CINXE.COM
Search results for: deformable cutters
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: deformable cutters</title> <meta name="description" content="Search results for: deformable cutters"> <meta name="keywords" content="deformable cutters"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="deformable cutters" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="deformable cutters"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 73</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: deformable cutters</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Active Deformable Micro-Cutters with Nano-Abrasives </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Pappa">M. Pappa</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Efstathiou"> C. Efstathiou</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Livanos"> G. Livanos</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Xidas"> P. Xidas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Vakondios"> D. Vakondios</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Maravelakis"> E. Maravelakis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zervakis"> M. Zervakis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Antoniadis"> A. Antoniadis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The choice of cutting tools in manufacturing processes is an essential parameter on which the required manufacturing time, the consumed energy and the cost effort all depend. If the number of tool changing times could be minimized or even eliminated by using a single convex tool providing multiple profiles, then a significant benefit of time and energy saving, as well as tool cost, would be achieved. A typical machine contains a variety of tools in order to deal with different curvatures and material removal rates. In order to minimize the required cutting tool changes, Actively Deformable micro-Cutters (ADmC) will be developed. The design of the Actively Deformable micro-Cutters will be based on the same cutting technique and mounting method as that in typical cutters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deformable%20cutters" title="deformable cutters">deformable cutters</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20tool" title=" cutting tool"> cutting tool</a>, <a href="https://publications.waset.org/abstracts/search?q=milling" title=" milling"> milling</a>, <a href="https://publications.waset.org/abstracts/search?q=turning" title=" turning"> turning</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/33058/active-deformable-micro-cutters-with-nano-abrasives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Tailoring Polycrystalline Diamond for Increasing Earth-Drilling Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Chen">Jie Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Cheng"> Chris Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Zhang"> Kai Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycrystalline diamond compact (PDC) cutters with a polycrystalline diamond (PCD) table supported by a cemented tungsten carbide substrate have been widely used for earth-drilling tools in the oil and gas industry. Both wear and impact resistances are key figure of merits of PDC cutters, and they are closely related to the microstructure of the PCD table. As oil and gas exploration enters deeper, harder, and more complex formations, plus increasing requirement of accelerated downhole drilling speed and drilling cost reduction, current PDC cutters face unprecedented challenges for maintaining a longer drilling life than ever. Excessive wear on uneven hard formations, spalling, chipping, and premature fracture due to impact loads are common failure modes of PDC cutters in the field. Tailoring microstructure of the PCD table is one of the effective approaches to improve the wear and impact resistances of PDC cutters, along with other factors such as cutter geometry and bit design. In this research, cross-sectional microstructure, fracture surface, wear surface, and elemental composition of PDC cutters were analyzed using scanning electron microscopy (SEM) with both backscattered electron and secondary electron detectors, and energy dispersive X-ray spectroscopy (EDS). The microstructure and elemental composition were further correlated with the wear and impact resistances of corresponding PDC cutters. Wear modes and impact toughening mechanisms of state-of-the-art PDCs were identified. Directions to further improve the wear and impact resistances of PDC cutters were proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20surface" title="fracture surface">fracture surface</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20diamond" title=" polycrystalline diamond"> polycrystalline diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=PDC" title=" PDC"> PDC</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20surface" title=" wear surface"> wear surface</a> </p> <a href="https://publications.waset.org/abstracts/178914/tailoring-polycrystalline-diamond-for-increasing-earth-drilling-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Larger Diameter 22 MM-PDC Cutter Greatly Improves Drilling Efficiency of PDC Bit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fangyuan%20Shao">Fangyuan Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liu"> Wei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Deli%20Gao"> Deli Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing speed of oil and gas exploration, development and production at home and abroad, the demand for drilling speed up technology is becoming more and more critical to reduce the development cost. Highly efficient and personalized PDC bit is important equipment in the bottom hole assembly (BHA). Therefore, improving the rock-breaking efficiency of PDC bits will help reduce drilling time and drilling cost. Advances in PDC bit technology have resulted in a leapfrogging improvement in the rate of penetration (ROP) of PDC bits over roller cone bits in soft to medium-hard formations. Recently, with the development of PDC technology, the diameter of the PDC tooth can be further expanded. The maximum diameter of the PDC cutter used in this paper is 22 mm. According to the theoretical calculation, under the same depth of cut (DOC), the 22mm-PDC cutter increases the exposure of the cutter, and the increase of PDC cutter diameter helps to increase the cutting area of the PDC cutter. In order to evaluate the cutting performance of the 22 mm-PDC cutter and the existing commonly used cutters, the 16 mm, 19 mm and 22 mm PDC cutter was selected put on a vertical turret lathe (VTL) in the laboratory for cutting tests under different DOCs. The DOCs were 0.5mm, 1.0 mm, 1.5 mm and 2.0 mm, 2.5 mm and 3 mm, respectively. The rock sample used in the experiment was limestone. Results of laboratory tests have shown the new 22 mm-PDC cutter technology greatly improved cutting efficiency. On the one hand, as the DOC increases, the mechanical specific energy (MSE) of all cutters decreases, which means that the cutting efficiency increases. On the other hand, under the same DOC condition, the larger the cutter diameter is, the larger the working area of the cutter is, which leads to higher the cutting efficiency. In view of the high performance of the 22 mm-PDC cutters, which was applied to carry out full-scale bit field experiments. The result shows that the bit with 22mm-PDC cutters achieves a breakthrough improvement of ROP than that with conventional 16mm and 19mm cutters in offset well drilling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20diamond%20compact" title="polycrystalline diamond compact">polycrystalline diamond compact</a>, <a href="https://publications.waset.org/abstracts/search?q=22%20mm-PDC%20cutters" title=" 22 mm-PDC cutters"> 22 mm-PDC cutters</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20efficiency" title=" cutting efficiency"> cutting efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20specific%20energy" title=" mechanical specific energy"> mechanical specific energy</a> </p> <a href="https://publications.waset.org/abstracts/140607/larger-diameter-22-mm-pdc-cutter-greatly-improves-drilling-efficiency-of-pdc-bit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Study on the Effect of Coupling Fluid Compressible-Deformable Wall on the Flow of Molten Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Driouich">Mohamed Driouich</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Gueraoui"> Kamal Gueraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sammouda"> Mohamed Sammouda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this work is to establish a numerical code for studying the flow of molten polymers in deformable pipes. Using an iterative numerical method based on finite differences, we determine the profiles of the fluid velocity, the temperature and the apparent viscosity of the fluid. The numerical code presented can also be applied to other industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20code" title="numerical code">numerical code</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20polymers" title=" molten polymers"> molten polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20pipes" title=" deformable pipes"> deformable pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20differences" title=" finite differences"> finite differences</a> </p> <a href="https://publications.waset.org/abstracts/8493/study-on-the-effect-of-coupling-fluid-compressible-deformable-wall-on-the-flow-of-molten-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Optimizing Pick and Place Operations in a Simulated Work Cell for Deformable 3D Objects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Troels%20Bo%20J%C3%B8rgensen">Troels Bo Jørgensen</a>, <a href="https://publications.waset.org/abstracts/search?q=Preben%20Hagh%20Strunge%20Holm"> Preben Hagh Strunge Holm</a>, <a href="https://publications.waset.org/abstracts/search?q=Henrik%20Gordon%20Petersen"> Henrik Gordon Petersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbert%20Kruger"> Norbert Kruger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a simulation framework for using machine learning techniques to determine robust robotic motions for handling deformable objects. The main focus is on applications in the meat sector, which mainly handle three-dimensional objects. In order to optimize the robotic handling, the robot motions have been parameterized in terms of grasp points, robot trajectory and robot speed. The motions are evaluated based on a dynamic simulation environment for robotic control of deformable objects. The evaluation indicates certain parameter setups, which produce robust motions in the simulated environment, and based on a visual analysis indicate satisfactory solutions for a real world system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deformable%20objects" title="deformable objects">deformable objects</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20manipulation" title=" robotic manipulation"> robotic manipulation</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20world%20system" title=" real world system "> real world system </a> </p> <a href="https://publications.waset.org/abstracts/27353/optimizing-pick-and-place-operations-in-a-simulated-work-cell-for-deformable-3d-objects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Analysis of Rock Cutting Progress with a New Axe-Shaped PDC Cutter to Improve PDC Bit Performance in Elastoplastic Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fangyuan%20Shao">Fangyuan Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liu"> Wei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Deli%20Gao"> Deli Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycrystalline diamond compact (PDC) bits have occupied a large market of unconventional oil and gas drilling. The application of PDC bits benefits from the efficient rock breaking of PDC cutters. In response to increasingly complex formations, many shaped cutters have been invited, but many of them have not been solved by the mechanism of rock breaking. In this paper, two kinds of PDC cutters: a new axe-shaped (NAS) cutter and cylindrical cutter (benchmark) were studied by laboratory experiments. NAS cutter is obtained by optimizing two sides of axe-shaped cutter with curved surfaces. All the cutters were put on a vertical turret lathe (VTL) in the laboratory for cutting tests. According to the cutting distance, the VTL tests can be divided into two modes: single-turn rotary cutting and continuous cutting. The cutting depth of cutting (DOC) was set at 1.0 mm and 2.0 mm in the former mode. The later mode includes a dry VTL test for thermal stability and a wet VTL test for wear resistance. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively. Based on the findings of the single-turn rotary cutting VTL tests, the performance of A NAS cutter was better than the benchmark cutter on elastoplastic material cutting. The cutting forces (normal forces, tangential force, and radial force) and special mechanical energy (MSE) of a NAS cutter were lower than that of the benchmark cutter under the same condition. It meant that a NAS cutter was more efficient on elastoplastic material breaking. However, the wear resistance of a new axe-shaped cutter was higher than that of a benchmark cutter. The results of the dry VTL test showed that the thermal stability of a NAS cutter was higher than that of a benchmark cutter. The cutting efficiency can be improved by optimizing the geometric structure of the PDC cutter. The change of thermal stability may be caused by the decrease of the contact area between cutter and rock at given DOC. The conclusions of this paper can be used as an important reference for PDC cutters designers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axe-shaped%20cutter" title="axe-shaped cutter">axe-shaped cutter</a>, <a href="https://publications.waset.org/abstracts/search?q=PDC%20cutter" title=" PDC cutter"> PDC cutter</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20cutting%20test" title=" rotary cutting test"> rotary cutting test</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20turret%20lathe" title=" vertical turret lathe"> vertical turret lathe</a> </p> <a href="https://publications.waset.org/abstracts/139822/analysis-of-rock-cutting-progress-with-a-new-axe-shaped-pdc-cutter-to-improve-pdc-bit-performance-in-elastoplastic-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Modeling and Tracking of Deformable Structures in Medical Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Ettaieb">Said Ettaieb</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Hamrouni"> Kamel Hamrouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Ruan"> Su Ruan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new method based both on Active Shape Model and a priori knowledge about the spatio-temporal shape variation for tracking deformable structures in medical imaging. The main idea is to exploit the a priori knowledge of shape that exists in ASM and introduce new knowledge about the shape variation over time. The aim is to define a new more stable method, allowing the reliable detection of structures whose shape changes considerably in time. This method can also be used for the three-dimensional segmentation by replacing the temporal component by the third spatial axis (z). The proposed method is applied for the functional and morphological study of the heart pump. The functional aspect was studied through temporal sequences of scintigraphic images and morphology was studied through MRI volumes. The obtained results are encouraging and show the performance of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20shape%20model" title="active shape model">active shape model</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20priori%20knowledge" title=" a priori knowledge"> a priori knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=spatiotemporal%20shape%20variation" title=" spatiotemporal shape variation"> spatiotemporal shape variation</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20structures" title=" deformable structures"> deformable structures</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20images" title=" medical images"> medical images</a> </p> <a href="https://publications.waset.org/abstracts/29394/modeling-and-tracking-of-deformable-structures-in-medical-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Evaluation of Deformable Boundary Condition Using Finite Element Method and Impact Test for Steel Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abed%20Ahmed">Abed Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Asadi"> Mehrdad Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Martay"> Jennifer Martay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stainless steel pipelines are crucial components to transportation and storage in the oil and gas industry. However, the rise of random attacks and vandalism on these pipes for their valuable transport has led to more security and protection for incoming surface impacts. These surface impacts can lead to large global deformations of the pipe and place the pipe under strain, causing the eventual failure of the pipeline. Therefore, understanding how these surface impact loads affect the pipes is vital to improving the pipes’ security and protection. In this study, experimental test and finite element analysis (FEA) have been carried out on EN3B stainless steel specimens to study the impact behaviour. Low velocity impact tests at 9 m/s with 16 kg dome impactor was used to simulate for high momentum impact for localised failure. FEA models of clamped and deformable boundaries were modelled to study the effect of the boundaries on the pipes impact behaviour on its impact resistance, using experimental and FEA approach. Comparison of experimental and FE simulation shows good correlation to the deformable boundaries in order to validate the robustness of the FE model to be implemented in pipe models with complex anisotropic structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20impact" title="dynamic impact">dynamic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20boundary%20conditions" title=" deformable boundary conditions"> deformable boundary conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modelling" title=" finite element modelling"> finite element modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=LS-DYNA" title=" LS-DYNA"> LS-DYNA</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20pipe" title=" stainless steel pipe"> stainless steel pipe</a> </p> <a href="https://publications.waset.org/abstracts/116559/evaluation-of-deformable-boundary-condition-using-finite-element-method-and-impact-test-for-steel-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Theoretical and Experimental Analysis of End Milling Process with Multiple Finger Inserted Cutters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Krishna%20Mohana%20Rao">G. Krishna Mohana Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ravi%20Kumar"> P. Ravi Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milling is the process of removing unwanted material with suitable tool. Even though the milling process is having wider application, the vibration of machine tool and work piece during the process produces chatter on the products. Various methods of preventing the chatter have been incorporated into machine tool systems. Damper is cut into equal number of parts. Each part is called as finger. Multiple fingers were inserted in the hollow portion of the shank to reduce tool vibrations. In the present work, nonlinear static and dynamic analysis of the damper inserted end milling cutter used to reduce the chatter was done. A comparison is made for the milling cutter with multiple dampers. Surface roughness was determined by machining with multiple finger inserted milling cutters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20inserts" title="damping inserts">damping inserts</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20milling" title=" end milling"> end milling</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamic%20analysis" title=" nonlinear dynamic analysis"> nonlinear dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20fingers" title=" number of fingers"> number of fingers</a> </p> <a href="https://publications.waset.org/abstracts/4973/theoretical-and-experimental-analysis-of-end-milling-process-with-multiple-finger-inserted-cutters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Surface Geodesic Derivative Pattern for Deformable Textured 3D Object Comparison: Application to Expression and Pose Invariant 3D Face Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farshid%20Hajati">Farshid Hajati</a>, <a href="https://publications.waset.org/abstracts/search?q=Soheila%20Gheisari"> Soheila Gheisari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Cheraghian"> Ali Cheraghian</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongsheng%20Gao"> Yongsheng Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new Surface Geodesic Derivative Pattern (SGDP) for matching textured deformable 3D surfaces. SGDP encodes micro-pattern features based on local surface higher-order derivative variation. It extracts local information by encoding various distinctive textural relationships contained in a geodesic neighborhood, hence fusing texture and range information of a surface at the data level. Geodesic texture rings are encoded into local patterns for similarity measurement between non-rigid 3D surfaces. The performance of the proposed method is evaluated extensively on the Bosphorus and FRGC v2 face databases. Compared to existing benchmarks, experimental results show the effectiveness and superiority of combining the texture and 3D shape data at the earliest level in recognizing typical deformable faces under expression, illumination, and pose variations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20face%20recognition" title="3D face recognition">3D face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=pose" title=" pose"> pose</a>, <a href="https://publications.waset.org/abstracts/search?q=expression" title=" expression"> expression</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20matching" title=" surface matching"> surface matching</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a> </p> <a href="https://publications.waset.org/abstracts/37340/surface-geodesic-derivative-pattern-for-deformable-textured-3d-object-comparison-application-to-expression-and-pose-invariant-3d-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alia%20Alghosoun">Alia Alghosoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Osman"> Ashraf Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Seaid"> Mohammed Seaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam-break%20flows" title="dam-break flows">dam-break flows</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20beds" title=" deformable beds"> deformable beds</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20techniques" title=" hybrid techniques"> hybrid techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20elasticity" title=" linear elasticity"> linear elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20water%20equations" title=" shallow water equations"> shallow water equations</a> </p> <a href="https://publications.waset.org/abstracts/95218/a-finite-elementfinite-volume-method-for-dam-break-flows-over-deformable-beds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Effect of Microstructure on Wear Resistance of Polycrystalline Diamond Composite Cutter of Bit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fanyuan%20Shao">Fanyuan Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liu"> Wei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Deli%20Gao"> Deli Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycrystalline diamond composite (PDC) cutter is made of diamond powder as raw material, cobalt metal or non-metallic elements as a binder, mixed with WC cemented carbide matrix assembly, through high temperature and high-pressure sintering. PDC bits with PDC cutters are widely used in oil and gas drilling because of their high hardness, good wear resistance and excellent impact toughness. And PDC cutter is the main cutting tool of bit, which seriously affects the service of the PDC bit. The wear resistance of the PDC cutter is measured by cutting granite with a vertical turret lathe (VTL). This experiment can achieve long-distance cutting to obtain the relationship between the wear resistance of the PDC cutter and cutting distance, which is more closely to the real drilling situation. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively, which can also characterize the damage and wear of the PDC cutter. PDC cutters were cut via electrical discharge machining (EDM) and then flattened and polished. A scanning electron microscope (SEM) was used to observe the distribution of binder cobalt and the size of diamond particles in a diamond PDC cutter. The cutting experimental results show that the wear area of the PDC cutter has a good linear relationship with the cutting distance. Simultaneously, the larger the wear area is and the greater the cutting forces are required to maintain the same cutting state. The size and distribution of diamond particles in the polycrystalline diamond layer have a great influence on the wear resistance of the diamond layer. And PDC cutter with fine diamond grains shows more wear resistance than that with coarse grains. The deep leaching process is helpful to reduce the effect of binder cobalt on the wear resistance of the polycrystalline diamond layer. The experimental study can provide an important basis for the application of PDC cutters in oil and gas drilling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20diamond%20compact" title="polycrystalline diamond compact">polycrystalline diamond compact</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20distance" title=" cutting distance"> cutting distance</a> </p> <a href="https://publications.waset.org/abstracts/139046/effect-of-microstructure-on-wear-resistance-of-polycrystalline-diamond-composite-cutter-of-bit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Faster Pedestrian Recognition Using Deformable Part Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Preziosi">Alessandro Preziosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Prioletti"> Antonio Prioletti</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Castangia"> Luca Castangia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicles" title="autonomous vehicles">autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20part%20model" title=" deformable part model"> deformable part model</a>, <a href="https://publications.waset.org/abstracts/search?q=dpm" title=" dpm"> dpm</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20detection" title=" pedestrian detection"> pedestrian detection</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time" title=" real time"> real time</a> </p> <a href="https://publications.waset.org/abstracts/51665/faster-pedestrian-recognition-using-deformable-part-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Three-Dimensional Numerical Simulation of Drops Suspended in Poiseuille Flow: Effect of Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Nourbakhsh">A. Nourbakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A finite difference/front tracking method is used to study the motion of three-dimensional deformable drops suspended in plane Poiseuille flow at non-zero Reynolds numbers. A parallel version of the code was used to study the behavior of suspension on a reasonable grid resolution (grids). The viscosity and density of drops are assumed to be equal to that of the suspending medium. The effect of the Reynolds number is studied in detail. It is found that drops with small deformation behave like rigid particles and migrate to an equilibrium position about half way between the wall and the center line (the Segre-Silberberg effect). However, for highly deformable drops there is a tendency for drops to migrate to the middle of the channel, and the maximum concentration occurs at the center line. The effective viscosity of suspension and the fluctuation energy of the flow across the channel increases with the Reynolds number of the flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=suspensions" title="suspensions">suspensions</a>, <a href="https://publications.waset.org/abstracts/search?q=Poiseuille%20flow" title=" Poiseuille flow"> Poiseuille flow</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20viscosity" title=" effective viscosity"> effective viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number "> Reynolds number </a> </p> <a href="https://publications.waset.org/abstracts/11946/three-dimensional-numerical-simulation-of-drops-suspended-in-poiseuille-flow-effect-of-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Numerical Analysis of the Flow Characteristics Around a Deformable Vortex Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aimad%20Koulali">Aimad Koulali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow structure evolution around a single pair of Delta vortex generators (VGs) is studied numerically. For laminar, transient, and turbulent flow regimes, numerical simulations have been performed in a duct with a pair of Delta vortex generators. The finiteelementmethodwasused to simulate the flow. To formulate the fluid structure interaction problem, the ALE formulation was used. The aim of this study is to provide a detailed insight into the generation and dissipation of longitudinal vortices over a wide range of flow regimes, including the laminar-turbulent transition. A wide range of parameters has been exploited to describe the inducedphenomenawithin the flow. Weexaminedvariousparametersdepending on the VG geometry, the flow regime, and the channel geometry. A detailed analysis of the turbulence and wall shear stress properties has been evaluated. The results affirm that there are still optimal values to obtain better performing vortices in order to improve the exchange performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finte%20element%20method" title="finte element method">finte element method</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20vortex%20generator" title=" deformable vortex generator"> deformable vortex generator</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20structure%20interaction" title=" fluid structure interaction"> fluid structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ALE%20formlation" title=" ALE formlation"> ALE formlation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/155015/numerical-analysis-of-the-flow-characteristics-around-a-deformable-vortex-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Design of a Robot with a Transformable Track System in Tackling Motion Barrier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Yi%20Cho">Kai-Yi Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Fa-Shian%20Chang"> Fa-Shian Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lih-Tyng%20Hwang"> Lih-Tyng Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Feng%20Liu"> Chih-Feng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeng-Nan%20Lee"> Jeng-Nan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shun-Min%20Wang"> Shun-Min Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhu-Wei%20Ji"> Jhu-Wei Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a ground robot which has the tracked transformative structures of the motion mechanism. The robot has a good ability to adapt to the terrain, due to the front end of the track can be deformed, it can more easily pass the more complex area, such as to climb stairs and ramp areas. Usually in the disaster area, where the terrain is generally broken and complicated, there will be many slopes, broken walls, rubble, and obstacles, then if you want the robot through this area, you need to have a good off-road performance for possible complex terrain, this robot with the transformative tracked mechanism has a strong adaptability, it can overcome the limitation of the terrains to be a good rescue robot. Also, the robot has a good flexibility in the shape of contact with the ground; that can adapt the varied terrain by the deformable track, thus able to pass the different terrains, that was verified through the experiments on a test-platform and a field test. The prototype of the robot system has been developed, and experiments are carried out to verify the validity of the proposed design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tracked%20robot" title="tracked robot">tracked robot</a>, <a href="https://publications.waset.org/abstracts/search?q=rescue%20robot" title=" rescue robot"> rescue robot</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation%20mechanism" title=" transformation mechanism"> transformation mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20track" title=" deformable track"> deformable track</a>, <a href="https://publications.waset.org/abstracts/search?q=hull%20design" title=" hull design"> hull design</a> </p> <a href="https://publications.waset.org/abstracts/50960/design-of-a-robot-with-a-transformable-track-system-in-tackling-motion-barrier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> [Keynote Speaker]: Some Similarity Considerations for Design of Experiments for Hybrid Buoyant Aerial Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Haque">A. U. Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Asrar"> W. Asrar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A%20Omar"> A. A Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Sulaeman"> E. Sulaeman</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20M.%20Ali"> J. S. M. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Buoyancy force applied on deformable symmetric bodies can be estimated by using Archimedes Principle. Such bodies like ellipsoidal bodies have high volume to surface ratio and are isometrically scaled for mass, length, area and volume to follow square cube law. For scaling up such bodies, it is worthwhile to find out the scaling relationship between the other physical quantities that represent thermodynamic, structural and inertial response etc. So, dimensionless similarities to find an allometric scale can be developed by using Bukingham π theorem which utilizes physical dimensions of important parameters. Base on this fact, physical dependencies of buoyancy system are reviewed to find the set of physical variables for deformable bodies of revolution filled with expandable gas like helium. Due to change in atmospheric conditions, this gas changes its volume and this change can effect the stability of elongated bodies on the ground as well as in te air. Special emphasis was given on the existing similarity parameters which can be used in the design of experiments of such bodies whose shape is affected by the external force like a drag, surface tension and kinetic loads acting on the surface. All these similarity criteria are based on non-dimensionalization, which also needs to be consider for scaling up such bodies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bukhigham%20pi%20theorem" title="Bukhigham pi theorem">Bukhigham pi theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=similitude" title=" similitude"> similitude</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling" title=" scaling"> scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=buoyancy" title=" buoyancy"> buoyancy</a> </p> <a href="https://publications.waset.org/abstracts/40869/keynote-speaker-some-similarity-considerations-for-design-of-experiments-for-hybrid-buoyant-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Coupled Flexural-Lateral-Torsional of Shear Deformable Thin-Walled Beams with Asymmetric Cross-Section–Closed Form Exact Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ali%20Hjaji">Mohammed Ali Hjaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdi%20Mohareb"> Magdi Mohareb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper develops the exact solutions for coupled flexural-lateral-torsional static response of thin-walled asymmetric open members subjected to general loading. Using the principle of stationary total potential energy, the governing differential equations of equilibrium are formulated as well as the associated boundary conditions. The formulation is based on a generalized Timoshenko-Vlasov beam theory and accounts for the effects of shear deformation due to bending and warping, and captures the effects of flexural–torsional coupling due to cross-section asymmetry. Closed-form solutions are developed for cantilever and simply supported beams under various forces. In order to demonstrate the validity and the accuracy of this solution, numerical examples are presented and compared with well-established ABAQUS finite element solutions and other numerical results available in the literature. In addition, the results are compared against non-shear deformable beam theories in order to demonstrate the shear deformation effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20cross-section" title="asymmetric cross-section">asymmetric cross-section</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural-lateral-torsional%20response" title=" flexural-lateral-torsional response"> flexural-lateral-torsional response</a>, <a href="https://publications.waset.org/abstracts/search?q=Vlasov-Timoshenko%20beam%20theory" title=" Vlasov-Timoshenko beam theory"> Vlasov-Timoshenko beam theory</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20form%20solution" title=" closed form solution"> closed form solution</a> </p> <a href="https://publications.waset.org/abstracts/13320/coupled-flexural-lateral-torsional-of-shear-deformable-thin-walled-beams-with-asymmetric-cross-section-closed-form-exact-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Navigating through Organizational Change: TAM-Based Manual for Digital Skills and Safety Transitions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margarida%20Porf%C3%ADrio%20Tom%C3%A1s">Margarida Porfírio Tomás</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Pereira"> Paula Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Palma%20Oliveira"> José Palma Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Robotic grasping is advancing rapidly, but transferring techniques from rigid to deformable objects remains a challenge. Deformable and flexible items, such as food containers, demand nuanced handling due to their changing shapes. Bridging this gap is crucial for applications in food processing, surgical robotics, and household assistance. AGILEHAND, a Horizon project, focuses on developing advanced technologies for sorting, handling, and packaging soft and deformable products autonomously. These technologies serve as strategic tools to enhance flexibility, agility, and reconfigurability within the production and logistics systems of European manufacturing companies. Key components include intelligent detection, self-adaptive handling, efficient sorting, and agile, rapid reconfiguration. The overarching goal is to optimize work environments and equipment, ensuring both efficiency and safety. As new technologies emerge in the food industry, there will be some implications, such as labour force, safety problems and acceptance of the new technologies. To overcome these implications, AGILEHAND emphasizes the integration of social sciences and humanities, for example, the application of the Technology Acceptance Model (TAM). The project aims to create a change management manual, that will outline strategies for developing digital skills and managing health and safety transitions. It will also provide best practices and models for organizational change. Additionally, AGILEHAND will design effective training programs to enhance employee skills and knowledge. This information will be obtained through a combination of case studies, structured interviews, questionnaires, and a comprehensive literature review. The project will explore how organizations adapt during periods of change and identify factors influencing employee motivation and job satisfaction. This project received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No101092043 (AGILEHAND). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=change%20management" title="change management">change management</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20acceptance%20model" title=" technology acceptance model"> technology acceptance model</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20change" title=" organizational change"> organizational change</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20and%20safety" title=" health and safety"> health and safety</a> </p> <a href="https://publications.waset.org/abstracts/184036/navigating-through-organizational-change-tam-based-manual-for-digital-skills-and-safety-transitions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Study of the Hydraulic Concrete Physical-Mechanical Properties by Using Admixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natia%20Tabatadze">Natia Tabatadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research aim is to study the physical - mechanical characteristics of structural materials, in particular, hydraulic concrete in the surface active environment and receiving of high strength concrete, low-deformable, resistant to aggressive environment concrete due application of nano technologies. The obtained concrete with additives will by possible to apply in hydraulic structures. We used cement (compressive strength R28=39,42 mPa), sand (0- 5 mm), gravel (5-10 mm, 10-20 mm), admixture CHRYSO® Fuge B 1,5% dosage of cement. CHRYSO® Fuge B renders mortar and concrete highly resistant to capillary action and reduces, or even eliminates infiltration of water under pressure. The fine particles that CHRYSO® Fuge B contains combine with the lime in the cement to form water repellent particles. These obstruct the capillary action within concrete. CHRYSO® Fuge B does not significantly modify the characteristics of the fresh concrete and mortar, nor the compressive strength. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa), as well as the mass water absorption (W=3,37 % of admixture instead of W=1,41 %), volume water absorption (W=1,41 % of admixture instead of W=0,59 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20materials" title="structural materials">structural materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20concrete" title=" hydraulic concrete"> hydraulic concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=low-deformable" title=" low-deformable"> low-deformable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption%20for%20mass" title=" water absorption for mass"> water absorption for mass</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption%20for%20volume" title=" water absorption for volume"> water absorption for volume</a> </p> <a href="https://publications.waset.org/abstracts/77960/study-of-the-hydraulic-concrete-physical-mechanical-properties-by-using-admixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Ultra-deformable Drug-free Sequessome™ Vesicles (TDT 064) for the Treatment of Joint Pain Following Exercise: A Case Report and Clinical Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joe%20Collins">Joe Collins</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Rother"> Matthias Rother</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Oral non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the relief of joint pain during and post-exercise. However, oral NSAIDs increase the risk of systemic side effects, even in healthy individuals, and retard recovery from muscle soreness. TDT 064 (Flexiseq®), a topical formulation containing ultra-deformable drug-free Sequessome™ vesicles, has demonstrated equivalent efficacy to oral celecoxib in reducing osteoarthritis-associated joint pain and stiffness. TDT 064 does not cause NSAID-related adverse effects. We describe clinical study data and a case report on the effectiveness of TDT 064 in reducing joint pain after exercise. Methods: Participants with a pain score ≥3 (10-point scale) 12–16 hours post-exercise were randomized to receive TDT 064 plus oral placebo, TDT 064 plus oral ketoprofen, or ketoprofen in ultra-deformable phospholipid vesicles plus oral placebo. Results: In the 168 study participants, pain scores were significantly higher with oral ketoprofen plus TDT 064 than with TDT 064 plus placebo in the 7 days post-exercise (P = 0.0240) and recovery from muscle soreness was significantly longer (P = 0.0262). There was a low incidence of adverse events. These data are supported by clinical experience. A 24-year-old male professional rugby player suffered a traumatic lisfranc fracture in March 2014 and underwent operative reconstruction. He had no relevant medical history and was not receiving concomitant medications. He had undergone anterior cruciate ligament reconstruction in 2008. The patient reported restricted training due to pain (score 7/10), stiffness (score 9/10) and poor function, as well as pain when changing direction and running on consecutive days. In July 2014 he started using TDT 064 twice daily at the recommended dose. In November 2014 he noted reduced pain on running (score 2-3/10), decreased morning stiffness (score 4/10) and improved joint mobility and was able to return to competitive rugby without restrictions. No side effects of TDT 064 were reported. Conclusions: TDT 064 shows efficacy against exercise- and injury-induced joint pain, as well as that associated with osteoarthritis. It does not retard muscle soreness recovery after exercise compared with an oral NSAID, making it an alternative approach for the treatment of joint pain during and post-exercise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exercise" title="exercise">exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20pain" title=" joint pain"> joint pain</a>, <a href="https://publications.waset.org/abstracts/search?q=TDT%20064" title=" TDT 064"> TDT 064</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipid%20vesicles" title=" phospholipid vesicles"> phospholipid vesicles</a> </p> <a href="https://publications.waset.org/abstracts/22738/ultra-deformable-drug-free-sequessome-vesicles-tdt-064-for-the-treatment-of-joint-pain-following-exercise-a-case-report-and-clinical-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Integrating Computer-Aided Manufacturing and Computer-Aided Design for Streamlined Carpentry Production in Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benson%20Tette">Benson Tette</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Mensah"> Thomas Mensah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a developing country, Ghana has a high potential to harness the economic value of every industry. Two of the industries that produce below capacity are handicrafts (for instance, carpentry) and information technology (i.e., computer science). To boost production and maintain competitiveness, the carpentry sector in Ghana needs more effective manufacturing procedures that are also more affordable. This issue can be resolved using computer-aided manufacturing (CAM) technology, which automates the fabrication process and decreases the amount of time and labor needed to make wood goods. Yet, the integration of CAM in carpentry-related production is rarely explored. To streamline the manufacturing process, this research investigates the equipment and technology that are currently used in the Ghanaian carpentry sector for automated fabrication. The research looks at the various CAM technologies, such as Computer Numerical Control routers, laser cutters, and plasma cutters, that are accessible to Ghanaian carpenters yet unexplored. We also investigate their potential to enhance the production process. To achieve the objective, 150 carpenters, 15 software engineers, and 10 policymakers were interviewed using structured questionnaires. The responses provided by the 175 respondents were processed to eliminate outliers and omissions were corrected using multiple imputations techniques. The processed responses were analyzed through thematic analysis. The findings showed that adaptation and integration of CAD software with CAM technologies would speed up the design-to-manufacturing process for carpenters. It must be noted that achieving such results entails first; examining the capabilities of current CAD software, then determining what new functions and resources are required to improve the software's suitability for carpentry tasks. Responses from both carpenters and computer scientists showed that it is highly practical and achievable to streamline the design-to-manufacturing process through processes such as modifying and combining CAD software with CAM technology. Making the carpentry-software integration program more useful for carpentry projects would necessitate investigating the capabilities of the current CAD software and identifying additional features in the Ghanaian ecosystem and tools that are required. In conclusion, the Ghanaian carpentry sector has a chance to increase productivity and competitiveness through the integration of CAM technology with CAD software. Carpentry companies may lower labor costs and boost production capacity by automating the fabrication process, giving them a competitive advantage. This study offers implementation-ready and representative recommendations for successful implementation as well as important insights into the equipment and technologies available for automated fabrication in the Ghanaian carpentry sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carpentry" title="carpentry">carpentry</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20manufacturing%20%28CAM%29" title=" computer-aided manufacturing (CAM)"> computer-aided manufacturing (CAM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghana" title=" Ghana"> Ghana</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology%28IT%29" title=" information technology(IT)"> information technology(IT)</a> </p> <a href="https://publications.waset.org/abstracts/166238/integrating-computer-aided-manufacturing-and-computer-aided-design-for-streamlined-carpentry-production-in-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Fully Eulerian Finite Element Methodology for the Numerical Modeling of the Dynamics of Heart Valves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Laadhari">Aymen Laadhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decade, an increasing number of contributions have been made in the fields of scientific computing and numerical methodologies applied to the study of the hemodynamics in the heart. In contrast, the numerical aspects concerning the interaction of pulsatile blood flow with highly deformable thin leaflets have been much less explored. This coupled problem remains extremely challenging and numerical difficulties include e.g. the resolution of full Fluid-Structure Interaction problem with large deformations of extremely thin leaflets, substantial mesh deformations, high transvalvular pressure discontinuities, contact between leaflets. Although the Lagrangian description of the structural motion and strain measures is naturally used, many numerical complexities can arise when studying large deformations of thin structures. Eulerian approaches represent a promising alternative to readily model large deformations and handle contact issues. We present a fully Eulerian finite element methodology tailored for the simulation of pulsatile blood flow in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets. Our method enables to use a fluid solver on a fixed mesh, whilst being able to easily model the mechanical properties of the valve. We introduce a semi-implicit time integration scheme based on a consistent NewtonRaphson linearization. A variant of the classical Newton method is introduced and guarantees a third-order convergence. High-fidelity computational geometries are built and simulations are performed under physiological conditions. We address in detail the main features of the proposed method, and we report several experiments with the aim of illustrating its accuracy and efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eulerian" title="eulerian">eulerian</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set" title=" level set"> level set</a>, <a href="https://publications.waset.org/abstracts/search?q=newton" title=" newton"> newton</a>, <a href="https://publications.waset.org/abstracts/search?q=valve" title=" valve"> valve</a> </p> <a href="https://publications.waset.org/abstracts/59566/fully-eulerian-finite-element-methodology-for-the-numerical-modeling-of-the-dynamics-of-heart-valves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Using Machine Learning to Monitor the Condition of the Cutting Edge during Milling Hardened Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Twardowski">Pawel Twardowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Tabaszewski"> Maciej Tabaszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Czy%C5%BCycki"> Jakub Czyżycki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of the work was to use machine learning to predict cutting-edge wear. The research was carried out while milling hardened steel with sintered carbide cutters at various cutting speeds. During the tests, cutting-edge wear was measured, and vibration acceleration signals were also measured. Appropriate measures were determined from the vibration signals and served as input data in the machine-learning process. Two approaches were used in this work. The first one involved a two-state classification of the cutting edge - suitable and unfit for further work. In the second approach, prediction of the cutting-edge state based on vibration signals was used. The obtained research results show that the appropriate use of machine learning algorithms gives excellent results related to monitoring cutting edge during the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel" title="milling of hardened steel">milling of hardened steel</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/185240/using-machine-learning-to-monitor-the-condition-of-the-cutting-edge-during-milling-hardened-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Combined Surface Tension and Natural Convection of Nanofluids in a Square Open Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habibis%20Saleh">Habibis Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishak%20Hashim"> Ishak Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combined surface tension and natural convection heat transfer in an open cavity is studied numerically in this article. The cavity is filled with water-{Cu} nanofluids. The left wall is kept at low temperature, the right wall at high temperature and the bottom and top walls are adiabatic. The top free surface is assumed to be flat and non--deformable. Finite difference method is applied to solve the dimensionless governing equations. It is found that the insignificant effect of adding the nanoparticles were obtained about $Ma_{bf}=250$. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title="natural convection">natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=marangoni%20convection" title=" marangoni convection"> marangoni convection</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title=" nanofluids"> nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20open%20cavity" title=" square open cavity"> square open cavity</a> </p> <a href="https://publications.waset.org/abstracts/16711/combined-surface-tension-and-natural-convection-of-nanofluids-in-a-square-open-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Seismic Hazard Assessment of Offshore Platforms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20D.%20Konstandakopoulou">F. D. Konstandakopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Papagiannopoulos"> G. A. Papagiannopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Pnevmatikos"> N. G. Pnevmatikos</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20D.%20Hatzigeorgiou"> G. D. Hatzigeorgiou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazard%20analysis" title="hazard analysis">hazard analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20platforms" title=" offshore platforms"> offshore platforms</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a> </p> <a href="https://publications.waset.org/abstracts/102575/seismic-hazard-assessment-of-offshore-platforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Vibrations of Springboards: Mode Shape and Time Domain Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Frassinelli">Stefano Frassinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Niccolai"> Alessandro Niccolai</a>, <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20E.%20Zich"> Riccardo E. Zich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diving is an important Olympic sport. In this sport, the effective performance of the athlete is related to his capability to interact correctly with the springboard. In fact, the elevation of the jump and the correctness of the dive are influenced by the vibrations of the board. In this paper, the vibrations of the springboard will be analyzed by means of typical tools for vibration analysis: Firstly, a modal analysis will be done on two different models of the springboard, then, these two model and another one will be analyzed with a time analysis, done integrating the equations of motion od deformable bodies. All these analyses will be compared with experimental data measured on a real springboard by means of a 6-axis accelerometer; these measurements are aimed to assess the models proposed. The acquired data will be analyzed both in frequency domain and in time domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=springboard%20analysis" title="springboard analysis">springboard analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20analysis" title=" time domain analysis"> time domain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a> </p> <a href="https://publications.waset.org/abstracts/61559/vibrations-of-springboards-mode-shape-and-time-domain-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Endocardial Ultrasound Segmentation using Level Set method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daoudi%20Abdelaziz">Daoudi Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoudi%20Sa%C3%AFd"> Mahmoudi Saïd</a>, <a href="https://publications.waset.org/abstracts/search?q=Chikh%20Mohamed%20Amine"> Chikh Mohamed Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a fully automatic segmentation method of the left ventricle at End Systolic (ES) and End Diastolic (ED) in the ultrasound images by means of an implicit deformable model (level set) based on Geodesic Active Contour model. A pre-processing Gaussian smoothing stage is applied to the image, which is essential for a good segmentation. Before the segmentation phase, we locate automatically the area of the left ventricle by using a detection approach based on the Hough Transform method. Consequently, the result obtained is used to automate the initialization of the level set model. This initial curve (zero level set) deforms to search the Endocardial border in the image. On the other hand, quantitative evaluation was performed on a data set composed of 15 subjects with a comparison to ground truth (manual segmentation). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=level%20set%20method" title="level set method">level set method</a>, <a href="https://publications.waset.org/abstracts/search?q=transform%20Hough" title=" transform Hough"> transform Hough</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20smoothing" title=" Gaussian smoothing"> Gaussian smoothing</a>, <a href="https://publications.waset.org/abstracts/search?q=left%20ventricle" title=" left ventricle"> left ventricle</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20images." title=" ultrasound images."> ultrasound images.</a> </p> <a href="https://publications.waset.org/abstracts/19105/endocardial-ultrasound-segmentation-using-level-set-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Obtaining the Hydraulic Concrete Resistant to the Aggressive Environment by Using Admixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Tabatadze">N. Tabatadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research aim is to study the physical and mechanical characteristics of hydraulic concrete in the surface active environment. The specific goal is to obtain high strength and low deformable concrete based on nano additives, resistant to the aggressive environment. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa). Moreover, water absorption (W=0,59 % of admixture instead of W=1,41 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20concrete" title="hydraulic concrete">hydraulic concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali-silica%20reaction" title=" alkali-silica reaction"> alkali-silica reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption" title=" water absorption"> water absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=water-resistance" title=" water-resistance"> water-resistance</a> </p> <a href="https://publications.waset.org/abstracts/72475/obtaining-the-hydraulic-concrete-resistant-to-the-aggressive-environment-by-using-admixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> A Consideration on the Offset Frontal Impact Modeling Using Spring-Mass Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaemoon%20Lim">Jaemoon Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To construct the lumped spring-mass model considering the occupants for the offset frontal crash, the SISAME software and the NHTSA test data were used. The data on 56 kph 40% offset frontal vehicle to deformable barrier crash test of a MY2007 Mazda 6 4-door sedan were obtained from NHTSA test database. The overall behaviors of B-pillar and engine of simulation models agreed very well with the test data. The trends of accelerations at the driver and passenger head were similar but big differences in peak values. The differences of peak values caused the large errors of the HIC36 and 3 ms chest g’s. To predict well the behaviors of dummies, the spring-mass model for the offset frontal crash needs to be improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chest%20g%E2%80%99s" title="chest g’s">chest g’s</a>, <a href="https://publications.waset.org/abstracts/search?q=HIC36" title=" HIC36"> HIC36</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20spring-mass%20model" title=" lumped spring-mass model"> lumped spring-mass model</a>, <a href="https://publications.waset.org/abstracts/search?q=offset%20frontal%20impact" title=" offset frontal impact"> offset frontal impact</a>, <a href="https://publications.waset.org/abstracts/search?q=SISAME" title=" SISAME"> SISAME</a> </p> <a href="https://publications.waset.org/abstracts/32557/a-consideration-on-the-offset-frontal-impact-modeling-using-spring-mass-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deformable%20cutters&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deformable%20cutters&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deformable%20cutters&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>