CINXE.COM

Search results for: Multi-solid thermodynamic model

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Multi-solid thermodynamic model</title> <meta name="description" content="Search results for: Multi-solid thermodynamic model"> <meta name="keywords" content="Multi-solid thermodynamic model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Multi-solid thermodynamic model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Multi-solid thermodynamic model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7517</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Multi-solid thermodynamic model</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7517</span> New Multi-Solid Thermodynamic Model for the Prediction of Wax Formation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ehsan%20Ghanaei">Ehsan Ghanaei</a>, <a href="https://publications.waset.org/search?q=Feridun%20Esmaeilzadeh"> Feridun Esmaeilzadeh</a>, <a href="https://publications.waset.org/search?q=Jamshid%20Fathi%20Kaljahi"> Jamshid Fathi Kaljahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the previous multi-solid models,¤ò approach is used for the calculation of fugacity in the liquid phase. For the first time, in the proposed multi-solid thermodynamic model,γ approach has been used for calculation of fugacity in the liquid mixture. Therefore, some activity coefficient models have been studied that the results show that the predictive Wilson model is more appropriate than others. The results demonstrate γ approach using the predictive Wilson model is in more agreement with experimental data than the previous multi-solid models. Also, by this method, generates a new approach for presenting stability analysis in phase equilibrium calculations. Meanwhile, the run time in γ approach is less than the previous methods used ¤ò approach. The results of the new model present 0.75 AAD % (Average Absolute Deviation) from the experimental data which is less than the results error of the previous multi-solid models obviously. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multi-solid%20thermodynamic%20model" title="Multi-solid thermodynamic model">Multi-solid thermodynamic model</a>, <a href="https://publications.waset.org/search?q=PredictiveWilson%20model" title=" PredictiveWilson model"> PredictiveWilson model</a>, <a href="https://publications.waset.org/search?q=Wax%20formation." title=" Wax formation."> Wax formation.</a> </p> <a href="https://publications.waset.org/7848/new-multi-solid-thermodynamic-model-for-the-prediction-of-wax-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7848/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7848/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7848/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7848/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7848/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7848/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7848/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7848/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7848/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7848/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1981</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7516</span> Thermodynamic Analysis of Ammonia-Water Based Regenerative Rankine Cycle with Partial Evaporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kyoung%20Hoon%20Kim">Kyoung Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A thermodynamic analysis of a partial evaporating Rankine cycle with regeneration using zeotropic ammonia-water mixture as a working fluid is presented in this paper. The thermodynamic laws were applied to evaluate the system performance. Based on the thermodynamic model, the effects of the vapor quality and the ammonia mass fraction on the system performance were extensively investigated. The results showed that thermal efficiency has a peak value with respect to the vapor quality as well as the ammonia mass fraction. The partial evaporating ammonia based Rankine cycle has a potential to improve recovery of low-grade finite heat source.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ammonia-water" title="Ammonia-water">Ammonia-water</a>, <a href="https://publications.waset.org/search?q=Rankine%20cycle" title=" Rankine cycle"> Rankine cycle</a>, <a href="https://publications.waset.org/search?q=partial%20evaporating" title=" partial evaporating"> partial evaporating</a>, <a href="https://publications.waset.org/search?q=thermodynamic%20performance." title=" thermodynamic performance. "> thermodynamic performance. </a> </p> <a href="https://publications.waset.org/10008289/thermodynamic-analysis-of-ammonia-water-based-regenerative-rankine-cycle-with-partial-evaporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008289/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008289/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008289/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008289/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008289/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008289/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008289/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008289/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008289/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008289/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1067</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7515</span> Analysis of a Secondary Autothermal Reformer Using a Thermodynamic POX Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Akbar%20Zamaniyan">Akbar Zamaniyan</a>, <a href="https://publications.waset.org/search?q=Alireza%20Behroozsarand"> Alireza Behroozsarand</a>, <a href="https://publications.waset.org/search?q=Hadi%20Ebrahimi"> Hadi Ebrahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Partial oxidation (POX) of light hydrocarbons (e.g. methane) is occurred in the first part of the autothermal reformer (ATR). The results of the detailed modeling of the reformer based on the thermodynamic model of the POX and 1D heterogeneous catalytic model for the fixed bed section are considered here. According to the results, the overall performance of the ATR can be improved by changing the important feed parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Autothermal%20Reformer" title="Autothermal Reformer">Autothermal Reformer</a>, <a href="https://publications.waset.org/search?q=Partial%20Oxidation" title=" Partial Oxidation"> Partial Oxidation</a>, <a href="https://publications.waset.org/search?q=Mathematical%20Modeling" title=" Mathematical Modeling"> Mathematical Modeling</a>, <a href="https://publications.waset.org/search?q=Process%20Simulation" title=" Process Simulation"> Process Simulation</a>, <a href="https://publications.waset.org/search?q=Syngas." title=" Syngas."> Syngas.</a> </p> <a href="https://publications.waset.org/7735/analysis-of-a-secondary-autothermal-reformer-using-a-thermodynamic-pox-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7735/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7735/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7735/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7735/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7735/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7735/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7735/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7735/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7735/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7735/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2209</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7514</span> Studies on the Applicability of Artificial Neural Network (ANN) in Prediction of Thermodynamic Behavior of Sodium Chloride Aqueous System Containing a Non-Electrolytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dariush%20Jafari">Dariush Jafari</a>, <a href="https://publications.waset.org/search?q=S.%20Mostafa%20Nowee"> S. Mostafa Nowee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study a ternary system containing sodium chloride as solute, water as primary solvent and ethanol as the antisolvent was considered to investigate the application of artificial neural network (ANN) in prediction of sodium solubility in the mixture of water as the solvent and ethanol as the antisolvent. The system was previously studied using by Extended UNIQUAC model by the authors of this study. The comparison between the results of the two models shows an excellent agreement between them (R2=0.99), and also approves the capability of ANN to predict the thermodynamic behavior of ternary electrolyte systems which are difficult to model.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Thermodynamic%20modeling" title="Thermodynamic modeling">Thermodynamic modeling</a>, <a href="https://publications.waset.org/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/search?q=solubility" title=" solubility"> solubility</a>, <a href="https://publications.waset.org/search?q=ternary%0D%0Aelectrolyte%20system." title=" ternary electrolyte system."> ternary electrolyte system.</a> </p> <a href="https://publications.waset.org/10000395/studies-on-the-applicability-of-artificial-neural-network-ann-in-prediction-of-thermodynamic-behavior-of-sodium-chloride-aqueous-system-containing-a-non-electrolytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000395/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000395/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000395/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000395/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000395/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000395/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000395/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000395/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000395/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000395/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2153</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7513</span> Thermodynamic, Structural and Transport Properties of Molten Copper-Thallium Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D.%20Adhikari">D. Adhikari</a>, <a href="https://publications.waset.org/search?q=R.%20P.%20Koirala"> R. P. Koirala</a>, <a href="https://publications.waset.org/search?q=B.P.%20Singh"> B.P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A self-association model has been used to understand the concentration dependence of free energy of mixing (GM), heat of mixing (HM), entropy of mixing (SM), activity (a) and microscopic structures, such as concentration fluctuation in long wavelength limit (Scc(0)) and Warren-Cowley short range order parameter ( 1 α )for Cu- Tl molten alloys at 1573K. A comparative study of surface tension of the alloys in the liquid state at that temperature has also been carried out theoretically as function of composition in the light of Butler-s model, Prasad-s model and quasi-chemical approach. Most of the computed thermodynamic properties have been found in agreement with the experimental values. The analysis reveals that the Cu-Tl molten alloys at 1573K represent a segregating system at all concentrations with moderate interaction. Surface tensions computed from different approaches have been found to be comparable to each other showing increment with the composition of copper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Concentration%20fluctuations" title="Concentration fluctuations">Concentration fluctuations</a>, <a href="https://publications.waset.org/search?q=surface%20tension" title=" surface tension"> surface tension</a>, <a href="https://publications.waset.org/search?q=thermodynamic%20properties" title=" thermodynamic properties"> thermodynamic properties</a>, <a href="https://publications.waset.org/search?q=Quasi-chemical%20approximation." title=" Quasi-chemical approximation."> Quasi-chemical approximation.</a> </p> <a href="https://publications.waset.org/1389/thermodynamic-structural-and-transport-properties-of-molten-copper-thallium-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1389/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1389/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1389/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1389/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1389/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1389/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1389/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1389/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1389/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1389/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2164</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7512</span> Biosorption of Azo Dye Reactive Black B onto Nonviable Biomass of Cladosporium cladosporioides LM1: Thermodynamic, Kinetic and Equilibrium Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=L.%20A.%20S.%20Dionel">L. A. S. Dionel</a>, <a href="https://publications.waset.org/search?q=B.%20A.%20P.%20Santos"> B. A. P. Santos</a>, <a href="https://publications.waset.org/search?q=V.%20C.%20P.%20Lopes"> V. C. P. Lopes</a>, <a href="https://publications.waset.org/search?q=L.%20G.%20Vasconcelos"> L. G. Vasconcelos</a>, <a href="https://publications.waset.org/search?q=M.%20A.%20Soares"> M. A. Soares</a>, <a href="https://publications.waset.org/search?q=E.%20B.%20Morais"> E. B. Morais </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study investigated the biosorption of the azo dye reactive Black B (RBB) from aqueous solution using the nonviable biomass of <em>Cladosporium cladosporioides </em>LM1. The biosorption systems were carried out in batch mode considering different conditions of initial pH, contact time, temperature, initial dye concentration and biosorbent dosage. Higher removal rate of RBB was obtained at pH 2. Biosorption data were successfully described by pseudo-second-order kinetic model and Langmuir isotherm model with the maximum monolayer biosorption capacity estimated at 71.43 mg/g. The values of thermodynamic parameters such as ∆<em>G</em>&deg;, ∆<em>H</em>&deg; and ∆<em>S</em>&deg; indicated that the biosorption of RBB onto fungal biomass was spontaneous and exothermic in nature. It can be concluded that nonviable biomass of <em>Cladosporium cladosporioides </em>LM1 may be an attractive low-cost biosorbent for the removal of azo dye RBB from aqueous solution.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Color%20removal" title="Color removal">Color removal</a>, <a href="https://publications.waset.org/search?q=isotherms%20and%20kinetics%20models" title=" isotherms and kinetics models"> isotherms and kinetics models</a>, <a href="https://publications.waset.org/search?q=thermodynamic%20studies" title=" thermodynamic studies"> thermodynamic studies</a>, <a href="https://publications.waset.org/search?q=fungus." title=" fungus."> fungus.</a> </p> <a href="https://publications.waset.org/10010218/biosorption-of-azo-dye-reactive-black-b-onto-nonviable-biomass-of-cladosporium-cladosporioides-lm1-thermodynamic-kinetic-and-equilibrium-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010218/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010218/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010218/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010218/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010218/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010218/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010218/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010218/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010218/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010218/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">856</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7511</span> Assessing the Effect of Thermodynamic, Hydrodynamic and Geometric of an Air Cooled Condenser on COP of Vapor Compression Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hosein%20Shokohmand">Hosein Shokohmand</a>, <a href="https://publications.waset.org/search?q=Mahmood%20Hosein%20Zare"> Mahmood Hosein Zare</a>, <a href="https://publications.waset.org/search?q=Abdorreza%20Qolibeik"> Abdorreza Qolibeik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effects of thermodynamic, hydrodynamic and geometric of an air cooled condenser on COP of vapor compression cycle are investigated for a fixed condenser facing surface area. The system is utilized with a scroll compressor, modeled based on thermodynamic and heat transfer equations employing Matlab software. The working refrigerant is R134a whose thermodynamic properties are called from Engineering Equation Software. This simulation shows that vapor compression cycle can be designed by different configurations and COPs, economical and optimum working condition can be obtained via considering these parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vapor%20compression%20cycle" title="Vapor compression cycle">Vapor compression cycle</a>, <a href="https://publications.waset.org/search?q=air%20cooled%20condenser" title=" air cooled condenser"> air cooled condenser</a>, <a href="https://publications.waset.org/search?q=COP" title=" COP"> COP</a>, <a href="https://publications.waset.org/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/search?q=thermal%20modeling." title=" thermal modeling."> thermal modeling.</a> </p> <a href="https://publications.waset.org/7625/assessing-the-effect-of-thermodynamic-hydrodynamic-and-geometric-of-an-air-cooled-condenser-on-cop-of-vapor-compression-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7625/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7625/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7625/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7625/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7625/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7625/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7625/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7625/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7625/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7625/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1964</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7510</span> Loop Heat Pipe: Simple Thermodynamic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohammad%20Hamdan">Mohammad Hamdan</a>, <a href="https://publications.waset.org/search?q=Emad%20Elnajjar"> Emad Elnajjar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The LHP is a two-phase device with extremely high effective thermal conductivity that utilizes the thermodynamic pressure difference to circulate a cooling fluid. A thermodynamics analytical model is developed to explore different parameters effects on a Loop Heat Pipe (LHP).. The effects of pipe length, pipe diameter, condenser temperature, and heat load are reported. As pipe length increases and/or pipe diameter decreases, a higher temperature is expected in the evaporator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Loop%20Heat%20Pipe" title="Loop Heat Pipe">Loop Heat Pipe</a>, <a href="https://publications.waset.org/search?q=LHP" title=" LHP"> LHP</a>, <a href="https://publications.waset.org/search?q=Passive%20Cooling" title=" Passive Cooling"> Passive Cooling</a>, <a href="https://publications.waset.org/search?q=CapillaryForce." title=" CapillaryForce."> CapillaryForce.</a> </p> <a href="https://publications.waset.org/14854/loop-heat-pipe-simple-thermodynamic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14854/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14854/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14854/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14854/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14854/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14854/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14854/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14854/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14854/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14854/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2813</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7509</span> Performance Study of Cascade Refrigeration System Using Alternative Refrigerants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Gulshan%20Sachdeva">Gulshan Sachdeva</a>, <a href="https://publications.waset.org/search?q=Vaibhav%20Jain"> Vaibhav Jain</a>, <a href="https://publications.waset.org/search?q=S.%20S.%20Kachhwaha"> S. S. Kachhwaha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Cascade refrigeration systems employ series of single stage vapor compression units which are thermally coupled with evaporator/condenser cascades. Different refrigerants are used in each of the circuit depending on the optimum characteristics shown by the refrigerant for a particular application. In the present research study, a steady state thermodynamic model is developed which simulates the working of an actual cascade system. The model provides COP and all other system parameters e.g. total compressor work, temperature, pressure, enthalpy and entropy at different state points. The working fluid in low temperature circuit (LTC) is CO<sub>2</sub> (R744) while Ammonia (R717), Propane (R290), Propylene (R1270), R404A and R12 are the refrigerants in high temperature circuit (HTC). The performance curves of Ammonia, Propane, Propylene, and R404A are compared with R12 to find its nearest substitute. Results show that Ammonia is the best substitute of R12.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cascade%20system" title="Cascade system">Cascade system</a>, <a href="https://publications.waset.org/search?q=Refrigerants" title=" Refrigerants"> Refrigerants</a>, <a href="https://publications.waset.org/search?q=Thermodynamic%20model." title=" Thermodynamic model."> Thermodynamic model.</a> </p> <a href="https://publications.waset.org/9997619/performance-study-of-cascade-refrigeration-system-using-alternative-refrigerants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997619/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997619/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997619/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997619/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997619/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997619/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997619/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997619/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997619/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997619/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5748</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7508</span> Thermodynamic Analysis of Cascade Refrigeration System Using R12-R13, R290-R23 and R404A-R23</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20D.%20Parekh">A. D. Parekh</a>, <a href="https://publications.waset.org/search?q=P.%20R.%20Tailor"> P. R. Tailor </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The Montreal protocol and Kyoto protocol underlined the need of substitution of CFC&rsquo;s and HCFC&rsquo;s due to their adverse impact on atmospheric ozone layer which protects earth from U.V rays. The CFCs have been entirely ruled out since 1995 and a long-term basis HCFCs must be replaced by 2020. All this events motivated HFC refrigerants which are harmless to ozone layer. In this paper thermodynamic analysis of cascade refrigeration system has been done using three different refrigerant pairs R13-R12, R290-R23, and R404A-R23. Effect of various operating parameters i.e. evaporator temperature, condenser temperature, temperature difference in cascade condenser and low temperature cycle condenser temperature on performance parameters viz. COP, exergetic efficiency and refrigerant mass flow ratio have been studied. Thermodynamic analysis shows that out of three refrigerant pairs R12-R13, R290-R23 and R404A-R23 the COP of R290-R23 refrigerant pair is highest.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Thermodynamic%20analysis" title="Thermodynamic analysis">Thermodynamic analysis</a>, <a href="https://publications.waset.org/search?q=cascade%20refrigeration%20system" title=" cascade refrigeration system"> cascade refrigeration system</a>, <a href="https://publications.waset.org/search?q=COP" title=" COP"> COP</a>, <a href="https://publications.waset.org/search?q=exergetic%20efficiency." title=" exergetic efficiency."> exergetic efficiency.</a> </p> <a href="https://publications.waset.org/9998940/thermodynamic-analysis-of-cascade-refrigeration-system-using-r12-r13-r290-r23-and-r404a-r23" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998940/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998940/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998940/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998940/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998940/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998940/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998940/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998940/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998940/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998940/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3820</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7507</span> Thermodynamic Analysis of GT Cycle with Naphtha or Natural Gas as the Fuel: A Thermodynamic Comparison</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Arpit">S. Arpit</a>, <a href="https://publications.waset.org/search?q=P.%20K.%20Das"> P. K. Das</a>, <a href="https://publications.waset.org/search?q=S.%20K.%20Dash"> S. K. Dash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, a comparative study is done between two fuels, naphtha and natural gas (NG), for a gas turbine (GT) plant of 32.5 MW with the same thermodynamic configuration. From the energy analysis, it is confirmed that the turbine inlet temperature (TIT) of the gas turbine in the case of natural gas is higher as compared to naphtha, and hence the isentropic efficiency of the turbine is better. The result from the exergy analysis also confirms that due to high turbine inlet temperature in the case of natural gas, exergy destruction in combustion chamber is less. But comparing two fuels for overall analysis, naphtha has higher energy and exergetic efficiency as compared to natural gas.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Exergy" title="Exergy">Exergy</a>, <a href="https://publications.waset.org/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a>, <a href="https://publications.waset.org/search?q=naphtha" title=" naphtha"> naphtha</a>, <a href="https://publications.waset.org/search?q=natural%20gas." title=" natural gas."> natural gas.</a> </p> <a href="https://publications.waset.org/10009953/thermodynamic-analysis-of-gt-cycle-with-naphtha-or-natural-gas-as-the-fuel-a-thermodynamic-comparison" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009953/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009953/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009953/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009953/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009953/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009953/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009953/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009953/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009953/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009953/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1061</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7506</span> Thermodynamic Analyses of Information Dissipation along the Passive Dendritic Trees and Active Action Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Bahar%20Hazal%20Yal%C3%A7%C4%B1nkaya">Bahar Hazal Yalçınkaya</a>, <a href="https://publications.waset.org/search?q=Bayram%20Y%C4%B1lmaz"> Bayram Yılmaz</a>, <a href="https://publications.waset.org/search?q=Mustafa%20%C3%96zilgen"> Mustafa Özilgen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Brain information transmission in the neuronal network occurs in the form of electrical signals. Neural work transmits information between the neurons or neurons and target cells by moving charged particles in a voltage field; a fraction of the energy utilized in this process is dissipated via entropy generation. Exergy loss and entropy generation models demonstrate the inefficiencies of the communication along the dendritic trees. In this study, neurons of 4 different animals were analyzed with one dimensional cable model with N=6 identical dendritic trees and M=3 order of symmetrical branching. Each branch symmetrically bifurcates in accordance with the 3/2 power law in an infinitely long cylinder with the usual core conductor assumptions, where membrane potential is conserved in the core conductor at all branching points. In the model, exergy loss and entropy generation rates are calculated for each branch of equivalent cylinders of electrotonic length (L) ranging from 0.1 to 1.5 for four different dendritic branches, input branch (BI), and sister branch (BS) and two cousin branches (BC-1 &amp; BC-2). Thermodynamic analysis with the data coming from two different cat motoneuron studies show that in both experiments nearly the same amount of exergy is lost while generating nearly the same amount of entropy. Guinea pig vagal motoneuron loses twofold more exergy compared to the cat models and the squid exergy loss and entropy generation were nearly tenfold compared to the guinea pig vagal motoneuron model. Thermodynamic analysis show that the dissipated energy in the dendritic tress is directly proportional with the electrotonic length, exergy loss and entropy generation. Entropy generation and exergy loss show variability not only between the vertebrate and invertebrates but also within the same class. Concurrently, single action potential Na<sup>+</sup> ion load, metabolic energy utilization and its thermodynamic aspect contributed for squid giant axon and mammalian motoneuron model. Energy demand is supplied to the neurons in the form of Adenosine triphosphate (ATP). Exergy destruction and entropy generation upon ATP hydrolysis are calculated. ATP utilization, exergy destruction and entropy generation showed differences in each model depending on the variations in the ion transport along the channels.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ATP%20utilization" title="ATP utilization">ATP utilization</a>, <a href="https://publications.waset.org/search?q=entropy%20generation" title=" entropy generation"> entropy generation</a>, <a href="https://publications.waset.org/search?q=exergy%20loss" title=" exergy loss"> exergy loss</a>, <a href="https://publications.waset.org/search?q=neuronal%20information%20transmittance." title=" neuronal information transmittance."> neuronal information transmittance.</a> </p> <a href="https://publications.waset.org/10006445/thermodynamic-analyses-of-information-dissipation-along-the-passive-dendritic-trees-and-active-action-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006445/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006445/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006445/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006445/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006445/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006445/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006445/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006445/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006445/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006445/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1014</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7505</span> Performance Analysis of Absorption Power Cycle under Different Source Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kyoung%20Hoon%20Kim">Kyoung Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The absorption power generation cycle based on the ammonia-water mixture has attracted much attention for efficient recovery of low-grade energy sources. In this paper a thermodynamic performance analysis is carried out for a Kalina cycle using ammonia-water mixture as a working fluid for efficient conversion of low-temperature heat source in the form of sensible energy. The effects of the source temperature on the system performance are extensively investigated by using the thermodynamic models. The results show that the source temperature as well as the ammonia mass fraction affects greatly on the thermodynamic performance of the cycle.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ammonia-water%20mixture" title="Ammonia-water mixture">Ammonia-water mixture</a>, <a href="https://publications.waset.org/search?q=Kalina%20cycle" title=" Kalina cycle"> Kalina cycle</a>, <a href="https://publications.waset.org/search?q=low-grade%0D%0Aheat%20source" title=" low-grade heat source"> low-grade heat source</a>, <a href="https://publications.waset.org/search?q=source%20temperature." title=" source temperature."> source temperature.</a> </p> <a href="https://publications.waset.org/10000477/performance-analysis-of-absorption-power-cycle-under-different-source-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000477/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000477/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000477/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000477/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000477/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000477/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000477/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000477/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000477/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000477/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2464</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7504</span> Effect of Impurities in the Chlorination Process of TiO2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Seok%20Hong%20Min">Seok Hong Min</a>, <a href="https://publications.waset.org/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing interest on Ti alloys, the extraction process of Ti from its typical ore, TiO<sub>2</sub>, has long been and will be important issue. As an intermediate product for the production of pigment or titanium metal sponge, tetrachloride (TiCl<sub>4</sub>) is produced by fluidized bed using high TiO<sub>2</sub> feedstock. The purity of TiCl<sub>4</sub> after chlorination is subjected to the quality of the titanium feedstock. Since the impurities in the TiCl<sub>4</sub> product are reported to final products, the purification process of the crude TiCl<sub>4</sub> is required. The purification process includes fractional distillation and chemical treatment, which depends on the nature of the impurities present and the required quality of the final product. In this study, thermodynamic analysis on the impurity effect in the chlorination process, which is the first step of extraction of Ti from TiO<sub>2</sub>, has been conducted. All thermodynamic calculations were performed using the FactSage thermodynamical software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Rutile" title="Rutile">Rutile</a>, <a href="https://publications.waset.org/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/search?q=chlorination%20process" title=" chlorination process"> chlorination process</a>, <a href="https://publications.waset.org/search?q=impurities" title=" impurities"> impurities</a>, <a href="https://publications.waset.org/search?q=thermodynamic%20calculation" title=" thermodynamic calculation"> thermodynamic calculation</a>, <a href="https://publications.waset.org/search?q=FactSage." title=" FactSage."> FactSage.</a> </p> <a href="https://publications.waset.org/10006295/effect-of-impurities-in-the-chlorination-process-of-tio2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006295/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006295/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006295/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006295/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006295/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006295/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006295/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006295/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006295/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006295/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1700</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7503</span> Thermodynamic Approach of Lanthanide-Iron Double Oxides Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Vera%20Varazashvili">Vera Varazashvili</a>, <a href="https://publications.waset.org/search?q=Murman%20Tsarakhov"> Murman Tsarakhov</a>, <a href="https://publications.waset.org/search?q=Tamar%20Mirianashvili"> Tamar Mirianashvili</a>, <a href="https://publications.waset.org/search?q=Teimuraz%20Pavlenishvili"> Teimuraz Pavlenishvili</a>, <a href="https://publications.waset.org/search?q=Tengiz%20Machaladze"> Tengiz Machaladze</a>, <a href="https://publications.waset.org/search?q=Mzia%20Khundadze"> Mzia Khundadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity – temperature functions and by using the semi-empirical method for calculation of ΔH298.15 of formation. Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the structural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Calorimetry" title="Calorimetry">Calorimetry</a>, <a href="https://publications.waset.org/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/search?q=enthalpy" title=" enthalpy"> enthalpy</a>, <a href="https://publications.waset.org/search?q=heat%20capacity" title=" heat capacity"> heat capacity</a>, <a href="https://publications.waset.org/search?q=gibbs%0D%0Aenergy%20of%20formation" title=" gibbs energy of formation"> gibbs energy of formation</a>, <a href="https://publications.waset.org/search?q=rare%20earth%20iron%20garnets." title=" rare earth iron garnets."> rare earth iron garnets.</a> </p> <a href="https://publications.waset.org/10002237/thermodynamic-approach-of-lanthanide-iron-double-oxides-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002237/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002237/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002237/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002237/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002237/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002237/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002237/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002237/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002237/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002237/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1927</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7502</span> Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Carlos%20A.%20D.%20Torres">Carlos A. D. Torres</a>, <a href="https://publications.waset.org/search?q=Antonio%20D.%20Delgado"> Antonio D. Delgado </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area.</p> <p>The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated fa&ccedil;ades provide some energy saving compared to the non-ventilated fa&ccedil;ades and to deduce their behavior patterns in terms of energy efficiency.</p> <p>The modelization of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach.</p> <p>This way, we analyze the behavior of ventilated fa&ccedil;ades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation.</p> <p>CFD computations show the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated fa&ccedil;ades with the same geometry and thermophysical characteristics.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Passive%20cooling" title="Passive cooling">Passive cooling</a>, <a href="https://publications.waset.org/search?q=ventilated%20fa%C3%A7ades" title=" ventilated façades"> ventilated façades</a>, <a href="https://publications.waset.org/search?q=energy-efficient%20building" title=" energy-efficient building"> energy-efficient building</a>, <a href="https://publications.waset.org/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/search?q=FEM." title=" FEM. "> FEM. </a> </p> <a href="https://publications.waset.org/9996568/thermodynamic-analysis-of-ventilated-facades-under-operating-conditions-in-southern-spain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996568/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996568/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996568/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996568/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996568/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996568/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996568/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996568/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996568/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996568/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4950</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7501</span> Effect of Assumptions of Normal Shock Location on the Design of Supersonic Ejectors for Refrigeration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Payam%20Haghparast">Payam Haghparast</a>, <a href="https://publications.waset.org/search?q=Mikhail%20V.%20Sorin"> Mikhail V. Sorin</a>, <a href="https://publications.waset.org/search?q=Hakim%20Nesreddine"> Hakim Nesreddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The complex oblique shock phenomenon can be simply assumed as a normal shock at the constant area section to simulate a sharp pressure increase and velocity decrease in 1-D thermodynamic models. The assumed normal shock location is one of the greatest sources of error in ejector thermodynamic models. Most researchers consider an arbitrary location without justifying it. Our study compares the effect of normal shock place on ejector dimensions in 1-D models. To this aim, two different ejector experimental test benches, a constant area-mixing ejector (CAM) and a constant pressure-mixing (CPM) are considered, with different known geometries, operating conditions and working fluids (R245fa, R141b). In the first step, in order to evaluate the real value of the efficiencies in the different ejector parts and critical back pressure, a CFD model was built and validated by experimental data for two types of ejectors. These reference data are then used as input to the 1D model to calculate the lengths and the diameters of the ejectors. Afterwards, the design output geometry calculated by the 1D model is compared directly with the corresponding experimental geometry. It was found that there is a good agreement between the ejector dimensions obtained by the 1D model, for both CAM and CPM, with experimental ejector data. Furthermore, it is shown that normal shock place affects only the constant area length as it is proven that the inlet normal shock assumption results in more accurate length. Taking into account previous 1D models, the results suggest the use of the assumed normal shock location at the inlet of the constant area duct to design the supersonic ejectors.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=1D%20model" title="1D model">1D model</a>, <a href="https://publications.waset.org/search?q=constant%20area-mixing" title=" constant area-mixing"> constant area-mixing</a>, <a href="https://publications.waset.org/search?q=constant%20pressure-mixing" title=" constant pressure-mixing"> constant pressure-mixing</a>, <a href="https://publications.waset.org/search?q=normal%20shock%20location" title=" normal shock location"> normal shock location</a>, <a href="https://publications.waset.org/search?q=ejector%20dimensions." title=" ejector dimensions."> ejector dimensions.</a> </p> <a href="https://publications.waset.org/10008683/effect-of-assumptions-of-normal-shock-location-on-the-design-of-supersonic-ejectors-for-refrigeration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008683/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008683/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008683/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008683/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008683/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008683/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008683/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008683/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008683/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008683/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">954</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7500</span> Thermodynamic Analysis of a Novel Thermal Driven Refrigeration System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Linghui%20Zhu">Linghui Zhu</a>, <a href="https://publications.waset.org/search?q=Junjie%20Gu"> Junjie Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Thermal-driven refrigeration systems have attracted increasing research and development interest in recent years. These systems do not cause ozone depletion and can reduce demand on electricity. The main objective of this work is to perform theoretical analyses of a thermal-driven refrigeration system using a new sorbent-sorptive pair as the working pair. The active component of sorbent is sodium thiocyanate (NaSCN). Ammonia (NH3) is chosen as sorptive. Based on the thermodynamic properties of the working solution, a mathematical model is introduced to analyze the system characteristics and performance. The results are used to compare with other thermal-driven refrigeration systems. It is shown that the advantages provided by this system over other absorption units include lower generator and evaporator temperatures, a higher coefficient of performance (COP). The COP is about 10 percent higher than the ones for the NH3-H2O system working at the same conditions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Absorption%3B%20Ammonia-Sodium%20thiocyanate" title="Absorption; Ammonia-Sodium thiocyanate">Absorption; Ammonia-Sodium thiocyanate</a>, <a href="https://publications.waset.org/search?q=Exergy" title=" Exergy"> Exergy</a>, <a href="https://publications.waset.org/search?q=coefficient%20of%20performance%20%28COP%29" title=" coefficient of performance (COP)"> coefficient of performance (COP)</a> </p> <a href="https://publications.waset.org/12574/thermodynamic-analysis-of-a-novel-thermal-driven-refrigeration-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12574/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12574/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12574/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12574/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12574/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12574/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12574/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12574/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12574/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12574/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1800</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7499</span> Thermodynamic Cycle Analysis for Overall Efficiency Improvement and Temperature Reduction in Gas Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jeni%20A.%20Popescu">Jeni A. Popescu</a>, <a href="https://publications.waset.org/search?q=Ionut%20Porumbel"> Ionut Porumbel</a>, <a href="https://publications.waset.org/search?q=Valeriu%20A.%20Vilag"> Valeriu A. Vilag</a>, <a href="https://publications.waset.org/search?q=Cleopatra%20F.%20Cuciumita"> Cleopatra F. Cuciumita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The paper presents a thermodynamic cycle analysis for three turboshaft engines. The first cycle is a Brayton cycle, describing the evolution of a classical turboshaft, based on the Klimov TV2 engine. The other four cycles aim at approaching an Ericsson cycle, by replacing the Brayton cycle adiabatic expansion in the turbine by quasi-isothermal expansion. The maximum quasi- Ericsson cycles temperature is set to a lower value than the maximum Brayton cycle temperature, equal to the Brayton cycle power turbine inlet temperature, in order to decrease the engine NOx emissions. Also, the power/expansion ratio distribution over the stages of the gas generator turbine is maintained the same. In two of the considered quasi-Ericsson cycles, the efficiencies of the gas generator turbine, as well as the power/expansion ratio distribution over the stages of the gas generator turbine are maintained the same as for the reference case, while for the other two cases, the efficiencies are increased in order to obtain the same shaft power as in the reference case. For the two cases respecting the first condition, both the shaft power and the thermodynamic efficiency of the engine decrease, while for the other two, the power and efficiency are maintained, as a result of assuming new, more efficient gas generator turbines.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Combustion" title="Combustion">Combustion</a>, <a href="https://publications.waset.org/search?q=Ericsson" title=" Ericsson"> Ericsson</a>, <a href="https://publications.waset.org/search?q=thermodynamic%20analysis" title=" thermodynamic analysis"> thermodynamic analysis</a>, <a href="https://publications.waset.org/search?q=turbine." title=" turbine."> turbine.</a> </p> <a href="https://publications.waset.org/10001041/thermodynamic-cycle-analysis-for-overall-efficiency-improvement-and-temperature-reduction-in-gas-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001041/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001041/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001041/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001041/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001041/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001041/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001041/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001041/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001041/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001041/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2463</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7498</span> Equilibrium, Kinetic and Thermodynamic Studies on Biosorption of Cd (II) and Pb (II) from Aqueous Solution Using a Spore Forming Bacillus Isolated from Wastewater of a Leather Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sh.%20Kianfar">Sh. Kianfar</a>, <a href="https://publications.waset.org/search?q=A.%20Moheb"> A. Moheb</a>, <a href="https://publications.waset.org/search?q=H.%20Ghaforian"> H. Ghaforian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The equilibrium, thermodynamics and kinetics of the biosorption of Cd (II) and Pb(II) by a Spore Forming Bacillus (MGL 75) were investigated at different experimental conditions. The Langmuir and Freundlich, and Dubinin-Radushkevich (D-R) equilibrium adsorption models were applied to describe the biosorption of the metal ions by MGL 75 biomass. The Langmuir model fitted the equilibrium data better than the other models. Maximum adsorption capacities q max for lead (II) and cadmium (II) were found equal to 158.73mg/g and 91.74 mg/g by Langmuir model. The values of the mean free energy determined with the D-R equation showed that adsorption process is a physiosorption process. The thermodynamic parameters Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) changes were also calculated, and the values indicated that the biosorption process was exothermic and spontaneous. Experiment data were also used to study biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients were calculated and discussed. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/search?q=Metal%20ion%20removal" title=" Metal ion removal"> Metal ion removal</a>, <a href="https://publications.waset.org/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a> </p> <a href="https://publications.waset.org/573/equilibrium-kinetic-and-thermodynamic-studies-on-biosorption-of-cd-ii-and-pb-ii-from-aqueous-solution-using-a-spore-forming-bacillus-isolated-from-wastewater-of-a-leather-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/573/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/573/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/573/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/573/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/573/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/573/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/573/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/573/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/573/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/573/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2053</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7497</span> Malt Bagasse Waste as Biosorbent for Malachite Green: An Ecofriendly Approach for Dye Removal from Aqueous Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20C.%20O.%20Reis">H. C. O. Reis</a>, <a href="https://publications.waset.org/search?q=A.%20S.%20Cossolin"> A. S. Cossolin</a>, <a href="https://publications.waset.org/search?q=B.%20A.%20P.%20Santos"> B. A. P. Santos</a>, <a href="https://publications.waset.org/search?q=K.%20C.%20Castro"> K. C. Castro</a>, <a href="https://publications.waset.org/search?q=G.%20M.%20Pereira"> G. M. Pereira</a>, <a href="https://publications.waset.org/search?q=V.%20C.%20Silva"> V. C. Silva</a>, <a href="https://publications.waset.org/search?q=P.%20T.%20Sousa%20Jr"> P. T. Sousa Jr</a>, <a href="https://publications.waset.org/search?q=E.%20L.%20Dall%E2%80%99Oglio"> E. L. Dall’Oglio</a>, <a href="https://publications.waset.org/search?q=L.%20G.%20Vasconcelos"> L. G. Vasconcelos</a>, <a href="https://publications.waset.org/search?q=E.%20B.%20Morais"> E. B. Morais </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, malt bagasse, a low-cost waste biomass, was tested as a biosorbent to remove the cationic dye Malachite green (MG) from aqueous solution. Batch biosorption experiments were investigated as functions of different experimental parameters such as initial pH, salt (NaCl) concentration, contact time, temperature and initial dye concentration. Higher removal rates of MG were obtained at pH 8 and 10. The equilibrium and kinetic studies suggest that the biosorption follows Langmuir isotherm and the pseudo-second-order model. The maximum monolayer adsorption capacity was estimated at 117.65 mg/g (at 45 &deg;C). According to Dubinin&ndash;Radushkevich (D-R) isotherm model, biosorption of MG onto malt bagasse occurs physically. The thermodynamic parameters such as Gibbs free energy, enthalpy and entropy indicated that the MG biosorption onto malt bagasse is spontaneous and endothermic. The results of the ionic strength effect indicated that the biosorption process under study had a strong tolerance under high salt concentrations. It can be concluded that malt bagasse waste has potential for application as biosorbent for removal of MG from aqueous solution.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Color%20removal" title="Color removal">Color removal</a>, <a href="https://publications.waset.org/search?q=kinetic%20and%20isotherm%20studies" title=" kinetic and isotherm studies"> kinetic and isotherm studies</a>, <a href="https://publications.waset.org/search?q=thermodynamic%20parameters" title=" thermodynamic parameters"> thermodynamic parameters</a>, <a href="https://publications.waset.org/search?q=FTIR." title=" FTIR."> FTIR.</a> </p> <a href="https://publications.waset.org/10009368/malt-bagasse-waste-as-biosorbent-for-malachite-green-an-ecofriendly-approach-for-dye-removal-from-aqueous-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009368/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009368/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009368/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009368/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009368/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009368/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009368/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009368/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009368/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009368/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">978</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7496</span> A Comparative Study of Vapour Compression Heat Pump Systems under Air to Air and Air to Water Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kemal%20%C3%87omakli">Kemal Çomakli</a>, <a href="https://publications.waset.org/search?q=U%C4%9Fur%20%C3%87akir"> Uğur Çakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This research evaluated and compared the thermodynamic performance of heat pump systems which can be run under two different modes as air to air and air to water by using only one compressor. To achieve this comparison an experimental performance study was made on a traditional vapor compressed heat pump system that can be run air to air mode and air to water mode by help of a valve. The experiments made under different thermal conditions. Thermodynamic performance of the systems are presented and compared with each other for different working conditions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Air%20source%20heat%20pump" title="Air source heat pump">Air source heat pump</a>, <a href="https://publications.waset.org/search?q=Energy%20Analysis" title=" Energy Analysis"> Energy Analysis</a>, <a href="https://publications.waset.org/search?q=Heat%20Pump" title=" Heat Pump"> Heat Pump</a> </p> <a href="https://publications.waset.org/3287/a-comparative-study-of-vapour-compression-heat-pump-systems-under-air-to-air-and-air-to-water-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3287/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3287/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3287/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3287/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3287/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3287/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3287/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3287/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3287/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3287/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1688</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7495</span> Influence of Moringa Leaves Extract on the Response of Hb Molecule to Dose Rates’ Changes: II. Relaxation Time and Its Thermodynamic Driven State Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohamed%20M.%20M.%20Elnasharty">Mohamed M. M. Elnasharty</a>, <a href="https://publications.waset.org/search?q=Azhar%20M.%20Elwan"> Azhar M. Elwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Irradiation deposits energy through ionisation changing the bio-system&rsquo;s net dipole, allowing the use of dielectric parameters and thermodynamic state functions related to these parameters as biophysical detectors to electrical inhomogeneity within the biosystem. This part is concerned with the effect of Moringa leaves extract, natural supplement, on the response of the biosystem to two different dose rates of irradiation. Having Hb molecule as a representative to the biosystem to be least invasive to the biosystem, dielectric measurements were used to extract the relaxation time of certain process found in the Hb spectrum within the indicated frequency window and the interrelated thermodynamic state functions were calculated from the deduced relaxation time. The results showed that relaxation time was decreased for both dose rates indicating a strong influence of Moringa on the response of biosystem and consequently Hb molecule. This influence was presented in the relaxation time and other parameters as well.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Activation%20energy" title="Activation energy">Activation energy</a>, <a href="https://publications.waset.org/search?q=DC%20conductivity" title=" DC conductivity"> DC conductivity</a>, <a href="https://publications.waset.org/search?q=dielectric%20relaxation" title=" dielectric relaxation"> dielectric relaxation</a>, <a href="https://publications.waset.org/search?q=enthalpy%20change" title=" enthalpy change"> enthalpy change</a>, <a href="https://publications.waset.org/search?q=moringa%20leaves%20extract" title=" moringa leaves extract"> moringa leaves extract</a>, <a href="https://publications.waset.org/search?q=relaxation%20time." title=" relaxation time. "> relaxation time. </a> </p> <a href="https://publications.waset.org/10010403/influence-of-moringa-leaves-extract-on-the-response-of-hb-molecule-to-dose-rates-changes-ii-relaxation-time-and-its-thermodynamic-driven-state-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010403/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010403/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010403/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010403/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010403/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010403/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010403/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010403/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010403/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010403/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">667</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7494</span> Thermodynamic Attainable Region for Direct Synthesis of Dimethyl Ether from Synthesis Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Thulane%20Paepae">Thulane Paepae</a>, <a href="https://publications.waset.org/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper demonstrates the use of a method of synthesizing process flowsheets using a graphical tool called the GH-plot and in particular, to look at how it can be used to compare the reactions of a combined simultaneous process with regard to their thermodynamics. The technique uses fundamental thermodynamic principles to allow the mass, energy and work balances locate the attainable region for chemical processes in a reactor. This provides guidance on what design decisions would be best suited to developing new processes that are more effective and make lower demands on raw material and energy usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Attainable%20region" title="Attainable region">Attainable region</a>, <a href="https://publications.waset.org/search?q=dimethyl%20ether%20synthesis" title=" dimethyl ether synthesis"> dimethyl ether synthesis</a>, <a href="https://publications.waset.org/search?q=mass%20balance" title=" mass balance"> mass balance</a>, <a href="https://publications.waset.org/search?q=optimal%20reaction%20networks." title=" optimal reaction networks."> optimal reaction networks.</a> </p> <a href="https://publications.waset.org/10004779/thermodynamic-attainable-region-for-direct-synthesis-of-dimethyl-ether-from-synthesis-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004779/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004779/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004779/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004779/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004779/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004779/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004779/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004779/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004779/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004779/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1490</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7493</span> Effects of Superheating on Thermodynamic Performance of Organic Rankine Cycles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kyoung%20Hoon%20Kim">Kyoung Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently ORC(Organic Rankine Cycle) has attracted much attention due to its potential in reducing consumption of fossil fuels and its favorable characteristics to exploit low-grade heat sources. In this work thermodynamic performance of ORC with superheating of vapor is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the evaporating temperature and the turbine inlet temperature on the characteristics of the system such as maximum possible work extraction from the given source, volumetric flow rate per 1 kW of net work and quality of the working fluid at turbine exit as well as thermal and exergy efficiencies. Results show that for a given source the thermal efficiency increases with decrease of the superheating but exergy efficiency may have a maximum value with respect to the superheating of the working fluid. Results also show that in selection of working fluid it is required to consider various criteria of performance characteristics as well as thermal efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=organic%20Rankine%20cycle%20%28ORC%29" title="organic Rankine cycle (ORC)">organic Rankine cycle (ORC)</a>, <a href="https://publications.waset.org/search?q=low-grade%20energysource" title=" low-grade energysource"> low-grade energysource</a>, <a href="https://publications.waset.org/search?q=Patel-Teja%20equation" title=" Patel-Teja equation"> Patel-Teja equation</a>, <a href="https://publications.waset.org/search?q=thermodynamic%20performance" title=" thermodynamic performance"> thermodynamic performance</a> </p> <a href="https://publications.waset.org/14753/effects-of-superheating-on-thermodynamic-performance-of-organic-rankine-cycles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14753/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14753/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14753/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14753/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14753/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14753/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14753/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14753/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14753/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14753/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2900</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7492</span> Experimental Investigation of a Mixture of Methane, Carbon Dioxide and Nitrogen Gas Hydrate Formation in Water-Based Drilling Mud in the Presence or Absence of Thermodynamic Inhibitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=F.%20Esmaeilzadeh">F. Esmaeilzadeh</a>, <a href="https://publications.waset.org/search?q=Y.%20Fayazi"> Y. Fayazi</a>, <a href="https://publications.waset.org/search?q=J.%20Fathikaljahi"> J. Fathikaljahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas hydrates form when a number of factors co-exist: free water, hydrocarbon gas, cold temperatures and high pressures are typical of the near mud-line conditions in a deepwater drilling operation. Subsequently, when drilling with water based muds, particularly on exploration wells, the risk of hydrate formation associated with a gas influx is high. The consequences of gas hydrate formation while drilling are severe, and as such, every effort should be made to ensure the risk of hydrate formation is either eliminated or significantly reduced. Thermodynamic inhibitors are used to reduce the free water content of a drilling mud, and thus suppress the hydrate formation temperature. Very little experimental work has been performed by oil and gas research companies on the evaluation of gas hydrate formation in a water-based drilling mud. The main objective of this paper is to investigate the experimental gas hydrate formation for a mixture of methane, carbon dioxide & nitrogen in a water-based drilling mud with or without presence of different concentrations of thermodynamic inhibitors including pure salt and a combination of salt with methanol or ethylene glycol at different concentrations in a static loop apparatus. The experiments were performed using a static loop apparatus consisting of a 2.4307 cm inside diameter and 800 cm long pipe. All experiments were conducted at 2200 psia. The temperature in the loop was decreased at a rate of 3.33 °F/h from initial temperature of 80 °F. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hydrate%20formation" title="Hydrate formation">Hydrate formation</a>, <a href="https://publications.waset.org/search?q=thermodynamic%20inhibitor" title=" thermodynamic inhibitor"> thermodynamic inhibitor</a>, <a href="https://publications.waset.org/search?q=waterbaseddrilling%20mud" title=" waterbaseddrilling mud"> waterbaseddrilling mud</a>, <a href="https://publications.waset.org/search?q=salt" title=" salt"> salt</a>, <a href="https://publications.waset.org/search?q=static%20loop%20apparatus." title=" static loop apparatus."> static loop apparatus.</a> </p> <a href="https://publications.waset.org/6011/experimental-investigation-of-a-mixture-of-methane-carbon-dioxide-and-nitrogen-gas-hydrate-formation-in-water-based-drilling-mud-in-the-presence-or-absence-of-thermodynamic-inhibitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6011/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6011/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6011/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6011/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6011/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6011/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6011/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6011/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6011/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6011/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1802</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7491</span> Estimating the Absorption of Volatile Organic Compounds in Four Biodiesels Using the UNIFAC Procedure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Corina%20M%20Mateescu">Corina M Mateescu</a>, <a href="https://publications.waset.org/search?q=Edison%20Muzenda"> Edison Muzenda</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Belaid"> Mohamed Belaid</a>, <a href="https://publications.waset.org/search?q=Saka%20Abdulkareem"> Saka Abdulkareem</a>, <a href="https://publications.waset.org/search?q=Ayo%20S%20Afolabi"> Ayo S Afolabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work considered the thermodynamic feasibility of scrubbing volatile organic compounds into biodiesel in view of designing a gas treatment process with this absorbent. A detailed vapour – liquid equilibrium investigation was performed using the original UNIFAC group contribution method. The four biodiesels studied in this work are methyl oleate, methyl palmitate, methyl linolenate and ethyl stearate. The original UNIFAC procedure was used to estimate the infinite dilution activity coefficients of 13 selected volatile organic compounds in the biodiesels. The calculations were done at the VOC mole fraction of 9.213x10-8. Ethyl stearate gave the most favourable phase equilibrium. A close agreement was found between the infinite dilution activity coefficient of toluene found in this work and those reported in literature. Thermodynamic models can efficiently be used to calculate vast amount of phase equilibrium behaviour using limited number of experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biodiesel" title="Biodiesel">Biodiesel</a>, <a href="https://publications.waset.org/search?q=Equilibrium" title=" Equilibrium"> Equilibrium</a>, <a href="https://publications.waset.org/search?q=Gas%20treatment" title=" Gas treatment"> Gas treatment</a>, <a href="https://publications.waset.org/search?q=Infinitedilution" title=" Infinitedilution"> Infinitedilution</a>, <a href="https://publications.waset.org/search?q=Thermodynamic" title=" Thermodynamic"> Thermodynamic</a> </p> <a href="https://publications.waset.org/7164/estimating-the-absorption-of-volatile-organic-compounds-in-four-biodiesels-using-the-unifac-procedure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7164/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7164/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7164/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7164/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7164/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7164/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7164/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7164/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7164/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7164/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1882</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7490</span> Thermodynamic Study for Aggregation Behavior of Hydrotropic Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Meghal%20Desai">Meghal Desai</a>, <a href="https://publications.waset.org/search?q=Jigisha%20Parikh"> Jigisha Parikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Aggregation behavior of sodium salicylate and sodium cumene sulfonate was studied in aqueous solution at different temperature. Specific conductivity and relative viscosity were measured at different temperature to find minimum hydrotropic concentration. The thermodynamic parameters (free energy, enthalpy and entropy) were evaluated in the temperature range of 30&deg;C-70&deg;C. The free energy decreased with increase in temperature. The aggregation was found to be exothermic in nature and favored by positive value of entropy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hydrotropes" title="Hydrotropes">Hydrotropes</a>, <a href="https://publications.waset.org/search?q=Enthalpy" title=" Enthalpy"> Enthalpy</a>, <a href="https://publications.waset.org/search?q=Entropy" title=" Entropy"> Entropy</a>, <a href="https://publications.waset.org/search?q=Free%20Energy" title=" Free Energy"> Free Energy</a>, <a href="https://publications.waset.org/search?q=Minimum%20Hydrotropic%20Concentration." title="Minimum Hydrotropic Concentration.">Minimum Hydrotropic Concentration.</a> </p> <a href="https://publications.waset.org/8752/thermodynamic-study-for-aggregation-behavior-of-hydrotropic-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8752/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8752/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8752/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8752/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8752/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8752/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8752/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8752/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8752/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8752/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2006</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7489</span> A Thermodynamic Study of Parameters That Affect the Nitration of Glycerol with Nitric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Erna%20Astuti">Erna Astuti</a>, <a href="https://publications.waset.org/search?q=Supranto"> Supranto</a>, <a href="https://publications.waset.org/search?q=Rochmadi"> Rochmadi</a>, <a href="https://publications.waset.org/search?q=Agus%20Prasetya"> Agus Prasetya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel production from vegetable oil will produce glycerol as by-product about 10% of the biodiesel production. The amount of glycerol that was produced needed alternative way to handling immediately so as to not become the waste that polluted environment. One of the solutions was to process glycerol to polyglycidyl nitrate (PGN). PGN is synthesized from glycerol by three-step reactions i.e. nitration of glycerol, cyclization of 13- dinitroglycerine and polymerization of glycosyl nitrate. Optimum condition of nitration of glycerol with nitric acid has not been known. Thermodynamic feasibility should be done before run experiments in the laboratory. The aim of this study was to determine the parameters those affect nitration of glycerol and nitric acid and chose the operation condition. Many parameters were simulated to verify its possibility to experiment under conditions which would get the highest conversion of 1, 3-dinitroglycerine and which was the ideal condition to get it. The parameters that need to be studied to obtain the highest conversion of 1, 3-dinitroglycerine were mol ratio of nitric acid/glycerol, reaction temperature, mol ratio of glycerol/dichloromethane and pressure. The highest conversion was obtained in the range of mol ratio of nitric acid /glycerol between 2/1 – 5/1, reaction temperature of 5-25oC and pressure of 1 atm. The parameters that need to be studied further to obtain the highest conversion of 1.3 DNG are mol ratio of nitric acid/glycerol and reaction temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nitration" title="Nitration">Nitration</a>, <a href="https://publications.waset.org/search?q=glycerol" title=" glycerol"> glycerol</a>, <a href="https://publications.waset.org/search?q=thermodynamic" title=" thermodynamic"> thermodynamic</a>, <a href="https://publications.waset.org/search?q=optimum%0D%0Acondition." title=" optimum condition."> optimum condition.</a> </p> <a href="https://publications.waset.org/10002050/a-thermodynamic-study-of-parameters-that-affect-the-nitration-of-glycerol-with-nitric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002050/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002050/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002050/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002050/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002050/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002050/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002050/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002050/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002050/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002050/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3221</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7488</span> Atmospheric Oxidation of Carbonyls: Insight to Mechanism, Kinetic and Thermodynamic Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Olumayede%20Emmanuel%20Gbenga">Olumayede Emmanuel Gbenga</a>, <a href="https://publications.waset.org/search?q=Adeniyi%20Azeez%20Adebayo"> Adeniyi Azeez Adebayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Carbonyls are the first-generation products from tropospheric degradation reactions of volatile organic compounds (VOCs). This computational study examined the mechanism of removal of carbonyls from the atmosphere via hydroxyl radical. The kinetics of the reactions were computed from the activation energy (using enthalpy (ΔH**) and Gibbs free energy (ΔG**). The minimum energy path (MEP) analysis reveals that in all the molecules, the products have more stable energy than the reactants, which implies that the forward reaction is more thermodynamically favorable. The hydrogen abstraction of the aromatic aldehyde, especially without methyl substituents, is more kinetically favorable compared with the other aldehydes in the order of aromatic (without methyl or meta methyl) &gt; alkene (short chain) &gt; diene &gt; long-chain aldehydes. The activation energy is much lower for the forward reaction than the backward, indicating that the forward reactions are more kinetically stable than their backward reaction. In terms of thermodynamic stability, the aromatic compounds are found to be less favorable in comparison to the aliphatic. The study concludes that the chemistry of the carbonyl bond of the aldehyde changed significantly from the reactants to the products. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Atmospheric%20carbonyls" title="Atmospheric carbonyls">Atmospheric carbonyls</a>, <a href="https://publications.waset.org/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/search?q=mechanism" title=" mechanism"> mechanism</a>, <a href="https://publications.waset.org/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/search?q=thermodynamic." title=" thermodynamic."> thermodynamic.</a> </p> <a href="https://publications.waset.org/10013818/atmospheric-oxidation-of-carbonyls-insight-to-mechanism-kinetic-and-thermodynamic-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013818/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013818/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013818/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013818/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013818/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013818/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013818/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013818/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013818/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013818/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Multi-solid%20thermodynamic%20model&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Multi-solid%20thermodynamic%20model&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Multi-solid%20thermodynamic%20model&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Multi-solid%20thermodynamic%20model&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Multi-solid%20thermodynamic%20model&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Multi-solid%20thermodynamic%20model&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Multi-solid%20thermodynamic%20model&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Multi-solid%20thermodynamic%20model&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Multi-solid%20thermodynamic%20model&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Multi-solid%20thermodynamic%20model&amp;page=250">250</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Multi-solid%20thermodynamic%20model&amp;page=251">251</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Multi-solid%20thermodynamic%20model&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10