CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 142 results for author: <span class="mathjax">Deeg, H J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Deeg, H J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Deeg%2C+H+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Deeg, H J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07285">arXiv:2410.07285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07285">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Impact of Exoplanet Science on Society: Professional Contributions, Citizen Science Engagement and Public Perception </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07285v1-abstract-short" style="display: inline;"> The impact of exoplanet science on both the scientific community and on the general public is presented through various indicators and examples. It is estimated that about 3-4% of all refereed astronomy articles focus on exoplanets, and between 15-20% percent of current, and up to 25% of upcoming astronomy space missions are dedicated to exoplanet research. Also, about 15-20% of the science cases&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07285v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07285v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07285v1-abstract-full" style="display: none;"> The impact of exoplanet science on both the scientific community and on the general public is presented through various indicators and examples. It is estimated that about 3-4% of all refereed astronomy articles focus on exoplanets, and between 15-20% percent of current, and up to 25% of upcoming astronomy space missions are dedicated to exoplanet research. Also, about 15-20% of the science cases for large multi-purpose ground-based astronomical instruments involve exoplanet science. Interactions between the scientific community and the public occur on several levels and play a crucial role in shaping the future of exoplanet science. The rise of citizen science platforms and the successes of coordinated observing projects involving amateur astronomers have engaged the public in meaningful scientific contributions, and contribute to some areas of discovery and characterization of exoplanet systems, for which several examples are given. These initiatives not only fuel public interest in the search for extraterrestrial life but also promote STEM education, broadening participation in science. Lastly, the changing perception of the informed public about the existence of &#34;other Earths&#34; and life in the Universe in the light of results from exoplanet science is outlined. Media coverage of results from exoplanet science has furthered the acceptance that extraterrestrial life, be it intelligent of not, is not rare in the Universe. The shift in perception that such life might be detected in a potentially not very distant future has, in turn, promoted public support for the research infrastructure necessary to sustain the growth of exoplanetology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07285v1-abstract-full').style.display = 'none'; document.getElementById('2410.07285v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in: Handbook of Exoplanets, 2nd Edition, Hans Deeg and Juan Antonio Belmonte (Eds. in Chief), Springer International Publishing AG, part of Springer Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17532">arXiv:2409.17532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17532">pdf</a>, <a href="https://arxiv.org/format/2409.17532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451057">10.1051/0004-6361/202451057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TOI-2458 b: A mini-Neptune consistent with in situ hot Jupiter formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=%C5%A0ubjak%2C+J">J谩n 艩ubjak</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Goffo%2C+E">Elisa Goffo</a>, <a href="/search/?searchtype=author&amp;query=Rapetti%2C+D">David Rapetti</a>, <a href="/search/?searchtype=author&amp;query=Jankowski%2C+D">Dawid Jankowski</a>, <a href="/search/?searchtype=author&amp;query=Mizuki%2C+T">Toshiyuki Mizuki</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">Fei Dai</a>, <a href="/search/?searchtype=author&amp;query=Serrano%2C+L+M">Luisa M. Serrano</a>, <a href="/search/?searchtype=author&amp;query=Wilson%2C+T+G">Thomas G. Wilson</a>, <a href="/search/?searchtype=author&amp;query=Go%C5%BAdziewski%2C+K">Krzysztof Go藕dziewski</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">Grzegorz Nowak</a>, <a href="/search/?searchtype=author&amp;query=Jenkins%2C+J+M">Jon M. Jenkins</a>, <a href="/search/?searchtype=author&amp;query=Twicken%2C+J+D">Joseph D. Twicken</a>, <a href="/search/?searchtype=author&amp;query=Winn%2C+J+N">Joshua N. Winn</a>, <a href="/search/?searchtype=author&amp;query=Bieryla%2C+A">Allyson Bieryla</a>, <a href="/search/?searchtype=author&amp;query=Ciardi%2C+D+R">David R. Ciardi</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">William D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">Karen A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa%2C+R+A">Rafael A. Garc铆a</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E+W">Eike W. Guenther</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A+P">Artie P. Hatzes</a>, <a href="/search/?searchtype=author&amp;query=Kab%C3%A1th%2C+P">Petr Kab谩th</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">Judith Korth</a>, <a href="/search/?searchtype=author&amp;query=Latham%2C+D+W">David W. Latham</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17532v2-abstract-short" style="display: inline;"> We report on the discovery and spectroscopic confirmation of TOI-2458 b, a transiting mini-Neptune around an F-type star leaving the main-sequence with a mass of $M_\star=1.05 \pm 0.03$ M$_{\odot}$, a radius of $R_\star=1.31 \pm 0.03$ R$_{\odot}$, an effective temperature of $T_{\rm eff}=6005\pm50$ K, and a metallicity of $-0.10\pm0.05$ dex. By combining TESS photometry with high-resolution spectr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17532v2-abstract-full').style.display = 'inline'; document.getElementById('2409.17532v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17532v2-abstract-full" style="display: none;"> We report on the discovery and spectroscopic confirmation of TOI-2458 b, a transiting mini-Neptune around an F-type star leaving the main-sequence with a mass of $M_\star=1.05 \pm 0.03$ M$_{\odot}$, a radius of $R_\star=1.31 \pm 0.03$ R$_{\odot}$, an effective temperature of $T_{\rm eff}=6005\pm50$ K, and a metallicity of $-0.10\pm0.05$ dex. By combining TESS photometry with high-resolution spectra acquired with the HARPS spectrograph, we found that the transiting planet has an orbital period of $\sim$3.74 days, a mass of $M_p=13.31\pm0.99$ M$_{\oplus}$ and a radius of $R_p=2.83\pm0.20$ R$_{\oplus}$. The host star TOI-2458 shows a short activity cycle of $\sim$54 days revealed in the HARPS S-index and H$伪$ times series. We took the opportunity to investigate other F stars showing activity cycle periods comparable to that of TOI-2458 and found that they have shorter rotation periods than would be expected based on the gyrochronology predictions. In addition, we determined TOI-2458&#39;s stellar inclination angle to be $i_\star\,=\,10.6_{-10.6}^{+13.3}$ degrees. We discuss that both phenomena (fast stellar rotation and planet orbit inclination) could be explained by in situ formation of a hot Jupiter interior to TOI-2458 b. It is plausible that this hot Jupiter was recently engulfed by the star. Analysis of HARPS spectra has identified the presence of another planet with a period of $P\,=\,16.55\pm0.06$ days and a minimum mass of $M_p \sin i=10.22\pm1.90$ M$_{\oplus}$. Using dynamical stability analysis, we constrained the mass of this planet to the range $M_{c} \simeq (10, 25)$ M$_{\oplus}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17532v2-abstract-full').style.display = 'none'; document.getElementById('2409.17532v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 20 figures, accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 693, A235 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16328">arXiv:2408.16328</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16328">pdf</a>, <a href="https://arxiv.org/format/2408.16328">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The curious case of 2MASS J15594729+4403595, an ultra-fast M2 dwarf with possible Rieger cycles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Messina%2C+S">S. Messina</a>, <a href="/search/?searchtype=author&amp;query=Catanzaro%2C+G">G. Catanzaro</a>, <a href="/search/?searchtype=author&amp;query=Lanza%2C+A+F">A. F. Lanza</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Serrano%2C+M+M">M. M. Serrano</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Alvarez%2C+D">D. Garcia-Alvarez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16328v1-abstract-short" style="display: inline;"> RACE-OC (Rotation and ACtivity Evolution in Open Clusters) is a project aimed at characterising the rotational and magnetic activity properties of the late-type members of open clusters, stellar associations, and moving groups of different ages. As part of this project, in the present paper we present the results of an investigation of a likely member of the AB Doradus association, the M-type star&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16328v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16328v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16328v1-abstract-full" style="display: none;"> RACE-OC (Rotation and ACtivity Evolution in Open Clusters) is a project aimed at characterising the rotational and magnetic activity properties of the late-type members of open clusters, stellar associations, and moving groups of different ages. As part of this project, in the present paper we present the results of an investigation of a likely member of the AB Doradus association, the M-type star 2MASS J15594729+4403595.} {In the present study, we aim to reveal the real nature of our target, which turned out to be a hierarchical triple system, to derive the stellar rotation period and surface differential rotation, and to characterise its photospheric magnetic activity.} {We have collected radial velocity and photometric time series, complemented with archive data, to determine the orbital parameters and the rotation period and we have used the spot modelling technique to explore what causes its photometric variability. \rm } {We found 2MASS J15594729 +4403595 to be a hierarchical triple system consisting of a dwarf, SB1 M2, and a companion, M8. The M2 star has a rotation period of P = 0.37\,d, making it the fastest among M-type members of AB Dor. The most relevant result is the detection of a periodic variation in the spotted area on opposite stellar hemispheres, which resembles a sort of Rossby wave or Rieger-like cycles on an extremely short timescale. Another interesting result is the occurrence of a highly significant photometric periodicity, P = 0.443\,d, which may be related to the stellar rotation in terms of either a Rossby wave or surface differential rotation.} {2MASS J15594729+4403595 may be the prototype of a new class of extremely fast rotating stars exibiting short Rieger-like cycles. We shall further explore what may drive these short-duration cycles and we shall also search for similar stars to allow for a statistical analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16328v1-abstract-full').style.display = 'none'; document.getElementById('2408.16328v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15307">arXiv:2408.15307</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15307">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The Way To Circumbinary Planets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J Deeg</a>, <a href="/search/?searchtype=author&amp;query=Doyle%2C+L+R">Laurance R Doyle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15307v1-abstract-short" style="display: inline;"> Circumbinary planets (CBPs) are planets that orbit around both stars of a binary system. This chapter traces the history of research on CBPs and provides an overview over the current knowledge about CBPs and their detection methods. After early speculations about CBPs, inspired by binary star systems and popularized by fictional works, their scientific exploration began with the identification of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15307v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15307v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15307v1-abstract-full" style="display: none;"> Circumbinary planets (CBPs) are planets that orbit around both stars of a binary system. This chapter traces the history of research on CBPs and provides an overview over the current knowledge about CBPs and their detection methods. After early speculations about CBPs, inspired by binary star systems and popularized by fictional works, their scientific exploration began with the identification of circumbinary dust disks and progressed to the detection and characterization of the current sample of CBPs. The major part of this review presents the detection methods for CBPs: eclipse timing variations from the light-travel-time effect and from dynamical interactions, transits, radial velocities, direct imaging, gravitational microlensing and astrometry. Each of these methods is described with its strengths and limitations and the main characeristics of the CBP systems found by them are outlined. The potential habitability of CBPs is considered, taking into account the unique environmental conditions created by orbiting a stellar binary. The importance of multi-method detection strategies is underscored, and future advancements from upcoming missions like PLATO are anticipated, promising to expand the understanding of these intriguing celestial bodies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15307v1-abstract-full').style.display = 'none'; document.getElementById('2408.15307v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in: Handbook of Exoplanets, 2nd Edition, Hans Deeg and Juan Antonio Belmonte (Eds. in Chief), Springer International Publishing AG, part of Springer Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06897">arXiv:2408.06897</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06897">pdf</a>, <a href="https://arxiv.org/format/2408.06897">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450038">10.1051/0004-6361/202450038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Five new eclipsing binaries with low-mass companions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lipt%C3%A1k%2C+J">J. Lipt谩k</a>, <a href="/search/?searchtype=author&amp;query=Skarka%2C+M">M. Skarka</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E">E. Guenther</a>, <a href="/search/?searchtype=author&amp;query=Chaturvedi%2C+P">P. Chaturvedi</a>, <a href="/search/?searchtype=author&amp;query=V%C3%ADtkov%C3%A1%2C+M">M. V铆tkov谩</a>, <a href="/search/?searchtype=author&amp;query=Karjalainen%2C+R">R. Karjalainen</a>, <a href="/search/?searchtype=author&amp;query=%C5%A0ubjak%2C+J">J. 艩ubjak</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A">A. Hatzes</a>, <a href="/search/?searchtype=author&amp;query=Bieryla%2C+A">A. Bieryla</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S+H">S. H. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Beck%2C+P+G">P. G. Beck</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Everett%2C+M+E">M. E. Everett</a>, <a href="/search/?searchtype=author&amp;query=Higuera%2C+J">J. Higuera</a>, <a href="/search/?searchtype=author&amp;query=Jones%2C+D">D. Jones</a>, <a href="/search/?searchtype=author&amp;query=Mathur%2C+S">S. Mathur</a>, <a href="/search/?searchtype=author&amp;query=Patel%2C+Y+G">Y. G. Patel</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">C. M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Redfield%2C+S">S. Redfield</a>, <a href="/search/?searchtype=author&amp;query=Kab%C3%A1th%2C+P">P. Kab谩th</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06897v1-abstract-short" style="display: inline;"> Precise space-based photometry from the Transiting Exoplanet Survey Satellite results in a huge number of exoplanetary candidates. However, the masses of these objects are unknown and must be determined by ground-based spectroscopic follow-up observations, frequently revealing the companions to be low-mass stars rather than exoplanets. We present the first orbital and stellar parameter solutions f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06897v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06897v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06897v1-abstract-full" style="display: none;"> Precise space-based photometry from the Transiting Exoplanet Survey Satellite results in a huge number of exoplanetary candidates. However, the masses of these objects are unknown and must be determined by ground-based spectroscopic follow-up observations, frequently revealing the companions to be low-mass stars rather than exoplanets. We present the first orbital and stellar parameter solutions for five such eclipsing binary-star systems using radial-velocity follow-up measurements together with spectral-energy-distribution solutions. TOI-416 and TOI-1143 are totally eclipsing F+M star systems with well-determined secondary masses, radii, and temperatures. TOI-416 is a circular system with an F6 primary and a secondary with a mass of $M_2={0.131(8)}{M_\odot}$. TOI-1143 consists of an F6 primary with an $M_2={0.142(3)}{M_\odot}$ secondary on an eccentric orbit with a third companion. With respect to the other systems, TOI-1153 shows ellipsoidal variations, TOI-1615 contains a pulsating primary, and TOI-1788 has a spotted primary, while all have moderate mass ratios of 0.2-0.4. However, these systems are in a grazing configuration, which limits their full description. The parameters of TOI-416B and TOI-1143B are suitable for the calibration of the radius-mass relation for dwarf stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06897v1-abstract-full').style.display = 'none'; document.getElementById('2408.06897v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A&amp;A accepted on 06/06/2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17798">arXiv:2407.17798</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17798">pdf</a>, <a href="https://arxiv.org/format/2407.17798">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad65fd">10.3847/2041-8213/ad65fd <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TOI-1408: Discovery and Photodynamical Modeling of a Small Inner Companion to a Hot Jupiter Revealed by TTVs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Korth%2C+J">Judith Korth</a>, <a href="/search/?searchtype=author&amp;query=Chaturvedi%2C+P">Priyanka Chaturvedi</a>, <a href="/search/?searchtype=author&amp;query=Parviainen%2C+H">Hannu Parviainen</a>, <a href="/search/?searchtype=author&amp;query=Carleo%2C+I">Ilaria Carleo</a>, <a href="/search/?searchtype=author&amp;query=Endl%2C+M">Michael Endl</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E+W">Eike W. Guenther</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">Grzegorz Nowak</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C">Carina Persson</a>, <a href="/search/?searchtype=author&amp;query=MacQueen%2C+P+J">Phillip J. MacQueen</a>, <a href="/search/?searchtype=author&amp;query=Mustill%2C+A+J">Alexander J. Mustill</a>, <a href="/search/?searchtype=author&amp;query=Cabrera%2C+J">Juan Cabrera</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">William D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Lillo-Box%2C+J">Jorge Lillo-Box</a>, <a href="/search/?searchtype=author&amp;query=Hobbs%2C+D">David Hobbs</a>, <a href="/search/?searchtype=author&amp;query=Murgas%2C+F">Felipe Murgas</a>, <a href="/search/?searchtype=author&amp;query=Greklek-McKeon%2C+M">Michael Greklek-McKeon</a>, <a href="/search/?searchtype=author&amp;query=Kellermann%2C+H">Hanna Kellermann</a>, <a href="/search/?searchtype=author&amp;query=H%C3%A9brard%2C+G">Guillaume H茅brard</a>, <a href="/search/?searchtype=author&amp;query=Fukui%2C+A">Akihiko Fukui</a>, <a href="/search/?searchtype=author&amp;query=Pall%C3%A9%2C+E">Enric Pall茅</a>, <a href="/search/?searchtype=author&amp;query=Jenkins%2C+J+M">Jon M. Jenkins</a>, <a href="/search/?searchtype=author&amp;query=Twicken%2C+J+D">Joseph D. Twicken</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">Karen A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Quinn%2C+S+N">Samuel N. Quinn</a>, <a href="/search/?searchtype=author&amp;query=%C5%A0ubjak%2C+J">J谩n 艩ubjak</a> , et al. (38 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17798v1-abstract-short" style="display: inline;"> We report the discovery and characterization of a small planet, TOI-1408 c, on a 2.2-day orbit located interior to a previously known hot Jupiter, TOI-1408 b ($P=4.42$ d, $M=1.86\pm0.02\,M_\mathrm{Jup}$, $R=2.4\pm0.5\,R_\mathrm{Jup}$) that exhibits grazing transits. The two planets are near 2:1 period commensurability, resulting in significant transit timing variations (TTVs) for both planets and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17798v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17798v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17798v1-abstract-full" style="display: none;"> We report the discovery and characterization of a small planet, TOI-1408 c, on a 2.2-day orbit located interior to a previously known hot Jupiter, TOI-1408 b ($P=4.42$ d, $M=1.86\pm0.02\,M_\mathrm{Jup}$, $R=2.4\pm0.5\,R_\mathrm{Jup}$) that exhibits grazing transits. The two planets are near 2:1 period commensurability, resulting in significant transit timing variations (TTVs) for both planets and transit duration variations (TDVs) for the inner planet. The TTV amplitude for TOI-1408 c is 15% of the planet&#39;s orbital period, marking the largest TTV amplitude relative to the orbital period measured to date. Photodynamical modeling of ground-based radial velocity (RV) observations and transit light curves obtained with the Transiting Exoplanet Survey Satellite (TESS) and ground-based facilities leads to an inner planet radius of $2.22\pm0.06\,R_\oplus$ and mass of $7.6\pm0.2\,M_\oplus$ that locates the planet into the Sub-Neptune regime. The proximity to the 2:1 period commensurability leads to the libration of the resonant argument of the inner planet. The RV measurements support the existence of a third body with an orbital period of several thousand days. This discovery places the system among the rare systems featuring a hot Jupiter accompanied by an inner low-mass planet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17798v1-abstract-full').style.display = 'none'; document.getElementById('2407.17798v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJL, 17 pages, 6 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04503">arXiv:2401.04503</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04503">pdf</a>, <a href="https://arxiv.org/format/2401.04503">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Ground-Based Photometric Follow-up for Exoplanet Detections with the PLATO Mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Alonso%2C+R">R. Alonso</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04503v1-abstract-short" style="display: inline;"> Detections of transiting planets from the upcoming PLATO mission are expected to face significant contamination from contaminating eclipsing binaries, resulting in false positives. To counter this, a ground-based programme to acquire time-critical photometry is pursued. Its principal aim is to obtain time-series observations of the planet candidate and its surrounding stars at the times of expecte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04503v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04503v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04503v1-abstract-full" style="display: none;"> Detections of transiting planets from the upcoming PLATO mission are expected to face significant contamination from contaminating eclipsing binaries, resulting in false positives. To counter this, a ground-based programme to acquire time-critical photometry is pursued. Its principal aim is to obtain time-series observations of the planet candidate and its surrounding stars at the times of expected transits. This programme is part of the PLATO Ground-based Observations Programme, which also covers spectroscopic and imaging observations. The current photometric follow-up programme is assembling the required observational resources, executing benchmark observations, and defining strategies for the observations and their reporting. Post-launch, it will focus on coordinating photometric data collection and analysis, and will update candidate statuses in the PLATO follow-up database. Its work packages are outlined, covering specific tools, citizen contributions, standard and multi-colour observations, secondary eclipses, and reprocessing of archival photometry. Ground-based follow-up photometry will likely concentrate on longer-period candidates, given that false positives of short-period candidates will likely become identifiable in timeseries available from GAIA in the near future. Geographical considerations for follow-up observations from the first PLATO long-observation field LOPS2 are outlined, which lies in the southern hemisphere, with later fields expected to be more suitable for northern observers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04503v1-abstract-full').style.display = 'none'; document.getElementById('2401.04503v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of &#34;Observing techniques, instrumentation, and science for metre-class telescopes III&#34; (September 11-15, 2023, Stara Lesna, Slovakia), to be published in Contributions of the Astronomical Observatory Skalnat茅 Pleso</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17775">arXiv:2311.17775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17775">pdf</a>, <a href="https://arxiv.org/format/2311.17775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06692-3">10.1038/s41586-023-06692-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Luque%2C+R">R. Luque</a>, <a href="/search/?searchtype=author&amp;query=Osborn%2C+H+P">H. P. Osborn</a>, <a href="/search/?searchtype=author&amp;query=Leleu%2C+A">A. Leleu</a>, <a href="/search/?searchtype=author&amp;query=Pall%C3%A9%2C+E">E. Pall茅</a>, <a href="/search/?searchtype=author&amp;query=Bonfanti%2C+A">A. Bonfanti</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">O. Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Wilson%2C+T+G">T. G. Wilson</a>, <a href="/search/?searchtype=author&amp;query=Broeg%2C+C">C. Broeg</a>, <a href="/search/?searchtype=author&amp;query=Cameron%2C+A+C">A. Collier Cameron</a>, <a href="/search/?searchtype=author&amp;query=Lendl%2C+M">M. Lendl</a>, <a href="/search/?searchtype=author&amp;query=Maxted%2C+P+F+L">P. F. L. Maxted</a>, <a href="/search/?searchtype=author&amp;query=Alibert%2C+Y">Y. Alibert</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Delisle%2C+J+-">J. -B. Delisle</a>, <a href="/search/?searchtype=author&amp;query=Hooton%2C+M+J">M. J. Hooton</a>, <a href="/search/?searchtype=author&amp;query=Egger%2C+J+A">J. A. Egger</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">G. Nowak</a>, <a href="/search/?searchtype=author&amp;query=Lafarga%2C+M">M. Lafarga</a>, <a href="/search/?searchtype=author&amp;query=Rapetti%2C+D">D. Rapetti</a>, <a href="/search/?searchtype=author&amp;query=Twicken%2C+J+D">J. D. Twicken</a>, <a href="/search/?searchtype=author&amp;query=Morales%2C+J+C">J. C. Morales</a>, <a href="/search/?searchtype=author&amp;query=Carleo%2C+I">I. Carleo</a>, <a href="/search/?searchtype=author&amp;query=Orell-Miquel%2C+J">J. Orell-Miquel</a>, <a href="/search/?searchtype=author&amp;query=Adibekyan%2C+V">V. Adibekyan</a>, <a href="/search/?searchtype=author&amp;query=Alonso%2C+R">R. Alonso</a> , et al. (127 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17775v1-abstract-short" style="display: inline;"> Planets with radii between that of the Earth and Neptune (hereafter referred to as sub-Neptunes) are found in close-in orbits around more than half of all Sun-like stars. Yet, their composition, formation, and evolution remain poorly understood. The study of multi-planetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17775v1-abstract-full').style.display = 'inline'; document.getElementById('2311.17775v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17775v1-abstract-full" style="display: none;"> Planets with radii between that of the Earth and Neptune (hereafter referred to as sub-Neptunes) are found in close-in orbits around more than half of all Sun-like stars. Yet, their composition, formation, and evolution remain poorly understood. The study of multi-planetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here, we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94 to 2.85 Re. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17775v1-abstract-full').style.display = 'none'; document.getElementById('2311.17775v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Nature on November 30, 2023. Supplementary Information can be found in the online version of the paper in the journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 623, 932-937 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14908">arXiv:2310.14908</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14908">pdf</a>, <a href="https://arxiv.org/format/2310.14908">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> TOI-544 b: a potential water-world inside the radius valley in a two-planet system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Osborne%2C+H+L+M">H. L. M. Osborne</a>, <a href="/search/?searchtype=author&amp;query=Van+Eylen%2C+V">V. Van Eylen</a>, <a href="/search/?searchtype=author&amp;query=Goffo%2C+E">E. Goffo</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">G. Nowak</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">C. M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J">J. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Weeks%2C+A">A. Weeks</a>, <a href="/search/?searchtype=author&amp;query=Pall%C3%A9%2C+E">E. Pall茅</a>, <a href="/search/?searchtype=author&amp;query=Luque%2C+R">R. Luque</a>, <a href="/search/?searchtype=author&amp;query=Hellier%2C+C">C. Hellier</a>, <a href="/search/?searchtype=author&amp;query=Carleo%2C+I">I. Carleo</a>, <a href="/search/?searchtype=author&amp;query=Redfield%2C+S">S. Redfield</a>, <a href="/search/?searchtype=author&amp;query=Hirano%2C+T">T. Hirano</a>, <a href="/search/?searchtype=author&amp;query=Gili%2C+M+G">M. Garbaccio Gili</a>, <a href="/search/?searchtype=author&amp;query=Alarcon%2C+J">J. Alarcon</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">O. Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Casasayas-Barris%2C+N">N. Casasayas-Barris</a>, <a href="/search/?searchtype=author&amp;query=D%C3%ADaz%2C+M+R">M. R. D铆az</a>, <a href="/search/?searchtype=author&amp;query=Esposito%2C+M">M. Esposito</a>, <a href="/search/?searchtype=author&amp;query=Jenkins%2C+J+S">J. S. Jenkins</a>, <a href="/search/?searchtype=author&amp;query=Knudstrup%2C+E">E. Knudstrup</a>, <a href="/search/?searchtype=author&amp;query=Murgas%2C+F">F. Murgas</a>, <a href="/search/?searchtype=author&amp;query=Orell-Miquel%2C+J">J. Orell-Miquel</a>, <a href="/search/?searchtype=author&amp;query=Rodler%2C+F">F. Rodler</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14908v2-abstract-short" style="display: inline;"> We report on the precise radial velocity follow-up of TOI-544 (HD 290498), a bright K star (V=10.8), which hosts a small transiting planet recently discovered by the Transiting Exoplanet Survey Satellite (TESS). We collected 122 high-resolution HARPS and HARPS-N spectra to spectroscopically confirm the transiting planet and measure its mass. The nearly 3-year baseline of our follow-up allowed us t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14908v2-abstract-full').style.display = 'inline'; document.getElementById('2310.14908v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14908v2-abstract-full" style="display: none;"> We report on the precise radial velocity follow-up of TOI-544 (HD 290498), a bright K star (V=10.8), which hosts a small transiting planet recently discovered by the Transiting Exoplanet Survey Satellite (TESS). We collected 122 high-resolution HARPS and HARPS-N spectra to spectroscopically confirm the transiting planet and measure its mass. The nearly 3-year baseline of our follow-up allowed us to unveil the presence of an additional, non-transiting, longer-period companion planet. We derived a radius and mass for the inner planet, TOI-544b, of 2.018 $\pm$ 0.076 R$_{\oplus}$ and 2.89 $\pm$ 0.48 M$_{\oplus}$ respectively, which gives a bulk density of $1.93^{+0.30}_{-0.25}$ g cm$^{-3}$. TOI-544c has a minimum mass of 21.5 $\pm$ 2.0 M$_{\oplus}$ and orbital period of 50.1 $\pm$ 0.2 days. The low density of planet-b implies that it has either an Earth-like rocky core with a hydrogen atmosphere, or a composition which harbours a significant fraction of water. The composition interpretation is degenerate depending on the specific choice of planet interior models used. Additionally, TOI-544b has an orbital period of 1.55 days and equilibrium temperature of 999 $\pm$ 14 K, placing it within the predicted location of the radius valley, where few planets are expected. TOI-544b is a top target for future atmospheric observations, for example with JWST, which would enable better constraints of the planet composition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14908v2-abstract-full').style.display = 'none'; document.getElementById('2310.14908v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in MNRAS, 06 December 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.09255">arXiv:2308.09255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.09255">pdf</a>, <a href="https://arxiv.org/format/2308.09255">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> A $5M_\text{Jup}$ Non-Transiting Coplanar Circumbinary Planet Around Kepler-1660AB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Goldberg%2C+M">Max Goldberg</a>, <a href="/search/?searchtype=author&amp;query=Fabrycky%2C+D">Daniel Fabrycky</a>, <a href="/search/?searchtype=author&amp;query=Martin%2C+D+V">David V. Martin</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">Simon Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">Grzegorz Nowak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.09255v1-abstract-short" style="display: inline;"> Over a dozen transiting circumbinary planets have been discovered around eclipsing binaries. Transit detections are biased towards aligned planet and binary orbits, and indeed all of the known planets have mutual inclinations less than $4.5^{\circ}$. One path to discovering circumbinary planets with misaligned orbits is through eclipse timing variations (ETVs) of non-transiting planets. Borkovits&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09255v1-abstract-full').style.display = 'inline'; document.getElementById('2308.09255v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.09255v1-abstract-full" style="display: none;"> Over a dozen transiting circumbinary planets have been discovered around eclipsing binaries. Transit detections are biased towards aligned planet and binary orbits, and indeed all of the known planets have mutual inclinations less than $4.5^{\circ}$. One path to discovering circumbinary planets with misaligned orbits is through eclipse timing variations (ETVs) of non-transiting planets. Borkovits et al. (2016) discovered ETVs on the 18.6 d binary Kepler-1660AB, indicative of a third body on a $\approx 236$ d period, with a misaligned orbit and a potentially planetary mass. Getley et al. (2017) agreed with the planetary hypothesis, arguing for a $7.7M_{\rm Jup}$ circumbinary planet on an orbit that is highly misaligned by $120^{\circ}$ with respect to the binary. In this paper, we obtain the first radial velocities of the binary. We combine these with an analysis of not only the ETVs but also the eclipse depth variations. We confirm the existence of a $239.5$ d circumbinary planet, but with a lower mass of $4.87M_{\rm Jup}$ and a coplanar orbit. The misaligned orbits proposed by previous authors are definitively ruled out by a lack of eclipse depth variations. Kepler-1660ABb is the first confirmed circumbinary planet found using ETVs around a main sequence binary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09255v1-abstract-full').style.display = 'none'; document.getElementById('2308.09255v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Resubmitted to MNRAS following positive referee report</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09181">arXiv:2307.09181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.09181">pdf</a>, <a href="https://arxiv.org/format/2307.09181">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ace0c7">10.3847/2041-8213/ace0c7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Company for the ultra-high density, ultra-short period sub-Earth GJ 367 b: discovery of two additional low-mass planets at 11.5 and 34 days </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Goffo%2C+E">Elisa Goffo</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Egger%2C+J+A">Jo Ann Egger</a>, <a href="/search/?searchtype=author&amp;query=Mustill%2C+A+J">Alexander J. Mustill</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S+H">Simon H. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Hirano%2C+T">Teruyuki Hirano</a>, <a href="/search/?searchtype=author&amp;query=Kochukhov%2C+O">Oleg Kochukhov</a>, <a href="/search/?searchtype=author&amp;query=Astudillo-Defru%2C+N">Nicola Astudillo-Defru</a>, <a href="/search/?searchtype=author&amp;query=Barragan%2C+O">Oscar Barragan</a>, <a href="/search/?searchtype=author&amp;query=Serrano%2C+L+M">Luisa M. Serrano</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A+P">Artie P. Hatzes</a>, <a href="/search/?searchtype=author&amp;query=Alibert%2C+Y">Yann Alibert</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E">Eike Guenther</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">Fei Dai</a>, <a href="/search/?searchtype=author&amp;query=Lam%2C+K+W+F">Kristine W. F. Lam</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Szil谩rd Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+A+M+S">Alexis M. S. Smith</a>, <a href="/search/?searchtype=author&amp;query=Fossati%2C+L">Luca Fossati</a>, <a href="/search/?searchtype=author&amp;query=Luque%2C+R">Rafael Luque</a>, <a href="/search/?searchtype=author&amp;query=Rodler%2C+F">Florian Rodler</a>, <a href="/search/?searchtype=author&amp;query=Winther%2C+M+L">Mark L. Winther</a>, <a href="/search/?searchtype=author&amp;query=R%C3%B8rsted%2C+J+L">Jakob L. R酶rsted</a>, <a href="/search/?searchtype=author&amp;query=Alarcon%2C+J">Javier Alarcon</a>, <a href="/search/?searchtype=author&amp;query=Bonfils%2C+X">Xavier Bonfils</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">William D. Cochran</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09181v1-abstract-short" style="display: inline;"> GJ 367 is a bright (V $\approx$ 10.2) M1 V star that has been recently found to host a transiting ultra-short period sub-Earth on a 7.7 hr orbit. With the aim of improving the planetary mass and radius and unveiling the inner architecture of the system, we performed an intensive radial velocity follow-up campaign with the HARPS spectrograph -- collecting 371 high-precision measurements over a base&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09181v1-abstract-full').style.display = 'inline'; document.getElementById('2307.09181v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09181v1-abstract-full" style="display: none;"> GJ 367 is a bright (V $\approx$ 10.2) M1 V star that has been recently found to host a transiting ultra-short period sub-Earth on a 7.7 hr orbit. With the aim of improving the planetary mass and radius and unveiling the inner architecture of the system, we performed an intensive radial velocity follow-up campaign with the HARPS spectrograph -- collecting 371 high-precision measurements over a baseline of nearly 3 years -- and combined our Doppler measurements with new TESS observations from sectors 35 and 36. We found that GJ 367 b has a mass of $M_\mathrm{b}$ = 0.633 $\pm$ 0.050 M$_{\oplus}$ and a radius of $R_\mathrm{b}$ = 0.699 $\pm$ 0.024 R$_{\oplus}$, corresponding to precisions of 8% and 3.4%, respectively. This implies a planetary bulk density of $蟻_\mathrm{b}$ = 10.2 $\pm$ 1.3 g cm$^{-3}$, i.e., 85% higher than Earth&#39;s density. We revealed the presence of two additional non transiting low-mass companions with orbital periods of $\sim$11.5 and 34 days and minimum masses of $M_\mathrm{c}\sin{i_\mathrm{c}}$ = 4.13 $\pm$ 0.36 M$_{\oplus}$ and $M_\mathrm{d}\sin{i_\mathrm{d}}$ = 6.03 $\pm$ 0.49 M$_{\oplus}$, respectively, which lie close to the 3:1 mean motion commensurability. GJ 367 b joins the small class of high-density planets, namely the class of super-Mercuries, being the densest ultra-short period small planet known to date. Thanks to our precise mass and radius estimates, we explored the potential internal composition and structure of GJ 367 b, and found that it is expected to have an iron core with a mass fraction of 0.91$^{+0.07}_{-0.23}$. How this iron core is formed and how such a high density is reached is still not clear, and we discuss the possible pathways of formation of such a small ultra-dense planet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09181v1-abstract-full').style.display = 'none'; document.getElementById('2307.09181v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 11 figures. Accepted for publication in ApJL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL 955 L3 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18542">arXiv:2305.18542</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.18542">pdf</a>, <a href="https://arxiv.org/format/2305.18542">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346370">10.1051/0004-6361/202346370 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TOI-1416: A system with a super-Earth planet with a 1.07d period </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Georgieva%2C+I+Y">I. Y. Georgieva</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">G. Nowak</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">C. M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Cale%2C+B+L">B. L. Cale</a>, <a href="/search/?searchtype=author&amp;query=Murgas%2C+F">F. Murgas</a>, <a href="/search/?searchtype=author&amp;query=Pall%C3%A9%2C+E">E. Pall茅</a>, <a href="/search/?searchtype=author&amp;query=Rivera%2C+D+G">D. Godoy Rivera</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">F. Dai</a>, <a href="/search/?searchtype=author&amp;query=Ciardi%2C+D+R">D. R. Ciardi</a>, <a href="/search/?searchtype=author&amp;query=Murphy%2C+J+M+A">J. M. Akana Murphy</a>, <a href="/search/?searchtype=author&amp;query=Beck%2C+P+G">P. G. Beck</a>, <a href="/search/?searchtype=author&amp;query=Burke%2C+C+J">C. J. Burke</a>, <a href="/search/?searchtype=author&amp;query=Cabrera%2C+J">J. Cabrera</a>, <a href="/search/?searchtype=author&amp;query=Carleo%2C+I">I. Carleo</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">W. D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">K. A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Sz. Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Mufti%2C+M+E">M. El Mufti</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">M. Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Fukui%2C+A">A. Fukui</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa%2C+R+A">R. A. Garc铆a</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E+W">E. W. Guenther</a>, <a href="/search/?searchtype=author&amp;query=Guerra%2C+P">P. Guerra</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18542v1-abstract-short" style="display: inline;"> TOI 1416 (BD+42 2504, HIP 70705) is a V=10 late G or early K-type dwarf star with transits detected by TESS. Radial velocities verify the presence of the transiting planet TOI-1416 b, with a period of 1.07d, a mass of $3.48 M_{Earth}$ and a radius of $1.62 R_{Earth}$, implying a slightly sub-Earth density of $4.50$ g cm$^{-3}$. The RV data also further indicate a tentative planet c with a period o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18542v1-abstract-full').style.display = 'inline'; document.getElementById('2305.18542v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18542v1-abstract-full" style="display: none;"> TOI 1416 (BD+42 2504, HIP 70705) is a V=10 late G or early K-type dwarf star with transits detected by TESS. Radial velocities verify the presence of the transiting planet TOI-1416 b, with a period of 1.07d, a mass of $3.48 M_{Earth}$ and a radius of $1.62 R_{Earth}$, implying a slightly sub-Earth density of $4.50$ g cm$^{-3}$. The RV data also further indicate a tentative planet c with a period of 27.4 or 29.5 days, whose nature cannot be verified due to strong suspicions about contamination by a signal related to the Moon&#39;s synodic period of 29.53 days. The near-USP (Ultra Short Period) planet TOI-1416 b is a typical representative of a short-period and hot ($T_{eq} \approx$ 1570 K) super-Earth like planet. A planet model of an interior of molten magma containing a significant fraction of dissolved water provides a plausible explanation for its composition, and its atmosphere could be suitable for transmission spectroscopy with JWST. The position of TOI-1416 b within the radius-period distribution corroborates that USPs with periods of less than one day do not form any special group of planets. Rather, this implies that USPs belong to a continuous distribution of super-Earth like planets with periods ranging from the shortest known ones up to ~ 30 days, whose period-radius distribution is delimitated against larger radii by the Neptune desert and by the period-radius valley that separates super-Earths from sub-Neptune planets. In the abundance of small-short periodic planets against period, a plateau between periods of 0.6 to 1.4 days has however become notable that is compatible with the low-eccentricity formation channel. For the Neptune desert, its lower limits required a revision due to the increasing population of short period planets and new limits are provided. These limits are also given in terms of the planets&#39; insolation and effective temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18542v1-abstract-full').style.display = 'none'; document.getElementById('2305.18542v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 31 figures, 8 tables, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 677, A12 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.15565">arXiv:2305.15565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.15565">pdf</a>, <a href="https://arxiv.org/format/2305.15565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244617">10.1051/0004-6361/202244617 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TOI-1130: A photodynamical analysis of a hot Jupiter in resonance with an inner low-mass planet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Korth%2C+J">J. Korth</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=%C5%A0ubjak%2C+J">J. 艩ubjak</a>, <a href="/search/?searchtype=author&amp;query=Howard%2C+S">S. Howard</a>, <a href="/search/?searchtype=author&amp;query=Ataiee%2C+S">S. Ataiee</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">K. A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Quinn%2C+S+N">S. N. Quinn</a>, <a href="/search/?searchtype=author&amp;query=Mustill%2C+A+J">A. J. Mustill</a>, <a href="/search/?searchtype=author&amp;query=Guillot%2C+T">T. Guillot</a>, <a href="/search/?searchtype=author&amp;query=Lodieu%2C+N">N. Lodieu</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+A+M+S">A. M. S. Smith</a>, <a href="/search/?searchtype=author&amp;query=Esposito%2C+M">M. Esposito</a>, <a href="/search/?searchtype=author&amp;query=Rodler%2C+F">F. Rodler</a>, <a href="/search/?searchtype=author&amp;query=Muresan%2C+A">A. Muresan</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+L">L. Abe</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S+H">S. H. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Alqasim%2C+A">A. Alqasim</a>, <a href="/search/?searchtype=author&amp;query=Barkaoui%2C+K">K. Barkaoui</a>, <a href="/search/?searchtype=author&amp;query=Beck%2C+P+G">P. G. Beck</a>, <a href="/search/?searchtype=author&amp;query=Burke%2C+C+J">C. J. Burke</a>, <a href="/search/?searchtype=author&amp;query=Butler%2C+R+P">R. P. Butler</a>, <a href="/search/?searchtype=author&amp;query=Conti%2C+D+M">D. M. Conti</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+I">K. I. Collins</a>, <a href="/search/?searchtype=author&amp;query=Crane%2C+J+D">J. D. Crane</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">F. Dai</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.15565v1-abstract-short" style="display: inline;"> The TOI-1130 is a known planetary system around a K-dwarf consisting of a gas giant planet, TOI-1130 c, on an 8.4-day orbit, accompanied by an inner Neptune-sized planet, TOI-1130 b, with an orbital period of 4.1 days. We collected precise radial velocity (RV) measurements of TOI-1130 with the HARPS and PFS spectrographs as part of our ongoing RV follow-up program. We perform a photodynamical mode&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.15565v1-abstract-full').style.display = 'inline'; document.getElementById('2305.15565v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.15565v1-abstract-full" style="display: none;"> The TOI-1130 is a known planetary system around a K-dwarf consisting of a gas giant planet, TOI-1130 c, on an 8.4-day orbit, accompanied by an inner Neptune-sized planet, TOI-1130 b, with an orbital period of 4.1 days. We collected precise radial velocity (RV) measurements of TOI-1130 with the HARPS and PFS spectrographs as part of our ongoing RV follow-up program. We perform a photodynamical modeling of the HARPS and PFS RVs, and transit photometry from the Transiting Exoplanet Survey Satellite (TESS) and the TESS Follow-up Observing Program. We determine the planet masses and radii of TOI-1130 b and TOI-1130 c to be Mb = 19.28 $\pm$ 0.97 M$_\oplus$ and Rb = 3.56 $\pm$ 0.13 R$_\oplus$, and Mc = 325.59 $\pm$ 5.59 M$_\oplus$ and Rc = 13.32+1.55-1.41 R$_\oplus$, respectively. We spectroscopically confirm TOI-1130 b that was previously only validated. We find that the two planets orbit with small eccentricities in a 2:1 resonant configuration. This is the first known system with a hot Jupiter and an inner lower mass planet locked in a mean-motion resonance. TOI-1130 belongs to the small yet increasing population of hot Jupiters with an inner low-mass planet that challenges the pathway for hot Jupiter formation. We also detect a linear RV trend possibly due to the presence of an outer massive companion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.15565v1-abstract-full').style.display = 'none'; document.getElementById('2305.15565v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, Accepted to A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 675, A115 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06655">arXiv:2304.06655</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06655">pdf</a>, <a href="https://arxiv.org/format/2304.06655">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202345961">10.1051/0004-6361/202345961 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TOI-733 b: a planet in the small-planet radius valley orbiting a Sun-like star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Georgieva%2C+I+Y">Iskra Y. Georgieva</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">Carina M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Goffo%2C+E">Elisa Goffo</a>, <a href="/search/?searchtype=author&amp;query=Acu%C3%B1a%2C+L">Lorena Acu帽a</a>, <a href="/search/?searchtype=author&amp;query=Aguichine%2C+A">Artyom Aguichine</a>, <a href="/search/?searchtype=author&amp;query=Serrano%2C+L+M">Luisa M. Serrano</a>, <a href="/search/?searchtype=author&amp;query=Lam%2C+K+W+F">Kristine W. F. Lam</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">Karen A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Howell%2C+S+B">Steven B. Howell</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">Fei Dai</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">Malcolm Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">Judith Korth</a>, <a href="/search/?searchtype=author&amp;query=Deleuil%2C+M">Magali Deleuil</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">Oscar Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">William D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Szil谩rd Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E">Eike Guenther</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A+P">Artie P. Hatzes</a>, <a href="/search/?searchtype=author&amp;query=Jenkins%2C+J+M">Jon M. Jenkins</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J">John Livingston</a>, <a href="/search/?searchtype=author&amp;query=Luque%2C+R">Rafael Luque</a>, <a href="/search/?searchtype=author&amp;query=Mousis%2C+O">Olivier Mousis</a>, <a href="/search/?searchtype=author&amp;query=Osborne%2C+H+L+M">Hannah L. M. Osborne</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06655v2-abstract-short" style="display: inline;"> We report the discovery of a hot ($T_{\rm eq}$ $\approx$ 1055 K) planet in the small planet radius valley transiting the Sun-like star TOI-733, as part of the KESPRINT follow-up program of TESS planets carried out with the HARPS spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of $P_{\rm orb}$ = $4.884765 _{ - 2.4e-5 } ^ { + 1.9e-5 }$ days and a radius of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06655v2-abstract-full').style.display = 'inline'; document.getElementById('2304.06655v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06655v2-abstract-full" style="display: none;"> We report the discovery of a hot ($T_{\rm eq}$ $\approx$ 1055 K) planet in the small planet radius valley transiting the Sun-like star TOI-733, as part of the KESPRINT follow-up program of TESS planets carried out with the HARPS spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of $P_{\rm orb}$ = $4.884765 _{ - 2.4e-5 } ^ { + 1.9e-5 }$ days and a radius of $R_{\mathrm{p}}$ = $1.992 _{ - 0.090 } ^ { + 0.085 }$ $R_{\oplus}$. Multi-dimensional Gaussian process modelling of the radial velocity measurements from HARPS and activity indicators, gives a semi-amplitude of $K$ = $2.23 \pm 0.26 $ m s$^{-1}$, translating into a planet mass of $M_{\mathrm{p}}$ = $5.72 _{ - 0.68 } ^ { + 0.70 }$ $M_{\oplus}$. These parameters imply that the planet is of moderate density ($蟻_\mathrm{p}$ = $3.98 _{ - 0.66 } ^ { + 0.77 }$ g cm$^{-3}$) and place it in the transition region between rocky and volatile-rich planets with H/He-dominated envelopes on the mass-radius diagram. Combining these with stellar parameters and abundances, we calculate planet interior and atmosphere models, which in turn suggest that TOI-733 b has a volatile-enriched, most likely secondary outer envelope, and may represent a highly irradiated ocean world - one of only a few such planets around G-type stars that are well-characterised. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06655v2-abstract-full').style.display = 'none'; document.getElementById('2304.06655v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 674, A117 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01702">arXiv:2302.01702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.01702">pdf</a>, <a href="https://arxiv.org/format/2302.01702">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245301">10.1051/0004-6361/202245301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The low density, hot Jupiter TOI-640 b is on a polar orbit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Knudstrup%2C+E">Emil Knudstrup</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S+H">Simon H. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Marcussen%2C+M+L">Marcus L. Marcussen</a>, <a href="/search/?searchtype=author&amp;query=Goffo%2C+E">Elisa Goffo</a>, <a href="/search/?searchtype=author&amp;query=Serrano%2C+L+M">Luisa M. Serrano</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">Fei Dai</a>, <a href="/search/?searchtype=author&amp;query=Redfield%2C+S">Seth Redfield</a>, <a href="/search/?searchtype=author&amp;query=Hirano%2C+T">Teruyuki Hirano</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Szil谩rd Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">William D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">Malcolm Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Lam%2C+K+W+F">Kristine W. F. Lam</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+H">John H. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Luque%2C+R">Rafael Luque</a>, <a href="/search/?searchtype=author&amp;query=Narita%2C+N">Norio Narita</a>, <a href="/search/?searchtype=author&amp;query=Palle%2C+E">Enric Palle</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">Carina M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Van+Eylen%2C+V">Vincent Van Eylen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01702v1-abstract-short" style="display: inline;"> TOI-640 b is a hot, puffy Jupiter with a mass of $0.57 \pm 0.02$ M$_{\rm J}$ and radius of $1.72 \pm 0.05$ R$_{\rm J}$, orbiting a slightly evolved F-type star with a separation of $6.33^{+0.07}_{-0.06}$ R$_\star$. Through spectroscopic in-transit observations made with the HARPS spectrograph, we measured the Rossiter-McLaughlin effect, analysing both in-transit radial velocities and the distortio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01702v1-abstract-full').style.display = 'inline'; document.getElementById('2302.01702v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01702v1-abstract-full" style="display: none;"> TOI-640 b is a hot, puffy Jupiter with a mass of $0.57 \pm 0.02$ M$_{\rm J}$ and radius of $1.72 \pm 0.05$ R$_{\rm J}$, orbiting a slightly evolved F-type star with a separation of $6.33^{+0.07}_{-0.06}$ R$_\star$. Through spectroscopic in-transit observations made with the HARPS spectrograph, we measured the Rossiter-McLaughlin effect, analysing both in-transit radial velocities and the distortion of the stellar spectral lines. From these observations, we find the host star to have a projected obliquity of $位=184\pm3^\circ$. From the TESS light curve, we measured the stellar rotation period, allowing us to determine the stellar inclination, $i_\star=23^{+3\circ}_{-2}$, meaning we are viewing the star pole-on. Combining this with the orbital inclination allowed us to calculate the host star obliquity, $蠄=104\pm2^\circ$. TOI-640 b joins a group of planets orbiting over stellar poles within the range $80^\circ-125^\circ$. The origin of this orbital configuration is not well understood. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01702v1-abstract-full').style.display = 'none'; document.getElementById('2302.01702v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures, accepted for publication in A&amp;A, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 671, A164 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.17035">arXiv:2211.17035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.17035">pdf</a>, <a href="https://arxiv.org/format/2211.17035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac3684">10.1093/mnras/stac3684 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radial velocity confirmation of a hot super-Neptune discovered by TESS with a warm Saturn-mass companion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Knudstrup%2C+E">E. Knudstrup</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">G. Nowak</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">C. M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Furlan%2C+E">E. Furlan</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J">J. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Matthews%2C+E">E. Matthews</a>, <a href="/search/?searchtype=author&amp;query=Lundkvist%2C+M+S">M. S. Lundkvist</a>, <a href="/search/?searchtype=author&amp;query=Winther%2C+M+L">M. L. Winther</a>, <a href="/search/?searchtype=author&amp;query=R%C3%B8rsted%2C+J+L">J. L. R酶rsted</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S+H">S. H. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Goffo%2C+E">E. Goffo</a>, <a href="/search/?searchtype=author&amp;query=Carleo%2C+I">I. Carleo</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">K. A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Narita%2C+N">N. Narita</a>, <a href="/search/?searchtype=author&amp;query=Isaacson%2C+H">H. Isaacson</a>, <a href="/search/?searchtype=author&amp;query=Redfield%2C+S">S. Redfield</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">F. Dai</a>, <a href="/search/?searchtype=author&amp;query=Hirano%2C+T">T. Hirano</a>, <a href="/search/?searchtype=author&amp;query=Murphy%2C+J+M+A">J. M. Akana Murphy</a>, <a href="/search/?searchtype=author&amp;query=Beard%2C+C">C. Beard</a>, <a href="/search/?searchtype=author&amp;query=Buchhave%2C+L+A">L. A. Buchhave</a>, <a href="/search/?searchtype=author&amp;query=Cary%2C+S">S. Cary</a>, <a href="/search/?searchtype=author&amp;query=Chontos%2C+A">A. Chontos</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.17035v1-abstract-short" style="display: inline;"> We report the discovery and confirmation of the planetary system TOI-1288. This late G dwarf harbours two planets: TOI-1288 b and TOI-1288 c. We combine TESS space-borne and ground-based transit photometry with HARPS-N and HIRES high-precision Doppler measurements, which we use to constrain the masses of both planets in the system and the radius of planet b. TOI-1288~b has a period of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17035v1-abstract-full').style.display = 'inline'; document.getElementById('2211.17035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.17035v1-abstract-full" style="display: none;"> We report the discovery and confirmation of the planetary system TOI-1288. This late G dwarf harbours two planets: TOI-1288 b and TOI-1288 c. We combine TESS space-borne and ground-based transit photometry with HARPS-N and HIRES high-precision Doppler measurements, which we use to constrain the masses of both planets in the system and the radius of planet b. TOI-1288~b has a period of $2.699835^{+0.000004}_{-0.000003}$ d, a radius of $5.24 \pm 0.09$ R$_\oplus$, and a mass of $42 \pm 3$ M$_\oplus$, making this planet a hot transiting super-Neptune situated right in the Neptunian desert. This desert refers to a paucity of Neptune-sized planets on short period orbits. Our 2.4-year-long Doppler monitoring of TOI-1288 revealed the presence of a Saturn-mass planet on a moderately eccentric orbit ($0.13^{+0.07}_{-0.09}$) with a minimum mass of $84 \pm 7$ M$_\oplus$ and a period of $443^{+11}_{-13}$ d. The 5 sectors worth of TESS data do not cover our expected mid-transit time for TOI-1288 c, and we do not detect a transit for this planet in these sectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17035v1-abstract-full').style.display = 'none'; document.getElementById('2211.17035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 17 figures, under review MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02547">arXiv:2211.02547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.02547">pdf</a>, <a href="https://arxiv.org/format/2211.02547">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244459">10.1051/0004-6361/202244459 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HD 20329b: An ultra-short-period planet around a solar-type star found by TESS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Murgas%2C+F">F. Murgas</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">G. Nowak</a>, <a href="/search/?searchtype=author&amp;query=Masseron%2C+T">T. Masseron</a>, <a href="/search/?searchtype=author&amp;query=Parviainen%2C+H">H. Parviainen</a>, <a href="/search/?searchtype=author&amp;query=Luque%2C+R">R. Luque</a>, <a href="/search/?searchtype=author&amp;query=Pall%C3%A9%2C+E">E. Pall茅</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">Judith Korth</a>, <a href="/search/?searchtype=author&amp;query=Carleo%2C+I">I. Carleo</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Sz. Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Esparza-Borges%2C+E">E. Esparza-Borges</a>, <a href="/search/?searchtype=author&amp;query=Alqasim%2C+A">Ahlam Alqasim</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">William D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">Fei Dai</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Goffo%2C+E">Elisa Goffo</a>, <a href="/search/?searchtype=author&amp;query=Kab%C3%A1th%2C+P">Petr Kab谩th</a>, <a href="/search/?searchtype=author&amp;query=Lam%2C+K+W+F">K. W. F. Lam</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J">John Livingston</a>, <a href="/search/?searchtype=author&amp;query=Muresan%2C+A">Alexandra Muresan</a>, <a href="/search/?searchtype=author&amp;query=Osborne%2C+H+L+M">H. L. M. Osborne</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">Carina M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Serrano%2C+L+M">L. M. Serrano</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+A+M+S">Alexis M. S. Smith</a>, <a href="/search/?searchtype=author&amp;query=Van+Eylen%2C+V">Vincent Van Eylen</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02547v2-abstract-short" style="display: inline;"> We used TESS light curves and HARPS-N spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate found around the star HD 20329 (TOI-4524). We performed a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. We confirm and characterize HD 20329b, an ultra-short-p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02547v2-abstract-full').style.display = 'inline'; document.getElementById('2211.02547v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02547v2-abstract-full" style="display: none;"> We used TESS light curves and HARPS-N spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate found around the star HD 20329 (TOI-4524). We performed a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. We confirm and characterize HD 20329b, an ultra-short-period (USP) planet transiting a solar-type star. The host star (HD 20329, $V = 8.74$ mag, $J = 7.5$ mag) is characterized by its G5 spectral type with $\mathrm{M}_\star= 0.90 \pm 0.05$ M$_\odot$, $\mathrm{R}_\star = 1.13 \pm 0.02$ R$_\odot$, and $\mathrm{T}_{\mathrm{eff}} = 5596 \pm 50$ K; it is located at a distance $d= 63.68 \pm 0.29$ pc. By jointly fitting the available TESS transit light curves and follow-up radial velocity measurements, we find an orbital period of $0.9261 \pm (0.5\times 10^{-4})$ days, a planetary radius of $1.72 \pm 0.07$ $\mathrm{R}_\oplus$, and a mass of $7.42 \pm 1.09$ $\mathrm{M}_\oplus$, implying a mean density of $蟻_\mathrm{p} = 8.06 \pm 1.53$ g cm$^{-3}$. HD 20329b joins the $\sim$30 currently known USP planets with radius and Doppler mass measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02547v2-abstract-full').style.display = 'none'; document.getElementById('2211.02547v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A, 26 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 668, A158 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.07287">arXiv:2208.07287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.07287">pdf</a>, <a href="https://arxiv.org/format/2208.07287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244426">10.1051/0004-6361/202244426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precise mass determination for the keystone sub-Neptune planet transiting the mid-type M dwarf G 9-40 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Luque%2C+R">R. Luque</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">G. Nowak</a>, <a href="/search/?searchtype=author&amp;query=Hirano%2C+T">T. Hirano</a>, <a href="/search/?searchtype=author&amp;query=Kossakowski%2C+D">D. Kossakowski</a>, <a href="/search/?searchtype=author&amp;query=Pall%C3%A9%2C+E">E. Pall茅</a>, <a href="/search/?searchtype=author&amp;query=Nixon%2C+M+C">M. C. Nixon</a>, <a href="/search/?searchtype=author&amp;query=Morello%2C+G">G. Morello</a>, <a href="/search/?searchtype=author&amp;query=Amado%2C+P+J">P. J. Amado</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S+H">S. H. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Caballero%2C+J+A">J. A. Caballero</a>, <a href="/search/?searchtype=author&amp;query=Cifuentes%2C+C">C. Cifuentes</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">W. D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Dreizler%2C+S">S. Dreizler</a>, <a href="/search/?searchtype=author&amp;query=Esparza-Borges%2C+E">E. Esparza-Borges</a>, <a href="/search/?searchtype=author&amp;query=Fukui%2C+A">A. Fukui</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Goffo%2C+E">E. Goffo</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E+W">E. W. Guenther</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A+P">A. P. Hatzes</a>, <a href="/search/?searchtype=author&amp;query=Henning%2C+T">T. Henning</a>, <a href="/search/?searchtype=author&amp;query=Kabath%2C+P">P. Kabath</a>, <a href="/search/?searchtype=author&amp;query=Kawauchi%2C+K">K. Kawauchi</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">J. Korth</a>, <a href="/search/?searchtype=author&amp;query=Kotani%2C+T">T. Kotani</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.07287v1-abstract-short" style="display: inline;"> Context. Despite being a prominent subset of the exoplanet population discovered in the past three decades, the nature and provenance of sub-Neptune-sized planets are still one of the open questions in exoplanet science. Aims. For planets orbiting bright stars, precisely measuring the orbital and planet parameters of the system is the best approach to distinguish between competing theories regardi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07287v1-abstract-full').style.display = 'inline'; document.getElementById('2208.07287v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.07287v1-abstract-full" style="display: none;"> Context. Despite being a prominent subset of the exoplanet population discovered in the past three decades, the nature and provenance of sub-Neptune-sized planets are still one of the open questions in exoplanet science. Aims. For planets orbiting bright stars, precisely measuring the orbital and planet parameters of the system is the best approach to distinguish between competing theories regarding their formation and evolution. Methods. We obtained 69 new radial velocity observations of the mid-M dwarf G 9-40 with the CARMENES instrument to measure for the first time the mass of its transiting sub-Neptune planet, G 9-40 b, discovered in data from the K2 mission. Results. Combined with new observations from the TESS mission during Sectors 44, 45, and 46, we are able to measure the radius of the planet to an uncertainty of 3.4% (Rb = 1.900 +- 0.065 Re) and determine its mass with a precision of 16% (Mb = 4.00 +- 0.63 Me). The resulting bulk density of the planet is inconsistent with a terrestrial composition and suggests the presence of either a water-rich core or a significant hydrogen-rich envelope. Conclusions. G 9-40 b is referred to as a keystone planet due to its location in period-radius space within the radius valley. Several theories offer explanations for the origin and properties of this population and this planet is a valuable target for testing the dependence of those models on stellar host mass. By virtue of its brightness and small size of the host, it joins L 98-59 d as one of the two best warm (Teq ~ 400 K) sub-Neptunes for atmospheric characterization with JWST, which will probe cloud formation in sub-Neptune-sized planets and break the degeneracies of internal composition models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07287v1-abstract-full').style.display = 'none'; document.getElementById('2208.07287v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 666, A154 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05797">arXiv:2208.05797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05797">pdf</a>, <a href="https://arxiv.org/format/2208.05797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244118">10.1051/0004-6361/202244118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TOI-2196 b: Rare planet in the hot Neptune desert transiting a G-type star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">Carina M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Georgieva%2C+I+Y">Iskra Y. Georgieva</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Acu%C3%B1a%2C+L">Lorena Acu帽a</a>, <a href="/search/?searchtype=author&amp;query=Aguichine%2C+A">Artem Aguichine</a>, <a href="/search/?searchtype=author&amp;query=Muresan%2C+A">Alexandra Muresan</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E">Eike Guenther</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J">John Livingston</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">Karen A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">Malcolm Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Goffo%2C+E">Elisa Goffo</a>, <a href="/search/?searchtype=author&amp;query=Jenkins%2C+J+S">James S. Jenkins</a>, <a href="/search/?searchtype=author&amp;query=Kab%C3%A1th%2C+P">Petr Kab谩th</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">Judith Korth</a>, <a href="/search/?searchtype=author&amp;query=Levine%2C+A+M">Alan M. Levine</a>, <a href="/search/?searchtype=author&amp;query=Serrano%2C+L+M">Luisa M. Serrano</a>, <a href="/search/?searchtype=author&amp;query=Vines%2C+J">Jos茅 Vines</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">Oscar Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Carleo%2C+I">Ilaria Carleo</a>, <a href="/search/?searchtype=author&amp;query=Colon%2C+K+D">Knicole D. Colon</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">William D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Christiansen%2C+J+L">Jessie L. Christiansen</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Deleuil%2C+M">Magali Deleuil</a>, <a href="/search/?searchtype=author&amp;query=Dragomir%2C+D">Diana Dragomir</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05797v4-abstract-short" style="display: inline;"> Highly irradiated planets in the hot Neptune desert are usually either small (R &lt; 2 Rearth) and rocky or they are gas giants with radii of &gt;1 Rjup. Here, we report on the intermediate-sized planet TOI-2196 on a 1.2 day orbit around a G-type star discovered by TESS in sector 27. We collected 42 radial velocity measurements with the HARPS spectrograph to determine the mass. The radius of TOI-2196 b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05797v4-abstract-full').style.display = 'inline'; document.getElementById('2208.05797v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05797v4-abstract-full" style="display: none;"> Highly irradiated planets in the hot Neptune desert are usually either small (R &lt; 2 Rearth) and rocky or they are gas giants with radii of &gt;1 Rjup. Here, we report on the intermediate-sized planet TOI-2196 on a 1.2 day orbit around a G-type star discovered by TESS in sector 27. We collected 42 radial velocity measurements with the HARPS spectrograph to determine the mass. The radius of TOI-2196 b is 3.51 +/- 0.15 Rearth, which, combined with the mass of 26.0 +/- 1.3 Mearth, results in a bulk density of 3.31+0.51-0.43 g/cm3. Hence, the radius implies that this planet is a sub-Neptune, although the density is twice than that of Neptune. A significant trend in the HARPS radial velocities points to the presence of a distant companion with a lower limit on the period and mass of 220 days and 0.65 Mjup, respectively, assuming zero eccentricity. The short period of planet b implies a high equilibrium temperature of 1860 +/- 20 K, for zero albedo and isotropic emission. This places the planet in the hot Neptune desert, joining a group of very few planets in this parameter space discovered in recent years. These planets suggest that the hot Neptune desert may be divided in two parts for planets with equilibrium temperatures of &gt; 1800 K: a hot sub-Neptune desert devoid of planets with radii of 1.8-3 Rearth and a sub-Jovian desert for radii of 5-12 Rearth. More planets in this parameter space are needed to further investigate this finding. Planetary interior structure models of TOI-2196 b are consistent with a H/He atmosphere mass fraction between 0.4 % and 3 %, with a mean value of 0.7 % on top of a rocky interior. We estimated the amount of mass this planet might have lost at a young age, and we find that while the mass loss could have been significant, the planet had not changed in terms of character: it was born as a small volatile-rich planet, and it remains one at present. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05797v4-abstract-full').style.display = 'none'; document.getElementById('2208.05797v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 15 figures, 7 tables, accepted 11 July 2022 for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 666, A184 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08742">arXiv:2207.08742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.08742">pdf</a>, <a href="https://arxiv.org/format/2207.08742">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2131">10.1093/mnras/stac2131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-stellar Companions of Intermediate-mass Stars with CoRoT: CoRoT-34b, CoRoT-35b, and CoRoT-36b </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sebastian%2C+D">D. Sebastian</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E+W">E. W. Guenther</a>, <a href="/search/?searchtype=author&amp;query=Deleuil%2C+M">M. Deleuil</a>, <a href="/search/?searchtype=author&amp;query=Dorsch%2C+M">M. Dorsch</a>, <a href="/search/?searchtype=author&amp;query=Heber%2C+U">U. Heber</a>, <a href="/search/?searchtype=author&amp;query=Heuser%2C+C">C. Heuser</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Grziwa%2C+S">S. Grziwa</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Alonso%2C+R">R. Alonso</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Sz. Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Cusano%2C+F">F. Cusano</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">M. Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Geier%2C+S">S. Geier</a>, <a href="/search/?searchtype=author&amp;query=Irrgang%2C+A">A. Irrgang</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">J. Korth</a>, <a href="/search/?searchtype=author&amp;query=Nespral%2C+D">D. Nespral</a>, <a href="/search/?searchtype=author&amp;query=Rauer%2C+H">H. Rauer</a>, <a href="/search/?searchtype=author&amp;query=Tal-Or%2C+L">L. Tal-Or</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08742v1-abstract-short" style="display: inline;"> Theories of planet formation give contradicting results of how frequent close-in giant planets of intermediate mass stars (IMSs; $\rm 1.3\leq M_{\star}\leq 3.2\,M_{\rm \odot}$) are. Some theories predict a high rate of IMSs with close-in gas giants, while others predict a very low rate. Thus, determining the frequency of close-in giant planets of IMSs is an important test for theories of planet fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08742v1-abstract-full').style.display = 'inline'; document.getElementById('2207.08742v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08742v1-abstract-full" style="display: none;"> Theories of planet formation give contradicting results of how frequent close-in giant planets of intermediate mass stars (IMSs; $\rm 1.3\leq M_{\star}\leq 3.2\,M_{\rm \odot}$) are. Some theories predict a high rate of IMSs with close-in gas giants, while others predict a very low rate. Thus, determining the frequency of close-in giant planets of IMSs is an important test for theories of planet formation. We use the CoRoT survey to determine the absolute frequency of IMSs that harbour at least one close-in giant planet and compare it to that of solar-like stars. The CoRoT transit survey is ideal for this purpose, because of its completeness for gas-giant planets with orbital periods of less than 10 days and its large sample of main-sequence IMSs. We present a high precision radial velocity follow-up programme and conclude on 17 promising transit candidates of IMSs, observed with CoRoT. We report the detection of CoRoT-34b, a brown dwarf close to the hydrogen burning limit, orbiting a 1.1 Gyr A-type main-sequence star. We also confirm two inflated giant planets, CoRoT-35b, part of a possible planetary system around a metal-poor star, and CoRoT-36b on a misaligned orbit. We find that $0.12 \pm 0.10\,\%$ of IMSs between $1.3\leq M_{\star}\leq 1.6 M_{\rm \odot}$ observed by CoRoT do harbour at least one close-in giant planet. This is significantly lower than the frequency ($0.70 \pm 0.16\,\%$) for solar-mass stars, as well as the frequency of IMSs harbouring long-period planets ($\rm \sim 8\,\%$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08742v1-abstract-full').style.display = 'none'; document.getElementById('2207.08742v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 16 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13956">arXiv:2204.13956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13956">pdf</a>, <a href="https://arxiv.org/format/2204.13956">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243656">10.1051/0004-6361/202243656 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Confirmation and characterisation of three giant planets detected by TESS from the FIES/NOT and Tull/McDonald spectrographs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Knudstrup%2C+E">E. Knudstrup</a>, <a href="/search/?searchtype=author&amp;query=Serrano%2C+L+M">L. M. Serrano</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S+H">S. H. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">W. D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Endl%2C+M">M. Endl</a>, <a href="/search/?searchtype=author&amp;query=Macqueen%2C+P">P. Macqueen</a>, <a href="/search/?searchtype=author&amp;query=Tronsgaard%2C+R">R. Tronsgaard</a>, <a href="/search/?searchtype=author&amp;query=Bieryla%2C+A">A. Bieryla</a>, <a href="/search/?searchtype=author&amp;query=Buchhave%2C+L+A">Lars A. Buchhave</a>, <a href="/search/?searchtype=author&amp;query=Stassun%2C+K">K. Stassun</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">K. A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">G. Nowak</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Barkaoui%2C+K">K. Barkaoui</a>, <a href="/search/?searchtype=author&amp;query=Safonov%2C+B+S">B. S. Safonov</a>, <a href="/search/?searchtype=author&amp;query=Strakhov%2C+I+A">I. A. Strakhov</a>, <a href="/search/?searchtype=author&amp;query=Belinski%2C+A+A">A. A. Belinski</a>, <a href="/search/?searchtype=author&amp;query=Twicken%2C+J+D">J. D. Twicken</a>, <a href="/search/?searchtype=author&amp;query=Jenkins%2C+J+M">J. M. Jenkins</a>, <a href="/search/?searchtype=author&amp;query=Howard%2C+A+W">A. W. Howard</a>, <a href="/search/?searchtype=author&amp;query=Isaacson%2C+H">H. Isaacson</a>, <a href="/search/?searchtype=author&amp;query=Winn%2C+J+N">J. N. Winn</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+I">K. I. Collins</a>, <a href="/search/?searchtype=author&amp;query=Conti%2C+D+M">D. M. Conti</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13956v2-abstract-short" style="display: inline;"> We report the confirmation and characterisation of TOI-1820~b, TOI-2025~b, and TOI-2158~b, three Jupiter-sized planets on short-period orbits around G-type stars detected by TESS. Through our ground-based efforts using the FIES and Tull spectrographs, we have confirmed these planets and characterised their orbits, and find periods of around $4.9$~d, $8.9$~d, and $8.6$~d for TOI-1820~b, TOI-2025~b,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13956v2-abstract-full').style.display = 'inline'; document.getElementById('2204.13956v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13956v2-abstract-full" style="display: none;"> We report the confirmation and characterisation of TOI-1820~b, TOI-2025~b, and TOI-2158~b, three Jupiter-sized planets on short-period orbits around G-type stars detected by TESS. Through our ground-based efforts using the FIES and Tull spectrographs, we have confirmed these planets and characterised their orbits, and find periods of around $4.9$~d, $8.9$~d, and $8.6$~d for TOI-1820~b, TOI-2025~b, and TOI-2158~b, respectively. The sizes of the planets range from 0.96 to 1.14 Jupiter radii, and their masses are in the range from 0.8 to 4.4 Jupiter masses. For two of the systems, namely TOI-2025 and TOI-2158, we see a long-term trend in the radial velocities, indicating the presence of an outer companion in each of the two systems. For TOI-2025 we furthermore find the star to be well-aligned with the orbit, with a projected obliquity of $9^{+33}_{-31}$~$^\circ$. As these planets are all found in relatively bright systems (V$\sim$10.9-11.6 mag), they are well-suited for further studies, which could help shed light on the formation and migration of hot and warm Jupiters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13956v2-abstract-full').style.display = 'none'; document.getElementById('2204.13956v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A. 19 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 667, A22 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13573">arXiv:2204.13573</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13573">pdf</a>, <a href="https://arxiv.org/format/2204.13573">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-022-01641-y">10.1038/s41550-022-01641-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Serrano%2C+L+M">Luisa Maria Serrano</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Mustill%2C+A+J">Alexander J. Mustill</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">Oscar Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">Judith Korth</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">Fei Dai</a>, <a href="/search/?searchtype=author&amp;query=Redfield%2C+S">Seth Redfield</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">Malcolm Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Lam%2C+K+W+F">Kristine W. F. Lam</a>, <a href="/search/?searchtype=author&amp;query=D%C3%ADaz%2C+M+R">Mat铆as R. D铆az</a>, <a href="/search/?searchtype=author&amp;query=Grziwa%2C+S">Sascha Grziwa</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">Karen A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+H">John H. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">William D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Hellier%2C+C">Coel Hellier</a>, <a href="/search/?searchtype=author&amp;query=Bellomo%2C+S+E">Salvatore E. Bellomo</a>, <a href="/search/?searchtype=author&amp;query=Trifonov%2C+T">Trifon Trifonov</a>, <a href="/search/?searchtype=author&amp;query=Rodler%2C+F">Florian Rodler</a>, <a href="/search/?searchtype=author&amp;query=Alarcon%2C+J">Javier Alarcon</a>, <a href="/search/?searchtype=author&amp;query=Jenkins%2C+J+M">Jon M. Jenkins</a>, <a href="/search/?searchtype=author&amp;query=Latham%2C+D+W">David W. Latham</a>, <a href="/search/?searchtype=author&amp;query=Ricker%2C+G">George Ricker</a>, <a href="/search/?searchtype=author&amp;query=Seager%2C+S">Sara Seager</a>, <a href="/search/?searchtype=author&amp;query=Vanderspeck%2C+R">Roland Vanderspeck</a>, <a href="/search/?searchtype=author&amp;query=Winn%2C+J+N">Joshua N. Winn</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13573v1-abstract-short" style="display: inline;"> It is commonly accepted that exoplanets with orbital periods shorter than 1 day, also known as ultra-short period (USP) planets, formed further out within their natal protoplanetary disk, before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13573v1-abstract-full').style.display = 'inline'; document.getElementById('2204.13573v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13573v1-abstract-full" style="display: none;"> It is commonly accepted that exoplanets with orbital periods shorter than 1 day, also known as ultra-short period (USP) planets, formed further out within their natal protoplanetary disk, before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here, we present the discovery of a four planet system orbiting the bright (V=10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of $\sim$ 13 hours, a mass of 1.42 $\pm$ 0.18 M$_{\oplus}$, a radius of $1.166^{0.061}_{-0.058}$ R$_{\oplus}$, and a mean density of 4.89$^{+1.03}_{-0.88}$ gcm$^{-3}$. Via Doppler spectroscopy, we discovered that the system hosts three outer planets on nearly circular orbits with periods of 6.6, 26.2, and 61.3d and minimum masses of 5.03 $\pm$ 0.41 M$_{\oplus}$, 33.12 $\pm$ 0.88 M$_{\oplus}$ and 15.05$^{+1.12}_{-1.11}$ M$_{\oplus}$, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits, then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyrs, starting from an initial orbit of 0.02au. TOI-500 is the first four planet system known to host a USP Earth analog whose current architecture can be explained via a non-violent migration scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13573v1-abstract-full').style.display = 'none'; document.getElementById('2204.13573v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published on Nature Astronomy (April 28th, 2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11895">arXiv:2204.11895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.11895">pdf</a>, <a href="https://arxiv.org/format/2204.11895">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ac69e5">10.3847/1538-3881/ac69e5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The TESS-Keck Survey. XI. Mass Measurements for Four Transiting sub-Neptunes orbiting K dwarf TOI-1246 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Turtelboom%2C+E+V">Emma V. Turtelboom</a>, <a href="/search/?searchtype=author&amp;query=Weiss%2C+L+M">Lauren M. Weiss</a>, <a href="/search/?searchtype=author&amp;query=Dressing%2C+C+D">Courtney D. Dressing</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">Grzegorz Nowak</a>, <a href="/search/?searchtype=author&amp;query=Pall%C3%A9%2C+E">Enric Pall茅</a>, <a href="/search/?searchtype=author&amp;query=Beard%2C+C">Corey Beard</a>, <a href="/search/?searchtype=author&amp;query=Blunt%2C+S">Sarah Blunt</a>, <a href="/search/?searchtype=author&amp;query=Brinkman%2C+C">Casey Brinkman</a>, <a href="/search/?searchtype=author&amp;query=Chontos%2C+A">Ashley Chontos</a>, <a href="/search/?searchtype=author&amp;query=Claytor%2C+Z+R">Zachary R. Claytor</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">Fei Dai</a>, <a href="/search/?searchtype=author&amp;query=Dalba%2C+P+A">Paul A. Dalba</a>, <a href="/search/?searchtype=author&amp;query=Giacalone%2C+S">Steven Giacalone</a>, <a href="/search/?searchtype=author&amp;query=Gonzales%2C+E">Erica Gonzales</a>, <a href="/search/?searchtype=author&amp;query=Harada%2C+C+K">Caleb K. Harada</a>, <a href="/search/?searchtype=author&amp;query=Hill%2C+M+L">Michelle L. Hill</a>, <a href="/search/?searchtype=author&amp;query=Holcomb%2C+R">Rae Holcomb</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">Judith Korth</a>, <a href="/search/?searchtype=author&amp;query=Lubin%2C+J">Jack Lubin</a>, <a href="/search/?searchtype=author&amp;query=Masseron%2C+T">Thomas Masseron</a>, <a href="/search/?searchtype=author&amp;query=MacDougall%2C+M">Mason MacDougall</a>, <a href="/search/?searchtype=author&amp;query=Mayo%2C+A+W">Andrew W. Mayo</a>, <a href="/search/?searchtype=author&amp;query=Mo%C4%8Dnik%2C+T">Teo Mo膷nik</a>, <a href="/search/?searchtype=author&amp;query=Murphy%2C+J+M+A">Joseph M. Akana Murphy</a>, <a href="/search/?searchtype=author&amp;query=Polanski%2C+A+S">Alex S. Polanski</a> , et al. (56 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11895v1-abstract-short" style="display: inline;"> Multi-planet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf ($\rm{V=11.6,~K=9.9}$) and four transiting sub-Neptunes identified by TESS with orbital periods of $4.31~\rm{d},~5.90~\rm{d},~18.66~\rm{d}$, and $~37.92~\rm{d}$. We collected 130 radial velocity observations with Keck/HIR&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11895v1-abstract-full').style.display = 'inline'; document.getElementById('2204.11895v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11895v1-abstract-full" style="display: none;"> Multi-planet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf ($\rm{V=11.6,~K=9.9}$) and four transiting sub-Neptunes identified by TESS with orbital periods of $4.31~\rm{d},~5.90~\rm{d},~18.66~\rm{d}$, and $~37.92~\rm{d}$. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii ($\rm{2.97 \pm 0.06~R_\oplus},\rm{2.47 \pm 0.08~R_\oplus}, \rm{3.46 \pm 0.09~R_\oplus}$, $\rm{3.72 \pm 0.16~R_\oplus}$), and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets ($\rm{8.1 \pm 1.1 M_\oplus}$, $\rm{8.8 \pm 1.2 M_\oplus}$, $\rm{5.3 \pm 1.7 M_\oplus}$, $\rm{14.8 \pm 2.3 M_\oplus}$). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance ($\rm{P_{e}/P_{d}=2.03}$) and exhibit transit timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only six systems with measured masses and radii for all four transiting planets. The planet densities range from $\rm{0.70 \pm 0.24}$ to $3.21 \pm 0.44 \rm{g/cm^3}$, implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 $\pm$ 3.6 $\rm{M_\oplus}$. This planet candidate is exterior to TOI-1246 e with a candidate period of 93.8 d, and we discuss the implications if it is confirmed to be planetary in nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11895v1-abstract-full').style.display = 'none'; document.getElementById('2204.11895v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at The Astronomical Journal; 33 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.04334">arXiv:2203.04334</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.04334">pdf</a>, <a href="https://arxiv.org/format/2203.04334">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ac5c4f">10.3847/1538-3881/ac5c4f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TOI-1670 b and c: An Inner Sub-Neptune with an Outer Warm Jupiter Unlikely to have Originated from High-Eccentricity Migration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Tran%2C+Q+H">Quang H. Tran</a>, <a href="/search/?searchtype=author&amp;query=Bowler%2C+B+P">Brendan P. Bowler</a>, <a href="/search/?searchtype=author&amp;query=Endl%2C+M">Michael Endl</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">William D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=MacQueen%2C+P+J">Phillip J. MacQueen</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">Carina M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">Malcolm Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Palle%2C+E">Enric Palle</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">Grzegorz Nowak</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Luque%2C+R">Rafael Luque</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+H">John H. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Kab%C3%A1th%2C+P">Petr Kab谩th</a>, <a href="/search/?searchtype=author&amp;query=Skarka%2C+M">Marek Skarka</a>, <a href="/search/?searchtype=author&amp;query=%C5%A0ubjak%2C+J">J谩n 艩ubjak</a>, <a href="/search/?searchtype=author&amp;query=Howell%2C+S+B">Steve B. Howell</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S+H">Simon H. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">Karen A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Esposito%2C+M">Massimiliano Esposito</a>, <a href="/search/?searchtype=author&amp;query=Van+Eylen%2C+V">Vincent Van Eylen</a>, <a href="/search/?searchtype=author&amp;query=Grziwa%2C+S">Sascha Grziwa</a>, <a href="/search/?searchtype=author&amp;query=Goffo%2C+E">Elisa Goffo</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+C+X">Chelsea X. Huang</a>, <a href="/search/?searchtype=author&amp;query=Jenkins%2C+J+M">Jon M. Jenkins</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.04334v1-abstract-short" style="display: inline;"> We report the discovery of two transiting planets around the bright ($V=9.9$ mag) main sequence F7 star TOI-1670 by the Transiting Exoplanet Survey Satellite. TOI-1670 b is a sub-Neptune ($R_\mathrm{b} = 2.06_{-0.15}^{+0.19}$ $R_\oplus$) on a 10.9-day orbit and TOI-1670 c is a warm Jupiter ($R_\mathrm{c} = 0.987_{-0.025}^{+0.025}$ $R_\mathrm{Jup}$) on a 40.7-day orbit. Using radial velocity observ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04334v1-abstract-full').style.display = 'inline'; document.getElementById('2203.04334v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.04334v1-abstract-full" style="display: none;"> We report the discovery of two transiting planets around the bright ($V=9.9$ mag) main sequence F7 star TOI-1670 by the Transiting Exoplanet Survey Satellite. TOI-1670 b is a sub-Neptune ($R_\mathrm{b} = 2.06_{-0.15}^{+0.19}$ $R_\oplus$) on a 10.9-day orbit and TOI-1670 c is a warm Jupiter ($R_\mathrm{c} = 0.987_{-0.025}^{+0.025}$ $R_\mathrm{Jup}$) on a 40.7-day orbit. Using radial velocity observations gathered with the Tull coud茅 Spectrograph on the Harlan J. Smith telescope and HARPS-N on the Telescopio Nazionale Galileo, we find a planet mass of $M_\mathrm{c} = 0.63_{-0.08}^{+0.09}$ $M_\mathrm{Jup}$ for the outer warm Jupiter, implying a mean density of $蟻_c = 0.81_{-0.11}^{+0.13}$ g cm$^{-3}$. The inner sub-Neptune is undetected in our radial velocity data ($M_\mathrm{b} &lt; 0.13$ $M_\mathrm{Jup}$ at the 99% confidence level). Multi-planet systems like TOI-1670 hosting an outer warm Jupiter on a nearly circular orbit ($e_\mathrm{c} = 0.09_{-0.04}^{+0.05}$) and one or more inner coplanar planets are more consistent with &#34;gentle&#34; formation mechanisms such as disk migration or $in$ $situ$ formation rather than high-eccentricity migration. Of the 11 known systems with a warm Jupiter and a smaller inner companion, 8 (73%) are near a low-order mean-motion resonance, which can be a signature of migration. TOI-1670 joins two other systems (27% of this subsample) with period commensurabilities greater than 3, a common feature of $in$ $situ$ formation or halted inward migration. TOI-1670 and the handful of similar systems support a diversity of formation pathways for warm Jupiters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04334v1-abstract-full').style.display = 'none'; document.getElementById('2203.04334v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 9 figures, accepted for publication in AJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.01018">arXiv:2203.01018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.01018">pdf</a>, <a href="https://arxiv.org/format/2203.01018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ac5dcb">10.3847/1538-3881/ac5dcb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Radial Velocity Study of the Planetary System of Pi Mensae: Improved Planet Parameters for PI Mensae c and a Third Planet on a 125-d Orbit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A+P">Artie P. Hatzes</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">Judith Korth</a>, <a href="/search/?searchtype=author&amp;query=Rodler%2C+F">Florian Rodler</a>, <a href="/search/?searchtype=author&amp;query=Sabotta%2C+S">Silvia Sabotta</a>, <a href="/search/?searchtype=author&amp;query=Esposito%2C+M">Massimiliano Esposito</a>, <a href="/search/?searchtype=author&amp;query=Barragan%2C+O">Oscar Barragan</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+V+V+E+J+H">Vincent Van Eylen John H. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Serrano%2C+L+M">Luisa Maria Serrano</a>, <a href="/search/?searchtype=author&amp;query=Luque%2C+R">Rafael Luque</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+A+M+S">Alexis M. S. Smith</a>, <a href="/search/?searchtype=author&amp;query=Redfield%2C+S">Seth Redfield</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">Carina M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Paetzold%2C+M">Martin Paetzold</a>, <a href="/search/?searchtype=author&amp;query=Palle%2C+E">Enric Palle</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">Grzegorz Nowak</a>, <a href="/search/?searchtype=author&amp;query=Osborne%2C+H+L+M">Hannah L. M. Osborne</a>, <a href="/search/?searchtype=author&amp;query=Narita%2C+N">Norio Narita</a>, <a href="/search/?searchtype=author&amp;query=Mathur%2C+S">Savita Mathur</a>, <a href="/search/?searchtype=author&amp;query=Lam%2C+K+W+F">Kristine W. F. Lam</a>, <a href="/search/?searchtype=author&amp;query=Kabath%2C+P">Petr Kabath</a>, <a href="/search/?searchtype=author&amp;query=Johnson%2C+M+C">Marshall C. Johnson</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E+W">Eike W. Guenther</a>, <a href="/search/?searchtype=author&amp;query=Grziwa%2C+S">Sascha Grziwa</a>, <a href="/search/?searchtype=author&amp;query=Goffo%2C+E">Elisa Goffo</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.01018v2-abstract-short" style="display: inline;"> Pi Men hosts a transiting planet detected by the TESS space mission and an outer planet in a 5.7-yr orbit discovered by RV surveys. We studied this system using new radial velocity (RV) measurements taken with the HARPS spectrograph on ESO&#39;s 3.6-m telescope as well as archival data. We constrain the stellar RV semi-amplitude due to the transiting planet, Pi Men c, as K_c = 1.21 +/- 0.12 m/s result&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01018v2-abstract-full').style.display = 'inline'; document.getElementById('2203.01018v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.01018v2-abstract-full" style="display: none;"> Pi Men hosts a transiting planet detected by the TESS space mission and an outer planet in a 5.7-yr orbit discovered by RV surveys. We studied this system using new radial velocity (RV) measurements taken with the HARPS spectrograph on ESO&#39;s 3.6-m telescope as well as archival data. We constrain the stellar RV semi-amplitude due to the transiting planet, Pi Men c, as K_c = 1.21 +/- 0.12 m/s resulting in a planet mass of M_c = 3.63 +/- 0.38 M_Earth. A planet radius of R_c= 2.145 +/- 0.015 R_Earth yields a bulk density of rho = 2.03 +/- 0.22 g/cm^{-3}. The precisely determined density of this planet and the brightness of the host star make Pi Men c an excellent laboratory for internal structure and atmospheric characterization studies. Our HARPS RV measurements also reveal compelling evidence for a third body, PI Men d, with a minimum mass M sin i = 13.38 +/- 1.35 M_Earth orbiting with a period of P_d = 125 d on an eccentric orbit (e = 0.22). A simple dynamical analysis indicates that the orbit of Pi Men d is stable on timescales of at least 20 Myrs. Given the mutual inclination between the outer gaseous giant and the inner rocky planet and the presence of a third body at 125 d, Pi Men is an important planetary system for dynamical and formation studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01018v2-abstract-full').style.display = 'none'; document.getElementById('2203.01018v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Astronomical Journal. 40 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04140">arXiv:2201.04140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.04140">pdf</a>, <a href="https://arxiv.org/format/2201.04140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ac4972">10.3847/1538-3881/ac4972 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TESS Giants Transiting Giants II: The hottest Jupiters orbiting evolved stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Grunblatt%2C+S+K">Samuel K. Grunblatt</a>, <a href="/search/?searchtype=author&amp;query=Saunders%2C+N">Nicholas Saunders</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+M">Meng Sun</a>, <a href="/search/?searchtype=author&amp;query=Chontos%2C+A">Ashley Chontos</a>, <a href="/search/?searchtype=author&amp;query=Soares-Furtado%2C+M">Melinda Soares-Furtado</a>, <a href="/search/?searchtype=author&amp;query=Eisner%2C+N">Nora Eisner</a>, <a href="/search/?searchtype=author&amp;query=Pereira%2C+F">Filipe Pereira</a>, <a href="/search/?searchtype=author&amp;query=Komacek%2C+T">Thaddeus Komacek</a>, <a href="/search/?searchtype=author&amp;query=Huber%2C+D">Daniel Huber</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K">Karen Collins</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+G">Gavin Wang</a>, <a href="/search/?searchtype=author&amp;query=Stockdale%2C+C">Chris Stockdale</a>, <a href="/search/?searchtype=author&amp;query=Quinn%2C+S+N">Samuel N. Quinn</a>, <a href="/search/?searchtype=author&amp;query=Tronsgaard%2C+R">Rene Tronsgaard</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+G">George Zhou</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">Grzegorz Nowak</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Ciardi%2C+D+R">David R. Ciardi</a>, <a href="/search/?searchtype=author&amp;query=Boyle%2C+A">Andrew Boyle</a>, <a href="/search/?searchtype=author&amp;query=Rice%2C+M">Malena Rice</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">Fei Dai</a>, <a href="/search/?searchtype=author&amp;query=Blunt%2C+S">Sarah Blunt</a>, <a href="/search/?searchtype=author&amp;query=Van+Zandt%2C+J">Judah Van Zandt</a>, <a href="/search/?searchtype=author&amp;query=Beard%2C+C">Corey Beard</a>, <a href="/search/?searchtype=author&amp;query=Murphy%2C+J+M+A">Joseph M. Akana Murphy</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04140v1-abstract-short" style="display: inline;"> Giant planets on short-period orbits are predicted to be inflated and eventually engulfed by their host stars. However, the detailed timescales and stages of these processes are not well known. Here we present the discovery of three hot Jupiters (P $&lt;$ 10 d) orbiting evolved, intermediate-mass stars ($M_\star$ $\approx$ 1.5 M$_\odot$, 2 R$_\odot$ $&lt;$ $R_\star &lt; $ 5 R$_\odot$). By combining \tess p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04140v1-abstract-full').style.display = 'inline'; document.getElementById('2201.04140v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04140v1-abstract-full" style="display: none;"> Giant planets on short-period orbits are predicted to be inflated and eventually engulfed by their host stars. However, the detailed timescales and stages of these processes are not well known. Here we present the discovery of three hot Jupiters (P $&lt;$ 10 d) orbiting evolved, intermediate-mass stars ($M_\star$ $\approx$ 1.5 M$_\odot$, 2 R$_\odot$ $&lt;$ $R_\star &lt; $ 5 R$_\odot$). By combining \tess photometry with ground-based photometry and radial velocity measurements, we report masses and radii for these three planets between 0.4 and 1.8 M$_\mathrm{J}$ and 0.8 and 1.8 R$_\mathrm{J}$. \planet has the shortest period (P=\period) of any planet discovered around a red giant star to date. Both \planettwo and \planetthree appear to be inflated, but \planet does not show any sign of inflation. The large radii and relatively low masses of \planettwo and \planetthree place them among the lowest density hot Jupiters currently known, while \planet is conversely one of the highest. All three planets have orbital eccentricities below 0.2. The large spread in radii for these systems implies that planet inflation has a complex dependence on planet mass, radius, incident flux, and orbital properties. We predict that \planet has the shortest orbital decay timescale of any planet currently known, but do not detect any orbital decay in this system. Transmission spectroscopy of \planettwo would provide a favorable opportunity for the detection of water, carbon dioxide and carbon monoxide features in the atmosphere of a planet orbiting an evolved star, and could yield new information about planet formation and atmospheric evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04140v1-abstract-full').style.display = 'none'; document.getElementById('2201.04140v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 15 figures, accepted for publication in the Astronomical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10535">arXiv:2112.10535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.10535">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Orbital Period Refinement of CoRoT Planets with TESS Observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Klagyivik%2C+P">Peter Klagyivik</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Szilard Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Cabrera%2C+J">Juan Cabrera</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">Grzegorz Nowak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10535v1-abstract-short" style="display: inline;"> CoRoT was the first space mission dedicated to exoplanet detection. Operational between 2007 and 2012, this mission discovered 37 transiting planets, including CoRoT-7b, the first terrestrial exoplanet with a measured size. The precision of the published transit ephemeris of most of these planets has been limited by the relative short durations of the CoRoT pointings, which implied a danger that t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10535v1-abstract-full').style.display = 'inline'; document.getElementById('2112.10535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10535v1-abstract-full" style="display: none;"> CoRoT was the first space mission dedicated to exoplanet detection. Operational between 2007 and 2012, this mission discovered 37 transiting planets, including CoRoT-7b, the first terrestrial exoplanet with a measured size. The precision of the published transit ephemeris of most of these planets has been limited by the relative short durations of the CoRoT pointings, which implied a danger that the transits will become unobservable within a few years due to the uncertainty of their future transit epochs. Ground-based follow-up observations of the majority of the CoRoT planets have been published in recent years. Between Dec. 2018 and Jan. 2021, the TESS mission in its sectors 6 and 33 re-observed those CoRoT fields that pointed towards the Galactic anti-center. These data permitted the identification of transits from nine of the CoRoT planets, and the derivation of precise new transit epochs. The main motivation of this study has been to derive precise new ephemerides of the CoRoT planets, in order to keep these planets&#39; transits observable for future generations of telescopes. The TESS data were analyzed for the presence of transits and the epochs of these re-observed transits were measured. The original CoRoT epochs, epochs from ground-based follow-up observations and those from TESS were collected. From these data updated ephemerides are presented for nine transiting planets discovered by the CoRoT mission in its fields pointing towards the Galactic anti-center. In three cases (CoRoT-4b, 19b and 20b), transits that would have been lost for ground observations, due to the large uncertainty in the previous ephemeris, have been recovered. The updated ephemerides permit transit predictions with uncertainties of less than 30 min for observations at least until the year 2030. No significant transit timing variations were found in these systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10535v1-abstract-full').style.display = 'none'; document.getElementById('2112.10535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages incl. supplementary material. Accepted by Frontiers in Astronomy and Space Sciences</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14660">arXiv:2111.14660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.14660">pdf</a>, <a href="https://arxiv.org/format/2111.14660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3497">10.1093/mnras/stab3497 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> K2-99 revisited: a non-inflated warm Jupiter, and a temperate giant planet on a 522-d orbit around a subgiant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Smith%2C+A+M+S">A. M. S. Smith</a>, <a href="/search/?searchtype=author&amp;query=Breton%2C+S+N">S. N. Breton</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Sz. Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">F. Dai</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa%2C+R+A">R. A. Garc铆a</a>, <a href="/search/?searchtype=author&amp;query=Howard%2C+A+W">A. W. Howard</a>, <a href="/search/?searchtype=author&amp;query=Isaacson%2C+H">H. Isaacson</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">J. Korth</a>, <a href="/search/?searchtype=author&amp;query=Lam%2C+K+W+F">K. W. F. Lam</a>, <a href="/search/?searchtype=author&amp;query=Mathur%2C+S">S. Mathur</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">G. Nowak</a>, <a href="/search/?searchtype=author&amp;query=Hern%C3%A1ndez%2C+F+P">F. P茅rez Hern谩ndez</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">C. M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S+H">S. H. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">O. Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Cabrera%2C+J">J. Cabrera</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">W. D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">M. Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Georgieva%2C+I+Y">I. Y. Georgieva</a>, <a href="/search/?searchtype=author&amp;query=Goffo%2C+E">E. Goffo</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E+W">E. W. Guenther</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A+P">A. P. Hatzes</a>, <a href="/search/?searchtype=author&amp;query=Kabath%2C+P">P. Kabath</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14660v1-abstract-short" style="display: inline;"> We report new photometric and spectroscopic observations of the K2-99 planetary system. Asteroseismic analysis of the short-cadence light curve from K2&#39;s Campaign 17 allows us to refine the stellar properties. We find K2-99 to be significantly smaller than previously thought, with $R_{\star} = 2.55\pm0.02$ $\mathrm{R_\odot}$. The new light curve also contains four transits of K2-99b, which we use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14660v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14660v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14660v1-abstract-full" style="display: none;"> We report new photometric and spectroscopic observations of the K2-99 planetary system. Asteroseismic analysis of the short-cadence light curve from K2&#39;s Campaign 17 allows us to refine the stellar properties. We find K2-99 to be significantly smaller than previously thought, with $R_{\star} = 2.55\pm0.02$ $\mathrm{R_\odot}$. The new light curve also contains four transits of K2-99b, which we use to improve our knowledge of the planetary properties. We find the planet to be a non-inflated warm Jupiter, with $R_\mathrm{b} = 1.06 \pm 0.01$ $\mathrm{R_{Jup}}$. Sixty new radial velocity measurements from HARPS, HARPS-N, and HIRES enable the determination of the orbital parameters of K2-99c, which were previously poorly constrained. We find that this outer planet has a minimum mass $M_\mathrm{c} \sin i_\mathrm{c} = 8.4\pm0.2$ $\mathrm{M_{Jup}}$, and an eccentric orbit ($e_\mathrm{c} = 0.210 \pm 0.009$) with a period of $522.2\pm1.4$ d. Upcoming TESS observations in 2022 have a good chance of detecting the transit of this planet, if the mutual inclination between the two planetary orbits is small. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14660v1-abstract-full').style.display = 'none'; document.getElementById('2111.14660v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Society</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS 2022, 510, 5035 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.13069">arXiv:2110.13069</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.13069">pdf</a>, <a href="https://arxiv.org/format/2110.13069">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac638">10.1093/mnras/stac638 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The young HD 73583 (TOI-560) planetary system: Two 10-M$_\oplus$ mini-Neptunes transiting a 500-Myr-old, bright, and active K dwarf </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">O. Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Armstrong%2C+D+J">D. J. Armstrong</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Carleo%2C+I">I. Carleo</a>, <a href="/search/?searchtype=author&amp;query=Vidotto%2C+A+A">A. A. Vidotto</a>, <a href="/search/?searchtype=author&amp;query=D%27Angelo%2C+C+V">C. Villarreal D&#39;Angelo</a>, <a href="/search/?searchtype=author&amp;query=Oklop%C4%8Di%C4%87%2C+A">A. Oklop膷i膰</a>, <a href="/search/?searchtype=author&amp;query=Isaacson%2C+H">H. Isaacson</a>, <a href="/search/?searchtype=author&amp;query=Oddo%2C+D">D. Oddo</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K">K. Collins</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">M. Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Sousa%2C+S+G">S. G. Sousa</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">C. M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Hellier%2C+C">C. Hellier</a>, <a href="/search/?searchtype=author&amp;query=Howell%2C+S">S. Howell</a>, <a href="/search/?searchtype=author&amp;query=Howard%2C+A">A. Howard</a>, <a href="/search/?searchtype=author&amp;query=Redfield%2C+S">S. Redfield</a>, <a href="/search/?searchtype=author&amp;query=Eisner%2C+N">N. Eisner</a>, <a href="/search/?searchtype=author&amp;query=Georgieva%2C+I+Y">I. Y. Georgieva</a>, <a href="/search/?searchtype=author&amp;query=Dragomir%2C+D">D. Dragomir</a>, <a href="/search/?searchtype=author&amp;query=Bayliss%2C+D">D. Bayliss</a>, <a href="/search/?searchtype=author&amp;query=Nielsen%2C+L+D">L. D. Nielsen</a>, <a href="/search/?searchtype=author&amp;query=Klein%2C+B">B. Klein</a>, <a href="/search/?searchtype=author&amp;query=Aigrain%2C+S">S. Aigrain</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+M">M. Zhang</a> , et al. (82 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.13069v2-abstract-short" style="display: inline;"> We present the discovery and characterisation of two transiting planets observed by \textit{TESS} in the light curves of the young and bright (V=9.67) star HD73583 (TOI-560). We perform an intensive spectroscopic and photometric space- and ground-based follow-up in order to confirm and characterise the system. We found that HD73583 is a young ($\sim 500$~Myr) active star with a rotational period o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13069v2-abstract-full').style.display = 'inline'; document.getElementById('2110.13069v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.13069v2-abstract-full" style="display: none;"> We present the discovery and characterisation of two transiting planets observed by \textit{TESS} in the light curves of the young and bright (V=9.67) star HD73583 (TOI-560). We perform an intensive spectroscopic and photometric space- and ground-based follow-up in order to confirm and characterise the system. We found that HD73583 is a young ($\sim 500$~Myr) active star with a rotational period of $12.08 \pm 0.11 $\,d, and a mass and radius of $ 0.73 \pm 0.02 M_\odot$ and $0.65 \pm 0.02 R_\odot$, respectively. HD73583 b ($P_b=6.3980420 _{ - 0.0000062 }^{+0.0000067}$ d) has a mass and radius of $10.2 _{-3.1}^{+3.4} M_\oplus$ and$2.79 \pm 0.10 R_\oplus$, respectively, that gives a density of $2.58 _{-0.81}^{ 0.95} {\rm g\,cm^{-3}}$. HD73583 c ($P_c= 18.87974 _{-0.00074 }^{+0.00086}$) has a mass and radius of $9.7_{-1.7} ^ {+1.8} M_\oplus$ and $2.39_{-0.09}^{+0.10} R_\oplus$, respectively, this translates to a density of $3.88 _{-0.80}^{+0.91} {\rm g\,cm^{-3}}$. Both planets are consistent with worlds made of a solid core surrounded by a volatile envelope. Because of their youth and host star brightness, they both are excellent candidates to perform transmission spectroscopy studies. We expect ongoing atmospheric mass-loss for both planets caused by stellar irradiation. We estimate that the detection of evaporating signatures on H and He would be challenging, but doable with present and future instruments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13069v2-abstract-full').style.display = 'none'; document.getElementById('2110.13069v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.05653">arXiv:2104.05653</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.05653">pdf</a>, <a href="https://arxiv.org/format/2104.05653">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1464">10.1093/mnras/stab1464 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hot planets around cool stars -- two short-period mini-Neptunes transiting the late K-dwarf TOI-1260 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Georgieva%2C+I+Y">I. Y. Georgieva</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">C. M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">O. Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">G. Nowak</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">M. Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Locci%2C+D">D. Locci</a>, <a href="/search/?searchtype=author&amp;query=Palle%2C+E">E. Palle</a>, <a href="/search/?searchtype=author&amp;query=Luque%2C+R">R. Luque</a>, <a href="/search/?searchtype=author&amp;query=Carleo%2C+I">I. Carleo</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Kane%2C+S+R">S. R. Kane</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">J. Korth</a>, <a href="/search/?searchtype=author&amp;query=Stassun%2C+K+G">K. G. Stassun</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J">J. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Matthews%2C+E+C">E. C. Matthews</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">K. A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Howell%2C+S+B">S. B. Howell</a>, <a href="/search/?searchtype=author&amp;query=Serrano%2C+L+M">L. M. Serrano</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">S. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Bieryla%2C+A">A. Bieryla</a>, <a href="/search/?searchtype=author&amp;query=Brasseur%2C+C+E">C. E. Brasseur</a>, <a href="/search/?searchtype=author&amp;query=Ciardi%2C+D">D. Ciardi</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">W. D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Colon%2C+K+D">K. D. Colon</a>, <a href="/search/?searchtype=author&amp;query=Crossfield%2C+I+J+M">I. J. M. Crossfield</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.05653v2-abstract-short" style="display: inline;"> We present the discovery and characterization of two sub-Neptunes in close orbits, as well as a tentative outer planet of a similar size, orbiting TOI-1260 - a low metallicity K6V dwarf star. Photometry from TESS yields radii of $R_{\rm b} = 2.33 \pm 0.10$ $R_{\oplus}$ and $R_{\rm c} = 2.82 \pm 0.15$ $R_{\oplus}$, and periods of 3.13 and 7.49 days for TOI-1260b and TOI-1260c, respectively. We comb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05653v2-abstract-full').style.display = 'inline'; document.getElementById('2104.05653v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.05653v2-abstract-full" style="display: none;"> We present the discovery and characterization of two sub-Neptunes in close orbits, as well as a tentative outer planet of a similar size, orbiting TOI-1260 - a low metallicity K6V dwarf star. Photometry from TESS yields radii of $R_{\rm b} = 2.33 \pm 0.10$ $R_{\oplus}$ and $R_{\rm c} = 2.82 \pm 0.15$ $R_{\oplus}$, and periods of 3.13 and 7.49 days for TOI-1260b and TOI-1260c, respectively. We combined the TESS data with a series of ground-based follow-up observations to characterize the planetary system. From HARPS-N high-precision radial velocities we obtain $M_{\rm b} = 8.61_{ - 1.46 } ^ { + 1.36 }$ $M_{\oplus}$ and $M_{\rm c} = 11.84_{ - 3.23 } ^ { + 3.38 }$ $M_{\oplus}$. The star is moderately active with a complex activity pattern, which necessitated the use of Gaussian process regression for both the light curve detrending and the radial velocity modelling, in the latter case guided by suitable activity indicators. We successfully disentangle the stellar-induced signal from the planetary signals, underlining the importance and usefulness of the Gaussian Process approach. We test the system&#39;s stability against atmospheric photoevaporation and find that the TOI-1260 planets are classic examples of the structure and composition ambiguity typical for the $2-3$ $R_{\oplus}$ range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05653v2-abstract-full').style.display = 'none'; document.getElementById('2104.05653v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.15720">arXiv:2103.15720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.15720">pdf</a>, <a href="https://arxiv.org/format/2103.15720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202140359">10.1051/0004-6361/202140359 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A transmission spectrum of the planet candidate WD 1856+534 b and a lower limit to its mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Alonso%2C+R">R. Alonso</a>, <a href="/search/?searchtype=author&amp;query=Rodr%C3%ADguez-Gil%2C+P">P. Rodr铆guez-Gil</a>, <a href="/search/?searchtype=author&amp;query=Izquierdo%2C+P">P. Izquierdo</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Lodieu%2C+N">N. Lodieu</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Lavers%2C+A">A. Cabrera-Lavers</a>, <a href="/search/?searchtype=author&amp;query=Hollands%2C+M+A">M. A. Hollands</a>, <a href="/search/?searchtype=author&amp;query=P%C3%A9rez-Toledo%2C+F+M">F. M. P茅rez-Toledo</a>, <a href="/search/?searchtype=author&amp;query=Castro-Rodr%C3%ADguez%2C+N">N. Castro-Rodr铆guez</a>, <a href="/search/?searchtype=author&amp;query=Reverte-Pay%C3%A1%2C+D">D. Reverte-Pay谩</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.15720v1-abstract-short" style="display: inline;"> The cool white dwarf WD 1856+534 was found to be transited by a Jupiter-sized object with a mass at or below 14 M$_{\rm{Jup}}$. We used the GTC telescope to obtain and analyse photometry and low resolution spectroscopy of six transits of WD 1856+534 b, with the intention to derive the slope of the transmission spectrum, towards an eventual detection of Rayleigh scattering of the particles in its a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15720v1-abstract-full').style.display = 'inline'; document.getElementById('2103.15720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.15720v1-abstract-full" style="display: none;"> The cool white dwarf WD 1856+534 was found to be transited by a Jupiter-sized object with a mass at or below 14 M$_{\rm{Jup}}$. We used the GTC telescope to obtain and analyse photometry and low resolution spectroscopy of six transits of WD 1856+534 b, with the intention to derive the slope of the transmission spectrum, towards an eventual detection of Rayleigh scattering of the particles in its atmosphere. Such a slope, assuming a cloud-free atmosphere dominated by Rayleigh scattering, could be translated into an estimation of the mass of WD 1856+534 b. However, the resultant transmission spectrum is essentially flat, and therefore permits only the determination of lower mass limits of 2.4 M$_{\rm{Jup}}$ at the 2-$蟽$ level, or 1.6 M$_{\rm{Jup}}$ at 3-$蟽$. These limits have implications for some of the proposed formation scenarios for the object. We elaborate on the potential effects of clouds and hazes in our estimations, based on previous studies of Jupiter and Titan. In addition, we detected an H$伪$ absorption feature in the combined spectrum of the host white dwarf, that leads to the assignation of a DA classification and allows derivation of an independent set of atmospheric parameters. Furthermore, the epochs of five transits were measured with sub-second precision, which demonstrates that additional objects more massive than $\approx$5 M$_{\rm{Jup}}$ and with periods longer than $O(100)$ days could be detected through the light travel time effect <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15720v1-abstract-full').style.display = 'none'; document.getElementById('2103.15720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures, accepted for publication in Astronomy and Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 649, A131 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09231">arXiv:2011.09231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.09231">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/galaxies9010001">10.3390/galaxies9010001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A modified Kwee - van Woerden method for eclipse minimum timing with reliable error estimates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09231v3-abstract-short" style="display: inline;"> The Kwee - van Woerden (KvW) method used for the determination of eclipse minimum times has been a staple in eclipsing binary research for decades, due its simplicity and the independence of external input parameters, which also makes it well-suited to obtaining timings of exoplanet transits. However, its estimates of the timing error have been known to have a low reliability. During the analysis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09231v3-abstract-full').style.display = 'inline'; document.getElementById('2011.09231v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09231v3-abstract-full" style="display: none;"> The Kwee - van Woerden (KvW) method used for the determination of eclipse minimum times has been a staple in eclipsing binary research for decades, due its simplicity and the independence of external input parameters, which also makes it well-suited to obtaining timings of exoplanet transits. However, its estimates of the timing error have been known to have a low reliability. During the analysis of very precise photometry of CM Draconis eclipses from TESS space mission data, KvW&#39;s original equation for the timing error estimate produced numerical errors, which evidenced a fundamental problem in this equation. This contribution introduces an improved approach for calculating the timing error with the KvW method. A code that implements this improved method, together with several further updates of the original method, are presented. An example of the application to CM Draconis light curves from TESS is given. The eclipse minimum times are derived with the KvW method&#39;s three original light curve folds, but also with five and seven folds. The use of five or more folds produces minimum timings with a substantially better precision. The improved method of error calculation delivers consistent timing errors which are in excellent agreement with error estimates obtained by other means. In the case of TESS data from CM Draconis, minimum times with an average precision of 1.1 seconds are obtained. Reliable timing errors are also a valuable indicator for evaluating if a given scatter in an O-C diagram is caused by measurement errors or by a physical period variation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09231v3-abstract-full').style.display = 'none'; document.getElementById('2011.09231v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for special issue &#39;Astrophysics of Eclipsing Binaries in the Era of Space-Borne Telescopes&#39; of the journal &#39;galaxies&#39;. V2 with additional evaluation on the impact of the number of foldings in the KvW method. V3: Update of Fig. 2 and minor text mods, to coincide with published paper</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Galaxies, vol. 9, issue 1, p. 1 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14132">arXiv:2009.14132</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14132">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Maintaining the Ephemeris of 20 CoRoT Planets: Transit Minimum Times and Potential Transit Timing Variations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Klagyivik%2C+P">Peter Klagyivik</a>, <a href="/search/?searchtype=author&amp;query=Armstrong%2C+J+D">J. D. Armstrong</a>, <a href="/search/?searchtype=author&amp;query=Nespral%2C+D">David Nespral</a>, <a href="/search/?searchtype=author&amp;query=Tal-Or%2C+L">Lev Tal-Or</a>, <a href="/search/?searchtype=author&amp;query=Alonso%2C+R">Roi Alonso</a>, <a href="/search/?searchtype=author&amp;query=Cabatic%2C+R">Richelle Cabatic</a>, <a href="/search/?searchtype=author&amp;query=Chaffey%2C+C">Cameron Chaffey</a>, <a href="/search/?searchtype=author&amp;query=Gauza%2C+B">Bartek Gauza</a>, <a href="/search/?searchtype=author&amp;query=Hoyer%2C+S">Sergio Hoyer</a>, <a href="/search/?searchtype=author&amp;query=Lindsay%2C+C+J">Christopher J. Lindsay</a>, <a href="/search/?searchtype=author&amp;query=Miles-P%C3%A1ez%2C+P">Paulo Miles-P谩ez</a>, <a href="/search/?searchtype=author&amp;query=Rojo%2C+P">Patricio Rojo</a>, <a href="/search/?searchtype=author&amp;query=Tingley%2C+B">Brandon Tingley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14132v1-abstract-short" style="display: inline;"> We present 33 transit minimum times of 20 transiting planets discovered by the CoRoT mission, which have been obtained from ground-based observations since the mission&#39;s end in 2012, with the objective to maintain the ephemeris of these planets. Twelve of the observed planets are in the CoRoT fields near the galactic center and the remaining eight planets are in the fields near the anticenter. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14132v1-abstract-full').style.display = 'inline'; document.getElementById('2009.14132v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14132v1-abstract-full" style="display: none;"> We present 33 transit minimum times of 20 transiting planets discovered by the CoRoT mission, which have been obtained from ground-based observations since the mission&#39;s end in 2012, with the objective to maintain the ephemeris of these planets. Twelve of the observed planets are in the CoRoT fields near the galactic center and the remaining eight planets are in the fields near the anticenter. We detect indications for significant transit timing variations in the cases of CoRoT 3b, 11b, 13b, 27b. For two more planets (CoRoT 18b and 20b) we conclude that timing offsets in early follow-up observations led to ephemeris in discovery publications that are inconsistent with timings from follow-up observations in later epochs. In the case of CoRoT-20b, this might be due to the influence from a further non-transiting planet. We also note that a significant majority (23 of 33) of our reported minimum times have negative O-C values, albeit most of them are within the expected uncertainty of the ephemeris. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14132v1-abstract-full').style.display = 'none'; document.getElementById('2009.14132v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by JAAVSO. 26 pages including two appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JAAVSO, Vol 48, p. 201 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.08338">arXiv:2009.08338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.08338">pdf</a>, <a href="https://arxiv.org/format/2009.08338">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202039455">10.1051/0004-6361/202039455 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A planetary system with two transiting mini-Neptunes near the radius valley transition around the bright M dwarf TOI-776 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Luque%2C+R">R. Luque</a>, <a href="/search/?searchtype=author&amp;query=Serrano%2C+L+M">L. M. Serrano</a>, <a href="/search/?searchtype=author&amp;query=Molaverdikhani%2C+K">K. Molaverdikhani</a>, <a href="/search/?searchtype=author&amp;query=Nixon%2C+M+C">M. C. Nixon</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+H">J. H. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E+W">E. W. Guenther</a>, <a href="/search/?searchtype=author&amp;query=Pall%C3%A9%2C+E">E. Pall茅</a>, <a href="/search/?searchtype=author&amp;query=Madhusudhan%2C+N">N. Madhusudhan</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">G. Nowak</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">J. Korth</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">W. D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Hirano%2C+T">T. Hirano</a>, <a href="/search/?searchtype=author&amp;query=Chaturvedi%2C+P">P. Chaturvedi</a>, <a href="/search/?searchtype=author&amp;query=Goffo%2C+E">E. Goffo</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">S. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">O. Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Brice%C3%B1o%2C+C">C Brice帽o</a>, <a href="/search/?searchtype=author&amp;query=Cabrera%2C+J">J. Cabrera</a>, <a href="/search/?searchtype=author&amp;query=Charbonneau%2C+D">D. Charbonneau</a>, <a href="/search/?searchtype=author&amp;query=Cloutier%2C+R">R. Cloutier</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">K. A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+I">K. I. Collins</a>, <a href="/search/?searchtype=author&amp;query=Col%C3%B3n%2C+K+D">K. D. Col贸n</a>, <a href="/search/?searchtype=author&amp;query=Crossfield%2C+I+J+M">I. J. M. Crossfield</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Sz. Csizmadia</a> , et al. (41 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.08338v2-abstract-short" style="display: inline;"> We report the discovery and characterization of two transiting planets around the bright M1 V star LP 961-53 (TOI-776, J = 8.5 mag, M = 0.54+-0.03 Msun) detected during Sector 10 observations of the Transiting Exoplanet Survey Satellite (TESS). Combining the TESS photometry with HARPS radial velocities, as well as ground-based follow-up transit observations from MEarth and LCOGT telescopes, we mea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.08338v2-abstract-full').style.display = 'inline'; document.getElementById('2009.08338v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.08338v2-abstract-full" style="display: none;"> We report the discovery and characterization of two transiting planets around the bright M1 V star LP 961-53 (TOI-776, J = 8.5 mag, M = 0.54+-0.03 Msun) detected during Sector 10 observations of the Transiting Exoplanet Survey Satellite (TESS). Combining the TESS photometry with HARPS radial velocities, as well as ground-based follow-up transit observations from MEarth and LCOGT telescopes, we measured for the inner planet, TOI-776 b, a period of 8.25 d, a radius of 1.85+-0.13 Re, and a mass of 4.0+-0.9 Me; and for the outer planet, TOI-776 c, a period of 15.66 d, a radius of 2.02+-0.14 Re, and a mass of 5.3+-1.8 Me. The Doppler data shows one additional signal, with a period of 34 d, associated with the rotational period of the star. The analysis of fifteen years of ground-based photometric monitoring data and the inspection of different spectral line indicators confirm this assumption. The bulk densities of TOI-776 b and c allow for a wide range of possible interior and atmospheric compositions. However, both planets have retained a significant atmosphere, with slightly different envelope mass fractions. Thanks to their location near the radius gap for M dwarfs, we can start to explore the mechanism(s) responsible for the radius valley emergence around low-mass stars as compared to solar-like stars. While a larger sample of well-characterized planets in this parameter space is still needed to draw firm conclusions, we tentatively estimate that the stellar mass below which thermally-driven mass loss is no longer the main formation pathway for sculpting the radius valley is between 0.63 and 0.54 Msun. Due to the brightness of the star, the TOI-776 system is also an excellent target for the James Webb Space Telescope, providing a remarkable laboratory to break the degeneracy in planetary interior models and to test formation and evolution theories of small planets around low-mass stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.08338v2-abstract-full').style.display = 'none'; document.getElementById('2009.08338v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 15 figures, 8 tables. Accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 645, A41 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.12535">arXiv:2008.12535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.12535">pdf</a>, <a href="https://arxiv.org/format/2008.12535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa2502">10.1093/mnras/staa2502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The TOI-763 system: sub-Neptunes orbiting a Sun-like star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">M. Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J">J. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">C. M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Lam%2C+K+W+F">K. W. F. Lam</a>, <a href="/search/?searchtype=author&amp;query=Stassun%2C+K+G">K. G. Stassun</a>, <a href="/search/?searchtype=author&amp;query=Hellier%2C+C">C. Hellier</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">J. Korth</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A+P">A. P. Hatzes</a>, <a href="/search/?searchtype=author&amp;query=Malavolta%2C+L">L. Malavolta</a>, <a href="/search/?searchtype=author&amp;query=Luque%2C+R">R. Luque</a>, <a href="/search/?searchtype=author&amp;query=Redfield%2C+S">S. Redfield</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E+W">E. W. Guenther</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">S. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Barragan%2C+O">O. Barragan</a>, <a href="/search/?searchtype=author&amp;query=Benatti%2C+S">S. Benatti</a>, <a href="/search/?searchtype=author&amp;query=Bouma%2C+L">L. Bouma</a>, <a href="/search/?searchtype=author&amp;query=Cabrera%2C+J">J. Cabrera</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">W. D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Sz. Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">F. Dai</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Esposito%2C+M">M. Esposito</a>, <a href="/search/?searchtype=author&amp;query=Georgieva%2C+I">I. Georgieva</a>, <a href="/search/?searchtype=author&amp;query=Grziwa%2C+S">S. Grziwa</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.12535v1-abstract-short" style="display: inline;"> We report the discovery of a planetary system orbiting TOI-763 (aka CD-39 7945), a $V=10.2$, high proper motion G-type dwarf star that was photometrically monitored by the TESS space mission in Sector 10. We obtain and model the stellar spectrum and find an object slightly smaller than the Sun, and somewhat older, but with a similar metallicity. Two planet candidates were found in the light curve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12535v1-abstract-full').style.display = 'inline'; document.getElementById('2008.12535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.12535v1-abstract-full" style="display: none;"> We report the discovery of a planetary system orbiting TOI-763 (aka CD-39 7945), a $V=10.2$, high proper motion G-type dwarf star that was photometrically monitored by the TESS space mission in Sector 10. We obtain and model the stellar spectrum and find an object slightly smaller than the Sun, and somewhat older, but with a similar metallicity. Two planet candidates were found in the light curve to be transiting the star. Combining TESS transit photometry with HARPS high-precision radial velocity follow-up measurements confirm the planetary nature of these transit signals. We determine masses, radii, and bulk densities of these two planets. A third planet candidate was discovered serendipitously in the radial velocity data. The inner transiting planet,TOI-763 b, has an orbital period of $P_\mathrm{b}$ = 5.6~days, a mass of $M_\mathrm{b}$ = $9.8\pm0.8$ $M_\oplus$, and a radius of $R_\mathrm{b}$ = $2.37\pm0.10$ $R_\oplus$. The second transiting planet,TOI-763 c, has an orbital period of $P_\mathrm{c}$ = 12.3~days, a mass of $M_\mathrm{c}$ = $9.3\pm1.0$ $M_\oplus$, and a radius of $R_\mathrm{c}$ = $2.87\pm0.11$ $R_\oplus$. We find the outermost planet candidate to orbit the star with a period of $\sim$48~days. If confirmed as a planet it would have a minimum mass of $M_\mathrm{d}$ = $9.5\pm1.6$ $M_\oplus$. We investigated the TESS light curve in order to search for a mono transit by planet~d without success. We discuss the importance and implications of this planetary system in terms of the geometrical arrangements of planets orbiting G-type stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12535v1-abstract-full').style.display = 'none'; document.getElementById('2008.12535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07939">arXiv:2007.07939</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07939">pdf</a>, <a href="https://arxiv.org/format/2007.07939">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa2077">10.1093/mnras/staa2077 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> K2-280b -- a low density warm sub-Saturn around a mildly evolved star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">Grzegorz Nowak</a>, <a href="/search/?searchtype=author&amp;query=Palle%2C+E">Enric Palle</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Hirano%2C+T">Teruyuki Hirano</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">Oscar Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Kuzuhara%2C+M">Masayuki Kuzuhara</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">Fei Dai</a>, <a href="/search/?searchtype=author&amp;query=Luque%2C+R">Rafael Luque</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">Carina M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">Malcolm Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Johnson%2C+M+C">Marshall C. Johnson</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">Judith Korth</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+H">John H. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Grziwa%2C+S">Sascha Grziwa</a>, <a href="/search/?searchtype=author&amp;query=Mathur%2C+S">Savita Mathur</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A+P">Artie P. Hatzes</a>, <a href="/search/?searchtype=author&amp;query=Prieto-Arranz%2C+J">Jorge Prieto-Arranz</a>, <a href="/search/?searchtype=author&amp;query=Nespral%2C+D">David Nespral</a>, <a href="/search/?searchtype=author&amp;query=Hidalgo%2C+D">Diego Hidalgo</a>, <a href="/search/?searchtype=author&amp;query=Hjorth%2C+M">Maria Hjorth</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">Simon Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Van+Eylen%2C+V">Vincent Van Eylen</a>, <a href="/search/?searchtype=author&amp;query=Lam%2C+K+W+F">Kristine W. F. Lam</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">William D. Cochran</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07939v1-abstract-short" style="display: inline;"> We present an independent discovery and detailed characterisation of K2-280b, a transiting low density warm sub-Saturn in a 19.9-day moderately eccentric orbit (e = 0.35_{-0.04}^{+0.05}) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280b has a radius of R_b = 7.50 +/- 0.44 R_Earth and a mass of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07939v1-abstract-full').style.display = 'inline'; document.getElementById('2007.07939v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07939v1-abstract-full" style="display: none;"> We present an independent discovery and detailed characterisation of K2-280b, a transiting low density warm sub-Saturn in a 19.9-day moderately eccentric orbit (e = 0.35_{-0.04}^{+0.05}) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280b has a radius of R_b = 7.50 +/- 0.44 R_Earth and a mass of M_b = 37.1 +/- 5.6 M_Earth, yielding a mean density of 0.48_{-0.10}^{+0.13} g/cm^3. The host star is a mildly evolved G7 star with an effective temperature of T_{eff} = 5500 +/- 100 K, a surface gravity of log(g) = 4.21 +/- 0.05 (cgs), and an iron abundance of [Fe/H] = 0.33 +/- 0.08 dex, and with an inferred mass of M_star = 1.03 +/- 0.03 M_sun and a radius of R_star = 1.28 +/- 0.07 R_sun. We discuss the importance of K2-280b for testing formation scenarios of sub-Saturn planets and the current sample of this intriguing group of planets that are absent in the Solar System. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07939v1-abstract-full').style.display = 'none'; document.getElementById('2007.07939v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures, 5 tables, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.10095">arXiv:2004.10095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.10095">pdf</a>, <a href="https://arxiv.org/format/2004.10095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/aba124">10.3847/1538-3881/aba124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The multi-planet system TOI-421 -- A warm Neptune and a super puffy mini-Neptune transiting a G9 V star in a visual binary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Carleo%2C+I">Ilaria Carleo</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">Oscar Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+H">John H. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">Carina M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Lam%2C+K+W+F">Kristine W. F. Lam</a>, <a href="/search/?searchtype=author&amp;query=Vidotto%2C+A">Aline Vidotto</a>, <a href="/search/?searchtype=author&amp;query=Lund%2C+M+B">Michael B. Lund</a>, <a href="/search/?searchtype=author&amp;query=D%27Angelo%2C+C+V">Carolina Villarreal D&#39;Angelo</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">Karen A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Fossati%2C+L">Luca Fossati</a>, <a href="/search/?searchtype=author&amp;query=Howard%2C+A+W">Andrew W. Howard</a>, <a href="/search/?searchtype=author&amp;query=Kubyshkina%2C+D">Daria Kubyshkina</a>, <a href="/search/?searchtype=author&amp;query=Brahm%2C+R">Rafael Brahm</a>, <a href="/search/?searchtype=author&amp;query=Oklop%C4%8Di%C4%87%2C+A">Antonija Oklop膷i膰</a>, <a href="/search/?searchtype=author&amp;query=Molli%C3%A8re%2C+P">Paul Molli猫re</a>, <a href="/search/?searchtype=author&amp;query=Redfield%2C+S">Seth Redfield</a>, <a href="/search/?searchtype=author&amp;query=Serrano%2C+L+M">Luisa Maria Serrano</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">Fei Dai</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">Malcolm Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Borsa%2C+F">Francesco Borsa</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">Judith Korth</a>, <a href="/search/?searchtype=author&amp;query=Esposito%2C+M">Massimiliano Esposito</a>, <a href="/search/?searchtype=author&amp;query=D%C3%ADaz%2C+M+R">Mat铆as R. D铆az</a>, <a href="/search/?searchtype=author&amp;query=Nielsen%2C+L+D">Louise Dyregaard Nielsen</a> , et al. (88 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.10095v3-abstract-short" style="display: inline;"> We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V=9.9) G9 dwarf star in a visual binary system observed by the TESS space mission in Sectors 5 and 6. We performed ground-based follow-up observations -- comprised of LCOGT transit photometry, NIRC2 adaptive optics imaging, and FIES, CORALIE, HARPS, HIRES, and PFS high-precision&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10095v3-abstract-full').style.display = 'inline'; document.getElementById('2004.10095v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.10095v3-abstract-full" style="display: none;"> We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V=9.9) G9 dwarf star in a visual binary system observed by the TESS space mission in Sectors 5 and 6. We performed ground-based follow-up observations -- comprised of LCOGT transit photometry, NIRC2 adaptive optics imaging, and FIES, CORALIE, HARPS, HIRES, and PFS high-precision Doppler measurements -- and confirmed the planetary nature of the 16-day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of 5 days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421b, has an orbital period of Pb =5.19672 +- 0.00049 days, a mass of Mb = 7.17 +- 0.66 Mearth and a radius of Rb = 2.68+0.19-0.18 Rearth, whereas the outer warm Neptune, TOI-421 c, has a period of Pc =16.06819 +- 0.00035 days, a mass of Mc = 16.42+1.06-1.04 Mearth, a radius of Rc = 5.09+0.16-0.15 Rearth and a density of rho_c =0.685+0.080-0.072 g cm-3 . With its characteristics the inner planet (rho_b=2.05+0.52-0.41 g cm-3) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421b and TOI-421c are found to be well suitable for atmospheric characterization. Our atmospheric simulations predict significant Ly-alpha transit absorption, due to strong hydrogen escape in both planets, and the presence of detectable CH_4 in the atmosphere of TOI-421c if equilibrium chemistry is assumed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10095v3-abstract-full').style.display = 'none'; document.getElementById('2004.10095v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2020AJ....160..114C </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.01755">arXiv:2002.01755</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.01755">pdf</a>, <a href="https://arxiv.org/format/2002.01755">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201937080">10.1051/0004-6361/201937080 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three planets transiting the evolved star EPIC 249893012: a hot 8.8-M$_\oplus$ super-Earth and two warm 14.7 and 10.2-M$_\oplus$ sub-Neptunes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hidalgo%2C+D">D. Hidalgo</a>, <a href="/search/?searchtype=author&amp;query=Pall%C3%A9%2C+E">E. Pall茅</a>, <a href="/search/?searchtype=author&amp;query=Alonso%2C+R">R. Alonso</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">M. Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">G. Nowak</a>, <a href="/search/?searchtype=author&amp;query=Luque%2C+R">R. Luque</a>, <a href="/search/?searchtype=author&amp;query=Hirano%2C+T">T. Hirano</a>, <a href="/search/?searchtype=author&amp;query=Justesen%2C+A+B">A. B. Justesen</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">W. D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Barragan%2C+O">O. Barragan</a>, <a href="/search/?searchtype=author&amp;query=Spina%2C+L">L. Spina</a>, <a href="/search/?searchtype=author&amp;query=Rodler%2C+F">F. Rodler</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">S. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+D">D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Amado%2C+P">P. Amado</a>, <a href="/search/?searchtype=author&amp;query=Bryant%2C+E">E. Bryant</a>, <a href="/search/?searchtype=author&amp;query=Caballero%2C+J+A">J. A. Caballero</a>, <a href="/search/?searchtype=author&amp;query=Cabrera%2C+J">J. Cabrera</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Sz. Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">F. Dai</a>, <a href="/search/?searchtype=author&amp;query=De+Leon%2C+J">J. De Leon</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Eigmuller%2C+P">Ph. Eigmuller</a>, <a href="/search/?searchtype=author&amp;query=Endl%2C+M">M. Endl</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.01755v1-abstract-short" style="display: inline;"> We report the discovery of a new planetary system with three transiting planets, one super-Earth and two sub-Neptunes, that orbit EPIC\,249893012, a G8\,IV-V evolved star ($M_\star$\,=\,1.05\,$\pm$\,0.05\,$M_\odot$, $R_\star$\,=\,1.71\,$\pm$\,0.04\,$R_\odot$, $T_\mathrm{eff}$\,=5430\,$\pm$\,85\,K). The star is just leaving the main sequence. We combined \ktwo \ photometry with IRCS adaptive-optics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.01755v1-abstract-full').style.display = 'inline'; document.getElementById('2002.01755v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.01755v1-abstract-full" style="display: none;"> We report the discovery of a new planetary system with three transiting planets, one super-Earth and two sub-Neptunes, that orbit EPIC\,249893012, a G8\,IV-V evolved star ($M_\star$\,=\,1.05\,$\pm$\,0.05\,$M_\odot$, $R_\star$\,=\,1.71\,$\pm$\,0.04\,$R_\odot$, $T_\mathrm{eff}$\,=5430\,$\pm$\,85\,K). The star is just leaving the main sequence. We combined \ktwo \ photometry with IRCS adaptive-optics imaging and HARPS, HARPS-N, and CARMENES high-precision radial velocity measurements to confirm the planetary system, determine the stellar parameters, and measure radii, masses, and densities of the three planets. With an orbital period of $3.5949^{+0.0007}_{-0.0007}$ days, a mass of $8.75^{+1.09}_{-1.08}\ M_{\oplus}$ , and a radius of $1.95^{+0.09}_{-0.08}\ R_{\oplus}$, the inner planet b is compatible with nickel-iron core and a silicate mantle ($蟻_b= 6.39^{+1.19}_{-1.04}$ g cm$^{-3}$). Planets c and d with orbital periods of $15.624^{+0.001}_{-0.001}$ and $35.747^{+0.005}_{-0.005}$ days, respectively, have masses and radii of $14.67^{+1,84}_{-1.89}\ M_{\oplus}$ and $3.67^{+0.17}_{-0.14}\ R_{\oplus}$ and $10.18^{+2.46}_{-2.42}\ M_{\oplus}$ and $3.94^{+0.13}_{-0.12}\ R_{\oplus}$, respectively, yielding a mean density of $1.62^{+0.30}_{-0.29}$ and $0.91^{+0.25}_{-0.23}$ g cm$^{-3}$, respectively. The radius of planet b lies in the transition region between rocky and gaseous planets, but its density is consistent with a rocky composition. Its semimajor axis and the corresponding photoevaporation levels to which the planet has been exposed might explain its measured density today. In contrast, the densities and semimajor axes of planets c and d suggest a very thick atmosphere. The singularity of this system, which orbits a slightly evolved star that is just leaving the main sequence, makes it a good candidate for a deeper study from a dynamical point of view. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.01755v1-abstract-full').style.display = 'none'; document.getElementById('2002.01755v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A\&amp; A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 636, A89 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.04912">arXiv:2001.04912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.04912">pdf</a>, <a href="https://arxiv.org/format/2001.04912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The BRITE-SONG of Aldebaran -- Stellar Music in three voices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Beck%2C+P+G">P. G. Beck</a>, <a href="/search/?searchtype=author&amp;query=Kuschnig%2C+R">R. Kuschnig</a>, <a href="/search/?searchtype=author&amp;query=Houdek%2C+G">G. Houdek</a>, <a href="/search/?searchtype=author&amp;query=Kallinger%2C+T">T. Kallinger</a>, <a href="/search/?searchtype=author&amp;query=Weiss%2C+W+W">W. W. Weiss</a>, <a href="/search/?searchtype=author&amp;query=Palle%2C+P+L">P. L. Palle</a>, <a href="/search/?searchtype=author&amp;query=Grundahl%2C+F">F. Grundahl</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A">A. Hatzes</a>, <a href="/search/?searchtype=author&amp;query=Parviainen%2C+H">H. Parviainen</a>, <a href="/search/?searchtype=author&amp;query=Prieto%2C+C+A">C. Allende Prieto</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Jim%C3%A9nez%2C+A">A. Jim茅nez</a>, <a href="/search/?searchtype=author&amp;query=Mathur%2C+S">S. Mathur</a>, <a href="/search/?searchtype=author&amp;query=Garcia%2C+R+A">R. A. Garcia</a>, <a href="/search/?searchtype=author&amp;query=White%2C+T+R">T. R. White</a>, <a href="/search/?searchtype=author&amp;query=Bedding%2C+T+R">T. R. Bedding</a>, <a href="/search/?searchtype=author&amp;query=Grossmann%2C+D+H">D. H. Grossmann</a>, <a href="/search/?searchtype=author&amp;query=Janisch%2C+S">S. Janisch</a>, <a href="/search/?searchtype=author&amp;query=Zaqarashvili%2C+T">T. Zaqarashvili</a>, <a href="/search/?searchtype=author&amp;query=Hanslmeier%2C+A">A. Hanslmeier</a>, <a href="/search/?searchtype=author&amp;query=Zwintz%2C+K">K. Zwintz</a>, <a href="/search/?searchtype=author&amp;query=BRITE%2C+t">the BRITE</a>, <a href="/search/?searchtype=author&amp;query=teams%2C+S">SONG teams</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.04912v1-abstract-short" style="display: inline;"> Solar-like oscillations in red-giant stars are now commonly detected in thousands of stars with space telescopes such as the NASA Kepler mission. Parallel radial velocity and photometric measurements would help to better understand the physics governing the amplitudes of solar-like oscillators. Yet, most target stars for space photometry are too faint for light-demanding ground-based spectroscopy.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04912v1-abstract-full').style.display = 'inline'; document.getElementById('2001.04912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.04912v1-abstract-full" style="display: none;"> Solar-like oscillations in red-giant stars are now commonly detected in thousands of stars with space telescopes such as the NASA Kepler mission. Parallel radial velocity and photometric measurements would help to better understand the physics governing the amplitudes of solar-like oscillators. Yet, most target stars for space photometry are too faint for light-demanding ground-based spectroscopy. The BRITE Constellation satellites provide a unique opportunity of two-color monitoring of the flux variations of bright luminous red giants. Those targets are also bright enough to be monitored with high-resolution spectrographs on small telescopes, such as the SONG Network. In these proceedings, we provide a first overview of our comprehensive, multi-year campaign utilizing both BRITE and SONG to seismically characterize Aldebaran, one of the brightest red giants in the sky. Because luminous red giants can be seen at large distances, such well-characterized objects will serve as benchmark stars for galactic archeology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04912v1-abstract-full').style.display = 'none'; document.getElementById('2001.04912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings paper for an oral contribution at the &#39;Stars and their Variability&#39; conference in August 2019, in Vienna Austria. Five pages, two colored figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07984">arXiv:1909.07984</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.07984">pdf</a>, <a href="https://arxiv.org/format/1909.07984">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab7245">10.3847/1538-3881/ab7245 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TOI-503: The first known brown dwarf-Am star binary from the TESS mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=%C5%A0ubjak%2C+J">J谩n 艩ubjak</a>, <a href="/search/?searchtype=author&amp;query=Sharma%2C+R">Rishikesh Sharma</a>, <a href="/search/?searchtype=author&amp;query=Carmichael%2C+T+W">Theron W. Carmichael</a>, <a href="/search/?searchtype=author&amp;query=Johnson%2C+M+C">Marshall C. Johnson</a>, <a href="/search/?searchtype=author&amp;query=Gonzales%2C+E+J">Erica J. Gonzales</a>, <a href="/search/?searchtype=author&amp;query=Matthews%2C+E">Elisabeth Matthews</a>, <a href="/search/?searchtype=author&amp;query=Boffin%2C+H+M+J">Henri M. J. Boffin</a>, <a href="/search/?searchtype=author&amp;query=Brahm%2C+R">Rafael Brahm</a>, <a href="/search/?searchtype=author&amp;query=Chaturvedi%2C+P">Priyanka Chaturvedi</a>, <a href="/search/?searchtype=author&amp;query=Chakraborty%2C+A">Abhijit Chakraborty</a>, <a href="/search/?searchtype=author&amp;query=Ciardi%2C+D+R">David R. Ciardi</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K+A">Karen A. Collins</a>, <a href="/search/?searchtype=author&amp;query=Esposito%2C+M">Massimiliano Esposito</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">Malcolm Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Gan%2C+T">Tianjun Gan</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa%2C+R+A">Rafael A. Garc铆a</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E">Eike Guenther</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A">Artie Hatzes</a>, <a href="/search/?searchtype=author&amp;query=Latham%2C+D+W">David W. Latham</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">Carina M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Relles%2C+H+M">Howard M. Relles</a>, <a href="/search/?searchtype=author&amp;query=Schlieder%2C+J+E">Joshua E. Schlieder</a>, <a href="/search/?searchtype=author&amp;query=Barclay%2C+T">Thomas Barclay</a>, <a href="/search/?searchtype=author&amp;query=Dressing%2C+C">Courtney Dressing</a> , et al. (54 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07984v3-abstract-short" style="display: inline;"> We report the discovery of an intermediate-mass transiting brown dwarf, TOI-503b, from the TESS mission. TOI-503b is the first brown dwarf discovered by TESS and orbits a metallic-line A-type star with a period of $P=3.6772 \pm 0.0001$ days. The light curve from TESS indicates that TOI-503b transits its host star in a grazing manner, which limits the precision with which we measure the brown dwarf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07984v3-abstract-full').style.display = 'inline'; document.getElementById('1909.07984v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07984v3-abstract-full" style="display: none;"> We report the discovery of an intermediate-mass transiting brown dwarf, TOI-503b, from the TESS mission. TOI-503b is the first brown dwarf discovered by TESS and orbits a metallic-line A-type star with a period of $P=3.6772 \pm 0.0001$ days. The light curve from TESS indicates that TOI-503b transits its host star in a grazing manner, which limits the precision with which we measure the brown dwarf&#39;s radius ($R_b = 1.34^{+0.26}_{-0.15} R_J$). We obtained high-resolution spectroscopic observations with the FIES, Ond艡ejov, PARAS, Tautenburg, and TRES spectrographs and measured the mass of TOI-503b to be $M_b = 53.7 \pm 1.2 M_J$. The host star has a mass of $M_\star = 1.80 \pm 0.06 M_\odot$, a radius of $R_\star = 1.70 \pm 0.05 R_\odot$, an effective temperature of $T_{\rm eff} = 7650 \pm 160$K, and a relatively high metallicity of $0.61\pm 0.07$ dex. We used stellar isochrones to derive the age of the system to be $\sim$180 Myr, which places its age between that of RIK 72b (a $\sim$10 Myr old brown dwarf in the Upper Scorpius stellar association) and AD 3116b (a $\sim$600 Myr old brown dwarf in the Praesepe cluster). We argue that this brown dwarf formed in-situ, based on the young age of the system and the long circularization timescale for this brown dwarf around its host star. TOI-503b joins a growing number of known short-period, intermediate-mass brown dwarfs orbiting main sequence stars, and is the second such brown dwarf known to transit an A star, after HATS-70b. With the growth in the population in this regime, the driest region in the brown dwarf desert ($35-55 M_J \sin{i}$) is reforesting and its mass range shrinking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07984v3-abstract-full').style.display = 'none'; document.getElementById('1909.07984v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 14 figures, 6 tables. Accepted to AJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.05252">arXiv:1909.05252</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.05252">pdf</a>, <a href="https://arxiv.org/format/1909.05252">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2569">10.1093/mnras/stz2569 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radial velocity confirmation of K2-100b: a young, highly irradiated, and low density transiting hot Neptune </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">O. Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Aigrain%2C+S">S. Aigrain</a>, <a href="/search/?searchtype=author&amp;query=Kubyshkina%2C+D">D. Kubyshkina</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J">J. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M+C+V">M. C. V. Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Fossati%2C+L">L. Fossati</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">J. Korth</a>, <a href="/search/?searchtype=author&amp;query=Parviainen%2C+H">H. Parviainen</a>, <a href="/search/?searchtype=author&amp;query=Malavolta%2C+L">L. Malavolta</a>, <a href="/search/?searchtype=author&amp;query=Palle%2C+E">E. Palle</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">G. Nowak</a>, <a href="/search/?searchtype=author&amp;query=Rajpaul%2C+V+M">V. M. Rajpaul</a>, <a href="/search/?searchtype=author&amp;query=Zicher%2C+N">N. Zicher</a>, <a href="/search/?searchtype=author&amp;query=Antoniciello%2C+G">G. Antoniciello</a>, <a href="/search/?searchtype=author&amp;query=Narita%2C+N">N. Narita</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">S. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Bedin%2C+L+R">L. R. Bedin</a>, <a href="/search/?searchtype=author&amp;query=Cabrera%2C+J">J. Cabrera</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">W. D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=de+Leon%2C+J">J. de Leon</a>, <a href="/search/?searchtype=author&amp;query=Eigm%C3%BCller%2C+P">Ph. Eigm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Fukui%2C+A">A. Fukui</a>, <a href="/search/?searchtype=author&amp;query=Granata%2C+V">V. Granata</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.05252v1-abstract-short" style="display: inline;"> We present a detailed analysis of HARPS-N radial velocity observations of K2-100, a young and active star in the Praesepe cluster, which hosts a transiting planet with a period of 1.7 days. We model the activity-induced radial velocity variations of the host star with a multi-dimensional Gaussian Process framework and detect a planetary signal of $10.6 \pm 3.0 {\rm m\,s^{-1}}$, which matches the t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.05252v1-abstract-full').style.display = 'inline'; document.getElementById('1909.05252v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.05252v1-abstract-full" style="display: none;"> We present a detailed analysis of HARPS-N radial velocity observations of K2-100, a young and active star in the Praesepe cluster, which hosts a transiting planet with a period of 1.7 days. We model the activity-induced radial velocity variations of the host star with a multi-dimensional Gaussian Process framework and detect a planetary signal of $10.6 \pm 3.0 {\rm m\,s^{-1}}$, which matches the transit ephemeris, and translates to a planet mass of $21.8 \pm 6.2 M_\oplus$. We perform a suite of validation tests to confirm that our detected signal is genuine. This is the first mass measurement for a transiting planet in a young open cluster. The relatively low density of the planet, $2.04^{+0.66}_{-0.61} {\rm g\,cm^{-3}}$, implies that K2-100b retains a significant volatile envelope. We estimate that the planet is losing its atmosphere at a rate of $10^{11}-10^{12}\,{\rm g\,s^{-1}}$ due to the high level of radiation it receives from its host star. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.05252v1-abstract-full').style.display = 'none'; document.getElementById('1909.05252v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publications in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.11141">arXiv:1907.11141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.11141">pdf</a>, <a href="https://arxiv.org/format/1907.11141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab66c9">10.3847/1538-3881/ab66c9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> It takes two planets in resonance to tango around K2-146 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lam%2C+K+W+F">Kristine W. F. Lam</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">Judith Korth</a>, <a href="/search/?searchtype=author&amp;query=Masuda%2C+K">Kento Masuda</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Szil谩rd Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Eigm%C3%BCller%2C+P">Philipp Eigm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Stef%C3%A1nsson%2C+G+K">Gu冒mundur K谩ri Stef谩nsson</a>, <a href="/search/?searchtype=author&amp;query=Endl%2C+M">Michael Endl</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">Simon Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Luque%2C+R">Rafael Luque</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+H">John H. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Hirano%2C+T">Teruyuki Hirano</a>, <a href="/search/?searchtype=author&amp;query=Sobrino%2C+R+A">Roi Alonso Sobrino</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">Oscar Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Cabrera%2C+J">Juan Cabrera</a>, <a href="/search/?searchtype=author&amp;query=Carleo%2C+I">Ilaria Carleo</a>, <a href="/search/?searchtype=author&amp;query=Chaushev%2C+A">Alexander Chaushev</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">William D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">Fei Dai</a>, <a href="/search/?searchtype=author&amp;query=de+Leon%2C+J">Jerome de Leon</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Erikson%2C+A">Anders Erikson</a>, <a href="/search/?searchtype=author&amp;query=Esposito%2C+M">Massimiliano Esposito</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">Malcolm Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Fukui%2C+A">Akihiko Fukui</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.11141v1-abstract-short" style="display: inline;"> K2-146 is a cool, 0.358 M_sun dwarf that was found to host a mini-Neptune with a 2.67-days period. The planet exhibited strong transit timing variations (TTVs) of greater than 30 minutes, indicative of the presence of a further object in the system. Here we report the discovery of the previously undetected outer planet, K2-146 c, in the system using additional photometric data. K2-146 c was found&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11141v1-abstract-full').style.display = 'inline'; document.getElementById('1907.11141v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.11141v1-abstract-full" style="display: none;"> K2-146 is a cool, 0.358 M_sun dwarf that was found to host a mini-Neptune with a 2.67-days period. The planet exhibited strong transit timing variations (TTVs) of greater than 30 minutes, indicative of the presence of a further object in the system. Here we report the discovery of the previously undetected outer planet, K2-146 c, in the system using additional photometric data. K2-146 c was found to have a grazing transit geometry and a 3.97-day period. The outer planet was only significantly detected in the latter K2 campaigns presumably because of precession of its orbital plane. The TTVs of K2-146 b and c were measured using observations spanning a baseline of almost 1200 days. We found strong anti-correlation in the TTVs, suggesting the two planets are gravitationally interacting. Our TTV and transit model analyses revealed that K2-146 b has a radius of 2.25 $\pm$ 0.10 \R_earth and a mass of 5.6 $\pm$ 0.7 M_earth, whereas K2-146 c has a radius of $2.59_{-0.39}^{+1.81}$ R_earth and a mass of 7.1 $\pm$ 0.9 M_earth. The inner and outer planets likely have moderate eccentricities of $e = 0.14 \pm 0.07$ and $0.16 \pm 0.07$, respectively. Long-term numerical integrations of the two-planet orbital solution show that it can be dynamically stable for at least 2 Myr. The evaluation of the resonance angles of the planet pair indicates that K2-146 b and c are likely trapped in a 3:2 mean motion resonance. The orbital architecture of the system points to a possible convergent migration origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11141v1-abstract-full').style.display = 'none'; document.getElementById('1907.11141v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages with 13 figures and 4 tables; Submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.09776">arXiv:1907.09776</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.09776">pdf</a>, <a href="https://arxiv.org/format/1907.09776">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201935709">10.1051/0004-6361/201935709 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multicolour photometry for exoplanet candidate validation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Parviainen%2C+H">Hannu Parviainen</a>, <a href="/search/?searchtype=author&amp;query=Tingley%2C+B">Brandon Tingley</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Palle%2C+E">Enric Palle</a>, <a href="/search/?searchtype=author&amp;query=Alonso%2C+R">Roi Alonso</a>, <a href="/search/?searchtype=author&amp;query=Rodriguez%2C+P+M">Pilar Montanes Rodriguez</a>, <a href="/search/?searchtype=author&amp;query=Murgas%2C+F">Felipe Murgas</a>, <a href="/search/?searchtype=author&amp;query=Narita%2C+N">Norio Narita</a>, <a href="/search/?searchtype=author&amp;query=Fukui%2C+A">Akihiko Fukui</a>, <a href="/search/?searchtype=author&amp;query=Kusakabe%2C+N">Nobuhiko Kusakabe</a>, <a href="/search/?searchtype=author&amp;query=Tamura%2C+M">Motohide Tamura</a>, <a href="/search/?searchtype=author&amp;query=Nishiumi%2C+T">Taku Nishiumi</a>, <a href="/search/?searchtype=author&amp;query=Prieto-Arranz%2C+J">Jorge Prieto-Arranz</a>, <a href="/search/?searchtype=author&amp;query=Klagyivik%2C+P">Peter Klagyivik</a>, <a href="/search/?searchtype=author&amp;query=B%C3%A9jar%2C+V+J+S">Victor J. S. B茅jar</a>, <a href="/search/?searchtype=author&amp;query=Crouzet%2C+N">Nicolas Crouzet</a>, <a href="/search/?searchtype=author&amp;query=Mori%2C+M">Mayuko Mori</a>, <a href="/search/?searchtype=author&amp;query=Soto%2C+D+H">Diego Hidalgo Soto</a>, <a href="/search/?searchtype=author&amp;query=Barris%2C+N+C">N煤ria Casasayas Barris</a>, <a href="/search/?searchtype=author&amp;query=Luque%2C+R">Rafael Luque</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.09776v1-abstract-short" style="display: inline;"> Context. The TESS and PLATO missions are expected to find vast numbers of new transiting planet candidates. However, only a fraction of these candidates will be legitimate planets, and the candidate validation will require a significant amount of follow-up resources. Radial velocity follow-up can be carried out only for the most promising candidates around bright, slowly rotating, stars. Thus, bef&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09776v1-abstract-full').style.display = 'inline'; document.getElementById('1907.09776v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.09776v1-abstract-full" style="display: none;"> Context. The TESS and PLATO missions are expected to find vast numbers of new transiting planet candidates. However, only a fraction of these candidates will be legitimate planets, and the candidate validation will require a significant amount of follow-up resources. Radial velocity follow-up can be carried out only for the most promising candidates around bright, slowly rotating, stars. Thus, before devoting RV resources to candidates, they need to be vetted using cheaper methods, and, in the cases for which an RV confirmation is not feasible, the candidate&#39;s true nature needs to be determined based on these alternative methods alone. Aims. We study the applicability of multicolour transit photometry in the validation of transiting planet candidates when the candidate signal arises from a real astrophysical source. We seek to answer how securely can we estimate the true uncontaminated star-planet radius ratio when the light curve may contain contamination from unresolved light sources inside the photometry aperture when combining multicolour transit observations with a physics-based contamination model. Methods. The study is based on simulations and ground-based transit observations. The analyses are carried out with a contamination model integrated into the PyTransit v2 transit modelling package, and the observations are carried out with the MuSCAT2 multicolour imager installed in the 1.5 m TCS in the Teide Observatory. Results. We show that multicolour transit photometry can be used to estimate the amount of flux contamination and the true radius ratio. Combining the true radius ratio with an estimate for the stellar radius yields the true absolute radius of the transiting object, which is a valuable quantity in statistical candidate validation, and enough in itself to validate a candidate whose radius falls below the theoretical lower limit for a brown dwarf. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09776v1-abstract-full').style.display = 'none'; document.getElementById('1907.09776v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 630, A89 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.06534">arXiv:1907.06534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.06534">pdf</a>, <a href="https://arxiv.org/format/1907.06534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201935879">10.1051/0004-6361/201935879 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kepler Object of Interest Network III. Kepler-82f: A new non-transiting $21 M_\bigoplus$ planet from photodynamical modelling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Freudenthal%2C+J">J. Freudenthal</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Ofir%2C+A">A. Ofir</a>, <a href="/search/?searchtype=author&amp;query=~Dreizler%2C+S">S. ~Dreizler</a>, <a href="/search/?searchtype=author&amp;query=Agol%2C+E">E. Agol</a>, <a href="/search/?searchtype=author&amp;query=Wedemeyer%2C+S">S. Wedemeyer</a>, <a href="/search/?searchtype=author&amp;query=Morris%2C+B+M">B. M. Morris</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+A+C">A. C. Becker</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Hoyer%2C+S">S. Hoyer</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Poppenhaeger%2C+K">K. Poppenhaeger</a>, <a href="/search/?searchtype=author&amp;query=Herrero%2C+E">E. Herrero</a>, <a href="/search/?searchtype=author&amp;query=Ribas%2C+I">I. Ribas</a>, <a href="/search/?searchtype=author&amp;query=Boumis%2C+P">P. Boumis</a>, <a href="/search/?searchtype=author&amp;query=Liakos%2C+A">A. Liakos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.06534v1-abstract-short" style="display: inline;"> Context. The Kepler Object of Interest Network (KOINet) is a multi-site network of telescopes around the globe organised for follow-up observations of transiting planet candidate Kepler objects of interest (KOIs) with large transit timing variations (TTVs). The main goal of KOINet is the completion of their TTV curves as the Kepler telescope stopped observing the original Kepler field in 2013. A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.06534v1-abstract-full').style.display = 'inline'; document.getElementById('1907.06534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.06534v1-abstract-full" style="display: none;"> Context. The Kepler Object of Interest Network (KOINet) is a multi-site network of telescopes around the globe organised for follow-up observations of transiting planet candidate Kepler objects of interest (KOIs) with large transit timing variations (TTVs). The main goal of KOINet is the completion of their TTV curves as the Kepler telescope stopped observing the original Kepler field in 2013. Aims. We ensure a comprehensive characterisation of the investigated systems by analysing Kepler data combined with new ground-based transit data using a photodynamical model. This method is applied to the Kepler-82 system leading to its first dynamic analysis. Methods. In order to provide a coherent description of all observations simultaneously, we combine the numerical integration of the gravitational dynamics of a system over the time span of observations with a transit light curve model. To explore the model parameter space, this photodynamical model is coupled with a Markov chain Monte Carlo algorithm. Results. The Kepler-82b/c system shows sinusoidal TTVs due to their near 2:1 resonance dynamical interaction. An additional chopping effect in the TTVs of Kepler-82c hints to a further planet near the 3:2 or 3:1 resonance. We photodynamically analysed Kepler long- and short-cadence data and three new transit observations obtained by KOINet between 2014 and 2018. Our result reveals a non-transiting outer planet with a mass of $m_f=20.9\pm1.0\;M_\bigoplus$ near the 3:2 resonance to the outermost known planet, Kepler-82c. Furthermore, we determined the densities of planets b and c to the significantly more precise values $蟻_b=0.98_{-0.14}^{+0.10}\;\text{g cm}^{-3}$ and $蟻_c=0.494_{-0.077}^{+0.066}\;\text{g cm}^{-3}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.06534v1-abstract-full').style.display = 'none'; document.getElementById('1907.06534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures. Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 628, A108 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.05048">arXiv:1906.05048</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.05048">pdf</a>, <a href="https://arxiv.org/format/1906.05048">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201935505">10.1051/0004-6361/201935505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Greening of the Brown Dwarf Desert. EPIC 212036875 b -- a 51 M$_\mathrm{J}$ object in a 5 day orbit around an F7 V star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">Carina M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Szil谩rd Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Mustill%2C+A+J">Alexander J. Mustill</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">Malcolm Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A+P">Artie P. Hatzes</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+G">Grzegorz Nowak</a>, <a href="/search/?searchtype=author&amp;query=Georgieva%2C+I">Iskra Georgieva</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Davies%2C+M+B">Melvyn B. Davies</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+H">John H. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Palle%2C+E">Enric Palle</a>, <a href="/search/?searchtype=author&amp;query=Rodr%C3%ADguez%2C+P+M">Pilar Monta帽es Rodr铆guez</a>, <a href="/search/?searchtype=author&amp;query=Endl%2C+M">Michael Endl</a>, <a href="/search/?searchtype=author&amp;query=Hirano%2C+T">Teruyuki Hirano</a>, <a href="/search/?searchtype=author&amp;query=Prieto-Arranz%2C+J">Jorge Prieto-Arranz</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">Judith Korth</a>, <a href="/search/?searchtype=author&amp;query=Grziwa%2C+S">Sascha Grziwa</a>, <a href="/search/?searchtype=author&amp;query=Esposito%2C+M">Massimiliano Esposito</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">Simon Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Johnson%2C+M+C">Marshall C. Johnson</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">Oscar Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Parviainen%2C+H">Hannu Parviainen</a>, <a href="/search/?searchtype=author&amp;query=Van+Eylen%2C+V">Vincent Van Eylen</a>, <a href="/search/?searchtype=author&amp;query=Sobrino%2C+R+A">Roi Alonso Sobrino</a>, <a href="/search/?searchtype=author&amp;query=Beck%2C+P+G">Paul G. Beck</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.05048v2-abstract-short" style="display: inline;"> Our aim is to investigate the nature and formation of brown dwarfs by adding a new well-characterised object to the small sample of less than 20 transiting brown dwarfs. One brown dwarf candidate was found by the KESPRINT consortium when searching for exoplanets in the K2 space mission Campaign 16 field. We combined the K2 photometric data with a series of multi-colour photometric observations, im&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05048v2-abstract-full').style.display = 'inline'; document.getElementById('1906.05048v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.05048v2-abstract-full" style="display: none;"> Our aim is to investigate the nature and formation of brown dwarfs by adding a new well-characterised object to the small sample of less than 20 transiting brown dwarfs. One brown dwarf candidate was found by the KESPRINT consortium when searching for exoplanets in the K2 space mission Campaign 16 field. We combined the K2 photometric data with a series of multi-colour photometric observations, imaging and radial velocity measurements to rule out false positive scenarios and to determine the fundamental properties of the system. We report the discovery and characterisation of a transiting brown dwarf in a 5.17 day eccentric orbit around the slightly evolved F7V star EPIC 212036875. We find a stellar mass of 1.15+/-0.08 M$_\odot$, a stellar radius of 1.41+/-0.05 R$_\odot$, and an age of 5.1+/-0.9 Gyr. The mass and radius of the companion brown dwarf are 51+/-2 MJ and 0.83+/-0.03 RJ, respectively, corresponding to a mean density of 108+15-13 g cm-3. EPIC 212036875 b is a rare object that resides in the brown dwarf desert. In the mass-density diagram for planets, brown dwarfs and stars, we find that all giant planets and brown dwarfs follow the same trend from ~0.3 MJ to the turn-over to hydrogen burning stars at ~73 MJ. EPIC 212036875 b falls close to the theoretical model for mature H/He dominated objects in this diagram as determined by interior structure models, as well as the empirical fit. We argue that EPIC 212036875 b formed via gravitational disc instabilities in the outer part of the disc, followed by a quick migration. Orbital tidal circularisation may have started early in its history for a brief period when the brown dwarf&#39;s radius was larger. The lack of spin-orbit synchronisation points to a weak stellar dissipation parameter which implies a circularisation timescale of &gt;23 Gyr, or suggests an interaction between the magnetic and tidal forces of the star and the brown dwarf. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05048v2-abstract-full').style.display = 'none'; document.getElementById('1906.05048v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures, accepted 13 June 2019 for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 628, A64 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.05623">arXiv:1903.05623</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.05623">pdf</a>, <a href="https://arxiv.org/format/1903.05623">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ab17d9">10.3847/2041-8213/ab17d9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Transiting Multi-planet System HD15337: Two Nearly Equal-mass Planets Straddling the Radius Gap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Fossati%2C+L">Luca Fossati</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+H">John H. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Stassun%2C+K+G">Keivan G. Stassun</a>, <a href="/search/?searchtype=author&amp;query=Grziwa%2C+S">Sascha Grziwa</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">Oscar Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">Malcolm Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Kubyshkina%2C+D">Daria Kubyshkina</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">Carina M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">Fei Dai</a>, <a href="/search/?searchtype=author&amp;query=Lam%2C+K+W+F">Kristine W. F. Lam</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">Simon Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Batalha%2C+N">Natalie Batalha</a>, <a href="/search/?searchtype=author&amp;query=Beck%2C+P+G">Paul G. Beck</a>, <a href="/search/?searchtype=author&amp;query=Justesen%2C+A+B">Anders Bo Justesen</a>, <a href="/search/?searchtype=author&amp;query=Cabrera%2C+J">Juan Cabrera</a>, <a href="/search/?searchtype=author&amp;query=Cartwright%2C+S">Scott Cartwright</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">William D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Szilard Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Davies%2C+M+D">Misty D. Davies</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Eigm%C3%BCller%2C+P">Philipp Eigm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Endl%2C+M">Michael Endl</a>, <a href="/search/?searchtype=author&amp;query=Erikson%2C+A">Anders Erikson</a>, <a href="/search/?searchtype=author&amp;query=Esposito%2C+M">Massimiliano Esposito</a> , et al. (31 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.05623v3-abstract-short" style="display: inline;"> We report the discovery of a super-Earth and a sub-Neptune transiting the star HD 15337 (TOI-402, TIC 120896927), a bright (V=9) K1 dwarf observed by the Transiting Exoplanet Survey Satellite (TESS) in Sectors 3 and 4. We combine the TESS photometry with archival HARPS spectra to confirm the planetary nature of the transit signals and derive the masses of the two transiting planets. With an orbita&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05623v3-abstract-full').style.display = 'inline'; document.getElementById('1903.05623v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.05623v3-abstract-full" style="display: none;"> We report the discovery of a super-Earth and a sub-Neptune transiting the star HD 15337 (TOI-402, TIC 120896927), a bright (V=9) K1 dwarf observed by the Transiting Exoplanet Survey Satellite (TESS) in Sectors 3 and 4. We combine the TESS photometry with archival HARPS spectra to confirm the planetary nature of the transit signals and derive the masses of the two transiting planets. With an orbital period of 4.8 days, a mass of 7.51(+1.09)(-1.01) M_Earth, and a radius of 1.64+/-0.06 R_Earth, HD 15337b joins the growing group of short-period super-Earths known to have a rocky terrestrial composition. The sub-Neptune HD 15337c has an orbital period of 17.2 days, a mass of 8.11(+1.82)(-1.69) M_Earth, and a radius of 2.39+/-0.12 R_Earth, suggesting that the planet might be surrounded by a thick atmospheric envelope. The two planets have similar masses and lie on opposite sides of the radius gap, and are thus an excellent testbed for planet formation and evolution theories. Assuming that HD 15337c hosts a hydrogen-dominated envelope, we employ a recently developed planet atmospheric evolution algorithm in a Bayesian framework to estimate the history of the high-energy (extreme ultraviolet and X-ray) emission of the host star. We find that at an age of 150 Myr, the star possessed on average between 3.7 and 127 times the high-energy luminosity of the current Sun. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05623v3-abstract-full').style.display = 'none'; document.getElementById('1903.05623v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in ApJ Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL, 876, L24 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.04601">arXiv:1810.04601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.04601">pdf</a>, <a href="https://arxiv.org/format/1810.04601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty2760">10.1093/mnras/sty2760 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> K2-140b and K2-180b - Characterization of a hot Jupiter and a mini-Neptune from the K2 mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Korth%2C+J">J. Korth</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Sz. Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">M. Fridlund</a>, <a href="/search/?searchtype=author&amp;query=P%C3%A4tzold%2C+M">M. P盲tzold</a>, <a href="/search/?searchtype=author&amp;query=Hirano%2C+T">T. Hirano</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J">J. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Persson%2C+C+M">C. M. Persson</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Justesen%2C+A+B">A. B. Justesen</a>, <a href="/search/?searchtype=author&amp;query=Barrag%C3%A1n%2C+O">O. Barrag谩n</a>, <a href="/search/?searchtype=author&amp;query=Grziwa%2C+S">S. Grziwa</a>, <a href="/search/?searchtype=author&amp;query=Endl%2C+M">M. Endl</a>, <a href="/search/?searchtype=author&amp;query=Tronsgaard%2C+R">R. Tronsgaard</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+F">F. Dai</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">W. D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">S. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Alonso%2C+R">R. Alonso</a>, <a href="/search/?searchtype=author&amp;query=Cabrera%2C+J">J. Cabrera</a>, <a href="/search/?searchtype=author&amp;query=Cauley%2C+P+W">P. W. Cauley</a>, <a href="/search/?searchtype=author&amp;query=Cusano%2C+F">F. Cusano</a>, <a href="/search/?searchtype=author&amp;query=Eigm%C3%BCller%2C+P">Ph. Eigm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Erikson%2C+A">A. Erikson</a>, <a href="/search/?searchtype=author&amp;query=Esposito%2C+M">M. Esposito</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E+W">E. W. Guenther</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.04601v2-abstract-short" style="display: inline;"> We report the independent discovery and characterization of two K2 planets: K2-180b, a mini-Neptune-size planet in an 8.9-day orbit transiting a V = 12.6 mag, metal-poor ([Fe/H] =$-0.65\pm0.10$) K2V star in K2 campaign 5; K2-140b, a transiting hot Jupiter in a 6.6-day orbit around a V = 12.6 mag G6V ([Fe/H] = $+0.10\pm0.10$) star in K2 campaign 10. Our results are based on K2 time-series photometr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04601v2-abstract-full').style.display = 'inline'; document.getElementById('1810.04601v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.04601v2-abstract-full" style="display: none;"> We report the independent discovery and characterization of two K2 planets: K2-180b, a mini-Neptune-size planet in an 8.9-day orbit transiting a V = 12.6 mag, metal-poor ([Fe/H] =$-0.65\pm0.10$) K2V star in K2 campaign 5; K2-140b, a transiting hot Jupiter in a 6.6-day orbit around a V = 12.6 mag G6V ([Fe/H] = $+0.10\pm0.10$) star in K2 campaign 10. Our results are based on K2 time-series photometry combined with high-spatial resolution imaging and high-precision radial velocity measurements. We present the first mass measurement of K2-180b. K2-180b has a mass of $M_\mathrm{p}=11.3\pm1.9$ ${M_{\oplus}}$ and a radius of $R_\mathrm{p}=2.2\pm0.1$ ${R_{\oplus}}$ , yielding a mean density of $蟻_\mathrm{p}=5.6\pm1.9\,g\,cm^{-3}$, suggesting a rock composition. Given its radius, K2-180b is above the region of the so-called `planetary radius gap&#39;. K2-180b is in addition not only one of the densest mini-Neptune-size planets, but also one of the few mini-Neptune-size planets known to transit a metal-poor star. We also constrain the planetary and orbital parameters of K2-140b and show that, given the currently available Doppler measurements, the eccentricity is consistent with zero, contrary to the results of a previous study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04601v2-abstract-full').style.display = 'none'; document.getElementById('1810.04601v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.06325">arXiv:1808.06325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.06325">pdf</a>, <a href="https://arxiv.org/format/1808.06325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty2155">10.1093/mnras/sty2155 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A transiting M-dwarf showing beaming effect in the field of Ruprecht 147 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Eigm%C3%BCller%2C+P">Philipp Eigm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Szil谩rd Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Endl%2C+M">Michael Endl</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">Davide Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Cochran%2C+W+D">William D. Cochran</a>, <a href="/search/?searchtype=author&amp;query=Yong%2C+D">David Yong</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+A+M+S">Alexis M. S. Smith</a>, <a href="/search/?searchtype=author&amp;query=Cabrera%2C+J">Juan Cabrera</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">Hans J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Johnson%2C+M+C">Marshall C. Johnson</a>, <a href="/search/?searchtype=author&amp;query=Korth%2C+J">Judith Korth</a>, <a href="/search/?searchtype=author&amp;query=Prieto-Arranz%2C+J">Jorge Prieto-Arranz</a>, <a href="/search/?searchtype=author&amp;query=Nespral%2C+D">David Nespral</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A+P">Artie P. Hatzes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.06325v1-abstract-short" style="display: inline;"> We report the discovery and characterization of an eclipsing M5V dwarf star, orbiting a slightly evolved F7V main sequence star. In contrast to previous claims in the literature, we confirm that the system does not belong to the galactic open cluster Ruprecht 147. We determine its fundamental parameters combining K2 time-series data with spectroscopic observations from the McDonald Observatory,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.06325v1-abstract-full').style.display = 'inline'; document.getElementById('1808.06325v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.06325v1-abstract-full" style="display: none;"> We report the discovery and characterization of an eclipsing M5V dwarf star, orbiting a slightly evolved F7V main sequence star. In contrast to previous claims in the literature, we confirm that the system does not belong to the galactic open cluster Ruprecht 147. We determine its fundamental parameters combining K2 time-series data with spectroscopic observations from the McDonald Observatory, FIES@NOT, and HIRES@KECK. The very precise photometric data from the K2 mission allows us to measure variations caused by the beaming effect (relativistic doppler boosting), ellipsoidal variation, reflection, and the secondary eclipse. We determined the radial velocity using spectroscopic observations and compare it to the radial velocity determined from the beaming effect observed in the photometric data. The M5V star has a radius of $0.200 \substack{+0.007 \\ -0.008}$ $R_{\odot}$ and a mass of $0.187 \substack{+0.012 \\ -0.013}$ $M_{\odot}$. The primary star has radius of $1.518 \substack{+0.038 \\ -0.049}$ $R_{\odot}$ and a mass of $1.008 \substack{+0.081 \\ -0.097}$ $M_{\odot}$. The orbital period is $ 5.441995 \pm 0.000007$ days. The system is one of the few eclipsing systems with observed beaming effect and spectroscopic radial velocity measurements and it can be used as test case for the modelling of the beaming effect. Current and forthcoming space missions such as TESS and PLATO might benefit of the analysis of the beaming effect to estimate the mass of transiting companions without the need for radial velocity follow up observations, provided that the systematic sources of noise affecting this method are well understood. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.06325v1-abstract-full').style.display = 'none'; document.getElementById('1808.06325v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in MNRAS, https://doi.org/10.1093/mnras/sty2155 8 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.00007">arXiv:1807.00007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.00007">pdf</a>, <a href="https://arxiv.org/format/1807.00007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201833436">10.1051/0004-6361/201833436 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kepler Object of Interest Network II. Photodynamical modelling of Kepler-9 over 8 years of transit observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Freudenthal%2C+J">J. Freudenthal</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Dreizler%2C+S">S. Dreizler</a>, <a href="/search/?searchtype=author&amp;query=Wedemeyer%2C+S">S. Wedemeyer</a>, <a href="/search/?searchtype=author&amp;query=Agol%2C+E">E. Agol</a>, <a href="/search/?searchtype=author&amp;query=Morris%2C+B+M">B. M. Morris</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+A+C">A. C. Becker</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Hoyer%2C+S">S. Hoyer</a>, <a href="/search/?searchtype=author&amp;query=Ofir%2C+A">A. Ofir</a>, <a href="/search/?searchtype=author&amp;query=Or%2C+L+T">L. Tal Or</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Herrero%2C+E">E. Herrero</a>, <a href="/search/?searchtype=author&amp;query=Ribas%2C+I">I. Ribas</a>, <a href="/search/?searchtype=author&amp;query=Khalafinejad%2C+S">S. Khalafinejad</a>, <a href="/search/?searchtype=author&amp;query=Hern%C3%A1ndez%2C+J">J. Hern谩ndez</a>, <a href="/search/?searchtype=author&amp;query=S%2C+M+M+R">M. M. Rodr铆guez S</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.00007v1-abstract-short" style="display: inline;"> The Kepler Object of Interest Network (KOINet) is a multi-site network of telescopes around the globe organised to follow up transiting planet candidate KOIs with large transit timing variations (TTVs). Its main goal is to complete their TTV curves, as the Kepler telescope no longer observes the original Kepler field. Combining Kepler and new ground-based transit data we improve the modelling of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00007v1-abstract-full').style.display = 'inline'; document.getElementById('1807.00007v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.00007v1-abstract-full" style="display: none;"> The Kepler Object of Interest Network (KOINet) is a multi-site network of telescopes around the globe organised to follow up transiting planet candidate KOIs with large transit timing variations (TTVs). Its main goal is to complete their TTV curves, as the Kepler telescope no longer observes the original Kepler field. Combining Kepler and new ground-based transit data we improve the modelling of these systems. To this end, we have developed a photodynamical model, and we demonstrate its performance using the Kepler-9 system as an example. Our comprehensive analysis combines the numerical integration of the system&#39;s dynamics over the time span of the observations along with the transit light curve model. This model is coupled with a Markov chain Monte Carlo algorithm, allowing the exploration of the model parameter space. Applied to the Kepler-9 long cadence data, short cadence data and 13 new transit observations collected by KOINet between the years 2014 to 2017, our modelling provides well constrained predictions for the next transits and the system&#39;s parameters. We have determined the densities of the planets Kepler-9b and 9c to the very precise values of rho_b = 0.439 +/-0.023 g/cm3 and rho_c = 0.322 +/- 0.017 g/cm3. Our analysis reveals that Kepler-9c will stop transiting in about 30 years. This results from strong dynamical interactions between Kepler-9b and 9c, near 2:1 resonance, that leads to a periodic change in inclination. Over the next 30 years the inclination of Kepler-9c (-9b) will decrease (increase) slowly. This should be measurable by a substantial decrease (increase) in the transit duration, in as soon as a few years&#39; time. Observations that contradict this prediction might indicate the presence of additional objects. If this prediction proves true, this behaviour opens up a unique chance to scan the different latitudes of a star. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00007v1-abstract-full').style.display = 'none'; document.getElementById('1807.00007v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 22 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 618, A41 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.07164">arXiv:1805.07164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.07164">pdf</a>, <a href="https://arxiv.org/format/1805.07164">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201731068">10.1051/0004-6361/201731068 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Planets, candidates, and binaries from the CoRoT/Exoplanet programme: the CoRoT transit catalogue </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Deleuil%2C+M">M. Deleuil</a>, <a href="/search/?searchtype=author&amp;query=Aigrain%2C+S">S. Aigrain</a>, <a href="/search/?searchtype=author&amp;query=Moutou%2C+C">C. Moutou</a>, <a href="/search/?searchtype=author&amp;query=Cabrera%2C+J">J. Cabrera</a>, <a href="/search/?searchtype=author&amp;query=Bouchy%2C+F">F. Bouchy</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Almenara%2C+J+-">J. -M. Almenara</a>, <a href="/search/?searchtype=author&amp;query=H%C3%A9brard%2C+G">G. H茅brard</a>, <a href="/search/?searchtype=author&amp;query=Santerne%2C+A">A. Santerne</a>, <a href="/search/?searchtype=author&amp;query=Alonso%2C+R">R. Alonso</a>, <a href="/search/?searchtype=author&amp;query=Bonomo%2C+A+S">A. S. Bonomo</a>, <a href="/search/?searchtype=author&amp;query=Bord%C3%A9%2C+P">P. Bord茅</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Sz. Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Erikson%2C+A">A. Erikson</a>, <a href="/search/?searchtype=author&amp;query=Fridlund%2C+M">M. Fridlund</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+D">D. Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Guenther%2C+E">E. Guenther</a>, <a href="/search/?searchtype=author&amp;query=Guillot%2C+T">T. Guillot</a>, <a href="/search/?searchtype=author&amp;query=Guterman%2C+P">P. Guterman</a>, <a href="/search/?searchtype=author&amp;query=Grziwa%2C+S">S. Grziwa</a>, <a href="/search/?searchtype=author&amp;query=Hatzes%2C+A">A. Hatzes</a>, <a href="/search/?searchtype=author&amp;query=L%C3%A9ger%2C+A">A. L茅ger</a>, <a href="/search/?searchtype=author&amp;query=Mazeh%2C+T">T. Mazeh</a>, <a href="/search/?searchtype=author&amp;query=Ofir%2C+A">A. Ofir</a>, <a href="/search/?searchtype=author&amp;query=Ollivier%2C+M">M. Ollivier</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.07164v1-abstract-short" style="display: inline;"> We provide the catalogue of all transit-like features, including false alarms, detected by the CoRoT exoplanet teams in the 177 454 light curves of the mission. All these detections have been re-analysed with the same softwares so that to ensure their homogeneous analysis. Although the vetting process involves some human evaluation, it also involves a simple binary flag system over basic tests: de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.07164v1-abstract-full').style.display = 'inline'; document.getElementById('1805.07164v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.07164v1-abstract-full" style="display: none;"> We provide the catalogue of all transit-like features, including false alarms, detected by the CoRoT exoplanet teams in the 177 454 light curves of the mission. All these detections have been re-analysed with the same softwares so that to ensure their homogeneous analysis. Although the vetting process involves some human evaluation, it also involves a simple binary flag system over basic tests: detection significance, presence of a secondary, difference between odd and even depths, colour dependence, V-shape transit, and duration of the transit. We also gathered the information from the large accompanying ground-based programme carried out on the planet candidates and checked how useful the flag system could have been at the vetting stage of the candidates. In total, we identified and separated 824 false alarms of various kind, 2269 eclipsing binaries among which 616 are contact binaries and 1653 are detached ones, 37 planets and brown dwarfs, and 557 planet candidates. For the planet candidates, the catalogue gives not only their transit parameters but also the products of their light curve modelling, together with a summary of the outcome of follow-up observations when carried out and their current status. Among the planet candidates whose nature remains unresolved, we estimate that 8 +/- 3 planets are still to be identified. We derived planet and brown dwarf occurrences and confirm disagreements with Kepler estimates: small-size planets with orbital period less than ten days are underabundant by a factor of three in the CoRoT fields whereas giant planets are overabundant by a factor of two. These preliminary results would however deserve further investigations using the recently released CoRoT light curves that are corrected of the various instrumental effects and a homogeneous analysis of the stellar populations observed by the two missions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.07164v1-abstract-full').style.display = 'none'; document.getElementById('1805.07164v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Full tables will be provided online at CDS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 619, A97 (2018) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10