CINXE.COM

Search results for: open sun drying

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: open sun drying</title> <meta name="description" content="Search results for: open sun drying"> <meta name="keywords" content="open sun drying"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="open sun drying" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="open sun drying"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3560</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: open sun drying</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3560</span> Persian Pistachio Nut (Pistacia vera L.) Dehydration in Natural and Industrial Conditions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Tavakolipour">Hamid Tavakolipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Mokhtarian"> Mohsen Mokhtarian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Kalbasi%20Ashtari"> Ahmad Kalbasi Ashtari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of various drying methods (sun drying, shade drying and industrial drying) on final moisture content, shell splitting degree, shrinkage and color change were studied. Sun drying resulted higher degree of pistachio nuts shell splitting on pistachio nuts relative other drying methods. The ANOVA results showed that the different drying methods did not significantly effects on color change of dried pistachio nut. The results illustrated that pistachio nut dried by industrial drying had the lowest moisture content. After the end of drying process, initially, the experimental drying data were fitted with five famous drying models namely Newton, Page, Silva et al., Peleg and Henderson and Pabis. The results indicated that Peleg and Page models gave better results compared with other models to monitor the moisture ratio’s pistachio nut in industrial drying and open sun (or shade drying) methods, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20drying" title="industrial drying">industrial drying</a>, <a href="https://publications.waset.org/abstracts/search?q=pistachio" title=" pistachio"> pistachio</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20properties" title=" quality properties"> quality properties</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20drying" title=" traditional drying"> traditional drying</a> </p> <a href="https://publications.waset.org/abstracts/43841/persian-pistachio-nut-pistacia-vera-l-dehydration-in-natural-and-industrial-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3559</span> Quality Analysis of Lake Malawi&#039;s Diplotaxodon Fish Species Processed in Solar Tent Dryer versus Open Sun Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Banda">James Banda</a>, <a href="https://publications.waset.org/abstracts/search?q=Jupiter%20Simbeye"> Jupiter Simbeye</a>, <a href="https://publications.waset.org/abstracts/search?q=Essau%20Chisale"> Essau Chisale</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoffrey%20Kanyerere"> Geoffrey Kanyerere</a>, <a href="https://publications.waset.org/abstracts/search?q=Kings%20Kamtambe"> Kings Kamtambe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improved solar tent dryers for processing small fish species were designed to reduce post-harvest fish losses and improve supply of quality fish products in the southern part of Lake Malawi under CultiAF project. A comparative analysis of the quality of Diplotaxodon (Ndunduma) from Lake Malawi processed in solar tent dryer and open sun drying was conducted using proximate analysis, microbial analysis and sensory evaluation. Proximates for solar tent dried fish and open sun dried fish in terms of proteins, fats, moisture and ash were 63.3±0.15% and 63.3±0.34%, 19.6±0.09% and 19.9±0.25%, 8.3±0.12% and 17.0±0.01%, and 15.6±0.61% and 21.9±0.91% respectively. Crude protein and crude fat showed non-significant differences (p = 0.05), while moisture and ash content were significantly different (p = 001). Open sun dried fish had significantly higher numbers of viable bacteria counts (5.2×10⁶ CFU) than solar tent dried fish (3.9×10² CFU). Most isolated bacteria from solar tent dried and open sun dried fish were 1.0×10¹ and 7.2×10³ for Total coliform, 0 and 4.5 × 10³ for Escherishia coli, 0 and 7.5 × 10³ for Salmonella, 0 and 5.7×10² for shigella, 4.0×10¹ and 6.1×10³ for Staphylococcus, 1.0×10¹ and 7.0×10² for vibrio. Qualitative evaluation of sensory properties showed higher acceptability of 3.8 for solar tent dried fish than 1.7 for open sun dried fish. It is concluded that promotion of solar tent drying in processing small fish species in Malawi would support small-scale fish processors to produce quality fish in terms of nutritive value, reduced microbial contamination, sensory acceptability and reduced moisture content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diplotaxodon" title="diplotaxodon">diplotaxodon</a>, <a href="https://publications.waset.org/abstracts/search?q=Malawi" title=" Malawi"> Malawi</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying" title=" open sun drying"> open sun drying</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20tent%20drying" title=" solar tent drying"> solar tent drying</a> </p> <a href="https://publications.waset.org/abstracts/53029/quality-analysis-of-lake-malawis-diplotaxodon-fish-species-processed-in-solar-tent-dryer-versus-open-sun-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3558</span> Drying Kinetics of Vacuum Dried Beef Meat Slices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Aykin%20Dincer">Elif Aykin Dincer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Erbas"> Mustafa Erbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vacuum drying behavior of beef slices (10 x 4 x 0.2 cm3) was experimentally investigated at the temperature of 60, 70, and 80°C under 25 mbar ultimate vacuum pressure and the mathematical models (Lewis, Page, Midilli, Two-term, Wangh and Singh and Modified Henderson and Pabis) were used to fit the vacuum drying of beef slices. The increase in drying air temperature resulted in a decrease in drying time. It took approximately 206, 180 and 157 min to dry beef slices from an initial moisture content to a final moisture content of 0.05 kg water/kg dry matter at 60, 70 and 80 °C of vacuum drying, respectively. It is also observed that the drying rate increased with increasing drying temperature. The coefficients (R2), the reduced chi-square (x²) and root mean square error (RMSE) values were obtained by application of six models to the experimental drying data. The best model with the highest R2 and, the lowest x² and RMSE values was selected to describe the drying characteristics of beef slices. The Page model has shown a better fit to the experimental drying data as compared to other models. In addition, the effective moisture diffusivities of beef slices in the vacuum drying at 60 - 80 °C varied in the range of 1.05 – 1.09 x 10-10 m2/s. Consequently, this results can be used to simulate vacuum drying process of beef slices and improve efficiency of the drying process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beef%20slice" title="beef slice">beef slice</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20models" title=" drying models"> drying models</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20diffusivity" title=" effective diffusivity"> effective diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum" title=" vacuum"> vacuum</a> </p> <a href="https://publications.waset.org/abstracts/66896/drying-kinetics-of-vacuum-dried-beef-meat-slices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3557</span> Performance Optimization of Low-Cost Solar Dryer Using Modified PI Controller </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kondareddy">Rajesh Kondareddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Kumar%20Nayak"> Prakash Kumar Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=Maunash%20Das"> Maunash Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Vrinatri%20Velentina%20Boro"> Vrinatri Velentina Boro </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, there is a huge global concern for sustainable development which would include minimizing the consumption of non-renewable energies without affecting the basic global economy. Solar drying is one of the important processes used for extending the shelf life of agricultural products. The performance of a low cost automated solar dryer fitted with cascade control scheme and modified PI controller for drying chilli was investigated. The dryer was composed of designed solar collector (air heater) fitted with cylindrical pipes to improve the air velocity and a solar drying chamber containing rack of two cheese cloth (net) trays both being integrated together. The air allowed in through air inlet is heated up in the solar collector and channelled through the drying chamber where it is utilized in drying (removing the moisture content from the food substance or agricultural produce loaded). Here, to maintain the temperature in the heating chambers and to improve performance, a modified PI (Proportional–Integral) controller was used due its simplicity and robustness. Drying time for drying chilli from the initial moisture content of 88.5% (wb) to 7.3% (wb) was estimated to be 14 hours in solar dryer whereas 32 h was observed in the open sun drying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20control" title="cascade control">cascade control</a>, <a href="https://publications.waset.org/abstracts/search?q=chilli" title=" chilli"> chilli</a>, <a href="https://publications.waset.org/abstracts/search?q=PI%20controller" title=" PI controller"> PI controller</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20dryer" title=" solar dryer"> solar dryer</a> </p> <a href="https://publications.waset.org/abstracts/45003/performance-optimization-of-low-cost-solar-dryer-using-modified-pi-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3556</span> Microwave Freeze Drying of Fruit Foams for the Production of Healthy Snacks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabine%20Ambros">Sabine Ambros</a>, <a href="https://publications.waset.org/abstracts/search?q=Mine%20Oezcelik"> Mine Oezcelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Evelyn%20Dachmann"> Evelyn Dachmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrich%20Kulozik"> Ulrich Kulozik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nutritional quality and taste of dried fruit products is still often unsatisfactory and does not meet anymore the current consumer trends. Dried foams from fruit puree could be an attractive alternative. Due to their open-porous structure, a new sensory perception with a sudden and very intense aroma release could be generated. To make such high quality fruit snacks affordable for the consumer, a gentle but at the same time fast drying process has to be applied. Therefore, microwave-assisted freeze drying of raspberry foams was investigated in this work and compared with the conventional freeze drying technique in terms of nutritional parameters such as antioxidative capacity, anthocyanin content and vitamin C and the physical parameters colour and wettability. The following process settings were applied: 0.01 kPa chamber pressure and a maximum temperature of 30 °C for both freeze and microwave freeze drying. The influence of microwave power levels on the dried foams was investigated between 1 and 5 W/g. Intermediate microwave power settings led to the highest nutritional values, a colour appearance comparable to the undried foam and a proper wettability. A proper process stability could also be guaranteed for these power levels. By the volumetric energy input of the microwaves drying time could be reduced from 24 h in conventional freeze drying to about 6 h. The short drying times further resulted in an equally high maintenance of the above mentioned parameters in both drying techniques. Hence, microwave assisted freeze drying could lead to a process acceleration in comparison to freeze drying and be therefore an interesting alternative drying technique which on industrial scale enables higher efficiency and higher product throughput. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foam%20drying" title="foam drying">foam drying</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze%20drying" title=" freeze drying"> freeze drying</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20puree" title=" fruit puree"> fruit puree</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20freeze%20drying" title=" microwave freeze drying"> microwave freeze drying</a>, <a href="https://publications.waset.org/abstracts/search?q=raspberry" title=" raspberry "> raspberry </a> </p> <a href="https://publications.waset.org/abstracts/67703/microwave-freeze-drying-of-fruit-foams-for-the-production-of-healthy-snacks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3555</span> Improvement in Drying Characteristics of Raisin by Carbonic Maceration– Process Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nursac%20Akyol">Nursac Akyol</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20S.%20Turan"> Merve S. Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Ozcelik"> Mustafa Ozcelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdogan%20Kucukoner"> Erdogan Kucukoner</a>, <a href="https://publications.waset.org/abstracts/search?q=Erkan%20Karacabey"> Erkan Karacabey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional raisin production is a long time drying process under sunlight. During this procedure, grapes are open to some environmental effects besides the adverse effects of the long drying period. Thus, there is a need to develop an alternative method being applicable instead of traditional one. To this extent, a combination of a potential pretreatment (carbonic maceration, CM) with convectional oven drying was examined. CM application was used in raisin production (grape drying) as a pretreatment process before oven drying. Pressure, temperature and time were examined as application parameters of CM. In conventional oven drying, the temperature is a process variable. The aim is to find out how CM and convectional drying processes affect the drying characteristics of grapes as well as their physical and chemical properties. For this purpose, the response surface method was used to determine both the effects of the variables and the optimum pretreatment and drying conditions. The optimum conditions of CM for raisin production were 0.3 MPa of pressure value, 4°C of application temperature and 8 hours of application time. The optimized drying temperature was 77°C. The results showed that the application of CM before the drying process improved the drying characteristics. Drying took only 389 minutes for grapes pretreated by CM under optimum conditions and 495 minutes for the control group dried only by the conventional drying process. According to these results, a decrease of 21% was achieved in the time requirement for raisin production. Also, it was observed that the samples dried under optimum conditions had similar physical properties as those the control group had. It was seen that raisin, which was dried under optimum conditions were in better condition in terms of some of the bioactive contents compared to control groups. In light of all results, it is seen that CM has an important potential in the industrial drying of grape samples. The current study was financially supported by TUBITAK, Turkey (Project no: 116R038). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drying%20time" title="drying time">drying time</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodlogy" title=" response surface methodlogy"> response surface methodlogy</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic" title=" total phenolic"> total phenolic</a> </p> <a href="https://publications.waset.org/abstracts/118363/improvement-in-drying-characteristics-of-raisin-by-carbonic-maceration-process-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3554</span> Effects of Drying Method and Seed Priming Duration on Coffee Seed and Seedling Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taju%20Mohammednur">Taju Mohammednur</a>, <a href="https://publications.waset.org/abstracts/search?q=Tesfaye%20Megersa"> Tesfaye Megersa</a>, <a href="https://publications.waset.org/abstracts/search?q=Karta%20Kaske"> Karta Kaske</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coffee is an economically important cash crop in Ethiopia. However, the conditions under which coffee seeds are dried and processed significantly affect the seedling quality and productivity. The objective of this study was to evaluate the effect of pre-sowing treatments and drying methods on the physiological quality of coffee seeds and seedlings. The study included two coffee varieties (74110, 75227), two drying conditions (under-shade drying room, open sun), and five durations of seed hydro priming (6, 8, 18, 24 hours, and an untreated control). Factorial combinations of the three factors were laid out in a Completely Randomized Design of three replications. Results indicated that the highest germination percentage (91%), emergence rate (90%), and seedling vigor index-I (2236 cm %) were recorded for seeds dried under-shade drying room. In contrast, the lowest values of germination percentage, emergence rate, and vigor index were observed for seeds dried under open sun. There was a significant difference in seed germination based on hydro priming time, with the highest germination percentage (83%) recorded for seeds soaked for 6 hours, followed by 24 hours (83%). The lowest germination percentage (77%) was recorded for un-soaked seeds. In conclusion, drying seeds under shade is better for coffee seed quality, and hydro priming has improved seedling vigor. However, further investigation into seed priming methods and preservation techniques for primed seeds is necessary to improve coffee seed quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coffee" title="coffee">coffee</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20drying" title=" seed drying"> seed drying</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20longevity" title=" seed longevity"> seed longevity</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20priming" title=" seed priming"> seed priming</a> </p> <a href="https://publications.waset.org/abstracts/191107/effects-of-drying-method-and-seed-priming-duration-on-coffee-seed-and-seedling-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3553</span> Comparative Survival Rates of Yeasts during Freeze-Drying, Traditional Drying and Spray Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Latifa%20Hamoudi-Belarbi">Latifa Hamoudi-Belarbi</a>, <a href="https://publications.waset.org/abstracts/search?q=L%27Hadi%20Nouri"> L&#039;Hadi Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Belkacemi"> Khaled Belkacemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of three methods of drying (traditional drying, freeze-drying and spray-drying) on the survival of concentrated cultures of Geotrichum fragrans and Wickerhamomyces anomalus was studied. The survival of yeast cultures was initially compared immediately after freeze-drying using HES 12%(w/v)+Sucrose 7% (w/v) as protectant, traditional drying in dry rice cakes and finally spray-drying with whey proteins. The survival of G. fragrans and W. anomalus was studied during 4 months of storage at 4°C and 25°C, in the darkness, under vacuum and at 0% relative humidity. The results demonstrated that high survival was obtained using traditional method of preservation in rice cakes (60% for G. fragrans and 65% for W. anomalus) and freeze-drying in (68% for G. fragrans and 74% for W. anomalus). However, poor survival was obtained by spray-drying method in whey protein with 20% for G. fragrans and 29% for W. anomalus. During storage at 25°C, yeast cultures of G. fragrans and W. anomalus preserved by traditional and freeze-drying methods showed no significant loss of viable cells up to 3 months of storage. Spray-dried yeast cultures had the greatest loss of viable count during the 4 months of storage at 25°C. During storage at 4°C, preservation of yeasts cultures using traditional method of preservation provided better survival than freeze-drying. This study demonstrated the effectiveness of the traditional method to preserve yeasts cultures compared to the high cost methods like freeze-drying and spray-drying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freeze-drying" title="freeze-drying">freeze-drying</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20drying" title=" traditional drying"> traditional drying</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a>, <a href="https://publications.waset.org/abstracts/search?q=yeasts" title=" yeasts"> yeasts</a> </p> <a href="https://publications.waset.org/abstracts/26630/comparative-survival-rates-of-yeasts-during-freeze-drying-traditional-drying-and-spray-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3552</span> Mathematical Modelling of Drying Kinetics of Cantaloupe in a Solar Assisted Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melike%20Sultan%20Karasu%20Asnaz">Melike Sultan Karasu Asnaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Ozdogan%20Dolcek"> Ayse Ozdogan Dolcek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crop drying, which aims to reduce the moisture content to a certain level, is a method used to extend the shelf life and prevent it from spoiling. One of the oldest food preservation techniques is open sunor shade drying. Even though this technique is the most affordable of all drying methods, there are some drawbacks such as contamination by insects, environmental pollution, windborne dust, and direct expose to weather conditions such as wind, rain, hail. However, solar dryers that provide a hygienic and controllable environment to preserve food and extend its shelf life have been developed and used to dry agricultural products. Thus, foods can be dried quickly without being affected by weather variables, and quality products can be obtained. This research is mainly devoted to investigating the modelling of drying kinetics of cantaloupe in a forced convection solar dryer. Mathematical models for the drying process should be defined to simulate the drying behavior of the foodstuff, which will greatly contribute to the development of solar dryer designs. Thus, drying experiments were conducted and replicated five times, and various data such as temperature, relative humidity, solar irradiation, drying air speed, and weight were instantly monitored and recorded. Moisture content of sliced and pretreated cantaloupe were converted into moisture ratio and then fitted against drying time for constructing drying curves. Then, 10 quasi-theoretical and empirical drying models were applied to find the best drying curve equation according to the Levenberg-Marquardt nonlinear optimization method. The best fitted mathematical drying model was selected according to the highest coefficient of determination (R²), and the mean square of the deviations (χ^²) and root mean square error (RMSE) criterial. The best fitted model was utilized to simulate a thin layer solar drying of cantaloupe, and the simulation results were compared with the experimental data for validation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20dryer" title="solar dryer">solar dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20kinetics" title=" drying kinetics"> drying kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=cantaloupe%20drying" title=" cantaloupe drying"> cantaloupe drying</a> </p> <a href="https://publications.waset.org/abstracts/150488/mathematical-modelling-of-drying-kinetics-of-cantaloupe-in-a-solar-assisted-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3551</span> Experimental Study on Drying Parameters of Freeze Drying Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Osman%20Sui%C3%A7mez">Ali Osman Suiçmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Deniz"> Emrah Deniz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, control experiments were made on a freeze drying system of which were built a prototype. In experiments, apple slices in different geometrical shapes were dried and drying curves were gained. Then, the shapes which were the fastest for drying were determined. Twenty samples for each apple shapes were put in the prototype and dried. After the experiments, the humidity ratio of the samples and water activity values of the samples have been obtained. Obtained results show that the prototype is working and by comparing the results the shape which dried fastest was determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freeze%20drying" title="freeze drying">freeze drying</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum" title=" vacuum"> vacuum</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20process" title=" drying process"> drying process</a>, <a href="https://publications.waset.org/abstracts/search?q=apple" title=" apple"> apple</a> </p> <a href="https://publications.waset.org/abstracts/61882/experimental-study-on-drying-parameters-of-freeze-drying-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3550</span> The Effects of Drying Technology on Rehydration Time and Quality of Mung Bean Vermicelli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Tien">N. P. Tien</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Songsermpong"> S. Songsermpong</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Quan"> T. H. Quan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mung bean vermicelli is a popular food in Asian countries and is made from mung bean starch. The preparation process involves several steps, including drying, which affects the structure and quality of the vermicelli. This study aims to examine the effects of different drying technologies on the rehydration time and quality of mung bean vermicelli. Three drying technologies, namely hot air drying, microwave continuous drying, and microwave vacuum drying, were used for the drying process. The vermicelli strands were dried at 45°C for 12h in a hot air dryer, at 70 Hz of conveyor belt speed inverter in a microwave continuous dryer, and at 30 W.g⁻¹ of microwave power density in a microwave vacuum dryer. The results showed that mung bean vermicelli dried using hot air drying had the longest rehydration time of 12.69 minutes. On the other hand, vermicelli dried through microwave continuous drying and microwave vacuum drying had shorter rehydration times of 2.79 minutes and 2.14 minutes, respectively. Microwave vacuum drying also resulted in larger porosity, higher water absorption, and cooking loss. The tensile strength and elasticity of vermicelli dried using hot air drying were higher compared to microwave drying technologies. The sensory evaluation did not reveal significant differences in most attributes among the vermicelli treatments. Overall, microwave drying technology proved to be effective in reducing rehydration time and producing good-quality mung bean vermicelli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mung%20bean%20vermicelli" title="mung bean vermicelli">mung bean vermicelli</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20air" title=" hot air"> hot air</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20continuous" title=" microwave continuous"> microwave continuous</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20vacuum" title=" microwave vacuum"> microwave vacuum</a> </p> <a href="https://publications.waset.org/abstracts/170532/the-effects-of-drying-technology-on-rehydration-time-and-quality-of-mung-bean-vermicelli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3549</span> Mathematical Modeling of the Effect of Pretreatment on the Drying Kinetics, Energy Requirement and Physico-Functional Properties of Yam (Dioscorea Rotundata) and Cocoyam (Colocasia Esculenta)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felix%20U.%20Asoiro">Felix U. Asoiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Kingsley%20O.%20Anyichie"> Kingsley O. Anyichie</a>, <a href="https://publications.waset.org/abstracts/search?q=Meshack%20I.%20Simeon"> Meshack I. Simeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinenye%20E.%20Azuka"> Chinenye E. Azuka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work was aimed at studying the effects of microwave drying (450 W) and hot air oven drying on the drying kinetics and physico-functional properties of yams and cocoyams species. The yams and cocoyams were cut into chips of thicknesses of 3mm, 5mm, 7mm, 9mm, and 11mm. The drying characteristics of yam and cocoyam chips were investigated under microwave drying and hot air oven temperatures (50oC – 90oC). Drying methods, temperature, and thickness had a significant effect on the drying characteristics and physico-functional properties of yam and cocoyam. The result of the experiment showed that an increase in the temperature increased the drying time. The result also showed that the microwave drying method took lesser time to dry the samples than the hot air oven drying method. The iodine affinity of starch for yam was higher than that of cocoyam for the microwaved dried samples over those of hot air oven-dried samples. The results of the analysis would be useful in modeling the drying behavior of yams and cocoyams under different drying methods. It could also be useful in the improvement of shelf life for yams and cocoyams as well as designs of efficient systems for drying, handling, storage, packaging, processing, and transportation of yams and cocoyams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coco%20yam" title="coco yam">coco yam</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine%20affinity" title=" iodine affinity"> iodine affinity</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20ate" title=" drying ate"> drying ate</a> </p> <a href="https://publications.waset.org/abstracts/151548/mathematical-modeling-of-the-effect-of-pretreatment-on-the-drying-kinetics-energy-requirement-and-physico-functional-properties-of-yam-dioscorea-rotundata-and-cocoyam-colocasia-esculenta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3548</span> Mathematical Modeling of Eggplant Slices Drying Using Microwave-Oven </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.H.%20Keshek">M.H. Keshek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.N.%20Omar"> M.N. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.H.%20Amer"> A.H. Amer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eggplant (Solanum melongena L.) is considered one of the most important crops in summer season, and it is grown in most cultivated area in Egypt. Eggplant has a very limited shelf life for freshness and physiological changes occur after harvest. Nowadays, microwave drying offers an alternative way to drying agricultural products. microwave drying is not only faster but also requiring less energy consumption than conventional drying. The main objective of this research was to evaluate using the microwave oven in Eggplant drying, to determine the optimum drying time of higher drying efficiency and lower energy consumption. The eggplants slices, having a thickness of about 5, 10, 15, and 20 mm, with diameter 50±2 mm was dried using microwave oven (KOR-9G2B) using three different levels were 450, 630, and 810 Watt (50%, 70%, and 90% of 900 Watt). The results show that, the initial moisture content of the eggplant slices was around 93 % wet basis (13.28 g water/g dry matter). The results indicated that, the moisture transfer within the sample was more rapidly during higher microwave power heating (810 watt) and lower thickness (5 mm) of the eggplant slices. In addition, the results show that, the drying efficiency increases by increasing slices thickness at power levels 450, 630 and 810 Watt. The higher drying efficiency was 83.13% occurred when drying the eggplant slices 20 mm thickness in microwave oven at power 630 Watt. the higher total energy consumption per dry kilogram was 1.275 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 5 mm thickness, and the lower total energy consumption per dry kilogram was 0.55 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 20 mm thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20drying" title="microwave drying">microwave drying</a>, <a href="https://publications.waset.org/abstracts/search?q=eggplant" title=" eggplant"> eggplant</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20rate" title=" drying rate"> drying rate</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20efficiency" title=" drying efficiency"> drying efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a> </p> <a href="https://publications.waset.org/abstracts/128071/mathematical-modeling-of-eggplant-slices-drying-using-microwave-oven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3547</span> Empirical Research to Improve Performances of Paddy Columnar Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duong%20Thi%20Hong">Duong Thi Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Van%20Hung"> Nguyen Van Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Gummert"> Martin Gummert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Good practices of mechanical drying can reduce losses of grain quality. Recently, with demands of higher capacity for paddy drying in the Mekong River Delta of Vietnam, columnar dryers have been introduced rapidly in this area. To improve the technology, this study was conducted to investigate and optimize the parameters for drying Jasmine paddy using an empirical cross-flow columnar dryer. The optimum parameters were resulted in air flow rate and drying temperature that are 1-1.5 m³ s-¹ t-¹ of paddy and 40-42°C, respectively. The investigation also addressed a solution of reversing drying air to achieve the uniformity of grain temperature and quality. Results of this study should be significant for developments of grain drying, contributing to reduce post harvest losses <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paddy%20drying" title="paddy drying">paddy drying</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20dryer" title=" columnar dryer"> columnar dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flow%20rate" title=" air flow rate"> air flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20temperature" title=" drying temperature"> drying temperature</a> </p> <a href="https://publications.waset.org/abstracts/51851/empirical-research-to-improve-performances-of-paddy-columnar-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3546</span> Effect of Drying on the Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Brahma">A. Brahma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drying of hydraulics materials is unavoidable and conducted to important spontaneous deformations. In this study, we show that it is possible to describe the drying shrinkage of the high-performance concrete by a simple expression. A multiple regression model was developed for the prediction of the drying shrinkage of the high-performance concrete. The assessment of the proposed model has been done by a set of statistical tests. The model developed takes in consideration the main parameters of confection and conservation. There was a very good agreement between drying shrinkage predicted by the multiple regression model and experimental results. The developed model adjusts easily to all hydraulic concrete types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20concretes" title="hydraulic concretes">hydraulic concretes</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/15705/effect-of-drying-on-the-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3545</span> Development of a Passive Solar Tomato Dryer with Movable Heat Storage System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacob%20T.%20Liberty">Jacob T. Liberty</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilfred%20I.%20Okonkwo"> Wilfred I. Okonkwo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study designed and constructed a post-harvest passive solar tomato dryer of dimension 176 x 152 x 54cm for drying tomato. Quality of the dried crop was evaluated and compared with the fresh ones. The solar dryer consist of solar collector (air heater), 110 x 61 x 10 x 10cm, the drying chamber, 102 x54cm, removal heat storage unit, 40 x 35 x 13cm and drying trays, 43 x 42cm. The physicochemical properties of this crop were evaluated before and after drying. Physicochemical properties evaluated includes moisture, protein, fat, fibre, ash, carbohydrate and vitamin C, contents. The fresh, open and solar dried samples were analysed for their proximate composition using the recommended method of AOAC. Also, statistical analysis of the data was conducted using analysis of variance (ANOVA) using completely Randomize Design (CRD) and means were separated by Duncan’s New Multiple Range test (DNMRT). Proximate analysis showed that solar dried tomato had significantly (P < 0.05) higher protein, fibre, ash, carbohydrate and vitamin C except for the fat content that was significantly (P < 0.05) higher for all the open sun dried samples than the solar dried and fresh product. The nutrient which is highly affected by sun drying is vitamin C. Result indicates that moisture loss in solar dried tomato was faster and lower than the open dried samples and as such makes the solar dried products of lesser tendency to mould and bacterial growth. Also, the open sun dried samples had to be carried into the sheltered place each time it rained. The solar dried produce is of high quality. Further processing of the dried crops will involve packaging for commercial purposes. This will also help in making these agricultural product available in a relatively cheap price in off season and also avert micronutrient deficiencies in diet especially among the low-income groups in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato" title="tomato">tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20solar%20dryer" title=" passive solar dryer"> passive solar dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20properties" title=" physicochemical properties"> physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20heat%20storage" title=" removal heat storage"> removal heat storage</a> </p> <a href="https://publications.waset.org/abstracts/48399/development-of-a-passive-solar-tomato-dryer-with-movable-heat-storage-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3544</span> Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Shahi">N. C. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anupama%20Singh"> Anupama Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kate"> E. Kate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=overall%20efficiency" title="overall efficiency">overall efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20tunnel%20dryer" title=" solar tunnel dryer"> solar tunnel dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20heat%20consumption" title=" specific heat consumption"> specific heat consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=sun%20drying" title=" sun drying"> sun drying</a> </p> <a href="https://publications.waset.org/abstracts/35430/development-of-solar-poly-house-tunnel-dryer-std-for-medicinal-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3543</span> Drying Kinetics, Energy Requirement, Bioactive Composition, and Mathematical Modeling of Allium Cepa Slices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felix%20U.%20Asoiro">Felix U. Asoiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Meshack%20I.%20Simeon"> Meshack I. Simeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinenye%20E.%20Azuka"> Chinenye E. Azuka</a>, <a href="https://publications.waset.org/abstracts/search?q=Harami%20Solomon"> Harami Solomon</a>, <a href="https://publications.waset.org/abstracts/search?q=Chukwuemeka%20J.%20Ohagwu"> Chukwuemeka J. Ohagwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drying kinetics, specific energy consumed (SEC), effective moisture diffusivity (EMD), flavonoid, phenolic, and vitamin C contents of onion slices dried under convective oven drying (COD) were compared with microwave drying (MD). Drying was performed with onion slice thicknesses of 2, 4, 6, and 8 mm; air drying temperatures of 60, 80, and 100°C for COD, and microwave power of 450 W for MD. A decrease in slice thickness and an increase in drying air temperature led to a drop in the drying time. As thickness increased from 2 – 8 mm, EMD rose from 1.1-4.35 x 10⁻⁸ at 60°C, 1.1-5.6 x 10⁻⁸ at 80°C, and 1.25-6.12 x 10⁻⁸ at 100°C with MD treatments yielding the highest mean value (6.65 x 10⁻⁸ m² s⁻¹) at 8 mm. Maximum SEC for onion slices in COD was 238.27 kWh/kg H₂O (2 mm thickness), and the minimum was 39.4 kWh/kg H₂O (8 mm thickness) whereas maximum during MD was 25.33 kWh/kg H₂O (8 mm thickness) and minimum, 18.7 kWh/kg H₂O (2 mm thickness). MD treatment gave a significant (p 0.05) increase in the flavonoid (39.42 – 64.4%), phenolic (38.0 – 46.84%), and vitamin C (3.7 – 4.23 mg 100 g⁻¹) contents, while COD treatment at 60°C and 100°C had positive effects on only vitamin C and phenolic contents, respectively. In comparison, the Weibull model gave the overall best fit (highest R²=0.999; lowest SSE=0.0002, RSME=0.0123, and χ²= 0.0004) when drying 2 mm onion slices at 100°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allium%20cepa" title="allium cepa">allium cepa</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20kinetics" title=" drying kinetics"> drying kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20energy%20consumption" title=" specific energy consumption"> specific energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid" title=" flavonoid"> flavonoid</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20C" title=" vitamin C"> vitamin C</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20oven%20drying" title=" microwave oven drying"> microwave oven drying</a> </p> <a href="https://publications.waset.org/abstracts/151510/drying-kinetics-energy-requirement-bioactive-composition-and-mathematical-modeling-of-allium-cepa-slices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3542</span> Vegetables and Fruits Solar Tunnel Dryer for Small-Scale Farmers in Kassala</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20Mohamed%20Sharif">Sami Mohamed Sharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study focuses on the design and construction of a solar tunnel dryer intended for small-scale farmers in Kassala, Sudan. To determine the appropriate dimensions of the dryer, the heat and mass balance equations are used, taking into account factors such as the target agricultural product, climate conditions, solar irradiance, and desired drying time. In Kassala, a dryer with a width of 88 cm, length of 600 cm, and height of 25 cm has been built, capable of drying up to 40 kg of vegetables or fruits. The dryer is divided into two chambers of different lengths. The air passing through is heated to the desired drying temperature in a separate heating chamber that is 200 cm long. From there, the heated air enters the drying chamber, which is 400 cm long. In this section, the agricultural product is placed on a slightly elevated net. The tunnel dryer was constructed using materials from the local market. The paper also examines the solar irradiance in Kassala, finding an average of 23.6 MJ/m2/day, with a maximum of 26.6 MJ/m2/day in April and a minimum of 20.2 MJ/m2/day in December. A DC fan powered by a 160Wp solar panel is utilized to circulate air within the tunnel. By connecting the fan and three 12V, 60W bulbs in series, four different speeds can be achieved using a speed controller. Temperature and relative humidity measurements were taken hourly over three days, from 10:00 a.m. to 3:00 p.m. The results demonstrate the promising technology and sizing techniques of solar tunnel dryers, which can significantly increase the temperature within the tunnel by more than 90%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel%20dryer" title="tunnel dryer">tunnel dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20drying" title=" solar drying"> solar drying</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=fruits%20drying%20modeling" title=" fruits drying modeling"> fruits drying modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying" title=" open sun drying"> open sun drying</a> </p> <a href="https://publications.waset.org/abstracts/181573/vegetables-and-fruits-solar-tunnel-dryer-for-small-scale-farmers-in-kassala" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3541</span> Transparency Phenomenon in Kuew Teow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Heikal%20Ismail">Muhammad Heikal Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Law%20Chung%20Lim"> Law Chung Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hii%20Ching%20Lik"> Hii Ching Lik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In maintaining food quality and shelf life, drying is employed in food industry as the most reliable perseverance technique. In this way, heat pump drying and hot air drying of fresh rice noodles was deduced to freeze drying in achieving quality attributes of oil content Scanning Electron Microscope (SEM) images, texture, and colour. Soxthlet analysis shows freeze dried noodles contain more than 10 times oil content, distinct pores of SEM images, higher hardness by more than three times, and wider colour changes by average more than two times to both methods to explain the less transparency physical outlook of freeze dried samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freeze%20drying" title="freeze drying">freeze drying</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pump%20drying" title=" heat pump drying"> heat pump drying</a>, <a href="https://publications.waset.org/abstracts/search?q=noodles" title=" noodles"> noodles</a>, <a href="https://publications.waset.org/abstracts/search?q=Soxthlet" title=" Soxthlet"> Soxthlet</a> </p> <a href="https://publications.waset.org/abstracts/24241/transparency-phenomenon-in-kuew-teow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3540</span> Pulsed Electric Field as Pretreatment for Different Drying Method in Chilean Abalone (Concholepas Concholepas) Mollusk: Effects on Product Physical Properties and Drying Methods Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20Gonz%C3%A1lez-Cavieres">Luis González-Cavieres</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20Perez-Won"> Mario Perez-Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Anais%20Palma-Acevedo"> Anais Palma-Acevedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gipsy%20Tabilo-Munizaga"> Gipsy Tabilo-Munizaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Erick%20Jara-Quijada"> Erick Jara-Quijada</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Lemus-Mondaca"> Roberto Lemus-Mondaca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, pulsed electric field (PEF: 2.0 kV/cm) was used as pretreatment in drying methods, vacuum microwave (VMD); freeze-drying (FD); and hot air (HAD), in Chilean abalone mollusk. Drying parameters, quality, energy consumption, and Sustainability parameters were evaluated. PEF+VMD showed better values than the other drying systems, with drying times 67% and 83% lower than PEF+FD and FD. In the quality parameters, PEF+FD showed a significantly lower value for hardness (250 N), and a lower change of color value (ΔE = 12). In the case of HAD, the PEF application did not significantly influence its processing. In energy parameters, VMD and PEF+VMD reduced energy consumption and CO2 emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEF%20technology" title="PEF technology">PEF technology</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20microwave%20drying" title=" vacuum microwave drying"> vacuum microwave drying</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title=" CO2 emissions"> CO2 emissions</a> </p> <a href="https://publications.waset.org/abstracts/171428/pulsed-electric-field-as-pretreatment-for-different-drying-method-in-chilean-abalone-concholepas-concholepas-mollusk-effects-on-product-physical-properties-and-drying-methods-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3539</span> Study of the Influence of the Region, the Depth and the Drying Process on the Chemical Composition of Gelidium sesquipedale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Cherki">M. Cherki</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Taouam"> I. Taouam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amiri"> A. Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hmimid"> F. Hmimid</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ould%20Bellahcen"> T. Ould Bellahcen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Moroccan coasts represent an important wealth of red algae which have an economic interest. Among these algae, the Gelidium sesquipedale, which is exploited industrially for its richness in agar. The aim of this study is to establish a general overview of the macronutrient composition of Gelidium sesquipedale and to compare this composition according to three factors: the harvest site (El Jadida, Casablanca and Mohammadia), the harvest depth (coast and depth) and the drying process (open air and oven). Proteins, lipids, and carbohydrates are measured by different methods. The analysis of results show that the protein concentrations of the El Jadida and Mohammadia samples are significantly higher than that of Casablanca (0.026 ± 0.0007 µg/µg DW 0.024 ± 0.001 µg/µg DW and 0.006 ± 0.0007 µg/µg DW, p < 0.05 respectively). However, Casablanca samples are significantly richer in total sugars (0.023 ± 0.002 µg/µg DW, p < 0.05) and less rich in reducing sugars (0.0001 ± 0.00001 µg/µg DW, p < 0.05) compared to other samples. The lipid concentrations of the samples from the three harvest sites do not show any significant difference. With respect to depth, only total protein and total sugar concentrations were significantly higher in the coast versus depth samples (0.035 ± 0.004 µg/µg DW vs. 0.026 ± 0.0007 µg/µg DW and 0.035 ± 0.006 µg/µg DW vs. 0.012 ± 0.005 µg/µg DW p < 0.05 respectively). For the drying process, protein, total sugars and lipid concentrations were significantly higher in open air samples compared to oven samples (0.006 ± 0.0007 µg/µg DW). vs 0.004 ± 0.0003 µg/µg DW, 0.023 ± 0.002 µg/µg DW vs 0.007 ± 0.002 µg/µg DW and 8% vs 4% p < 0.05 respectively). Our results demonstrate that the chemical composition of Gelidium sesquipedale varies according to the harvest region. In addition, samples harvested on the coast and dried in the open air are the richest in macronutrients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemical%20composition" title="biochemical composition">biochemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=depth" title=" depth"> depth</a>, <a href="https://publications.waset.org/abstracts/search?q=Gelidium%20sesquipedale" title=" Gelidium sesquipedale"> Gelidium sesquipedale</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20algae" title=" red algae"> red algae</a>, <a href="https://publications.waset.org/abstracts/search?q=region" title=" region"> region</a> </p> <a href="https://publications.waset.org/abstracts/95755/study-of-the-influence-of-the-region-the-depth-and-the-drying-process-on-the-chemical-composition-of-gelidium-sesquipedale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3538</span> Eucalyptus camendulensis and Its Drying Effect on Water and Essential Oil Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehani%20Mouna">Mehani Mouna</a>, <a href="https://publications.waset.org/abstracts/search?q=Segni%20Ladjel"> Segni Ladjel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medicinal and aromatic plants are promising and are characterized by the biosynthesis of odorous molecules that make up the so-called essential oils (EO), which have long been known for their antiseptic and therapeutic activity in folk medicine. The objective of this study was to evaluate the influence of drying in the shade on the water content and on the content of essential oils extracted from leaves of Eucalyptus camendulensis for better quality control of medicinal and aromatic plants. The water content of the Eucalyptus camendulensis plant material decreases during the drying process. It increased from 100 % to 0.006 % for the drying in the shade after ten days. The moisture content is practically constant at the end of the drying period. The drying in the shade increases the concentration of essential oils of Eucalyptus camendulensis. When the leaves of Eucalyptus camendulensis plant are in the shade, the maximum of the essential oil content was obtained on the eighth days; the recorded value was 1.43% ± 0.01%. Beyond these periods, the content continuously drops in before stabilizing. The optimum drying time is between 6 and 9 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eucalyptus%20camendulensis" title="Eucalyptus camendulensis">Eucalyptus camendulensis</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=content" title=" content"> content</a> </p> <a href="https://publications.waset.org/abstracts/36039/eucalyptus-camendulensis-and-its-drying-effect-on-water-and-essential-oil-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3537</span> Influence of Drying Method in Parts of Alumina Obtained for Rapid Prototyping and Uniaxial Dry Pressing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20O.%20Muniz">N. O. Muniz</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Vechietti"> F. A. Vechietti</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Treccani"> L. Treccani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Rezwan"> K. Rezwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Alberto%20dos%20Santos"> Luis Alberto dos Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing new technologies in the manufacture of biomaterials is a major challenge for researchers in the tissue engineering area. Many in vitro and in vivo studies have revealed the significance of the porous structure of the biomaterials on the promotion of bone ingrowth. The use of Rapid Prototyping in the manufacture of ceramics in the biomedical area has increased in recent years and few studies are conducted on obtaining alumina pieces. The aim of this work was the study of alumina pieces obtained by 3D printing and uniaxial dry pressing (DP) in order to evaluate porosity achieved by this two different techniques. Also, the influence of the powder drying process was determined. The row alumina powders were drying by freeze drying and oven. Apparent porosity, apparent density, retraction after thermal treatment were evaluated. The porosity values obtained by DP, regardless of method of drying powders, were much lower than those obtained by RP as expected. And for the prototyped samples, the method of powder drying significantly influenced porosities, reached 48% for drying oven versus 65% for freeze-drying. Therefore, the method of 3D printing, using different powder drying, allows a better control over the porosity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title="rapid prototyping">rapid prototyping</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-drying" title=" freeze-drying"> freeze-drying</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=alumina" title=" alumina"> alumina</a> </p> <a href="https://publications.waset.org/abstracts/17560/influence-of-drying-method-in-parts-of-alumina-obtained-for-rapid-prototyping-and-uniaxial-dry-pressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3536</span> Thin-Layer Drying Characteristics and Modelling of Instant Coffee Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apolinar%20Picado">Apolinar Picado</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Sol%C3%ADs"> Ronald Solís</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Gamero"> Rafael Gamero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thin-layer drying characteristics of instant coffee solution were investigated in a laboratory tunnel dryer. Drying experiments were carried out at three temperatures (80, 100 and 120 °C) and an air velocity of 1.2 m/s. Drying experimental data obtained are fitted to six (6) thin-layer drying models using the non-linear least squares regression analysis. The acceptability of the thin-layer drying model has been based on a value of the correlation coefficient that should be close to one, and low values for root mean square error (RMSE) and chi-square (x²). According to this evaluation, the most suitable model for describing drying process of thin-layer instant coffee solution is the Page model. Further, the effective moisture diffusivity and the activation energy were computed employing the drying experimental data. The effective moisture diffusivity values varied from 1.6133 × 10⁻⁹ to 1.6224 × 10⁻⁹ m²/s over the temperature range studied and the activation energy was estimated to be 162.62 J/mol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title="activation energy">activation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusivity" title=" diffusivity"> diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=instant%20coffee" title=" instant coffee"> instant coffee</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-layer%20models" title=" thin-layer models"> thin-layer models</a> </p> <a href="https://publications.waset.org/abstracts/74728/thin-layer-drying-characteristics-and-modelling-of-instant-coffee-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3535</span> Thermal Analysis of Vertical Kiln Dryer for Drying Sunflower Seeds in the Oil Mill “Banat” Ad, Nova Crnja</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Dedi%C4%87">Aleksandar Dedić</a>, <a href="https://publications.waset.org/abstracts/search?q=Du%C5%A1ko%20Salemovi%C4%87"> Duško Salemović</a>, <a href="https://publications.waset.org/abstracts/search?q=Matilda%20Lazi%C4%87"> Matilda Lazić</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragan%20Halas"> Dragan Halas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the paper was the thermal balance control of vertical kiln dryer indirect type (VSU-36) for drying sunflower seed, produced by "Cer" - Cacak, capacity 39 [t/h]. The balance control was executed because the dryer was damaged by NATO bombing in 1999, and it was planned for its reconstruction. The structural and geometric characteristics of the dryer were known, and it was necessary to determine the parameters of wet air as a drying agent and the sunflower seeds. The thermal balance control was the basis for the replacement of damaged parts of the dryer during its reconstruction. After that, it was necessary to perform the subsequent calculation of strength. The accuracy of strength had a large influence on the cost-effectiveness and safety of a single drying chamber. Also, the work provides guidelines for the regimes of drying grain crops with an explanation of the specificity of drying sunflowers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sunflower%20seeds" title="sunflower seeds">sunflower seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=regimes%20of%20drying" title=" regimes of drying"> regimes of drying</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20kiln%20dryer" title=" vertical kiln dryer"> vertical kiln dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a> </p> <a href="https://publications.waset.org/abstracts/176793/thermal-analysis-of-vertical-kiln-dryer-for-drying-sunflower-seeds-in-the-oil-mill-banat-ad-nova-crnja" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3534</span> Design and Evaluation of a Fully-Automated Fluidized Bed Dryer for Complete Drying of Paddy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20J.%20Pontawe">R. J. Pontawe</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Martinez"> R. C. Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20T.%20Asuncion"> N. T. Asuncion</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Villacorte"> R. V. Villacorte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drying of high moisture paddy remains a major problem in the Philippines, especially during inclement weather condition. To alleviate the problem, mechanical dryers were used like a flat bed and recirculating batch-type dryers. However, drying to 14% (wet basis) final moisture content is long which takes 10-12 hours and tedious which is not the ideal for handling high moisture paddy. Fully-automated pilot-scale fluidized bed drying system with 500 kilograms per hour capacity was evaluated using a high moisture paddy. The developed fluidized bed dryer was evaluated using four drying temperatures and two variations in fluidization time at a constant airflow, static pressure and tempering period. Complete drying of paddy with ≥28% (w.b.) initial MC was attained after 2 passes of fluidized-bed drying at 2 minutes exposure to 70 °C drying temperature and 4.9 m/s superficial air velocity, followed by 60 min ambient air tempering period (30 min without ventilation and 30 min with air ventilation) for a total drying time of 2.07 h. Around 82% from normal mechanical drying time was saved at 70 °C drying temperature. The drying cost was calculated to be P0.63 per kilogram of wet paddy. Specific heat energy consumption was only 2.84 MJ/kg of water removed. The Head Rice Yield recovery of the dried paddy passed the Philippine Agricultural Engineering Standards. Sensory evaluation showed that the color and taste of the samples dried in the fluidized bed dryer were comparable to air dried paddy. The optimum drying parameters of using fluidized bed dryer is 70 oC drying temperature at 2 min fluidization time, 4.9 m/s superficial air velocity, 10.16 cm grain depth and 60 min ambient air tempering period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drying" title="drying">drying</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20dryer" title=" fluidized bed dryer"> fluidized bed dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=head%20rice%20yield" title=" head rice yield"> head rice yield</a>, <a href="https://publications.waset.org/abstracts/search?q=paddy" title=" paddy"> paddy</a> </p> <a href="https://publications.waset.org/abstracts/38340/design-and-evaluation-of-a-fully-automated-fluidized-bed-dryer-for-complete-drying-of-paddy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3533</span> Determination of Natural Logarithm of Diffusion Coefficient and Activation Energy of Thin Layer Drying Process of Ginger Rhizome Slices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Austin%20Ikechukwu%20Gbasouzor">Austin Ikechukwu Gbasouzor</a>, <a href="https://publications.waset.org/abstracts/search?q=Sam%20Nna%20Omenyi"> Sam Nna Omenyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabuj%20Malli"> Sabuj Malli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy where determined. For this purpose, the experiments were done at six levels of varied temperature ranging from (10, 20, 30, 40, 50, 60°C). The average effective diffusion coefficient for their studies samples for temperature range of 40°C to 70°C was 4.48 x10-10m²/s, 4.96 x10-10m²/s, and 5.31 x10-10m²/s for 0.8, 1.5 and 3m/s drying air velocity respectively. These values closely agreed with the values of effective diffusion coefficients obtained in these studies for the variously treated ginger rhizomes and test conducted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title="activation energy">activation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20coefficients" title=" diffusion coefficients"> diffusion coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20model" title=" drying model"> drying model</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20time" title=" drying time"> drying time</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20rhizomes" title=" ginger rhizomes"> ginger rhizomes</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20ratio" title=" moisture ratio"> moisture ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20layer" title=" thin layer"> thin layer</a> </p> <a href="https://publications.waset.org/abstracts/120153/determination-of-natural-logarithm-of-diffusion-coefficient-and-activation-energy-of-thin-layer-drying-process-of-ginger-rhizome-slices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3532</span> Mathematical Modeling of Thin Layer Drying Behavior of Bhimkol (Musa balbisiana) Pulp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ritesh%20Watharkar">Ritesh Watharkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sourabh%20Chakraborty"> Sourabh Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Brijesh%20Srivastava"> Brijesh Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduction of water from the fruits and vegetables using different drying techniques is widely employed to prolong the shelf life of these food commodities. Heat transfer occurs inside the sample by conduction and mass transfer takes place by diffusion in accordance with temperature and moisture concentration gradient respectively during drying. This study was undertaken to study and model the thin layer drying behavior of Bhimkol pulp. The drying was conducted in a tray drier at 500c temperature with 5, 10 and 15 % concentrations of added maltodextrin. The drying experiments were performed at 5mm thickness of the thin layer and the constant air velocity of 0.5 m/s.Drying data were fitted to different thin layer drying models found in the literature. Comparison of fitted models was based on highest R2(0.9917), lowest RMSE (0.03201), and lowest SSE (0.01537) revealed Middle equation as the best-fitted model for thin layer drying with 10% concentration of maltodextrin. The effective diffusivity was estimated based on the solution of Fick’s law of diffusion which is found in the range of 3.0396 x10-09 to 5.0661 x 10-09. There was a reduction in drying time with the addition of maltodextrin as compare to the raw pulp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhimkol" title="Bhimkol">Bhimkol</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusivity" title=" diffusivity"> diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=maltodextrine" title=" maltodextrine"> maltodextrine</a>, <a href="https://publications.waset.org/abstracts/search?q=Midilli%20model" title=" Midilli model"> Midilli model</a> </p> <a href="https://publications.waset.org/abstracts/75887/mathematical-modeling-of-thin-layer-drying-behavior-of-bhimkol-musa-balbisiana-pulp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3531</span> Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Al%20Ahmad">L. Al Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Latrille"> C. Latrille</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Hainos"> D. Hainos</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Blanc"> D. Blanc</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Clausse"> M. Clausse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 &deg;C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 &deg;C compared to 45 &deg;C under 1 atm. At 65 &deg;C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20sludge%20drying" title="industrial sludge drying">industrial sludge drying</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling "> mathematical modelling </a> </p> <a href="https://publications.waset.org/abstracts/125501/heat-and-mass-transfer-modelling-of-industrial-sludge-drying-at-different-pressures-and-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying&amp;page=118">118</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying&amp;page=119">119</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10