CINXE.COM

Search results for: Enthalpy

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Enthalpy</title> <meta name="description" content="Search results for: Enthalpy"> <meta name="keywords" content="Enthalpy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Enthalpy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Enthalpy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 50</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Enthalpy</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Thermodynamic Study for Aggregation Behavior of Hydrotropic Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Meghal%20Desai">Meghal Desai</a>, <a href="https://publications.waset.org/search?q=Jigisha%20Parikh"> Jigisha Parikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Aggregation behavior of sodium salicylate and sodium cumene sulfonate was studied in aqueous solution at different temperature. Specific conductivity and relative viscosity were measured at different temperature to find minimum hydrotropic concentration. The thermodynamic parameters (free energy, enthalpy and entropy) were evaluated in the temperature range of 30&deg;C-70&deg;C. The free energy decreased with increase in temperature. The aggregation was found to be exothermic in nature and favored by positive value of entropy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hydrotropes" title="Hydrotropes">Hydrotropes</a>, <a href="https://publications.waset.org/search?q=Enthalpy" title=" Enthalpy"> Enthalpy</a>, <a href="https://publications.waset.org/search?q=Entropy" title=" Entropy"> Entropy</a>, <a href="https://publications.waset.org/search?q=Free%20Energy" title=" Free Energy"> Free Energy</a>, <a href="https://publications.waset.org/search?q=Minimum%20Hydrotropic%20Concentration." title="Minimum Hydrotropic Concentration.">Minimum Hydrotropic Concentration.</a> </p> <a href="https://publications.waset.org/8752/thermodynamic-study-for-aggregation-behavior-of-hydrotropic-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8752/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8752/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8752/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8752/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8752/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8752/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8752/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8752/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8752/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8752/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2006</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ildar%20Akhmadullin">Ildar Akhmadullin</a>, <a href="https://publications.waset.org/search?q=Mayank%20Tyagi"> Mayank Tyagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126 , the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Downhole%20Heat%20Exchangers" title="Downhole Heat Exchangers">Downhole Heat Exchangers</a>, <a href="https://publications.waset.org/search?q=Geothermal%20Power%20Generation" title=" Geothermal Power Generation"> Geothermal Power Generation</a>, <a href="https://publications.waset.org/search?q=Organic%20Rankine%20Cycle" title=" Organic Rankine Cycle"> Organic Rankine Cycle</a>, <a href="https://publications.waset.org/search?q=Refrigerants" title=" Refrigerants"> Refrigerants</a>, <a href="https://publications.waset.org/search?q=Working%20Fluids." title=" Working Fluids."> Working Fluids.</a> </p> <a href="https://publications.waset.org/9998570/design-and-analysis-of-electric-power-production-unit-for-low-enthalpy-geothermal-reservoir-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998570/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998570/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998570/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998570/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998570/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998570/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998570/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998570/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998570/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998570/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2670</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Inverse Heat Transfer Analysis of a Melting Furnace Using Levenberg-Marquardt Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohamed%20Hafid">Mohamed Hafid</a>, <a href="https://publications.waset.org/search?q=Marcel%20Lacroix"> Marcel Lacroix</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a simple inverse heat transfer procedure for predicting the wall erosion and the time-varying thickness of the protective bank that covers the inside surface of the refractory brick wall of a melting furnace. The direct problem is solved by using the Finite-Volume model. The melting/solidification process is modeled using the enthalpy method. The inverse procedure rests on the Levenberg-Marquardt method combined with the Broyden method. The effect of the location of the temperature sensors and of the measurement noise on the inverse predictions is investigated. Recommendations are made concerning the location of the temperature sensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Melting%20furnace" title="Melting furnace">Melting furnace</a>, <a href="https://publications.waset.org/search?q=inverse%20heat%20transfer" title=" inverse heat transfer"> inverse heat transfer</a>, <a href="https://publications.waset.org/search?q=enthalpy%20method" title=" enthalpy method"> enthalpy method</a>, <a href="https://publications.waset.org/search?q=Levenberg%E2%80%93Marquardt%20Method." title=" Levenberg–Marquardt Method."> Levenberg–Marquardt Method.</a> </p> <a href="https://publications.waset.org/10004917/inverse-heat-transfer-analysis-of-a-melting-furnace-using-levenberg-marquardt-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004917/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004917/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004917/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004917/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004917/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004917/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004917/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004917/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004917/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004917/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1318</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Study of Methylene Blue Dye Adsorption on to Activated Carbons from Olive Stones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=L.%20Temdrara">L. Temdrara</a>, <a href="https://publications.waset.org/search?q=A.%20Khelifi"> A. Khelifi</a>, <a href="https://publications.waset.org/search?q=A.%20Addoun"> A. Addoun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Activated carbons were produced from olive stones by a chemical process. The activated carbon (AC) were modified by nitric acid and used as adsorbents for the removal of methylene blue dye from aqueous solution. The activated carbons were characterized by nitrogen adsorption and enthalpy of immersion. Batch adsorption experiments were carried out to study the effect of initial different concentrations solution on dye adsorption properties. Isotherms were fitted to Langmuir model, and corresponding parameters were determined. The results showed that the increase of ration of ZnCl<sub>2</sub> leads to increase in apparent surface areas and produces activated carbons with pore structure more developed. However, the maximum MB uptakes for all carbons were determined and correlated with activated carbons characteristics.&nbsp;</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adsorption" title="Adsorption">Adsorption</a>, <a href="https://publications.waset.org/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/search?q=chemical%20activation" title=" chemical activation"> chemical activation</a>, <a href="https://publications.waset.org/search?q=enthalpy%20of%20immersion." title=" enthalpy of immersion."> enthalpy of immersion.</a> </p> <a href="https://publications.waset.org/17034/study-of-methylene-blue-dye-adsorption-on-to-activated-carbons-from-olive-stones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17034/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17034/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17034/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17034/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17034/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17034/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17034/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17034/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17034/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17034/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2281</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Numerical Investigation on Latent Heat Storage Unit of Different Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Manish%20K%20Rathod">Manish K Rathod</a>, <a href="https://publications.waset.org/search?q=Jyotirmay%20Banerjee"> Jyotirmay Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The storage of thermal energy as a latent heat of phase change material (PCM) has created considerable interest among researchers in recent times. Here, an attempt is made to carry out numerical investigations to analyze the performance of latent heat storage units (LHSU) employing phase change material. The mathematical model developed is based on an enthalpy formulation. Freezing time of PCM packed in three different shaped containers viz. rectangular, cylindrical and cylindrical shell is compared. The model is validated with the results available in the literature. Results show that for the same mass of PCM and surface area of heat transfer, cylindrical shell container takes the least time for freezing the PCM and this geometric effect is more pronounced with an increase in the thickness of the shell than that of length of the shell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Enthalpy%20Formulation" title="Enthalpy Formulation">Enthalpy Formulation</a>, <a href="https://publications.waset.org/search?q=Latent%20heat%20storage%20unit%28LHSU%29" title=" Latent heat storage unit(LHSU)"> Latent heat storage unit(LHSU)</a>, <a href="https://publications.waset.org/search?q=Numerical%20Model" title=" Numerical Model"> Numerical Model</a>, <a href="https://publications.waset.org/search?q=Phase%20change%20material%20%28PCM%29" title=" Phase change material (PCM)"> Phase change material (PCM)</a> </p> <a href="https://publications.waset.org/13278/numerical-investigation-on-latent-heat-storage-unit-of-different-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13278/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13278/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13278/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13278/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13278/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13278/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13278/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13278/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13278/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13278/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2516</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Constructal Enhancement of Fins Design Integrated to Phase Change Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Varun%20Joshi">Varun Joshi</a>, <a href="https://publications.waset.org/search?q=Manish%20K.%20Rathod"> Manish K. Rathod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The latent heat thermal energy storage system is a thrust area of research due to exuberant thermal energy storage potential. The thermal performance of PCM is significantly augmented by installation of the high thermal conductivity fins. The objective of the present study is to obtain optimum size and location of the fins to enhance diffusion heat transfer without altering overall melting time. Hence, the constructal theory is employed to eliminate, resize, and re-position the fins. A numerical code based on conjugate heat transfer coupled enthalpy porosity approached is developed to solve Navier-Stoke and energy equation.The numerical results show that the constructal fin design has enhanced the thermal performance along with the increase in the overall volume of PCM when compared to conventional. The overall volume of PCM is found to be increased by half of total of volume of fins. The elimination and repositioning the fins at high temperature gradient from low temperature gradient is found to be vital. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Constructal%20theory" title="Constructal theory">Constructal theory</a>, <a href="https://publications.waset.org/search?q=enthalpy%20porosity%20approach" title=" enthalpy porosity approach"> enthalpy porosity approach</a>, <a href="https://publications.waset.org/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/search?q=fins." title=" fins."> fins.</a> </p> <a href="https://publications.waset.org/10008859/constructal-enhancement-of-fins-design-integrated-to-phase-change-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008859/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008859/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008859/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008859/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008859/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008859/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008859/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008859/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008859/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008859/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">922</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohamed%20Hafid">Mohamed Hafid</a>, <a href="https://publications.waset.org/search?q=Marcel%20Lacroix"> Marcel Lacroix</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional <em>Pennes</em> bioheat equation. The phase change problem is handled with the enthalpy method. The <em>Levenberg-Marquardt</em> Method (LMM) combined to the <em>Broyden</em> Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cryosurgery" title="Cryosurgery">Cryosurgery</a>, <a href="https://publications.waset.org/search?q=inverse%20heat%20transfer" title=" inverse heat transfer"> inverse heat transfer</a>, <a href="https://publications.waset.org/search?q=Levenberg-Marquardt%20method" title=" Levenberg-Marquardt method"> Levenberg-Marquardt method</a>, <a href="https://publications.waset.org/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/search?q=Pennes%20model" title=" Pennes model"> Pennes model</a>, <a href="https://publications.waset.org/search?q=enthalpy%20method." title=" enthalpy method."> enthalpy method.</a> </p> <a href="https://publications.waset.org/10007268/an-inverse-heat-transfer-algorithm-for-predicting-the-thermal-properties-of-tumors-during-cryosurgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007268/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007268/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007268/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007268/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007268/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007268/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007268/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007268/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007268/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007268/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1499</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Thermodynamic Approach of Lanthanide-Iron Double Oxides Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Vera%20Varazashvili">Vera Varazashvili</a>, <a href="https://publications.waset.org/search?q=Murman%20Tsarakhov"> Murman Tsarakhov</a>, <a href="https://publications.waset.org/search?q=Tamar%20Mirianashvili"> Tamar Mirianashvili</a>, <a href="https://publications.waset.org/search?q=Teimuraz%20Pavlenishvili"> Teimuraz Pavlenishvili</a>, <a href="https://publications.waset.org/search?q=Tengiz%20Machaladze"> Tengiz Machaladze</a>, <a href="https://publications.waset.org/search?q=Mzia%20Khundadze"> Mzia Khundadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity – temperature functions and by using the semi-empirical method for calculation of ΔH298.15 of formation. Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the structural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Calorimetry" title="Calorimetry">Calorimetry</a>, <a href="https://publications.waset.org/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/search?q=enthalpy" title=" enthalpy"> enthalpy</a>, <a href="https://publications.waset.org/search?q=heat%20capacity" title=" heat capacity"> heat capacity</a>, <a href="https://publications.waset.org/search?q=gibbs%0D%0Aenergy%20of%20formation" title=" gibbs energy of formation"> gibbs energy of formation</a>, <a href="https://publications.waset.org/search?q=rare%20earth%20iron%20garnets." title=" rare earth iron garnets."> rare earth iron garnets.</a> </p> <a href="https://publications.waset.org/10002237/thermodynamic-approach-of-lanthanide-iron-double-oxides-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002237/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002237/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002237/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002237/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002237/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002237/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002237/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002237/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002237/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002237/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1927</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Aynur%20Aker">Aynur Aker</a>, <a href="https://publications.waset.org/search?q=Hasan%20Kaya"> Hasan Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in vacuum atmosphere. The samples were directionally solidified upwards with different growth rate V (8.3−165.45 μm/s) at constant temperature gradient G (7.73 K/mm). The flake spacings (λ), microhardness (HV), ultimate tensile strength (σ), electrical resistivity (ρ) and thermal properties (H, Cp, Tm) of the samples were measured. Influence of the growth rate and spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were obtained. According to results, λ values decrease with increasing V, but HV, σ and ρ values increase with increasing V. Variations of electrical resistivity (ρ) of solidified samples were also measured. The enthalpy of fusion (H) and specific heat (Cp) for the alloy was also determined by differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results in this work were compared with the previous similar experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrical%20resistivity" title="Electrical resistivity">Electrical resistivity</a>, <a href="https://publications.waset.org/search?q=enthalpy" title=" enthalpy"> enthalpy</a>, <a href="https://publications.waset.org/search?q=microhardness" title=" microhardness"> microhardness</a>, <a href="https://publications.waset.org/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/search?q=tensile%20stress." title=" tensile stress."> tensile stress.</a> </p> <a href="https://publications.waset.org/10002301/microstructure-mechanical-electrical-and-thermal-properties-of-the-al-si-ni-ternary-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002301/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002301/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002301/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002301/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002301/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002301/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002301/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002301/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002301/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002301/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2026</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Numerical Investigation of Non Fourier Heat Conduction in a Semi-infinite Body due to a Moving Concentrated Heat Source Composed with Radiational Boundary Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Akbari">M. Akbari</a>, <a href="https://publications.waset.org/search?q=S.%20Sadodin"> S. Sadodin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the melting of a semi-infinite body as a result of a moving laser beam has been studied. Because the Fourier heat transfer equation at short times and large dimensions does not have sufficient accuracy; a non-Fourier form of heat transfer equation has been used. Due to the fact that the beam is moving in x direction, the temperature distribution and the melting pool shape are not asymmetric. As a result, the problem is a transient threedimensional problem. Therefore, thermophysical properties such as heat conductivity coefficient, density and heat capacity are functions of temperature and material states. The enthalpy technique, used for the solution of phase change problems, has been used in an explicit finite volume form for the hyperbolic heat transfer equation. This technique has been used to calculate the transient temperature distribution in the semi-infinite body and the growth rate of the melt pool. In order to validate the numerical results, comparisons were made with experimental data. Finally, the results of this paper were compared with similar problem that has used the Fourier theory. The comparison shows the influence of infinite speed of heat propagation in Fourier theory on the temperature distribution and the melt pool size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Non-Fourier" title="Non-Fourier">Non-Fourier</a>, <a href="https://publications.waset.org/search?q=Enthalpy%20technique" title=" Enthalpy technique"> Enthalpy technique</a>, <a href="https://publications.waset.org/search?q=Melt%20pool" title=" Melt pool"> Melt pool</a>, <a href="https://publications.waset.org/search?q=Radiational%20boundary%20condition" title=" Radiational boundary condition"> Radiational boundary condition</a> </p> <a href="https://publications.waset.org/13081/numerical-investigation-of-non-fourier-heat-conduction-in-a-semi-infinite-body-due-to-a-moving-concentrated-heat-source-composed-with-radiational-boundary-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13081/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13081/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13081/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13081/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13081/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13081/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13081/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13081/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13081/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13081/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1980</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Nonlinear Thermal Hydraulic Model to Analyze Parallel Channel Density Wave Instabilities in Natural Circulation Boiling Water Reactor with Asymmetric Power Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sachin%20Kumar">Sachin Kumar</a>, <a href="https://publications.waset.org/search?q=Vivek%20Tiwari"> Vivek Tiwari</a>, <a href="https://publications.waset.org/search?q=Goutam%20Dutta"> Goutam Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper investigates parallel channel instabilities of natural circulation boiling water reactor. A thermal-hydraulic model is developed to simulate two-phase flow behavior in the natural circulation boiling water reactor (NCBWR) with the incorporation of ex-core components and recirculation loop such as steam separator, down-comer, lower-horizontal section and upper-horizontal section and then, numerical analysis is carried out for parallel channel instabilities of the reactor undergoing both in-phase and out-of-phase modes of oscillations. To analyze the relative effect on stability of the reactor due to inclusion of various ex-core components and recirculation loop, marginal stable point is obtained at a particular inlet enthalpy of the reactor core without the inclusion of ex-core components and recirculation loop and then with the inclusion of the same. Numerical simulations are also conducted to determine the relative dominance between two modes of oscillations i.e. in-phase and out-of-phase. Simulations are also carried out when the channels are subjected to asymmetric power distribution keeping the inlet enthalpy same. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Asymmetric%20power%20distribution" title="Asymmetric power distribution">Asymmetric power distribution</a>, <a href="https://publications.waset.org/search?q=Density%20wave%20oscillations" title=" Density wave oscillations"> Density wave oscillations</a>, <a href="https://publications.waset.org/search?q=In-phase%20and%20out-of-phase%20modes%20of%20instabilities" title=" In-phase and out-of-phase modes of instabilities"> In-phase and out-of-phase modes of instabilities</a>, <a href="https://publications.waset.org/search?q=Natural%20circulation%20boiling%20water%20reactor" title=" Natural circulation boiling water reactor"> Natural circulation boiling water reactor</a> </p> <a href="https://publications.waset.org/12576/nonlinear-thermal-hydraulic-model-to-analyze-parallel-channel-density-wave-instabilities-in-natural-circulation-boiling-water-reactor-with-asymmetric-power-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12576/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12576/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12576/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12576/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12576/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12576/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12576/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12576/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12576/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12576/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2260</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Physicochemical Characteristics and Usage Possibilities of Elbasan Thermal Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Elvin%20%C3%87omo">Elvin Çomo</a>, <a href="https://publications.waset.org/search?q=Edlira%20Tako"> Edlira Tako</a>, <a href="https://publications.waset.org/search?q=Albana%20Hasimi"> Albana Hasimi</a>, <a href="https://publications.waset.org/search?q=Rrapo%20Ormeni"> Rrapo Ormeni</a>, <a href="https://publications.waset.org/search?q=Olger%20Gjuzi"> Olger Gjuzi</a>, <a href="https://publications.waset.org/search?q=Mirela%20Ndrita"> Mirela Ndrita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In Albania, only low-enthalpy geothermal springs and wells are known, the temperatures of some of them are almost at the upper limits of low enthalpy, reaching over 60 °C. These resources can be used to improve the country's energy balance, as well as for profitable economic purposes. The region of Elbasan has the greatest geothermal energy potential in Albania. This basin is one of the most known and most used thermal springs in our country. This area is a surface with a number of sources, located in the form of a chain, in the sector between Llixha and Hidraj and constitutes a thermo-mineral basin with stable discharge and high temperature. The sources of Elbasan Springs, with the current average flow of thermo mineral water of 12-18 l/s and its temperature 55-65 oC, have specific reserves of 39.6 GJ/m2 and potential power to install 2760 kW potential power. For the assessment of physicochemical parameters and heavy metals, water samples were taken at 5 monitoring stations throughout 2022. The levels of basic parameters were analyzed using ISO, EU and APHA standard methods. This study presents the current state of the physicochemical parameters of this thermal basin, the evaluation of these parameters for curative activities and for industrial processes, as well as the integrated utilization of geothermal energy. Thermomineral waters can be utilized for heating homes in the surrounding area or further, depending on the flow from the source or geothermal well. There is awareness among Albanian investors, medical researchers, and the community about the high economic and therapeutic efficiency of the integrated use of geothermal energy in the region and the development of the tourism sector. An analysis of the negative environmental impact from the use of thermal water is also provided.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Geothermal%20energy" title="Geothermal energy">Geothermal energy</a>, <a href="https://publications.waset.org/search?q=Llixha" title=" Llixha"> Llixha</a>, <a href="https://publications.waset.org/search?q=physicochemical%20parameters" title=" physicochemical parameters"> physicochemical parameters</a>, <a href="https://publications.waset.org/search?q=thermal%20water." title=" thermal water."> thermal water.</a> </p> <a href="https://publications.waset.org/10013482/physicochemical-characteristics-and-usage-possibilities-of-elbasan-thermal-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013482/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013482/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013482/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013482/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013482/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013482/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013482/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013482/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013482/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013482/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Enthalpies of Dissociation of Pure Methane and Carbon Dioxide Gas Hydrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Qazi%20Nasir">Qazi Nasir</a>, <a href="https://publications.waset.org/search?q=K.%20K.%20Lau"> K. K. Lau</a>, <a href="https://publications.waset.org/search?q=Bhajan%20Lal"> Bhajan Lal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study the enthalpies of dissociation for pure methane and pure carbon dioxide was calculated using a hydrate equilibrium data obtained in this study. The enthalpy of dissociation was determined using Clausius-Clapeyron equation. The results were compared with the values reported in literature obtained using various techniques.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Enthalpies%20of%20dissociation" title="Enthalpies of dissociation">Enthalpies of dissociation</a>, <a href="https://publications.waset.org/search?q=methane" title=" methane"> methane</a>, <a href="https://publications.waset.org/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/search?q=gas%20hydrate" title=" gas hydrate"> gas hydrate</a>, <a href="https://publications.waset.org/search?q=natural%20gas." title=" natural gas."> natural gas.</a> </p> <a href="https://publications.waset.org/9999325/enthalpies-of-dissociation-of-pure-methane-and-carbon-dioxide-gas-hydrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999325/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999325/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999325/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999325/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999325/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999325/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999325/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999325/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999325/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999325/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2945</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Numerical Study on Improving Indoor Thermal Comfort Using a PCM Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Faraji">M. Faraji</a>, <a href="https://publications.waset.org/search?q=F.%20Berroug"> F. Berroug </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A one-dimensional mathematical model was developed in order to analyze and optimize the latent heat storage wall. The governing equations for energy transport were developed by using the enthalpy method and discretized with volume control scheme. The resulting algebraic equations were next solved iteratively by using TDMA algorithm. A series of numerical investigations were conducted in order to examine the effects of the thickness of the PCM layer on the thermal behavior of the proposed heating system. Results are obtained for thermal gain and temperature fluctuation. The charging discharging process was also presented and analyzed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Phase%20change%20material" title="Phase change material">Phase change material</a>, <a href="https://publications.waset.org/search?q=Building" title=" Building"> Building</a>, <a href="https://publications.waset.org/search?q=Concrete" title=" Concrete"> Concrete</a>, <a href="https://publications.waset.org/search?q=Latent%20heat" title=" Latent heat"> Latent heat</a>, <a href="https://publications.waset.org/search?q=Thermal%20control." title=" Thermal control."> Thermal control.</a> </p> <a href="https://publications.waset.org/9998058/numerical-study-on-improving-indoor-thermal-comfort-using-a-pcm-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998058/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998058/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998058/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998058/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998058/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998058/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998058/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998058/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998058/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998058/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2145</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Thermodynamic Study of Uranium Extraction from Tunisian Wet Process Phosphoric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Khleifia">N. Khleifia</a>, <a href="https://publications.waset.org/search?q=A.%20Hannachi"> A. Hannachi</a>, <a href="https://publications.waset.org/search?q=N.%20Abbes"> N. Abbes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In the present paper, an experimental investigation was conducted to study the thermodynamic of uranium extraction from Tunisian wet phosphoric acid using the synergistic solvent mixture of di-2-ethylhexyl phosphoric acid (DEHPA) and trioctyl phosphine oxid (TOPO) diluted in kerosene. The effect of different factors affecting the extraction process (temperature, TOPO and DEHPA concentrations) has been investigated. The obtained data of temperature effect on the extraction showed that the enthalpy change is -35<strong>.</strong>8 kJ.mol<sup>-1</sup>. The slope analysis method was used for determining the stoichiometry of the extracted species.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=DEHPA-TOPO" title="DEHPA-TOPO">DEHPA-TOPO</a>, <a href="https://publications.waset.org/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/search?q=phosphoric%20acid" title=" phosphoric acid"> phosphoric acid</a>, <a href="https://publications.waset.org/search?q=stoichiometry" title=" stoichiometry"> stoichiometry</a>, <a href="https://publications.waset.org/search?q=uranium." title=" uranium. "> uranium. </a> </p> <a href="https://publications.waset.org/9997208/thermodynamic-study-of-uranium-extraction-from-tunisian-wet-process-phosphoric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997208/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997208/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997208/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997208/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997208/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997208/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997208/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997208/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997208/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997208/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2436</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Phenomenological and Theoretical Analysis of Relativistic Temperature Transformation and Relativistic Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Marko%20Popovic">Marko Popovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are three possible effects of Special Theory of Relativity (STR) on a thermodynamic system. Planck and Einstein looked upon this process as isobaric; on the other hand Ott saw it as an adiabatic process. However plenty of logical reasons show that the process is isotherm. Our phenomenological consideration demonstrates that the temperature is invariant with Lorenz transformation. In that case process is isotherm, so volume and pressure are Lorentz covariant. If the process is isotherm the Boyles law is Lorentz invariant. Also equilibrium constant and Gibbs energy, activation energy, enthalpy entropy and extent of the reaction became Lorentz invariant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=STR" title="STR">STR</a>, <a href="https://publications.waset.org/search?q=relativistic%20temperature%20transformation" title=" relativistic temperature transformation"> relativistic temperature transformation</a>, <a href="https://publications.waset.org/search?q=Boyle%27slaw" title=" Boyle&#039;slaw"> Boyle&#039;slaw</a>, <a href="https://publications.waset.org/search?q=equilibrium%20constant" title=" equilibrium constant"> equilibrium constant</a>, <a href="https://publications.waset.org/search?q=Gibbs%20energy." title=" Gibbs energy."> Gibbs energy.</a> </p> <a href="https://publications.waset.org/13452/phenomenological-and-theoretical-analysis-of-relativistic-temperature-transformation-and-relativistic-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13452/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13452/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13452/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13452/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13452/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13452/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13452/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13452/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13452/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13452/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2291</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Removal of Tartrazine Dye form Aqueous Solutions by Adsorption on the Surface of Polyaniline/Iron Oxide Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Salem%20Ali%20Jebreil">Salem Ali Jebreil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this work, a polyaniline/Iron oxide (PANI/Fe2O3) composite was chemically prepared by oxidative polymerization of aniline in acid medium, in presence of ammonium persulphate as an oxidant and amount of Fe2O3. The composite was characterized by a scanning electron microscopy (SEM). The prepared composite has been used as adsorbent to remove Tartrazine dye form aqueous solutions. The effects of initial dye concentration and temperature on the adsorption capacity of PANI/Fe2O3 for Tartrazine dye have been studied in this paper. The Langmuir and Freundlich adsorption models have been used for the mathematical description of adsorption equilibrium data. The best fit is obtained using the Freundlich isotherm with an R2 value of 0.998. The change of Gibbs energy, enthalpy, and entropy of adsorption has been also evaluated for the adsorption of Tartrazine onto PANI/ Fe2O3. It has been proved according the results that the adsorption process is endothermic in nature.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adsorption" title="Adsorption">Adsorption</a>, <a href="https://publications.waset.org/search?q=Composite" title=" Composite"> Composite</a>, <a href="https://publications.waset.org/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/search?q=Polyaniline" title=" Polyaniline"> Polyaniline</a>, <a href="https://publications.waset.org/search?q=Tartrazine." title=" Tartrazine."> Tartrazine.</a> </p> <a href="https://publications.waset.org/10000061/removal-of-tartrazine-dye-form-aqueous-solutions-by-adsorption-on-the-surface-of-polyanilineiron-oxide-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000061/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000061/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000061/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000061/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000061/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000061/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000061/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000061/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000061/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000061/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2472</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Decolourization of Melanoidin Containing Wastewater Using South African Coal Fly Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.O.%20Ojijo">V.O. Ojijo</a>, <a href="https://publications.waset.org/search?q=M.S.%20Onyango"> M.S. Onyango</a>, <a href="https://publications.waset.org/search?q=Aoyi%20Ochieng"> Aoyi Ochieng</a>, <a href="https://publications.waset.org/search?q=F.A.O.%20Otieno"> F.A.O. Otieno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Batch adsorption of recalcitrant melanoidin using the abundantly available coal fly ash was carried out. It had low specific surface area (SBET) of 1.7287 m2/g and pore volume of 0.002245 cm3/g while qualitative evaluation of the predominant phases in it was done by XRD analysis. Colour removal efficiency was found to be dependent on various factors studied. Maximum colour removal was achieved around pH 6, whereas increasing sorbent mass from 10g/L to 200 g/L enhanced colour reduction from 25% to 86% at 298 K. Spontaneity of the process was suggested by negative Gibbs free energy while positive values for enthalpy change showed endothermic nature of the process. Non-linear optimization of error functions resulted in Freundlich and Redlich-Peterson isotherms describing sorption equilibrium data best. The coal fly ash had maximum sorption capacity of 53 mg/g and could thus be used as a low cost adsorbent in melanoidin removal.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adsorption" title="Adsorption">Adsorption</a>, <a href="https://publications.waset.org/search?q=Isotherms" title=" Isotherms"> Isotherms</a>, <a href="https://publications.waset.org/search?q=Melanoidin" title=" Melanoidin"> Melanoidin</a>, <a href="https://publications.waset.org/search?q=South%20African%20coal%20fly%20ash." title=" South African coal fly ash."> South African coal fly ash.</a> </p> <a href="https://publications.waset.org/7435/decolourization-of-melanoidin-containing-wastewater-using-south-african-coal-fly-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7435/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7435/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7435/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7435/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7435/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7435/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7435/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7435/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7435/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7435/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2521</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Design and Performance Analysis of a Supersonic Diffuser for Plasma Wing Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.S%20Pugazenthi">R.S Pugazenthi</a>, <a href="https://publications.waset.org/search?q=Andy%20C.%20McIntosh"> Andy C. McIntosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma Wind Tunnels (PWT) are extensively used for screening and qualification of re-entry Thermel Protection System (TPS) materials. Proper design of a supersonic diffuser for plasma wind tunnel is of importance for achieving good pressurerecovery (thereby reducing vacuum pumping requirement & run time costs) and isolating downstream stream fluctuations from propagating costs) and isolating downstream stream fluctuationnts the details of a rapid design methodology successfully employed for designing supersonic diffuser for high power (several megawatts)plasma wind tunnels and numerical performance analysis of a diffuser configuration designed for one megawatt power rated plasma wind tunnel(enthalpy ~ 30 MJ/kg) using FLUENT 6.3® solver for different diffuser operating sub-atmospheric back-pressures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Compressible%20flow" title="Compressible flow">Compressible flow</a>, <a href="https://publications.waset.org/search?q=plasma%20wind%20tunnel" title=" plasma wind tunnel"> plasma wind tunnel</a>, <a href="https://publications.waset.org/search?q=re-entry" title=" re-entry"> re-entry</a>, <a href="https://publications.waset.org/search?q=supersonic%20diffuser" title=" supersonic diffuser"> supersonic diffuser</a> </p> <a href="https://publications.waset.org/3777/design-and-performance-analysis-of-a-supersonic-diffuser-for-plasma-wing-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3777/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3777/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3777/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3777/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3777/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3777/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3777/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3777/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3777/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3777/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3922</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Performance Study of Cascade Refrigeration System Using Alternative Refrigerants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Gulshan%20Sachdeva">Gulshan Sachdeva</a>, <a href="https://publications.waset.org/search?q=Vaibhav%20Jain"> Vaibhav Jain</a>, <a href="https://publications.waset.org/search?q=S.%20S.%20Kachhwaha"> S. S. Kachhwaha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Cascade refrigeration systems employ series of single stage vapor compression units which are thermally coupled with evaporator/condenser cascades. Different refrigerants are used in each of the circuit depending on the optimum characteristics shown by the refrigerant for a particular application. In the present research study, a steady state thermodynamic model is developed which simulates the working of an actual cascade system. The model provides COP and all other system parameters e.g. total compressor work, temperature, pressure, enthalpy and entropy at different state points. The working fluid in low temperature circuit (LTC) is CO<sub>2</sub> (R744) while Ammonia (R717), Propane (R290), Propylene (R1270), R404A and R12 are the refrigerants in high temperature circuit (HTC). The performance curves of Ammonia, Propane, Propylene, and R404A are compared with R12 to find its nearest substitute. Results show that Ammonia is the best substitute of R12.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cascade%20system" title="Cascade system">Cascade system</a>, <a href="https://publications.waset.org/search?q=Refrigerants" title=" Refrigerants"> Refrigerants</a>, <a href="https://publications.waset.org/search?q=Thermodynamic%20model." title=" Thermodynamic model."> Thermodynamic model.</a> </p> <a href="https://publications.waset.org/9997619/performance-study-of-cascade-refrigeration-system-using-alternative-refrigerants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997619/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997619/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997619/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997619/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997619/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997619/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997619/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997619/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997619/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997619/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5748</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Tuning Cubic Equations of State for Supercritical Water Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shyh-Ming%20Chern">Shyh-Ming Chern</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt">Cubic equations of state (EoS), popular due to their simple mathematical form, ease of use, semi-theoretical nature and reasonable accuracy, are normally fitted to vapor-liquid equilibrium <i>P</i>-<i>v</i>-<i>T</i> data. As a result, they often show poor accuracy in the region near and above the critical point. In this study, the performance of the renowned Peng-Robinson (PR) and Patel-Teja (PT) EoS&rsquo;s around the critical area has been examined against the<i> P</i>-<i>v</i>-<i>T</i> data of water. Both of them display large deviations at critical point. For instance, PR-EoS exhibits discrepancies as high as 47% for the specific volume, 28% for the enthalpy departure and 43% for the entropy departure at critical point. It is shown that incorporating <i>P</i>-<i>v</i>-<i>T</i> data of the supercritical region into the retuning of a cubic EoS can improve its performance at and above the critical point dramatically. Adopting a retuned acentric factor of 0.5491 instead of its genuine value of 0.344 for water in PR-EoS and a new <i>F</i> of 0.8854 instead of its original value of 0.6898 for water in PT-EoS reduces the discrepancies to about one third or less.<o:p></o:p></p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Equation%20of%20state" title="Equation of state">Equation of state</a>, <a href="https://publications.waset.org/search?q=EoS" title=" EoS"> EoS</a>, <a href="https://publications.waset.org/search?q=supercritical%20water" title=" supercritical water"> supercritical water</a>, <a href="https://publications.waset.org/search?q=SCW." title=" SCW."> SCW.</a> </p> <a href="https://publications.waset.org/9996719/tuning-cubic-equations-of-state-for-supercritical-water-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996719/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996719/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996719/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996719/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996719/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996719/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996719/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996719/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996719/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996719/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2026</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Numerical Analysis on Rapid Decompression in Conventional Dry Gases using One- Dimensional Mathematical Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Evgeniy%20Burlutskiy">Evgeniy Burlutskiy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a one-dimensional transient mathematical model of compressible thermal multi-component gas mixture flows in pipes. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales-Eakin (LGE) correlation. Numerical analysis on rapid decompression in conventional dry gases is performed by using the proposed mathematical model. The model is validated on measured values of the decompression wave speed in dry natural gas mixtures. All predictions show excellent agreement with the experimental data at high and low pressure. The presented model predicts the decompression in dry natural gas mixtures much better than GASDECOM and OLGA codes, which are the most frequently-used codes in oil and gas pipeline transport service. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Mathematical%20model" title="Mathematical model">Mathematical model</a>, <a href="https://publications.waset.org/search?q=Rapid%20Gas%20Decompression" title=" Rapid Gas Decompression"> Rapid Gas Decompression</a> </p> <a href="https://publications.waset.org/4017/numerical-analysis-on-rapid-decompression-in-conventional-dry-gases-using-one-dimensional-mathematical-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4017/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4017/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4017/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4017/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4017/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4017/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4017/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4017/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4017/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4017/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3010</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> A Reproduction of Boundary Conditions in Three-Dimensional Continuous Casting Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Iwona%20Nowak">Iwona Nowak</a>, <a href="https://publications.waset.org/search?q=Jacek%20Smolka"> Jacek Smolka</a>, <a href="https://publications.waset.org/search?q=Andrzej%20J.%20Nowak"> Andrzej J. Nowak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The paper discusses a 3D numerical solution of the inverse boundary problem for a continuous casting process of alloy. The main goal of the analysis presented within the paper was to estimate heat fluxes along the external surface of the ingot. The verified information on these fluxes was crucial for a good design of a mould, effective cooling system and generally the whole caster. In the study an enthalpy-porosity technique implemented in Fluent package was used for modeling the solidification process. In this method, the phase change interface was determined on the basis of the liquid fraction approach. In inverse procedure the sensitivity analysis was applied for retrieving boundary conditions. A comparison of the measured and retrieved values showed a high accuracy of the computations. Additionally, the influence of the accuracy of measurements on the estimated heat fluxes was also investigated.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Boundary%20inverse%20problem" title="Boundary inverse problem">Boundary inverse problem</a>, <a href="https://publications.waset.org/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/search?q=continuous%20casting" title=" continuous casting"> continuous casting</a>, <a href="https://publications.waset.org/search?q=numerical%20simulation." title=" numerical simulation."> numerical simulation.</a> </p> <a href="https://publications.waset.org/4404/a-reproduction-of-boundary-conditions-in-three-dimensional-continuous-casting-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4404/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4404/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4404/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4404/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4404/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4404/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4404/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4404/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4404/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4404/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1526</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Radouane%20Elbahjaoui">Radouane Elbahjaoui</a>, <a href="https://publications.waset.org/search?q=Hamid%20El%20Qarnia"> Hamid El Qarnia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melting of Paraffin Wax (P116) dispersed with Al<sub>2</sub>O<sub>3 </sub>nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles&rsquo; volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nano-enhanced%20phase%20change%20material" title="Nano-enhanced phase change material">Nano-enhanced phase change material</a>, <a href="https://publications.waset.org/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/search?q=latent%20heat%20storage%20unit" title=" latent heat storage unit"> latent heat storage unit</a>, <a href="https://publications.waset.org/search?q=melting." title=" melting. "> melting. </a> </p> <a href="https://publications.waset.org/10004788/numerical-analysis-of-the-melting-of-nano-enhanced-phase-change-material-in-a-rectangular-latent-heat-storage-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004788/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004788/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004788/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004788/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004788/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004788/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004788/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004788/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004788/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004788/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1376</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ahmed%20I.%20Shehab">Ahmed I. Shehab</a>, <a href="https://publications.waset.org/search?q=Sabah%20M.%20Abdel%20Basir"> Sabah M. Abdel Basir</a>, <a href="https://publications.waset.org/search?q=M.%20A.%20Abdel%20Khalek"> M. A. Abdel Khalek</a>, <a href="https://publications.waset.org/search?q=M.%20H.%20Soliman"> M. H. Soliman</a>, <a href="https://publications.waset.org/search?q=G.%20Elgemeie"> G. Elgemeie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye&rsquo;s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (&Delta;G&deg;), enthalpy (&Delta;H&deg;), and entropy&nbsp;(&Delta;S&deg;)&nbsp;were computed and compared through thermodynamic study for both dyes.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Spent%20bleaching%20earth" title="Spent bleaching earth">Spent bleaching earth</a>, <a href="https://publications.waset.org/search?q=Regeneration" title=" Regeneration"> Regeneration</a>, <a href="https://publications.waset.org/search?q=Dye%20removal" title=" Dye removal"> Dye removal</a>, <a href="https://publications.waset.org/search?q=Thermodynamics." title=" Thermodynamics."> Thermodynamics.</a> </p> <a href="https://publications.waset.org/10010733/dye-removal-from-aqueous-solution-by-regenerated-spent-bleaching-earth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010733/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010733/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010733/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010733/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010733/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010733/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010733/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010733/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010733/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010733/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">940</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Adsorptive Removal of Vapors of Toxic Sulfur Compounds using Activated Carbons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Meenakshi%20Goyal">Meenakshi Goyal</a>, <a href="https://publications.waset.org/search?q=Rashmi%20Dhawan"> Rashmi Dhawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption of CS2 vapors has been studied on different types of activated carbons obtained from different source raw materials. The activated carbons have different surface areas and are associated with varying amounts of the carbon-oxygen surface groups. The adsorption of CS2 vapors is not directly related to surface area, but is considerably influenced by the presence of carbonoxygen surface groups. The adsorption decreases on increasing the amount of carbon-oxygen surface groups on oxidation and increases when these surface groups are eliminated on degassing. The adsorption is maximum in case of the 950°-degassed carbon sample which is almost completely free of any associated oxygen. The kinetic data as analysed by Empirical diffusion model and Linear driving force mass transfer model indicate that the adsorption does not involve Fickian diffusion but may be considered as a pseudo first order mass transfer process. The activation energy of adsorption and isosteric enthalpies of adsorption indicate that the adsorption does not involve interaction between CS2 and carbon-oxygen surface groups, but hydrophobic interactions between CS2 and C-C atoms in the carbon lattice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adsorption" title="Adsorption">Adsorption</a>, <a href="https://publications.waset.org/search?q=surface%20groups" title=" surface groups"> surface groups</a>, <a href="https://publications.waset.org/search?q=adsorption%20kinetics" title=" adsorption kinetics"> adsorption kinetics</a>, <a href="https://publications.waset.org/search?q=isosteric%20enthalpy%20of%20adsorption." title=" isosteric enthalpy of adsorption."> isosteric enthalpy of adsorption.</a> </p> <a href="https://publications.waset.org/14999/adsorptive-removal-of-vapors-of-toxic-sulfur-compounds-using-activated-carbons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14999/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14999/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14999/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14999/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14999/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14999/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14999/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14999/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14999/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14999/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2315</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Control of Thermal Flow in Machine Tools Using Shape Memory Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Reimund%20Neugebauer">Reimund Neugebauer</a>, <a href="https://publications.waset.org/search?q=Welf-Guntram%20Drossel"> Welf-Guntram Drossel</a>, <a href="https://publications.waset.org/search?q=Andre%20Bucht"> Andre Bucht</a>, <a href="https://publications.waset.org/search?q=Christoph%20Ohsenbr%C3%BCgge"> Christoph Ohsenbrügge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper the authors propose and verify an approach to control heat flow in machine tool components. Thermal deformations are a main aspect that affects the accuracy of machining. Due to goals of energy efficiency, thermal basic loads should be reduced. This leads to inhomogeneous and time variant temperature profiles. To counteract these negative consequences, material with high melting enthalpy is used as a method for thermal stabilization. The increased thermal capacity slows down the transient thermal behavior. To account for the delayed thermal equilibrium, a control mechanism for thermal flow is introduced. By varying a gap in a heat flow path the thermal resistance of an assembly can be controlled. This mechanism is evaluated in two experimental setups. First to validate the ability to control the thermal resistance and second to prove the possibility of a self-sufficient option based on the selfsensing abilities of thermal shape memory alloys.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=energy-efficiency" title="energy-efficiency">energy-efficiency</a>, <a href="https://publications.waset.org/search?q=heat%20transfer%20path" title=" heat transfer path"> heat transfer path</a>, <a href="https://publications.waset.org/search?q=MT%20thermal%20stability" title=" MT thermal stability"> MT thermal stability</a>, <a href="https://publications.waset.org/search?q=thermal%20shape%20memory%20alloy" title=" thermal shape memory alloy"> thermal shape memory alloy</a> </p> <a href="https://publications.waset.org/3230/control-of-thermal-flow-in-machine-tools-using-shape-memory-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3230/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3230/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3230/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3230/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3230/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3230/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3230/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3230/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3230/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3230/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1932</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohamed%20Hafid">Mohamed Hafid</a>, <a href="https://publications.waset.org/search?q=Marcel%20Lacroix"> Marcel Lacroix</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Inverse%20heat%20transfer" title="Inverse heat transfer">Inverse heat transfer</a>, <a href="https://publications.waset.org/search?q=phase%20change" title=" phase change"> phase change</a>, <a href="https://publications.waset.org/search?q=metallurgical%20reactor" title=" metallurgical reactor"> metallurgical reactor</a>, <a href="https://publications.waset.org/search?q=Levenberg%E2%80%93Marquardt%20method" title=" Levenberg–Marquardt method"> Levenberg–Marquardt method</a>, <a href="https://publications.waset.org/search?q=Broyden%20method" title=" Broyden method"> Broyden method</a>, <a href="https://publications.waset.org/search?q=bank%20thickness." title=" bank thickness."> bank thickness.</a> </p> <a href="https://publications.waset.org/10004531/prediction-of-the-thermal-parameters-of-a-high-temperature-metallurgical-reactor-using-inverse-heat-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004531/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004531/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004531/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004531/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004531/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004531/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004531/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004531/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004531/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004531/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1693</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> A Study on Removal of Toluidine Blue Dye from Aqueous Solution by Adsorption onto Neem Leaf Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Himanshu%20Patel">Himanshu Patel</a>, <a href="https://publications.waset.org/search?q=R.%20T.%20Vashi"> R. T. Vashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Adsorption of Toluidine blue dye from aqueous solutions onto Neem Leaf Powder (NLP) has been investigated. The surface characterization of this natural material was examined by Particle size analysis, Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and X-Ray Diffraction (XRD). The effects of process parameters such as initial concentration, pH, temperature and contact duration on the adsorption capacities have been evaluated, in which pH has been found to be most effective parameter among all. The data were analyzed using the Langmuir and Freundlich for explaining the equilibrium characteristics of adsorption. And kinetic models like pseudo first- order, second-order model and Elovich equation were utilized to describe the kinetic data. The experimental data were well fitted with Langmuir adsorption isotherm model and pseudo second order kinetic model. The thermodynamic parameters, such as Free energy of adsorption (AG&quot;), enthalpy change (AH&#39;) and entropy change (AS&deg;) were also determined and evaluated.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adsorption" title="Adsorption">Adsorption</a>, <a href="https://publications.waset.org/search?q=isotherm%20models" title=" isotherm models"> isotherm models</a>, <a href="https://publications.waset.org/search?q=kinetic%20models" title=" kinetic models"> kinetic models</a>, <a href="https://publications.waset.org/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/search?q=toluidine%20blue%20dye" title=" toluidine blue dye"> toluidine blue dye</a>, <a href="https://publications.waset.org/search?q=surface%20chemistry." title=" surface chemistry."> surface chemistry.</a> </p> <a href="https://publications.waset.org/2780/a-study-on-removal-of-toluidine-blue-dye-from-aqueous-solution-by-adsorption-onto-neem-leaf-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2780/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2780/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2780/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2780/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2780/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2780/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2780/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2780/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2780/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2780/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1797</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Adsorption of Crystal Violet onto BTEA- and CTMA-bentonite from Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ren%20Jian-min">Ren Jian-min</a>, <a href="https://publications.waset.org/search?q=Wu%20Si-wei"> Wu Si-wei</a>, <a href="https://publications.waset.org/search?q=Jin%20Wei"> Jin Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>CTMA-bentonite and BTEA-Bentonite prepared by Na-bentonite cation exchanged with cetyltrimethylammonium(CTMA) and benzyltriethylammonium (BTEA). Products were characterized by XRD and IR techniques.The d001 spacing value of CTMA-bentonite and BTEA-bentonite are 7.54&Aring; and 3.50&Aring; larger than that of Na-bentonite at 100% cation exchange capacity, respectively. The IR spectrum showed that the intensities of OH stretching and bending vibrations of the two organoclays decreased greatly comparing to untreated Na-bentonite. Batch experiments were carried out at 303 K, 318 K and 333 K to obtain the sorption isotherms of Crystal violet onto the two organoclays. The results show that the sorption isothermal data could be well described by Freundlich model. The dynamical data for the two organoclays fit well with pseudo-second-order kinetic model. The adsorption capacity of CTMA-bentonite was found higher than that of BTEA-Bentonite. Thermodynamic parameters such as changes in the free energy (&Delta;G&deg;), the enthalpy (&Delta;H&deg;) and the entropy (&Delta;S&deg;) were also evaluated. The overall adsorption process of Crystal violet onto the two organoclays were spontaneous, endothermic physisorption. The CTMA-bentonite and BTEA-Bentonite could be employed as low-cost alternatives to activated carbon in wastewater treatment for the removal of color which comes from textile dyes.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Characterization" title="Characterization">Characterization</a>, <a href="https://publications.waset.org/search?q=Adsorption" title=" Adsorption"> Adsorption</a>, <a href="https://publications.waset.org/search?q=Crystal%20violet" title=" Crystal violet"> Crystal violet</a>, <a href="https://publications.waset.org/search?q=Bentonite" title="Bentonite">Bentonite</a>, <a href="https://publications.waset.org/search?q=BTEA" title=" BTEA"> BTEA</a>, <a href="https://publications.waset.org/search?q=CTMA" title="CTMA">CTMA</a> </p> <a href="https://publications.waset.org/10069/adsorption-of-crystal-violet-onto-btea-and-ctma-bentonite-from-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10069/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10069/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10069/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10069/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10069/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10069/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10069/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10069/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10069/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10069/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2160</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Enthalpy&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Enthalpy&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10