CINXE.COM

Search results for: coulomb interaction

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: coulomb interaction</title> <meta name="description" content="Search results for: coulomb interaction"> <meta name="keywords" content="coulomb interaction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="coulomb interaction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="coulomb interaction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4009</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: coulomb interaction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4009</span> Effective Charge Coupling in Low Dimensional Doped Quantum Antiferromagnets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suraka%20Bhattacharjee">Suraka Bhattacharjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Chaudhury"> Ranjan Chaudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between the charge degrees of freedom for itinerant antiferromagnets is investigated in terms of generalized charge stiffness constant corresponding to nearest neighbour t-J model and t1-t2-t3-J model. The low dimensional hole doped antiferromagnets are the well known systems that can be described by the t-J-like models. Accordingly, we have used these models to investigate the fermionic pairing possibilities and the coupling between the itinerant charge degrees of freedom. A detailed comparison between spin and charge couplings highlights that the charge and spin couplings show very similar behaviour in the over-doped region, whereas, they show completely different trends in the lower doping regimes. Moreover, a qualitative equivalence between generalized charge stiffness and effective Coulomb interaction is also established based on the comparisons with other theoretical and experimental results. Thus it is obvious that the enhanced possibility of fermionic pairing is inherent in the reduction of Coulomb repulsion with increase in doping concentration. However, the increased possibility can not give rise to pairing without the presence of any other pair producing mechanism outside the t-J model. Therefore, one can conclude that the t-J-like models themselves solely are not capable of producing conventional momentum-based superconducting pairing on their own. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20charge%20stiffness%20constant" title="generalized charge stiffness constant">generalized charge stiffness constant</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20coupling" title=" charge coupling"> charge coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20Coulomb%20interaction" title=" effective Coulomb interaction"> effective Coulomb interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=t-J-like%20models" title=" t-J-like models"> t-J-like models</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum-space%20pairing" title=" momentum-space pairing"> momentum-space pairing</a> </p> <a href="https://publications.waset.org/abstracts/111537/effective-charge-coupling-in-low-dimensional-doped-quantum-antiferromagnets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4008</span> Pressure Induced Phase Transition of Semiconducting Alloy TlxGa1-xAs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Sarwan">Madhu Sarwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Dubey"> Ritu Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadhna%20Singh"> Sadhna Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have investigated the structural phase transition from Zinc-Blende (ZB) to Rock-Salt (RS) structure of TlxGa1-xAs by using Interaction Potential Model (IPM). The IPM consists of Coulomb interaction, Three-Body Interaction (TBI), Van Der Wall (vdW) interaction and overlap repulsive short range interaction. The structural phase transition has been computed by using the vegard’s law. The volume collapse is also computed for this alloy. We have also investigated the second order elastic constants with composition for the alloy TlxGa1-xAs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=III-V%20alloy" title="III-V alloy">III-V alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20moduli" title=" elastic moduli"> elastic moduli</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductors" title=" semiconductors"> semiconductors</a> </p> <a href="https://publications.waset.org/abstracts/30417/pressure-induced-phase-transition-of-semiconducting-alloy-tlxga1-xas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4007</span> Magnetoresistance Transition from Negative to Positive in Functionalization of Carbon Nanotube and Composite with Polyaniline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Prasad%20Maity">Krishna Prasad Maity</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Tanty"> Narendra Tanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Patra"> Ananya Patra</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Prasad"> V. Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotube (CNT) is a well-known material for very good electrical, thermal conductivity and high tensile strength. Because of that, it’s widely used in many fields like nanotechnology, electronics, optics, etc. In last two decades, polyaniline (PANI) with CNT and functionalized CNT (fCNT) have been promising materials in application of gas sensing, electromagnetic shielding, electrode of capacitor etc. So, the study of electrical conductivity of PANI/CNT and PANI/fCNT is important to understand the charge transport and interaction between PANI and CNT in the composite. It is observed that a transition in magnetoresistance (MR) with lowering temperature, increasing magnetic field and decreasing CNT percentage in CNT/PANI composite. Functionalization of CNT prevent the nanotube aggregation, improves interfacial interaction, dispersion and stabilized in polymer matrix. However, it shortens the length, breaks C-C sp² bonds and enhances the disorder creating defects on the side walls. We have studied electrical resistivity and MR in PANI with CNT and fCNT composites for different weight percentages down to the temperature 4.2K and up to magnetic field 5T. Resistivity increases significantly in composite at low temperature due to functionalization of CNT compared to only CNT. Interestingly a transition from negative to positive magnetoresistance has been observed when the filler is changed from pure CNT to functionalized CNT after a certain percentage (10wt%) as the effect of more disorder in fCNT/PANI composite. The transition of MR has been explained on the basis of polaron-bipolaron model. The long-range Coulomb interaction between two polarons screened by disorder in the composite of fCNT/PANI, increases the effective on-site Coulomb repulsion energy to form bipolaron which leads to change the sign of MR from negative to positive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction" title="coulomb interaction">coulomb interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetoresistance%20transition" title=" magnetoresistance transition"> magnetoresistance transition</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline%20composite" title=" polyaniline composite"> polyaniline composite</a>, <a href="https://publications.waset.org/abstracts/search?q=polaron-bipolaron" title=" polaron-bipolaron"> polaron-bipolaron</a> </p> <a href="https://publications.waset.org/abstracts/98940/magnetoresistance-transition-from-negative-to-positive-in-functionalization-of-carbon-nanotube-and-composite-with-polyaniline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4006</span> Theoretical Study of the Structural and Elastic Properties of Semiconducting Rare Earth Chalcogenide Sm1-XEuXS under Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Dubey">R. Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sarwan"> M. Sarwan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Singh"> S. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have investigated the phase transition pressure and associated volume collapse in Sm1– X EuX S alloy (0≤x≤1) which shows transition from discontinuous to continuous as x is reduced. The calculated results from present approach are in good agreement with experimental data available for the end point members (x=0 and x=1). The results for the alloy counter parts are also in fair agreement with experimental data generated from the vegard’s law. An improved interaction potential model has been developed which includes coulomb, three body interaction, polarizability effect and overlap repulsive interaction operative up to second neighbor ions. It is found that the inclusion of polarizability effect has improved our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title="elastic constants">elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure" title=" high pressure"> high pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20compound" title=" rare earth compound"> rare earth compound</a> </p> <a href="https://publications.waset.org/abstracts/30429/theoretical-study-of-the-structural-and-elastic-properties-of-semiconducting-rare-earth-chalcogenide-sm1-xeuxs-under-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4005</span> Tunneling Current Switching in the Coupled Quantum Dots by Means of External Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Mantsevich">Vladimir Mantsevich</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalya%20Maslova"> Natalya Maslova</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Arseyev"> Petr Arseyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigated the tunneling current peculiarities in the system of two coupled by means of the external field quantum dots (QDs) weakly connected to the electrodes in the presence of Coulomb correlations between localized electrons by means of Heisenberg equations for pseudo operators with constraint. Special role of multi-electronic states was demonstrated. Various single-electron levels location relative to the sample Fermi level and to the applied bias value in symmetric tunneling contact were investigated. Rabi frequency tuning results in the single-electron energy levels spacing. We revealed the appearance of negative tunneling conductivity and demonstrated multiple switching "on" and "off" of the tunneling current depending on the Coulomb correlations value, Rabi frequency amplitude and energy levels spacing. We proved that Coulomb correlations strongly influence the system behavior. We demonstrated the presence of multi-stability in the coupled QDs with Coulomb correlations when single value of the tunneling current amplitude corresponds to the two values of Rabi frequency in the case when both single-electron energy levels are located slightly above eV and are close to each other. This effect disappears when the single-electron energy levels spacing increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coulomb%20correlations" title="Coulomb correlations">Coulomb correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20tunneling%20conductivity" title=" negative tunneling conductivity"> negative tunneling conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=rabi%20frequency" title=" rabi frequency "> rabi frequency </a> </p> <a href="https://publications.waset.org/abstracts/24887/tunneling-current-switching-in-the-coupled-quantum-dots-by-means-of-external-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4004</span> Electronic Structure and Optical Properties of YNi₄Si-Type GdNi₅: A Coulomb Corrected Local-Spin Density Approximation Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sapan%20Mohan%20Saini">Sapan Mohan Saini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we report the calculations on the electronic and optical properties of YNi₄Si-type GdNi₅ compound. Calculations are performed using the full-potential augmented plane wave (FPLAPW) method in the framework of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Spin polarised calculations of band structure show that several bands cross the Fermi level (EF) reflect the metallic character. Analysis of density of states (DOS) demonstrates that spin up Gd-f states lie around 7.5 eV below EF and spin down Gd-f lie around 4.5 eV above EF. We found Ni-3d states mainly contribute to DOS from -5.0 eV to the EF. Our calculated results of optical conductivity agree well with the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20structure" title="electronic structure">electronic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=FPLAPW%20method" title=" FPLAPW method"> FPLAPW method</a>, <a href="https://publications.waset.org/abstracts/search?q=YNi%E2%82%84Si-type%20GdNi%E2%82%85" title=" YNi₄Si-type GdNi₅"> YNi₄Si-type GdNi₅</a> </p> <a href="https://publications.waset.org/abstracts/107398/electronic-structure-and-optical-properties-of-yni4si-type-gdni5-a-coulomb-corrected-local-spin-density-approximation-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4003</span> Finite Element Modeling of the Mechanical Behavior of Municipal Solid Waste Incineration Bottom Ash with the Mohr-Coulomb Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Le%20Ngoc%20Hung">Le Ngoc Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Abriak%20Nor%20Edine"> Abriak Nor Edine</a>, <a href="https://publications.waset.org/abstracts/search?q=Binetruy%20Christophe"> Binetruy Christophe</a>, <a href="https://publications.waset.org/abstracts/search?q=Benzerzour%20Mahfoud"> Benzerzour Mahfoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrour%20Isam"> Shahrour Isam</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrice%20Rivard"> Patrice Rivard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bottom ash from Municipal Solid Waste Incineration (MSWI) can be viewed as a typical granular material because these industrial by-products result from the incineration of various domestic wastes. MSWI bottom ashes are mainly used in road engineering in substitution of the traditional natural aggregates. As the characterization of their mechanical behavior is essential in order to use them, specific studies have been led over the past few years. In the first part of this paper, the mechanical behavior of MSWI bottom ash is studied with triaxial tests. After analysis of the experiment results, the simulation of triaxial tests is carried out by using the software package CESAR-LCPC. As the first approach in modeling of this new class material, the Mohr-Coulomb model was chosen to describe the evolution of material under the influence of external mechanical actions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title="bottom ash">bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20material" title=" granular material"> granular material</a>, <a href="https://publications.waset.org/abstracts/search?q=triaxial%20test" title=" triaxial test"> triaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohr-Coulomb%20model" title=" Mohr-Coulomb model"> Mohr-Coulomb model</a>, <a href="https://publications.waset.org/abstracts/search?q=CESAR-LCPC" title=" CESAR-LCPC"> CESAR-LCPC</a> </p> <a href="https://publications.waset.org/abstracts/36317/finite-element-modeling-of-the-mechanical-behavior-of-municipal-solid-waste-incineration-bottom-ash-with-the-mohr-coulomb-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4002</span> Two Kinds of Self-Oscillating Circuits Mechanically Demonstrated</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiang-Hwua%20Yu">Shiang-Hwua Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Hsun%20Wu"> Po-Hsun Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduces two types of self-oscillating circuits that are frequently found in power electronics applications. Special effort is made to relate the circuits to the analogous mechanical systems of some important scientific inventions: Galileo’s pendulum clock and Coulomb’s friction model. A little touch of related history and philosophy of science will hopefully encourage curiosity, advance the understanding of self-oscillating systems and satisfy the aspiration of some students for scientific literacy. Finally, the two self-oscillating circuits are applied to design a simple class-D audio amplifier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-oscillation" title="self-oscillation">self-oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=sigma-delta%20modulator" title=" sigma-delta modulator"> sigma-delta modulator</a>, <a href="https://publications.waset.org/abstracts/search?q=pendulum%20clock" title=" pendulum clock"> pendulum clock</a>, <a href="https://publications.waset.org/abstracts/search?q=Coulomb%20friction" title=" Coulomb friction"> Coulomb friction</a>, <a href="https://publications.waset.org/abstracts/search?q=class-D%20amplifier" title=" class-D amplifier"> class-D amplifier</a> </p> <a href="https://publications.waset.org/abstracts/9932/two-kinds-of-self-oscillating-circuits-mechanically-demonstrated" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4001</span> Evidence of Half-Metallicity in Cubic PrMnO3 Perovskite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouadjemi">B. Bouadjemi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentata"> S. Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Benstaali"> W. Benstaali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbad"> A. Abbad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic and magnetic properties of the cubic praseodymium oxides perovskites PrMnO3 were calculated using the density functional theory (DFT) with both generalized gradient approximation (GGA) and GGA+U approaches, where U is on-site Coulomb interaction correction. The results show a half-metallic ferromagnetic ground state for PrMnO3 in GGA+U approached, while semi-metallic ferromagnetic character is observed in GGA. The results obtained, make the cubic PrMnO3 a promising candidate for application in spintronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=first-principles" title="first-principles">first-principles</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20science" title=" materials science"> materials science</a> </p> <a href="https://publications.waset.org/abstracts/1436/evidence-of-half-metallicity-in-cubic-prmno3-perovskite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4000</span> Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Defne%20Akay">Defne Akay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekir%20S.%20Kandemir"> Bekir S. Kandemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coulomb%20impurity" title="coulomb impurity">coulomb impurity</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20cones" title=" graphene cones"> graphene cones</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20quantum%20dots" title=" graphene quantum dots"> graphene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20defects" title=" topological defects"> topological defects</a> </p> <a href="https://publications.waset.org/abstracts/43687/magnetic-field-effects-on-parabolic-graphene-quantum-dots-with-topological-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3999</span> Non-Perturbative Vacuum Polarization Effects in One- and Two-Dimensional Supercritical Dirac-Coulomb System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Davydov">Andrey Davydov</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20Sveshnikov"> Konstantin Sveshnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Yulia%20Voronina"> Yulia Voronina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is now a lot of interest to the non-perturbative QED-effects, caused by diving of discrete levels into the negative continuum in the supercritical static or adiabatically slowly varying Coulomb fields, that are created by the localized extended sources with Z > Z_cr. Such effects have attracted a considerable amount of theoretical and experimental activity, since in 3+1 QED for Z > Z_cr,1 ≈ 170 a non-perturbative reconstruction of the vacuum state is predicted, which should be accompanied by a number of nontrivial effects, including the vacuum positron emission. Similar in essence effects should be expected also in both 2+1 D (planar graphene-based hetero-structures) and 1+1 D (one-dimensional ‘hydrogen ion’). This report is devoted to the study of such essentially non-perturbative vacuum effects for the supercritical Dirac-Coulomb systems in 1+1D and 2+1D, with the main attention drawn to the vacuum polarization energy. Although the most of works considers the vacuum charge density as the main polarization observable, vacuum energy turns out to be not less informative and in many respects complementary to the vacuum density. Moreover, the main non-perturbative effects, which appear in vacuum polarization for supercritical fields due to the levels diving into the lower continuum, show up in the behavior of vacuum energy even more clear, demonstrating explicitly their possible role in the supercritical region. Both in 1+1D and 2+1D, we explore firstly the renormalized vacuum density in the supercritical region using the Wichmann-Kroll method. Thereafter, taking into account the results for the vacuum density, we formulate the renormalization procedure for the vacuum energy. To evaluate the latter explicitly, an original technique, based on a special combination of analytical methods, computer algebra tools and numerical calculations, is applied. It is shown that, for a wide range of the external source parameters (the charge Z and size R), in the supercritical region the renormalized vacuum energy could significantly deviate from the perturbative quadratic growth up to pronouncedly decreasing behavior with jumps by (-2 x mc^2), which occur each time, when the next discrete level dives into the negative continuum. In the considered range of variation of Z and R, the vacuum energy behaves like ~ -Z^2/R in 1+1D and ~ -Z^3/R in 2+1D, exceeding deeply negative values. Such behavior confirms the assumption of the neutral vacuum transmutation into the charged one, and thereby of the spontaneous positron emission, accompanying the emergence of the next vacuum shell due to the total charge conservation. To the end, we also note that the methods, developed for the vacuum energy evaluation in 2+1 D, with minimal complements could be carried over to the three-dimensional case, where the vacuum energy is expected to be ~ -Z^4/R and so could be competitive with the classical electrostatic energy of the Coulomb source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-perturbative%20QED-e%EF%AC%80ects" title="non-perturbative QED-effects">non-perturbative QED-effects</a>, <a href="https://publications.waset.org/abstracts/search?q=one-%20and%20two-dimensional%20Dirac-Coulomb%20systems" title=" one- and two-dimensional Dirac-Coulomb systems"> one- and two-dimensional Dirac-Coulomb systems</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20%EF%AC%81elds" title=" supercritical fields"> supercritical fields</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20polarization" title=" vacuum polarization"> vacuum polarization</a> </p> <a href="https://publications.waset.org/abstracts/82860/non-perturbative-vacuum-polarization-effects-in-one-and-two-dimensional-supercritical-dirac-coulomb-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3998</span> Electrical Transport through a Large-Area Self-Assembled Monolayer of Molecules Coupled with Graphene for Scalable Electronic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chunyang%20Miao">Chunyang Miao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingxin%20Li"> Bingxin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanglong%20Ning"> Shanglong Ning</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20J.%20B.%20Ford"> Christopher J. B. Ford</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While it is challenging to fabricate electronic devices close to atomic dimensions in conventional top-down lithography, molecular electronics is promising to help maintain the exponential increase in component densities via using molecular building blocks to fabricate electronic components from the bottom up. It offers smaller, faster, and more energy-efficient electronic and photonic systems. A self-assembled monolayer (SAM) of molecules is a layer of molecules that self-assembles on a substrate. They are mechanically flexible, optically transparent, low-cost, and easy to fabricate. A large-area multi-layer structure has been designed and investigated by the team, where a SAM of designed molecules is sandwiched between graphene and gold electrodes. Each molecule can act as a quantum dot, with all molecules conducting in parallel. When a source-drain bias is applied, significant current flows only if a molecular orbital (HOMO or LUMO) lies within the source-drain energy window. If electrons tunnel sequentially on and off the molecule, the charge on the molecule is well-defined and the finite charging energy causes Coulomb blockade of transport until the molecular orbital comes within the energy window. This produces ‘Coulomb diamonds’ in the conductance vs source-drain and gate voltages. For different tunnel barriers at either end of the molecule, it is harder for electrons to tunnel out of the dot than in (or vice versa), resulting in the accumulation of two or more charges and a ‘Coulomb staircase’ in the current vs voltage. This nanostructure exhibits highly reproducible Coulomb-staircase patterns, together with additional oscillations, which are believed to be attributed to molecular vibrations. Molecules are more isolated than semiconductor dots, and so have a discrete phonon spectrum. When tunnelling into or out of a molecule, one or more vibronic states can be excited in the molecule, providing additional transport channels and resulting in additional peaks in the conductance. For useful molecular electronic devices, achieving the optimum orbital alignment of molecules to the Fermi energy in the leads is essential. To explore it, a drop of ionic liquid is employed on top of the graphene to establish an electric field at the graphene, which screens poorly, gating the molecules underneath. Results for various molecules with different alignments of Fermi energy to HOMO have shown highly reproducible Coulomb-diamond patterns, which agree reasonably with DFT calculations. In summary, this large-area SAM molecular junction is a promising candidate for future electronic circuits. (1) The small size (1-10nm) of the molecules and good flexibility of the SAM lead to the scalable assembly of ultra-high densities of functional molecules, with advantages in cost, efficiency, and power dissipation. (2) The contacting technique using graphene enables mass fabrication. (3) Its well-observed Coulomb blockade behaviour, narrow molecular resonances, and well-resolved vibronic states offer good tuneability for various functionalities, such as switches, thermoelectric generators, and memristors, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20electronics" title="molecular electronics">molecular electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=Coulomb%20blokade" title=" Coulomb blokade"> Coulomb blokade</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-phonon%20coupling" title=" electron-phonon coupling"> electron-phonon coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembled%20monolayer" title=" self-assembled monolayer"> self-assembled monolayer</a> </p> <a href="https://publications.waset.org/abstracts/179340/electrical-transport-through-a-large-area-self-assembled-monolayer-of-molecules-coupled-with-graphene-for-scalable-electronic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3997</span> Simulation of Kinetic Friction in L-Bending of Sheet Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maziar%20Ramezani">Maziar Ramezani</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Neitzert"> Thomas Neitzert</a>, <a href="https://publications.waset.org/abstracts/search?q=Timotius%20Pasang"> Timotius Pasang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=L-bending" title=" L-bending"> L-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=springback" title=" springback"> springback</a>, <a href="https://publications.waset.org/abstracts/search?q=Stribeck%20curves" title=" Stribeck curves"> Stribeck curves</a> </p> <a href="https://publications.waset.org/abstracts/7441/simulation-of-kinetic-friction-in-l-bending-of-sheet-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3996</span> Two-Dimensional Seismic Response of Concrete Gravity Dams Including Base Sliding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Ouzandja">Djamel Ouzandja</a>, <a href="https://publications.waset.org/abstracts/search?q=Boualem%20Tiliouine"> Boualem Tiliouine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The safety evaluation of the concrete gravity dams subjected to seismic excitations is really very complex as the earthquake response of the concrete gravity dam depends upon its contraction joints with foundation soil. This paper presents the seismic response of concrete gravity dams considering friction contact and welded contact. Friction contact is provided using contact elements. Two-dimensional (2D) finite element model of Oued Fodda concrete gravity dam, located in Chlef at the west of Algeria, is used for this purpose. Linear and nonlinear analyses considering dam-foundation soil interaction are performed using ANSYS software. The reservoir water is modeled as added mass using the Westergaard approach. The Drucker-Prager model is preferred for dam and foundation rock in nonlinear analyses. The surface-to-surface contact elements based on the Coulomb's friction law are used to describe the friction. These contact elements use a target surface and a contact surface to form a contact pair. According to this study, the seismic analysis of concrete gravity dams including base sliding. When the friction contact is considered in joints, the base sliding displacement occurs along the dam-foundation soil contact interface. Besides, the base sliding may generally decrease the principal stresses in the dam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20gravity%20dam" title="concrete gravity dam">concrete gravity dam</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction" title=" dynamic soil-structure interaction"> dynamic soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20contact" title=" friction contact"> friction contact</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding" title=" sliding"> sliding</a> </p> <a href="https://publications.waset.org/abstracts/27934/two-dimensional-seismic-response-of-concrete-gravity-dams-including-base-sliding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3995</span> First Principle Calculations of Magnetic and Electronic Properties of Double Perovskite Ba2MnMoO6</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouadjemi">B. Bouadjemi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentata"> S. Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Benstaali"> W. Benstaali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Souidi"> A. Souidi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbad"> A. Abbad</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Lantri"> T. Lantri</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Aziz"> Z. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zitouni"> A. Zitouni </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic and magnetic structures of double perovskite Ba2MnMoO6 are systematically investigated using the first principle method of the Full Potential Linear Augmented Plane Waves Plus the Local Orbitals (FP-LAPW+LO) within the Local Spin Density Approximation (LSDA) and the Generalized Gradient Approximation (GGA). In order to take into account the strong on-site Coulomb interaction, we included the Hubbard correlation terms: LSDA+U and GGA+U approaches. Whereas half-metallic ferromagnetic character is observed due to dominant Mn spin-up and Mo spin-down contributions insulating ground state is obtained. The LSDA+U and GGA+U calculations yield better agreement with the theoretical and the experimental results than LSDA and GGA do. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20structure" title="electronic structure">electronic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20perovskite" title=" double perovskite"> double perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20principles" title=" first principles"> first principles</a>, <a href="https://publications.waset.org/abstracts/search?q=Ba2MnMoO6" title=" Ba2MnMoO6"> Ba2MnMoO6</a>, <a href="https://publications.waset.org/abstracts/search?q=half-metallic" title=" half-metallic"> half-metallic</a> </p> <a href="https://publications.waset.org/abstracts/25164/first-principle-calculations-of-magnetic-and-electronic-properties-of-double-perovskite-ba2mnmoo6" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3994</span> Theoretical Investigation of the Origin of Interfacial Ferromagnetism of (LaNiO₃)n/(CaMnO₃)m Superlattices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiwuer%20Jilili">Jiwuer Jilili</a>, <a href="https://publications.waset.org/abstracts/search?q=Iogann%20Tolbatov"> Iogann Tolbatov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mousumi%20U.%20Kahaly"> Mousumi U. Kahaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal to insulator transition and interfacial magnetism of the LaNiO₃ based superlattice are main interest due to thickness dependent electronic response and tunable magnetic behavior. We investigate the structural, electronic, and magnetic properties of recently experimentally synthesized (LaNiO₃)n/(CaMnO₃)m superlattices with varying LaNiO₃ thickness using density functional theory. The effect of the on-site Coulomb interaction is discussed. In switching from zero to finite U value for Ni atoms, LaNiO₃ shows transitions from half-metallic to metallic character, while spinning ordering changes from paramagnetic to ferromagnetic (FM). For CaMnO₃, U < 3 eV on Mn atoms results in G-type anti-FM spin ordering whereas increasing U value yields FM ordering. In superlattices, metal to insulator transition was achieved with a reduction of LaNiO₃ thickness. The system with one layer of LaNiO₃ yields insulating character. Increasing LaNiO₃ to two layers and above results in the onset of the metallic character with a major contribution from Ni and Mn 3d eg states. Our results for interfacial ferromagnetism, induced Ni magnetic moments and novel antiferromagnetically coupled Ni atoms are consistent with the recent experimental findings. The possible origin of the emergent magnetism is proposed in terms of the exchange interaction and Anderson localization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20magnetism" title=" interfacial magnetism"> interfacial magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-insulator%20transition" title=" metal-insulator transition"> metal-insulator transition</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%20magnetism." title=" Ni magnetism."> Ni magnetism.</a> </p> <a href="https://publications.waset.org/abstracts/94575/theoretical-investigation-of-the-origin-of-interfacial-ferromagnetism-of-lanio3ncamno3m-superlattices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3993</span> Single Ion Transport with a Single-Layer Graphene Nanopore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishal%20V.%20R.%20Nandigana">Vishal V. R. Nandigana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Heiranian"> Mohammad Heiranian</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayana%20R.%20Aluru"> Narayana R. Aluru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called &ldquo;Coulomb blockade region&rdquo;. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20nanomembrane" title="graphene nanomembrane">graphene nanomembrane</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20ion%20transport" title=" single ion transport"> single ion transport</a>, <a href="https://publications.waset.org/abstracts/search?q=Coulomb%20blockade" title=" Coulomb blockade"> Coulomb blockade</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluidics" title=" nanofluidics"> nanofluidics</a> </p> <a href="https://publications.waset.org/abstracts/74132/single-ion-transport-with-a-single-layer-graphene-nanopore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3992</span> Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dehestani">M. Dehestani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghasemi-Kooch"> M. Ghasemi-Kooch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll" title=" chlorophyll"> chlorophyll</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotube" title=" nanotube"> nanotube</a> </p> <a href="https://publications.waset.org/abstracts/78825/investigation-of-chlorophylls-a-and-b-interaction-with-inner-and-outer-surfaces-of-single-walled-carbon-nanotube-using-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3991</span> Development of 3D Particle Method for Calculating Large Deformation of Soils </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Sik%20Park">Sung-Sik Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Chang"> Han Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-Hun%20Chae"> Kyung-Hun Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Sae-Byeok%20Lee"> Sae-Byeok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a three-dimensional (3D) Particle method without using grid was developed for analyzing large deformation of soils instead of using ordinary finite element method (FEM) or finite difference method (FDM). In the 3D Particle method, the governing equations were discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. The Mohr-Coulomb failure criterion was incorporated into the 3D Particle method to determine soil failure. The yielding and hardening behavior of soil before failure was also considered by varying viscosity of soil. First of all, an unconfined compression test was carried out and the large deformation following soil yielding or failure was simulated by the developed 3D Particle method. The results were also compared with those of a commercial FEM software PLAXIS 3D. The developed 3D Particle method was able to simulate the 3D large deformation of soils due to soil yielding and calculate the variation of normal and shear stresses following clay deformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20method" title="particle method">particle method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20deformation" title=" large deformation"> large deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20column" title=" soil column"> soil column</a>, <a href="https://publications.waset.org/abstracts/search?q=confined%20compressive%20stress" title=" confined compressive stress"> confined compressive stress</a> </p> <a href="https://publications.waset.org/abstracts/17371/development-of-3d-particle-method-for-calculating-large-deformation-of-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3990</span> The Application on Interactivity of Light in New Media Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yansong%20Chen">Yansong Chen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the age of media convergence, new media technology is constantly impacting, changing, and even reshaping the limits of Art. From the technological ontology of the new media art, the concept of interaction design has always been dominated by I/O (Input/Output) systems through the ages, which ignores the content of systems and kills the aura of art. Light, as a fusion media, basically comes from the extension of some human feelings and can be the content of the input or the effect of output. In this paper, firstly, on the basis of literature review, the interaction characteristics research was conducted on light. Secondly, starting from discourse patterns of people and machines, people and people, people, and imagining things, we propose three light modes: object-oriented interaction, Immersion interaction, Tele-Presence interaction. Finally, this paper explains how to regain the aura of art through light elements in new media art and understand multiple levels of 'Interaction design'. In addition, the new media art, especially the light-based interaction art, enriches the language patterns and motivates emerging art forms to be more widespread and popular, which achieves its aesthetics growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20media%20art" title="new media art">new media art</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20design" title=" interaction design"> interaction design</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20art" title=" light art"> light art</a>, <a href="https://publications.waset.org/abstracts/search?q=immersion" title=" immersion"> immersion</a> </p> <a href="https://publications.waset.org/abstracts/114388/the-application-on-interactivity-of-light-in-new-media-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3989</span> Self-Reliance Support and Environment Interaction in Long-Term Care</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen-Yuan%20Hsu">Chen-Yuan Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction Elderly is growing and results to live in the long-term care (LTC) and then due to the routine of the facilities in Taiwan, also resulted to losing of those people with environment interaction, so, the self-reliance support (SRS) for those people to experience environment interaction is an essential. Methods This study was recruited samples of a LTC in the central of Taiwan. There was a following research on the SRS group with 20 samples collected and routine care group with 20 samples. A structured questionnaire as the Environment Interaction Dimension, as data collection included demographic information and the dimensions of environment interaction. Data analysis used SPSS 22.0 for Window 2000 to report the finding. Results The Environment Interaction Dimension for Taiwanese is a Chinese version of the containing 8 items. The result of t-test analysis found that environment interaction showed a significant difference between groups (p<.05), the result recommended that there was a higher score of environment interaction dimension on the SRS group (29.90±5.56) comparing with the routine care group (22.1±5.53). Conclusion This study showed that the SRS group was higher than the routine care group on the environment interaction dimension for Taiwanese elderly living in the LTC. The results can also provide the reference for LTC, to encourage those people to participate in SRS in LTC, and therefore also improving their environment interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-reliance%20support" title="self-reliance support">self-reliance support</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20interaction" title=" environment interaction"> environment interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20care" title=" long-term care"> long-term care</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a> </p> <a href="https://publications.waset.org/abstracts/170598/self-reliance-support-and-environment-interaction-in-long-term-care" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3988</span> Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Zergoug">T. Zergoug</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20H.%20Abaidia"> S. E. H. Abaidia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nedjar"> A. Nedjar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Mokeddem"> M. Y. Mokeddem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical properties of uranium di-nitride (UN2) were investigated in detail using first principles calculations based on density functional theory. To treat the strong correlation effects caused by 5f Uranium valence electrons, on-site Coulomb interaction correction via the Hubbard-like term, U (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard U is strong like Young modulus but for others it is weakly noticeable such as the density of state (DOS) or bulk modulus. We noticed also that up from U=7.5 eV, elastic results become not conform to the cubic cell elastic criteria since the C44 values turn out to be negative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uranium%20diNitride" title="uranium diNitride">uranium diNitride</a>, <a href="https://publications.waset.org/abstracts/search?q=UN2" title=" UN2"> UN2</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%2BU" title=" DFT+U"> DFT+U</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20properties" title=" elastic properties"> elastic properties</a> </p> <a href="https://publications.waset.org/abstracts/14079/physical-properties-of-uranium-dinitride-un2-by-using-density-functional-theory-dft-and-dftu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3987</span> The Role of Situational Factors in User Experience during Human-Robot Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Da%20Tao">Da Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Tieyan%20Wang"> Tieyan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingfu%20Qin"> Mingfu Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While social robots have been increasingly developed and rapidly applied in our daily life, how robots should interact with humans is still an urgent problem to be explored. Appropriate use of interactive behavior is likely to create a good user experience in human-robot interaction situations, which in turn can improve people’s acceptance of robots. This paper aimed to systematically and quantitatively examine the effects of several important situational factors (i.e., interaction distance, interaction posture, and feedback style) on user experience during human-robot interaction. A three-factor mixed designed experiment was adopted in this study, where subjects were asked to interact with a social robot in different interaction situations by combinations of varied interaction distance, interaction posture, and feedback style. A set of data on users’ behavioral performance, subjective perceptions, and eye movement measures were tracked and collected, and analyzed by repeated measures analysis of variance. The results showed that the three situational factors showed no effects on behavioral performance in tasks during human-robot interaction. Interaction distance and feedback style yielded significant main effects and interaction effects on the proportion of fixation times. The proportion of fixation times on the robot is higher for negative feedback compared with positive feedback style. While the proportion of fixation times on the robot generally decreased with the increase of the interaction distance, it decreased more under the positive feedback style than under the negative feedback style. In addition, there were significant interaction effects on pupil diameter between interaction distance and posture. As interaction distance increased, mean pupil diameter became smaller in side interaction, while it became larger in frontal interaction. Moreover, the three situation factors had significant interaction effects on user acceptance of the interaction mode. The findings are helpful in the underlying mechanism of user experience in human-robot interaction situations and provide important implications for the design of robot behavioral expression and for optimal strategies to improve user experience during human-robot interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20robots" title="social robots">social robots</a>, <a href="https://publications.waset.org/abstracts/search?q=human-robot%20interaction" title=" human-robot interaction"> human-robot interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20posture" title=" interaction posture"> interaction posture</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20distance" title=" interaction distance"> interaction distance</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback%20style" title=" feedback style"> feedback style</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20experience" title=" user experience"> user experience</a> </p> <a href="https://publications.waset.org/abstracts/166976/the-role-of-situational-factors-in-user-experience-during-human-robot-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3986</span> Electronic Spectral Function of Double Quantum Dots–Superconductors Nanoscopic Junction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Kumar">Rajendra Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the Electronic spectral density of a double coupled quantum dots sandwich between superconducting leads, where one of the superconducting leads (QD1) are connected with left superconductor lead and (QD1) also connected right superconductor lead. (QD1) and (QD2) are coupling to each other. The electronic spectral density through a quantum dots between superconducting leads having s-wave symmetry of the superconducting order parameter. Such junction is called superconducting –quantum dot (S-QD-S) junction. For this purpose, we have considered a renormalized Anderson model that includes the double coupled of the superconducting leads with the quantum dots level and an attractive BCS-type effective interaction in superconducting leads. We employed the Green’s function technique to obtain superconducting order parameter with the BCS framework and Ambegaoker-Baratoff formalism to analyze the electronic spectral density through such (S-QD-S) junction. It has been pointed out that electronic spectral density through such a junction is dominated by the attractive the paring interaction in the leads, energy of the level on the dot with respect to Fermi energy and also on the coupling parameter of the two in an essential way. On the basis of numerical analysis we have compared the theoretical results of electronic spectral density with the recent transport existing theoretical analysis. QDs is the charging energy that may give rise to effects based on the interplay of Coulomb repulsion and superconducting correlations. It is, therefore, an interesting question to ask how the discrete level spectrum and the charging energy affect the DC and AC Josephson transport between two superconductors coupled via a QD. In the absence of a bias voltage, a finite DC current can be sustained in such an S-QD-S by the DC Josephson effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title="quantum dots">quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=S-QD-S%20junction" title=" S-QD-S junction"> S-QD-S junction</a>, <a href="https://publications.waset.org/abstracts/search?q=BCS%20superconductors" title=" BCS superconductors"> BCS superconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=Anderson%20model" title=" Anderson model"> Anderson model</a> </p> <a href="https://publications.waset.org/abstracts/3977/electronic-spectral-function-of-double-quantum-dots-superconductors-nanoscopic-junction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3985</span> Prototype of an Interactive Toy from Lego Robotics Kits for Children with Autism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20A.%20Martins">Ricardo A. Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Matheus%20S.%20da%20Silva"> Matheus S. da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20H.%20F.%20Iarossi"> Gabriel H. F. Iarossi</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20C.%20M.%20Senefonte"> Helen C. M. Senefonte</a>, <a href="https://publications.waset.org/abstracts/search?q=Cinthyan%20R.%20S.%20C.%20de%20Barbosa"> Cinthyan R. S. C. de Barbosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is the development of a concept of the man/robot interaction. More accurately in developing of an autistic child that have more troubles with interaction, here offers an efficient solution, even though simple; however, less studied for this public. This concept is based on code applied thought out the Lego NXT kit, built for the interpretation of the robot, thereby can create this interaction in a constructive way for children suffering with Autism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lego%20NXT" title="lego NXT">lego NXT</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=BricX" title=" BricX"> BricX</a>, <a href="https://publications.waset.org/abstracts/search?q=autismo" title=" autismo"> autismo</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN%20%28Artificial%20Neural%20Network%29" title=" ANN (Artificial Neural Network)"> ANN (Artificial Neural Network)</a>, <a href="https://publications.waset.org/abstracts/search?q=MLP%20back%20propagation" title=" MLP back propagation"> MLP back propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20layers" title=" hidden layers"> hidden layers</a> </p> <a href="https://publications.waset.org/abstracts/8362/prototype-of-an-interactive-toy-from-lego-robotics-kits-for-children-with-autism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3984</span> The Interaction of Adjacent Defects and the Effect on the Failure Pressure of the Corroded Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Wang">W. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhang"> Y. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Shuai"> J. Shuai</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Lv"> Z. Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between defects has an essential influence on the bearing capacity of pipelines. This work developed the finite element model of pipelines containing adjacent defects, which includes longitudinally aligned, circumferentially aligned, and diagonally aligned defects. The relationships between spacing and geometries of defects and the failure pressure of pipelines, and the interaction between defects are investigated. The results show that the orientation of defects is an influential factor in the failure pressure of the pipeline. The influence of defect spacing on the failure pressure of the pipeline is non-linear, and the relationship presents different trends depending on the orientation of defects. The increase of defect geometry will weaken the failure pressure of the pipeline, and for the interaction between defects, the increase of defect depth will enhance it, and the increase of defect length will weaken it. According to the research on the interaction rule between defects with different orientations, the interacting coefficients under different orientations of defects are compared. It is determined that the diagonally aligned defects with the overlap of longitudinal projections are the most obvious arrangement of interaction between defects, and the limited distance of interaction between defects is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline" title="pipeline">pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=adjacent%20defects" title=" adjacent defects"> adjacent defects</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20between%20defects" title=" interaction between defects"> interaction between defects</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20pressure" title=" failure pressure"> failure pressure</a> </p> <a href="https://publications.waset.org/abstracts/155026/the-interaction-of-adjacent-defects-and-the-effect-on-the-failure-pressure-of-the-corroded-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3983</span> Understanding Surface Failures in Thick Asphalt Pavement: A 3-D Finite Element Model Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hana%20Gebremariam%20Liliso">Hana Gebremariam Liliso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the factors contributing to the deterioration of thick asphalt pavements, such as rutting and cracking. We focus on the combined influence of traffic loads and pavement structure. This study uses a three-dimensional finite element model with a Mohr-Coulomb failure criterion to analyze the stress levels near the pavement's surface under realistic conditions. Our model considers various factors, including tire-pavement contact stresses, asphalt properties, moving loads, and dynamic analysis. This research suggests that cracking tends to occur between dual tires. Some key discoveries include the risk of cracking increases as temperatures rise; surface cracking at high temperatures is associated with distortional deformation; using a uniform contact stress distribution underestimates the risk of failure compared to realistic three-dimensional tire contact stress, particularly at high temperatures; the risk of failure is higher near the surface when there is a negative temperature gradient in the asphalt layer; and debonding beneath the surface layer leads to increased shear stress and premature failure around the interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title="asphalt pavement">asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20failure" title=" surface failure"> surface failure</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20finite%20element%20model" title=" 3d finite element model"> 3d finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=multiaxial%20stress%20states" title=" multiaxial stress states"> multiaxial stress states</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohr-Coulomb%20failure%20criterion" title=" Mohr-Coulomb failure criterion"> Mohr-Coulomb failure criterion</a> </p> <a href="https://publications.waset.org/abstracts/182482/understanding-surface-failures-in-thick-asphalt-pavement-a-3-d-finite-element-model-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3982</span> Spin-Dipole Excitations Produced On-Demand in the Fermi Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mykhailo%20Moskalets">Mykhailo Moskalets</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Burset"> Pablo Burset</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Roussel"> Benjamin Roussel</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Flindt"> Christian Flindt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The single-particle injection from the Andreev level and how such injection is simulated using a voltage pulse are discussed. Recently, high-speed quantum-coherent electron sources injecting one- to few-particle excitations into the Fermi sea have been experimentally realized. The main obstacle to using these excitations as flying qubits for quantum-information processing purposes is decoherence due to the long-range Coulomb interaction. An obvious way to get around this difficulty is to employ electrically neutral excitations. Here it is discussed how such excitations can be generated on-demand using the same injection principles as in existing electron sources. Namely, with the help of a voltage pulse of a certain shape applied to the Fermi sea or using a driven quantum dot with superconducting correlations. The advantage of the latter approach is the possibility of varying the electron-hole content in the excitation and the possibility of creating a charge-neutral but spin-dipole excitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreev%20level" title="Andreev level">Andreev level</a>, <a href="https://publications.waset.org/abstracts/search?q=on-demand" title=" on-demand"> on-demand</a>, <a href="https://publications.waset.org/abstracts/search?q=single-electron" title=" single-electron"> single-electron</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-dipole" title=" spin-dipole"> spin-dipole</a> </p> <a href="https://publications.waset.org/abstracts/168041/spin-dipole-excitations-produced-on-demand-in-the-fermi-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3981</span> Study the Difference Between the Mohr-Coulomb and the Barton-Bandis Joint Constitutive Models: A Case Study from the Iron Open Pit Mine, Canada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Kamalibandpey">Abbas Kamalibandpey</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Beland"> Alain Beland</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Mukendi%20Kabuya"> Joseph Mukendi Kabuya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since a rock mass is a discontinuum medium, its behaviour is governed by discontinuities such as faults, joint sets, lithologic contact, and bedding planes. Thus, rock slope stability analysis in jointed rock masses is largely dependent upon discontinuities constitutive equations. This paper studies the difference between the Mohr-Coulomb (MC) and the Barton-Bandis (BB) joint constitutive numerical models for lithological contacts and joint sets. For the rock in these models, generalized Hoek-Brown criteria have been considered. The joint roughness coefficient (JRC) and the joint wall compressive strength (JCS) are vital parameters in the BB model. The numerical models are applied to the rock slope stability analysis in the Mont-Wright (MW) mine. The Mont-Wright mine is owned and operated by ArcelorMittal Mining Canada (AMMC), one of the largest iron-ore open pit operations in Canada. In this regard, one of the high walls of the mine has been selected to undergo slope stability analysis with RS2D software, finite element method. Three piezometers have been installed in this zone to record pore water pressure and it is monitored by radar. In this zone, the AMP-IF and QRMS-IF contacts and very persistent and altered joint sets in IF control the rock slope behaviour. The height of the slope is more than 250 m and consists of different lithologies such as AMP, IF, GN, QRMS, and QR. To apply the B-B model, the joint sets and geological contacts have been scanned by Maptek, and their JRC has been calculated by different methods. The numerical studies reveal that the JRC of geological contacts, AMP-IF and QRMS-IF, and joint sets in IF had a significant influence on the safety factor. After evaluating the results of rock slope stability analysis and the radar data, the B-B constitutive equation for discontinuities has shown acceptable results to the real condition in the mine. It should be noted that the difference in safety factors in MC and BB joint constitutive models in some cases is more than 30%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barton-Bandis%20criterion" title="barton-Bandis criterion">barton-Bandis criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoek-brown%20and%20Mohr-Coulomb%20criteria" title=" Hoek-brown and Mohr-Coulomb criteria"> Hoek-brown and Mohr-Coulomb criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20pit" title=" open pit"> open pit</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/179805/study-the-difference-between-the-mohr-coulomb-and-the-barton-bandis-joint-constitutive-models-a-case-study-from-the-iron-open-pit-mine-canada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3980</span> Transformations of Spatial Distributions of Bio-Polymers and Nanoparticles in Water Suspensions Induced by Resonance-Like Low Frequency Electrical Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Vasin">A. A. Vasin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20Klassen"> N. V. Klassen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Likhter"> A. M. Likhter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water suspensions of in-organic (metals and oxides) and organic nano-objects (chitozan and collagen) were subjected to the treatment of direct and alternative electrical fields. In addition to quasi-periodical spatial patterning resonance-like performance of spatial distributions of these suspensions has been found at low frequencies of alternating electrical field. These resonances are explained as the result of creation of equilibrium states of groups of charged nano-objects with opposite signs of charges at the interparticle distances where the forces of Coulomb attraction are compensated by the repulsion forces induced by relatively negative polarization of hydrated regions surrounding the nanoparticles with respect to pure water. The low frequencies of these resonances are explained by comparatively big distances between the particles and their big masses with t\respect to masses of atoms constituting molecules with high resonance frequencies. These new resonances open a new approach to detailed modeling and understanding of mechanisms of the influence of electrical fields on the functioning of internal organs of living organisms at the level of cells and neurons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-polymers" title="bio-polymers">bio-polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen" title=" collagen"> collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=coulomb%20attraction" title=" coulomb attraction"> coulomb attraction</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20repulsion" title=" polarization repulsion"> polarization repulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=periodical%20patterning" title=" periodical patterning"> periodical patterning</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20low%20frequency%20resonances" title=" electrical low frequency resonances"> electrical low frequency resonances</a>, <a href="https://publications.waset.org/abstracts/search?q=transformations" title=" transformations"> transformations</a> </p> <a href="https://publications.waset.org/abstracts/10301/transformations-of-spatial-distributions-of-bio-polymers-and-nanoparticles-in-water-suspensions-induced-by-resonance-like-low-frequency-electrical-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction&amp;page=133">133</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction&amp;page=134">134</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10