CINXE.COM
stable (infinity,1)-category of spectra in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> stable (infinity,1)-category of spectra in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> stable (infinity,1)-category of spectra </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/11382/#Item_1" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="category_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a></strong></p> <p><strong>Background</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28n%2Cr%29-category">(n,r)-category</a></p> </li> </ul> <p><strong>Basic concepts</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hom-object+in+a+quasi-category">hom-objects</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivalence+in+a+quasi-category">equivalences in</a>/<a class="existingWikiWord" href="/nlab/show/equivalence+of+quasi-categories">of</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-categories</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sub-quasi-category">sub-(∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/reflective+sub-%28%E2%88%9E%2C1%29-category">reflective sub-(∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/localization+of+an+%28%E2%88%9E%2C1%29-category">reflective localization</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/opposite+quasi-category">opposite (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/over+quasi-category">over (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/join+of+quasi-categories">join of quasi-categories</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/exact+%28%E2%88%9E%2C1%29-functor">exact (∞,1)-functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-functors">(∞,1)-category of (∞,1)-functors</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-presheaves">(∞,1)-category of (∞,1)-presheaves</a></p> </li> </ul> </li> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/fibrations+of+quasi-categories">fibrations</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/inner+fibration">inner fibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/left+fibration">left/right fibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cartesian+fibration">Cartesian fibration</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Cartesian+morphism">Cartesian morphism</a></li> </ul> </li> </ul> </li> </ul> <p><strong>Universal constructions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/limit+in+quasi-categories">limit</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/terminal+object+in+a+quasi-category">terminal object</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+%28%E2%88%9E%2C1%29-functor">adjoint functors</a></p> </li> </ul> <p><strong>Local presentation</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+presentable+%28%E2%88%9E%2C1%29-category">locally presentable</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/essentially+small+%28%E2%88%9E%2C1%29-category">essentially small</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+small+%28%E2%88%9E%2C1%29-category">locally small</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/accessible+%28%E2%88%9E%2C1%29-category">accessible</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/idempotent-complete+%28%E2%88%9E%2C1%29-category">idempotent-complete</a></p> </li> </ul> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Yoneda+lemma">(∞,1)-Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Grothendieck+construction">(∞,1)-Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+%28%E2%88%9E%2C1%29-functor+theorem">adjoint (∞,1)-functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">(∞,1)-monadicity theorem</a></p> </li> </ul> <p><strong>Extra stuff, structure, properties</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a></p> </li> </ul> <p><strong>Models</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+with+weak+equivalences">category with weak equivalences</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+category">model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derivator">derivator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+quasi-categories">model structure for quasi-categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+Cartesian+fibrations">model structure for Cartesian fibrations</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+quasi-categories+and+simplicial+categories">relation to simplicial categories</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coherent+nerve">homotopy coherent nerve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/simplicial+model+category">simplicial model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/presentable+%28%E2%88%9E%2C1%29-category">presentable quasi-category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+complex">Kan complex</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+sets">model structure for Kan complexes</a></li> </ul> </li> </ul> </div></div> <h4 id="stable_homotopy_theory">Stable Homotopy theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable homotopy theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/homological+algebra">homological algebra</a>, <a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></li> </ul> <p><em><a class="existingWikiWord" href="/nlab/show/Introduction+to+Stable+Homotopy+Theory">Introduction</a></em></p> <h1 id="ingredients">Ingredients</h1> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a></li> </ul> <h1 id="contents">Contents</h1> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/loop+space+object">loop space object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/suspension+object">suspension object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/looping+and+delooping">looping and delooping</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/stabilization">stabilization</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/spectrum+object">spectrum object</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+derivator">stable derivator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/triangulated+category">triangulated category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category+of+spectra">stable (∞,1)-category of spectra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+homotopy+category">stable homotopy category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smash+product+of+spectra">smash product of spectra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+smash+product+of+spectra">symmetric smash product of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Spanier-Whitehead+duality">Spanier-Whitehead duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+ring">A-∞ ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+ring">E-∞ ring</a></p> </li> </ul> </li> </ul> <div> <p> <a href="/nlab/edit/stable+homotopy+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#FiniteHomotopyLimitsOfSpectra'>Finite homotopy (co)limits of spectra</a></li> <li><a href='#monoidal_structure'>Monoidal structure</a></li> <li><a href='#prime_spectrum_and_morava_ktheory'>Prime spectrum and Morava K-theory</a></li> <li><a href='#model_category_presentation'>Model category presentation</a></li> </ul> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The collection of <a class="existingWikiWord" href="/nlab/show/spectra">spectra</a> forms an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Sp</mi><mo stretchy="false">(</mo><mn>∞</mn><mi>Grpd</mi><mo stretchy="false">)</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">Sp(\infty Grpd) = </annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Spectra">Spectra</a>, which is in fact a <a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a>. Indeed, it is the <em><a class="existingWikiWord" href="/nlab/show/universal+property">universal property</a></em> <a class="existingWikiWord" href="/nlab/show/stabilization">stabilization</a> of the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category <a class="existingWikiWord" href="/nlab/show/%E2%88%9EGrpd">∞Grpd</a>, equivalently of the <a class="existingWikiWord" href="/nlab/show/simplicial+localization">simplicial localization</a> of the category <a class="existingWikiWord" href="/nlab/show/Top">Top</a> at the <a class="existingWikiWord" href="/nlab/show/weak+homotopy+equivalences">weak homotopy equivalences</a>.</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Sp</mi><mo stretchy="false">(</mo><mn>∞</mn><mi>Grpd</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Sp(\infty Grpd)</annotation></semantics></math> plays a role in <a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable homotopy theory</a> analogous to the role played by the 1-<a class="existingWikiWord" href="/nlab/show/category">category</a> <a class="existingWikiWord" href="/nlab/show/Ab">Ab</a> of <a class="existingWikiWord" href="/nlab/show/abelian+groups">abelian groups</a> in <a class="existingWikiWord" href="/nlab/show/homological+algebra">homological algebra</a>, or rather of the <a class="existingWikiWord" href="/nlab/show/category+of+chain+complexes">category of chain complexes</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ch</mi> <mo>•</mo></msub><mo stretchy="false">(</mo><mi>Ab</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Ch_\bullet(Ab)</annotation></semantics></math> of abelian groups.</p> <h2 id="definition">Definition</h2> <p>In the context of <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category">(∞,1)-categories</a> a <a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a> is a <a class="existingWikiWord" href="/nlab/show/spectrum+object">spectrum object</a> in the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mi>whe</mi></msub><msub><mi>Top</mi> <mo>*</mo></msub></mrow><annotation encoding="application/x-tex">L_{whe} Top_*</annotation></semantics></math> of pointed <a class="existingWikiWord" href="/nlab/show/topological+spaces">topological spaces</a>.</p> <p>Recall that <a class="existingWikiWord" href="/nlab/show/spectrum+objects">spectrum objects</a> in the <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category">(infinity,1)-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> form a <a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Sp</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Sp(C)</annotation></semantics></math>.</p> <p>The <a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a> of <a class="existingWikiWord" href="/nlab/show/spectrum+object">spectrum object</a>s in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mi>whe</mi></msub><msub><mi>Top</mi> <mo>*</mo></msub></mrow><annotation encoding="application/x-tex">L_{whe} Top_*</annotation></semantics></math> is the <strong>stable <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category of spectra</strong></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Stab</mi><mo stretchy="false">(</mo><msub><mi>L</mi> <mi>whe</mi></msub><mi>Top</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><mi>Sp</mi><mo stretchy="false">(</mo><msub><mi>L</mi> <mi>whe</mi></msub><msub><mi>Top</mi> <mo>*</mo></msub><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> Stab(L_{whe}Top) := Sp(L_{whe}Top_*) \,. </annotation></semantics></math></div> <h2 id="properties">Properties</h2> <div> <h3 id="FiniteHomotopyLimitsOfSpectra">Finite homotopy (co)limits of spectra</h3> <p> <div class="num_prop" id="InSpectraHomotopyFiberSequencesAreHomotopyCofiberSequences"> <h6>Proposition</h6> <p></p> <p>A sequence of <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a> of <a class="existingWikiWord" href="/nlab/show/spectra">spectra</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi><mo>⟶</mo><mi>F</mi><mo>⟶</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">E \longrightarrow F \longrightarrow G</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/homotopy+fiber+sequence">homotopy fiber sequence</a> if and only if it is a <a class="existingWikiWord" href="/nlab/show/homotopy+cofiber+sequence">homotopy cofiber sequence</a>:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="234.46" height="74.523" viewBox="0 0 234.46 74.523"> <defs> <g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-0-0"> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-0-1"> <path d="M 8.3125 -2.765625 C 8.3125 -2.8125 8.359375 -2.890625 8.359375 -2.9375 C 8.359375 -3 8.3125 -3.0625 8.234375 -3.0625 C 8.1875 -3.0625 8.15625 -3.046875 8.125 -3.015625 C 8.109375 -3 8.109375 -2.96875 8 -2.734375 C 7.296875 -1.0625 6.78125 -0.34375 4.859375 -0.34375 L 3.125 -0.34375 C 2.953125 -0.34375 2.921875 -0.34375 2.859375 -0.359375 C 2.71875 -0.375 2.71875 -0.390625 2.71875 -0.484375 C 2.71875 -0.578125 2.734375 -0.640625 2.765625 -0.75 L 3.578125 -4.046875 L 4.765625 -4.046875 C 5.703125 -4.046875 5.765625 -3.84375 5.765625 -3.484375 C 5.765625 -3.375 5.765625 -3.265625 5.6875 -2.90625 C 5.671875 -2.859375 5.65625 -2.8125 5.65625 -2.765625 C 5.65625 -2.6875 5.71875 -2.65625 5.78125 -2.65625 C 5.890625 -2.65625 5.90625 -2.734375 5.953125 -2.90625 L 6.640625 -5.671875 C 6.640625 -5.734375 6.59375 -5.796875 6.515625 -5.796875 C 6.40625 -5.796875 6.390625 -5.75 6.34375 -5.578125 C 6.109375 -4.65625 5.875 -4.40625 4.8125 -4.40625 L 3.671875 -4.40625 L 4.40625 -7.34375 C 4.515625 -7.75 4.546875 -7.796875 5.03125 -7.796875 L 6.734375 -7.796875 C 8.21875 -7.796875 8.515625 -7.40625 8.515625 -6.484375 C 8.515625 -6.484375 8.515625 -6.140625 8.46875 -5.75 C 8.453125 -5.703125 8.4375 -5.625 8.4375 -5.609375 C 8.4375 -5.515625 8.5 -5.46875 8.578125 -5.46875 C 8.65625 -5.46875 8.703125 -5.515625 8.71875 -5.734375 L 8.984375 -7.828125 C 8.984375 -7.859375 9 -7.984375 9 -8.015625 C 9 -8.140625 8.890625 -8.140625 8.671875 -8.140625 L 2.84375 -8.140625 C 2.625 -8.140625 2.5 -8.140625 2.5 -7.921875 C 2.5 -7.796875 2.578125 -7.796875 2.78125 -7.796875 C 3.53125 -7.796875 3.53125 -7.703125 3.53125 -7.578125 C 3.53125 -7.515625 3.515625 -7.46875 3.484375 -7.34375 L 1.859375 -0.890625 C 1.75 -0.46875 1.734375 -0.34375 0.890625 -0.34375 C 0.671875 -0.34375 0.546875 -0.34375 0.546875 -0.125 C 0.546875 0 0.625 0 0.859375 0 L 6.859375 0 C 7.125 0 7.140625 -0.015625 7.21875 -0.203125 Z M 8.3125 -2.765625 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-0-2"> <path d="M 3.546875 -3.890625 L 4.703125 -3.890625 C 5.609375 -3.890625 5.671875 -3.6875 5.671875 -3.34375 C 5.671875 -3.1875 5.65625 -3.03125 5.59375 -2.765625 C 5.5625 -2.71875 5.5625 -2.65625 5.5625 -2.625 C 5.5625 -2.546875 5.609375 -2.5 5.6875 -2.5 C 5.78125 -2.5 5.796875 -2.546875 5.84375 -2.734375 L 6.53125 -5.515625 C 6.53125 -5.5625 6.5 -5.640625 6.421875 -5.640625 C 6.3125 -5.640625 6.296875 -5.59375 6.25 -5.390625 C 6 -4.5 5.765625 -4.25 4.71875 -4.25 L 3.640625 -4.25 L 4.40625 -7.34375 C 4.515625 -7.75 4.546875 -7.796875 5.03125 -7.796875 L 6.640625 -7.796875 C 8.125 -7.796875 8.34375 -7.34375 8.34375 -6.5 C 8.34375 -6.4375 8.34375 -6.171875 8.3125 -5.859375 C 8.296875 -5.8125 8.265625 -5.65625 8.265625 -5.609375 C 8.265625 -5.515625 8.328125 -5.46875 8.40625 -5.46875 C 8.484375 -5.46875 8.53125 -5.515625 8.5625 -5.734375 L 8.8125 -7.828125 C 8.8125 -7.859375 8.828125 -7.984375 8.828125 -8.015625 C 8.828125 -8.140625 8.71875 -8.140625 8.515625 -8.140625 L 2.84375 -8.140625 C 2.625 -8.140625 2.5 -8.140625 2.5 -7.921875 C 2.5 -7.796875 2.578125 -7.796875 2.78125 -7.796875 C 3.53125 -7.796875 3.53125 -7.703125 3.53125 -7.578125 C 3.53125 -7.515625 3.515625 -7.46875 3.484375 -7.34375 L 1.859375 -0.890625 C 1.75 -0.46875 1.734375 -0.34375 0.890625 -0.34375 C 0.671875 -0.34375 0.546875 -0.34375 0.546875 -0.125 C 0.546875 0 0.65625 0 0.734375 0 C 0.953125 0 1.1875 -0.03125 1.421875 -0.03125 L 2.96875 -0.03125 C 3.234375 -0.03125 3.53125 0 3.796875 0 C 3.890625 0 4.046875 0 4.046875 -0.21875 C 4.046875 -0.34375 3.96875 -0.34375 3.703125 -0.34375 C 2.765625 -0.34375 2.734375 -0.4375 2.734375 -0.609375 C 2.734375 -0.671875 2.765625 -0.765625 2.78125 -0.84375 Z M 3.546875 -3.890625 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-0-3"> <path d="M 8.921875 -8.3125 C 8.921875 -8.421875 8.828125 -8.421875 8.8125 -8.421875 C 8.78125 -8.421875 8.734375 -8.421875 8.640625 -8.296875 L 7.8125 -7.296875 C 7.75 -7.40625 7.515625 -7.8125 7.046875 -8.09375 C 6.53125 -8.421875 6.03125 -8.421875 5.84375 -8.421875 C 3.28125 -8.421875 0.59375 -5.8125 0.59375 -2.984375 C 0.59375 -1.015625 1.953125 0.25 3.75 0.25 C 4.609375 0.25 5.703125 -0.03125 6.296875 -0.78125 C 6.4375 -0.328125 6.6875 -0.015625 6.78125 -0.015625 C 6.84375 -0.015625 6.84375 -0.046875 6.859375 -0.046875 C 6.875 -0.078125 6.96875 -0.484375 7.03125 -0.703125 L 7.21875 -1.46875 C 7.3125 -1.859375 7.359375 -2.03125 7.453125 -2.390625 C 7.5625 -2.84375 7.59375 -2.875 8.25 -2.890625 C 8.296875 -2.890625 8.4375 -2.890625 8.4375 -3.125 C 8.4375 -3.234375 8.3125 -3.234375 8.28125 -3.234375 C 8.078125 -3.234375 7.859375 -3.21875 7.640625 -3.21875 L 7 -3.21875 C 6.484375 -3.21875 5.96875 -3.234375 5.46875 -3.234375 C 5.359375 -3.234375 5.21875 -3.234375 5.21875 -3.03125 C 5.21875 -2.90625 5.3125 -2.90625 5.3125 -2.890625 L 5.625 -2.890625 C 6.5625 -2.890625 6.5625 -2.796875 6.5625 -2.625 C 6.5625 -2.609375 6.328125 -1.40625 6.109375 -1.046875 C 5.65625 -0.375 4.703125 -0.09375 4 -0.09375 C 3.078125 -0.09375 1.59375 -0.578125 1.59375 -2.640625 C 1.59375 -3.4375 1.875 -5.265625 3.03125 -6.625 C 3.796875 -7.484375 4.90625 -8.0625 5.953125 -8.0625 C 7.359375 -8.0625 7.859375 -6.859375 7.859375 -5.765625 C 7.859375 -5.5625 7.8125 -5.3125 7.8125 -5.140625 C 7.8125 -5.03125 7.9375 -5.03125 7.96875 -5.03125 C 8.109375 -5.03125 8.109375 -5.046875 8.15625 -5.265625 Z M 8.921875 -8.3125 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-0"> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-1"> <path d="M -5.1875 -1.546875 L -5.171875 -1.484375 L -5.140625 -1.421875 L -5.109375 -1.390625 C -3.5625 -0.546875 -1.921875 0 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 L 0.125 -0.15625 L 0.0625 -0.1875 L 0 -0.203125 C -1.734375 -0.375 -3.171875 -0.828125 -4.609375 -1.5625 C -4.71875 -1.625 -4.828125 -1.71875 -4.984375 -1.75 C -5.109375 -1.734375 -5.171875 -1.671875 -5.1875 -1.546875 Z M -5.1875 -1.546875 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-2"> <path d="M 1.546875 -5.1875 L 1.484375 -5.171875 L 1.421875 -5.140625 L 1.390625 -5.109375 C 0.546875 -3.5625 0 -1.921875 -0.203125 0 C -0.1875 0.125 -0.125 0.1875 0 0.203125 L 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.375 -1.734375 0.828125 -3.171875 1.5625 -4.609375 C 1.625 -4.71875 1.71875 -4.828125 1.75 -4.984375 C 1.734375 -5.109375 1.671875 -5.171875 1.546875 -5.1875 Z M 1.546875 -5.1875 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-3"> <path d="M 5.109375 -1.296875 C 3.078125 -1.265625 1.5 -0.875 -0.0625 -0.1875 L -0.125 -0.15625 L -0.15625 -0.125 L -0.1875 -0.0625 L -0.203125 0 C -0.1875 0.125 -0.125 0.1875 0 0.203125 L 0.0625 0.1875 C 1.578125 -0.46875 3.125 -0.875 5.109375 -0.890625 L 5.15625 -0.90625 L 5.21875 -0.9375 L 5.265625 -0.984375 L 5.296875 -1.03125 L 5.296875 -1.09375 C 5.296875 -1.21875 5.21875 -1.28125 5.109375 -1.296875 Z M 5.109375 -1.296875 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-0"> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-1"> <path d="M 0 -0.203125 C -1.78125 -0.015625 -3.25 0.4375 -4.71875 1.1875 C -4.859375 1.25 -5.03125 1.3125 -5.140625 1.421875 L -5.171875 1.484375 L -5.1875 1.546875 C -5.171875 1.671875 -5.109375 1.734375 -4.984375 1.75 L -4.921875 1.734375 C -3.609375 1.0625 -2.15625 0.515625 -0.640625 0.28125 C -0.40625 0.234375 -0.171875 0.234375 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 Z M 0 -0.203125 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-2"> <path d="M 0.203125 0 C 0.015625 -1.78125 -0.4375 -3.25 -1.1875 -4.71875 C -1.25 -4.859375 -1.3125 -5.03125 -1.421875 -5.140625 L -1.484375 -5.171875 L -1.546875 -5.1875 C -1.671875 -5.171875 -1.734375 -5.109375 -1.75 -4.984375 L -1.734375 -4.921875 C -1.0625 -3.609375 -0.515625 -2.15625 -0.28125 -0.640625 C -0.234375 -0.40625 -0.234375 -0.171875 -0.1875 0.0625 L -0.15625 0.125 L -0.125 0.15625 L -0.0625 0.1875 L 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 Z M 0.203125 0 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-3"> <path d="M 0 0.203125 L 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 C 1.171875 -1.203125 2 -2.84375 2.46875 -4.640625 L 2.484375 -4.6875 C 2.46875 -4.8125 2.40625 -4.890625 2.28125 -4.890625 L 2.21875 -4.890625 L 2.15625 -4.859375 L 2.125 -4.8125 L 2.09375 -4.75 C 1.640625 -2.984375 0.828125 -1.421875 -0.15625 -0.125 L -0.1875 -0.0625 L -0.203125 0 C -0.1875 0.125 -0.125 0.1875 0 0.203125 Z M 0 0.203125 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-3-0"> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-3-1"> <path d="M 2.765625 -3.453125 C 2.671875 -3.453125 2.640625 -3.453125 2.625 -3.4375 C 2.609375 -3.4375 2.59375 -3.4375 2.484375 -3.4375 L 1.4375 -3.4375 L 1.4375 -4.296875 C 1.4375 -5.09375 2.1875 -5.390625 2.671875 -5.390625 C 2.921875 -5.390625 3.15625 -5.328125 3.359375 -5.171875 C 3.34375 -5.171875 3.03125 -5.109375 3.03125 -4.796875 C 3.03125 -4.53125 3.234375 -4.40625 3.40625 -4.40625 C 3.515625 -4.40625 3.796875 -4.484375 3.796875 -4.8125 C 3.796875 -5.234375 3.375 -5.609375 2.703125 -5.609375 C 1.921875 -5.609375 0.890625 -5.21875 0.890625 -4.3125 L 0.890625 -3.4375 L 0.234375 -3.4375 L 0.234375 -3.171875 L 0.890625 -3.171875 L 0.890625 -0.625 C 0.890625 -0.265625 0.78125 -0.265625 0.28125 -0.265625 L 0.28125 0 C 0.59375 -0.03125 1.03125 -0.03125 1.171875 -0.03125 C 1.328125 -0.03125 1.765625 -0.03125 2.078125 0 L 2.078125 -0.265625 C 1.5625 -0.265625 1.46875 -0.265625 1.46875 -0.625 L 1.46875 -3.171875 L 2.84375 -3.171875 C 3.171875 -3.171875 3.234375 -3.078125 3.234375 -2.734375 L 3.234375 -0.625 C 3.234375 -0.265625 3.125 -0.265625 2.625 -0.265625 L 2.625 0 C 2.9375 -0.03125 3.375 -0.03125 3.515625 -0.03125 C 3.671875 -0.03125 4.109375 -0.03125 4.421875 0 L 4.421875 -0.265625 C 3.90625 -0.265625 3.8125 -0.265625 3.8125 -0.625 L 3.8125 -3.53125 Z M 2.765625 -3.453125 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-3-2"> <path d="M 1.46875 -5.53125 L 0.28125 -5.4375 L 0.28125 -5.171875 C 0.828125 -5.171875 0.890625 -5.125 0.890625 -4.734375 L 0.890625 0 L 1.125 0 L 1.421875 -0.5 C 1.609375 -0.21875 1.984375 0.078125 2.53125 0.078125 C 3.53125 0.078125 4.421875 -0.703125 4.421875 -1.71875 C 4.421875 -2.71875 3.59375 -3.515625 2.625 -3.515625 C 1.984375 -3.515625 1.609375 -3.171875 1.46875 -3.03125 Z M 1.484375 -2.515625 C 1.484375 -2.671875 1.484375 -2.6875 1.609375 -2.828125 C 1.84375 -3.125 2.21875 -3.296875 2.578125 -3.296875 C 2.984375 -3.296875 3.296875 -3.046875 3.453125 -2.8125 C 3.59375 -2.59375 3.703125 -2.3125 3.703125 -1.734375 C 3.703125 -1.546875 3.703125 -0.984375 3.421875 -0.609375 C 3.125 -0.25 2.75 -0.140625 2.5 -0.140625 C 2.109375 -0.140625 1.796875 -0.34375 1.578125 -0.65625 C 1.484375 -0.8125 1.484375 -0.8125 1.484375 -0.96875 Z M 1.484375 -2.515625 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-3-3"> <path d="M 2.9375 -3.15625 C 2.703125 -3.09375 2.671875 -2.90625 2.671875 -2.8125 C 2.671875 -2.59375 2.828125 -2.4375 3.046875 -2.4375 C 3.265625 -2.4375 3.421875 -2.578125 3.421875 -2.828125 C 3.421875 -3.3125 2.890625 -3.546875 2.140625 -3.546875 C 1.03125 -3.546875 0.28125 -2.671875 0.28125 -1.71875 C 0.28125 -0.703125 1.109375 0.078125 2.109375 0.078125 C 3.234375 0.078125 3.515625 -0.859375 3.515625 -0.953125 C 3.515625 -1.046875 3.40625 -1.046875 3.390625 -1.046875 C 3.328125 -1.046875 3.296875 -1.046875 3.265625 -0.96875 C 3.21875 -0.796875 2.984375 -0.171875 2.1875 -0.171875 C 1.703125 -0.171875 0.984375 -0.546875 0.984375 -1.734375 C 0.984375 -2.875 1.578125 -3.3125 2.15625 -3.3125 C 2.234375 -3.3125 2.65625 -3.3125 2.9375 -3.15625 Z M 2.9375 -3.15625 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-3-4"> <path d="M 3.984375 -1.703125 C 3.984375 -2.6875 3.15625 -3.546875 2.109375 -3.546875 C 1.0625 -3.546875 0.234375 -2.6875 0.234375 -1.703125 C 0.234375 -0.703125 1.09375 0.078125 2.109375 0.078125 C 3.140625 0.078125 3.984375 -0.703125 3.984375 -1.703125 Z M 2.109375 -0.171875 C 1.6875 -0.171875 1.34375 -0.375 1.171875 -0.65625 C 0.96875 -0.984375 0.953125 -1.375 0.953125 -1.765625 C 0.953125 -2.078125 0.953125 -2.546875 1.1875 -2.890625 C 1.40625 -3.171875 1.734375 -3.328125 2.109375 -3.328125 C 2.53125 -3.328125 2.875 -3.125 3.046875 -2.859375 C 3.265625 -2.515625 3.28125 -2.09375 3.28125 -1.765625 C 3.28125 -1.40625 3.265625 -0.96875 3.03125 -0.625 C 2.828125 -0.3125 2.46875 -0.171875 2.109375 -0.171875 Z M 2.109375 -0.171875 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-4-0"> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-4-1"> <path d="M 3.28125 -5.109375 C 3.296875 -5.265625 3.296875 -5.5625 2.984375 -5.5625 C 2.796875 -5.5625 2.640625 -5.40625 2.671875 -5.25 L 2.671875 -5.09375 L 2.84375 -3.234375 L 1.3125 -4.34375 C 1.203125 -4.40625 1.1875 -4.4375 1.09375 -4.4375 C 0.9375 -4.4375 0.78125 -4.265625 0.78125 -4.09375 C 0.78125 -3.90625 0.890625 -3.859375 1.015625 -3.796875 L 2.71875 -2.984375 L 1.0625 -2.1875 C 0.875 -2.09375 0.78125 -2.046875 0.78125 -1.859375 C 0.78125 -1.6875 0.9375 -1.53125 1.09375 -1.53125 C 1.1875 -1.53125 1.203125 -1.53125 1.5 -1.75 L 2.84375 -2.71875 L 2.671875 -0.71875 C 2.671875 -0.46875 2.875 -0.40625 2.96875 -0.40625 C 3.125 -0.40625 3.296875 -0.484375 3.296875 -0.71875 L 3.125 -2.71875 L 4.65625 -1.609375 C 4.75 -1.546875 4.78125 -1.53125 4.859375 -1.53125 C 5.03125 -1.53125 5.1875 -1.703125 5.1875 -1.859375 C 5.1875 -2.046875 5.078125 -2.109375 4.9375 -2.171875 C 4.21875 -2.53125 4.203125 -2.53125 3.25 -2.96875 L 4.90625 -3.78125 C 5.09375 -3.875 5.1875 -3.921875 5.1875 -4.09375 C 5.1875 -4.28125 5.03125 -4.4375 4.859375 -4.4375 C 4.78125 -4.4375 4.75 -4.4375 4.453125 -4.203125 L 3.125 -3.234375 Z M 3.28125 -5.109375 "></path> </g> <g id="jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-4-2"> <path d="M 3.03125 -4.390625 C 3.71875 -5.15625 4.078125 -6.03125 4.078125 -6.125 C 4.078125 -6.28125 3.9375 -6.28125 3.84375 -6.28125 C 3.65625 -6.28125 3.65625 -6.265625 3.546875 -6.03125 C 3.0625 -4.921875 2.171875 -3.828125 0.609375 -3.15625 C 0.4375 -3.078125 0.40625 -3.078125 0.40625 -2.984375 C 0.40625 -2.96875 0.40625 -2.9375 0.421875 -2.921875 C 0.4375 -2.890625 0.453125 -2.875 0.6875 -2.765625 C 2.015625 -2.21875 2.984375 -1.203125 3.59375 0.171875 C 3.640625 0.28125 3.6875 0.296875 3.84375 0.296875 C 3.9375 0.296875 4.078125 0.296875 4.078125 0.15625 C 4.078125 0.0625 3.71875 -0.8125 3.03125 -1.59375 L 8.90625 -1.59375 C 8.21875 -0.8125 7.859375 0.0625 7.859375 0.15625 C 7.859375 0.296875 8 0.296875 8.109375 0.296875 C 8.28125 0.296875 8.28125 0.28125 8.390625 0.046875 C 8.875 -1.046875 9.765625 -2.15625 11.328125 -2.828125 C 11.5 -2.890625 11.53125 -2.90625 11.53125 -2.984375 C 11.53125 -3.015625 11.53125 -3.03125 11.515625 -3.0625 C 11.5 -3.078125 11.484375 -3.09375 11.25 -3.203125 C 9.9375 -3.75 8.953125 -4.765625 8.34375 -6.15625 C 8.296875 -6.265625 8.25 -6.28125 8.109375 -6.28125 C 8 -6.28125 7.859375 -6.28125 7.859375 -6.125 C 7.859375 -6.03125 8.21875 -5.15625 8.90625 -4.390625 Z M 2.5625 -2.0625 C 2.21875 -2.421875 1.8125 -2.703125 1.3125 -2.984375 C 1.96875 -3.375 2.328125 -3.671875 2.5625 -3.90625 L 9.375 -3.90625 C 9.734375 -3.5625 10.140625 -3.28125 10.625 -2.984375 C 9.96875 -2.609375 9.609375 -2.3125 9.375 -2.0625 Z M 2.5625 -2.0625 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-0-1" x="2.989" y="11.158"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-1" x="70.77" y="8.169"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-1" x="70.77" y="8.169"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 7.67175 0.00103125 L 63.097531 0.00103125 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-3-1" x="2.967" y="39.293"></use> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-3-2" x="7.67175" y="39.293"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.000125 -5.979438 L -0.000125 -23.827094 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-2" x="7.672" y="60.376"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-2" x="7.672" y="60.376"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.000125 -34.354438 L -0.000125 -52.206 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-4-1" x="73.759" y="11.158"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-2" x="76.748" y="60.376"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-2" x="76.748" y="60.376"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 69.074094 -5.979438 L 69.074094 -52.206 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-0-1" x="153.095" y="11.158"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-1" x="220.877" y="8.169"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-1" x="220.877" y="8.169"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 157.777219 0.00103125 L 213.206906 0.00103125 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-2" x="157.779" y="60.376"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-2" x="157.779" y="60.376"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 150.105344 -5.979438 L 150.105344 -52.206 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-4-1" x="223.866" y="11.158"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-2" x="226.854" y="60.376"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-2" x="226.854" y="60.376"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 219.183469 -5.979438 L 219.183469 -52.206 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-4-2" x="111.252" y="41.346"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-0-2" x="3.07" y="71.534"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-1" x="69.142" y="68.545"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-1" x="69.142" y="68.545"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 7.589719 -60.377875 L 61.468625 -60.377875 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-0-3" x="72.131" y="71.534"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-0-2" x="153.180083" y="71.534"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-3-3" x="183.605" y="71.313"></use> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-3-4" x="187.368481" y="71.313"></use> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-3-1" x="191.602995" y="71.313"></use> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-3-2" x="196.307745" y="71.313"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 157.695188 -60.377875 L 173.581906 -60.377875 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-1" x="219.249" y="68.545"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-1" x="219.249" y="68.545"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 195.691281 -60.377875 L 211.578 -60.377875 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-0-3" x="222.237" y="71.534"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-3" x="16.219" y="51.41"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-3" x="16.219" y="51.41"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 53.514125 -5.979156 L 10.451625 -41.658844 " transform="matrix(1, 0, 0, -1, 8.314, 8.931)"></path> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 53.512969 -5.978719 L 10.450469 -41.658406 " transform="matrix(1, 0, 0, -1, 7.03, 7.408)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-1-3" x="166.326" y="51.41"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#jfFjeZLfjE4cIxVOTaNQh2HFT6Y=-glyph-2-3" x="166.326" y="51.41"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 203.619594 -5.979156 L 160.557094 -41.658844 " transform="matrix(1, 0, 0, -1, 8.314, 8.931)"></path> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 203.618437 -5.978719 L 160.555937 -41.658406 " transform="matrix(1, 0, 0, -1, 7.03, 7.408)"></path> </svg> <p></p> </div> A <strong>proof</strong> is spelled out at <em><a class="existingWikiWord" href="/nlab/show/Introduction+to+Stable+homotopy+theory">Introduction to Stable homotopy theory</a></em> (<a href="Introduction+to+Stable+homotopy+theory+--+1-1#HomotopyCofiberSequencesAreHomotopyFiberSequencesInSpectra">this Prop.</a>, following <a href="equivariant+stable+homotopy+theory#LewisMaySteinberger86">Lewis-May-Steinberger 86, chapter III, theorem 2.4</a> )</p> <p>In fact:</p> <p> <div class="num_prop" id="HomotopyPullbacksOfSpectraAreHomotopyPushouts"> <h6>Proposition</h6> <p></p> <p>A <a class="existingWikiWord" href="/nlab/show/homotopy+coherent+diagram">homotopy</a>-<a class="existingWikiWord" href="/nlab/show/commuting+square">commuting square</a> in <a class="existingWikiWord" href="/nlab/show/Spectra">Spectra</a> is a <a class="existingWikiWord" href="/nlab/show/homotopy+pullback">homotopy pullback</a> if and only it is a <a class="existingWikiWord" href="/nlab/show/homotopy+pushout">homotopy pushout</a>.</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="237.238" height="74.523" viewBox="0 0 237.238 74.523"> <defs> <g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-0-0"> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-0-1"> <path d="M 8.3125 -2.765625 C 8.3125 -2.8125 8.359375 -2.890625 8.359375 -2.9375 C 8.359375 -3 8.3125 -3.0625 8.234375 -3.0625 C 8.1875 -3.0625 8.15625 -3.046875 8.125 -3.015625 C 8.109375 -3 8.109375 -2.96875 8 -2.734375 C 7.296875 -1.0625 6.78125 -0.34375 4.859375 -0.34375 L 3.125 -0.34375 C 2.953125 -0.34375 2.921875 -0.34375 2.859375 -0.359375 C 2.71875 -0.375 2.71875 -0.390625 2.71875 -0.484375 C 2.71875 -0.578125 2.734375 -0.640625 2.765625 -0.75 L 3.578125 -4.046875 L 4.765625 -4.046875 C 5.703125 -4.046875 5.765625 -3.84375 5.765625 -3.484375 C 5.765625 -3.375 5.765625 -3.265625 5.6875 -2.90625 C 5.671875 -2.859375 5.65625 -2.8125 5.65625 -2.765625 C 5.65625 -2.6875 5.71875 -2.65625 5.78125 -2.65625 C 5.890625 -2.65625 5.90625 -2.734375 5.953125 -2.90625 L 6.640625 -5.671875 C 6.640625 -5.734375 6.59375 -5.796875 6.515625 -5.796875 C 6.40625 -5.796875 6.390625 -5.75 6.34375 -5.578125 C 6.109375 -4.65625 5.875 -4.40625 4.8125 -4.40625 L 3.671875 -4.40625 L 4.40625 -7.34375 C 4.515625 -7.75 4.546875 -7.796875 5.03125 -7.796875 L 6.734375 -7.796875 C 8.21875 -7.796875 8.515625 -7.40625 8.515625 -6.484375 C 8.515625 -6.484375 8.515625 -6.140625 8.46875 -5.75 C 8.453125 -5.703125 8.4375 -5.625 8.4375 -5.609375 C 8.4375 -5.515625 8.5 -5.46875 8.578125 -5.46875 C 8.65625 -5.46875 8.703125 -5.515625 8.71875 -5.734375 L 8.984375 -7.828125 C 8.984375 -7.859375 9 -7.984375 9 -8.015625 C 9 -8.140625 8.890625 -8.140625 8.671875 -8.140625 L 2.84375 -8.140625 C 2.625 -8.140625 2.5 -8.140625 2.5 -7.921875 C 2.5 -7.796875 2.578125 -7.796875 2.78125 -7.796875 C 3.53125 -7.796875 3.53125 -7.703125 3.53125 -7.578125 C 3.53125 -7.515625 3.515625 -7.46875 3.484375 -7.34375 L 1.859375 -0.890625 C 1.75 -0.46875 1.734375 -0.34375 0.890625 -0.34375 C 0.671875 -0.34375 0.546875 -0.34375 0.546875 -0.125 C 0.546875 0 0.625 0 0.859375 0 L 6.859375 0 C 7.125 0 7.140625 -0.015625 7.21875 -0.203125 Z M 8.3125 -2.765625 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-0-2"> <path d="M 8.9375 -7.296875 C 9.046875 -7.703125 9.078125 -7.8125 9.921875 -7.8125 C 10.140625 -7.8125 10.25 -7.8125 10.25 -8.03125 C 10.25 -8.15625 10.140625 -8.15625 10.078125 -8.15625 C 9.859375 -8.15625 9.609375 -8.140625 9.390625 -8.140625 L 7.96875 -8.140625 C 7.75 -8.140625 7.5 -8.15625 7.265625 -8.15625 C 7.1875 -8.15625 7.046875 -8.15625 7.046875 -7.9375 C 7.046875 -7.8125 7.125 -7.8125 7.34375 -7.8125 C 8.0625 -7.8125 8.0625 -7.71875 8.0625 -7.59375 C 8.0625 -7.5625 8.0625 -7.5 8.015625 -7.3125 L 7.296875 -4.421875 L 3.6875 -4.421875 L 4.40625 -7.296875 C 4.5 -7.703125 4.53125 -7.8125 5.375 -7.8125 C 5.59375 -7.8125 5.71875 -7.8125 5.71875 -8.03125 C 5.71875 -8.15625 5.609375 -8.15625 5.53125 -8.15625 C 5.3125 -8.15625 5.0625 -8.140625 4.84375 -8.140625 L 3.4375 -8.140625 C 3.203125 -8.140625 2.953125 -8.15625 2.71875 -8.15625 C 2.640625 -8.15625 2.5 -8.15625 2.5 -7.9375 C 2.5 -7.8125 2.578125 -7.8125 2.8125 -7.8125 C 3.53125 -7.8125 3.53125 -7.71875 3.53125 -7.59375 C 3.53125 -7.5625 3.53125 -7.5 3.484375 -7.3125 L 1.859375 -0.890625 C 1.75 -0.46875 1.734375 -0.34375 0.90625 -0.34375 C 0.640625 -0.34375 0.546875 -0.34375 0.546875 -0.125 C 0.546875 0 0.6875 0 0.71875 0 C 0.9375 0 1.1875 -0.03125 1.40625 -0.03125 L 2.828125 -0.03125 C 3.046875 -0.03125 3.296875 0 3.53125 0 C 3.625 0 3.75 0 3.75 -0.234375 C 3.75 -0.34375 3.640625 -0.34375 3.46875 -0.34375 C 2.734375 -0.34375 2.734375 -0.4375 2.734375 -0.5625 C 2.734375 -0.578125 2.734375 -0.65625 2.765625 -0.75 L 3.578125 -4.078125 L 7.203125 -4.078125 C 7 -3.28125 6.390625 -0.78125 6.375 -0.71875 C 6.234375 -0.359375 6.046875 -0.359375 5.34375 -0.34375 C 5.203125 -0.34375 5.09375 -0.34375 5.09375 -0.125 C 5.09375 0 5.21875 0 5.265625 0 C 5.46875 0 5.71875 -0.03125 5.953125 -0.03125 L 7.359375 -0.03125 C 7.59375 -0.03125 7.84375 0 8.0625 0 C 8.15625 0 8.296875 0 8.296875 -0.234375 C 8.296875 -0.34375 8.1875 -0.34375 8.015625 -0.34375 C 7.28125 -0.34375 7.28125 -0.4375 7.28125 -0.5625 C 7.28125 -0.578125 7.28125 -0.65625 7.296875 -0.75 Z M 8.9375 -7.296875 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-0-3"> <path d="M 3.546875 -3.890625 L 4.703125 -3.890625 C 5.609375 -3.890625 5.671875 -3.6875 5.671875 -3.34375 C 5.671875 -3.1875 5.65625 -3.03125 5.59375 -2.765625 C 5.5625 -2.71875 5.5625 -2.65625 5.5625 -2.625 C 5.5625 -2.546875 5.609375 -2.5 5.6875 -2.5 C 5.78125 -2.5 5.796875 -2.546875 5.84375 -2.734375 L 6.53125 -5.515625 C 6.53125 -5.5625 6.5 -5.640625 6.421875 -5.640625 C 6.3125 -5.640625 6.296875 -5.59375 6.25 -5.390625 C 6 -4.5 5.765625 -4.25 4.71875 -4.25 L 3.640625 -4.25 L 4.40625 -7.34375 C 4.515625 -7.75 4.546875 -7.796875 5.03125 -7.796875 L 6.640625 -7.796875 C 8.125 -7.796875 8.34375 -7.34375 8.34375 -6.5 C 8.34375 -6.4375 8.34375 -6.171875 8.3125 -5.859375 C 8.296875 -5.8125 8.265625 -5.65625 8.265625 -5.609375 C 8.265625 -5.515625 8.328125 -5.46875 8.40625 -5.46875 C 8.484375 -5.46875 8.53125 -5.515625 8.5625 -5.734375 L 8.8125 -7.828125 C 8.8125 -7.859375 8.828125 -7.984375 8.828125 -8.015625 C 8.828125 -8.140625 8.71875 -8.140625 8.515625 -8.140625 L 2.84375 -8.140625 C 2.625 -8.140625 2.5 -8.140625 2.5 -7.921875 C 2.5 -7.796875 2.578125 -7.796875 2.78125 -7.796875 C 3.53125 -7.796875 3.53125 -7.703125 3.53125 -7.578125 C 3.53125 -7.515625 3.515625 -7.46875 3.484375 -7.34375 L 1.859375 -0.890625 C 1.75 -0.46875 1.734375 -0.34375 0.890625 -0.34375 C 0.671875 -0.34375 0.546875 -0.34375 0.546875 -0.125 C 0.546875 0 0.65625 0 0.734375 0 C 0.953125 0 1.1875 -0.03125 1.421875 -0.03125 L 2.96875 -0.03125 C 3.234375 -0.03125 3.53125 0 3.796875 0 C 3.890625 0 4.046875 0 4.046875 -0.21875 C 4.046875 -0.34375 3.96875 -0.34375 3.703125 -0.34375 C 2.765625 -0.34375 2.734375 -0.4375 2.734375 -0.609375 C 2.734375 -0.671875 2.765625 -0.765625 2.78125 -0.84375 Z M 3.546875 -3.890625 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-0-4"> <path d="M 8.921875 -8.3125 C 8.921875 -8.421875 8.828125 -8.421875 8.8125 -8.421875 C 8.78125 -8.421875 8.734375 -8.421875 8.640625 -8.296875 L 7.8125 -7.296875 C 7.75 -7.40625 7.515625 -7.8125 7.046875 -8.09375 C 6.53125 -8.421875 6.03125 -8.421875 5.84375 -8.421875 C 3.28125 -8.421875 0.59375 -5.8125 0.59375 -2.984375 C 0.59375 -1.015625 1.953125 0.25 3.75 0.25 C 4.609375 0.25 5.703125 -0.03125 6.296875 -0.78125 C 6.4375 -0.328125 6.6875 -0.015625 6.78125 -0.015625 C 6.84375 -0.015625 6.84375 -0.046875 6.859375 -0.046875 C 6.875 -0.078125 6.96875 -0.484375 7.03125 -0.703125 L 7.21875 -1.46875 C 7.3125 -1.859375 7.359375 -2.03125 7.453125 -2.390625 C 7.5625 -2.84375 7.59375 -2.875 8.25 -2.890625 C 8.296875 -2.890625 8.4375 -2.890625 8.4375 -3.125 C 8.4375 -3.234375 8.3125 -3.234375 8.28125 -3.234375 C 8.078125 -3.234375 7.859375 -3.21875 7.640625 -3.21875 L 7 -3.21875 C 6.484375 -3.21875 5.96875 -3.234375 5.46875 -3.234375 C 5.359375 -3.234375 5.21875 -3.234375 5.21875 -3.03125 C 5.21875 -2.90625 5.3125 -2.90625 5.3125 -2.890625 L 5.625 -2.890625 C 6.5625 -2.890625 6.5625 -2.796875 6.5625 -2.625 C 6.5625 -2.609375 6.328125 -1.40625 6.109375 -1.046875 C 5.65625 -0.375 4.703125 -0.09375 4 -0.09375 C 3.078125 -0.09375 1.59375 -0.578125 1.59375 -2.640625 C 1.59375 -3.4375 1.875 -5.265625 3.03125 -6.625 C 3.796875 -7.484375 4.90625 -8.0625 5.953125 -8.0625 C 7.359375 -8.0625 7.859375 -6.859375 7.859375 -5.765625 C 7.859375 -5.5625 7.8125 -5.3125 7.8125 -5.140625 C 7.8125 -5.03125 7.9375 -5.03125 7.96875 -5.03125 C 8.109375 -5.03125 8.109375 -5.046875 8.15625 -5.265625 Z M 8.921875 -8.3125 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-0"> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-1"> <path d="M -5.1875 -1.546875 L -5.171875 -1.484375 L -5.140625 -1.421875 L -5.109375 -1.390625 C -3.5625 -0.546875 -1.921875 0 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 L 0.125 -0.15625 L 0.0625 -0.1875 L 0 -0.203125 C -1.734375 -0.375 -3.171875 -0.828125 -4.609375 -1.5625 C -4.71875 -1.625 -4.828125 -1.71875 -4.984375 -1.75 C -5.109375 -1.734375 -5.171875 -1.671875 -5.1875 -1.546875 Z M -5.1875 -1.546875 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-2"> <path d="M 1.546875 -5.1875 L 1.484375 -5.171875 L 1.421875 -5.140625 L 1.390625 -5.109375 C 0.546875 -3.5625 0 -1.921875 -0.203125 0 C -0.1875 0.125 -0.125 0.1875 0 0.203125 L 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.375 -1.734375 0.828125 -3.171875 1.5625 -4.609375 C 1.625 -4.71875 1.71875 -4.828125 1.75 -4.984375 C 1.734375 -5.109375 1.671875 -5.171875 1.546875 -5.1875 Z M 1.546875 -5.1875 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-3"> <path d="M 5.046875 -1.53125 C 3.046875 -1.421875 1.453125 -0.953125 -0.125 -0.15625 L -0.15625 -0.125 L -0.1875 -0.0625 L -0.203125 0 C -0.1875 0.125 -0.125 0.1875 0 0.203125 L 0.0625 0.1875 C 1.25 -0.40625 2.515625 -0.796875 3.828125 -1 C 4.25 -1.0625 4.6875 -1.078125 5.109375 -1.140625 L 5.15625 -1.171875 L 5.203125 -1.21875 L 5.234375 -1.265625 L 5.25 -1.328125 C 5.234375 -1.453125 5.15625 -1.53125 5.046875 -1.53125 Z M 5.046875 -1.53125 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-0"> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-1"> <path d="M 0 -0.203125 C -1.78125 -0.015625 -3.25 0.4375 -4.71875 1.1875 C -4.859375 1.25 -5.03125 1.3125 -5.140625 1.421875 L -5.171875 1.484375 L -5.1875 1.546875 C -5.171875 1.671875 -5.109375 1.734375 -4.984375 1.75 L -4.921875 1.734375 C -3.609375 1.0625 -2.15625 0.515625 -0.640625 0.28125 C -0.40625 0.234375 -0.171875 0.234375 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 Z M 0 -0.203125 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-2"> <path d="M 0.203125 0 C 0.015625 -1.78125 -0.4375 -3.25 -1.1875 -4.71875 C -1.25 -4.859375 -1.3125 -5.03125 -1.421875 -5.140625 L -1.484375 -5.171875 L -1.546875 -5.1875 C -1.671875 -5.171875 -1.734375 -5.109375 -1.75 -4.984375 L -1.734375 -4.921875 C -1.0625 -3.609375 -0.515625 -2.15625 -0.28125 -0.640625 C -0.234375 -0.40625 -0.234375 -0.171875 -0.1875 0.0625 L -0.15625 0.125 L -0.125 0.15625 L -0.0625 0.1875 L 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 Z M 0.203125 0 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-3"> <path d="M 0 0.203125 L 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 C 1.109375 -1.21875 1.90625 -2.90625 2.3125 -4.703125 L 2.328125 -4.765625 C 2.3125 -4.890625 2.25 -4.953125 2.125 -4.96875 L 2.046875 -4.953125 L 2 -4.9375 L 1.953125 -4.890625 L 1.9375 -4.828125 C 1.546875 -3.078125 0.765625 -1.4375 -0.15625 -0.125 L -0.1875 -0.0625 L -0.203125 0 C -0.1875 0.125 -0.125 0.1875 0 0.203125 Z M 0 0.203125 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-3-0"> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-3-1"> <path d="M 3.03125 -4.390625 C 3.71875 -5.15625 4.078125 -6.03125 4.078125 -6.125 C 4.078125 -6.28125 3.9375 -6.28125 3.84375 -6.28125 C 3.65625 -6.28125 3.65625 -6.265625 3.546875 -6.03125 C 3.0625 -4.921875 2.171875 -3.828125 0.609375 -3.15625 C 0.4375 -3.078125 0.40625 -3.078125 0.40625 -2.984375 C 0.40625 -2.96875 0.40625 -2.9375 0.421875 -2.921875 C 0.4375 -2.890625 0.453125 -2.875 0.6875 -2.765625 C 2.015625 -2.21875 2.984375 -1.203125 3.59375 0.171875 C 3.640625 0.28125 3.6875 0.296875 3.84375 0.296875 C 3.9375 0.296875 4.078125 0.296875 4.078125 0.15625 C 4.078125 0.0625 3.71875 -0.8125 3.03125 -1.59375 L 8.90625 -1.59375 C 8.21875 -0.8125 7.859375 0.0625 7.859375 0.15625 C 7.859375 0.296875 8 0.296875 8.109375 0.296875 C 8.28125 0.296875 8.28125 0.28125 8.390625 0.046875 C 8.875 -1.046875 9.765625 -2.15625 11.328125 -2.828125 C 11.5 -2.890625 11.53125 -2.90625 11.53125 -2.984375 C 11.53125 -3.015625 11.53125 -3.03125 11.515625 -3.0625 C 11.5 -3.078125 11.484375 -3.09375 11.25 -3.203125 C 9.9375 -3.75 8.953125 -4.765625 8.34375 -6.15625 C 8.296875 -6.265625 8.25 -6.28125 8.109375 -6.28125 C 8 -6.28125 7.859375 -6.28125 7.859375 -6.125 C 7.859375 -6.03125 8.21875 -5.15625 8.90625 -4.390625 Z M 2.5625 -2.0625 C 2.21875 -2.421875 1.8125 -2.703125 1.3125 -2.984375 C 1.96875 -3.375 2.328125 -3.671875 2.5625 -3.90625 L 9.375 -3.90625 C 9.734375 -3.5625 10.140625 -3.28125 10.625 -2.984375 C 9.96875 -2.609375 9.609375 -2.3125 9.375 -2.0625 Z M 2.5625 -2.0625 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-0"> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-1"> <path d="M 2.375 1.359375 C 1.71875 0.84375 1.1875 -0.09375 1.1875 -1.5 C 1.1875 -2.875 1.71875 -3.84375 2.375 -4.34375 C 2.375 -4.34375 2.40625 -4.375 2.40625 -4.40625 C 2.40625 -4.4375 2.375 -4.484375 2.296875 -4.484375 C 2.203125 -4.484375 0.75 -3.546875 0.75 -1.5 C 0.75 0.546875 2.1875 1.5 2.296875 1.5 C 2.375 1.5 2.40625 1.453125 2.40625 1.40625 C 2.40625 1.375 2.375 1.359375 2.375 1.359375 Z M 2.375 1.359375 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-2"> <path d="M 1.796875 0.921875 C 1.375 0.921875 1.3125 0.921875 1.3125 0.671875 L 1.3125 -0.28125 C 1.5625 -0.046875 1.84375 0.0625 2.171875 0.0625 C 3 0.0625 3.71875 -0.53125 3.71875 -1.296875 C 3.71875 -2.015625 3.09375 -2.640625 2.265625 -2.640625 C 1.71875 -2.640625 1.375 -2.375 1.296875 -2.28125 L 1.296875 -2.640625 L 0.34375 -2.578125 L 0.34375 -2.34375 C 0.75 -2.34375 0.8125 -2.34375 0.8125 -2.0625 L 0.8125 0.671875 C 0.8125 0.921875 0.765625 0.921875 0.34375 0.921875 L 0.34375 1.15625 C 0.390625 1.15625 0.796875 1.140625 1.0625 1.140625 C 1.328125 1.140625 1.734375 1.15625 1.796875 1.15625 Z M 1.3125 -1.984375 C 1.515625 -2.265625 1.84375 -2.421875 2.203125 -2.421875 C 2.75 -2.421875 3.140625 -1.90625 3.140625 -1.296875 C 3.140625 -0.625 2.671875 -0.125 2.140625 -0.125 C 1.671875 -0.125 1.40625 -0.453125 1.3125 -0.640625 Z M 1.3125 -1.984375 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-3"> <path d="M 3.359375 -1.28125 C 3.359375 -2.015625 2.6875 -2.671875 1.828125 -2.671875 C 0.953125 -2.671875 0.28125 -2.015625 0.28125 -1.28125 C 0.28125 -0.546875 0.96875 0.0625 1.828125 0.0625 C 2.6875 0.0625 3.359375 -0.546875 3.359375 -1.28125 Z M 1.828125 -0.15625 C 0.859375 -0.15625 0.859375 -1.046875 0.859375 -1.328125 C 0.859375 -1.515625 0.859375 -1.921875 1.078125 -2.171875 C 1.28125 -2.390625 1.53125 -2.484375 1.828125 -2.484375 C 2.109375 -2.484375 2.375 -2.390625 2.578125 -2.171875 C 2.796875 -1.921875 2.796875 -1.515625 2.796875 -1.328125 C 2.796875 -1.046875 2.796875 -0.15625 1.828125 -0.15625 Z M 1.828125 -0.15625 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-4"> <path d="M 2.125 -1.5 C 2.125 -3.546875 0.6875 -4.484375 0.5625 -4.484375 C 0.5 -4.484375 0.484375 -4.4375 0.484375 -4.40625 C 0.484375 -4.375 0.484375 -4.359375 0.59375 -4.265625 C 1.125 -3.8125 1.6875 -2.921875 1.6875 -1.5 C 1.6875 -0.234375 1.25 0.71875 0.5625 1.296875 C 0.484375 1.375 0.484375 1.375 0.484375 1.40625 C 0.484375 1.4375 0.5 1.5 0.5625 1.5 C 0.671875 1.5 2.125 0.5625 2.125 -1.5 Z M 2.125 -1.5 "></path> </g> <g id="Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-5"> <path d="M 1.296875 -4.15625 L 0.34375 -4.09375 L 0.34375 -3.859375 C 0.765625 -3.859375 0.8125 -3.8125 0.8125 -3.515625 L 0.8125 0 L 1.046875 0 C 1.15625 -0.203125 1.234375 -0.328125 1.25 -0.359375 C 1.453125 -0.125 1.765625 0.0625 2.171875 0.0625 C 3 0.0625 3.71875 -0.53125 3.71875 -1.296875 C 3.71875 -2.015625 3.0625 -2.640625 2.25 -2.640625 C 1.921875 -2.640625 1.578125 -2.546875 1.296875 -2.28125 Z M 1.3125 -1.984375 C 1.5 -2.28125 1.859375 -2.453125 2.203125 -2.453125 C 2.53125 -2.453125 2.765625 -2.296875 2.90625 -2.125 C 3.09375 -1.890625 3.140625 -1.609375 3.140625 -1.296875 C 3.140625 -0.15625 2.28125 -0.125 2.140625 -0.125 C 1.9375 -0.125 1.640625 -0.1875 1.40625 -0.5 C 1.3125 -0.625 1.3125 -0.640625 1.3125 -0.75 Z M 1.3125 -1.984375 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-0-1" x="2.989" y="11.158"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-1" x="69.142" y="8.169"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-1" x="69.142" y="8.169"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 7.67175 0.00103125 L 61.468625 0.00103125 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-2" x="7.672" y="60.376"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-2" x="7.672" y="60.376"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.000125 -5.979438 L -0.000125 -52.206 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-0-2" x="72.131" y="11.158"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-2" x="77.442" y="60.376"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-2" x="77.442" y="60.376"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 69.769406 -5.979438 L 69.769406 -52.206 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-0-1" x="154.484" y="11.158"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-1" x="220.638" y="8.169"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-1" x="220.638" y="8.169"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 159.167844 0.00103125 L 212.964719 0.00103125 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-2" x="159.168" y="60.376"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-2" x="159.168" y="60.376"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 151.495969 -5.979438 L 151.495969 -52.206 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-0-2" x="223.626" y="11.158"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-2" x="228.938" y="60.376"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-2" x="228.938" y="60.376"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 221.2655 -5.979438 L 221.2655 -52.206 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-3-1" x="112.641" y="41.346"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-0-3" x="3.07" y="71.534"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-1" x="69.836" y="68.545"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-1" x="69.836" y="68.545"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 7.589719 -60.377875 L 62.163938 -60.377875 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-0-4" x="72.825" y="71.534"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-0-3" x="154.567484" y="71.534"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-1" x="221.332" y="68.545"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-1" x="221.332" y="68.545"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 159.085813 -60.377875 L 213.660031 -60.377875 " transform="matrix(1, 0, 0, -1, 7.672, 8.169)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-0-4" x="224.321" y="71.534"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 51.9985 -5.979156 L 51.990687 -5.979156 " transform="matrix(1, 0, 0, -1, 8.314, 8.931)"></path> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 51.997344 -5.978719 L 51.993437 -5.978719 " transform="matrix(1, 0, 0, -1, 7.03, 7.408)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-1" x="39.459" y="40.25"></use> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-2" x="42.337214" y="40.25"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-3" x="46.568757" y="40.25"></use> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-4" x="50.221669" y="40.25"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-3" x="16.105" y="51.41"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-3" x="16.105" y="51.41"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 51.9985 -5.979156 L 10.311 -41.635406 " transform="matrix(1, 0, 0, -1, 8.314, 8.931)"></path> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 51.997344 -5.978719 L 10.309844 -41.634969 " transform="matrix(1, 0, 0, -1, 7.03, 7.408)"></path> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 203.494594 -5.979156 L 203.486781 -5.979156 " transform="matrix(1, 0, 0, -1, 8.314, 8.931)"></path> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 203.493437 -5.978719 L 203.485625 -5.978719 " transform="matrix(1, 0, 0, -1, 7.03, 7.408)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-1" x="190.941" y="40.25"></use> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-2" x="193.819214" y="40.25"></use> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-5" x="197.859474" y="40.25"></use> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-4-4" x="201.899734" y="40.25"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-1-3" x="167.601" y="51.41"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Uf1DHcYmg2A5JpL3YORaeMDU9co=-glyph-2-3" x="167.601" y="51.41"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 203.494594 -5.979156 L 161.807094 -41.635406 " transform="matrix(1, 0, 0, -1, 8.314, 8.931)"></path> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 203.493437 -5.978719 L 161.805937 -41.634969 " transform="matrix(1, 0, 0, -1, 7.03, 7.408)"></path> </svg> <p></p> </div> </p> <p>This follows from Prop. <a class="maruku-ref" href="#InSpectraHomotopyFiberSequencesAreHomotopyCofiberSequences"></a> by the fact that <a class="existingWikiWord" href="/nlab/show/Spectra">Spectra</a> is <a class="existingWikiWord" href="/nlab/show/additive+category">additive</a> (<a href="Introduction+to+Stable+homotopy+theory+--+1-1#TheStableHomotopyCategoryIsAdditive">this Prop.</a>).</p> <p>See also <a href="https://arxiv.org/abs/1906.04773">arXiv:1906.04773, Prop. 6.2.11</a>, <a href="https://mathoverflow.net/q/132347/381">MO:q/132347</a>.</p> <p> <div class="num_remark"> <h6>Remark</h6> <p>This property of Spectra (Prop. <a class="maruku-ref" href="#InSpectraHomotopyFiberSequencesAreHomotopyCofiberSequences"></a>, Prop. <a class="maruku-ref" href="#HomotopyPullbacksOfSpectraAreHomotopyPushouts"></a>) reflects one of the standard defining <a class="existingWikiWord" href="/nlab/show/axioms">axioms</a> on <a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-categories">stable (∞,1)-categories</a> (see <a href="stable+infinity-category#Definition">there</a>) and on <a class="existingWikiWord" href="/nlab/show/stable+derivators">stable derivators</a> (see <a href="stable+derivator#Definition">there</a>).</p> </div> </p> </div> <h3 id="monoidal_structure">Monoidal structure</h3> <ul> <li> <p>With the <a class="existingWikiWord" href="/nlab/show/smash+product+of+spectra">smash product of spectra</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Sp</mi><mo stretchy="false">(</mo><msub><mi>L</mi> <mi>whe</mi></msub><msub><mi>Top</mi> <mo>*</mo></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Sp(L_{whe}Top_*)</annotation></semantics></math> becomes a <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+%28%E2%88%9E%2C1%29-category">symmetric monoidal (∞,1)-category</a>.</p> <ul> <li> <p>an <a class="existingWikiWord" href="/nlab/show/algebra+in+an+%28infinity%2C1%29-category">algebra object</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Sp</mi><mo stretchy="false">(</mo><msub><mi>L</mi> <mi>whe</mi></msub><msub><mi>Top</mi> <mo>*</mo></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Sp(L_{whe}Top_*)</annotation></semantics></math> with respect to this monoidal structure is an <a class="existingWikiWord" href="/nlab/show/associative+ring+spectrum">associative ring spectrum</a>;</p> </li> <li> <p>a <a class="existingWikiWord" href="/nlab/show/commutative+algebra+in+an+%28infinity%2C1%29-category">commutative algebra object</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Sp</mi><mo stretchy="false">(</mo><msub><mi>L</mi> <mi>whe</mi></msub><msub><mi>Top</mi> <mo>*</mo></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Sp(L_{whe}Top_*)</annotation></semantics></math> with respect to this monoidal structure is a <a class="existingWikiWord" href="/nlab/show/commutative+ring+spectrum">commutative ring spectrum</a>;</p> </li> </ul> </li> </ul> <h3 id="prime_spectrum_and_morava_ktheory">Prime spectrum and Morava K-theory</h3> <p>The <a class="existingWikiWord" href="/nlab/show/prime+spectrum+of+a+monoidal+stable+%28%E2%88%9E%2C1%29-category">prime spectrum of a monoidal stable (∞,1)-category</a> for <a class="existingWikiWord" href="/nlab/show/p-localization">p-local</a> and <a class="existingWikiWord" href="/nlab/show/finite+spectra">finite spectra</a> is labeled by the <a class="existingWikiWord" href="/nlab/show/Morava+K-theories">Morava K-theories</a>. This is the content of the <em><a class="existingWikiWord" href="/nlab/show/thick+subcategory+theorem">thick subcategory theorem</a></em>.</p> <h3 id="model_category_presentation">Model category presentation</h3> <p>There are several <a class="existingWikiWord" href="/nlab/show/presentable+%28infinity%2C1%29-category">presentations</a> of the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category of spectra by <a class="existingWikiWord" href="/nlab/show/model+categories+of+spectra">model categories of spectra</a>. In particular there are <a class="existingWikiWord" href="/nlab/show/symmetric+smash+product+of+spectra">symmetric</a> <a class="existingWikiWord" href="/nlab/show/monoidal+model+categories">monoidal model categories</a> where the <a class="existingWikiWord" href="/nlab/show/smash+product+of+spectra">smash product of spectra</a> is presented by an ordinary <a class="existingWikiWord" href="/nlab/show/tensor+product">tensor product</a>, so that <a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+rings">A-∞ rings</a>, <a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+rings">E-∞ rings</a> and <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-modules">∞-modules</a> are presented by 1-categorical <a class="existingWikiWord" href="/nlab/show/monoid+objects">monoid objects</a> and <a class="existingWikiWord" href="/nlab/show/module+objects">module objects</a>, respectively (“<a class="existingWikiWord" href="/nlab/show/brave+new+algebra">brave new algebra</a>”). See at:</p> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+spectra">model structure on spectra</a>, <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+smash+product+of+spectra">symmetric monoidal smash product of spectra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+spectrum">symmetric spectrum</a>, <a class="existingWikiWord" href="/nlab/show/model+structure+on+symmetric+spectra">model structure on symmetric spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+spectrum">orthogonal spectrum</a>, <a class="existingWikiWord" href="/nlab/show/model+structure+on+orthogonal+spectra">model structure on orthogonal spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/S-module">S-module</a>, <a class="existingWikiWord" href="/nlab/show/model+structure+on+S-modules">model structure on S-modules</a></p> </li> </ul> <h2 id="references">References</h2> <p>The stable <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category of spectra is described in chapter 1 of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Jacob+Lurie">Jacob Lurie</a>, <a class="existingWikiWord" href="/nlab/show/Higher+Algebra">Higher Algebra</a></li> </ul> <p>or section 9 of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Jacob+Lurie">Jacob Lurie</a>, <a class="existingWikiWord" href="/nlab/show/Stable+Infinity-Categories">Stable Infinity-Categories</a> .</li> </ul> <p>Its monoidal structure is described in section 4.2</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Jacob+Lurie">Jacob Lurie</a>, <a class="existingWikiWord" href="/nlab/show/higher+algebra">Noncommutative algebra</a>.</li> </ul> <p>That this is a symmetric monoidal structure is described in section 6 of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Jacob+Lurie">Jacob Lurie</a>, <a class="existingWikiWord" href="/nlab/show/higher+algebra">Commutative algebra</a>.</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on January 16, 2021 at 14:59:15. See the <a href="/nlab/history/stable+%28infinity%2C1%29-category+of+spectra" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/stable+%28infinity%2C1%29-category+of+spectra" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/11382/#Item_1">Discuss</a><span class="backintime"><a href="/nlab/revision/stable+%28infinity%2C1%29-category+of+spectra/14" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/stable+%28infinity%2C1%29-category+of+spectra" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/stable+%28infinity%2C1%29-category+of+spectra" accesskey="S" class="navlink" id="history" rel="nofollow">History (14 revisions)</a> <a href="/nlab/show/stable+%28infinity%2C1%29-category+of+spectra/cite" style="color: black">Cite</a> <a href="/nlab/print/stable+%28infinity%2C1%29-category+of+spectra" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/stable+%28infinity%2C1%29-category+of+spectra" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>