study of Pakistan </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor-ul-Ain">Noor-ul-Ain</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Thair%20Khan"> Muhammad Thair Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeela%20Ajmal"> Adeela Ajmal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Mustafa"> Hamid Mustafa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pakistan is an agricultural country and livestock only share 11.8 percent to national GDP during 2015-16. Pakistan is a 3rd largest milk producing country having 41.2, 35.6, 29.4, 68.4 and 1.0 million head cattle, buffalo, sheep, goat and camel, respectively. Modern urbanization and shortage of feed resources for livestock species in a country is an alarming threat. The introduction of new technology and advanced techniques solve this issue. This includes drought feeding, increase production, aid to crop management, balance nutrition and easily storaged of wet feed products. It is therefore clear that silage has important role in animal feed and feeding. Financial model of this study clear the effectiveness of silage. Therefore, it is revealed from this study that silage is a cost-effective option for a profitable dairy farming in Pakistan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feed" title="feed">feed</a>, <a href="https://publications.waset.org/abstracts/search?q=silage" title=" silage"> silage</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy" title=" dairy"> dairy</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan "> Pakistan </a> </p> <a href="https://publications.waset.org/abstracts/40024/silage-for-dairy-production-a-case-study-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8229</span> The Effects of Production, Transportation and Storage Conditions on Mold Growth in Compound Feeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Cetinkaya">N. Cetinkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the present study is to determine the critical control points during the production, transportation and storage conditions of compound feeds to be used in the Hazard Analysis Critical Control Point (HACCP) feed safety management system. A total of 40 feed samples were taken after 20 and 40 days of storage periods from the 10 dairy and 10 beef cattle farms following the transportation of the compound feeds from the factory. In addition, before transporting the feeds from factory immediately after production of dairy and beef cattle compound feeds, 10 from each total 20 samples were taken as 0 day. In all feed samples, chemical composition and total aflatoxin levels were determined. The aflatoxin levels in all feed samples with the exception of 2 dairy cattle feeds were below the maximum acceptable level. With the increase in storage period in dairy feeds, the aflatoxin levels were increased to 4.96 ppb only in a BS8 dairy farm. This value is below the maximum permissible level (10 ppb) in beef cattle feed. The aflatoxin levels of dairy feed samples taken after production varied between 0.44 and 2.01 ppb. Aflatoxin levels were found to be between 0.89 and 3.01 ppb in dairy cattle feeds taken on the 20<sup>th</sup> day of storage at 10 dairy cattle farm. On the 40<sup>th</sup> day, feed aflatoxin levels in the same dairy cattle farm were found between 1.12 and 7.83 ppb. The aflatoxin levels were increased to 7.83 and 6.31 ppb in 2 dairy farms, after a storage period of 40 days. These obtained aflatoxin values are above the maximum permissible level in dairy cattle feeds. The 40 days storage in pellet form in the HACCP feed safety management system can be considered as a critical control point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title="aflatoxin">aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=beef%20cattle%20feed" title=" beef cattle feed"> beef cattle feed</a>, <a href="https://publications.waset.org/abstracts/search?q=compound%20feed" title=" compound feed"> compound feed</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20cattle%20feed" title=" dairy cattle feed"> dairy cattle feed</a>, <a href="https://publications.waset.org/abstracts/search?q=HACCP" title=" HACCP"> HACCP</a> </p> <a href="https://publications.waset.org/abstracts/90397/the-effects-of-production-transportation-and-storage-conditions-on-mold-growth-in-compound-feeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8228</span> Potential of Grass Silage as a Source of Nutrients in Poultry Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamim%20Abbas">Hamim Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Luc-Hornick"> Jean Luc-Hornick</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabelle%20Dufrasne"> Isabelle Dufrasne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feed costs constitute over 60% of total expenses in organic layer poultry production, with feed protein supply being a significant concern. Alfalfa-based dehydrated silage pellets are mainly diets composed of leaves (ABSP), which are non-conventional protein sources that could enhance profits by reducing feed costs and ensuring consistent availability. This experiment studied the effects on the performances of Novogen Brown light layers of a commercial control diet replaced with 10% ABSP. After a 21-day trial, this diet (ABSP) has improved the laying rate, yolk color of eggs, feed conversion rate, ω−3 (PUFAs) and ω−6/ω−3 ratio (P<0.05) while the body weight and egg weight were degraded with the substitution of the ABSP in the diet(P>0.05). The laying rate showed a tendency to increase (P=0.06). These findings suggest that ABSP can replace at least 10% of the feed in organic layer diets without compromising production parameters negatively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alfalfa" title="alfalfa">alfalfa</a>, <a href="https://publications.waset.org/abstracts/search?q=silage" title=" silage"> silage</a>, <a href="https://publications.waset.org/abstracts/search?q=pellet" title=" pellet"> pellet</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20layers" title=" organic layers"> organic layers</a> </p> <a href="https://publications.waset.org/abstracts/186295/potential-of-grass-silage-as-a-source-of-nutrients-in-poultry-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8227</span> The Effects of Neurospora crassa-Fermented Palm Kernel Cake in the Diet on the Production Performance and Egg-Yolk Quality of Arab Laying-Hens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yose%20Rizal">Yose Rizal</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuraini"> Nuraini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirnawati"> Mirnawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Endo%20Mahata"> Maria Endo Mahata</a>, <a href="https://publications.waset.org/abstracts/search?q=Rio%20Darman"> Rio Darman</a>, <a href="https://publications.waset.org/abstracts/search?q=Dendi%20Kurniawan"> Dendi Kurniawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment had been conducted to determine the effects of several levels of Neurospora crassa- fermented palm kernel cake in the diet on the production performance and egg-yolk quality of Arab laying-hens, and to obtain the appropriate level of this fermented palm kernel cake for reducing the utilization of concentrated feed in the diet. Three hundred Arab laying-hens of 72 weeks old were employed in this experiment, and randomly assigned to four treatments (0, 7.25, 10.15, and 13.05% fermented palm kernel cake in diets) in a completely randomized design with five replicates. Measured variables were production performance (feed consumption, egg-mass production, feed conversion, egg weight and hen-day egg production), and egg-yolk quality (ether extract and cholesterol contents, and egg-yolk color index). Results of experiment indicated that feed consumption, egg-mass production, feed conversion, egg weight, hen-day egg production and egg-yolk color index were not influenced (P>0.05) by diets. However, the ether extract and cholesterol contents of egg-yolk were very significantly reduced (P<0.01) by diets. In conclusion, Neurospora crassa-fermented palm kernel cake could be included up to 13.05% to effectively replace 45% concentrated feed in Arab laying-hens diet without adverse effect on the production performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neurospora%20crassa-fermented%20palm%20kernel%20cake" title="neurospora crassa-fermented palm kernel cake">neurospora crassa-fermented palm kernel cake</a>, <a href="https://publications.waset.org/abstracts/search?q=Arab%20laying-hens" title=" Arab laying-hens"> Arab laying-hens</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20performance" title=" production performance"> production performance</a>, <a href="https://publications.waset.org/abstracts/search?q=ether%20extract" title=" ether extract"> ether extract</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=egg-yolk%20color%20index" title=" egg-yolk color index"> egg-yolk color index</a> </p> <a href="https://publications.waset.org/abstracts/16179/the-effects-of-neurospora-crassa-fermented-palm-kernel-cake-in-the-diet-on-the-production-performance-and-egg-yolk-quality-of-arab-laying-hens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">740</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8226</span> Factors Affecting the Results of in vitro Gas Production Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Kahraman">O. Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Alatas"> M. S. Alatas</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20B.%20Citil"> O. B. Citil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In determination of values of feeds which, are used in ruminant nutrition, different methods are used like in vivo, in vitro, in situ or in sacco. Generally, the most reliable results are taken from the in vivo studies. But because of the disadvantages like being hard, laborious and expensive, time consuming, being hard to keep the experiment conditions under control and too much samples are needed, the in vitro techniques are more preferred. The most widely used in vitro techniques are two-staged digestion technique and gas production technique. In vitro gas production technique is based on the measurement of the CO2 which is released as a result of microbial fermentation of the feeds. In this review, the factors affecting the results obtained from in vitro gas production technique (Hohenheim Feed Test) were discussed. Some factors must be taken into consideration when interpreting the findings obtained in these studies and also comparing the findings reported by different researchers for the same feeds. These factors were discussed in 3 groups: factors related to animal, factors related to feeds and factors related with differences in the application of method. These factors and their effects on the results were explained. Also it can be concluded that the use of in vitro gas production technique in feed evaluation routinely can be contributed to the comprehensive feed evaluation, but standardization is needed in this technique to attain more reliable results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%20vitro" title="In vitro">In vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20production%20technique" title=" gas production technique"> gas production technique</a>, <a href="https://publications.waset.org/abstracts/search?q=Hohenheim%20feed%20test" title=" Hohenheim feed test"> Hohenheim feed test</a>, <a href="https://publications.waset.org/abstracts/search?q=standardization" title=" standardization"> standardization</a> </p> <a href="https://publications.waset.org/abstracts/26010/factors-affecting-the-results-of-in-vitro-gas-production-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">599</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8225</span> Growth and Laying Performance of Commercial Hens Fed with Varying Levels of Trichanthera gigantea (Nees.) Leaf Meal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carmel%20Khrisna%20Wong%20Moreno">Carmel Khrisna Wong Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinah%20M.%20Espina"> Dinah M. Espina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing price of feed ingredients has prompted farmers to seek feasible feed alternatives like the utilization of locally-grown protein-rich feedstuff which is cheaper but gives a positive result in poultry production. Trichanthera gigantea, a fodder tree which is an excellent alternative as feed ingredient in the Philippines has now gained popularity as feed supplement. This study was conducted to determine the growth and laying performance of commercial hens fed with varying levels of Trichanthera gigantea leaf meal. The incorporation of Trichanthera gigantea leaf meal at 5%, 10%, and 15% into the diet of commercial hens did not affect the growth and laying performance. Results of the study revealed that the weight gain of the birds fed with Trichanthera gigantea supplemented diets was not significantly different with the control (100% commercial layer mash). The voluntary feed intake, feed conversion ratio, weekly average egg weight and egg production of the commercial hens fed with T. gigantea leaf meal supplemented diets were not significantly different from the control. Results of the study showed that the supplementation of Trichanthera gigantea leaf meal of up to 15% into the diets of commercial hens is highly acceptable since it does not affect the growth and laying performance of the birds. In addition, it would mean a 15% savings in production cost from commercial feeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=egg%20production" title="egg production">egg production</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=laying%20performance" title=" laying performance"> laying performance</a>, <a href="https://publications.waset.org/abstracts/search?q=trichanthera%20gigantea%20%28nees%29" title=" trichanthera gigantea (nees)"> trichanthera gigantea (nees)</a> </p> <a href="https://publications.waset.org/abstracts/37524/growth-and-laying-performance-of-commercial-hens-fed-with-varying-levels-of-trichanthera-gigantea-nees-leaf-meal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8224</span> The Application of to Optimize Pellet Quality in Broiler Feeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Vakili">Reza Vakili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this experiment was to optimize the effect of moisture, the production rate, grain particle size and steam conditioning temperature on pellet quality in broiler feed using Taguchi method and a 43 fractional factorial arrangement was conducted. Production rate, steam conditioning temperatures, particle sizes and moisture content were performed. During the production process, sampling was done, and then pellet durability index (PDI) and hardness evaluated in broiler feed grower and finisher. There was a significant effect of processing parameters on PDI and hardness. Based on the results of this experiment Taguchi method can be used to find the best combination of factors for optimal pellet quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler" title="broiler">broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20physical%20quality" title=" feed physical quality"> feed physical quality</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20parameters" title=" processing parameters"> processing parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=PDI" title=" PDI"> PDI</a> </p> <a href="https://publications.waset.org/abstracts/90201/the-application-of-to-optimize-pellet-quality-in-broiler-feeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8223</span> A Research About to Determination the Quality of Feed Oils Used as Mixedfeed Raw Material from Some Feed Factories in Konya-Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%C5%9Fah%20Kanbur">Gülşah Kanbur</a>, <a href="https://publications.waset.org/abstracts/search?q=Veysel%20Ayhan"> Veysel Ayhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feed oil samples which are used as mixed feed raw material were taken from six different feed factories in March, May and July. All factories make production in Konya, Turkey and all of the samples were which taken are crude soybean oil. Some physical and chemical analysis, free radical scavenger effect and total phenol content were determined on these oil samples. Moisture content was found between 0.10-22.23 %, saponification number was determined 143.13 to 167.93 KOH/kg, free fatty acidity was varied 0.73 to 35.00 % , peroxide value was found between 1.53 and 28.43 meq/kg , unsaponifiable matter was determined from 0.40 to 17.10 % , viscosity was found between 34.30 and 625.67 mPas, sediment amount was determined between 0.60-18.16 % , free radical scavenger effect was varied 20.7 to 43.04 % inhibition of the extract and total phenol content was found between 1.20 and 2.69 mg/L extract. Different results were found between months and factories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20soybean%20oil" title="crude soybean oil">crude soybean oil</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20oils" title=" feed oils"> feed oils</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20feed" title=" mixed feed"> mixed feed</a>, <a href="https://publications.waset.org/abstracts/search?q=Konya" title=" Konya"> Konya</a> </p> <a href="https://publications.waset.org/abstracts/28799/a-research-about-to-determination-the-quality-of-feed-oils-used-as-mixedfeed-raw-material-from-some-feed-factories-in-konya-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8222</span> Efficacy of Vitamins A, C and E on the Growth Performance of Broiler Chickens Subjected to Heat Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desierin%20Rodrin">Desierin Rodrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Alcantara"> Magdalena Alcantara</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Olo"> Cristina Olo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in environmental temperatures brought about by climate change impacts negatively the growth performance of broilers that may be solved by manipulating the diet of the animals. Hence, this study was conducted to evaluate the effects of different vitamin supplements on the growth performance of broiler chickens subjected to ambient (31°C) and heat stress (34°C) temperatures. The treatments were: I- Control (no vitamin supplement), II- Vitamin A (4.5 mg/kg of feed), III- Vitamin C (250 mg/kg of feed), IV- Vitamin E (250 mg/kg of feed), V- Vitamin C and E (250 mg/kg of feed and 250 mg/kg of feed), VI- Vitamin A and E (4.5 mg/kg of feed and 250 mg/kg of feed), VII- Vitamin A and C (4.5 mg/kg of feed and 250 mg/kg of feed), and VIII- Vitamin A, C and E (4.5 mg/kg of feed, 250 mg/kg of feed and 250 mg/kg of feed). The birds (n=240) were distributed randomly into eight treatments replicated three times, with each replicates having five birds. Ambient temperature was maintained using a 25 watts bulb for every 20 birds, while heat stress condition was sustained at 34°C for about 9 hours daily by using a 50 watts bulb per 5 birds. The interaction of vitamin supplements and temperatures did not significantly (P>0.05) affected body weight, average daily gain, feed consumption and feed conversion efficiency throughout the growing period. Similarly, supplementation of different vitamins did not improve (P>0.05) the overall production performance of birds throughout the rearing period. Birds raised in heat stress (34°C) condition had significantly lower ((P<0.05) body weight, average daily gain, and feed consumption compared to birds raised in ambient temperature at weeks 3, 4 and 5 of rearing. Supplementation of vitamins A, C, and E in the diet of broilers did not alleviate the effect of heat stress in the growth performance of broilers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler%20growth%20performance" title="broiler growth performance">broiler growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title=" heat stress"> heat stress</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20supplementation" title=" vitamin supplementation"> vitamin supplementation</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20A" title=" vitamin A"> vitamin A</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20C" title=" vitamin C"> vitamin C</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20E" title=" vitamin E"> vitamin E</a> </p> <a href="https://publications.waset.org/abstracts/68238/efficacy-of-vitamins-a-c-and-e-on-the-growth-performance-of-broiler-chickens-subjected-to-heat-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8221</span> Cost Effective and Efficient Feeding: A Way Forward for Sustainable and Profitable Aquaculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Kumar%20Sharma">Pawan Kumar Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Stephan%20Sampath%20Kumar"> J. Stephan Sampath Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anand"> S. Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandana%20B.%20L."> Chandana B. L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein is the major component for the success in culture of shrimp and fishes. Apparently, excess dietary protein is undesirable, as it not only enhances the production cost but also leads to water quality deterioration. A field survey was conducted with aqua farmers of Kerala, India, a leading state in coastal aquaculture, to assess the role of protein component in feed that can be efficiently and effectively managed for sustainable aquaculture. The study showed an average feed amount of 13.55 ± 2.16 tonnes per hectare was being used by the farmers of Kerala. The average feed cost percentage of Rs. 57.76 ± 13.46 /kg was invested for an average protein level of 36.26 % ± 0.082 in the feed and Rs.78.95 ± 3.086 per kilogram of feed was being paid by the farmers. Study revealed that replacement of fish meal and fish oil within shrimp aquafeeds with alternative protein, and lipid sources can only be achieved if changes are made in the basic shrimp culturing practices, such as closed farming system through water recycling or zero-water exchange, and by maximizing in-situ, floc and natural food production within the culture system. The upshot of such production systems is that imports of high-quality feed ingredients and aqua feeds can eventually be eliminated, and the utilization of locally available feed ingredients from agricultural by-products can be greatly improved and maximized. The promotion of closed shrimp production systems would also greatly reduce water use and increase shrimp production per unit area but would necessitate the continuous provision of electricity for aeration during production. Alternative energy sources such as solar power might be used, and resource poor farming communities should also explore wind energy for use. The study concluded that farm made feed and closed farming systems are essential for the sustainability and profitability of the aquaculture industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqua%20feeds" title="aqua feeds">aqua feeds</a>, <a href="https://publications.waset.org/abstracts/search?q=floc" title=" floc"> floc</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20meal" title=" fish meal"> fish meal</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-water%20exchange" title=" zero-water exchange"> zero-water exchange</a> </p> <a href="https://publications.waset.org/abstracts/107839/cost-effective-and-efficient-feeding-a-way-forward-for-sustainable-and-profitable-aquaculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8220</span> Analysis of Constraints and Opportunities in Dairy Production in Botswana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Som%20Pal%20Baliyan">Som Pal Baliyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dairy enterprise has been a major source of employment and income generation in most of the economies worldwide. Botswana government has also identified dairy as one of the agricultural sectors towards diversification of the mineral dependent economy of the country. The huge gap between local demand and supply of milk and milk products indicated that there are not only constraints but also; opportunities exist in this sub sector of agriculture. Therefore, this study was an attempt to identify constraints and opportunities in dairy production industry in Botswana. The possible ways to mitigate the constraints were also identified. The findings should assist the stakeholders especially, policy makers in the formulation of effective policies for the growth of dairy sector in the country. This quantitative study adopted a survey research design. A final survey followed by a pilot survey was conducted for data collection. The purpose of the pilot survey was to collect basic information on the nature and extent of the constraints, opportunities and ways to mitigate the constraints in dairy production. Based on the information from pilot survey, a four point Likert’s scale type questionnaire was constructed, validated and tested for its reliability. The data for the final survey were collected from purposively selected twenty five dairy farms. The descriptive statistical tools were employed to analyze data. Among the twelve constraints identified; high feed costs, feed shortage and availability, lack of technical support, lack of skilled manpower, high prevalence of pests and diseases and, lack of dairy related technologies were the six major constraints in dairy production. Grain feed production, roughage feed production, manufacturing of dairy feed, establishment of milk processing industry and, development of transportation systems were the five major opportunities among the eight opportunities identified. Increasing production of animal feed locally, increasing roughage feed production locally, provision of subsidy on animal feed, easy access to sufficient financial support, training of the farmers and, effective control of pests and diseases were identified as the six major ways to mitigate the constraints. It was recommended that the identified constraints and opportunities as well as the ways to mitigate the constraints need to be carefully considered by the stakeholders especially, policy makers during the formulation and implementation of the policies for the development of dairy sector in Botswana. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dairy%20enterprise" title="dairy enterprise">dairy enterprise</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title=" milk production"> milk production</a>, <a href="https://publications.waset.org/abstracts/search?q=opportunities" title=" opportunities"> opportunities</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20constraints" title=" production constraints"> production constraints</a> </p> <a href="https://publications.waset.org/abstracts/36858/analysis-of-constraints-and-opportunities-in-dairy-production-in-botswana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8219</span> Optimization of Bio-Diesel Production from Rubber Seed Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawit%20Tangviroon">Pawit Tangviroon</a>, <a href="https://publications.waset.org/abstracts/search?q=Apichit%20Svang-Ariyaskul"> Apichit Svang-Ariyaskul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rubber seed oil is an attractive alternative feedstock for biodiesel production because it is not related to food-chain plant. Rubber seed oil contains large amount of free fatty acids, which causes problem in biodiesel production. Free fatty acids can react with alkaline catalyst in biodiesel production. Acid esterification is used as pre-treatment to convert unwanted compound to desirable biodiesel. Phase separation of oil and methanol occurs at low ratio of methanol to oil and causes low reaction rate and conversion. Acid esterification requires large excess of methanol in order to increase the miscibility of methanol in oil and accordingly, it is a more expensive separation process. In this work, the kinetics of esterification of rubber seed oil with methanol is developed from available experimental results. Reactive distillation process was designed by using Aspen Plus program. The effects of operating parameters such as feed ratio, molar reflux ratio, feed temperature, and feed stage are investigated in order to find the optimum conditions. Results show that the reactive distillation process is proved to be better than conventional process. It consumes less feed methanol and less energy while yielding higher product purity than the conventional process. This work can be used as a guideline for further development to industrial scale of biodiesel production using reactive distillation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20distillation" title=" reactive distillation"> reactive distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20seed%20oil" title=" rubber seed oil"> rubber seed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/8267/optimization-of-bio-diesel-production-from-rubber-seed-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8218</span> Techno-Economic Analysis of the Production of Aniline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharshini%20M.">Dharshini M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hema%20N.%20S."> Hema N. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The project for the production of aniline is done by providing 295.46 tons per day of nitrobenzene as feed. The material and energy balance calculations for the different equipment like distillation column, heat exchangers, reactor and mixer are carried out with simulation via DWSIM. The conversion of nitrobenzene to aniline by hydrogenation process is considered to be 96% and the total production of the plant was found to be 215 TPD. The cost estimation of the process is carried out to estimate the feasibility of the plant. The net profit and percentage return of investment is estimated to be ₹27 crores and 24.6%. The payback period was estimated to be 4.05 years and the unit production cost is ₹113/kg. A techno-economic analysis was performed for the production of aniline; the result includes economic analysis and sensitivity analysis of critical factors. From economic analysis, larger the plant scale increases the total capital investment and annual operating cost, even though the unit production cost decreases. Uncertainty analysis was performed to predict the influence of economic factors on profitability and the scenario analysis is one way to quantify uncertainty. In scenario analysis the best-case scenario and the worst-case scenario are compared with the base case scenario. The best-case scenario was found at a feed rate of 120 kmol/hr with a unit production cost of ₹112.05/kg and the worst-case scenario was found at a feed rate of 60 kmol/hr with a unit production cost of ₹115.9/kg. The base case is closely related to the best case by 99.2% in terms of unit production cost. since the unit production cost is less and the profitability is more with less payback time, it is feasible to construct a plant at this capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aniline" title="aniline">aniline</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrobenzene" title=" nitrobenzene"> nitrobenzene</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20analysis" title=" economic analysis"> economic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20production%20cost" title=" unit production cost"> unit production cost</a> </p> <a href="https://publications.waset.org/abstracts/149349/techno-economic-analysis-of-the-production-of-aniline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8217</span> Camel Mortalities Due to Accidental Intoxcation with Ionophore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Abdelfattah">M. A. Abdelfattah</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20K.%20Waleed"> F. K. Waleed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anticoccidials were utilized widely in veterinary practice for the avoidance of coccidiosis in poultry and assume a huge job as development promotants in ruminants. Ionophore harming is every now and again happens because of accidental access to medicated feed, errors in feed mixing, incorrect dosage calculation or misuse in non-recommended species. Camels on several farms in Eastern area of Saudi Arabia were accidently fed with a feed pellet containing 13 ppm salinomycin. One hundred and sixty-three camels died with mortality rate of 100%. The poisoning was clinically characterized by restlessness with tail lift to the top, jerk in the muscles of legs and thighs, excessive sweating, frequent setting and standing with body imbalance, lateral and sternal recumbences with the legs stretched back, eye tears with dilated pupil, vomiting of the stomach content, loss of consciousness and death of some of them. Feed analysis indicated the presence of salinomycin in pelleted feed in a range of 13 mg/kg-47 mg/kg. Necropsy findings and histopathological examinations were presented. Regulations and legal implications concerning with sale of contaminated feed in Saudi market are discussed in the light of feed law and by-law. The necessity for an effective implication of regulation concerning application of quality assurance systems based on the principles of Good Manufacturing Practice (GMP) and the application of Hazard Analysis of Critical Control Point (HACCP) during feed production is necessary to avoid feed accident. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medicated%20feed" title="medicated feed">medicated feed</a>, <a href="https://publications.waset.org/abstracts/search?q=salinomycin" title=" salinomycin"> salinomycin</a>, <a href="https://publications.waset.org/abstracts/search?q=anticoccidial" title=" anticoccidial"> anticoccidial</a>, <a href="https://publications.waset.org/abstracts/search?q=camel" title=" camel"> camel</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/127800/camel-mortalities-due-to-accidental-intoxcation-with-ionophore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8216</span> Home Made Rice Beer Waste (Choak): A Low Cost Feed for Sustainable Poultry Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Singh">Vinay Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Deo"> Chandra Deo</a>, <a href="https://publications.waset.org/abstracts/search?q=Asit%20Chakrabarti"> Asit Chakrabarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Lopamudra%20Sahoo"> Lopamudra Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahak%20Singh"> Mahak Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Kumar"> Rakesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Kumar"> Dinesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Bharati"> H. Bharati</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajit%20Das"> Biswajit Das</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Mishra"> V. K. Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most widely used feed resources in poultry feed, like maize and soybean, are expensive as well as in short supply. Hence, there is a need to utilize non-conventional feed ingredients to cut down feed costs. As an alternative, brewery by-products like brewers’ dried grains are potential non-conventional feed resources. North-East India is inhabited by many tribes, and most of these tribes prepare their indigenous local brew, mostly using rice grains as the primary substrate. Choak, a homemade rice beer waste, is an excellent and cheap source of protein and other nutrients. Fresh homemade rice beer waste (rice brewer’s grain) was collected locally. The proximate analysis indicated 28.53% crude protein, 92.76% dry matter, 5.02% ether extract, 7.83% crude fibre, 2.85% total ash, 0.67% acid insoluble ash, 0.91% calcium, and 0.55% total phosphorus. A feeding trial with 5 treatments (incorporating rice beer waste at the inclusion levels of 0,10,20,30 & 40% by replacing maize and soybean from basal diet) was conducted with 25 laying hens per treatment for 16 weeks under completely randomized design in order to study the production performance, blood-biochemical parameters, immunity, egg quality and cost economics of laying hens. The results showed substantial variations (P<0.01) in egg production, egg mass, FCR per dozen eggs, FCR per kg egg mass, and net FCR. However, there was not a substantial difference in either body weight or feed intake or in egg weight. Total serum cholesterol reduced significantly (P<0.01) at 40% inclusion of rice beer waste. Additionally, the egg haugh unit grew considerably (P<0.01) when the graded levels of rice beer waste increased. The inclusion of 20% rice brewers dried grain reduced feed cost per kg egg mass and per dozen egg production by Rs. 15.97 and 9.99, respectively. Choak (homemade rice beer waste) can thus be safely incorporated into the diet of laying hens at a 20% inclusion level for better production performance and cost-effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=choak" title="choak">choak</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20beer%20waste" title=" rice beer waste"> rice beer waste</a>, <a href="https://publications.waset.org/abstracts/search?q=laying%20hen" title=" laying hen"> laying hen</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20performance" title=" production performance"> production performance</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20economics" title=" cost economics"> cost economics</a> </p> <a href="https://publications.waset.org/abstracts/176663/home-made-rice-beer-waste-choak-a-low-cost-feed-for-sustainable-poultry-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8215</span> Palatability of a Garlic and Citrus Extract Feed Supplement to Enhance Energy Retention and Methane Production in Ruminants in vivo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Graz">Michael Graz</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Shearer"> Andrew Shearer</a>, <a href="https://publications.waset.org/abstracts/search?q=Gareth%20Evans"> Gareth Evans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manipulation of rumen bacteria is receiving increasing attention as a way of controlling greenhouse gas (GHG) emissions that are generated by the agricultural sector. Feed supplementation in particular is one of the ways in which this drive is being addressed, in particular with reference to livestock-generated GHG emissions. A blend of naturally occurring chemical extracts obtained from garlic and bitter orange extracts has been identified as a natural, sustainable and non-antibiotic based way of reducing methane production by ruminant livestock. In the current study, the acceptability and impact of this blend of natural extracts on feed rations of beef cattle was trialed in vivo on a commercial farm in Europe. Initial findings have demonstrated acceptable palatability, with all animals accepting the feed supplement into their ration both when it was mixed into the total daily ration and when used as a part of their high energy rations. Measurement of the impact of this feed supplement on productivity weight gain and milk quality is ongoing. In conclusion, this field study confirmed the palatability of the combination of garlic and citrus extracts and hence pointed to possibility of the extract blend to improve digestion, enhance body energy retention and limit CH4 formation in relation to feed intake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citrus" title="citrus">citrus</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20reduction" title=" methane reduction"> methane reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=palatability" title=" palatability"> palatability</a>, <a href="https://publications.waset.org/abstracts/search?q=ruminants" title=" ruminants"> ruminants</a> </p> <a href="https://publications.waset.org/abstracts/68925/palatability-of-a-garlic-and-citrus-extract-feed-supplement-to-enhance-energy-retention-and-methane-production-in-ruminants-in-vivo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8214</span> Nutritional Evaluation of Seseame Seed Husk as a Source of Fibre in the Diets of Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maidala%20A.">Maidala A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bizi%20A.%20G."> Bizi A. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Olaoyo%20T.%20G."> Olaoyo T. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Amaza%20B.%20I."> Lawan Amaza B. I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Makinde%20O.%20J."> Makinde O. J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudik%20S.%20D."> Sudik S. D.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed at evaluating the effects of full or partial replacement of wheat offal by dry Sesame Seed Husk (SSH) on the performance of broiler chickens. One-day-old chicks (n = 120) were randomly allotted to five treatments, each replicated four times. A replicate comprised of eight chicks each in a Completely Randomized Design (CRD). SSH was included at 0, 25, 50, 75, and 100%, respectively. Results showed that there were no significant differences in the Daily feed intake (76.03-88.74), Daily weight gain (35.53-37.66), Feed conversion ratio (2.31-3.21) and Carcass characteristics. The feed cost is reduced as you increase the levels of SSH, and the feed cost N/kg gain was highest in the wheat offal diet and lowest at 100% SSH. It can be concluded that higher levels of up to 100% SSH can be incorporated into broiler rations without deleterious effects on the performance of broilers and concomitant reduction in feed cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SSH" title="SSH">SSH</a>, <a href="https://publications.waset.org/abstracts/search?q=broilers" title=" broilers"> broilers</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=economics%20of%20production" title=" economics of production"> economics of production</a>, <a href="https://publications.waset.org/abstracts/search?q=hematology" title=" hematology"> hematology</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20biochemistry" title=" serum biochemistry"> serum biochemistry</a> </p> <a href="https://publications.waset.org/abstracts/193669/nutritional-evaluation-of-seseame-seed-husk-as-a-source-of-fibre-in-the-diets-of-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8213</span> Effects of Specific Essential Oil Compounds on, Feed Intake, Milk Production, and Ruminal Environment in Dairy Cows during Heat Exposure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Reza-Yazdi">Kamran Reza-Yazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Fallah"> Mohammad Fallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Khodaparast"> Mahdi Khodaparast</a>, <a href="https://publications.waset.org/abstracts/search?q=Farshad%20Kateb"> Farshad Kateb</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Hosseini-Ghaffari"> Morteza Hosseini-Ghaffari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to determine effect of dietary essential oil (EO) compounds, which contained cinnamaldehyde, eugenol, peppermint, coriander, cumin, lemongrass, and an organic carrier on feed intake, milk composition, and rumen fermentation of dairy cows during heat exposure. Thirty-two Holstein cows (days in milk= 60 ± 5) were assigned to one of two treatment groups: a Control and EO fed. The experiment lasted 28 days. Dry matter intake (DMI) was measured daily while and milk production was measured weekly. Our result showed that DMI and milk yield was decreased (P < 0.01) in control cows relative to EO cows. Furthermore, supplementation with EO was associated with a decrease in the molar proportion of propionate (P < 0.05) and increase (P < 0.05) in acetate to propionate ratio. In conclusion, EO supplementations in diets can be useful nutritional modification to alleviate for the decrease DMI and milk production during heat exposure in lactating dairy cows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dairy%20cow" title="dairy cow">dairy cow</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20additive" title=" feed additive"> feed additive</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extract" title=" plant extract"> plant extract</a>, <a href="https://publications.waset.org/abstracts/search?q=eugenol" title=" eugenol"> eugenol</a> </p> <a href="https://publications.waset.org/abstracts/17039/effects-of-specific-essential-oil-compounds-on-feed-intake-milk-production-and-ruminal-environment-in-dairy-cows-during-heat-exposure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">793</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8212</span> Cultivation And Production of Insects, Especially Mealworms (Mealworms) and Investigating Its Potential as Food for Animals and Even Humans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Eshaghi%20Koupaei">Marzieh Eshaghi Koupaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By cultivating mealworm, we reduce greenhouse gases and avoid the use of transgenic products such as soybeans, and we provide food resources rich in protein, amino acids, minerals, etc. for humans and animals, and it has created employment and entrepreneurship. We serve the environment by producing oil from mealworm in the cosmetic industry, using its waste as organic fertilizer and its powder in bodybuilding, and by breaking down plastic by mealworm. The production and breeding of mealworm requires very little infrastructure and does not require much trouble, and requires very little food, and reproduces easily and quickly, and a mealworm production workshop is noiseless, odorless, and pollution-free And the costs are very low. It is possible to use third grade fruits and unsalable fruits of farmers to feed the mealworms, which is completely economical and cost-effective. Mealworms can break down plastic in their intestines and turn it into carbon dioxide. . This process was done in only 16 days, which is a very short time compared to several centuries for plastic to decompose. By producing mealworm, we have helped to preserve the environment and provided the source of protein needed by humans and animals. This industrial insect has the ability and value of commercialization and creates employment and helps the economy of the society. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breeding" title="breeding">breeding</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20of%20insects" title=" production of insects"> production of insects</a>, <a href="https://publications.waset.org/abstracts/search?q=mealworms" title=" mealworms"> mealworms</a>, <a href="https://publications.waset.org/abstracts/search?q=research" title=" research"> research</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20feed" title=" animal feed"> animal feed</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20feed" title=" human feed"> human feed</a> </p> <a href="https://publications.waset.org/abstracts/176635/cultivation-and-production-of-insects-especially-mealworms-mealworms-and-investigating-its-potential-as-food-for-animals-and-even-humans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8211</span> Efficacy of Microbial Metabolites Obtained from Saccharomyces cerevisiae as Supplement for Quality Milk Production in Dairy Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20ur%20Rahman">Sajjad ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Azam"> Mariam Azam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukarram%20Bashir"> Mukarram Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Seemal%20Javaid"> Seemal Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoun%20Muhammad"> Aoun Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir"> Muhammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawad"> Jawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannan%20Khan"> Hannan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zohaib"> Muhammad Zohaib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Partially fermented soya hulls and wheat bran through Saccharomyces cerevisiae (DL-22 S/N) substantiated as a natural source for quality milk production. Saccharomyces cerevisiae (DL-22 S/N) were grown under in-vivo conditions and processed through two-step fermentation with substrates. The extra pure metabolites (XPM) were dried and processed for maintaining 1mm mesh size particles for supplementation of pelleted feed. Two groups of a cow (Holstein Friesian) having 8 animals of similar age and lactation were given the experimental concentrates. Group A was fed daily with 12gm of XPM and 22% protein-pelleted feed, while Group B was provided with no metabolites in their feed. In thirty-nine days of trial, improvement in the overall health, body score, milk protein, milk fat, ash, and solid not fat (SNF), yield, and incidence rate of mastitis was observed. The collected data revealed an improvement in milk production of 2.02 liter/h/d. However, a reduction (3.75%) in the milk fats and an increase in the milk SNF was around 0.58%. The ash content ranged between 6.4-7.5%. The incidence of mastitis was reduced to less than 2%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20metabolites" title="microbial metabolites">microbial metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title=" milk production"> milk production</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites" title=" post-biotic metabolites"> post-biotic metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a> </p> <a href="https://publications.waset.org/abstracts/165949/efficacy-of-microbial-metabolites-obtained-from-saccharomyces-cerevisiae-as-supplement-for-quality-milk-production-in-dairy-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8210</span> Growth Performance and Economy of Production of Pullets Fed on Different Energy Based Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Anjola">O. A. Anjola</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Adejobi"> M. A. Adejobi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ogunbameru"> A. Ogunbameru</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20P.%20Agbaye"> F. P. Agbaye</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20O.%20Odunukan"> R. O. Odunukan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment was conducted for 8 weeks to evaluate the growth performance and economics of pullets fed on different dietary energy sources. A total of 300 Harco black was used for this experiment. The birds were completely randomized and divided into four diet treatment groups. Each treatment group had three replicates of twenty-five birds per replicate. Four diets containing maize, spaghetti, noodles, and biscuit was formulated to represent diet 1, 2, 3 and 4 respectively. Diet 1 containing maize is the control, while diet 2, 3, and 4 contains spaghetti, noodles, and biscuit waste meal at 100% replacement for maize on weight for weight basis. Performance indices on Feed intake, body weight, weight gain, feed conversion ratio (FCR) and economy of production were measured. Blood samples were also collected for heamatology and serum biochemistry assessment. The result of the experiment indicated that different dietary energy source fed to birds significantly (P &lt; 0.05) affect feed intake, body weight, weight gain, and feed conversion ratio (FCR). The best cost of feed per kilogram of body weight gain was obtained in Spaghetti based diet (₦559.30). However, the best performance were obtained from diet 1(maize), it can be concluded that spaghetti as a replacement for maize in diet of pullet is most economical and profitable for production without any deleterious effects attached. Blood parameters of birds were not significantly (p &gt; 0.05) influenced by the use of the dietary energy sources used in this experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title="growth performance">growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=spaghetti" title=" spaghetti"> spaghetti</a>, <a href="https://publications.waset.org/abstracts/search?q=noodles" title=" noodles"> noodles</a>, <a href="https://publications.waset.org/abstracts/search?q=biscuit" title=" biscuit"> biscuit</a>, <a href="https://publications.waset.org/abstracts/search?q=profit" title=" profit"> profit</a>, <a href="https://publications.waset.org/abstracts/search?q=hematology" title=" hematology"> hematology</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20biochemistry" title=" serum biochemistry"> serum biochemistry</a> </p> <a href="https://publications.waset.org/abstracts/71743/growth-performance-and-economy-of-production-of-pullets-fed-on-different-energy-based-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8209</span> The Use of Ensiled Sweet Potato Vines as Feed for Growing Rabbits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20John%20Makinde">O. John Makinde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A total of 60 crossbred weaned rabbits with an average initial body weight of 650 ±2.00 g were used to study the effects of dietary inclusion of graded levels of Ensiled sweet potato vines (ESPV) based diets on growth performance. Four experimental diets were formulated such that ESPV was included at the graded levels of 0, 10, 20 and 30 % in diets 1, 2, 3 and 4 respectively. The rabbits were randomly assigned into 4 treatments with 15 rabbits per treatment; each treatment was replicated thrice (5 rabbits per replicate) in a completely randomised design. The rabbits were managed based on standard experimental procedures. Feed and water were given ad libitum. Results of growth performance were not significantly different (p > 0.05) for final weight, total weight gain, total feed intake, feed conversion ratio and mortality. Carcass characteristics were not significantly (p > 0.05) affected by the treatments. The economics of production showed that diet with 30 % ESPV had the least cost/kg diets. It was concluded that ESPV can be included up to 30 % in growing rabbit diets without adverse effect on their performance, blood indices and cost of production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ensiled" title="ensiled">ensiled</a>, <a href="https://publications.waset.org/abstracts/search?q=sweet%20potato%20vines" title=" sweet potato vines"> sweet potato vines</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbits" title=" rabbits"> rabbits</a>, <a href="https://publications.waset.org/abstracts/search?q=Oryctolagus%20cuniculus" title=" Oryctolagus cuniculus"> Oryctolagus cuniculus</a> </p> <a href="https://publications.waset.org/abstracts/86949/the-use-of-ensiled-sweet-potato-vines-as-feed-for-growing-rabbits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8208</span> Valorization of By-Products through Feed Formulation for Tilapia sp: Zootechnical Performance Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Redhouane%20Benfares">Redhouane Benfares</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Boudjemaa"> Kamel Boudjemaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Affaf%20Kord"> Affaf Kord</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Messis"> Sonia Messis</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Farai"> Linda Farai</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Guenachi"> Belkacem Guenachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kherarba%20Maha"> Kherarba Maha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslava%20%C5%A0Varc-Gaji%C4%87"> Jaroslava ŠVarc-Gajić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years valorization of biowaste has attracted a lot of attention worldwide owing to its high nutritional value and low price. In this work, biowaste of animal (sardines) and plant (tomato) biowaste was used to formulate a new feed for red tilapia that showed to be competitive in its price, and zootechnical performance in comparison to commercially available tilapia feeds. Mathematical modelling was used to formulate optimal feed composition with favorable chemical composition and the lowest price. Formulated feed had high protein content (40.76%) and an energy value of 279.6 Kcal/100 g. Optimised feed was manufactured and compared to commercially available reference feed with respect to feeding intake, feed efficiency, the specific growth rate of fingerlings of Tilapia sp, and, most important, zootechnical parameters. With a fish survival rate of 100% calculated feed conversion index for the formulated feed was 2.7. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conversion%20index" title="conversion index">conversion index</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20waste" title=" fish waste"> fish waste</a>, <a href="https://publications.waset.org/abstracts/search?q=formulated%20feed" title=" formulated feed"> formulated feed</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20waste" title=" tomato waste"> tomato waste</a> </p> <a href="https://publications.waset.org/abstracts/157767/valorization-of-by-products-through-feed-formulation-for-tilapia-sp-zootechnical-performance-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8207</span> Microwave Plasma Dry Reforming of Methane at High CO2/CH4 Feed Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Majd%20Alawi">Nabil Majd Alawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gia%20Hung%20Pham"> Gia Hung Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Barifcani"> Ahmed Barifcani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dry reforming of methane that converts two greenhouses gases (CH<sub>4</sub> and CO<sub>2</sub>) to synthesis gas (a mixture of H<sub>2</sub> and CO) was studied in a commercial bench scale microwave (MW) plasma reactor system at atmospheric pressure. The CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub> conversions; H<sub>2</sub>, CO selectivities and yields, and syngas ratio (H<sub>2</sub>/CO) were investigated in a wide range of total feed flow rate (0.45 &ndash; 2.1 L/min), MW power (700 &ndash; 1200 watt) and CO<sub>2</sub>/CH<sub>4</sub> molar ratio (2 &ndash; 5). At the feed flow rates of CH<sub>4</sub>, CO<sub>2</sub> and N<sub>2</sub> of 0.2, 0.4 and 1.5 L/min respectively, and the MWs input power of 700 W, the highest conversions of CH<sub>4</sub> and CO<sub>2</sub>, selectivity and yield of H<sub>2</sub>, CO and H<sub>2</sub>/CO ratio of 79.35%, 44.82%, 50.12, 58.42, 39.77%, 32.89%, and 0.86, respectively, were achieved. The results of this work show that the product ratio increases slightly with the increasing total feed flow rate, but it decreases significantly with the increasing MW power and feeds CO<sub>2</sub>/CH<sub>4</sub> ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry%20reforming%20of%20methane" title="dry reforming of methane">dry reforming of methane</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20discharge" title=" microwave discharge"> microwave discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20technology" title=" plasma technology"> plasma technology</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis%20gas%20production" title=" synthesis gas production"> synthesis gas production</a> </p> <a href="https://publications.waset.org/abstracts/95887/microwave-plasma-dry-reforming-of-methane-at-high-co2ch4-feed-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8206</span> Supplementation of Leucahena leucochepala on Rice Straw Ammoniated Complete Feed on Fiber Digestibility and in vitro Rumen Fermentation Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mardiati%20Zain">Mardiati Zain</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20N.%20Rusmana"> W. S. N. Rusmana</a>, <a href="https://publications.waset.org/abstracts/search?q=Erpomen"> Erpomen</a>, <a href="https://publications.waset.org/abstracts/search?q=Malik%20Makmur"> Malik Makmur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezi%20Masdia%20Putri"> Ezi Masdia Putri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Aim: The leaves of the Leucaenaleucocephala tree have potential as a nitrogen source for ruminants. Leucaena leaf meal as protein supplement has been shown to improve the feed quality of ruminants. The effects of different levels of Leucaena leucocephala supplementation as substitute of concentrate on fiber digestibility and in vitro rumen fermentation characteristics were investigated. This research was conducted in vitro. The study used a randomized block design consisting of 3 treatments and 5 replications. The treatments were A. 40% rice straw ammoniated + 60% concentrate, B. 40% rice straw ammoniated + 50% concentrate + 10% Leucaena leuchephala, C. 40% rice straw ammoniated + 40% concentrate + 20% Leucaena leuchephala, Result: The results showed that the addition of Leucaena leucocephala increased the digestibility of Neutral detergent Fiber NDF and Acid Detergent Fiber (ADF) (p < 0.05). In this study, rumen NH3, propionate, amount of escape protein and total Volatyl Fatty Acid (VFA) were found increased significantly at treatment B. No significant difference was observed in acetate and butyrate production. The populations of total protozoa and methane production had significantly decreased (P < .05) in supplemented group. Conclusion: Supplementation of leuchaena leucochepala on completed feed based on ammoniated rice straw in vitro can increase fiber digestibility, VFA production and decreased protozoa pupulataion and methane production. Supplementation of 10% and 20% L. leucochepala were suitable to be used for further studies, therefore in vivo experiment is required to study the effects on animal production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digestibility" title="digestibility">digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=Leucaena%20leucocephala" title=" Leucaena leucocephala"> Leucaena leucocephala</a>, <a href="https://publications.waset.org/abstracts/search?q=complete%20feed" title=" complete feed"> complete feed</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20straw%20ammoniated" title=" rice straw ammoniated"> rice straw ammoniated</a> </p> <a href="https://publications.waset.org/abstracts/104155/supplementation-of-leucahena-leucochepala-on-rice-straw-ammoniated-complete-feed-on-fiber-digestibility-and-in-vitro-rumen-fermentation-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=feed%20production&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=feed%20production&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=feed%20production&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=feed%20production&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=feed%20production&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=feed%20production&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=feed%20production&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=feed%20production&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=feed%20production&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=feed%20production&amp;page=274">274</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=feed%20production&amp;page=275">275</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=feed%20production&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10