CINXE.COM
loop space object in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> loop space object in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> loop space object </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/12220/#Item_4" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Loop space objects</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="category_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a></strong></p> <p><strong>Background</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28n%2Cr%29-category">(n,r)-category</a></p> </li> </ul> <p><strong>Basic concepts</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hom-object+in+a+quasi-category">hom-objects</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivalence+in+a+quasi-category">equivalences in</a>/<a class="existingWikiWord" href="/nlab/show/equivalence+of+quasi-categories">of</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-categories</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sub-quasi-category">sub-(∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/reflective+sub-%28%E2%88%9E%2C1%29-category">reflective sub-(∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/localization+of+an+%28%E2%88%9E%2C1%29-category">reflective localization</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/opposite+quasi-category">opposite (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/over+quasi-category">over (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/join+of+quasi-categories">join of quasi-categories</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/exact+%28%E2%88%9E%2C1%29-functor">exact (∞,1)-functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-functors">(∞,1)-category of (∞,1)-functors</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-presheaves">(∞,1)-category of (∞,1)-presheaves</a></p> </li> </ul> </li> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/fibrations+of+quasi-categories">fibrations</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/inner+fibration">inner fibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/left+fibration">left/right fibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cartesian+fibration">Cartesian fibration</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Cartesian+morphism">Cartesian morphism</a></li> </ul> </li> </ul> </li> </ul> <p><strong>Universal constructions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/limit+in+quasi-categories">limit</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/terminal+object+in+a+quasi-category">terminal object</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+%28%E2%88%9E%2C1%29-functor">adjoint functors</a></p> </li> </ul> <p><strong>Local presentation</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+presentable+%28%E2%88%9E%2C1%29-category">locally presentable</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/essentially+small+%28%E2%88%9E%2C1%29-category">essentially small</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+small+%28%E2%88%9E%2C1%29-category">locally small</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/accessible+%28%E2%88%9E%2C1%29-category">accessible</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/idempotent-complete+%28%E2%88%9E%2C1%29-category">idempotent-complete</a></p> </li> </ul> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Yoneda+lemma">(∞,1)-Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Grothendieck+construction">(∞,1)-Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+%28%E2%88%9E%2C1%29-functor+theorem">adjoint (∞,1)-functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">(∞,1)-monadicity theorem</a></p> </li> </ul> <p><strong>Extra stuff, structure, properties</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a></p> </li> </ul> <p><strong>Models</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+with+weak+equivalences">category with weak equivalences</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+category">model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derivator">derivator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+quasi-categories">model structure for quasi-categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+Cartesian+fibrations">model structure for Cartesian fibrations</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+quasi-categories+and+simplicial+categories">relation to simplicial categories</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coherent+nerve">homotopy coherent nerve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/simplicial+model+category">simplicial model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/presentable+%28%E2%88%9E%2C1%29-category">presentable quasi-category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+complex">Kan complex</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+sets">model structure for Kan complexes</a></li> </ul> </li> </ul> </div></div> <h4 id="stabe_homotopy_theory">Stabe homotopy theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable homotopy theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/homological+algebra">homological algebra</a>, <a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></li> </ul> <p><em><a class="existingWikiWord" href="/nlab/show/Introduction+to+Stable+Homotopy+Theory">Introduction</a></em></p> <h1 id="ingredients">Ingredients</h1> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a></li> </ul> <h1 id="contents">Contents</h1> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/loop+space+object">loop space object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/suspension+object">suspension object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/looping+and+delooping">looping and delooping</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/stabilization">stabilization</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/spectrum+object">spectrum object</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+derivator">stable derivator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/triangulated+category">triangulated category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category+of+spectra">stable (∞,1)-category of spectra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+homotopy+category">stable homotopy category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smash+product+of+spectra">smash product of spectra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+smash+product+of+spectra">symmetric smash product of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Spanier-Whitehead+duality">Spanier-Whitehead duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+ring">A-∞ ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+ring">E-∞ ring</a></p> </li> </ul> </li> </ul> <div> <p> <a href="/nlab/edit/stable+homotopy+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="mapping_space">Mapping space</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/internal+hom">internal hom</a>/<a class="existingWikiWord" href="/nlab/show/mapping+space">mapping space</a></strong></p> <h3 id="general_abstract">General abstract</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/hom-set">hom-set</a>, <a class="existingWikiWord" href="/nlab/show/hom-object">hom-object</a>, <a class="existingWikiWord" href="/nlab/show/internal+hom">internal hom</a>, <a class="existingWikiWord" href="/nlab/show/exponential+object">exponential object</a>, <a class="existingWikiWord" href="/nlab/show/derived+hom-space">derived hom-space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/loop+space+object">loop space object</a>, <a class="existingWikiWord" href="/nlab/show/free+loop+space+object">free loop space object</a>, <a class="existingWikiWord" href="/nlab/show/derived+loop+space">derived loop space</a></p> </li> </ul> <h3 id="topology">Topology</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+space">mapping space</a> (<a class="existingWikiWord" href="/nlab/show/compact-open+topology">compact-open topology</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topology+of+mapping+spaces">topology of mapping spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/evaluation+fibration+of+mapping+spaces">evaluation fibration of mapping spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/loop+space">loop space</a>, <a class="existingWikiWord" href="/nlab/show/free+loop+space">free loop space</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/free+loop+space+of+a+classifying+space">free loop space of a classifying space</a></li> </ul> </li> </ul> <h3 id="simplicial_homotopy_theory">Simplicial homotopy theory</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/simplicial+mapping+complex">simplicial mapping complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inertia+groupoid">inertia groupoid</a></p> </li> </ul> <h3 id="differential_topology">Differential topology</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+topology+of+mapping+spaces">differential topology of mapping spaces</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/C-k+topology">C-k topology</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/manifold+structure+of+mapping+spaces">manifold structure of mapping spaces</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/tangent+spaces+of+mapping+spaces">tangent spaces of mapping spaces</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+loop+space">smooth loop space</a></p> </li> </ul> <h3 id="stable_homotopy_theory">Stable homotopy theory</h3> <ul> <li><a class="existingWikiWord" href="/nlab/show/mapping+spectrum">mapping spectrum</a></li> </ul> <h3 id="geometric_homotopy_theory">Geometric homotopy theory</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+stack">mapping stack</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inertia+stack">inertia stack</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/free+loop+stack">free loop stack</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/mapping+space+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="loop_space_objects">Loop space objects</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#remarks'>Remarks</a></li> </ul> <li><a href='#explicit_constructions'>Explicit constructions</a></li> <ul> <li><a href='#FreeLoopSpaceObject'>Free loop space objects</a></li> <li><a href='#based_loop_space_objects'>Based loop space objects</a></li> <ul> <li><a href='#remarks_2'>Remarks</a></li> </ul> </ul> <li><a href='#remarks_3'>Remarks</a></li> <li><a href='#examples'>Examples</a></li> <li><a href='#related_concepts'>Related concepts</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>In the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a> <a class="existingWikiWord" href="/nlab/show/Top">Top</a> the construction of a <a class="existingWikiWord" href="/nlab/show/loop+space">loop space</a> of a given <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> is familiar.</p> <p>This construction may be generalized to any other <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a> and in fact to any other <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> with <a class="existingWikiWord" href="/nlab/show/homotopy+pullbacks">homotopy pullbacks</a>.</p> <h2 id="definition">Definition</h2> <p>Loop space objects are defined in any <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>C</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math> with <a class="existingWikiWord" href="/nlab/show/homotopy+pullbacks">homotopy pullbacks</a>: for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> any <a class="existingWikiWord" href="/nlab/show/pointed+object">pointed object</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>C</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math> with point <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>*</mo><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">{*} \to X</annotation></semantics></math>, its <a class="existingWikiWord" href="/nlab/show/loop+space+object">loop space object</a> is <a class="existingWikiWord" href="/nlab/show/generalized+the">the</a> <a class="existingWikiWord" href="/nlab/show/homotopy+pullback">homotopy pullback</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ω</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">\Omega X</annotation></semantics></math> of this point along itself:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>Ω</mi><mi>X</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mo>*</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mo>*</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>X</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ \Omega X &\to& {*} \\ \downarrow && \downarrow \\ {*} &\to& X } \,. </annotation></semantics></math></div> <p>A (<a class="existingWikiWord" href="/nlab/show/generalised+element">generalised</a>) <a class="existingWikiWord" href="/nlab/show/global+point">element</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ω</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">\Omega X</annotation></semantics></math> may be thought of as a <a class="existingWikiWord" href="/nlab/show/loop">loop</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> at the <a class="existingWikiWord" href="/nlab/show/base+point">base point</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>*</mo></mrow><annotation encoding="application/x-tex">*</annotation></semantics></math>.</p> <p>When the point <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>:</mo><mo>*</mo><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">x : {*} \to X</annotation></semantics></math> is not clear from context, we can write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ω</mi> <mi>x</mi></msub><mi>X</mi></mrow><annotation encoding="application/x-tex">\Omega_x X</annotation></semantics></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ω</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Omega(X,x)</annotation></semantics></math> to indicate the point.</p> <h3 id="remarks">Remarks</h3> <p>Since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>C</mi></mstyle><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{C}(X,-)</annotation></semantics></math> commutes with homotopy limits, one has a natural homotopy equivalence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ω</mi> <mover><mi>y</mi><mo stretchy="false">¯</mo></mover></msub><mstyle mathvariant="bold"><mi>C</mi></mstyle><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy="false">)</mo><mo>≃</mo><mstyle mathvariant="bold"><mi>C</mi></mstyle><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>Ω</mi> <mi>y</mi></msub><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Omega_{\bar{y}}\mathbf{C}(X,Y)\simeq \mathbf{C}(X,\Omega_y Y)</annotation></semantics></math>, for any objects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> and pointed object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(Y,y)</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>C</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>y</mi><mo stretchy="false">¯</mo></mover></mrow><annotation encoding="application/x-tex">\bar{y}</annotation></semantics></math> denotes the morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mo>*</mo><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">X \to * \to Y</annotation></semantics></math>.</p> <p>See also</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fibration+sequence">fibration sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/delooping">delooping</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></p> </li> </ul> <h2 id="explicit_constructions">Explicit constructions</h2> <p>Usually the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> in question is <a class="existingWikiWord" href="/nlab/show/presentable+%28infinity%2C1%29-category">presented</a> by concrete 1-categorical data, such as that of a <a class="existingWikiWord" href="/nlab/show/model+category">model category</a>. In that case the above <a class="existingWikiWord" href="/nlab/show/homotopy+pullback">homotopy pullback</a> has various realizations as an ordinary <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a>.</p> <p>Notably it may be expressed using <a class="existingWikiWord" href="/nlab/show/path+objects">path objects</a> which may come from <a class="existingWikiWord" href="/nlab/show/interval+objects">interval objects</a>. Even if the context is not (or not manifestly) that of a <a class="existingWikiWord" href="/nlab/show/homotopical+category">homotopical category</a>, an <a class="existingWikiWord" href="/nlab/show/interval+object">interval object</a> may still exist and may be used as indicated in the following to construct loop space objects.</p> <h3 id="FreeLoopSpaceObject">Free loop space objects</h3> <p>In a category with <a class="existingWikiWord" href="/nlab/show/interval+object">interval object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>*</mo><mover><mo>→</mo><mn>0</mn></mover><mi>I</mi><mover><mo>←</mo><mn>1</mn></mover><mo>*</mo></mrow><annotation encoding="application/x-tex"> * \xrightarrow{0} I \xleftarrow{1} * </annotation></semantics></math> the <strong><a class="existingWikiWord" href="/nlab/show/free+loop+space+object">free loop space object</a></strong> is the part of the <a class="existingWikiWord" href="/nlab/show/path+object">path object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>B</mi> <mi>I</mi></msup><mo>=</mo><mo stretchy="false">[</mo><mi>I</mi><mo>,</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">B^I = [I,B]</annotation></semantics></math> which consists of closed paths, namely the <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a></p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="154.759" height="90.419" viewBox="0 0 154.759 90.419"> <defs> <g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-0-0"> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-0-1"> <path d="M 5.390625 -10.359375 C 5.296875 -10.65625 5.234375 -10.671875 5.0625 -10.671875 C 4.921875 -10.671875 4.84375 -10.640625 4.765625 -10.390625 L 1.859375 -1.4375 C 1.578125 -0.5625 0.96875 -0.453125 0.46875 -0.4375 L 0.46875 0 C 1.109375 -0.03125 1.140625 -0.03125 1.78125 -0.03125 C 2.1875 -0.03125 2.90625 -0.03125 3.28125 0 L 3.28125 -0.4375 C 2.53125 -0.453125 2.234375 -0.859375 2.234375 -1.1875 C 2.234375 -1.25 2.234375 -1.296875 2.3125 -1.53125 L 4.640625 -8.703125 L 7.09375 -1.15625 C 7.171875 -0.9375 7.171875 -0.90625 7.171875 -0.875 C 7.171875 -0.4375 6.390625 -0.4375 6.015625 -0.4375 L 6.015625 0 C 6.359375 -0.03125 7.515625 -0.03125 7.9375 -0.03125 C 8.359375 -0.03125 9.296875 -0.03125 9.671875 0 L 9.671875 -0.4375 C 8.875 -0.4375 8.59375 -0.4375 8.40625 -1 Z M 5.390625 -10.359375 "></path> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-0-2"> <path d="M 3.734375 3.734375 L 3.734375 3.1875 L 2.28125 3.1875 L 2.28125 -10.65625 L 3.734375 -10.65625 L 3.734375 -11.203125 L 1.734375 -11.203125 L 1.734375 3.734375 Z M 3.734375 3.734375 "></path> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-0-3"> <path d="M 2.3125 -11.203125 L 0.3125 -11.203125 L 0.3125 -10.65625 L 1.765625 -10.65625 L 1.765625 3.1875 L 0.3125 3.1875 L 0.3125 3.734375 L 2.3125 3.734375 Z M 2.3125 -11.203125 "></path> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-1-0"> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-1-1"> <path d="M 5.46875 -9.1875 C 5.59375 -9.734375 5.65625 -9.765625 6.25 -9.765625 L 8.1875 -9.765625 C 9.875 -9.765625 9.875 -8.328125 9.875 -8.203125 C 9.875 -6.984375 8.65625 -5.453125 6.6875 -5.453125 L 4.546875 -5.453125 Z M 7.984375 -5.328125 C 9.625 -5.625 11.09375 -6.765625 11.09375 -8.140625 C 11.09375 -9.3125 10.0625 -10.203125 8.375 -10.203125 L 3.578125 -10.203125 C 3.296875 -10.203125 3.171875 -10.203125 3.171875 -9.921875 C 3.171875 -9.765625 3.296875 -9.765625 3.53125 -9.765625 C 4.4375 -9.765625 4.4375 -9.65625 4.4375 -9.484375 C 4.4375 -9.453125 4.4375 -9.359375 4.375 -9.140625 L 2.359375 -1.109375 C 2.21875 -0.578125 2.203125 -0.4375 1.15625 -0.4375 C 0.859375 -0.4375 0.71875 -0.4375 0.71875 -0.171875 C 0.71875 0 0.8125 0 1.109375 0 L 6.234375 0 C 8.515625 0 10.28125 -1.734375 10.28125 -3.234375 C 10.28125 -4.46875 9.203125 -5.21875 7.984375 -5.328125 Z M 5.875 -0.4375 L 3.859375 -0.4375 C 3.640625 -0.4375 3.609375 -0.4375 3.53125 -0.453125 C 3.359375 -0.46875 3.34375 -0.5 3.34375 -0.609375 C 3.34375 -0.71875 3.375 -0.8125 3.40625 -0.9375 L 4.453125 -5.15625 L 7.265625 -5.15625 C 9.015625 -5.15625 9.015625 -3.515625 9.015625 -3.390625 C 9.015625 -1.953125 7.71875 -0.4375 5.875 -0.4375 Z M 5.875 -0.4375 "></path> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-1-2"> <path d="M 5.5 -9.09375 C 5.625 -9.625 5.65625 -9.765625 6.75 -9.765625 C 7.078125 -9.765625 7.203125 -9.765625 7.203125 -10.046875 C 7.203125 -10.203125 7.03125 -10.203125 6.984375 -10.203125 C 6.71875 -10.203125 6.390625 -10.171875 6.125 -10.171875 L 4.28125 -10.171875 C 3.984375 -10.171875 3.640625 -10.203125 3.34375 -10.203125 C 3.21875 -10.203125 3.0625 -10.203125 3.0625 -9.921875 C 3.0625 -9.765625 3.1875 -9.765625 3.484375 -9.765625 C 4.40625 -9.765625 4.40625 -9.65625 4.40625 -9.484375 C 4.40625 -9.375 4.375 -9.296875 4.34375 -9.15625 L 2.328125 -1.109375 C 2.203125 -0.578125 2.171875 -0.4375 1.078125 -0.4375 C 0.75 -0.4375 0.609375 -0.4375 0.609375 -0.15625 C 0.609375 0 0.765625 0 0.84375 0 C 1.109375 0 1.4375 -0.03125 1.703125 -0.03125 L 3.546875 -0.03125 C 3.84375 -0.03125 4.171875 0 4.46875 0 C 4.578125 0 4.765625 0 4.765625 -0.265625 C 4.765625 -0.4375 4.671875 -0.4375 4.34375 -0.4375 C 3.421875 -0.4375 3.421875 -0.546875 3.421875 -0.734375 C 3.421875 -0.765625 3.421875 -0.84375 3.484375 -1.078125 Z M 5.5 -9.09375 "></path> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-1-3"> <path d="M 2.90625 0.0625 C 2.90625 -0.8125 2.625 -1.453125 2.015625 -1.453125 C 1.53125 -1.453125 1.296875 -1.0625 1.296875 -0.734375 C 1.296875 -0.40625 1.53125 0 2.03125 0 C 2.21875 0 2.390625 -0.0625 2.53125 -0.1875 C 2.546875 -0.21875 2.5625 -0.21875 2.578125 -0.21875 C 2.609375 -0.21875 2.609375 -0.015625 2.609375 0.0625 C 2.609375 0.546875 2.53125 1.53125 1.65625 2.5 C 1.5 2.671875 1.5 2.703125 1.5 2.734375 C 1.5 2.8125 1.5625 2.890625 1.640625 2.890625 C 1.765625 2.890625 2.90625 1.78125 2.90625 0.0625 Z M 2.90625 0.0625 "></path> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-2-0"> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-2-1"> <path d="M 5.8125 -4.15625 L 2.828125 -7.125 C 2.640625 -7.296875 2.609375 -7.328125 2.5 -7.328125 C 2.34375 -7.328125 2.203125 -7.203125 2.203125 -7.03125 C 2.203125 -6.9375 2.21875 -6.90625 2.390625 -6.734375 L 5.375 -3.734375 L 2.390625 -0.734375 C 2.21875 -0.5625 2.203125 -0.53125 2.203125 -0.4375 C 2.203125 -0.265625 2.34375 -0.140625 2.5 -0.140625 C 2.609375 -0.140625 2.640625 -0.171875 2.828125 -0.34375 L 5.796875 -3.3125 L 8.890625 -0.21875 C 8.921875 -0.203125 9.015625 -0.140625 9.109375 -0.140625 C 9.296875 -0.140625 9.40625 -0.265625 9.40625 -0.4375 C 9.40625 -0.46875 9.40625 -0.515625 9.359375 -0.59375 C 9.34375 -0.625 6.96875 -2.96875 6.234375 -3.734375 L 8.96875 -6.46875 C 9.03125 -6.5625 9.265625 -6.75 9.328125 -6.84375 C 9.34375 -6.875 9.40625 -6.9375 9.40625 -7.03125 C 9.40625 -7.203125 9.296875 -7.328125 9.109375 -7.328125 C 9 -7.328125 8.9375 -7.28125 8.765625 -7.109375 Z M 5.8125 -4.15625 "></path> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-3-0"> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-3-1"> <path d="M 5.359375 -6.625 C 5.375 -6.640625 5.40625 -6.765625 5.40625 -6.78125 C 5.40625 -6.828125 5.359375 -6.921875 5.25 -6.921875 C 5.203125 -6.921875 4.890625 -6.890625 4.671875 -6.875 L 4.109375 -6.828125 C 3.890625 -6.8125 3.78125 -6.796875 3.78125 -6.625 C 3.78125 -6.484375 3.921875 -6.484375 4.046875 -6.484375 C 4.53125 -6.484375 4.53125 -6.421875 4.53125 -6.328125 C 4.53125 -6.265625 4.453125 -5.9375 4.390625 -5.734375 L 3.90625 -3.796875 C 3.8125 -3.96875 3.53125 -4.390625 2.921875 -4.390625 C 1.734375 -4.390625 0.421875 -3.015625 0.421875 -1.53125 C 0.421875 -0.5 1.09375 0.09375 1.859375 0.09375 C 2.5 0.09375 3.046875 -0.40625 3.234375 -0.609375 C 3.40625 0.078125 4.09375 0.09375 4.203125 0.09375 C 4.671875 0.09375 4.890625 -0.28125 4.96875 -0.453125 C 5.171875 -0.8125 5.3125 -1.390625 5.3125 -1.421875 C 5.3125 -1.484375 5.28125 -1.5625 5.15625 -1.5625 C 5.03125 -1.5625 5.015625 -1.5 4.953125 -1.25 C 4.8125 -0.703125 4.625 -0.171875 4.234375 -0.171875 C 4 -0.171875 3.921875 -0.375 3.921875 -0.640625 C 3.921875 -0.84375 3.953125 -0.953125 3.984375 -1.078125 Z M 3.234375 -1.078125 C 2.734375 -0.390625 2.21875 -0.171875 1.890625 -0.171875 C 1.4375 -0.171875 1.203125 -0.59375 1.203125 -1.109375 C 1.203125 -1.578125 1.46875 -2.65625 1.6875 -3.09375 C 1.984375 -3.703125 2.46875 -4.109375 2.9375 -4.109375 C 3.578125 -4.109375 3.765625 -3.390625 3.765625 -3.265625 C 3.765625 -3.234375 3.515625 -2.25 3.453125 -2 C 3.328125 -1.53125 3.328125 -1.5 3.234375 -1.078125 Z M 3.234375 -1.078125 "></path> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-4-0"> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-4-1"> <path d="M 4.109375 -2.375 C 4.109375 -2.921875 4.109375 -4.96875 2.28125 -4.96875 C 0.453125 -4.96875 0.453125 -2.921875 0.453125 -2.375 C 0.453125 -1.84375 0.453125 0.15625 2.28125 0.15625 C 4.109375 0.15625 4.109375 -1.84375 4.109375 -2.375 Z M 2.28125 -0.078125 C 1.96875 -0.078125 1.453125 -0.234375 1.28125 -0.84375 C 1.15625 -1.28125 1.15625 -2.015625 1.15625 -2.484375 C 1.15625 -2.984375 1.15625 -3.5625 1.265625 -3.953125 C 1.453125 -4.625 2.015625 -4.734375 2.28125 -4.734375 C 2.625 -4.734375 3.109375 -4.5625 3.28125 -4 C 3.390625 -3.59375 3.390625 -3.0625 3.390625 -2.484375 C 3.390625 -2 3.390625 -1.25 3.265625 -0.828125 C 3.0625 -0.171875 2.53125 -0.078125 2.28125 -0.078125 Z M 2.28125 -0.078125 "></path> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-4-2"> <path d="M 2.6875 -4.75 C 2.6875 -4.96875 2.65625 -4.96875 2.421875 -4.96875 C 1.9375 -4.484375 1.171875 -4.484375 0.90625 -4.484375 L 0.90625 -4.203125 C 1.09375 -4.203125 1.59375 -4.203125 2.03125 -4.40625 L 2.03125 -0.640625 C 2.03125 -0.390625 2.03125 -0.296875 1.265625 -0.296875 L 0.953125 -0.296875 L 0.953125 0 C 1.359375 -0.03125 1.9375 -0.03125 2.359375 -0.03125 C 2.78125 -0.03125 3.359375 -0.03125 3.765625 0 L 3.765625 -0.296875 L 3.453125 -0.296875 C 2.6875 -0.296875 2.6875 -0.390625 2.6875 -0.640625 Z M 2.6875 -4.75 "></path> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-5-0"> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-5-1"> <path d="M 6.53125 -4.578125 C 6.65625 -4.703125 6.671875 -4.75 6.671875 -4.828125 C 6.671875 -4.9375 6.5625 -5.046875 6.4375 -5.046875 C 6.34375 -5.046875 6.3125 -5.015625 6.203125 -4.90625 L 4.109375 -2.828125 L 2.03125 -4.921875 C 1.90625 -5.03125 1.859375 -5.046875 1.78125 -5.046875 C 1.671875 -5.046875 1.5625 -4.953125 1.5625 -4.828125 C 1.5625 -4.734375 1.59375 -4.6875 1.6875 -4.59375 L 3.78125 -2.5 L 1.703125 -0.40625 C 1.578125 -0.28125 1.5625 -0.234375 1.5625 -0.15625 C 1.5625 -0.03125 1.671875 0.0625 1.78125 0.0625 C 1.875 0.0625 1.90625 0.046875 2.015625 -0.0625 L 4.109375 -2.15625 L 6.28125 0.015625 C 6.328125 0.046875 6.390625 0.0625 6.4375 0.0625 C 6.5625 0.0625 6.671875 -0.046875 6.671875 -0.15625 C 6.671875 -0.234375 6.625 -0.28125 6.625 -0.296875 C 6.578125 -0.34375 4.984375 -1.9375 4.4375 -2.5 Z M 6.53125 -4.578125 "></path> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-6-0"> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-6-1"> <path d="M 2.359375 -6 C 2.359375 -6.375 2.390625 -6.484375 3.1875 -6.484375 L 3.421875 -6.484375 L 3.421875 -6.8125 C 2.625 -6.78125 2.609375 -6.78125 1.90625 -6.78125 C 1.203125 -6.78125 1.1875 -6.78125 0.390625 -6.8125 L 0.390625 -6.484375 L 0.625 -6.484375 C 1.421875 -6.484375 1.453125 -6.375 1.453125 -6 L 1.453125 -0.8125 C 1.453125 -0.421875 1.421875 -0.328125 0.625 -0.328125 L 0.390625 -0.328125 L 0.390625 0 C 1.1875 -0.03125 1.203125 -0.03125 1.90625 -0.03125 C 2.609375 -0.03125 2.625 -0.03125 3.421875 0 L 3.421875 -0.328125 L 3.1875 -0.328125 C 2.390625 -0.328125 2.359375 -0.421875 2.359375 -0.8125 Z M 2.359375 -6 "></path> </g> <g id="xE3obliC0rM9-k3p083iqgMl65U=-glyph-6-2"> <path d="M 3.28125 -6.8125 L 3.28125 -6.484375 C 3.953125 -6.484375 4.03125 -6.40625 4.03125 -5.921875 L 4.03125 -3.8125 C 3.6875 -4.203125 3.21875 -4.390625 2.703125 -4.390625 C 1.453125 -4.390625 0.34375 -3.421875 0.34375 -2.140625 C 0.34375 -0.921875 1.34375 0.09375 2.609375 0.09375 C 3.1875 0.09375 3.671875 -0.171875 4 -0.53125 L 4 0.09375 L 5.515625 0 L 5.515625 -0.328125 C 4.84375 -0.328125 4.765625 -0.40625 4.765625 -0.890625 L 4.765625 -6.921875 Z M 4 -1.234375 C 4 -1.0625 4 -1.015625 3.859375 -0.8125 C 3.578125 -0.421875 3.125 -0.171875 2.65625 -0.171875 C 2.1875 -0.171875 1.796875 -0.421875 1.5625 -0.78125 C 1.28125 -1.171875 1.234375 -1.671875 1.234375 -2.140625 C 1.234375 -2.71875 1.328125 -3.125 1.5625 -3.46875 C 1.796875 -3.84375 2.25 -4.109375 2.75 -4.109375 C 3.234375 -4.109375 3.703125 -3.875 4 -3.359375 Z M 4 -1.234375 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-0-1" x="6.434" y="16.677"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-1-1" x="16.59025" y="16.677"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-0-2" x="101.429" y="16.677"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-1-2" x="105.494" y="16.677"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-1-3" x="113.12889" y="16.677"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-1-1" x="119.674362" y="16.677"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-0-3" x="131.54775" y="16.677"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-1-1" x="11.512" y="83.705"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-1-1" x="97.518" y="83.705"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-2-1" x="112.70925" y="83.705"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-1-1" x="127.653" y="83.705"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -37.834469 32.268594 L 21.290531 32.268594 " transform="matrix(1, 0, 0, -1, 72.979, 45.21)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487669 2.870888 C -2.030637 1.148231 -1.018919 0.335731 0.0006125 -0.00020625 C -1.018919 -0.336144 -2.030637 -1.148644 -2.487669 -2.867394 " transform="matrix(1, 0, 0, -1, 94.5072, 12.9412)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -55.529781 22.815469 L -55.533687 -22.086875 " transform="matrix(1, 0, 0, -1, 72.979, 45.21)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485619 2.869206 C -2.032494 1.14655 -1.020775 0.33405 -0.00124375 -0.0018875 C -1.020775 -0.333919 -2.032494 -1.146419 -2.485619 -2.869075 " transform="matrix(0, 1, 1, 0, 17.4472, 67.5364)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 45.544438 19.077188 L 45.544438 -22.086875 " transform="matrix(1, 0, 0, -1, 72.979, 45.21)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485619 2.868475 C -2.032494 1.145819 -1.020775 0.333319 -0.00124375 0.0012875 C -1.020775 -0.33465 -2.032494 -1.14715 -2.485619 -2.869806 " transform="matrix(0, 1, 1, 0, 118.52215, 67.5364)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-3-1" x="122.037" y="49.72"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-4-1" x="127.4845" y="51.10375"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-5-1" x="132.67325" y="49.72"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-3-1" x="140.90575" y="49.72"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-4-2" x="146.35325" y="51.10375"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -42.912594 -34.75875 L 17.376469 -34.75875 " transform="matrix(1, 0, 0, -1, 72.979, 45.21)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486645 2.867938 C -2.03352 1.149188 -1.021801 0.332781 0.00163625 0.00075 C -1.021801 -0.335187 -2.03352 -1.147687 -2.486645 -2.870344 " transform="matrix(1, 0, 0, -1, 90.59602, 79.9695)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-6-1" x="46.641" y="75.416"></use> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-6-2" x="50.4527" y="75.416"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-5-1" x="56.3335" y="75.416"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-6-1" x="64.56725" y="75.416"></use> <use xlink:href="#xE3obliC0rM9-k3p083iqgMl65U=-glyph-6-2" x="68.37895" y="75.416"></use> </g> </svg> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>d</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex"> d_0 </annotation></semantics></math> (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>d</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">d_1</annotation></semantics></math> resp.) is the composition of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex"> [0,B] </annotation></semantics></math> (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mn>1</mn><mo>,</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[1,B]</annotation></semantics></math> resp.) with the canonical identification of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo>*</mo><mo>,</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[*, B]</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>.</p> <p>This is the same as the image of the <a class="existingWikiWord" href="/nlab/show/co-span+co-trace">co-span co-trace</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>cotr</mi><mo stretchy="false">(</mo><mi>I</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">cotr(I)</annotation></semantics></math> of the interval object (which is the interval object closed to a loop!, see the examples at <a class="existingWikiWord" href="/nlab/show/co-span+co-trace">co-span co-trace</a>) in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mo>[</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>cotr</mi><mo stretchy="false">(</mo><mi>I</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>↗</mo></mtd> <mtd></mtd> <mtd><mo>↖</mo></mtd></mtr> <mtr><mtd><mi>pt</mi></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><mi>I</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><msub><mrow></mrow> <mrow><mi>Id</mi><mo>⊔</mo><mi>Id</mi></mrow></msub><mo>↖</mo></mtd> <mtd></mtd> <mtd><msub><mo>↗</mo> <mrow><mi>in</mi><mo>⊔</mo><mi>out</mi></mrow></msub></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mi>pt</mi><mo>⊔</mo><mi>pt</mi></mtd></mtr></mtable></mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>,</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>B</mi><mo>]</mo></mrow><mspace width="thickmathspace"></mspace><mo>,</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mo>,</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>Λ</mi><mi>B</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>↙</mo></mtd> <mtd></mtd> <mtd><mo>↘</mo></mtd></mtr> <mtr><mtd><mi>B</mi></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">[</mo><mi>I</mi><mo>,</mo><mi>B</mi><mo stretchy="false">]</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><msub><mrow></mrow> <mrow><mi>Id</mi><mo>×</mo><mi>Id</mi></mrow></msub><mo>↘</mo></mtd> <mtd></mtd> <mtd><msub><mo>↙</mo> <mrow><msub><mi>d</mi> <mn>0</mn></msub><mo>×</mo><msub><mi>d</mi> <mn>1</mn></msub></mrow></msub></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mi>B</mi><mo>×</mo><mi>B</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \left[ \array{ && cotr(I) \\ & \nearrow && \nwarrow \\ pt &&&& I \\ & {}_{Id \sqcup Id}\nwarrow && \nearrow_{in \sqcup out} \\ && pt \sqcup pt } \;\;\;\;,\;\;\;\; B \right] \;,\;\;\;\; \simeq \;,\;\;\;\; \array{ && \Lambda B \\ & \swarrow && \searrow \\ B &&&& [I,B] \\ & {}_{Id \times Id}\searrow && \swarrow_{d_0 \times d_1} \\ && B \times B } </annotation></semantics></math></div> <h3 id="based_loop_space_objects">Based loop space objects</h3> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/pointed+object">pointed object</a> with point <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>pt</mi><mover><mo>→</mo><mrow><msub><mi>pt</mi> <mi>B</mi></msub></mrow></mover><mi>B</mi></mrow><annotation encoding="application/x-tex">pt \stackrel{pt_B}{\to} B</annotation></semantics></math> then the <strong>based loop space object</strong> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> is the pullback <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ω</mi> <mi>pt</mi></msub><mi>B</mi></mrow><annotation encoding="application/x-tex">\Omega_{pt} B</annotation></semantics></math> in</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msub><mi>Ω</mi> <mi>pt</mi></msub><mi>B</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mo stretchy="false">[</mo><mi>I</mi><mo>,</mo><mi>B</mi><mo stretchy="false">]</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mrow><msub><mi>d</mi> <mn>0</mn></msub><mo>×</mo><msub><mi>d</mi> <mn>1</mn></msub></mrow></msup></mtd></mtr> <mtr><mtd><mi>pt</mi></mtd> <mtd><mover><mo>→</mo><mrow><msub><mi>pt</mi> <mi>B</mi></msub><mo>×</mo><msub><mi>pt</mi> <mi>B</mi></msub></mrow></mover></mtd> <mtd><mi>B</mi><mo>×</mo><mi>B</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ \Omega_{pt}B &\to& [I,B] \\ \downarrow && \downarrow^{d_0 \times d_1} \\ pt &\stackrel{pt_B \times pt_B}{\to}& B \times B } \,. </annotation></semantics></math></div> <h4 id="remarks_2">Remarks</h4> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ω</mi> <mi>pt</mi></msub><mi>B</mi></mrow><annotation encoding="application/x-tex">\Omega_{pt}B</annotation></semantics></math> is the fiber of the <a class="existingWikiWord" href="/nlab/show/generalized+universal+bundle">generalized universal bundle</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>E</mi></mstyle> <mi>pt</mi></msub><mi>B</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">\mathbf{E}_{pt}B \to B</annotation></semantics></math>.</p> </li> <li> <p>the based loop space object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ω</mi> <mi>pt</mi></msub><mi>B</mi></mrow><annotation encoding="application/x-tex">\Omega_{pt} B</annotation></semantics></math> is the pullback of the free loop space object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Λ</mi><mi>B</mi></mrow><annotation encoding="application/x-tex">\Lambda B</annotation></semantics></math> to the point</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msub><mi>Ω</mi> <mi>pt</mi></msub><mi>B</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Λ</mi><mi>B</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>pt</mi></mtd> <mtd><mover><mo>→</mo><mrow><msub><mi>pt</mi> <mi>B</mi></msub></mrow></mover></mtd> <mtd><mi>B</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ \Omega_{pt} B &\to& \Lambda B \\ \downarrow && \downarrow \\ pt &\stackrel{pt_B}{\to}& B } \,. </annotation></semantics></math></div></li> </ul> <h2 id="remarks_3">Remarks</h2> <ul> <li> <p>The loop space object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> can be regarded as the homotopy trace on the identity span on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>, as described at <a class="existingWikiWord" href="/nlab/show/span+trace">span trace</a>.</p> </li> <li> <p>The free loop space object inherits the structure of an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>A</mi> <mn>∞</mn></msub></mrow><annotation encoding="application/x-tex">A_\infty</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/A-infinity-category">category</a> from that of the <a class="existingWikiWord" href="/nlab/show/path+object">path object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>I</mi><mo>,</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[I,B]</annotation></semantics></math>.</p> </li> <li> <p>In a <a class="existingWikiWord" href="/nlab/show/generalized+smooth+space">suitable extension</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Diff</mo></mrow><annotation encoding="application/x-tex">\operatorname{Diff}</annotation></semantics></math>, this construction does <strong>not</strong> give the usual <em>smooth</em> loop space (free or based). It gives the space of paths with coincident endpoints rather than the space of smooth maps from the circle. Thus the <a class="existingWikiWord" href="/nlab/show/smooth+loop+space">smooth loop space</a> is not a loop space object.</p> </li> </ul> <h2 id="examples">Examples</h2> <ul> <li> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>=</mo></mrow><annotation encoding="application/x-tex">C =</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Top">Top</a> with the standard <a class="existingWikiWord" href="/nlab/show/interval+object">interval object</a>. Then for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo>=</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">B= X</annotation></semantics></math> a topological space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Λ</mi><mi>B</mi><mo>=</mo><mi>Λ</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">\Lambda B = \Lambda X</annotation></semantics></math> is the ordinary free <a class="existingWikiWord" href="/nlab/show/loop+space">loop space</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p> <p>The generalization of this to <em>smooth</em> spaces is discussed at <a class="existingWikiWord" href="/nlab/show/smooth+loop+space">smooth loop space</a>.</p> </li> <li> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>=</mo></mrow><annotation encoding="application/x-tex">C = </annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Grpd">Grpd</a> with the standard interval object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mo>=</mo><mo stretchy="false">{</mo><mi>a</mi><mover><mo>→</mo><mo>≃</mo></mover><mi>b</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">I = \{a \stackrel{\simeq}{\to} b\}</annotation></semantics></math> and let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding="application/x-tex">\mathbf{B}G</annotation></semantics></math> be the one-object groupoid corresponding to a group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>, then</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Λ</mi><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><msub><mo stretchy="false">/</mo> <mi>Ad</mi></msub><mi>G</mi></mrow><annotation encoding="application/x-tex"> \Lambda \mathbf{B}G = G//_{Ad}G </annotation></semantics></math></div> <p>is the <a class="existingWikiWord" href="/nlab/show/action+groupoid">action groupoid</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> acting on itself by its adjoint action. Notice the example at <a class="existingWikiWord" href="/nlab/show/co-span+co-trace">co-span co-trace</a> which says that the cotrace on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>cotr</mi><mo stretchy="false">(</mo><mi>I</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">cotr(I) = \mathbf{B}\mathbb{Z}</annotation></semantics></math>, and indeed</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Λ</mi><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi><mo>=</mo><mo stretchy="false">[</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>ℤ</mi><mo>,</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi><mo stretchy="false">]</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \Lambda \mathbf{B}G = [\mathbf{B}\mathbb{Z}, \mathbf{B}G] \,. </annotation></semantics></math></div> <p>The role of this <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Λ</mi><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding="application/x-tex">\Lambda \mathbf{B}G</annotation></semantics></math> as a loop object is amplified in particular in</p> <ul> <li> <p>Simon Willerton, <em>The twisted Drinfeld double of a finite group via gerbes and finite groupoids</em> (<a href="http://arxiv.org/abs/math.QA/0503266">arXiv</a>)</p> </li> <li> <p>Bruce Bartlett, <em>On unitary 2-representations of finite groups and topological quantum field theory</em> (<a href="http://arxiv.org/abs/0901.3975">arXiv</a>)</p> </li> </ul> </li> <li> <p>On the other hand, the <em>based</em> loop object of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding="application/x-tex">\mathbf{B}G</annotation></semantics></math> is just <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Ω</mi><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi><mo>=</mo><mi>G</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \Omega \mathbf{B}G = G \,. </annotation></semantics></math></div></li> </ul> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><strong>loop space object</strong>, <a class="existingWikiWord" href="/nlab/show/free+loop+space+object">free loop space object</a></p> <p><a class="existingWikiWord" href="/nlab/show/loop+space+type">loop space type</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/delooping">delooping</a>, <a class="existingWikiWord" href="/nlab/show/looping+and+delooping">looping and delooping</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/loop+space">loop space</a>, <a class="existingWikiWord" href="/nlab/show/free+loop+space">free loop space</a>, <a class="existingWikiWord" href="/nlab/show/derived+loop+space">derived loop space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inertia+orbifold">inertia orbifold</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/suspension+object">suspension object</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/suspension">suspension</a>, <a class="existingWikiWord" href="/nlab/show/reduced+suspension">reduced suspension</a></li> </ul> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on December 5, 2022 at 04:20:14. See the <a href="/nlab/history/loop+space+object" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/loop+space+object" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/12220/#Item_4">Discuss</a><span class="backintime"><a href="/nlab/revision/loop+space+object/33" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/loop+space+object" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/loop+space+object" accesskey="S" class="navlink" id="history" rel="nofollow">History (33 revisions)</a> <a href="/nlab/show/loop+space+object/cite" style="color: black">Cite</a> <a href="/nlab/print/loop+space+object" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/loop+space+object" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>