CINXE.COM
Search results for: Liquefaction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Liquefaction</title> <meta name="description" content="Search results for: Liquefaction"> <meta name="keywords" content="Liquefaction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Liquefaction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Liquefaction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 126</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Liquefaction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Probabilistic Modeling of Post-Liquefaction Ground Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Sadoghi%20Yazdi">Javad Sadoghi Yazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Robb%20Eric%20S.%20Moss"> Robb Eric S. Moss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper utilizes a probabilistic liquefaction triggering method for modeling post-liquefaction ground deformation. This cone penetration test CPT-based liquefaction triggering is employed to estimate the factor of safety against liquefaction (FSL) and compute the maximum cyclic shear strain (γmax). The study identifies a maximum PL value of 90% across various relative densities, which challenges the decrease from 90% to 70% as relative density decreases. It reveals that PL ranges from 5% to 50% for volumetric strain (εvol) less than 1%, while for εvol values between 1% and 3.2%, PL spans from 50% to 90%. The application of the CPT-based simplified liquefaction triggering procedures has been employed in previous researches to estimate liquefaction ground-failure indices, such as the Liquefaction Potential Index (LPI) and Liquefaction Severity Number (LSN). However, several studies have been conducted to highlight the variability in liquefaction probability calculations, suggesting a more accurate depiction of liquefaction likelihood. Consequently, the utilization of these simplified methods may not offer practical efficiency. This paper further investigates the efficacy of various established liquefaction vulnerability parameters, including LPI and LSN, in explaining the observed liquefaction-induced damage within residential zones of Christchurch, New Zealand using results from CPT database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cone%20penetration%20test%20%28CPT%29" title="cone penetration test (CPT)">cone penetration test (CPT)</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=postliquefaction" title=" postliquefaction"> postliquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20failure" title=" ground failure"> ground failure</a> </p> <a href="https://publications.waset.org/abstracts/183484/probabilistic-modeling-of-post-liquefaction-ground-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Reliability-Based Method for Assessing Liquefaction Potential of Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehran%20Naghizaderokni">Mehran Naghizaderokni</a>, <a href="https://publications.waset.org/abstracts/search?q=Asscar%20Janalizadechobbasty"> Asscar Janalizadechobbasty </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores probabilistic method for assessing the liquefaction potential of sandy soils. The current simplified methods for assessing soil liquefaction potential use a deterministic safety factor in order to determine whether liquefaction will occur or not. However, these methods are unable to determine the liquefaction probability related to a safety factor. A solution to this problem can be found by reliability analysis.This paper presents a reliability analysis method based on the popular certain liquefaction analysis method. The proposed probabilistic method is formulated based on the results of reliability analyses of 190 field records and observations of soil performance against liquefaction. The results of the present study show that confidence coefficient greater and smaller than 1 does not mean safety and/or liquefaction in cadence for liquefaction, and for assuring liquefaction probability, reliability based method analysis should be used. This reliability method uses the empirical acceleration attenuation law in the Chalos area to derive the probability density distribution function and the statistics for the earthquake-induced cyclic shear stress ratio (CSR). The CSR and CRR statistics are used in continuity with the first order and second moment method to calculate the relation between the liquefaction probability, the safety factor and the reliability index. Based on the proposed method, the liquefaction probability related to a safety factor can be easily calculated. The influence of some of the soil parameters on the liquefaction probability can be quantitatively evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20analysis" title=" reliability analysis"> reliability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chalos%20area" title=" chalos area"> chalos area</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20and%20structural%20engineering" title=" civil and structural engineering"> civil and structural engineering</a> </p> <a href="https://publications.waset.org/abstracts/26223/reliability-based-method-for-assessing-liquefaction-potential-of-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Effect of Oil Contamination on the Liquefaction Behavior of Sandy Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mahdi%20Shojaedin"> Mohammad Mahdi Shojaedin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil leakage from the pipelines and the tanks carrying them, or during oil extraction, could lead to the changes in the characteristics and properties of the soil. In this paper, conducting a series of experimental cyclic triaxial tests, the effects of oil contamination on the liquefaction potential of sandy soils is investigated. The studied specimens are prepared by mixing the Firoozkuh sand with crude oil in 4, 8 and 12 percent by soil dry weight. The results show that the oil contamination up to 8% causes an increase in the soil liquefaction resistance and then with increase in the contamination, the liquefaction resistance decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20triaxial%20test" title="cyclic triaxial test">cyclic triaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction%20resistance" title=" liquefaction resistance"> liquefaction resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20contamination" title=" oil contamination"> oil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20soil" title=" sandy soil"> sandy soil</a> </p> <a href="https://publications.waset.org/abstracts/8592/effect-of-oil-contamination-on-the-liquefaction-behavior-of-sandy-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Reliability Analysis of Soil Liquefaction Based on Standard Penetration: A Case Study in Babol City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehran%20Naghizaderokni">Mehran Naghizaderokni</a>, <a href="https://publications.waset.org/abstracts/search?q=Asscar%20Janalizadechobbasty"> Asscar Janalizadechobbasty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are more probabilistic and deterministic liquefaction evaluation procedures in order to judge whether liquefaction will occur or not. A review of this approach reveals that there is a need for a comprehensive procedure that accounts for different sources of uncertainty in liquefaction evaluation. In fact, for the same set of input parameters, different methods provide different factors of safety and/or probabilities of liquefaction. To account for the different uncertainties, including both the model and measurement uncertainties, reliability analysis is necessary. This paper has obtained information from Standard Penetration Test (SPT) and some empirical approaches such as: Seed et al, Highway bridge of Japan approach to soil liquefaction, The Overseas Coastal Area Development Institute of Japan (OCDI) and reliability method to studying potential of liquefaction in soil of Babol city in the north of Iran are compared. Evaluation potential of liquefaction in soil of Babol city is an important issue since the soil of some area contains sand, seismic area, increasing level of underground waters and consequently saturation of soil; therefore, one of the most important goals of this paper is to gain suitable recognition of liquefaction potential and find the most appropriate procedure of evaluation liquefaction potential to decrease related damages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability%20analysis" title="reliability analysis">reliability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Babol" title=" Babol"> Babol</a>, <a href="https://publications.waset.org/abstracts/search?q=civil" title=" civil"> civil</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20geological%20engineering" title=" construction and geological engineering"> construction and geological engineering</a> </p> <a href="https://publications.waset.org/abstracts/26224/reliability-analysis-of-soil-liquefaction-based-on-standard-penetration-a-case-study-in-babol-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Cyclic Liquefaction Resistance of Reinforced Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Naeini">S. A. Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Eftekhari"> Z. Eftekhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquefaction phenomenon in sand is nowadays a classical soil mechanics subject. Using a cyclic triaxial test apparatus, we use non-woven geotextile reinforcement to improve the liquefaction resistance of sand. The layer configurations used are zero, one, two and three horizontal reinforcing layers in a triaxial test sample. The influences of the number of geotextile layers, and cyclic stress ratio (CSR) were studied and described. The results illustrated that the geotextile inclusion increases liquefaction resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction%20resistance" title="liquefaction resistance">liquefaction resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=geotextile" title=" geotextile"> geotextile</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20triaxial%20test" title=" cyclic triaxial test"> cyclic triaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20stress%20ratio" title=" cyclic stress ratio"> cyclic stress ratio</a> </p> <a href="https://publications.waset.org/abstracts/8513/cyclic-liquefaction-resistance-of-reinforced-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Evaluation of Iranian Standard for Assessment of Liquefaction Potential of Cohesionless Soils Based on SPT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayad">Reza Ziaie Moayad</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Kouhpeyma"> Azam Kouhpeyma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In-situ testing is preferred to evaluate the liquefaction potential in cohesionless soils due to high disturbance during sampling. Although new in-situ methods with high accuracy have been developed, standard penetration test, the simplest and the oldest in-situ test, is still used due to the profusion of the recorded data. This paper reviews the Iranian standard of evaluating liquefaction potential in soils (codes 525) and compares the liquefaction assessment methods based on SPT results on cohesionless soil in this standard with the international standards. To this, methods for assessing liquefaction potential which are presented by Cetin et al. (2004), Boulanger and Idriss (2014) are compared with what is presented in standard 525. It is found that although the procedure used in Iranian standard of evaluating the potential of liquefaction has not been updated according to the new findings, it is a conservative procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cohesionless%20soil" title="cohesionless soil">cohesionless soil</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=SPT" title=" SPT"> SPT</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20525" title=" standard 525"> standard 525</a> </p> <a href="https://publications.waset.org/abstracts/133623/evaluation-of-iranian-standard-for-assessment-of-liquefaction-potential-of-cohesionless-soils-based-on-spt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Daftari">A. Daftari</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Kudla"> W. Kudla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=plaxis" title=" plaxis"> plaxis</a>, <a href="https://publications.waset.org/abstracts/search?q=pore-water%20pressure" title=" pore-water pressure"> pore-water pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=UBC3D-PLM" title=" UBC3D-PLM"> UBC3D-PLM</a> </p> <a href="https://publications.waset.org/abstracts/2619/prediction-of-soil-liquefaction-by-using-ubc3d-plm-model-in-plaxis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> UBCSAND Model Calibration for Generic Liquefaction Triggering Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jui-Ching%20Chou">Jui-Ching Chou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical simulation is a popular method used to evaluate the effects of soil liquefaction on a structure or the effectiveness of a mitigation plan. Many constitutive models (UBCSAND model, PM4 model, SANISAND model, etc.) were presented to model the liquefaction phenomenon. In general, inputs of a constitutive model need to be calibrated against the soil cyclic resistance before being applied to the numerical simulation model. Then, simulation results can be compared with results from simplified liquefaction potential assessing methods. In this article, inputs of the UBCSAND model, a simple elastic-plastic stress-strain model, are calibrated against several popular generic liquefaction triggering curves of simplified liquefaction potential assessing methods via FLAC program. Calibrated inputs can provide engineers to perform a preliminary evaluation of an existing structure or a new design project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calibration" title="calibration">calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=UBCSAND%20Model" title=" UBCSAND Model"> UBCSAND Model</a> </p> <a href="https://publications.waset.org/abstracts/113597/ubcsand-model-calibration-for-generic-liquefaction-triggering-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Evaluation of Liquefaction Potential of Fine Grained Soil: Kerman Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayed">Reza Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Maedeh%20Akhavan%20Tavakkoli"> Maedeh Akhavan Tavakkoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to investigate and evaluate the liquefaction potential in a project in Kerman city based on different methods for fine-grained soils. Examining the previous damages caused by recent earthquakes, it has been observed that fine-grained soils play an essential role in the level of damage caused by soil liquefaction. But, based on previous investigations related to liquefaction, there is limited attention to evaluating the cyclic resistance ratio for fine-grain soils, especially with the SPT method. Although using a standard penetration test (SPT) to find the liquefaction potential of fine-grain soil is not common, it can be a helpful method based on its rapidness, serviceability, and availability. In the present study, the liquefaction potential has been first determined by the soil’s physical properties obtained from laboratory tests. Then, using the SPT test and its available criterion for evaluating the cyclic resistance ratio and safety factor of liquefaction, the correction of effecting fine-grained soils is made, and then the results are compared. The results show that using the SPT test for liquefaction is more accurate than using laboratory tests in most cases due to the contribution of different physical parameters of soil, which leads to an increase in the ultimate N₁(60,cs). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20resistance%20ratio" title=" cyclic resistance ratio"> cyclic resistance ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=SPT%20test" title=" SPT test"> SPT test</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20soil" title=" clay soil"> clay soil</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesion%20soils" title=" cohesion soils"> cohesion soils</a> </p> <a href="https://publications.waset.org/abstracts/148105/evaluation-of-liquefaction-potential-of-fine-grained-soil-kerman-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Effect of Fines on Liquefaction Susceptibility of Sandy Soil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayad%20Salih%20Sabbar">Ayad Salih Sabbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Chegenizadeh"> Amin Chegenizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Nikraz"> Hamid Nikraz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation of liquefaction susceptibility of materials that have been used in embankments, slopes, dams, and foundations is very essential. Many catastrophic geo-hazards such as flow slides, declination of foundations, and damage to earth structure are associated with static liquefaction that may occur during abrupt shearing of these materials. Many artificial backfill materials are mixtures of sand with fines and other composition. In order to provide some clarifications and evaluations on the role of fines in static liquefaction behaviour of sand sandy soils, the effect of fines on the liquefaction susceptibility of sand was experimentally examined in the present work over a range of fines content, relative density, and initial confining pressure. The results of an experimental study on various sand-fines mixtures are presented. Undrained static triaxial compression tests were conducted on saturated Perth sand containing 5% bentonite at three different relative densities (10, 50, and 90%), and saturated Perth sand containing both 5% bentonite and slag (2%, 4%, and 6%) at single relative density 10%. Undrained static triaxial tests were performed at three different initial confining pressures (100, 150, and 200 kPa). The brittleness index was used to quantify the liquefaction potential of sand-bentonite-slag mixtures. The results demonstrated that the liquefaction susceptibility of sand-5% bentonite mixture was more than liquefaction susceptibility of clean sandy soil. However, liquefaction potential decreased when both of two fines (bentonite and slag) were used. Liquefaction susceptibility of all mixtures decreased with increasing relative density and initial confining pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=brittleness%20index" title=" brittleness index"> brittleness index</a> </p> <a href="https://publications.waset.org/abstracts/77118/effect-of-fines-on-liquefaction-susceptibility-of-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Liquefaction Assessment of Marine Soil in Western Yemen Region Based on Laboratory and Field Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monalisha%20Nayak">Monalisha Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20G.%20Sitharam"> T. G. Sitharam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquefaction is a major threat for sites consists of or on sandy soil. But this present study concentrates on the behavior of fine soil under cyclic loading. This paper presents the study of liquefaction susceptibility of marine silty clay to clayey silt for an offshore site near western Yemen. The submerged and loose sediment condition of marine soil of an offshore site can favour liquefaction during earthquakes. In this regard, the liquefaction susceptibility of the site was carried out based on both field test results and laboratory test results. From field test results of seismic cone penetration test (SCPT), liquefaction susceptibility was assessed considering normalized cone tip resistance, and normalized friction ratio and results give an idea regarding both cyclic mobility and flow liquefaction. Laboratory cyclic triaxial tests were also conducted on saturated undisturbed and remoulded sample to study the effect of cyclic loading on strength and strain characteristics. Liquefaction susceptibility of the marine soft soil was also carried out based on index properties like grain size distribution, natural moisture content and liquid limit of soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=index%20properties" title="index properties">index properties</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20soil" title=" marine soil"> marine soil</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20cone%20penetration%20test%20%28SCPT%29" title=" seismic cone penetration test (SCPT)"> seismic cone penetration test (SCPT)</a> </p> <a href="https://publications.waset.org/abstracts/74336/liquefaction-assessment-of-marine-soil-in-western-yemen-region-based-on-laboratory-and-field-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> The Evaluation of Soil Liquefaction Potential Using Shear Wave Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nghizaderokni">M. Nghizaderokni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Janalizadechobbasty"> A. Janalizadechobbasty</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Azizi"> M. Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naghizaderokni"> M. Naghizaderokni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquefaction resistance of soils can be evaluated using laboratory tests such as cyclic simple shear, cyclic triaxial, cyclic tensional shear, and field methods such as Standard Penetration Test (SPT), Cone Penetration Test (CPT), and Shear Wave Velocity (Vs). This paper outlines a great correlation between shear wave velocity and standard penetration resistance of granular soils was obtained. Using Seeds standard penetration test (SPT) based soil liquefaction charts, new charts of soil liquefaction evaluation based on shear wave velocity data were developed for various magnitude earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20resistance" title=" standard penetration resistance "> standard penetration resistance </a> </p> <a href="https://publications.waset.org/abstracts/28944/the-evaluation-of-soil-liquefaction-potential-using-shear-wave-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Effect of Plastic Fines on Liquefaction Resistance of Sandy Soil Using Resonant Column Test </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Naeini">S. A. Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghorbani%20Tochaee"> M. Ghorbani Tochaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to assess the influence of plastic fines content on sand-clay mixtures on maximum shear modulus and liquefaction resistance using a series of resonant column tests. A high plasticity clay called bentonite was added to 161 Firoozkooh sand at the percentages of 10, 15, 20, 25, 30 and 35 by dry weight. The resonant column tests were performed on the remolded specimens at constant confining pressure of 100 KPa and then the values of G<sub>max</sub> and liquefaction resistance were investigated. The maximum shear modulus and cyclic resistance ratio (CRR) are examined in terms of fines content. Based on the results, the maximum shear modulus and liquefaction resistance tend to decrease within the increment of fine contents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gmax" title="Gmax">Gmax</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20fines" title=" plastic fines"> plastic fines</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20column" title=" resonant column"> resonant column</a>, <a href="https://publications.waset.org/abstracts/search?q=sand-clay%20mixtures" title=" sand-clay mixtures"> sand-clay mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a> </p> <a href="https://publications.waset.org/abstracts/120346/effect-of-plastic-fines-on-liquefaction-resistance-of-sandy-soil-using-resonant-column-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Optimization of Quercus cerris Bark Liquefaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADsa%20P.%20Cruz-Lopes">Luísa P. Cruz-Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Costa%20e%20Silva"> Hugo Costa e Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Idalina%20Domingos"> Idalina Domingos</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ferreira"> José Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Teixeira%20de%20Lemos"> Luís Teixeira de Lemos</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Esteves"> Bruno Esteves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquefaction process of cork based tree barks has led to an increase of interest due to its potential innovation in the lumber and wood industries. In this particular study the bark of <em>Quercus cerris</em> (Turkish oak) is used due to its appreciable amount of cork tissue, although of inferior quality when compared to the cork provided by other Quercus trees. This study aims to optimize alkaline catalysis liquefaction conditions, regarding several parameters. To better comprehend the possible chemical characteristics of the bark of <em>Quercus cerris</em>, a complete chemical analysis was performed. The liquefaction process was performed in a double-jacket reactor heated with oil, using glycerol and a mixture of glycerol/ethylene glycol as solvents, potassium hydroxide as a catalyst, and varying the temperature, liquefaction time and granulometry. Due to low liquefaction efficiency resulting from the first experimental procedures a study was made regarding different washing techniques after the filtration process using methanol and methanol/water. The chemical analysis stated that the bark of <em>Quercus cerris</em> is mostly composed by suberin (<em>ca.</em> 30%) and lignin (<em>ca.</em> 24%) as well as insolvent hemicelluloses in hot water (<em>ca.</em> 23%). On the liquefaction stage, the results that led to higher yields were: using a mixture of methanol/ethylene glycol as reagents and a time and temperature of 120 minutes and 200 ºC, respectively. It is concluded that using a granulometry of <80 mesh leads to better results, even if this parameter barely influences the liquefaction efficiency. Regarding the filtration stage, washing the residue with methanol and then distilled water leads to a considerable increase on final liquefaction percentages, which proves that this procedure is effective at liquefying suberin content and lignocellulose fraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Quercus%20cerris" title=" Quercus cerris"> Quercus cerris</a>, <a href="https://publications.waset.org/abstracts/search?q=polyalcohol%20liquefaction" title=" polyalcohol liquefaction"> polyalcohol liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/52423/optimization-of-quercus-cerris-bark-liquefaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Co-Liquefaction of Cellulosic Biomass and Waste Plastics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katsumi%20Hirano">Katsumi Hirano</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuke%20Kakuta"> Yusuke Kakuta</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Yoshida"> Koji Yoshida</a>, <a href="https://publications.waset.org/abstracts/search?q=Shozo%20Itagaki"> Shozo Itagaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Masahiko%20Kajioka"> Masahiko Kajioka</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshihiko%20Okada">Toshihiko Okada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A conversion technology of cellulosic biomass and waste plastics to liquid fuel at low pressure and low temperature has been investigated. This study aims at the production of the liquefied fuel (CPLF) of substituting diesel oil by mixing cellulosic biomass and waste plastics in the presence of solvent. Co-liquefaction of cellulosic biomass (Japan cedar) and polypropylene (PP) using wood tar or mineral oil as solvent at 673K with an autoclave was carried out. It was confirmed that the co-liquefaction gave CPLF in a high yield among the cases of wood or of polypropylene Which was ascribed the acceleration of decomposition of plastics by radicals derived from the decomposition of wood. The co-liquefaction was also conducted by a small twin screw extruder. It was found that CPLF was obtained in the co-liquefaction, And the acceleration of decomposition of plastics in the presence of cellulosic biomass. The engine test of CPLF showed that the engine performances, Compression ignition and combustion characteristics were almost similar to those of diesel fuel at any mixing ratio of CPLF and any load, Therefore, CPLF could be practically used as alternative fuel for diesel engines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cellulosic%20Biomass" title="Cellulosic Biomass">Cellulosic Biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=Co-liquefaction" title=" Co-liquefaction"> Co-liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Solvent" title=" Solvent"> Solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=Waste%20Plastics" title=" Waste Plastics"> Waste Plastics</a> </p> <a href="https://publications.waset.org/abstracts/2060/co-liquefaction-of-cellulosic-biomass-and-waste-plastics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Liquefaction Susceptibility of Tailing Storage Facility-Comparison of National Centre for Earthquake Engineering Research and Finite Element Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ghatei">Mehdi Ghatei</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoomeh%20Lorestani"> Masoomeh Lorestani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Upstream Tailings Storage Facilities (TSFs) may experience slope instabilities due to soil liquefaction, especially in regions known to be seismically active. In this study, liquefaction susceptibility of an upstream-raised TSF in Western Australia was assessed using two different approaches. The first approach assessed liquefaction susceptibility using Cone Penetration Tests with pore pressure measurement (CPTu) as described by the National Centre for Earthquake Engineering Research (NCEER). This assessment was based on the four CPTu tests that were conducted on the perimeter embankment of the TSF. The second approach used the Finite Element (FE) method with application of an equivalent linear model to predict the undrained cyclic behavior, the pore water pressure and the liquefaction of the materials. The tailings parameters were estimated from the CPTu profiles and from the laboratory tests. The cyclic parameters were estimated from the literature where test results of similar material were available. The results showed that there was a good agreement, in the liquefaction susceptibility of the tailings material, between the NCEER and FE methods with equivalent linear model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction ">liquefaction </a>, <a href="https://publications.waset.org/abstracts/search?q=CPTU" title=" CPTU"> CPTU</a>, <a href="https://publications.waset.org/abstracts/search?q=NCEER" title=" NCEER"> NCEER</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20linear%20model" title=" equivalent linear model"> equivalent linear model</a> </p> <a href="https://publications.waset.org/abstracts/92516/liquefaction-susceptibility-of-tailing-storage-facility-comparison-of-national-centre-for-earthquake-engineering-research-and-finite-element-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Influence of Shear Parameter on Liquefaction Susceptibility of Ramsar Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siavash%20Salamatpoor">Siavash Salamatpoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Motaghedi"> Hossein Motaghedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jr."> Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Nategh"> Mehrdad Nategh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, undrained triaxial tests under anisotropic consolidation were conducted on the reconstituted samples of Ramsar sand, which underlies a densely populated, seismic region of the southern coast of Caspian Sea in Mazandaran province, Iran. Ramsar costal city is regularly visited by many tourists. Accordingly, many tall building and heavy structures are going to be constructed over this coastal area. This region is overlaid by poorly graded clean sand and because of high water level, is susceptible to liquefaction. The specimens were consolidated anisotropically to simulate initial shear stress which is mobilized due to surface constructions. Different states of soil behavior were obtained by applying different levels of initial relative density, shear stress, and effective stress. It is shown that Ramsar clean sand can experience the whole possible states of liquefiable soils i.e. fully liquefaction, limited liquefaction, and dilation behaviors. It would be shown that by increasing the shear parameter in high confine pressure, the liquefaction susceptibility has increased while for low confine pressure it would be vice versa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic" title="anisotropic">anisotropic</a>, <a href="https://publications.waset.org/abstracts/search?q=triaxial%20test" title=" triaxial test"> triaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20parameter" title=" shear parameter"> shear parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20liquefaction" title=" static liquefaction"> static liquefaction</a> </p> <a href="https://publications.waset.org/abstracts/17048/influence-of-shear-parameter-on-liquefaction-susceptibility-of-ramsar-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Simplified Empirical Method for Predicting Liquefaction Potential and Its Application to Kaohsiung Areas in Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darn%20H.%20Hsiao">Darn H. Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhu-Yun%20Zheng"> Zhu-Yun Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since Taiwan is located between the Eurasian and Filipino plates and earthquakes often thus occur. The coastal plains in western Taiwan are alluvial plains, and the soils of the alluvium are mostly from the Lao-Shan belt in the central mountainous area of southern Taiwan. It could come mostly from sand/shale and slate. The previous investigation found that the soils in the Kaohsiung area of southern Taiwan are mainly composed of slate, shale, quartz, low-plastic clay, silt, silty sand and so on. It can also be found from the past earthquakes that the soil in Kaohsiung is highly susceptible to soil subsidence due to liquefaction. Insufficient bearing capacity of building will cause soil liquefaction disasters. In this study, the boring drilling data from nine districts among the Love River Basin in the city center, and some factors affecting liquefaction include the content of fines (FC), standard penetration test N value (SPT N), the thickness of clay layer near ground-surface, and the thickness of possible liquefied soil were further discussed for liquefaction potential as well as groundwater level. The results show that the liquefaction potential is higher in the areas near the riverside, the backfill area, and the west area of the study area. This paper also uses the old paleo-geological map, soil particle distribution curve, compared with LPI map calculated from the analysis results. After all the parameters finally were studied for five sub zones in the Love River Basin by maximum-minimum method, it is found that both of standard penetration test N value and the thickness of the clay layer will be most influential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=western%20Taiwan" title=" western Taiwan"> western Taiwan</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction%20potential%20map" title=" liquefaction potential map"> liquefaction potential map</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20liquefaction%20potential%20areas" title=" high liquefaction potential areas"> high liquefaction potential areas</a> </p> <a href="https://publications.waset.org/abstracts/103541/simplified-empirical-method-for-predicting-liquefaction-potential-and-its-application-to-kaohsiung-areas-in-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> The Use of Piezocone Penetration Test Data for the Assessment of Iron Ore Tailings Liquefaction Susceptibility </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Breno%20M.%20Castilho">Breno M. Castilho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Iron Ore Quadrangle, located in the state of Minas Gerais, Brazil is responsible for most of the country’s iron ore production. As a result, some of the biggest tailings dams in the country are located in this area. In recent years, several major failure events have happened in Tailings Storage Facilities (TSF) located in the Iron Ore Quadrangle. Some of these failures were found to be caused by liquefaction flowslides. This paper presents Piezocone Penetration Test (CPTu) data that was used, by applying Olson and Peterson methods, for the liquefaction susceptibility assessment of the iron ore tailings that are typically found in most TSF in the area. Piezocone data was also used to determine the steady-state strength of the tailings so as to allow for comparison with its drained strength. Results have shown great susceptibility for liquefaction to occur in the studied tailings and, more importantly, a large reduction in its strength. These results are key to understanding the failures that took place over the last few years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piezocone%20Penetration%20Test%20CPTu" title="Piezocone Penetration Test CPTu">Piezocone Penetration Test CPTu</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20ore%20tailings" title=" iron ore tailings"> iron ore tailings</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining"> mining</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction%20susceptibility%20assessment" title=" liquefaction susceptibility assessment"> liquefaction susceptibility assessment</a> </p> <a href="https://publications.waset.org/abstracts/74404/the-use-of-piezocone-penetration-test-data-for-the-assessment-of-iron-ore-tailings-liquefaction-susceptibility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Investigation of the Effect of Fine-Grained and Its Plastic Properties on Liquefaction Resistance of Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Naeini">S. A. Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mortezaee"> M. Mortezaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to investigate the effect of fine grain content in soil and its plastic properties on soil liquefaction potential. For this purpose, the conditions for considering the fine grains effect and percentage of plastic fine on the liquefaction resistance of saturated sand presented by researchers has been investigated. Then, some comprehensive results of all the issues raised by some researchers are stated. From these investigations it was observed that by increasing the percentage of cohesive fine grains in the sandy soil (up to 20%), the maximum shear strength decreases and by adding more fine- grained percentage, the maximum shear strength of the resulting soil increases but never reaches the amount of clean sand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fine-grained" title="fine-grained">fine-grained</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/126816/investigation-of-the-effect-of-fine-grained-and-its-plastic-properties-on-liquefaction-resistance-of-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Probabilistic Model for Evaluating Seismic Soil Liquefaction Based on Energy Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Rostami">Hamid Rostami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Fallah%20Yeznabad"> Ali Fallah Yeznabad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Baziar"> Mohammad H. Baziar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy-based method for evaluating seismic soil liquefaction has two main sections. First is the demand energy, which is dissipated energy of earthquake at a site, and second is the capacity energy as a representation of soil resistance against liquefaction hazard. In this study, using a statistical analysis of recorded data by 14 down-hole array sites in California, an empirical equation was developed to estimate the demand energy at sites. Because determination of capacity energy at a site needs to calculate several site calibration factors, which are obtained by experimental tests, in this study the standard penetration test (SPT) N-value was assumed as an alternative to the capacity energy at a site. Based on this assumption, the empirical equation was employed to calculate the demand energy for 193 liquefied and no-liquefied sites and then these amounts were plotted versus the corresponding SPT numbers for all sites. Subsequently, a discrimination analysis was employed to determine the equations of several boundary curves for various liquefaction likelihoods. Finally, a comparison was made between the probabilistic model and the commonly used stress method. As a conclusion, the results clearly showed that energy-based method can be more reliable than conventional stress-based method in evaluation of liquefaction occurrence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20demand" title="energy demand">energy demand</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20analysis" title=" probabilistic analysis"> probabilistic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SPT%20number" title=" SPT number"> SPT number</a> </p> <a href="https://publications.waset.org/abstracts/37164/probabilistic-model-for-evaluating-seismic-soil-liquefaction-based-on-energy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Liquefaction Phenomenon in the Kathmandu Valley during the 2015 Earthquake of Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalpana%20Adhikari">Kalpana Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandip%20Subedi"> Mandip Subedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Keshab%20Sharma"> Keshab Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Indra%20P.%20Acharya"> Indra P. Acharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Gorkha Nepal earthquake of moment magnitude (Mw) 7.8 struck the central region of Nepal on April 25, 2015 with the epicenter about 77 km northwest of Kathmandu Valley . Peak ground acceleration observed during the earthquake was 0.18g. This motion induced several geotechnical effects such as landslides, foundation failures liquefaction, lateral spreading and settlement, and local amplification. An aftershock of moment magnitude (Mw) 7.3 hit northeast of Kathmandu on May 12 after 17 days of main shock caused additional damages. Kathmandu is the largest city in Nepal, have a population over four million. As the Kathmandu Valley deposits are composed mainly of sand, silt and clay layers with a shallow ground water table, liquefaction is highly anticipated. Extensive liquefaction was also observed in Kathmandu Valley during the 1934 Nepal-Bihar earthquake. Field investigations were carried out in Kathmandu Valley immediately after Mw 7.8, April 25 main shock and Mw 7.3, May 12 aftershock. Geotechnical investigation of both liquefied and non-liquefied sites were conducted after the earthquake. This paper presents observations of liquefaction and liquefaction induced damage, and the liquefaction potential assessment based on Standard Penetration Tests (SPT) for liquefied and non-liquefied sites. SPT based semi-empirical approach has been used for evaluating liquefaction potential of the soil and Liquefaction Potential Index (LPI) has been used to determine liquefaction probability. Recorded ground motions from the event are presented. Geological aspect of Kathmandu Valley and local site effect on the occurrence of liquefaction is described briefly. Observed liquefaction case studies are described briefly. Typically, these are sand boils formed by freshly ejected sand forced out of over-pressurized sub-strata. At most site, sand was ejected to agricultural fields forming deposits that varied from millimetres to a few centimeters thick. Liquefaction-induced damage to structures in these areas was not significant except buildings on some places tilted slightly. Boiled soils at liquefied sites were collected and the particle size distributions of ejected soils were analyzed. SPT blow counts and the soil profiles at ten liquefied and non-liquefied sites were obtained. The factors of safety against liquefaction with depth and liquefaction potential index of the ten sites were estimated and compared with observed liquefaction after 2015 Gorkha earthquake. The liquefaction potential indices obtained from the analysis were found to be consistent with the field observation. The field observations along with results from liquefaction assessment were compared with the existing liquefaction hazard map. It was found that the existing hazard maps are unrepresentative and underestimate the liquefaction susceptibility in Kathmandu Valley. The lessons learned from the liquefaction during this earthquake are also summarized in this paper. Some recommendations are also made to the seismic liquefaction mitigation in the Kathmandu Valley. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title="factor of safety">factor of safety</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20investigation" title=" geotechnical investigation"> geotechnical investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal%20earthquake" title=" Nepal earthquake "> Nepal earthquake </a> </p> <a href="https://publications.waset.org/abstracts/81120/liquefaction-phenomenon-in-the-kathmandu-valley-during-the-2015-earthquake-of-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> An Investigation into Why Liquefaction Charts Work: A Necessary Step toward Integrating the States of Art and Practice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Abdoun">Tarek Abdoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Dobry"> Ricardo Dobry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a systematic effort to clarify why field liquefaction charts based on Seed and Idriss’ Simplified Procedure work so well. This is a necessary step toward integrating the states of the art (SOA) and practice (SOP) for evaluating liquefaction and its effects. The SOA relies mostly on laboratory measurements and correlations with void ratio and relative density of the sand. The SOP is based on field measurements of penetration resistance and shear wave velocity coupled with empirical or semi-empirical correlations. This gap slows down further progress in both SOP and SOA. The paper accomplishes its objective through: a literature review of relevant aspects of the SOA including factors influencing threshold shear strain and pore pressure buildup during cyclic strain-controlled tests; a discussion of factors influencing field penetration resistance and shear wave velocity; and a discussion of the meaning of the curves in the liquefaction charts separating liquefaction from no liquefaction, helped by recent full-scale and centrifuge results. It is concluded that the charts are curves of constant cyclic strain at the lower end (Vs1 < 160 m/s), with this strain being about 0.03 to 0.05% for earthquake magnitude, Mw ≈ 7. It is also concluded, in a more speculative way, that the curves at the upper end probably correspond to a variable increasing cyclic strain and Ko, with this upper end controlled by over consolidated and preshaken sands, and with cyclic strains needed to cause liquefaction being as high as 0.1 to 0.3%. These conclusions are validated by application to case histories corresponding to Mw ≈ 7, mostly in the San Francisco Bay Area of California during the 1989 Loma Prieta earthquake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permeability" title="permeability">permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20spreading" title=" lateral spreading"> lateral spreading</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifuge%20modeling" title=" centrifuge modeling"> centrifuge modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity%20charts" title=" shear wave velocity charts"> shear wave velocity charts</a> </p> <a href="https://publications.waset.org/abstracts/32255/an-investigation-into-why-liquefaction-charts-work-a-necessary-step-toward-integrating-the-states-of-art-and-practice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Scaling Analysis for the Liquefaction Phenomena Generated by Water Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Arcos">E. Arcos</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Bautista"> E. Bautista</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M%C3%A9ndez"> F. Méndez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a scaling analysis of the liquefaction phenomena is presented. The characteristic scales are obtained by balancing term by term of the well-known partial dynamics governing equations, (U − P). From the above, the order of magnitude of the horizontal displacement is very smaller compared with the vertical displacement and therefore the governing equation is only a function of the dependent vertical variables. The U − P approximation is reduced and presented in its dimensionless version. This scaling analysis can be used to obtain analytical solutions of the liquefaction phenomena under the action of the water waves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximation%20U-P" title="approximation U-P">approximation U-P</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20seabed" title=" porous seabed"> porous seabed</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling%20analysis" title=" scaling analysis"> scaling analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20waves" title=" water waves"> water waves</a> </p> <a href="https://publications.waset.org/abstracts/41544/scaling-analysis-for-the-liquefaction-phenomena-generated-by-water-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Optimization of Oxygen Plant Parameters Simulating with MATLAB</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20J.%20Sonani">B. J. Sonani</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Ratnadhariya"> J. K. Ratnadhariya</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivas%20Palanki"> Srinivas Palanki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cryogenic engineering is the fast growing branch of the modern technology. There are various applications of the cryogenic engineering such as liquefaction in gas industries, metal industries, medical science, space technology, and transportation. The low-temperature technology developed superconducting materials which lead to reduce the friction and wear in various components of the systems. The liquid oxygen, hydrogen and helium play vital role in space application. The liquefaction process is produced very low temperature liquid for various application in research and modern application. The air liquefaction system for oxygen plants in gas industries is based on the Claude cycle. The effect of process parameters on the overall system is difficult to be analysed by manual calculations, and this provides the motivation to use process simulators for understanding the steady state and dynamic behaviour of such systems. The parametric study of this system via MATLAB simulations provide useful guidelines for preliminary design of air liquefaction system based on the Claude cycle. Every organization is always trying for reduce the cost and using the optimum performance of the plant for the staying in the competitive market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryogenic" title="cryogenic">cryogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20-temperature" title=" low -temperature"> low -temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=claude%20cycle" title=" claude cycle"> claude cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a> </p> <a href="https://publications.waset.org/abstracts/49126/optimization-of-oxygen-plant-parameters-simulating-with-matlab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Abdelhamid">M. I. Abdelhamid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Ghallab"> A. O. Ghallab</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Ettouney"> R. S. Ettouney</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20El-Rifai"> M. A. El-Rifai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stranded%20gas%20liquefaction" title="stranded gas liquefaction">stranded gas liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=COM%20server" title=" COM server"> COM server</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20nitrogen%20expansion" title=" single nitrogen expansion"> single nitrogen expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20pre-cooling" title=" carbon dioxide pre-cooling"> carbon dioxide pre-cooling</a> </p> <a href="https://publications.waset.org/abstracts/65318/genetic-algorithm-optimization-of-a-small-scale-natural-gas-liquefaction-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Effects of Enzymatic Liquefaction on the Physicochemical Properties and Antioxidant Activity of Zn-Amaranth (Amaranthus viridis) Puree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Siti%20Faridah">M. A. Siti Faridah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Muhammad"> K. Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Ghazali"> H. M. Ghazali</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20Yusof"> Y. A. Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to investigate the effects of three variables namely types of cell wall degrading enzymes (Viscozyme L, Pectinex Ultra SP-L, Rapidase PAC, Rohament CL and Rohapect PTE) at varying concentrations (0.25-3% v/w) and times (30 min-24 h) on the zinc (Zn-) amaranth purees. Liquefaction treatment of the Zn-amaranth purees with Viscozyme (1% v/w at pH 5 and 45ºC for 3 h) was found to be the best procedure, which produced Zn-amaranth puree with low viscosity (8.60 mPas). Zn-amaranth purees were also found to have the highest metallo-chlorophyll derivative contents (0.16 mg/g), free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH) values (12.49 mM (TE)/g fresh weight) and ferric reducing antioxidant power (FRAP) values (4.57 mM (TE)/g fresh weight) within 3 h of liquefaction. Other physicochemical properties of the enzyme-liquefied Zn-amaranth purees indicated that lightness (L*) (12.54), greenness a*/b* (-0.30), reducing sugar (103.88 mg/mL) and soluble dietary fibre (5.94%) of the purees were higher compared to that of nonenzyme-liquefied amaranth purees. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amaranth" title="amaranth">amaranth</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20derivative" title=" chlorophyll derivative"> chlorophyll derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20liquefaction" title=" enzymatic liquefaction"> enzymatic liquefaction</a> </p> <a href="https://publications.waset.org/abstracts/123786/effects-of-enzymatic-liquefaction-on-the-physicochemical-properties-and-antioxidant-activity-of-zn-amaranth-amaranthus-viridis-puree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Prediction of Excess Pore Pressure Variation of Reinforced Silty Sand by Stone Columns During Liquefaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeineb%20Ben%20Salem">Zeineb Ben Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Wissem%20Frikha"> Wissem Frikha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Bouassida"> Mounir Bouassida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquefaction has been responsible for tremendous amounts of damage in historical earthquakes around the world. The installation of stone columns is widely adopted to prevent liquefaction. Stone columns provide a drainage path, and due to their high permeability, allow for the quick dissipation of earthquake generated excess pore water pressure. Several excess pore pressure generation models in silty sand have been developed and calibrated based on the results of shaking table and centrifuge tests focusing on the effect of silt content on liquefaction resistance. In this paper, the generation and dissipation of excess pore pressure variation of reinforced silty sand by stone columns during liquefaction are analyzedwith different silt content based on test results. In addition, the installation effect of stone columns is investigated. This effect is described by a decrease in horizontal permeability within a disturbed zone around the column. Obtained results show that reduced soil permeability and a larger disturbed zone around the stone column increases the generation of excess pore pressure during the cyclic loading and decreases the dissipation rate after cyclic loading. On the other hand, beneficial effects of silt content were observed in the form of a decrease in excess pore water pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stone%20column" title="stone column">stone column</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20pore%20pressure" title=" excess pore pressure"> excess pore pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=silt%20content" title=" silt content"> silt content</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbed%20zone" title=" disturbed zone"> disturbed zone</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20permeability" title=" reduced permeability"> reduced permeability</a> </p> <a href="https://publications.waset.org/abstracts/146264/prediction-of-excess-pore-pressure-variation-of-reinforced-silty-sand-by-stone-columns-during-liquefaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Probabilistic Models to Evaluate Seismic Liquefaction In Gravelly Soil Using Dynamic Penetration Test and Shear Wave Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nima%20Pirhadi">Nima Pirhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shao%20Yong%20Bo"> Shao Yong Bo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xusheng%20Wan"> Xusheng Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianguo%20Lu"> Jianguo Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jilei%20Hu"> Jilei Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although gravels and gravelly soils are assumed to be non-liquefiable because of high conductivity and small modulus; however, the occurrence of this phenomenon in some historical earthquakes, especially recently earthquakes during 2008 Wenchuan, Mw= 7.9, 2014 Cephalonia, Greece, Mw= 6.1 and 2016, Kaikoura, New Zealand, Mw = 7.8, has been promoted the essential consideration to evaluate risk assessment and hazard analysis of seismic gravelly soil liquefaction. Due to the limitation in sampling and laboratory testing of this type of soil, in situ tests and site exploration of case histories are the most accepted procedures. Of all in situ tests, dynamic penetration test (DPT), Which is well known as the Chinese dynamic penetration test, and shear wave velocity (Vs) test, have been demonstrated high performance to evaluate seismic gravelly soil liquefaction. However, the lack of a sufficient number of case histories provides an essential limitation for developing new models. This study at first investigates recent earthquakes that caused liquefaction in gravelly soils to collect new data. Then, it adds these data to the available literature’s dataset to extend them and finally develops new models to assess seismic gravelly soil liquefaction. To validate the presented models, their results are compared to extra available models. The results show the reasonable performance of the proposed models and the critical effect of gravel content (GC)% on the assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=gravel" title=" gravel"> gravel</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20penetration%20test" title=" dynamic penetration test"> dynamic penetration test</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a> </p> <a href="https://publications.waset.org/abstracts/130545/probabilistic-models-to-evaluate-seismic-liquefaction-in-gravelly-soil-using-dynamic-penetration-test-and-shear-wave-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Capability of Available Seismic Soil Liquefaction Potential Assessment Models Based on Shear-Wave Velocity Using Banchu Case History</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nima%20Pirhadi">Nima Pirhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Bo%20Shao"> Yong Bo Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xusheng%20Wa"> Xusheng Wa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianguo%20Lu"> Jianguo Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several models based on the simplified method introduced by Seed and Idriss (1971) have been developed to assess the liquefaction potential of saturated sandy soils. The procedure includes determining the cyclic resistance of the soil as the cyclic resistance ratio (CRR) and comparing it with earthquake loads as cyclic stress ratio (CSR). Of all methods to determine CRR, the methods using shear-wave velocity (Vs) are common because of their low sensitivity to the penetration resistance reduction caused by fine content (FC). To evaluate the capability of the models, based on the Vs., the new data from Bachu-Jianshi earthquake case history collected, then the prediction results of the models are compared to the measured results; consequently, the accuracy of the models are discussed via three criteria and graphs. The evaluation demonstrates reasonable accuracy of the models in the Banchu region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20liquefaction" title="seismic liquefaction">seismic liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=banchu-jiashi%20earthquake" title=" banchu-jiashi earthquake"> banchu-jiashi earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=shear-wave%20velocity" title=" shear-wave velocity"> shear-wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction%20potential%20evaluation" title=" liquefaction potential evaluation"> liquefaction potential evaluation</a> </p> <a href="https://publications.waset.org/abstracts/132485/capability-of-available-seismic-soil-liquefaction-potential-assessment-models-based-on-shear-wave-velocity-using-banchu-case-history" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liquefaction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liquefaction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liquefaction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liquefaction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liquefaction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>