CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;19 of 19 results for author: <span class="mathjax">Barcelos, I D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Barcelos, I D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Barcelos%2C+I+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Barcelos, I D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07042">arXiv:2410.07042</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07042">pdf</a>, <a href="https://arxiv.org/format/2410.07042">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Optical memory in a MoSe$_2$/Clinochlore device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ames%2C+A">Alessandra Ames</a>, <a href="/search/?searchtype=author&amp;query=Sousa%2C+F+B">Frederico B. Sousa</a>, <a href="/search/?searchtype=author&amp;query=Souza%2C+G+A+D">Gabriel A. D. Souza</a>, <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+R">Raphaela de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Silva%2C+I+R+F">Igor R. F. Silva</a>, <a href="/search/?searchtype=author&amp;query=Rodrigues%2C+G+L">Gabriel L. Rodrigues</a>, <a href="/search/?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">Gilmar E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Cadore%2C+A+R">Alisson R. Cadore</a>, <a href="/search/?searchtype=author&amp;query=L%C3%B3pez-Richard%2C+V">Victor L贸pez-Richard</a>, <a href="/search/?searchtype=author&amp;query=Teodoro%2C+M+D">Marcio D. Teodoro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07042v1-abstract-short" style="display: inline;"> Two-dimensional heterostructures have been crucial in advancing optoelectronic devices utilizing van der Waals materials. Semiconducting transition metal dichalcogenide monolayers, known for their unique optical properties, offer extensive possibilities for light-emitting devices. Recently, a memory-driven optical device, termed a Mem-emitter, was proposed using these monolayers atop dielectric su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07042v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07042v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07042v1-abstract-full" style="display: none;"> Two-dimensional heterostructures have been crucial in advancing optoelectronic devices utilizing van der Waals materials. Semiconducting transition metal dichalcogenide monolayers, known for their unique optical properties, offer extensive possibilities for light-emitting devices. Recently, a memory-driven optical device, termed a Mem-emitter, was proposed using these monolayers atop dielectric substrates. The successful realization of such devices heavily depends on selecting the optimal substrate. Here, we report a pronounced memory effect in a MoSe$_2$/clinochlore device, evidenced by electric hysteresis in the intensity and energy of MoSe$_2$ monolayer emissions. This demonstrates both population-driven and transition-rate-driven Mem-emitter abilities. Our theoretical approach correlates these memory effects with internal state variables of the substrate, emphasizing that clinochlore layered structure is crucial for a robust and rich memory response. This work introduces a novel two-dimensional device with promising applications in memory functionalities, highlighting the importance of alternative insulators in fabricating van der Waals heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07042v1-abstract-full').style.display = 'none'; document.getElementById('2410.07042v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18933">arXiv:2409.18933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18933">pdf</a>, <a href="https://arxiv.org/format/2409.18933">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Shaping terahertz waves using anisotropic shear modes in a van der Waals mineral </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kawahala%2C+N+M">Nicolas M. Kawahala</a>, <a href="/search/?searchtype=author&amp;query=Matos%2C+D+A">Daniel A. Matos</a>, <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+R">Raphaela de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Longuinhos%2C+R">Raphael Longuinhos</a>, <a href="/search/?searchtype=author&amp;query=Ribeiro-Soares%2C+J">Jenaina Ribeiro-Soares</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Hernandez%2C+F+G+G">Felix G. G. Hernandez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18933v1-abstract-short" style="display: inline;"> Naturally occurring van der Waals (vdW) materials are currently attracting significant interest due to their potential as low-cost sources of two-dimensional materials. Valuable information on vdW materials&#39; interlayer interactions is present in their low-frequency rigid-layer phonon spectra, which are experimentally accessible by terahertz spectroscopy techniques. In this work, we have used polar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18933v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18933v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18933v1-abstract-full" style="display: none;"> Naturally occurring van der Waals (vdW) materials are currently attracting significant interest due to their potential as low-cost sources of two-dimensional materials. Valuable information on vdW materials&#39; interlayer interactions is present in their low-frequency rigid-layer phonon spectra, which are experimentally accessible by terahertz spectroscopy techniques. In this work, we have used polarization-sensitive terahertz time-domain spectroscopy to investigate a bulk sample of the naturally abundant, large bandgap vdW mineral clinochlore. We observed a strong and sharp anisotropic resonance in the complex refractive index spectrum near 1.13 THz, consistent with our density functional theory predictions for shear modes. Polarimetry analysis revealed that the shear phonon anisotropy reshapes the polarization state of transmitted THz waves, inducing Faraday rotation and ellipticity. Furthermore, we used Jones formalism to discuss clinochlore phononic symmetries and describe our observations in terms of its eigenstates of polarization. These results highlight the potential of exploring vdW minerals as central building blocks for vdW heterostructures with compelling technological applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18933v1-abstract-full').style.display = 'none'; document.getElementById('2409.18933v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16697">arXiv:2408.16697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16697">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrathin natural biotite crystals as a dielectric layer for van der Waals heterostructure applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+R">Raphaela de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Yoshida%2C+A+B">Ana Beatriz Yoshida</a>, <a href="/search/?searchtype=author&amp;query=Rabahi%2C+C">Cesar Rabahi</a>, <a href="/search/?searchtype=author&amp;query=Freitas%2C+R+O">Raul O. Freitas</a>, <a href="/search/?searchtype=author&amp;query=de+Matos%2C+C+J+S">Christiano J. S. de Matos</a>, <a href="/search/?searchtype=author&amp;query=Gobato%2C+Y+G">Yara Galv茫o Gobato</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Cadore%2C+A+R">Alisson R. Cadore</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16697v1-abstract-short" style="display: inline;"> Biotite, an iron-rich mineral belonging to the trioctahedral mica group, is a naturally abundant layered material (LM) exhibiting attractive electronic properties for application in nanodevices. Biotite stands out as a non-degradable LM under ambient conditions, featuring high-quality basal cleavage, a significant advantage for van der Waals heterostructure (vdWH) applications. In this work, we pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16697v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16697v1-abstract-full" style="display: none;"> Biotite, an iron-rich mineral belonging to the trioctahedral mica group, is a naturally abundant layered material (LM) exhibiting attractive electronic properties for application in nanodevices. Biotite stands out as a non-degradable LM under ambient conditions, featuring high-quality basal cleavage, a significant advantage for van der Waals heterostructure (vdWH) applications. In this work, we present the micro-mechanical exfoliation of biotite down to monolayers (1Ls), yielding ultrathin flakes with large areas and atomically flat surfaces. To identify and characterize the mineral, we conducted a multi-elemental analysis of biotite using energy-dispersive spectroscopy mapping. Additionally, synchrotron infrared nano-spectroscopy was employed to probe its vibrational signature in few-layer form, with sensitivity to the layer number. We have also observed good morphological and structural stability in time (up to 12 months) and no important changes in their physical properties after thermal annealing processes in ultrathin biotite flakes. Conductive atomic force microscopy evaluated its electrical capacity, revealing an electrical breakdown strength of approximately 1 V/nm. Finally, we explore the use of biotite as a substrate and encapsulating LM in vdWH applications. We have performed optical and magneto-optical measurements at low temperatures. We find that ultrathin biotite flakes work as a good substrate for 1L-MoSe2, comparable to hexagonal boron nitride flakes, but it induces a small change of the 1L-MoSe2 g-factor values, most likely due to natural impurities on its crystal structure. Furthermore, our results show that biotite flakes are useful systems to protect sensitive LMs such as black phosphorus from degradation for up to 60 days in ambient air. Our study introduces biotite as a promising, cost-effective LM for the advancement of future ultrathin nanotechnologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16697v1-abstract-full').style.display = 'none'; document.getElementById('2408.16697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanotechnology, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18164">arXiv:2407.18164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18164">pdf</a>, <a href="https://arxiv.org/format/2407.18164">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> The Emergence of Mem-Emitters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lopez-Richard%2C+V">Victor Lopez-Richard</a>, <a href="/search/?searchtype=author&amp;query=Silva%2C+I+R+F+e">Igor Ricardo Filgueira e Silva</a>, <a href="/search/?searchtype=author&amp;query=Ames%2C+A">Alessandra Ames</a>, <a href="/search/?searchtype=author&amp;query=Sousa%2C+F+B">Frederico B. Sousa</a>, <a href="/search/?searchtype=author&amp;query=Teodoro%2C+M+D">Marcio Daldin Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid David Barcelos</a>, <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+R">Raphaela de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Cadore%2C+A+R">Alisson Ronieri Cadore</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18164v1-abstract-short" style="display: inline;"> The advent of memristors and resistive switching has transformed solid state physics, enabling advanced applications such as neuromorphic computing. Inspired by these developments, we introduce the concept of Mem-emitters, devices that manipulate light emission properties of semiconductors to achieve memory functionalities. Mem-emitters, influenced by past exposure to stimuli, offer a new approach&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18164v1-abstract-full').style.display = 'inline'; document.getElementById('2407.18164v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18164v1-abstract-full" style="display: none;"> The advent of memristors and resistive switching has transformed solid state physics, enabling advanced applications such as neuromorphic computing. Inspired by these developments, we introduce the concept of Mem-emitters, devices that manipulate light emission properties of semiconductors to achieve memory functionalities. Mem-emitters, influenced by past exposure to stimuli, offer a new approach to optoelectronic computing with potential for enhanced speed, efficiency, and integration. This study explores the unique properties of transition metal dichalcogenides-based heterostructures as a promising platform for Mem-emitter functionalities due to their atomic-scale thickness, tunable electronic properties, and strong light-matter interaction. By distinguishing between population-driven and transition rate-driven Mem-emitters, we highlight their potential for various applications, including optoelectronic switches, variable light sources, and advanced communication systems. Understanding these mechanisms paves the way for innovative technologies in memory and computation, offering insights into the intrinsic dynamics of complex systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18164v1-abstract-full').style.display = 'none'; document.getElementById('2407.18164v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12875">arXiv:2308.12875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.12875">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0161736">10.1063/5.0161736 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phyllosilicates as earth-abundant layered materials for electronics and optoelectronics: Prospects and challenges in their ultrathin limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+R">Raphaela de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Schleder%2C+G+R">Gabriel R. Schleder</a>, <a href="/search/?searchtype=author&amp;query=Matos%2C+M+J+S">Matheus J. S. Matos</a>, <a href="/search/?searchtype=author&amp;query=Longuinhos%2C+R">Raphael Longuinhos</a>, <a href="/search/?searchtype=author&amp;query=Ribeiro-Soares%2C+J">Jenaina Ribeiro-Soares</a>, <a href="/search/?searchtype=author&amp;query=Barboza%2C+A+P+M">Ana Paula M. Barboza</a>, <a href="/search/?searchtype=author&amp;query=Prado%2C+M+C">Mariana C. Prado</a>, <a href="/search/?searchtype=author&amp;query=Pinto%2C+E+S">Elis芒ngela S. Pinto</a>, <a href="/search/?searchtype=author&amp;query=Gobato%2C+Y+G">Yara Galv茫o Gobato</a>, <a href="/search/?searchtype=author&amp;query=Chacham%2C+H">H茅lio Chacham</a>, <a href="/search/?searchtype=author&amp;query=Neves%2C+B+R+A">Bernardo R. A. Neves</a>, <a href="/search/?searchtype=author&amp;query=Cadore%2C+A+R">Alisson R. Cadore</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12875v1-abstract-short" style="display: inline;"> Phyllosilicate minerals are an emerging class of naturally occurring layered insulators with large bandgap energy that have gained attention from the scientific community. This class of lamellar materials has been recently explored at the ultrathin two-dimensional level due to their specific mechanical, electrical, magnetic, and optoelectronic properties, which are crucial for engineering novel de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12875v1-abstract-full').style.display = 'inline'; document.getElementById('2308.12875v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12875v1-abstract-full" style="display: none;"> Phyllosilicate minerals are an emerging class of naturally occurring layered insulators with large bandgap energy that have gained attention from the scientific community. This class of lamellar materials has been recently explored at the ultrathin two-dimensional level due to their specific mechanical, electrical, magnetic, and optoelectronic properties, which are crucial for engineering novel devices (including heterostructures). Due to these properties, phyllosilicates minerals can be considered promising low-cost nanomaterials for future applications. In this Perspective article, we will present relevant features of these materials for their use in potential 2D-based electronic and optoelectronic applications, also discussing some of the major challenges in working with them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12875v1-abstract-full').style.display = 'none'; document.getElementById('2308.12875v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03860">arXiv:2308.03860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.03860">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOSAA.482518">10.1364/JOSAA.482518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Review on Infrared Nanospectroscopy of Natural 2D Phyllosilicates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=De+Oliveira%2C+R">Raphaela De Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Cadore%2C+A+R">Alisson R. Cadore</a>, <a href="/search/?searchtype=author&amp;query=Freitas%2C+R+O">Raul O. Freitas</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03860v1-abstract-short" style="display: inline;"> Phyllosilicates emerge as a promising class of large bandgap lamellar insulators. Their applications have been explored from fabrication of graphene-based devices to 2D heterostructures based on transition metal dicalcogenides with enhanced optical and polaritonics properties. In this review, we provide an overview on the use of IR s-SNOM for studying nano-optics and local chemistry of a variety o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03860v1-abstract-full').style.display = 'inline'; document.getElementById('2308.03860v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03860v1-abstract-full" style="display: none;"> Phyllosilicates emerge as a promising class of large bandgap lamellar insulators. Their applications have been explored from fabrication of graphene-based devices to 2D heterostructures based on transition metal dicalcogenides with enhanced optical and polaritonics properties. In this review, we provide an overview on the use of IR s-SNOM for studying nano-optics and local chemistry of a variety of 2D natural phyllosilicates. Finally, we bring a brief update on applications that combine natural lamellar minerals into multifunctional nanophotonic devices driven by electrical control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03860v1-abstract-full').style.display = 'none'; document.getElementById('2308.03860v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figs</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of the Optical Society of America A, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08957">arXiv:2303.08957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08957">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6528/acda3b">10.1088/1361-6528/acda3b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impacts of dielectric screening on the luminescence of monolayer WSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Costa%2C+F+J+R">Fabio J. R. Costa</a>, <a href="/search/?searchtype=author&amp;query=Brito%2C+T+G">Thiago G-L. Brito</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Zagonel%2C+L+F">Luiz Fernando Zagonel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08957v1-abstract-short" style="display: inline;"> Single layers of transition metal dichalcogenides, such as WSe$_2$ have gathered increasing attention due to their intense electron-hole interactions, being considered promising candidates for developing novel optical applications. Within the few-layer regime, these systems become highly sensitive to the surrounding environment, enabling the possibility of using a proper substrate to tune desired&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08957v1-abstract-full').style.display = 'inline'; document.getElementById('2303.08957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08957v1-abstract-full" style="display: none;"> Single layers of transition metal dichalcogenides, such as WSe$_2$ have gathered increasing attention due to their intense electron-hole interactions, being considered promising candidates for developing novel optical applications. Within the few-layer regime, these systems become highly sensitive to the surrounding environment, enabling the possibility of using a proper substrate to tune desired aspects of these atomically-thin semiconductors. In this scenario, the dielectric environment provided by the substrates exerts significant influence on electronic and optical properties of these layered materials, affecting the electronic band-gap and the exciton binding energy. However, the corresponding effect on the luminescence of transition metal dichalcogenides is still under discussion. To elucidate these impacts, we used a broad set of materials as substrates for single-layers of WSe$_2$, enabling the observation of these effects over a wide range of electrical permittivities. Our results demonstrate that an increasing permittivity induces a systematic red-shift of the optical band-gap of WSe$_2$, intrinsically related to a considerable reduction of the luminescence intensity. Moreover, we annealed the samples to ensure a tight coupling between WSe$_2$and its substrates, reducing the effect of undesired adsorbates trapped in the interface. Ultimately, our findings reveal how critical the annealing temperature can be, indicating that above a certain threshold, the heating treatment can induce adverse impacts on the luminescence. Furthermore, our conclusions highlight the influence the dielectric properties of the substrate have on the luminescence of WSe$_2$, showing that a low electrical permittivity favours preserving the native properties of the adjacent monolayer <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08957v1-abstract-full').style.display = 'none'; document.getElementById('2303.08957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanotechnology 34 385703 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14107">arXiv:2302.14107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.14107">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.3c00017">10.1021/acs.jpcc.3c00017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Raman and Far Infrared Synchrotron Nanospectroscopy of Layered Crystalline Talc: Vibrational Properties, Interlayer Coupling and Symmetry Crossover </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Longuinhos%2C+R">Raphael Longuinhos</a>, <a href="/search/?searchtype=author&amp;query=Cadore%2C+A+R">Alisson R. Cadore</a>, <a href="/search/?searchtype=author&amp;query=Bechtel%2C+H+A">Hans A. Bechtel</a>, <a href="/search/?searchtype=author&amp;query=de+Matos%2C+C+J+S">Christiano J. S. de Matos</a>, <a href="/search/?searchtype=author&amp;query=Freitas%2C+R+O">Raul O. Freitas</a>, <a href="/search/?searchtype=author&amp;query=Ribeiro-Soares%2C+J">Jenaina Ribeiro-Soares</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14107v1-abstract-short" style="display: inline;"> Talc is an insulating layered material that is stable at ambient conditions and has high-quality basal cleavage, which is a major advantage for its use in van der Waals heterostructures. Here, we use near-field synchrotron infrared nanospectroscopy, Raman spectroscopy, and first-principles calculations to investigate the structural and vibrational properties of talc crystals, ranging from monolaye&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14107v1-abstract-full').style.display = 'inline'; document.getElementById('2302.14107v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14107v1-abstract-full" style="display: none;"> Talc is an insulating layered material that is stable at ambient conditions and has high-quality basal cleavage, which is a major advantage for its use in van der Waals heterostructures. Here, we use near-field synchrotron infrared nanospectroscopy, Raman spectroscopy, and first-principles calculations to investigate the structural and vibrational properties of talc crystals, ranging from monolayer to bulk, in the 300-750 cm-1 and &lt;60 cm-1 spectral windows. We observe a symmetry crossover from mono to bilayer talc samples, attributed to the stacking of adjacent layers. The in-plane lattice parameters and frequencies of intralayer modes of talc display weak dependence with the number of layers, consistent with a weak interlayer interaction. On the other hand, the low-frequency (&lt;60 cm-1) rigid-layer (interlayer) modes of talc are suitable to identify the number of layers in ultrathin talc samples, besides revealing strong in-plane and out-of-plane anisotropy in the interlayer force constants and related elastic stiffnesses of single crystals. The shear and breathing force constants of talc are found to be 66% and 28%, respectively, lower than those of graphite, making talc an excellent lubricant that can be easily exfoliated. Our results broaden the understanding of the structural and vibrational properties of talc at the nanoscale regime and serve as a guide for future ultrathin heterostructures applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14107v1-abstract-full').style.display = 'none'; document.getElementById('2302.14107v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Journal of Physical Chemistry C, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.04833">arXiv:2210.04833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.04833">pdf</a>, <a href="https://arxiv.org/format/2210.04833">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0078423">10.1063/5.0078423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and implementation of a device based on an off-axis parabolic mirror to perform luminescence experiments in a scanning tunneling microscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Rom%C3%A1n%2C+R+J+P">Ricardo Javier Pe帽a Rom谩n</a>, <a href="/search/?searchtype=author&amp;query=Auad%2C+Y">Yves Auad</a>, <a href="/search/?searchtype=author&amp;query=Grasso%2C+L">Lucas Grasso</a>, <a href="/search/?searchtype=author&amp;query=Padilha%2C+L+A">Lazaro A Padilha</a>, <a href="/search/?searchtype=author&amp;query=Alvarez%2C+F">Fernando Alvarez</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid David Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Kociak%2C+M">Mathieu Kociak</a>, <a href="/search/?searchtype=author&amp;query=Zagonel%2C+L+F">Luiz Fernando Zagonel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.04833v1-abstract-short" style="display: inline;"> We present the design, implementation, and illustrative results of a light collection/injection strategy based on an off-axis parabolic mirror collector for a low-temperature Scanning Tunneling Microscope (STM). This device allows us to perform STM induced Light Emission (STM-LE) and Cathodoluminescence (STM-CL) experiments and in situ Photoluminescence (PL) and Raman spectroscopy as complementary&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04833v1-abstract-full').style.display = 'inline'; document.getElementById('2210.04833v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.04833v1-abstract-full" style="display: none;"> We present the design, implementation, and illustrative results of a light collection/injection strategy based on an off-axis parabolic mirror collector for a low-temperature Scanning Tunneling Microscope (STM). This device allows us to perform STM induced Light Emission (STM-LE) and Cathodoluminescence (STM-CL) experiments and in situ Photoluminescence (PL) and Raman spectroscopy as complementary techniques. Considering the 脡tendue conservation and using an off-axis parabolic mirror, it is possible to design a light collection and injection system that displays 72% of collection efficiency (considering the hemisphere above the sample surface) while maintaining high spectral resolution and minimizing signal loss. The performance of the STM is tested by atomically resolved images and scanning tunneling spectroscopy results on standard sample surfaces. The capabilities of our system are demonstrated by performing STM-LE on metallic surfaces and two-dimensional semiconducting samples, observing both plasmonic and excitonic emissions. In addition, we carried out in situ PL measurements on semiconducting monolayers and quantum dots and in situ Raman on graphite and hexagonal boron nitride (h-BN) samples. Additionally, STM-CL and PL were obtained on monolayer h-BN gathering luminescence spectra that are typically associated with intragap states related to carbon defects. The results show that the flexible and efficient light injection and collection device based on an off-axis parabolic mirror is a powerful tool to study several types of nanostructures with multiple spectroscopic techniques in correlation with their morphology at the atomic scale and electronic structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04833v1-abstract-full').style.display = 'none'; document.getElementById('2210.04833v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 14 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 93, 043704 (2022); </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.01991">arXiv:2210.01991</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.01991">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D0NR03400B">10.1039/D0NR03400B <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunneling-current-induced local excitonic luminescence in p-doped WSe$_2$ monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Rom%C3%A1n%2C+R+J+P">Ricardo Javier Pe帽a Rom谩n</a>, <a href="/search/?searchtype=author&amp;query=Auad%2C+Y">Yves Auad</a>, <a href="/search/?searchtype=author&amp;query=Grasso%2C+L">Lucas Grasso</a>, <a href="/search/?searchtype=author&amp;query=Alvarez%2C+F">Fernando Alvarez</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid David Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Zagonel%2C+L+F">Luiz Fernando Zagonel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.01991v1-abstract-short" style="display: inline;"> We have studied the excitonic properties of exfoliated tungsten diselenide (WSe$_2$) monolayers transferred to gold substrates using the tunneling current in a Scanning Tunneling Microscope (STM) operated in air to excite the light emission locally. In obtained spectra, emission energies are independent of the applied bias voltage and resemble photoluminescence (PL) results, indicating that, in bo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01991v1-abstract-full').style.display = 'inline'; document.getElementById('2210.01991v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.01991v1-abstract-full" style="display: none;"> We have studied the excitonic properties of exfoliated tungsten diselenide (WSe$_2$) monolayers transferred to gold substrates using the tunneling current in a Scanning Tunneling Microscope (STM) operated in air to excite the light emission locally. In obtained spectra, emission energies are independent of the applied bias voltage and resemble photoluminescence (PL) results, indicating that, in both cases, the light emission is due to neutral and charged exciton recombination. Interestingly, the electron injection rate, that is, the tunneling current, can be used to control the ratio of charged to neutral exciton emission. The obtained quantum yield in the transition metal dichalcogenide (TMD) is $~5x10^{-7}$ photons per electron. The proposed excitation mechanism is the direct injection of carriers into the conduction band. The monolayer WSe$_2$ presents bright and dark defects spotted by STM images performed under UHV. STS confirms the sample as p-doped, possibly as a net result of the observed defects. The presence of an interfacial water layer decouples the monolayer from the gold support and allows excitonic emission from the WSe$_2$ monolayer. The creation of a water layer is an inherent feature of the sample transferring process due to the ubiquitous air moisture. Consequently, vacuum thermal annealing, which removes the water layer, quenches excitonic luminescence from the TMD. The tunneling current can locally displace water molecules leading to excitonic emission quenching and to plasmonic emission due to the gold substrate. The present findings extend the use and the understanding of STM induced light emission (STM-LE) on semiconducting TMDs to probe exciton emission and dynamics with high spatial resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01991v1-abstract-full').style.display = 'none'; document.getElementById('2210.01991v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Includes main text and supplementary material, 22 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanoscale, 2020,12, 13460-13470 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.09943">arXiv:2206.09943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.09943">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.apsusc.2022.153959">10.1016/j.apsusc.2022.153959 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High throughput investigation of an emergent and naturally abundant 2D material: Clinochlore </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+R">Raphaela de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Guallichico%2C+L+A+G">Luis A. G. Guallichico</a>, <a href="/search/?searchtype=author&amp;query=Policarpo%2C+E">Eduardo Policarpo</a>, <a href="/search/?searchtype=author&amp;query=Cadore%2C+A+R">Alisson R. Cadore</a>, <a href="/search/?searchtype=author&amp;query=Freitas%2C+R+O">Raul O. Freitas</a>, <a href="/search/?searchtype=author&amp;query=da+Silva%2C+F+M+C">Francisco M. C. da Silva</a>, <a href="/search/?searchtype=author&amp;query=Teixeira%2C+V+d+C">Ver么nica de C. Teixeira</a>, <a href="/search/?searchtype=author&amp;query=Paniago%2C+R+M">Roberto M. Paniago</a>, <a href="/search/?searchtype=author&amp;query=Chacham%2C+H">Helio Chacham</a>, <a href="/search/?searchtype=author&amp;query=Matos%2C+M+J+S">Matheus J. S. Matos</a>, <a href="/search/?searchtype=author&amp;query=Malachias%2C+A">Angelo Malachias</a>, <a href="/search/?searchtype=author&amp;query=Krambrock%2C+K">Klaus Krambrock</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.09943v1-abstract-short" style="display: inline;"> Phyllosilicate minerals, which form a class of naturally occurring layered materials (LMs), have been recently considered as a low-cost source of two-dimensional (2D) materials. Clinochlore [Mg5Al(AlSi3)O10(OH)8] is one of the most abundant phyllosilicate minerals in nature, exhibiting the capability to be mechanically exfoliated down to a few layers. An important characteristic clinochlore is the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09943v1-abstract-full').style.display = 'inline'; document.getElementById('2206.09943v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.09943v1-abstract-full" style="display: none;"> Phyllosilicate minerals, which form a class of naturally occurring layered materials (LMs), have been recently considered as a low-cost source of two-dimensional (2D) materials. Clinochlore [Mg5Al(AlSi3)O10(OH)8] is one of the most abundant phyllosilicate minerals in nature, exhibiting the capability to be mechanically exfoliated down to a few layers. An important characteristic clinochlore is the natural occurrence of defects and impurities which can strongly affect their optoelectronic properties, possibly in technologically interesting ways. In the present work, we carry out a thorough investigation of the clinochlore structure on both bulk and 2D exfoliated forms, discussing its optical features and the influence of the insertion of impurities on its macroscopic properties. Several experimental techniques are employed, followed by theoretical first-principles calculations considering several types of naturally-ocurring transition metal impurities in the mineral lattice and their effect on electronic and optical properties. We demonstrate the existence of requirements concerning surface quality and insulating properties of clinochlore that are mandatory for its suitable application in nanoelectronic devices. The results presented in this work provide important informations for clinochlore potential applications and establish a basis for further works that intend to optimize its properties to relevant 2D technological applications through defect engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09943v1-abstract-full').style.display = 'none'; document.getElementById('2206.09943v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Surface Science, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.03165">arXiv:2205.03165</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.03165">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1583/ac6cf4">10.1088/2053-1583/ac6cf4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring the structural and optoelectronic properties of natural insulating phlogopite in van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cadore%2C+A+R">Alisson R. Cadore</a>, <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+R">Raphaela de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Lobato%2C+R+L+M">Raphael L. M. Lobato</a>, <a href="/search/?searchtype=author&amp;query=Teixeira%2C+V+d+C">Ver么nica de C. Teixeira</a>, <a href="/search/?searchtype=author&amp;query=Nagaoka%2C+D+A">Danilo A. Nagaoka</a>, <a href="/search/?searchtype=author&amp;query=Alvarenga%2C+V+T">Vinicius T. Alvarenga</a>, <a href="/search/?searchtype=author&amp;query=Ribeiro-Soares%2C+J">Jenaina Ribeiro-Soares</a>, <a href="/search/?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/?searchtype=author&amp;query=Paniago%2C+R+M">Roberto M. Paniago</a>, <a href="/search/?searchtype=author&amp;query=Malachias%2C+A">Angelo Malachias</a>, <a href="/search/?searchtype=author&amp;query=Krambrock%2C+K">Klaus Krambrock</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=de+Matos%2C+C+J+S">Christiano J. S. de Matos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.03165v1-abstract-short" style="display: inline;"> Naturally occurring van der Waals crystals have brought unprecedented interest to nanomaterial researchers in recent years. So far, more than 1800 layered materials (LMs) have been identified but only a few insulating and naturally occurring LMs were deeply investigated. Phyllosilicate minerals, which are a class of natural and abundant LMs, have been recently considered as a low-cost source of in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03165v1-abstract-full').style.display = 'inline'; document.getElementById('2205.03165v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.03165v1-abstract-full" style="display: none;"> Naturally occurring van der Waals crystals have brought unprecedented interest to nanomaterial researchers in recent years. So far, more than 1800 layered materials (LMs) have been identified but only a few insulating and naturally occurring LMs were deeply investigated. Phyllosilicate minerals, which are a class of natural and abundant LMs, have been recently considered as a low-cost source of insulating nanomaterials. Within this family an almost barely explored material emerges: phlogopite [KMg3(AlSi3)O10(OH)2]. Here we carry out a high throughput characterization of this LM by employing several experimental techniques, corroborating the major findings with first-principles calculations. We show that monolayers (1L) and few-layers of this material are air and temperature stable, as well as easily obtained by the standard mechanical exfoliation technique, have an atomically flat surface, and lower bandgap than its bulk counterpart, an unusual trend in LMs. We also systematically study the basic properties of ultrathin phlogopite and demonstrate that natural phlogopite presents iron impurities in its crystal lattice, which decreases its bandgap from about 7 eV to 3.6 eV. Finally, we combine phlogopite crystals with 1L-WS2 in ultrathin van der Waals heterostructures and present a photoluminescence study, revealing a significant enhancement on the 1L-WS2 optical quality (i.e., higher recombination efficiency through neutral excitons) similarly to that obtained on 1L-WS2/hBN heterostructures. Our proof-of-concept study shows that phlogopite should be regarded as a good and promising candidate for LM-based applications as a low-cost layered nanomaterial. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03165v1-abstract-full').style.display = 'none'; document.getElementById('2205.03165v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2D Materials, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.01813">arXiv:2204.01813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.01813">pdf</a>, <a href="https://arxiv.org/format/2204.01813">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Distinctive g-factor of moire-confined excitons in van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gobato%2C+Y+G">Y. Galv茫o Gobato</a>, <a href="/search/?searchtype=author&amp;query=de+Brito%2C+C+S">C. Serati de Brito</a>, <a href="/search/?searchtype=author&amp;query=Chaves%2C+A">Andrey Chaves</a>, <a href="/search/?searchtype=author&amp;query=Prosnikov%2C+M+A">M. A. Prosnikov</a>, <a href="/search/?searchtype=author&amp;query=Wo%C5%BAniak%2C+T">T. Wo藕niak</a>, <a href="/search/?searchtype=author&amp;query=Guo%2C+S">Shi Guo</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Milo%C5%A1evi%C4%87%2C+M+V">M. V. Milo拧evi膰</a>, <a href="/search/?searchtype=author&amp;query=Withers%2C+F">F. Withers</a>, <a href="/search/?searchtype=author&amp;query=Christianen%2C+P+C+M">P. C. M. Christianen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.01813v1-abstract-short" style="display: inline;"> We investigated experimentally the valley Zeeman splitting of excitonic peaks in the photoluminescence (PL) spectra of high-quality hBN/WS2/MoSe2/hBN heterostructures at near-zero twist angles under perpendicular magnetic fields up to 20 T. We identify two neutral exciton peaks in the PL spectra: the lower energy one exhibits a reduced g-factor relative to that of the higher energy peak, and much&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01813v1-abstract-full').style.display = 'inline'; document.getElementById('2204.01813v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.01813v1-abstract-full" style="display: none;"> We investigated experimentally the valley Zeeman splitting of excitonic peaks in the photoluminescence (PL) spectra of high-quality hBN/WS2/MoSe2/hBN heterostructures at near-zero twist angles under perpendicular magnetic fields up to 20 T. We identify two neutral exciton peaks in the PL spectra: the lower energy one exhibits a reduced g-factor relative to that of the higher energy peak, and much lower than the recently reported values for interlayer excitons in other van der Waals (vdW) heterostructures. We provide evidence that such a discernible g-factor stems from the spatial confinement of the exciton in the potential landscape created by the moire pattern, due tolattice mismatch and/or inter-layer twist in heterobilayers. This renders magneto-PL an important tool to reach deeper understanding of the effect of moire patterns on excitonic confinement in vdW heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01813v1-abstract-full').style.display = 'none'; document.getElementById('2204.01813v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures. Submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.01148">arXiv:2105.01148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.01148">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultrabroadband nanocavity of hyperbolic phonon polaritons in 1D-like 伪-MoO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Canassa%2C+T+A">Thalita A. Canassa</a>, <a href="/search/?searchtype=author&amp;query=Mayer%2C+R+A">Rafael A. Mayer</a>, <a href="/search/?searchtype=author&amp;query=Feres%2C+F+H">Flavio H. Feres</a>, <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+E+G">Eynara G. de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Goncalves%2C+A+B">Alem-Mar B. Goncalves</a>, <a href="/search/?searchtype=author&amp;query=Bechtel%2C+H+A">Hans A. Bechtel</a>, <a href="/search/?searchtype=author&amp;query=Freitas%2C+R+O">Raul O. Freitas</a>, <a href="/search/?searchtype=author&amp;query=Maia%2C+F+C+B">Francisco C. B. Maia</a>, <a href="/search/?searchtype=author&amp;query=Alves%2C+D+C+B">Diego C. B. Alves</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.01148v1-abstract-short" style="display: inline;"> The exploitation of phonon-polaritons in nanostructured materials offers a pathway to manipulate infrared (IR) light for nanophotonic applications. Notably, hyperbolic phonons polaritons (HP2) in polar bidimensional crystals have been used to demonstrate strong electromagnetic field confinement, ultraslow group velocities, and long lifetimes (~ up to 8 ps). Here we present nanobelts of 伪-phase mol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01148v1-abstract-full').style.display = 'inline'; document.getElementById('2105.01148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.01148v1-abstract-full" style="display: none;"> The exploitation of phonon-polaritons in nanostructured materials offers a pathway to manipulate infrared (IR) light for nanophotonic applications. Notably, hyperbolic phonons polaritons (HP2) in polar bidimensional crystals have been used to demonstrate strong electromagnetic field confinement, ultraslow group velocities, and long lifetimes (~ up to 8 ps). Here we present nanobelts of 伪-phase molybdenum trioxide (伪-MoO3) as a low-dimensional medium supporting HP2 modes in the mid- and far-IR ranges. By real-space nanoimaging, with IR illuminations provided by synchrotron and tunable lasers, we observe that such HP2 response happens via formation of Fabry-Perot resonances. We remark an anisotropic propagation which critically depends on the frequency range. Our findings are supported by the convergence of experiment, theory, and numerical simulations. Our work shows that the low dimensionality of natural nanostructured crystals, like 伪-MoO3 nanobelts, provides an attractive platform to study polaritonic light-matter interactions and offer appealing cavity properties that could be harnessed in future designs of compact nanophotonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01148v1-abstract-full').style.display = 'none'; document.getElementById('2105.01148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.11088">arXiv:1912.11088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.11088">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Group velocity modulation and wavelength tuning of phonon-polaritons by engineering dielectric-metallic substrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Feres%2C+F+H">Fl谩vio H. Feres</a>, <a href="/search/?searchtype=author&amp;query=Mayer%2C+R+A">Rafael A. Mayer</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Freitas%2C+R+d+O">Raul de O. Freitas</a>, <a href="/search/?searchtype=author&amp;query=Maia%2C+F+C+B">Francisco C. B. Maia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.11088v1-abstract-short" style="display: inline;"> In analogy to the observed for single plasmon-polaritons, we show that subdiffractional hyperbolic phonon-polariton (HP2) modes confined in hexagonal boron nitride (hBN) nanocrystals feature wave-particle duality. First, we use Synchrotron Infrared Nanospectroscopy to demonstrate modulation of the HP2 frequency-momentum dispersion relation and group velocity by varying the thickness of the SiO2 la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11088v1-abstract-full').style.display = 'inline'; document.getElementById('1912.11088v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.11088v1-abstract-full" style="display: none;"> In analogy to the observed for single plasmon-polaritons, we show that subdiffractional hyperbolic phonon-polariton (HP2) modes confined in hexagonal boron nitride (hBN) nanocrystals feature wave-particle duality. First, we use Synchrotron Infrared Nanospectroscopy to demonstrate modulation of the HP2 frequency-momentum dispersion relation and group velocity by varying the thickness of the SiO2 layer in the heterostructure hBN/SiO2/Au. These modulations are, then, exploited for the hBN crystal lying on a SiO2 wedge, with a gradient of thickness of such a dielectric medium, built into the Au substrate. Simulations show that a phonon-polariton pulse accelerates as the thickness of the wedge increases. This is explained by a parameter-free semi-classical approach considering the pulse as free quantum particle. Within this picture, an estimated average acceleration value of ~ 1.45 10^18 m.s^(-2) is determined using experimental inputs. This estimation is in good agreement with the value of 2.0 10^18 m.s^(-2) obtained from the theory directly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11088v1-abstract-full').style.display = 'none'; document.getElementById('1912.11088v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.05367">arXiv:1804.05367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.05367">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.7b01017">10.1021/acsphotonics.7b01017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of plasmon-phonon coupling in natural 2D graphene-talc heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Cadore%2C+A+R">Alisson R. Cadore</a>, <a href="/search/?searchtype=author&amp;query=Alencar%2C+A+B">Ananias B. Alencar</a>, <a href="/search/?searchtype=author&amp;query=Maia%2C+F+C+B">Francisco C. B. Maia</a>, <a href="/search/?searchtype=author&amp;query=Mania%2C+E">Edrian Mania</a>, <a href="/search/?searchtype=author&amp;query=Oliveira%2C+R+F">Rafael F. Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Buffon%2C+C+C+B">Carlos C. B. Buffon</a>, <a href="/search/?searchtype=author&amp;query=Malachias%2C+%C3%82">脗ngelo Malachias</a>, <a href="/search/?searchtype=author&amp;query=Freitas%2C+R+O">Raul O. Freitas</a>, <a href="/search/?searchtype=author&amp;query=Moreira%2C+R+L">Roberto L. Moreira</a>, <a href="/search/?searchtype=author&amp;query=Chacham%2C+H">H茅lio Chacham</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.05367v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials occupy noteworthy place in nanophotonics providing for subwavelength light confinement and optical phenomena dissimilar to those of their bulk counterparts. In the mid-infrared, graphene-based heterostructures and van der Waals crystals of hexagonal boron nitride (hBN) overwhelmingly concentrate the attention by exhibiting real-space nano-optics from plasmons, phonon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.05367v1-abstract-full').style.display = 'inline'; document.getElementById('1804.05367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.05367v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials occupy noteworthy place in nanophotonics providing for subwavelength light confinement and optical phenomena dissimilar to those of their bulk counterparts. In the mid-infrared, graphene-based heterostructures and van der Waals crystals of hexagonal boron nitride (hBN) overwhelmingly concentrate the attention by exhibiting real-space nano-optics from plasmons, phonon-polaritons and hybrid plasmon phonon-polaritons quasiparticles. Here we present the mid-infrared nanophotonics of talc, a natural atomically flat layered material, and graphene-talc (G-talc) heterostructures using broadband synchrotron infrared nano-spectroscopy. We achieve wavelength tuning of the talc resonances, assigned to in- and out-of-plane vibrations by changing the thickness of the crystals, which serves as its infrared fingerprints. Moreover, we encounter coupling of the graphene plasmons polaritons with surface optical phonons of talc. As in the case of the G-hBN heterostructures, this coupling configures hybrid surface plasmon phonon-polariton modes causing 30 % increase in intensity for the out-of-plane mode, blue-shift for the in-plane mode and we have succeeded in altering the amplitude of such hybridization by varying the gate voltage. Therefore, our results promote talc and G-talc heterostructures as appealing materials for nanophotonics, like hBN and G-hBN, with potential applications for controllably manipulating infrared electromagnetic radiation at the subdiffraction scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.05367v1-abstract-full').style.display = 'none'; document.getElementById('1804.05367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ACS Photonics, 2018</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.08980">arXiv:1704.08980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.08980">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of Diode Behavior and Gate Voltage Control of Hybrid Plasmon-Phonon Polaritons in Graphene-Hexagonal Boron Nitride Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Maia%2C+F+C+B">Francisco C. B. Maia</a>, <a href="/search/?searchtype=author&amp;query=O%27Callahan%2C+B+T">Brian T. O&#39;Callahan</a>, <a href="/search/?searchtype=author&amp;query=Cadore%2C+A+R">Alisson R. Cadore</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Campos%2C+L+C">Leonardo C. Campos</a>, <a href="/search/?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/?searchtype=author&amp;query=Deneke%2C+C">Christoph Deneke</a>, <a href="/search/?searchtype=author&amp;query=Belyanin%2C+A">Alexey Belyanin</a>, <a href="/search/?searchtype=author&amp;query=Raschke%2C+M+B">Markus B. Raschke</a>, <a href="/search/?searchtype=author&amp;query=Freitas%2C+R+O">Raul O. Freitas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.08980v2-abstract-short" style="display: inline;"> Light-matter interaction in two-dimension photonic materials allows for confinement and control of free-space radiation on sub-wavelength scales. Most notably, the van der Waals heterostructure obtained by stacking graphene (G) and hexagonal Boron Nitride (hBN) can provide for hybrid hyperbolic plasmon phonon-polaritons (HP3). Here, we present a polariton diode effect and low-bias control of HP3 m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08980v2-abstract-full').style.display = 'inline'; document.getElementById('1704.08980v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.08980v2-abstract-full" style="display: none;"> Light-matter interaction in two-dimension photonic materials allows for confinement and control of free-space radiation on sub-wavelength scales. Most notably, the van der Waals heterostructure obtained by stacking graphene (G) and hexagonal Boron Nitride (hBN) can provide for hybrid hyperbolic plasmon phonon-polaritons (HP3). Here, we present a polariton diode effect and low-bias control of HP3 modes confined in G-hBN. Using broadband infrared synchrotron radiation coupled to a scattering-type near-field optical microscope, we launch HP3 waves over both hBN Reststrahlen bands and observe the unidirectional propagation of HP3 modes at in-plane heterointerfaces associated with the transition between different substrate dielectrics. By electric gating we further control the HP3 hybridization modifying the coupling between the continuum graphene plasmons and the discrete hyperbolic phonon polaritons of hBN as described by an extended Fano model. This is the first demonstration of unidirectional control of polariton propagation, with break in reflection/transmission symmetry for HP3 modes. G-hBN and related hyperbolic metamaterial nanostructures can therefore provide the basis for novel logic devices of on-chip nano-optics communication and computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08980v2-abstract-full').style.display = 'none'; document.getElementById('1704.08980v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.02663">arXiv:1601.02663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.02663">pdf</a>, <a href="https://arxiv.org/format/1601.02663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.035419">10.1103/PhysRevB.97.035419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Damping of Landau levels in neutral graphene at low magnetic fields: A phonon Raman scattering study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ardito%2C+F+M">F. M. Ardito</a>, <a href="/search/?searchtype=author&amp;query=Mendes-de-Sa%2C+T+G">T. G. Mendes-de-Sa</a>, <a href="/search/?searchtype=author&amp;query=Cadore%2C+A+R">A. R. Cadore</a>, <a href="/search/?searchtype=author&amp;query=Gomes%2C+P+F">P. F. Gomes</a>, <a href="/search/?searchtype=author&amp;query=Mafra%2C+D+L">D. L. Mafra</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">I. D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Lacerda%2C+R+G">R. G. Lacerda</a>, <a href="/search/?searchtype=author&amp;query=Iikawa%2C+F">F. Iikawa</a>, <a href="/search/?searchtype=author&amp;query=Granado%2C+E">E. Granado</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.02663v3-abstract-short" style="display: inline;"> Landau level broadening mechanisms in electrically neutral and quasineutral graphene were investigated through micro-magneto-Raman experiments in three different samples, namely, a natural single-layer graphene flake and a back-gated single-layer device, both deposited over Si/SiO2 substrates, and a multilayer epitaxial graphene employed as a reference sample. Interband Landau level transition wid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.02663v3-abstract-full').style.display = 'inline'; document.getElementById('1601.02663v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.02663v3-abstract-full" style="display: none;"> Landau level broadening mechanisms in electrically neutral and quasineutral graphene were investigated through micro-magneto-Raman experiments in three different samples, namely, a natural single-layer graphene flake and a back-gated single-layer device, both deposited over Si/SiO2 substrates, and a multilayer epitaxial graphene employed as a reference sample. Interband Landau level transition widths were estimated through a quantitative analysis of the magnetophonon resonances associated with optically active Landau level transitions crossing the energy of the E_2g Raman-active phonon. Contrary to multilayer graphene, the single-layer graphene samples show a strong damping of the low-field resonances, consistent with an additional broadening contribution of the Landau level energies arising from a random strain field. This extra contribution is properly quantified in terms of a pseudomagnetic field distribution Delta_B = 1.0-1.7 T in our single-layer samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.02663v3-abstract-full').style.display = 'none'; document.getElementById('1601.02663v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 035419 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.2125">arXiv:1405.2125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.2125">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl5012068">10.1021/nl5012068 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of strain-free rolled-up CVD graphene single layers: towards unstrained heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Moura%2C+L+G">Luciano G. Moura</a>, <a href="/search/?searchtype=author&amp;query=Lacerda%2C+R+G">Rodrigo G. Lacerda</a>, <a href="/search/?searchtype=author&amp;query=Malachias%2C+A">Angelo Malachias</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.2125v1-abstract-short" style="display: inline;"> Single layer graphene foils produced by Chemical Vapor Deposition (CVD) are rolled with self-positioned layers of InGaAs/Cr forming compact multi-turn tubular structures that consist on successive graphene/metal/semiconductor heterojunctions on a radial superlattice. Using elasticity theory and Raman spectroscopy we show that it is possible to produce homogeneously curved graphene with curvature r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2125v1-abstract-full').style.display = 'inline'; document.getElementById('1405.2125v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.2125v1-abstract-full" style="display: none;"> Single layer graphene foils produced by Chemical Vapor Deposition (CVD) are rolled with self-positioned layers of InGaAs/Cr forming compact multi-turn tubular structures that consist on successive graphene/metal/semiconductor heterojunctions on a radial superlattice. Using elasticity theory and Raman spectroscopy we show that it is possible to produce homogeneously curved graphene with curvature radius on the 600nm-1200nm range. Additionally, the study of tubular structures also allows the extraction of values for the elastic constants of graphene that are in excellent agreement with elastic constants found in the literature. However, our process has the advantage of leading to a well-defined and nonlocal curvature. Since our curvature radius lie in a range between the large radius studied using mechanical bending and the reduced radius induced by Atomic Force Microscopy experiments we can figure out whether bending effects can be a majoritary driving force for modifications in graphene electronic status. From the results described in this work one can assume that curvature effects solely do not modify the Raman signature of graphene and that strain phenomena observed previously can be ascribed to stretching due to the formation of local atomic bonds. This implies that the interactions of graphene with additional materials on heterostructures must be investigated in detail prior to the development of applications and devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2125v1-abstract-full').style.display = 'none'; document.getElementById('1405.2125v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10