CINXE.COM
Comparison of Machine Learning Techniques for Single Imputation on Audiograms
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Comparison of Machine Learning Techniques for Single Imputation on Audiograms</title> <meta name="description" content="Comparison of Machine Learning Techniques for Single Imputation on Audiograms"> <meta name="keywords" content="Machine Learning, audiograms, data imputations, single imputations."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <meta name="citation_title" content="Comparison of Machine Learning Techniques for Single Imputation on Audiograms"> <meta name="citation_author" content="Sarah Beaver"> <meta name="citation_author" content="Renee Bryce"> <meta name="citation_publication_date" content="2024/04/18"> <meta name="citation_journal_title" content="International Journal of Computer and Information Engineering"> <meta name="citation_volume" content="18"> <meta name="citation_issue" content="4"> <meta name="citation_firstpage" content="204"> <meta name="citation_lastpage" content="214"> <meta name="citation_pdf_url" content="https://publications.waset.org/10013606/pdf"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value=""> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33093</div> </div> </div> </div> <div class="card publication-listing mt-3 mb-3"> <h5 class="card-header" style="font-size:.9rem">Comparison of Machine Learning Techniques for Single Imputation on Audiograms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sarah%20Beaver">Sarah Beaver</a>, <a href="https://publications.waset.org/search?q=Renee%20Bryce"> Renee Bryce</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125 Hz to 8000 Hz. The data contain patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R2 values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R2 values for the best models for KNN ranges from .89 to .95. The best imputation models received R2 between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our imputation models versus constant imputations by a two percent increase.</p> <iframe src="https://publications.waset.org/10013606.pdf" style="width:100%; height:400px;" frameborder="0"></iframe> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Machine%20Learning" title="Machine Learning">Machine Learning</a>, <a href="https://publications.waset.org/search?q=audiograms" title=" audiograms"> audiograms</a>, <a href="https://publications.waset.org/search?q=data%20imputations" title=" data imputations"> data imputations</a>, <a href="https://publications.waset.org/search?q=single%20imputations." title=" single imputations."> single imputations.</a> </p> <a href="https://publications.waset.org/10013606/comparison-of-machine-learning-techniques-for-single-imputation-on-audiograms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013606/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013606/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013606/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013606/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013606/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013606/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013606/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013606/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013606/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013606/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> <p class="card-text"><strong>References:</strong></p> <br>[1] H. Mahboubi, H. W. Lin, and N. Bhattacharyya, “Prevalence, characteristics, and treatment patterns of hearing difficulty in the united states,” JAMA Otolaryngology–Head & Neck Surgery, vol. 144, no. 1, pp. 65–70, 2018. <br>[2] F. Charih, A. Steeves, M. Bromwich, A. E. Mark, R. Lefranc¸ois, and J. R. Green, “Applications of machine learning methods in retrospective studies on hearing,” in 2018 IEEE Life Sciences Conference (LSC). IEEE, 2018, pp. 126–129. <br>[3] E. Rose, “Audiology,” Australian Family Physician, vol. 40, no. 5, pp. 290–292, 2011. <br>[4] C. Pavelchek, A. P. Michelson, A. Walia, A. Ortmann, J. Herzog, C. A. Buchman, and M. A. Shew, “Imputation of missing values for cochlear implant candidate audiometric data and potential applications,” Plos one, vol. 18, no. 2, p. e0281337, 2023. <br>[5] M. K. Hasan, M. A. Alam, S. Roy, A. Dutta, M. T. Jawad, and S. Das, “Missing value imputation affects the performance of machine learning: A review and analysis of the literature (2010–2021),” Informatics in Medicine Unlocked, vol. 27, p. 100799, 2021. <br>[6] J. G. Ibrahim, H. Chu, and M.-H. Chen, “Missing data in clinical studies: issues and methods,” Journal of clinical oncology, vol. 30, no. 26, p. 3297, 2012. <br>[7] J. M. Jerez, I. Molina, P. J. Garc´ıa-Laencina, E. Alba, N. Ribelles, M. Mart´ın, and L. Franco, “Missing data imputation using statistical and machine learning methods in a real breast cancer problem,” Artificial intelligence in medicine, vol. 50, no. 2, pp. 105–115, 2010. <br>[8] A. Dubey and A. Rasool, “Efficient technique of microarray missing data imputation using clustering and weighted nearest neighbour,” Scientific Reports, vol. 11, no. 1, pp. 1–12, 2021. <br>[9] R. Bruni, C. Daraio, and D. Aureli, “Imputation techniques for the reconstruction of missing interconnected data from higher educational institutions,” Knowledge-Based Systems, vol. 212, p. 106512, 2021. <br>[10] J. Wendl, D. Gerstner, J. Huß, V. Weilnhammer, C. Jenkac, C. Pe´rez-A` lvarez, T. Steffens, C. Herr, and S. Heinze, “Compensating for missing data in the ohrkan cohort study examining total leisure noise exposure among adolescents,” International Journal of Audiology, vol. 61, no. 7, pp. 574–582, 2022. <br>[11] R. K. Sharma, S. Y. Chen, J. Grisel, and J. S. Golub, “Assessing cochlear implant performance in older adults using a single, universal outcome measure created with imputation in hermes,” Otology & Neurotology, vol. 39, no. 8, pp. 987–994, 2018. <br>[12] D. L. Barbour, R. T. Howard, X. D. Song, N. Metzger, K. A. Sukesan, J. C. DiLorenzo, B. R. Snyder, J. Y. Chen, E. A. Degen, J. M. Buchbinder et al., “Online machine learning audiometry,” Ear and hearing, vol. 40, no. 4, p. 918, 2019. <br>[13] X. D. Song, B. M. Wallace, J. R. Gardner, N. M. Ledbetter, K. Q. Weinberger, and D. L. Barbour, “Fast, continuous audiogram estimation using machine learning,” Ear and hearing, vol. 36, no. 6, p. e326, 2015. <br>[14] R. Feirn, “Guidelines for fitting hearing aids to young infants version 2.0 february 2014,” 2014. <br>[15] A. L. Pittman and P. G. Stelmachowicz, “Hearing loss in children and adults: audiometric configuration, asymmetry, and progression,” Ear and hearing, vol. 24, no. 3, p. 198, 2003. <br>[16] P. Pitathawatchai, S. Chaichulee, and V. Kirtsreesakul, “Robust machine learning method for imputing missing values in audiograms collected in children,” International Journal of Audiology, vol. 61, no. 1, pp. 66–77, 2022. <br>[17] E. C. Schafer, J. J. Grisel, A. de Jong, K. Ravelo, A. Lam, M. Burke, T. Griffin, M. Winter, and D. Schrader, “Creating a framework for data sharing in cochlear implant research,” Cochlear Implants International, vol. 17, no. 6, pp. 283–292, 2016. <br>[18] S. Y. Chen, J. J. Grisel, A. Lam, and J. S. Golub, “Assessing cochlear implant outcomes in older adults using hermes: A national web-based database,” Otology & Neurotology, vol. 38, no. 10, pp. e405–e412, 2017. <br>[19] U. Garciarena and R. Santana, “An extensive analysis of the interaction between missing data types, imputation methods, and supervised classifiers,” Expert Systems with Applications, vol. 89, pp. 52–65, 2017. <br>[20] S. Saleem, M. Aslam, and M. R. Shaukat, “A review and empirical comparison of univariate outlier detection methods.” Pakistan Journal of Statistics, vol. 37, no. 4, 2021. <br>[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in python,” the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011. <br>[22] F. GUSTAFSSON, “Comparing random forest, xgboost and neural networks with hyperparameter optimization by nested cross-validation,” 2019. <br>[23] D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination r-squared is more informative than smape, mae, mape, mse and rmse in regression analysis evaluation,” PeerJ Computer Science, vol. 7, p. e623, 2021. <br>[24] T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean absolute error (mae)?–arguments against avoiding rmse in the literature,” Geoscientific model development, vol. 7, no. 3, pp. 1247–1250, 2014. <br>[25] T. O. Hodson, “Root-mean-square error (rmse) or mean absolute error (mae): when to use them or not,” Geoscientific Model Development, vol. 15, no. 14, pp. 5481–5487, 2022. </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>