CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;14 of 14 results for author: <span class="mathjax">Zhakhovsky, V V</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Zhakhovsky%2C+V+V">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhakhovsky, V V"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhakhovsky%2C+V+V&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhakhovsky, V V"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03625">arXiv:2409.03625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03625">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Formation of high-aspect-ratio nanocavity in LiF crystal using a femtosecond of x-ray FEL pulse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Makarov%2C+S+S">Sergey S. Makarov</a>, <a href="/search/physics?searchtype=author&amp;query=Grigoryev%2C+S+A">Sergey A. Grigoryev</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">Vasily V. Zhakhovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Chuprov%2C+P">Petr Chuprov</a>, <a href="/search/physics?searchtype=author&amp;query=Pikuz%2C+T+A">Tatiana A. Pikuz</a>, <a href="/search/physics?searchtype=author&amp;query=Inogamov%2C+N+A">Nail A. Inogamov</a>, <a href="/search/physics?searchtype=author&amp;query=Khokhlov%2C+V+V">Victor V. Khokhlov</a>, <a href="/search/physics?searchtype=author&amp;query=Petrov%2C+Y+V">Yuri V. Petrov</a>, <a href="/search/physics?searchtype=author&amp;query=Perov%2C+E">Eugene Perov</a>, <a href="/search/physics?searchtype=author&amp;query=Shepelev%2C+V">Vadim Shepelev</a>, <a href="/search/physics?searchtype=author&amp;query=Shobu%2C+T">Takehisa Shobu</a>, <a href="/search/physics?searchtype=author&amp;query=Tominaga%2C+A">Aki Tominaga</a>, <a href="/search/physics?searchtype=author&amp;query=Rapp%2C+L">Ludovic Rapp</a>, <a href="/search/physics?searchtype=author&amp;query=Rode%2C+A+V">Andrei V. Rode</a>, <a href="/search/physics?searchtype=author&amp;query=Juodkazis%2C+S">Saulius Juodkazis</a>, <a href="/search/physics?searchtype=author&amp;query=Makita%2C+M">Mikako Makita</a>, <a href="/search/physics?searchtype=author&amp;query=Nakatsutsumi%2C+M">Motoaki Nakatsutsumi</a>, <a href="/search/physics?searchtype=author&amp;query=Preston%2C+T+R">Thomas R. Preston</a>, <a href="/search/physics?searchtype=author&amp;query=Appel%2C+K">Karen Appel</a>, <a href="/search/physics?searchtype=author&amp;query=Konopkova%2C+Z">Zuzana Konopkova</a>, <a href="/search/physics?searchtype=author&amp;query=Cerantola%2C+V">Valerio Cerantola</a>, <a href="/search/physics?searchtype=author&amp;query=Brambrink%2C+E">Erik Brambrink</a>, <a href="/search/physics?searchtype=author&amp;query=Schwinkendorf%2C+J">Jan-Patrick Schwinkendorf</a>, <a href="/search/physics?searchtype=author&amp;query=Mohacsi%2C+I">Istv谩n Mohacsi</a>, <a href="/search/physics?searchtype=author&amp;query=Vozda%2C+V">Vojtech Vozda</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03625v1-abstract-short" style="display: inline;"> Sub-picosecond optical laser processing of metals is actively utilized for modification of a heated surface layer. But for deeper modification of different materials a laser in the hard x-ray range is required. Here, we demonstrate that a single 9-keV x-ray pulse from a free-electron laser can form a um-diameter cylindrical cavity with length of ~1 mm in LiF surrounded by shock-transformed materia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03625v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03625v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03625v1-abstract-full" style="display: none;"> Sub-picosecond optical laser processing of metals is actively utilized for modification of a heated surface layer. But for deeper modification of different materials a laser in the hard x-ray range is required. Here, we demonstrate that a single 9-keV x-ray pulse from a free-electron laser can form a um-diameter cylindrical cavity with length of ~1 mm in LiF surrounded by shock-transformed material. The plasma-generated shock wave with TPa-level pressure results in damage, melting and polymorphic transformations of any material, including transparent and non-transparent to conventional optical lasers. Moreover, cylindrical shocks can be utilized to obtain a considerable amount of exotic high-pressure polymorphs. Pressure wave propagation in LiF, radial material flow, formation of cracks and voids are analyzed via continuum and atomistic simulations revealing a sequence of processes leading to the final structure with the long cavity. Similar results can be produced with semiconductors and ceramics, which opens a new pathway for development of laser material processing with hard x-ray pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03625v1-abstract-full').style.display = 'none'; document.getElementById('2409.03625v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.01719">arXiv:2207.01719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.01719">pdf</a>, <a href="https://arxiv.org/format/2207.01719">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Direct imaging of shock wave splitting in diamond at Mbar pressures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Makarov%2C+S+S">S. S. Makarov</a>, <a href="/search/physics?searchtype=author&amp;query=Dyachkov%2C+S+A">S. A. Dyachkov</a>, <a href="/search/physics?searchtype=author&amp;query=Pikuz%2C+T+A">T. A. Pikuz</a>, <a href="/search/physics?searchtype=author&amp;query=Katagiri%2C+K">K. Katagiri</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">V. V. Zhakhovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Inogamov%2C+N+A">N. A. Inogamov</a>, <a href="/search/physics?searchtype=author&amp;query=Khokhlov%2C+V+A">V. A. Khokhlov</a>, <a href="/search/physics?searchtype=author&amp;query=Martynenko%2C+A+S">A. S. Martynenko</a>, <a href="/search/physics?searchtype=author&amp;query=Albertazzi%2C+B">B. Albertazzi</a>, <a href="/search/physics?searchtype=author&amp;query=Rigon%2C+G">G. Rigon</a>, <a href="/search/physics?searchtype=author&amp;query=Mabey%2C+P">P. Mabey</a>, <a href="/search/physics?searchtype=author&amp;query=Hartley%2C+N">N. Hartley</a>, <a href="/search/physics?searchtype=author&amp;query=Inubushi%2C+Y">Y. Inubushi</a>, <a href="/search/physics?searchtype=author&amp;query=Miyanishi%2C+K">K. Miyanishi</a>, <a href="/search/physics?searchtype=author&amp;query=Sueda%2C+K">K. Sueda</a>, <a href="/search/physics?searchtype=author&amp;query=Togashi%2C+T">T. Togashi</a>, <a href="/search/physics?searchtype=author&amp;query=Yabashi%2C+M">M. Yabashi</a>, <a href="/search/physics?searchtype=author&amp;query=Yabuuchi%2C+T">T. Yabuuchi</a>, <a href="/search/physics?searchtype=author&amp;query=Kodama%2C+R">R. Kodama</a>, <a href="/search/physics?searchtype=author&amp;query=Pikuz%2C+S+A">S. A. Pikuz</a>, <a href="/search/physics?searchtype=author&amp;query=Koenig%2C+M">M. Koenig</a>, <a href="/search/physics?searchtype=author&amp;query=Ozaki%2C+N">N. Ozaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.01719v1-abstract-short" style="display: inline;"> The propagation of a shock wave in solids can stress them to ultra-high pressures of millions of atmospheres. Understanding the behavior of matter at these extreme pressures is essential to describe a wide range of physical phenomena, including the formation of planets, young stars and cores of super-Earths, as well as the behavior of advanced ceramic materials subjected to such stresses. Under me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01719v1-abstract-full').style.display = 'inline'; document.getElementById('2207.01719v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.01719v1-abstract-full" style="display: none;"> The propagation of a shock wave in solids can stress them to ultra-high pressures of millions of atmospheres. Understanding the behavior of matter at these extreme pressures is essential to describe a wide range of physical phenomena, including the formation of planets, young stars and cores of super-Earths, as well as the behavior of advanced ceramic materials subjected to such stresses. Under megabar (Mbar) pressure, even a solid with high strength exhibits plastic properties, causing the shock wave to split in two. This phenomenon is described by theoretical models, but without direct experimental measurements to confirm them, their validity is still in doubt. Here, we present the results of an experiment in which the evolution of the coupled elastic-plastic wave structure in diamond was directly observed and studied with submicron spatial resolution, using the unique capabilities of the X-ray free-electron laser. The direct measurements allowed, for the first time, the fitting and validation of a strength model for diamond in the range of several Mbar by performing continuum mechanics simulations in 2D geometry. The presented experimental approach to the study of shock waves in solids opens up new possibilities for the direct verification and construction of the equations of state of matter in the ultra-high pressure range, which are relevant for the solution of a variety of problems in high energy density physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01719v1-abstract-full').style.display = 'none'; document.getElementById('2207.01719v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 15 figures, submitted to Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.08690">arXiv:2206.08690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.08690">pdf</a>, <a href="https://arxiv.org/format/2206.08690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Laser-induced electron dynamics and surface modification in ruthenium thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Akhmetov%2C+F">Fedor Akhmetov</a>, <a href="/search/physics?searchtype=author&amp;query=Milov%2C+I">Igor Milov</a>, <a href="/search/physics?searchtype=author&amp;query=Semin%2C+S">Sergey Semin</a>, <a href="/search/physics?searchtype=author&amp;query=Formisano%2C+F">Fabio Formisano</a>, <a href="/search/physics?searchtype=author&amp;query=Medvedev%2C+N">Nikita Medvedev</a>, <a href="/search/physics?searchtype=author&amp;query=Sturm%2C+J+M">Jacobus M. Sturm</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">Vasily V. Zhakhovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Makhotkin%2C+I+A">Igor A. Makhotkin</a>, <a href="/search/physics?searchtype=author&amp;query=Kimel%2C+A">Alexey Kimel</a>, <a href="/search/physics?searchtype=author&amp;query=Ackermann%2C+M">Marcelo Ackermann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.08690v2-abstract-short" style="display: inline;"> We performed the experimental and theoretical study of the heating and damaging of ruthenium thin films induced by femtosecond laser irradiation. Results of an optical pump-probe thermoreflectance experiment with rotating sample allowing to significantly reduce heat accumulation in irradiated spot are presented. We show the evolution of surface morphology from growth of a heat-induced oxide layer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08690v2-abstract-full').style.display = 'inline'; document.getElementById('2206.08690v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.08690v2-abstract-full" style="display: none;"> We performed the experimental and theoretical study of the heating and damaging of ruthenium thin films induced by femtosecond laser irradiation. Results of an optical pump-probe thermoreflectance experiment with rotating sample allowing to significantly reduce heat accumulation in irradiated spot are presented. We show the evolution of surface morphology from growth of a heat-induced oxide layer at low and intermediate laser fluences to cracking and grooving at high fluences. Theoretical analysis of pump-probe signal allows us to relate behavior of hot electrons in ruthenium to the Fermi smearing mechanism. The analysis of heating is performed with the two-temperature modeling and molecular dynamics simulation, results of which demonstrate that the calculated melting threshold is higher than experimental damage threshold. We attribute it to heat-induced surface stresses leading to cracking which accumulates to more severe damage morphology. Our results provide an upper limit for operational conditions for ruthenium optics and also direct to further studies of the Fermi smearing mechanism in other transition metals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08690v2-abstract-full').style.display = 'none'; document.getElementById('2206.08690v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 11 figures, 1 table, 7 data files in supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.09309">arXiv:2204.09309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.09309">pdf</a>, <a href="https://arxiv.org/format/2204.09309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ijheatmasstransfer.2022.123390">10.1016/j.ijheatmasstransfer.2022.123390 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Subsonic and supersonic gas flows to condensation surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kryukov%2C+A+P">A. P. Kryukov</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">V. V. Zhakhovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Levashov%2C+V+Y">V. Yu. Levashov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.09309v1-abstract-short" style="display: inline;"> Intense heat-mass transfer in a gas flow to a condensation surface is studied with the consistent atomistic and kinetic theory methods. The simple moment method is utilized for solving the Boltzmann kinetic equation (BKE) for the nonequilibrium gas flow and its condensation, while molecular dynamics (MD) simulation of a similar flow is used for verification of BKE results. We demonstrate that BKE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09309v1-abstract-full').style.display = 'inline'; document.getElementById('2204.09309v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.09309v1-abstract-full" style="display: none;"> Intense heat-mass transfer in a gas flow to a condensation surface is studied with the consistent atomistic and kinetic theory methods. The simple moment method is utilized for solving the Boltzmann kinetic equation (BKE) for the nonequilibrium gas flow and its condensation, while molecular dynamics (MD) simulation of a similar flow is used for verification of BKE results. We demonstrate that BKE can provide the steady flow profiles close to those obtained from MD simulations in both subsonic and supersonic regimes of steady gas flows. Surprisingly, the elementary theory of condensation is shown with BKE results to have a good accuracy in a wide range of gas flow parameters. MD confirms that a steady supersonic gas flow condensates on a surface at the distinctive temperature after formation of a standing shock front in reference to this surface, which can be interpreted as a permeable condensating piston. The last produces the shock compression but completely absorbs incoming gas flow in contrast to a common impermeable piston. The shock front divides the vapor flow on the supersonic and subsonic zones, and condensation of compressed gas happens in the subsonic regime. The complete and partial condensation regimes are discussed. It is shown that above the certain surface temperatures determined by the shock Hugoniot the runaway shock front stops an inflow gas and condensation is ceased. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09309v1-abstract-full').style.display = 'none'; document.getElementById('2204.09309v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal of Heat and Mass Transfer, v.198, 123390 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.05144">arXiv:2204.05144</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.05144">pdf</a>, <a href="https://arxiv.org/format/2204.05144">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.18.024072">10.1103/PhysRevApplied.18.024072 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Jet effusion from a metal droplet irradiated by a polarized ultrashort laser pulse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grigoryev%2C+S+Y">S. Yu. Grigoryev</a>, <a href="/search/physics?searchtype=author&amp;query=Lakatosh%2C+B+V">B. V. Lakatosh</a>, <a href="/search/physics?searchtype=author&amp;query=Solyankin%2C+P+M">P. M. Solyankin</a>, <a href="/search/physics?searchtype=author&amp;query=Krivokorytov%2C+M+S">M. S. Krivokorytov</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">V. V. Zhakhovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Dyachkov%2C+S+A">S. A. Dyachkov</a>, <a href="/search/physics?searchtype=author&amp;query=Ohl%2C+C+-">C. -D. Ohl</a>, <a href="/search/physics?searchtype=author&amp;query=Shkurinov%2C+A+P">A. P. Shkurinov</a>, <a href="/search/physics?searchtype=author&amp;query=Medvedev%2C+V+V">V. V. Medvedev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.05144v1-abstract-short" style="display: inline;"> Fragmentation of liquid metal droplets irradiated by linearly and circularly polarized femtosecond laser pulses is observed in our experiment. The obtained shadowgraph snapshots demonstrate that a circularly polarized pulse may produce several randomly-oriented jets effused from the expanding droplets, while a linearly polarized laser pulse generates strictly the cruciform jets. The latter orienta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05144v1-abstract-full').style.display = 'inline'; document.getElementById('2204.05144v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.05144v1-abstract-full" style="display: none;"> Fragmentation of liquid metal droplets irradiated by linearly and circularly polarized femtosecond laser pulses is observed in our experiment. The obtained shadowgraph snapshots demonstrate that a circularly polarized pulse may produce several randomly-oriented jets effused from the expanding droplets, while a linearly polarized laser pulse generates strictly the cruciform jets. The latter orientation is tied with polarization plane, rotation of which causes rotation of the cruciform jets by the same angle. To shed light on the experimental data we performed molecular dynamics simulation of droplet expansion induced by angle-dependent heating. Our simulation shows that the jet directions are determined by an oriented angle-dependent energy distribution within a frontal hemisphere layer of droplet after absorption of linearly polarized light. As a result, the produced flow velocity field guided by surface tension forms two high-speed opposite jets oriented across the electric field vector as in our experiment. A shock-wave pulse generated in the frontal layer has angle-dependent amplitude inherited from the oriented energy deposition. The release part of shock pulse produces a cavitation zone nearby the droplet center, and thus an expanding spherical shell is formed from the droplet. The flow velocities within a rearside hemisphere of the shell, produced after reflection of the shock wave from the rear side of droplet, generate two low-speed opposite jets oriented along the electric field vector. Thus we found that the cruciform jets are originated independently from the frontal and rear sides of droplet, and a pair of frontal jets is faster than a pair of rearside jets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05144v1-abstract-full').style.display = 'none'; document.getElementById('2204.05144v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied, v.18, 024072 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.08924">arXiv:1910.08924</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.08924">pdf</a>, <a href="https://arxiv.org/ps/1910.08924">ps</a>, <a href="https://arxiv.org/format/1910.08924">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Laser ablation in liquid: bridge from a plasma stage to bubble formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Inogamov%2C+N+A">N. A. Inogamov</a>, <a href="/search/physics?searchtype=author&amp;query=Khokhlov%2C+V+A">V. A. Khokhlov</a>, <a href="/search/physics?searchtype=author&amp;query=Petrov%2C+Y+V">Yu. V. Petrov</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">V. V. Zhakhovsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.08924v1-abstract-short" style="display: inline;"> Laser ablation through liquid is an important process that have to be studied for applications which use laser ablation in liquid (LAL) and laser shock peening (LSP). LAL is employed for production of suspensions of nanoparticles, while LSP is applied to increase hardness and fatique/corrosion resistance properties of a surface layer. A bubble appears in liquid around the laser spot focused at a t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08924v1-abstract-full').style.display = 'inline'; document.getElementById('1910.08924v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.08924v1-abstract-full" style="display: none;"> Laser ablation through liquid is an important process that have to be studied for applications which use laser ablation in liquid (LAL) and laser shock peening (LSP). LAL is employed for production of suspensions of nanoparticles, while LSP is applied to increase hardness and fatique/corrosion resistance properties of a surface layer. A bubble appears in liquid around the laser spot focused at a target surface after strong enough laser pulse. In the paper we connect the early quasi-plane heated layer created by a pulse in liquid and the bubble forming at much later stages. In the previous works these early stage from one side and the late stage from another side existed mainly as independent entities. At least, quantitative links between them were unknown. We consider how the quasi-plane heated layer of liquid forms thank to thermal conduction, how gradually conduction becomes weaker, and how the heated layer of liquid nearly adiabatically expands to few orders of magnitude in volume during the drop of pressure. Our molecular dynamics simulations show that the heated layer is filled by the diffusive atomic metal-liquid mixture. Metal atoms began to condense into nanoparticles (NP) when they meet cold liquid outside the edge of a mixing zone. This process limits diffusive expansion of metal atoms, because diffusive ability of NP is less than this ability for individual atoms. Thus the mixture expands together with hot liquid, and the NPs approximately homogeneously fill an interior of a bubble. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08924v1-abstract-full').style.display = 'none'; document.getElementById('1910.08924v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 19 figures - paper was reported on FLAMN-2019 https://flamn.ifmo.ru/ and submitted to &#34;Optical and Quantum Electronics&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.09929">arXiv:1812.09929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.09929">pdf</a>, <a href="https://arxiv.org/format/1812.09929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/ctpp.201800180">10.1002/ctpp.201800180 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Condensation of laser produced gold plasma during expansion and cooling in water environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Petrov%2C+Y+V">Yu. V. Petrov</a>, <a href="/search/physics?searchtype=author&amp;query=Inogamov%2C+N+A">N. A. Inogamov</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">V. V. Zhakhovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Khokhlov%2C+V+A">V. A. Khokhlov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.09929v1-abstract-short" style="display: inline;"> The ecologically best way to produce nanoparticles (NP) is based on laser ablation in liquid (LAL). In the considered here case the LAL means that a gold target is irradiated through transparent water. During and after irradiation the heated material from surface of a target forms a plume which expands into liquid. In this paper we study a reach set of physical processes mixed with complicated h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09929v1-abstract-full').style.display = 'inline'; document.getElementById('1812.09929v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.09929v1-abstract-full" style="display: none;"> The ecologically best way to produce nanoparticles (NP) is based on laser ablation in liquid (LAL). In the considered here case the LAL means that a gold target is irradiated through transparent water. During and after irradiation the heated material from surface of a target forms a plume which expands into liquid. In this paper we study a reach set of physical processes mixed with complicated hydrodynamic phenomena which all accompany LAL. These theoretical and simulation investigations are very important for practical applications. Laser pulses with different durations $蟿_L$ covering 5-th orders of magnitudes range from 0.1 ps to 0.5 ns and large absorbed fluences $F_{abs}$ near optical breakdown of liquid are compared. It is shown that the trajectory of the contact boundary with liquid at the middle and late stages after passing of the instant of maximum intensity of the longest pulse are rather similar for very different pulse durations (of course at comparable energies $F_{abs});$ we consider the pulses with a Gaussian temporal shape $I\propto \exp(-t^2/蟿_L^2).$ We follow how hot (few eV range) dense gold plasma expands, cools down, intersects a saturation curve, and condenses into NPs. These NPs appear first inside the water-gold diffusively mixed intermediate layer where gold vapor has the lowest temperature. Later in time pressure around the gold-water contact drops down below critical pressure for water. Thus NPs find themselves in gaseous water bubble where density of water gradually decreases to $10^{-4}-10^{-5}$ g/cm$\!^3$ at the instant of maximum expansion of a bubble. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09929v1-abstract-full').style.display = 'none'; document.getElementById('1812.09929v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.09109">arXiv:1812.09109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.09109">pdf</a>, <a href="https://arxiv.org/format/1812.09109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Laser-induced ablation of metal in liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Petrov%2C+Y+V">Yu. V. Petrov</a>, <a href="/search/physics?searchtype=author&amp;query=Khokhlov%2C+V+A">V. A. Khokhlov</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">V. V. Zhakhovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Inogamov%2C+N+A">N. A. Inogamov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.09109v1-abstract-short" style="display: inline;"> Laser ablation in liquid (LAL) is important perspective way to compose nanoparticles (NP) necessary for modern technologies. LAL is not fully understood. Deep understanding is necessary to optimize processes and decrease high price of the LAL NPs. Today there are two groups of studies: in one of them scientists go from analyzing of bubble dynamics (thus they proceed from the late stages), while&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09109v1-abstract-full').style.display = 'inline'; document.getElementById('1812.09109v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.09109v1-abstract-full" style="display: none;"> Laser ablation in liquid (LAL) is important perspective way to compose nanoparticles (NP) necessary for modern technologies. LAL is not fully understood. Deep understanding is necessary to optimize processes and decrease high price of the LAL NPs. Today there are two groups of studies: in one of them scientists go from analyzing of bubble dynamics (thus they proceed from the late stages), while in another one scientists investigate early stages of ablation. In the present paper we consider the process as whole: from ablation and up to formation of a bubble and its inflation. Thus we cover extremely wide range of spatiotemporal scales. We consider role of absorbed energy and duration of pulse (femtosecond, multi-picosecond, nanosecond). Importance of supercritical states is emphasized. Diffusive atomic and hydrodynamic mixing due to Rayleigh-Taylor instability and their mutual interdependence are described. Liquid near contact with metal is heated by dissipation in strong shock and due to small but finite heat conduction in liquid; metal absorbing laser energy is hot and thus it serves as a heater for liquid. Spatial expansion and cooling of atomically mixed liquid and metal causes condensation of metal into NPs when pressure drops below critical pressure for metal. Development of bubble takes place during the next stages of decrease of pressure below critical parameters for liquid and below ambient pressure in liquid. Thin hot layer of liquid near contact expands in volume to many orders of magnitude filling the inflating bubble. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09109v1-abstract-full').style.display = 'none'; document.getElementById('1812.09109v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.11990">arXiv:1811.11990</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.11990">pdf</a>, <a href="https://arxiv.org/ps/1811.11990">ps</a>, <a href="https://arxiv.org/format/1811.11990">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Formation of solitary microstructure and ablation into transparent dielectric by a subnanosecond laser pulse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khokhlov%2C+V+A">V. A. Khokhlov</a>, <a href="/search/physics?searchtype=author&amp;query=Inogamov%2C+N+A">N. A. Inogamov</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">V. V. Zhakhovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Petrov%2C+Y+V">Yu. V. Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.11990v1-abstract-short" style="display: inline;"> Laser ablation in liquid (LAL) is important technique used for formation of nanoparticles (NP). The LAL processes cover logarithmically wide range of spatiotemporal scales and is not fully understood. The NP produced by LAL are rather expensive, thus optimization of involved processes is valuable. As the first step to such optimizations more deep understanding is necessary. We employ physical mode&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11990v1-abstract-full').style.display = 'inline'; document.getElementById('1811.11990v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.11990v1-abstract-full" style="display: none;"> Laser ablation in liquid (LAL) is important technique used for formation of nanoparticles (NP). The LAL processes cover logarithmically wide range of spatiotemporal scales and is not fully understood. The NP produced by LAL are rather expensive, thus optimization of involved processes is valuable. As the first step to such optimizations more deep understanding is necessary. We employ physical models and computer simulations by thermodynamic, hydrodynamic, and molecular dynamics codes in this direction. Absorbing light metal expanding into transparent solid or liquid dielectrics is considered. We analyze an interplay between diffusion, hydrodynamic instability, and decrease of surface tension down to zero value caused by strong heating and compression transferring matter into state of overcritical fluids. The primary NPs appear during expansion and cooling of diffusion zone when pressure in this zone drops below critical pressure for a metal. Long evolution from the overcritical states to states below a critical point for a metal and down to critical point of liquid and deeply down to surrounding pressure of 1 bar is followed. Conductive heating of liquid from hot metal is significant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11990v1-abstract-full').style.display = 'none'; document.getElementById('1811.11990v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.01862">arXiv:1807.01862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.01862">pdf</a>, <a href="https://arxiv.org/format/1807.01862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.10.064009">10.1103/PhysRevApplied.10.064009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Expansion and fragmentation of liquid metal droplet by a short laser pulse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grigoryev%2C+S+Y">S. Yu. Grigoryev</a>, <a href="/search/physics?searchtype=author&amp;query=Lakatosh%2C+B+V">B. V. Lakatosh</a>, <a href="/search/physics?searchtype=author&amp;query=Krivokorytov%2C+M+S">M. S. Krivokorytov</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">V. V. Zhakhovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Dyachkov%2C+S+A">S. A. Dyachkov</a>, <a href="/search/physics?searchtype=author&amp;query=Ilnitsky%2C+D+K">D. K. Ilnitsky</a>, <a href="/search/physics?searchtype=author&amp;query=Migdal%2C+K+P">K. P. Migdal</a>, <a href="/search/physics?searchtype=author&amp;query=Inogamov%2C+N+A">N. A. Inogamov</a>, <a href="/search/physics?searchtype=author&amp;query=Vinokhodov%2C+A+Y">A. Yu. Vinokhodov</a>, <a href="/search/physics?searchtype=author&amp;query=Kompanets%2C+V+O">V. O. Kompanets</a>, <a href="/search/physics?searchtype=author&amp;query=Sidelnikov%2C+Y+V">Yu. V. Sidelnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Krivtsun%2C+V+M">V. M. Krivtsun</a>, <a href="/search/physics?searchtype=author&amp;query=Koshelev%2C+K+N">K. N. Koshelev</a>, <a href="/search/physics?searchtype=author&amp;query=Medvedev%2C+V+V">V. V. Medvedev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.01862v1-abstract-short" style="display: inline;"> We report an experimental and numerical investigation of the fragmentation mechanisms of micrometer-sized metal droplet irradiated by ultrashort laser pulses. The results of the experiment show that the fast one-side heating of such a droplet may lead to either symmetric or asymmetric expansion followed by different fragmentation scenarios. To unveil the underlying processes leading to fragmentati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.01862v1-abstract-full').style.display = 'inline'; document.getElementById('1807.01862v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.01862v1-abstract-full" style="display: none;"> We report an experimental and numerical investigation of the fragmentation mechanisms of micrometer-sized metal droplet irradiated by ultrashort laser pulses. The results of the experiment show that the fast one-side heating of such a droplet may lead to either symmetric or asymmetric expansion followed by different fragmentation scenarios. To unveil the underlying processes leading to fragmentation we perform simulation of liquid-tin droplet expansion produced by the initial conditions similar to those in experiment using the smoothed particle hydrodynamics (SPH) method. Simulation demonstrates that a thin heated surface layer generates a ultrashort shock wave propagating from the frontal side to rear side of the droplet. Convergence of such shock wave followed by a rarefaction tale to the droplet center results in the cavitation of material inside the central region by the strong tensile stress. Reflection of the shock wave from the rear side of droplet produces another region of highly stretched material where the spallation may occur producing a thin spallation layer moving with a velocity higher than expansion of the central shell after cavitation. It is shown both experimentally and numerically that the threshold laser intensity necessary for the spallation is higher than the threshold required to induce cavitation in the central region of droplet. Thus, the regime of asymmetrical expansion is realized if the laser intensity exceeds the spallation threshold. The transverse and longitudinal expansion velocities obtained in SPH simulations of different regimes of expansion are agreed well with our experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.01862v1-abstract-full').style.display = 'none'; document.getElementById('1807.01862v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 10, 064009 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.05128">arXiv:1805.05128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.05128">pdf</a>, <a href="https://arxiv.org/format/1805.05128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2018.07.019">10.1016/j.cpc.2018.07.019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parallel SPH modeling using dynamic domain decomposition and load balancing displacement of Voronoi subdomains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Egorova%2C+M+S">M. S. Egorova</a>, <a href="/search/physics?searchtype=author&amp;query=Dyachkov%2C+S+A">S. A. Dyachkov</a>, <a href="/search/physics?searchtype=author&amp;query=Parshikov%2C+A+N">A. N. Parshikov</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">V. V. Zhakhovsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.05128v2-abstract-short" style="display: inline;"> A highly adaptive load balancing algorithm for parallel simulations using particle methods, such as molecular dynamics and smoothed particle hydrodynamics (SPH), is developed. Our algorithm is based on the dynamic spatial decomposition of simulated material samples between Voronoi subdomains, where each subdomain with all its particles is handled by a single computational process which is typicall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05128v2-abstract-full').style.display = 'inline'; document.getElementById('1805.05128v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.05128v2-abstract-full" style="display: none;"> A highly adaptive load balancing algorithm for parallel simulations using particle methods, such as molecular dynamics and smoothed particle hydrodynamics (SPH), is developed. Our algorithm is based on the dynamic spatial decomposition of simulated material samples between Voronoi subdomains, where each subdomain with all its particles is handled by a single computational process which is typically run on a single CPU core of a multiprocessor computing cluster. The algorithm displaces the positions of neighbor Voronoi subdomains in accordance with the local load imbalance between the corresponding processes. It results in particle transfers from heavy-loaded processes to less-loaded ones. Iteration of the algorithm puts into alignment the processor loads. Convergence to a well-balanced decomposition from imbalanced one is improved by the usage of multi-body terms in the balancing displacements. The high adaptability of the balancing algorithm to simulation conditions is illustrated by SPH modeling of the dynamic behavior of materials under extreme conditions, which are characterized by large pressure and velocity gradients, as a result of which the spatial distribution of particles varies greatly in time. The higher parallel efficiency of our algorithm in such conditions is demonstrated by comparison with the corresponding static decomposition of the computational domain. Our algorithm shows almost perfect strong scalability in tests using from tens to several thousand processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05128v2-abstract-full').style.display = 'none'; document.getElementById('1805.05128v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.06758">arXiv:1703.06758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.06758">pdf</a>, <a href="https://arxiv.org/format/1703.06758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.8.044016">10.1103/PhysRevApplied.8.044016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser-induced Translative Hydrodynamic Mass Snapshots: mapping at nanoscale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X+W">X. W. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Kuchmizhak%2C+A+A">A. A. Kuchmizhak</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">X. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Juodkazis%2C+S">S. Juodkazis</a>, <a href="/search/physics?searchtype=author&amp;query=Vitrik%2C+O+B">O. B. Vitrik</a>, <a href="/search/physics?searchtype=author&amp;query=Kulchin%2C+Y+N">Yu. N. Kulchin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">V. V. Zhakhovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Danilov%2C+P+A">P. A. Danilov</a>, <a href="/search/physics?searchtype=author&amp;query=Ionin%2C+A+A">A. A. Ionin</a>, <a href="/search/physics?searchtype=author&amp;query=Kudryashov%2C+S+I">S. I. Kudryashov</a>, <a href="/search/physics?searchtype=author&amp;query=Rudenko%2C+A+A">A. A. Rudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Inogamov%2C+N+A">N. A. Inogamov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.06758v2-abstract-short" style="display: inline;"> Nanoscale thermally assisted hydrodynamic melt perturbations induced by ultrafast laser energy deposition in noble-metal films produce irreversible nanoscale translative mass redistributions and results in formation of radially-symmetric frozen surface structures. We demonstrate that the final three-dimensional (3D) shape of the surface structures formed after resolidification of the molten part o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06758v2-abstract-full').style.display = 'inline'; document.getElementById('1703.06758v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.06758v2-abstract-full" style="display: none;"> Nanoscale thermally assisted hydrodynamic melt perturbations induced by ultrafast laser energy deposition in noble-metal films produce irreversible nanoscale translative mass redistributions and results in formation of radially-symmetric frozen surface structures. We demonstrate that the final three-dimensional (3D) shape of the surface structures formed after resolidification of the molten part of the film is shown to be governed by incident laser fluence and, more importantly, predicted theoretically via molecular dynamics modeling. Considering the underlying physical processes associated with laser-induced energy absorption, electron-ion energy exchange, acoustic relaxation and hydrodynamic flows, the theoretical approach separating slow and fast physical processes and combining hybrid analytical two-temperature calculations, scalable molecular-dynamics simulations, and a semi-analytical thin-shell model was shown to provide accurate prediction of the final nanoscale solidified morphologies, fully consistent with direct electron-microscopy visualization of nanoscale focused ion-beam cuts of the surface structures produced at different incident laser fluences. Finally, these results are in reasonable quantitative agreement with mass distribution profiles across the surface nanostructures, provided by their noninvasive and non-destructive nanoscale characterization based on energy-dispersive x-ray fluorescence spectroscopy, operating at variable electron-beam energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06758v2-abstract-full').style.display = 'none'; document.getElementById('1703.06758v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 8, 044016 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.04576">arXiv:1701.04576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.04576">pdf</a>, <a href="https://arxiv.org/format/1701.04576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Simulations of short pulse laser-matter interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Inogamov%2C+N+A">N. A. Inogamov</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">V. V. Zhakhovsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.04576v1-abstract-short" style="display: inline;"> Studies of ultra-fast laser-matter interaction are important for many applications. Such interaction triggers extreme physical processes which are localized in the range from $\sim 10$ nanometers to micron spatial scales and developing within picosecond$-$nanosecond time range. Thus the experimental observations are difficult and methods of applied mathematics are necessary to understand these pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.04576v1-abstract-full').style.display = 'inline'; document.getElementById('1701.04576v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.04576v1-abstract-full" style="display: none;"> Studies of ultra-fast laser-matter interaction are important for many applications. Such interaction triggers extreme physical processes which are localized in the range from $\sim 10$ nanometers to micron spatial scales and developing within picosecond$-$nanosecond time range. Thus the experimental observations are difficult and methods of applied mathematics are necessary to understand these processes. Here we describe our simulation approaches and present solutions for a laser problem significant for applications. Namely, the processes of melting, a liquid jet formation, and its rupture are considered. Motion with the jet is caused by a short $\sim 0.1-1$ ps pulse illuminating a small spot on a surface of a thin $\sim 10-100$ nm film deposited onto substrate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.04576v1-abstract-full').style.display = 'none'; document.getElementById('1701.04576v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0912.3184">arXiv:0912.3184</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0912.3184">pdf</a>, <a href="https://arxiv.org/ps/0912.3184">ps</a>, <a href="https://arxiv.org/format/0912.3184">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00339-010-5764-3">10.1007/s00339-010-5764-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spallative ablation of dielectrics by X-ray laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Inogamov%2C+N+A">N. A. Inogamov</a>, <a href="/search/physics?searchtype=author&amp;query=Zhakhovsky%2C+V+V">V. V. Zhakhovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Faenov%2C+A+Y">A. Ya. Faenov</a>, <a href="/search/physics?searchtype=author&amp;query=Khokhlov%2C+V+A">V. A. Khokhlov</a>, <a href="/search/physics?searchtype=author&amp;query=Shepelev%2C+V+V">V. V. Shepelev</a>, <a href="/search/physics?searchtype=author&amp;query=Skobelev%2C+I+Y">I. Yu. Skobelev</a>, <a href="/search/physics?searchtype=author&amp;query=Kato%2C+Y">Y. Kato</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+M">M. Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Pikuz%2C+T+A">T. A. Pikuz</a>, <a href="/search/physics?searchtype=author&amp;query=Kishimoto%2C+M">M. Kishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Ishino%2C+M">M. Ishino</a>, <a href="/search/physics?searchtype=author&amp;query=Nishikino%2C+M">M. Nishikino</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuda%2C+Y">Y. Fukuda</a>, <a href="/search/physics?searchtype=author&amp;query=Bulanov%2C+S+V">S. V. Bulanov</a>, <a href="/search/physics?searchtype=author&amp;query=Kawachi%2C+T">T. Kawachi</a>, <a href="/search/physics?searchtype=author&amp;query=Petrov%2C+Y+V">Yu. V. Petrov</a>, <a href="/search/physics?searchtype=author&amp;query=Anisimov%2C+S+I">S. I. Anisimov</a>, <a href="/search/physics?searchtype=author&amp;query=Fortov%2C+V+E">V. E. Fortov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0912.3184v2-abstract-short" style="display: inline;"> Short laser pulse in wide range of wavelengths, from infrared to X-ray, disturbs electron-ion equilibrium and rises pressure in a heated layer. The case where pulse duration $蟿_L$ is shorter than acoustic relaxation time $t_s$ is considered in the paper. It is shown that this short pulse may cause thermomechanical phenomena such as spallative ablation regardless to wavelength. While the physics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.3184v2-abstract-full').style.display = 'inline'; document.getElementById('0912.3184v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0912.3184v2-abstract-full" style="display: none;"> Short laser pulse in wide range of wavelengths, from infrared to X-ray, disturbs electron-ion equilibrium and rises pressure in a heated layer. The case where pulse duration $蟿_L$ is shorter than acoustic relaxation time $t_s$ is considered in the paper. It is shown that this short pulse may cause thermomechanical phenomena such as spallative ablation regardless to wavelength. While the physics of electron-ion relaxation on wavelength and various electron spectra of substances: there are spectra with an energy gap in semiconductors and dielectrics opposed to gapless continuous spectra in metals. The paper describes entire sequence of thermomechanical processes from expansion, nucleation, foaming, and nanostructuring to spallation with particular attention to spallation by X-ray pulse. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.3184v2-abstract-full').style.display = 'none'; document.getElementById('0912.3184v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2009. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10