CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;32 of 32 results for author: <span class="mathjax">Bos, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Bos%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bos, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bos%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bos, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.16762">arXiv:2402.16762</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.16762">pdf</a>, <a href="https://arxiv.org/format/2402.16762">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> The influence of the vorticity-scalar correlation on mixing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yin%2C+X">Xi-Yuan Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Agoua%2C+W">Wesley Agoua</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+T">Tong Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.16762v1-abstract-short" style="display: inline;"> We investigate the role of the correlation between a scalar quantity and the vorticity in two-dimensional mixing at infinite P茅clet number. We assess, using a diffusivity independent mixing-norm, the dynamics of both Galerkin-truncated ensembles and freely evolving two-dimensional scalar mixing. Both statistical mechanics and numerical experiments show how the mixing-rate is attenuated when vortic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16762v1-abstract-full').style.display = 'inline'; document.getElementById('2402.16762v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.16762v1-abstract-full" style="display: none;"> We investigate the role of the correlation between a scalar quantity and the vorticity in two-dimensional mixing at infinite P茅clet number. We assess, using a diffusivity independent mixing-norm, the dynamics of both Galerkin-truncated ensembles and freely evolving two-dimensional scalar mixing. Both statistical mechanics and numerical experiments show how the mixing-rate is attenuated when vorticity and scalar are initially correlated. Since the vorticity is shown to be a poorly mixing scalar, the results suggest that, in general, mixing can be enhanced by minimizing the correlation between vorticity and passive scalar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16762v1-abstract-full').style.display = 'none'; document.getElementById('2402.16762v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16691">arXiv:2401.16691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16691">pdf</a>, <a href="https://arxiv.org/format/2401.16691">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Social Physics of Bacteria: Avoidance of an Information Black Hole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Phan%2C+T+V">Trung V. Phan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shengkai Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ferreris%2C+D">Domenic Ferreris</a>, <a href="/search/physics?searchtype=author&amp;query=Morris%2C+R">Ryan Morris</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+J">Julia Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+B">Buming Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Martiniani%2C+S">Stefano Martiniani</a>, <a href="/search/physics?searchtype=author&amp;query=Chaikin%2C+P">Paul Chaikin</a>, <a href="/search/physics?searchtype=author&amp;query=Kevrekidis%2C+Y+G">Yannis G. Kevrekidis</a>, <a href="/search/physics?searchtype=author&amp;query=Austin%2C+R+H">Robert H. Austin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16691v2-abstract-short" style="display: inline;"> Social physics explores responses to information exchange in a social network, and can be mapped down to bacterial collective signaling. Here, we explore how social inter-bacterial communication includes coordination of response to communication loss, as opposed to solitary searching for food, with collective response emergence at the population level. We present a 2-dimensional enclosed microflui&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16691v2-abstract-full').style.display = 'inline'; document.getElementById('2401.16691v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16691v2-abstract-full" style="display: none;"> Social physics explores responses to information exchange in a social network, and can be mapped down to bacterial collective signaling. Here, we explore how social inter-bacterial communication includes coordination of response to communication loss, as opposed to solitary searching for food, with collective response emergence at the population level. We present a 2-dimensional enclosed microfluidic environment that utilizes concentric rings of funnel ratchets, which direct motile E.coli bacteria towards a sole exit hole, an information ``black hole&#39;&#39;, passage into the black hole irreversibly sweeps the bacteria away via hydrodynamic flow. We show that the spatiotemporal evolution of entropy production reveals how bacteria avoid crossing the hydrodynamic black hole information horizon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16691v2-abstract-full').style.display = 'none'; document.getElementById('2401.16691v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07255">arXiv:2308.07255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.07255">pdf</a>, <a href="https://arxiv.org/format/2308.07255">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Space-local Navier--Stokes turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Araki%2C+R">Ryo Araki</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Goto%2C+S">Susumu Goto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07255v3-abstract-short" style="display: inline;"> We investigate the physical-space locality of interactions in three-dimensional incompressible turbulent flow. To that, we modify the nonlinear terms of the vorticity equation such that the vorticity field is advected and stretched by the locally induced velocity. This space-local velocity field is defined by the truncated Biot--Savart law, where only the neighboring vorticity field in a sphere of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07255v3-abstract-full').style.display = 'inline'; document.getElementById('2308.07255v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07255v3-abstract-full" style="display: none;"> We investigate the physical-space locality of interactions in three-dimensional incompressible turbulent flow. To that, we modify the nonlinear terms of the vorticity equation such that the vorticity field is advected and stretched by the locally induced velocity. This space-local velocity field is defined by the truncated Biot--Savart law, where only the neighboring vorticity field in a sphere of radius $R$ is integrated. We conduct direct numerical simulations of the space-local system to investigate its statistics in the inertial range. We observe a standard $E(k) \propto k^{-5/3}$ scaling of the energy spectrum associated with an energy cascade for scales smaller than the space-local domain size $k \gg R^{-1}$. This result is consistent with the assumption Kolmogorov&#39;s 1941 paper made for the space-locality of the nonlinear interactions. The enstrophy amplification is suppressed for larger scales $k \ll R^{-1}$, and for these scales, the system exhibits a scaling consistent with a conservative enstrophy cascade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07255v3-abstract-full').style.display = 'none'; document.getElementById('2308.07255v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.14516">arXiv:2210.14516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.14516">pdf</a>, <a href="https://arxiv.org/format/2210.14516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Inertial range scaling of inhomogeneous turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Araki%2C+R">Ryo Araki</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.14516v3-abstract-short" style="display: inline;"> We investigate how inhomogeneity influences the $k^{-5/3}$ inertial range scaling of turbulent kinetic energy spectra (with $k$ the wavenumber). For weak statistical inhomogeneity, the energy spectrum can be described as an equilibrium spectrum plus a perturbation. Theoretical arguments suggest that this latter contribution scales as $k^{-7/3}$. This prediction is assessed using direct numerical s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14516v3-abstract-full').style.display = 'inline'; document.getElementById('2210.14516v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.14516v3-abstract-full" style="display: none;"> We investigate how inhomogeneity influences the $k^{-5/3}$ inertial range scaling of turbulent kinetic energy spectra (with $k$ the wavenumber). For weak statistical inhomogeneity, the energy spectrum can be described as an equilibrium spectrum plus a perturbation. Theoretical arguments suggest that this latter contribution scales as $k^{-7/3}$. This prediction is assessed using direct numerical simulations of three-dimensional Kolmogorov flow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14516v3-abstract-full').style.display = 'none'; document.getElementById('2210.14516v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03831">arXiv:2208.03831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03831">pdf</a>, <a href="https://arxiv.org/format/2208.03831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/1.OE.61.10.108101">10.1117/1.OE.61.10.108101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Limits on Wave Optics Simulations of Plane Wave Propagation in Non-Kolmogorov Turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bos%2C+J+P">Jeremy P. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Grulke%2C+S">Stephen Grulke</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+J">Jeff Beck</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03831v1-abstract-short" style="display: inline;"> We derive limits for wave optics simulations of plane wave propagation in non-Kolmogorov turbulence using the split-step method and thin phase screens. These limits are used to inform two simulation campaigns where the relationship between volume turbulence strength and normalized intensity variance for various non-Kolmogorov power-laws. We find that simulations of smaller power laws are limited t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03831v1-abstract-full').style.display = 'inline'; document.getElementById('2208.03831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03831v1-abstract-full" style="display: none;"> We derive limits for wave optics simulations of plane wave propagation in non-Kolmogorov turbulence using the split-step method and thin phase screens. These limits are used to inform two simulation campaigns where the relationship between volume turbulence strength and normalized intensity variance for various non-Kolmogorov power-laws. We find that simulations of smaller power laws are limited turbulence strengths with Rytov numbers of 7 when the simulation side-length sampling rate is 8192. Under these same conditions it is possible to simulate volume turbulence strength out to Rytov numbers of 12 for Kolmogorov power-laws and higher. We show that the peak scintillation and Rytov number where peak scintillation occur increases monotonically with power-law. Also, that if turbulence strength is fixed, the relationship between scintillation index and power-law depends on the operating regime. In weak turbulence the relationship is negative, and it is positive in stronger turbulence. This work also emphasizes the importance of properly scaling turbulence strength with comparing results with different power-laws and the influence and importance of defining inner and outer scales in these simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03831v1-abstract-full').style.display = 'none'; document.getElementById('2208.03831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.07135">arXiv:2205.07135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.07135">pdf</a>, <a href="https://arxiv.org/format/2205.07135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0098501">10.1063/5.0098501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport, flow topology and Lagrangian conditional statistics in edge plasma turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kadoch%2C+B">Benjamin Kadoch</a>, <a href="/search/physics?searchtype=author&amp;query=del-Castillo-Negrete%2C+D">Diego del-Castillo-Negrete</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Schneider%2C+K">Kai Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.07135v1-abstract-short" style="display: inline;"> Lagrangian statistics and particle transport in edge plasma turbulence are investigated using the Hasegawa-Wakatani model and its modified version. The latter shows the emergence of pronounced zonal flows. Different values of the adiabaticity parameter are considered. The main goal is to characterize the role of coherent structures, i.e., vortices and zonal flows, and their impact on the Lagrangia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.07135v1-abstract-full').style.display = 'inline'; document.getElementById('2205.07135v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.07135v1-abstract-full" style="display: none;"> Lagrangian statistics and particle transport in edge plasma turbulence are investigated using the Hasegawa-Wakatani model and its modified version. The latter shows the emergence of pronounced zonal flows. Different values of the adiabaticity parameter are considered. The main goal is to characterize the role of coherent structures, i.e., vortices and zonal flows, and their impact on the Lagrangian statistics of particles. Computationally intensive long time simulations following ensembles of test particles over hundreds of eddy turnover times are considered in statistically stationary turbulent flows. The flow topology is characterized using the Lagrangian Okubo-Weiss criterion, and the flow can thus be split into topologically different domains. In elliptic and hyperbolic regions, the probability density functions (pdfs) of the residence time have self-similar algebraic decaying tails. However, in the intermediate regions the pdfs do exhibit exponentially decaying tails. Topologically conditioned pdfs of the Lagrangian velocity, and acceleration and density fluctuations are likewise computed. The differences between the classical Hasegawa-Wakatani system and its modified version are assessed and the role of zonal flows is highlighted. The density flux spectrum which characterizes the contributions of different length scales is studied and its inertial scaling is found to be in agreement with predictions based on dimensional arguments. Analyzing the angular change of particle tracers at different time scales, corresponding to coarse grained curvature, completes the study and the multiscale geometric statistics quantify the directional properties of the particle motion in the different flow regimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.07135v1-abstract-full').style.display = 'none'; document.getElementById('2205.07135v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 15 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 76F65 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Plasmas, 29(10) 102301, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03417">arXiv:2112.03417</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.03417">pdf</a>, <a href="https://arxiv.org/format/2112.03417">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1873-7005/acdff7">10.1088/1873-7005/acdff7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Minimal model of quasi-cyclic behaviour in turbulence driven by Taylor--Green forcing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Araki%2C+R">Ryo Araki</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Goto%2C+S">Susumu Goto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03417v5-abstract-short" style="display: inline;"> We attempt to formulate the simplest possible model mimicking turbulent dynamics, such as quasi-cyclic behaviour (QCB), using only three variables. To this end, we first conduct direct numerical simulations of three-dimensional flow driven by the steady Taylor--Green forcing to find a similarity between a stable periodic orbit (SPO) at a small Reynolds number ($Re$) and turbulent QCB at higher&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03417v5-abstract-full').style.display = 'inline'; document.getElementById('2112.03417v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03417v5-abstract-full" style="display: none;"> We attempt to formulate the simplest possible model mimicking turbulent dynamics, such as quasi-cyclic behaviour (QCB), using only three variables. To this end, we first conduct direct numerical simulations of three-dimensional flow driven by the steady Taylor--Green forcing to find a similarity between a stable periodic orbit (SPO) at a small Reynolds number ($Re$) and turbulent QCB at higher $Re$. A close examination of the SPO allows the heuristic formulation of a three-equation model, representing the evolution of Fourier modes in three distinct scales. The model reproduces the continuous bifurcation from SPO to turbulence with QCB when $Re$ is varied. We also demonstrate that, by changing model parameters, the proposed model exhibits a discontinuous transition from steady to chaotic solutions without going through an SPO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03417v5-abstract-full').style.display = 'none'; document.getElementById('2112.03417v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 13 figures (the main text is 17 pages with 7 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.08790">arXiv:2111.08790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.08790">pdf</a>, <a href="https://arxiv.org/ps/2111.08790">ps</a>, <a href="https://arxiv.org/format/2111.08790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S0022377821001094">10.1017/S0022377821001094 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The effect of shaping on turbulent dynamics in RFP simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chahine%2C+R">Robert Chahine</a>, <a href="/search/physics?searchtype=author&amp;query=Schneider%2C+K">Kai Schneider</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.08790v1-abstract-short" style="display: inline;"> We study the influence of the shape of the plasma container on the dynamics of the Reversed Field Pinch (RFP). The geometries we consider are periodic cylinders with elliptical and circular-shaped cross-sections. Numerical simulations of fully nonlinear visco-resistive magnetohydrodynamics are carried out to illustrate how the plasma dynamics are affected by shaping. It is shown that independent o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08790v1-abstract-full').style.display = 'inline'; document.getElementById('2111.08790v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.08790v1-abstract-full" style="display: none;"> We study the influence of the shape of the plasma container on the dynamics of the Reversed Field Pinch (RFP). The geometries we consider are periodic cylinders with elliptical and circular-shaped cross-sections. Numerical simulations of fully nonlinear visco-resistive magnetohydrodynamics are carried out to illustrate how the plasma dynamics are affected by shaping. It is shown that independent of the plasma shape, the quantity $尾$, comparing the hydrodynamic pressure to the magnetic pressure, decreases for increasing values of the Lundquist number, but the pressure gradient fluctuations remain roughly constant, when compared to the Lorentz force. Different elliptical shapes of the cross-section of the domain lead to the excitation of different toroidal (or axial) magnetic and dynamic modes. Furthermore, it is found that in a geometry with circular cross-section a significant local poloidal angular momentum is observed, absent in the geometries with elliptical cross-section. Since the confinement is dominantly determined by plasma movement, and the dynamics of the velocity and magnetic field are modified by the modification of the geometry, shaping can thus affect the performance of RFP-devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08790v1-abstract-full').style.display = 'none'; document.getElementById('2111.08790v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 76W05; 76M22 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Plasma Physics, Volume 87 , Issue 6 , December 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.10497">arXiv:1910.10497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.10497">pdf</a>, <a href="https://arxiv.org/format/1910.10497">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevFluids.5.043701">10.1103/PhysRevFluids.5.043701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scaling laws in axisymmetric magnetohydrodynamic duct flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Poy%C3%A9%2C+A">A. Poy茅</a>, <a href="/search/physics?searchtype=author&amp;query=Agullo%2C+O">O. Agullo</a>, <a href="/search/physics?searchtype=author&amp;query=Plihon%2C+N">N. Plihon</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">W. J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Desangles%2C+V">V. Desangles</a>, <a href="/search/physics?searchtype=author&amp;query=Bousselin%2C+G">G. Bousselin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.10497v1-abstract-short" style="display: inline;"> We report on a numerical study of axisymmetric flow of liquid metal in a circular duct with rectangular cross-section. The flow is forced through the combination of an axial magnetic field and a radial current. Sweeping a wide range of forcing parameters, we identify the different regimes which characterize the flows and explicit the associate scaling laws. Experimental results are interpreted in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10497v1-abstract-full').style.display = 'inline'; document.getElementById('1910.10497v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.10497v1-abstract-full" style="display: none;"> We report on a numerical study of axisymmetric flow of liquid metal in a circular duct with rectangular cross-section. The flow is forced through the combination of an axial magnetic field and a radial current. Sweeping a wide range of forcing parameters, we identify the different regimes which characterize the flows and explicit the associate scaling laws. Experimental results are interpreted in the light of our numerical simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10497v1-abstract-full').style.display = 'none'; document.getElementById('1910.10497v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Fluids 5, 043701 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.00904">arXiv:1904.00904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.00904">pdf</a>, <a href="https://arxiv.org/format/1904.00904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> An Atomistic Machine Learning Package for Surface Science and Catalysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hansen%2C+M+H">Martin Hangaard Hansen</a>, <a href="/search/physics?searchtype=author&amp;query=Torres%2C+J+A+G">Jos茅 A. Garrido Torres</a>, <a href="/search/physics?searchtype=author&amp;query=Jennings%2C+P+C">Paul C. Jennings</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Ziyun Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Boes%2C+J+R">Jacob R. Boes</a>, <a href="/search/physics?searchtype=author&amp;query=Mamun%2C+O+G">Osman G. Mamun</a>, <a href="/search/physics?searchtype=author&amp;query=Bligaard%2C+T">Thomas Bligaard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.00904v1-abstract-short" style="display: inline;"> We present work flows and a software module for machine learning model building in surface science and heterogeneous catalysis. This includes fingerprinting atomic structures from 3D structure and/or connectivity information, it includes descriptor selection methods and benchmarks, and it includes active learning frameworks for atomic structure optimization, acceleration of screening studies and f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00904v1-abstract-full').style.display = 'inline'; document.getElementById('1904.00904v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.00904v1-abstract-full" style="display: none;"> We present work flows and a software module for machine learning model building in surface science and heterogeneous catalysis. This includes fingerprinting atomic structures from 3D structure and/or connectivity information, it includes descriptor selection methods and benchmarks, and it includes active learning frameworks for atomic structure optimization, acceleration of screening studies and for exploration of the structure space of nano particles, which are all atomic structure problems relevant for surface science and heterogeneous catalysis. Our overall goal is to provide a repository to ease machine learning model building for catalysis, to advance the models beyond the chemical intuition of the user and to increase autonomy for exploration of chemical space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00904v1-abstract-full').style.display = 'none'; document.getElementById('1904.00904v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08022">arXiv:1811.08022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.08022">pdf</a>, <a href="https://arxiv.org/format/1811.08022">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.156001">10.1103/PhysRevLett.122.156001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-Scaling Algorithm for Nudged Elastic Band Calculations Using a Surrogate Machine Learning Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Torres%2C+J+A+G">Jos茅 A. Garrido Torres</a>, <a href="/search/physics?searchtype=author&amp;query=Jennings%2C+P+C">Paul C. Jennings</a>, <a href="/search/physics?searchtype=author&amp;query=Hansen%2C+M+H">Martin H. Hansen</a>, <a href="/search/physics?searchtype=author&amp;query=Boes%2C+J+R">Jacob R. Boes</a>, <a href="/search/physics?searchtype=author&amp;query=Bligaard%2C+T">Thomas Bligaard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08022v1-abstract-short" style="display: inline;"> We present the incorporation of a surrogate Gaussian Process Regression (GPR) atomistic model to greatly accelerate the rate of convergence of classical Nudged Elastic Band (NEB) calculations. In our surrogate model approach, the cost of converging the elastic band no longer scales with the number of moving images on the path. This provides a far more efficient and robust transition state search.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08022v1-abstract-full').style.display = 'inline'; document.getElementById('1811.08022v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08022v1-abstract-full" style="display: none;"> We present the incorporation of a surrogate Gaussian Process Regression (GPR) atomistic model to greatly accelerate the rate of convergence of classical Nudged Elastic Band (NEB) calculations. In our surrogate model approach, the cost of converging the elastic band no longer scales with the number of moving images on the path. This provides a far more efficient and robust transition state search. In contrast to a conventional NEB calculation, the algorithm presented here eliminates any need for manipulating the number of images to obtain a converged result. This is achieved by inventing a new convergence criteria that exploits the probabilistic nature of the GPR to use uncertainty estimates of all images in combination with the force of the transition state in the analytic potential. Our method is an order of magnitude faster in terms of function evaluations than the conventional NEB method with no accuracy loss for the converged energy barrier values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08022v1-abstract-full').style.display = 'none'; document.getElementById('1811.08022v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, supplemental material (2 pages, 1 figure, 1 table)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 156001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.03239">arXiv:1805.03239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.03239">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00170-018-1930-0">10.1007/s00170-018-1930-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flash Temperature and Force Measurements in Single Diamond Scratch Tests </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Akbari%2C+M">Mansur Akbari</a>, <a href="/search/physics?searchtype=author&amp;query=Kliuev%2C+M">Mikhail Kliuev</a>, <a href="/search/physics?searchtype=author&amp;query=Boos%2C+J">Jens Boos</a>, <a href="/search/physics?searchtype=author&amp;query=Wegener%2C+K">Konrad Wegener</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.03239v1-abstract-short" style="display: inline;"> Analysis of the highest temperature in the machining processes, namely the flash temperature, helps to understand the physics of the process, to improve cutting tool geometry, and to achieve high performance machining. In the present work, the interaction between cutting grain and workpiece material in grinding process is analyzed. Single diamonds are considered for machining, which operates in co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03239v1-abstract-full').style.display = 'inline'; document.getElementById('1805.03239v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.03239v1-abstract-full" style="display: none;"> Analysis of the highest temperature in the machining processes, namely the flash temperature, helps to understand the physics of the process, to improve cutting tool geometry, and to achieve high performance machining. In the present work, the interaction between cutting grain and workpiece material in grinding process is analyzed. Single diamonds are considered for machining, which operates in comparison to other measurements in the range of grinding speed. The highest temperature in the grain-material interaction and cutting forces are measured. In order to measure the flash temperature, an innovative method to measure and analyze the temperature through the diamond grain in the cutting zone by a two-color pyrometer is proposed. Furthermore, cutting forces are measured simultaneously. In order to measure the temperature in the cutting zone, an accurate connection between diamond and pyrometer fiber is required. Thus, the diamond tool holders are manufactured by electrical discharge machining (EDM) milling in deionized water. A 0.5-mm-diameter hole is drilled in each holder to connect the diamond precisely to the pyrometer fiber. Machining processes are performed with 30 渭m depth of cut, cutting length of 20 mm, and cutting speed of 65 m/s on Ti6Al4V. The cutting tool is fixed, and the shape of the rotating workpiece is optimized. The diamond holder with the specific shape is designed and manufactured. Quasi-static, dynamic, modal, and harmonic response analyses are performed in order to reduce vibrations and chattering. The measured flash temperature is 1380 掳C and cutting normal, tangential, and axial forces are measured. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03239v1-abstract-full').style.display = 'none'; document.getElementById('1805.03239v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The International Journal of Advanced Manufacturing Technology (2018) 1-13 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.10865">arXiv:1711.10865</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.10865">pdf</a>, <a href="https://arxiv.org/format/1711.10865">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevFluids.3.061101">10.1103/PhysRevFluids.3.061101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Turbulence and turbulent pattern formation in a minimal model for active fluids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=James%2C+M">Martin James</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Wilczek%2C+M">Michael Wilczek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.10865v2-abstract-short" style="display: inline;"> Active matter systems display a fascinating range of dynamical states, including stationary patterns and turbulent phases. While the former can be tackled with methods from the field of pattern formation, the spatio-temporal disorder of the active turbulence phase calls for a statistical description. Borrowing techniques from turbulence theory, we here establish a quantitative description of corre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.10865v2-abstract-full').style.display = 'inline'; document.getElementById('1711.10865v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.10865v2-abstract-full" style="display: none;"> Active matter systems display a fascinating range of dynamical states, including stationary patterns and turbulent phases. While the former can be tackled with methods from the field of pattern formation, the spatio-temporal disorder of the active turbulence phase calls for a statistical description. Borrowing techniques from turbulence theory, we here establish a quantitative description of correlation functions and spectra of a minimal continuum model for active turbulence. Further exploring the parameter space, we also report on a surprising type of turbulence-driven pattern formation far beyond linear onset: the emergence of a dynamic hexagonal vortex lattice state after an extended turbulent transient, which can only be explained taking into account turbulent energy transfer across scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.10865v2-abstract-full').style.display = 'none'; document.getElementById('1711.10865v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplemental videos available at https://youtu.be/gbf6cRho03w https://youtu.be/n0qUUhAUJFQ https://youtu.be/LGmamkM012c</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Fluids 3, 061101 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.08529">arXiv:1512.08529</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.08529">pdf</a>, <a href="https://arxiv.org/ps/1512.08529">ps</a>, <a href="https://arxiv.org/format/1512.08529">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A novel application of Fiber Bragg Grating (FBG) sensors in MPGD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abbaneo%2C+D">D. Abbaneo</a>, <a href="/search/physics?searchtype=author&amp;query=Abbas%2C+M">M. Abbas</a>, <a href="/search/physics?searchtype=author&amp;query=Abbrescia%2C+M">M. Abbrescia</a>, <a href="/search/physics?searchtype=author&amp;query=Abdelalim%2C+A+A">A. A. Abdelalim</a>, <a href="/search/physics?searchtype=author&amp;query=Akl%2C+M+A">M. Abi Akl</a>, <a href="/search/physics?searchtype=author&amp;query=Aboamer%2C+O">O. Aboamer</a>, <a href="/search/physics?searchtype=author&amp;query=Acosta%2C+D">D. Acosta</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+A">A. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+W">W. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+W">W. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aleksandrov%2C+A">A. Aleksandrov</a>, <a href="/search/physics?searchtype=author&amp;query=Aly%2C+R">R. Aly</a>, <a href="/search/physics?searchtype=author&amp;query=Altieri%2C+P">P. Altieri</a>, <a href="/search/physics?searchtype=author&amp;query=Asawatangtrakuldee%2C+C">C. Asawatangtrakuldee</a>, <a href="/search/physics?searchtype=author&amp;query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&amp;query=Assran%2C+Y">Y. Assran</a>, <a href="/search/physics?searchtype=author&amp;query=Awan%2C+I">I. Awan</a>, <a href="/search/physics?searchtype=author&amp;query=Bally%2C+S">S. Bally</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Banerjee%2C+S">S. Banerjee</a>, <a href="/search/physics?searchtype=author&amp;query=Barashko%2C+V">V. Barashko</a>, <a href="/search/physics?searchtype=author&amp;query=Barria%2C+P">P. Barria</a>, <a href="/search/physics?searchtype=author&amp;query=Bencze%2C+G">G. Bencze</a>, <a href="/search/physics?searchtype=author&amp;query=Beni%2C+N">N. Beni</a>, <a href="/search/physics?searchtype=author&amp;query=Benussi%2C+L">L. Benussi</a> , et al. (133 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.08529v1-abstract-short" style="display: inline;"> We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.08529v1-abstract-full').style.display = 'inline'; document.getElementById('1512.08529v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.08529v1-abstract-full" style="display: none;"> We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.08529v1-abstract-full').style.display = 'none'; document.getElementById('1512.08529v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste, Italy). arXiv admin note: text overlap with arXiv:1512.08481</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INFN-15-10/LNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.08481">arXiv:1512.08481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.08481">pdf</a>, <a href="https://arxiv.org/ps/1512.08481">ps</a>, <a href="https://arxiv.org/format/1512.08481">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2016.01.059">10.1016/j.nima.2016.01.059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abbaneo%2C+D">D. Abbaneo</a>, <a href="/search/physics?searchtype=author&amp;query=Abbas%2C+M">M. Abbas</a>, <a href="/search/physics?searchtype=author&amp;query=Abbrescia%2C+M">M. Abbrescia</a>, <a href="/search/physics?searchtype=author&amp;query=Abdelalim%2C+A+A">A. A. Abdelalim</a>, <a href="/search/physics?searchtype=author&amp;query=Akl%2C+M+A">M. Abi Akl</a>, <a href="/search/physics?searchtype=author&amp;query=Aboamer%2C+O">O. Aboamer</a>, <a href="/search/physics?searchtype=author&amp;query=Acosta%2C+D">D. Acosta</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+A">A. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+W">W. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+W">W. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aleksandrov%2C+A">A. Aleksandrov</a>, <a href="/search/physics?searchtype=author&amp;query=Aly%2C+R">R. Aly</a>, <a href="/search/physics?searchtype=author&amp;query=Altieri%2C+P">P. Altieri</a>, <a href="/search/physics?searchtype=author&amp;query=Asawatangtrakuldee%2C+C">C. Asawatangtrakuldee</a>, <a href="/search/physics?searchtype=author&amp;query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&amp;query=Assran%2C+Y">Y. Assran</a>, <a href="/search/physics?searchtype=author&amp;query=Awan%2C+I">I. Awan</a>, <a href="/search/physics?searchtype=author&amp;query=Bally%2C+S">S. Bally</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Banerjee%2C+S">S. Banerjee</a>, <a href="/search/physics?searchtype=author&amp;query=Barashko%2C+V">V. Barashko</a>, <a href="/search/physics?searchtype=author&amp;query=Barria%2C+P">P. Barria</a>, <a href="/search/physics?searchtype=author&amp;query=Bencze%2C+G">G. Bencze</a>, <a href="/search/physics?searchtype=author&amp;query=Beni%2C+N">N. Beni</a>, <a href="/search/physics?searchtype=author&amp;query=Benussi%2C+L">L. Benussi</a> , et al. (133 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.08481v1-abstract-short" style="display: inline;"> A novel approach which uses Fibre Bragg Grating (FBG) sensors has been utilised to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.08481v1-abstract-full" style="display: none;"> A novel approach which uses Fibre Bragg Grating (FBG) sensors has been utilised to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.08481v1-abstract-full').style.display = 'none'; document.getElementById('1512.08481v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Two pages, one figure. Presented by Luigi Benussi (corresponding author) to Elba 2015 conference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Frascati Preprint INFN-15-09/LNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.06501">arXiv:1511.06501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.06501">pdf</a>, <a href="https://arxiv.org/ps/1511.06501">ps</a>, <a href="https://arxiv.org/format/1511.06501">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4936140">10.1063/1.4936140 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Short-time evolution of Lagrangian velocity gradient correlations in isotropic turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fang%2C+L">Le Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">W. J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+G+D">G. D. Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.06501v1-abstract-short" style="display: inline;"> We show by direct numerical simulation (DNS) that the Lagrangian cross correlation of velocity gradients in homogeneous isotropic turbulence increases at short times, whereas its auto-correlation decreases. Kinematic considerations allow to show that two invariants of the turbulent velocity field determine the short-time velocity gradient correlations. In order to get a more intuitive understandin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.06501v1-abstract-full').style.display = 'inline'; document.getElementById('1511.06501v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.06501v1-abstract-full" style="display: none;"> We show by direct numerical simulation (DNS) that the Lagrangian cross correlation of velocity gradients in homogeneous isotropic turbulence increases at short times, whereas its auto-correlation decreases. Kinematic considerations allow to show that two invariants of the turbulent velocity field determine the short-time velocity gradient correlations. In order to get a more intuitive understanding of the dynamics for longer times, heuristic models are proposed involving the combined action of local shear and rotation. These models quantitatively reproduce the effects and disentangle the different physical mechanisms leading to the observations in the DNS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.06501v1-abstract-full').style.display = 'none'; document.getElementById('1511.06501v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.0228">arXiv:1412.0228</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.0228">pdf</a>, <a href="https://arxiv.org/format/1412.0228">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abbaneo%2C+D">D. Abbaneo</a>, <a href="/search/physics?searchtype=author&amp;query=Abbas%2C+M">M. Abbas</a>, <a href="/search/physics?searchtype=author&amp;query=Abbrescia%2C+M">M. Abbrescia</a>, <a href="/search/physics?searchtype=author&amp;query=Abdelalim%2C+A+A">A. A. Abdelalim</a>, <a href="/search/physics?searchtype=author&amp;query=Akl%2C+M+A">M. Abi Akl</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+W">W. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+W">W. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Altieri%2C+P">P. Altieri</a>, <a href="/search/physics?searchtype=author&amp;query=Aly%2C+R">R. Aly</a>, <a href="/search/physics?searchtype=author&amp;query=Asawatangtrakuldee%2C+C">C. Asawatangtrakuldee</a>, <a href="/search/physics?searchtype=author&amp;query=Ashfaq%2C+A">A. Ashfaq</a>, <a href="/search/physics?searchtype=author&amp;query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&amp;query=Assran%2C+Y">Y. Assran</a>, <a href="/search/physics?searchtype=author&amp;query=Awan%2C+I">I. Awan</a>, <a href="/search/physics?searchtype=author&amp;query=Bally%2C+S">S. Bally</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Banerjee%2C+S">S. Banerjee</a>, <a href="/search/physics?searchtype=author&amp;query=Barria%2C+P">P. Barria</a>, <a href="/search/physics?searchtype=author&amp;query=Benussi%2C+L">L. Benussi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhopatkar%2C+V">V. Bhopatkar</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+S">S. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+J">J. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Bouhali%2C+O">O. Bouhali</a>, <a href="/search/physics?searchtype=author&amp;query=Braibant%2C+S">S. Braibant</a>, <a href="/search/physics?searchtype=author&amp;query=Buontempo%2C+S">S. Buontempo</a> , et al. (113 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.0228v2-abstract-short" style="display: inline;"> Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the $1.5 &lt; \mid畏\mid &lt; 2.2$ region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0228v2-abstract-full').style.display = 'inline'; document.getElementById('1412.0228v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.0228v2-abstract-full" style="display: none;"> Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the $1.5 &lt; \mid畏\mid &lt; 2.2$ region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 $渭$rad pitch arranged in eight $畏$-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO$_{2}$ 70:30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 $渭$rad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 $\pm$ 0.2 (stat)]\%. The azimuthal resolution is found to be [123.5 $\pm$ 1.6 (stat)] $渭$rad when operating in the center of the efficiency plateau and using full pulse height information. The resolution can be slightly improved by $\sim$ 10 $渭$rad when correcting for the bias due to discrete readout strips. The CMS upgrade design calls for readout electronics with binary hit output. When strip clusters are formed correspondingly without charge-weighting and with fixed hit thresholds, a position resolution of [136.8 $\pm$ 2.5 stat] $渭$rad is measured, consistent with the expected resolution of strip-pitch/$\sqrt{12}$ = 131.3 $渭$rad. Other $畏$-sectors of the detector show similar response and performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0228v2-abstract-full').style.display = 'none'; document.getElementById('1412.0228v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 32 figures, submitted to Proc. 2014 IEEE Nucl. Sci. Symposium, Seattle, WA, reference added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.5495">arXiv:1212.5495</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.5495">pdf</a>, <a href="https://arxiv.org/ps/1212.5495">ps</a>, <a href="https://arxiv.org/format/1212.5495">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4802187">10.1063/1.4802187 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Zonal flow generation and its feedback on turbulence production in drift wave turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pushkarev%2C+A+V">Andrey V. Pushkarev</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Nazarenko%2C+S+V">Sergey V. Nazarenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.5495v1-abstract-short" style="display: inline;"> Plasma turbulence described by the Hasegawa-Wakatani equations has been simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and of the particle transport. For high values of C, turbulence evolves toward highly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.5495v1-abstract-full').style.display = 'inline'; document.getElementById('1212.5495v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.5495v1-abstract-full" style="display: none;"> Plasma turbulence described by the Hasegawa-Wakatani equations has been simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and of the particle transport. For high values of C, turbulence evolves toward highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of a turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allows to consider the Hasegawa-Wakatani equations a minimal PDE model which contains the drift-wave/zonal-flow feedback loop prototypical of the LH transition in plasma devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.5495v1-abstract-full').style.display = 'none'; document.getElementById('1212.5495v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Plasmas 20, 042304 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.3939">arXiv:1211.3939</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.3939">pdf</a>, <a href="https://arxiv.org/ps/1211.3939">ps</a>, <a href="https://arxiv.org/format/1211.3939">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Beam Test Results for New Full-scale GEM Prototypes for a Future Upgrade of the CMS High-eta Muon System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abbaneo%2C+D">D. Abbaneo</a>, <a href="/search/physics?searchtype=author&amp;query=Abbrescia%2C+M">M. Abbrescia</a>, <a href="/search/physics?searchtype=author&amp;query=Armagnaud%2C+C">C. Armagnaud</a>, <a href="/search/physics?searchtype=author&amp;query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&amp;query=Assran%2C+Y">Y. Assran</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bally%2C+S">S. Bally</a>, <a href="/search/physics?searchtype=author&amp;query=Benussi%2C+L">L. Benussi</a>, <a href="/search/physics?searchtype=author&amp;query=Berzano%2C+U">U. Berzano</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+S">S. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+J">J. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Bunkowski%2C+K">K. Bunkowski</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+J">J. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Chatelain%2C+J+P">J. P. Chatelain</a>, <a href="/search/physics?searchtype=author&amp;query=Christiansen%2C+J">J. Christiansen</a>, <a href="/search/physics?searchtype=author&amp;query=Colafranceschi%2C+S">S. Colafranceschi</a>, <a href="/search/physics?searchtype=author&amp;query=Colaleo%2C+A">A. Colaleo</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia%2C+A+C">A. Conde Garcia</a>, <a href="/search/physics?searchtype=author&amp;query=David%2C+E">E. David</a>, <a href="/search/physics?searchtype=author&amp;query=de+Robertis%2C+G">G. de Robertis</a>, <a href="/search/physics?searchtype=author&amp;query=De+Oliveira%2C+R">R. De Oliveira</a>, <a href="/search/physics?searchtype=author&amp;query=Pinto%2C+S+D">S. Duarte Pinto</a>, <a href="/search/physics?searchtype=author&amp;query=Ferry%2C+S">S. Ferry</a>, <a href="/search/physics?searchtype=author&amp;query=Formenti%2C+F">F. Formenti</a>, <a href="/search/physics?searchtype=author&amp;query=Franconi%2C+L">L. Franconi</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.3939v1-abstract-short" style="display: inline;"> The CMS GEM collaboration is considering Gas Electron Multipliers (GEMs) for upgrading the CMS forward muon system in the 1.5&lt;|eta|&lt;2.4 endcap region. GEM detectors can provide precision tracking and fast trigger information. They would improve the CMS muon trigger and muon momentum resolution and provide missing redundancy in the high-eta region. Employing a new faster construction and assembly t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.3939v1-abstract-full').style.display = 'inline'; document.getElementById('1211.3939v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.3939v1-abstract-full" style="display: none;"> The CMS GEM collaboration is considering Gas Electron Multipliers (GEMs) for upgrading the CMS forward muon system in the 1.5&lt;|eta|&lt;2.4 endcap region. GEM detectors can provide precision tracking and fast trigger information. They would improve the CMS muon trigger and muon momentum resolution and provide missing redundancy in the high-eta region. Employing a new faster construction and assembly technique, we built four full-scale Triple-GEM muon detectors for the inner ring of the first muon endcap station. We plan to install these or further improved versions in CMS during the first long LHC shutdown in 2013/14 for continued testing. These detectors are designed for the stringent rate and resolution requirements in the increasingly hostile environments expected at CMS after the second long LHC shutdown in 2018/19. The new prototypes were studied in muon/pion beams at the CERN SPS. We discuss our experience with constructing the new full-scale production prototypes and present preliminary performance results from the beam test. We also tested smaller Triple-GEM prototypes with zigzag readout strips with 2 mm pitch in these beams and measured a spatial resolution of 73 microns. This readout offers a potential reduction of channel count and consequently electronics cost for this system while maintaining high spatial resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.3939v1-abstract-full').style.display = 'none'; document.getElementById('1211.3939v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 9 figures, submitted to Proc. 2012 IEEE Nucl. Sci. Symposium, Anaheim, CA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.7249">arXiv:1111.7249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.7249">pdf</a>, <a href="https://arxiv.org/ps/1111.7249">ps</a>, <a href="https://arxiv.org/format/1111.7249">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/NSSMIC.2011.6154312">10.1109/NSSMIC.2011.6154312 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Construction and Performance of Large-Area Triple-GEM Prototypes for Future Upgrades of the CMS Forward Muon System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tytgat%2C+M">M. Tytgat</a>, <a href="/search/physics?searchtype=author&amp;query=Marinov%2C+A">A. Marinov</a>, <a href="/search/physics?searchtype=author&amp;query=Zaganidis%2C+N">N. Zaganidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+J">J. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Teng%2C+H">H. Teng</a>, <a href="/search/physics?searchtype=author&amp;query=Mohapatra%2C+A">A. Mohapatra</a>, <a href="/search/physics?searchtype=author&amp;query=Moulik%2C+T">T. Moulik</a>, <a href="/search/physics?searchtype=author&amp;query=Abbrescia%2C+M">M. Abbrescia</a>, <a href="/search/physics?searchtype=author&amp;query=Colaleo%2C+A">A. Colaleo</a>, <a href="/search/physics?searchtype=author&amp;query=de+Robertis%2C+G">G. de Robertis</a>, <a href="/search/physics?searchtype=author&amp;query=Loddo%2C+F">F. Loddo</a>, <a href="/search/physics?searchtype=author&amp;query=Maggi%2C+M">M. Maggi</a>, <a href="/search/physics?searchtype=author&amp;query=Nuzzo%2C+S">S. Nuzzo</a>, <a href="/search/physics?searchtype=author&amp;query=Tupputi%2C+S+A">S. A. Tupputi</a>, <a href="/search/physics?searchtype=author&amp;query=Benussi%2C+L">L. Benussi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+S">S. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Colafranceschi%2C+S">S. Colafranceschi</a>, <a href="/search/physics?searchtype=author&amp;query=Piccolo%2C+D">D. Piccolo</a>, <a href="/search/physics?searchtype=author&amp;query=Raffone%2C+G">G. Raffone</a>, <a href="/search/physics?searchtype=author&amp;query=Saviano%2C+G">G. Saviano</a>, <a href="/search/physics?searchtype=author&amp;query=Bagliesi%2C+M+G">M. G. Bagliesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cecchi%2C+R">R. Cecchi</a>, <a href="/search/physics?searchtype=author&amp;query=Magazzu%2C+G">G. Magazzu</a>, <a href="/search/physics?searchtype=author&amp;query=Oliveri%2C+E">E. Oliveri</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.7249v1-abstract-short" style="display: inline;"> At present, part of the forward RPC muon system of the CMS detector at the CERN LHC remains uninstrumented in the high-畏region. An international collaboration is investigating the possibility of covering the 1.6 &lt; |畏| &lt; 2.4 region of the muon endcaps with large-area triple-GEM detectors. Given their good spatial resolution, high rate capability, and radiation hardness, these micro-pattern gas dete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.7249v1-abstract-full').style.display = 'inline'; document.getElementById('1111.7249v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.7249v1-abstract-full" style="display: none;"> At present, part of the forward RPC muon system of the CMS detector at the CERN LHC remains uninstrumented in the high-畏region. An international collaboration is investigating the possibility of covering the 1.6 &lt; |畏| &lt; 2.4 region of the muon endcaps with large-area triple-GEM detectors. Given their good spatial resolution, high rate capability, and radiation hardness, these micro-pattern gas detectors are an appealing option for simultaneously enhancing muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study will be presented. The design and construction of small (10\times10 cm2) and full-size trapezoidal (1\times0.5 m2) triple-GEM prototypes will be described. During detector assembly, different techniques for stretching the GEM foils were tested. Results from measurements with x-rays and from test beam campaigns at the CERN SPS will be shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system will be reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.7249v1-abstract-full').style.display = 'none'; document.getElementById('1111.7249v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 25 figures, submitted for publication in conference record of the 2011 IEEE Nuclear Science Symposium, Valencia, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RD51-Note-2011-012 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.6715">arXiv:1111.6715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.6715">pdf</a>, <a href="https://arxiv.org/ps/1111.6715">ps</a>, <a href="https://arxiv.org/format/1111.6715">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2956640">10.1063/1.2956640 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The role of coherent vorticity in turbulent transport in resistive drift-wave turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Futatani%2C+S">Shinpei Futatani</a>, <a href="/search/physics?searchtype=author&amp;query=Benkadda%2C+S">Sadruddin Benkadda</a>, <a href="/search/physics?searchtype=author&amp;query=Farge%2C+M">Marie Farge</a>, <a href="/search/physics?searchtype=author&amp;query=Schneider%2C+K">Kai Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.6715v1-abstract-short" style="display: inline;"> The coherent vortex extraction method, a wavelet technique for extracting coherent vortices out of turbulent flows, is applied to simulations of resistive drift-wave turbulence in magnetized plasma (Hasegawa-Wakatani system). The aim is to retain only the essential degrees of freedom, responsible for the transport. It is shown that the radial density flux is carried by these coherent modes. In the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.6715v1-abstract-full').style.display = 'inline'; document.getElementById('1111.6715v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.6715v1-abstract-full" style="display: none;"> The coherent vortex extraction method, a wavelet technique for extracting coherent vortices out of turbulent flows, is applied to simulations of resistive drift-wave turbulence in magnetized plasma (Hasegawa-Wakatani system). The aim is to retain only the essential degrees of freedom, responsible for the transport. It is shown that the radial density flux is carried by these coherent modes. In the quasi-hydrodynamic regime, coherent vortices exhibit depletion of the polarization-drift nonlinearity and vorticity strongly dominates strain, in contrast to the quasiadiabatic regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.6715v1-abstract-full').style.display = 'none'; document.getElementById('1111.6715v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Plasmas 15 (2008) 072305 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.4883">arXiv:1111.4883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.4883">pdf</a>, <a href="https://arxiv.org/ps/1111.4883">ps</a>, <a href="https://arxiv.org/format/1111.4883">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Test beam results of the GE1/1 prototype for a future upgrade of the CMS high-$畏$ muon system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abbaneo%2C+D">D. Abbaneo</a>, <a href="/search/physics?searchtype=author&amp;query=Abbrescia%2C+M">M. Abbrescia</a>, <a href="/search/physics?searchtype=author&amp;query=Armagnaud%2C+C">C. Armagnaud</a>, <a href="/search/physics?searchtype=author&amp;query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&amp;query=Bagliesi%2C+M+G">M. G. Bagliesi</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bally%2C+S">S. Bally</a>, <a href="/search/physics?searchtype=author&amp;query=Benussi%2C+L">L. Benussi</a>, <a href="/search/physics?searchtype=author&amp;query=Berzano%2C+U">U. Berzano</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+S">S. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+J">J. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Bunkowski%2C+K">K. Bunkowski</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+J">J. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cecchi%2C+R">R. Cecchi</a>, <a href="/search/physics?searchtype=author&amp;query=Chatelain%2C+J+P">J. P. Chatelain</a>, <a href="/search/physics?searchtype=author&amp;query=Christiansen%2C+J">J. Christiansen</a>, <a href="/search/physics?searchtype=author&amp;query=Colafranceschi%2C+S">S. Colafranceschi</a>, <a href="/search/physics?searchtype=author&amp;query=Colaleo%2C+A">A. Colaleo</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia%2C+A+C">A. Conde Garcia</a>, <a href="/search/physics?searchtype=author&amp;query=David%2C+E">E. David</a>, <a href="/search/physics?searchtype=author&amp;query=de+Robertis%2C+G">G. de Robertis</a>, <a href="/search/physics?searchtype=author&amp;query=De+Oliveira%2C+R">R. De Oliveira</a>, <a href="/search/physics?searchtype=author&amp;query=Pinto%2C+S+D">S. Duarte Pinto</a>, <a href="/search/physics?searchtype=author&amp;query=Ferry%2C+S">S. Ferry</a>, <a href="/search/physics?searchtype=author&amp;query=Formenti%2C+F">F. Formenti</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.4883v4-abstract-short" style="display: inline;"> Gas Electron Multipliers (GEM) are an interesting technology under consideration for the future upgrade of the forward region of the CMS muon system, specifically in the $1.6&lt;| 畏|&lt;2.4$ endcap region. With a sufficiently fine segmentation GEMs can provide precision tracking as well as fast trigger information. The main objective is to contribute to the improvement of the CMS muon trigger. The const&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.4883v4-abstract-full').style.display = 'inline'; document.getElementById('1111.4883v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.4883v4-abstract-full" style="display: none;"> Gas Electron Multipliers (GEM) are an interesting technology under consideration for the future upgrade of the forward region of the CMS muon system, specifically in the $1.6&lt;| 畏|&lt;2.4$ endcap region. With a sufficiently fine segmentation GEMs can provide precision tracking as well as fast trigger information. The main objective is to contribute to the improvement of the CMS muon trigger. The construction of large-area GEM detectors is challenging both from the technological and production aspects. In view of the CMS upgrade we have designed and built the largest full-size Triple-GEM muon detector, which is able to meet the stringent requirements given the hostile environment at the high-luminosity LHC. Measurements were performed during several test beam campaigns at the CERN SPS in 2010 and 2011. The main issues under study are efficiency, spatial resolution and timing performance with different inter-electrode gap configurations and gas mixtures. In this paper results of the performance of the prototypes at the beam tests will be discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.4883v4-abstract-full').style.display = 'none'; document.getElementById('1111.4883v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1107.3435">arXiv:1107.3435</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1107.3435">pdf</a>, <a href="https://arxiv.org/format/1107.3435">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2011.207">10.1017/jfm.2011.207 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasi-static magnetohydrodynamic turbulence at high Reynolds number </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Favier%2C+B+F+N">B. F. N. Favier</a>, <a href="/search/physics?searchtype=author&amp;query=Godeferd%2C+F+S">F. S. Godeferd</a>, <a href="/search/physics?searchtype=author&amp;query=Cambon%2C+C">C. Cambon</a>, <a href="/search/physics?searchtype=author&amp;query=Delache%2C+A">A. Delache</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">W. J. T. Bos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1107.3435v1-abstract-short" style="display: inline;"> We analyse the anisotropy of homogeneous turbulence in an electrically conducting fluid submitted to a uniform magnetic field, for low magnetic Reynolds number, in the quasi- static approximation. We interpret disagreeing previous predictions between linearized theory and simulations: in the linear limit, the kinetic energy of transverse velocity components, normal to the magnetic field, decays fa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.3435v1-abstract-full').style.display = 'inline'; document.getElementById('1107.3435v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1107.3435v1-abstract-full" style="display: none;"> We analyse the anisotropy of homogeneous turbulence in an electrically conducting fluid submitted to a uniform magnetic field, for low magnetic Reynolds number, in the quasi- static approximation. We interpret disagreeing previous predictions between linearized theory and simulations: in the linear limit, the kinetic energy of transverse velocity components, normal to the magnetic field, decays faster than the kinetic energy of the axial component, along the magnetic field (Moffatt (1967)); whereas many numerical studies predict a final state characterised by dominant energy of transverse velocity components. We investigate the corresponding nonlinear phenomenon using Direct Numerical Simulations of freely-decaying turbulence, and a two-point statistical spectral closure based on the Eddy Damped Quasi-Normal Markovian model. The transition from the three-dimensional turbulent flow to a &#34;two-and-a-half-dimensional&#34; flow (Montgomery &amp; Turner (1982)) is a result of the combined effects of short-time linear Joule dissipation and longer time nonlinear creation of polarisation anisotropy. It is this combination of linear and nonlinear effects which explains the disagreement between predictions from linearized theory and results from numerical simulations. The transition is characterized by the elongation of turbulent structures along the applied magnetic field, and by the strong anisotropy of directional two-point correlation spectra, in agreement with experimental evidence. Inertial equatorial transfers in both DNS and the model are presented to describe in detail the most important equilibrium dynamics. Spectral scalings are maintained in high Reynolds number turbulence attainable only with the EDQNM model, which also provides simplified modelling of the asymptotic state of quasi-static MHD turbulence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.3435v1-abstract-full').style.display = 'none'; document.getElementById('1107.3435v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Journal of Fluid Mechanics, 2011</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Fluid Mechanics 25 August 2011 681 : pp 434-461 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1107.0791">arXiv:1107.0791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1107.0791">pdf</a>, <a href="https://arxiv.org/ps/1107.0791">ps</a>, <a href="https://arxiv.org/format/1107.0791">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4731302">10.1063/1.4731302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reduction of mean-square advection in turbulent passive scalar mixing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Rubinstein%2C+R">Robert Rubinstein</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+L">Le Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1107.0791v2-abstract-short" style="display: inline;"> Direct numerical simulation data show that the variance of the coupling term in passive scalar advection by a random velocity field is smaller than it would be if the velocity and scalar fields were statistically independent. This effect is analogous to the &#34;depression of nonlinearity&#34; in hydrodynamic turbulence. We show that the trends observed in the numerical data are qualitatively consistent w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.0791v2-abstract-full').style.display = 'inline'; document.getElementById('1107.0791v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1107.0791v2-abstract-full" style="display: none;"> Direct numerical simulation data show that the variance of the coupling term in passive scalar advection by a random velocity field is smaller than it would be if the velocity and scalar fields were statistically independent. This effect is analogous to the &#34;depression of nonlinearity&#34; in hydrodynamic turbulence. We show that the trends observed in the numerical data are qualitatively consistent with the predictions of closure theories related to Kraichnan&#39;s direct interaction approximation. The phenomenon is demonstrated over a range of Prandtl numbers. In the inertial-convective range the depletion is approximately constant with respect to wavenumber. The effect is weaker in the Batchelor range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.0791v2-abstract-full').style.display = 'none'; document.getElementById('1107.0791v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Fluids 24, 7 (2012) 075104 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.4726">arXiv:1101.4726</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.4726">pdf</a>, <a href="https://arxiv.org/ps/1101.4726">ps</a>, <a href="https://arxiv.org/format/1101.4726">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3678338">10.1063/1.3678338 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reynolds number effect on the velocity increment skewness in isotropic turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Chevillard%2C+L">Laurent Chevillard</a>, <a href="/search/physics?searchtype=author&amp;query=Scott%2C+J+F">Julian F. Scott</a>, <a href="/search/physics?searchtype=author&amp;query=Rubinstein%2C+R">Robert Rubinstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.4726v1-abstract-short" style="display: inline;"> Second and third order longitudinal structure functions and wavenumber spectra of isotropic turbulence are computed using the EDQNM model and compared to results of the multifractal formalism. At the highest Reynolds number available in windtunnel experiments, $R_位=2500$, both the multifractal model and EDQNM give power-law corrections to the inertial range scaling of the velocity increment skewne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.4726v1-abstract-full').style.display = 'inline'; document.getElementById('1101.4726v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.4726v1-abstract-full" style="display: none;"> Second and third order longitudinal structure functions and wavenumber spectra of isotropic turbulence are computed using the EDQNM model and compared to results of the multifractal formalism. At the highest Reynolds number available in windtunnel experiments, $R_位=2500$, both the multifractal model and EDQNM give power-law corrections to the inertial range scaling of the velocity increment skewness. For EDQNM, this correction is a finite Reynolds number effect, whereas for the multifractal formalism it is an intermittency correction that persists at any high Reynolds number. Furthermore, the two approaches yield realistic behavior of second and third order statistics of the velocity fluctuations in the dissipative and near-dissipative ranges. Similarities and differences are highlighted, in particular the Reynolds number dependence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.4726v1-abstract-full').style.display = 'none'; document.getElementById('1101.4726v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.2819">arXiv:1009.2819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.2819">pdf</a>, <a href="https://arxiv.org/format/1009.2819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.83.036314">10.1103/PhysRevE.83.036314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lagrangian statistics and flow topology in forced two-dimensional turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kadoch%2C+B">B. Kadoch</a>, <a href="/search/physics?searchtype=author&amp;query=del-Castillo-Negrete%2C+D">D. del-Castillo-Negrete</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">W. J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Schneider%2C+K">K. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.2819v1-abstract-short" style="display: inline;"> A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion that provides a simplified tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.2819v1-abstract-full').style.display = 'inline'; document.getElementById('1009.2819v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.2819v1-abstract-full" style="display: none;"> A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion that provides a simplified tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains with non-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed using the Lagrangian Weiss field, i.e., the Weiss field computed along the particles&#39; trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. On the other hand, in the intermediate regions the pdf has exponential decaying tails. The conditional (with respect to the flow topology) pdfs of the Lagrangian velocity exhibit Gaussian behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power law behavior with a decay exponent of order -2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.2819v1-abstract-full').style.display = 'none'; document.getElementById('1009.2819v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.0149">arXiv:1009.0149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.0149">pdf</a>, <a href="https://arxiv.org/ps/1009.0149">ps</a>, <a href="https://arxiv.org/format/1009.0149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.101.235003">10.1103/PhysRevLett.101.235003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rapid generation of angular momentum in bounded magnetized plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Neffaa%2C+S">Salah Neffaa</a>, <a href="/search/physics?searchtype=author&amp;query=Schneider%2C+K">Kai Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.0149v1-abstract-short" style="display: inline;"> Direct numerical simulations of two-dimensional decaying MHD turbulence in bounded domains show the rapid generation of angular momentum in nonaxisymmetric geometries. It is found that magnetic fluctuations enhance this mechanism. On a larger time scale, the generation of a magnetic angular momentum, or angular field, is observed. For axisymmetric geometries, the generation of angular momentum is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0149v1-abstract-full').style.display = 'inline'; document.getElementById('1009.0149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.0149v1-abstract-full" style="display: none;"> Direct numerical simulations of two-dimensional decaying MHD turbulence in bounded domains show the rapid generation of angular momentum in nonaxisymmetric geometries. It is found that magnetic fluctuations enhance this mechanism. On a larger time scale, the generation of a magnetic angular momentum, or angular field, is observed. For axisymmetric geometries, the generation of angular momentum is absent; nevertheless, a weak magnetic field can be observed. The derived evolution equations for both the angular momentum and angular field yield possible explanations for the observed behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0149v1-abstract-full').style.display = 'none'; document.getElementById('1009.0149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 101 (2008) 235003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.0127">arXiv:1009.0127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.0127">pdf</a>, <a href="https://arxiv.org/ps/1009.0127">ps</a>, <a href="https://arxiv.org/format/1009.0127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3121303">10.1063/1.3121303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the unsteady behavior of turbulence models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rubinstein%2C+R">Robert Rubinstein</a>, <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.0127v1-abstract-short" style="display: inline;"> Periodically forced turbulence is used as a test case to evaluate the predictions of two-equation and multiple-scale turbulence models in unsteady flows. The limitations of the two-equation model are shown to originate in the basic assumption of spectral equilibrium. A multiple-scale model based on a picture of stepwise energy cascade overcomes some of these limitations, but the absence of nonloca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0127v1-abstract-full').style.display = 'inline'; document.getElementById('1009.0127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.0127v1-abstract-full" style="display: none;"> Periodically forced turbulence is used as a test case to evaluate the predictions of two-equation and multiple-scale turbulence models in unsteady flows. The limitations of the two-equation model are shown to originate in the basic assumption of spectral equilibrium. A multiple-scale model based on a picture of stepwise energy cascade overcomes some of these limitations, but the absence of nonlocal interactions proves to lead to poor predictions of the time variation of the dissipation rate. A new multiple-scale model that includes nonlocal interactions is proposed and shown to reproduce the main features of the frequency response correctly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0127v1-abstract-full').style.display = 'none'; document.getElementById('1009.0127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Fluids 21 (2009) 041701 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.0126">arXiv:1009.0126</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.0126">pdf</a>, <a href="https://arxiv.org/ps/1009.0126">ps</a>, <a href="https://arxiv.org/format/1009.0126">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1080/14685240903273873">10.1080/14685240903273873 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large-scale bottleneck effect in two-dimensional turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoglio%2C+J">Jean-Pierre Bertoglio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.0126v1-abstract-short" style="display: inline;"> The bottleneck phenomenon in three-dimensional turbulence is generally associated with the dissipation range of the energy spectrum. In the present work, it is shown by using a two-point closure theory, that in two-dimensional turbulence it is possible to observe a bottleneck at the large scales, due to the effect of friction on the inverse energy cascade. This large-scale bottleneck is directly r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0126v1-abstract-full').style.display = 'inline'; document.getElementById('1009.0126v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.0126v1-abstract-full" style="display: none;"> The bottleneck phenomenon in three-dimensional turbulence is generally associated with the dissipation range of the energy spectrum. In the present work, it is shown by using a two-point closure theory, that in two-dimensional turbulence it is possible to observe a bottleneck at the large scales, due to the effect of friction on the inverse energy cascade. This large-scale bottleneck is directly related to the process of energy condensation, the pile-up of energy at wavenumbers corresponding to the domain size. The link between the use of friction and the creation of space-filling structures is discussed and it is concluded that the careless use of hypofriction might reduce the inertial range of the energy spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0126v1-abstract-full').style.display = 'none'; document.getElementById('1009.0126v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of turbulence 10 (2009) 1-8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0712.2987">arXiv:0712.2987</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0712.2987">pdf</a>, <a href="https://arxiv.org/ps/0712.2987">ps</a>, <a href="https://arxiv.org/format/0712.2987">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2565563">10.1063/1.2565563 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inertial range scaling of scalar flux spectra in uniformly sheared turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoglio%2C+J">Jean-Pierre Bertoglio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0712.2987v1-abstract-short" style="display: inline;"> A model based on two-point closure theory of turbulence is proposed and applied to study the Reynolds number dependency of the scalar flux spectra in homogeneous shear flow with a cross-stream uniform scalar gradient. For the cross-stream scalar flux, in the inertial range the spectral behavior agrees with classical predictions and measurements. The streamwise scalar flux is found to be in good&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0712.2987v1-abstract-full').style.display = 'inline'; document.getElementById('0712.2987v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0712.2987v1-abstract-full" style="display: none;"> A model based on two-point closure theory of turbulence is proposed and applied to study the Reynolds number dependency of the scalar flux spectra in homogeneous shear flow with a cross-stream uniform scalar gradient. For the cross-stream scalar flux, in the inertial range the spectral behavior agrees with classical predictions and measurements. The streamwise scalar flux is found to be in good agreement with the results of atmospheric measurements. However, both the model results and the atmospheric measurements disagree with classical predictions. A detailed analysis of the different terms in the evolution equation for the streamwise scalar flux spectrum shows that nonlinear contributions are governing the inertial subrange of this spectrum and that these contributions are relatively more important than for the cross-stream flux. A new expression for the scalar flux spectra is proposed. It allows us to unify the description of the components in one single expression, leading to a classical K^-7/3 inertial range for the cross-stream component and to a new K^-23/9 scaling for the streamwise component that agrees better with atmospheric measurements than the K^-3 prediction of J. C. Wyngaard and O. R. Cot茅 [Quart. J. R. Met. Soc. 98, 590 (1972)]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0712.2987v1-abstract-full').style.display = 'none'; document.getElementById('0712.2987v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Fluids 19 (2007) 025104 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0712.2801">arXiv:0712.2801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0712.2801">pdf</a>, <a href="https://arxiv.org/ps/0712.2801">ps</a>, <a href="https://arxiv.org/format/0712.2801">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2219766">10.1063/1.2219766 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of spectrally truncated inviscid turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoglio%2C+J">Jean-Pierre Bertoglio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0712.2801v1-abstract-short" style="display: inline;"> The evolution of the turbulent energy spectrum for the inviscid spectrally truncated Euler equations is studied by closure calculations. The observed behavior is similar to the one found in direct numerical simulations [Cichowlas, Bona茂titi, Debbasch, and Brachet, Phys. Rev. Lett. 95, 264502 (2005)]. A Kolmogorov spectral range and an equipartition range are observed simultaneously. Between thes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0712.2801v1-abstract-full').style.display = 'inline'; document.getElementById('0712.2801v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0712.2801v1-abstract-full" style="display: none;"> The evolution of the turbulent energy spectrum for the inviscid spectrally truncated Euler equations is studied by closure calculations. The observed behavior is similar to the one found in direct numerical simulations [Cichowlas, Bona茂titi, Debbasch, and Brachet, Phys. Rev. Lett. 95, 264502 (2005)]. A Kolmogorov spectral range and an equipartition range are observed simultaneously. Between these two ranges a &#34;quasi-dissipative&#34; zone is present in the kinetic energy spectrum. The time evolution of the wave number that marks the beginning of the equipartition range is analyzed and it is shown that spectral nonlocal interactions are governing this evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0712.2801v1-abstract-full').style.display = 'none'; document.getElementById('0712.2801v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Fluids 18 (2006) 071701 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0712.2799">arXiv:0712.2799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0712.2799">pdf</a>, <a href="https://arxiv.org/ps/0712.2799">ps</a>, <a href="https://arxiv.org/format/0712.2799">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2714079">10.1063/1.2714079 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral imbalance and the normalized dissipation rate of turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+L">L. Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoglio%2C+J">Jean-Pierre Bertoglio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0712.2799v1-abstract-short" style="display: inline;"> The normalized turbulent dissipation rate $C_蔚$ is studied in decaying and forced turbulence by direct numerical simulations, large-eddy simulations, and closure calculations. A large difference in the values of $C_蔚$ is observed for the two types of turbulence. This difference is found at moderate Reynolds number, and it is shown that it persists at high Reynolds number, where the value of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0712.2799v1-abstract-full').style.display = 'inline'; document.getElementById('0712.2799v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0712.2799v1-abstract-full" style="display: none;"> The normalized turbulent dissipation rate $C_蔚$ is studied in decaying and forced turbulence by direct numerical simulations, large-eddy simulations, and closure calculations. A large difference in the values of $C_蔚$ is observed for the two types of turbulence. This difference is found at moderate Reynolds number, and it is shown that it persists at high Reynolds number, where the value of $C_蔚$ becomes independent of the Reynolds number, but is still not unique. This difference can be explained by the influence of the nonlinear cascade time that introduces a spectral disequilibrium for statistically nonstationary turbulence. Phenomenological analysis yields simple analytical models that satisfactorily reproduce the numerical results. These simple spectral models also reproduce and explain the increase of $C_蔚$ at low Reynolds number that is observed in the simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0712.2799v1-abstract-full').style.display = 'none'; document.getElementById('0712.2799v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Fluids 19 (2007) 045101 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10