CINXE.COM
Search results for: flow holes
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flow holes</title> <meta name="description" content="Search results for: flow holes"> <meta name="keywords" content="flow holes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flow holes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flow holes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4966</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flow holes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4966</span> Effect of Flow Holes on Heat Release Performance of Extruded-Type Heat Sink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung%20Hyun%20Kim">Jung Hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the enhancement of the heat release performance of an extruded-type heat sink to prepare the large-capacity solar inverter thru the flow holes in the base plate near the heat sources was investigated. Optimal location and number of the holes in the baseplate were determined by using a commercial computation program. The heat release performance of the shape-modified heat sink was measured experimentally and compared with that of the simulation. The heat sink with 12 flow holes in the 18-mm-thick base plate has a 8.1% wider heat transfer area, a 2.5% more mass flow of air, and a 2.7% higher heat release rate than those of the original heat sink. Also, the surface temperature of the base plate was lowered 1.5°C by the holes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20sink" title="heat sink">heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20holes" title=" flow holes"> flow holes</a> </p> <a href="https://publications.waset.org/abstracts/8516/effect-of-flow-holes-on-heat-release-performance-of-extruded-type-heat-sink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4965</span> Porous Bluff-Body Disc on Improving the Gas-Mixing Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shun-Chang%20Yen">Shun-Chang Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=You-Lun%20Peng"> You-Lun Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Ching%20San"> Kuo-Ching San</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study on a bluff-body structure with multiple holes was conducted using ANSYS Fluent computational fluid dynamics analysis. The effects of the hole number and jet inclination angles were considered under a fixed gas flow rate and nonreactive gas. The bluff body with multiple holes can transform the axial momentum into a radial and tangential momentum as well as increase the swirl number (S). The concentration distribution in the mixing of a central carbon dioxide (CO2) jet and an annular air jet was utilized to analyze the mixing efficiency. Three bluff bodies with differing hole numbers (H = 3, 6, and 12) and three jet inclination angles (θ = 45°, 60°, and 90°) were designed for analysis. The Reynolds normal stress increases with the inclination angle. The Reynolds shear stress, average turbulence intensity, and average swirl number decrease with the inclination angle. For an unsymmetrical hole configuration (i.e., H = 3), the streamline patterns exhibited an unsymmetrical flow field. The highest mixing efficiency (i.e., the lowest integral gas fraction of CO2) occurred at H = 3. Furthermore, the highest swirl number coincided with the strongest effect on the mass fraction of CO2. Therefore, an unsymmetrical hole arrangement induced a high swirl flow behind the porous disc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bluff%20body%20with%20multiple%20holes" title="bluff body with multiple holes">bluff body with multiple holes</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl-jet%20flow" title=" swirl-jet flow"> swirl-jet flow</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20efficiency" title=" mixing efficiency"> mixing efficiency</a> </p> <a href="https://publications.waset.org/abstracts/56853/porous-bluff-body-disc-on-improving-the-gas-mixing-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4964</span> Comparative Analysis of Internal Combustion Engine Cooling Fins Using Ansys Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Kumar%20R.%20G.">Aakash Kumar R. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Anees%20K.%20Ahamed"> Anees K. Ahamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20M.%20Mohan"> Raj M. Mohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective engine cooling can improve the engine’s life and efficacy. The design of the fin of the cylinder head and block determines the cooling mechanism of air cooled engine. The heat conduction takes place through the engine parts and convection of heat from the surface of the fins takes place with air as the heat transferring medium. The air surrounding the cooling fins helps in removal of heat built up by the air cooled engine. If the heat removal rate is inadequate, it will result in lower engine efficiency and high thermal stresses in the engine. The main drawback of the air cooled engine is the low heat transfer rate of the cooling fins .This work is based on scrutiny of previous researches that involves enhancing of heat transfer rate of cooling fins. The current research is about augmentation of heat transfer rate of longitudinal rectangular fin profiles by varying the length of the fin and diameter of holes on the fins. Thermal and flow analysis is done for two different models of fins. One is simple fin without holes and the other is perforated (consist of holes). It can be inferred from the research that the fins with holes have a higher fin efficiency than the fins without holes. The geometry of the fin is done in CREO. The heat transfer analysis is done using ANSYS software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fins" title="fins">fins</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20fins" title=" perforated fins"> perforated fins</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20flux" title=" thermal flux"> thermal flux</a> </p> <a href="https://publications.waset.org/abstracts/59711/comparative-analysis-of-internal-combustion-engine-cooling-fins-using-ansys-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4963</span> Combustion and Emission Characteristics in a Can-Type Combustion Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selvakuma%20Kumaresh">Selvakuma Kumaresh</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combustion phenomenon will be accomplished effectively by the development of low emission combustor. One of the significant factors influencing the entire Combustion process is the mixing between a swirling angular jet (Primary Air) and the non-swirling inner jet (fuel). To study this fundamental flow, the chamber had to be designed in such a manner that the combustion process to sustain itself in a continuous manner and the temperature of the products is sufficiently below the maximum working temperature in the turbine. This study is used to develop the effective combustion with low unburned combustion products by adopting the concept of high swirl flow and motility of holes in the secondary chamber. The proper selection of a swirler is needed to reduce emission which can be concluded from the emission of Nox and CO2. The capture of CO2 is necessary to mitigate CO2 emissions from natural gas. Thus the suppression of unburned gases is a meaningful objective for the development of high performance combustor without affecting turbine blade temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion" title="combustion">combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a>, <a href="https://publications.waset.org/abstracts/search?q=can-type%20combustion%20chamber" title=" can-type combustion chamber"> can-type combustion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=motility%20of%20holes" title=" motility of holes"> motility of holes</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20flow" title=" swirl flow"> swirl flow</a> </p> <a href="https://publications.waset.org/abstracts/11885/combustion-and-emission-characteristics-in-a-can-type-combustion-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4962</span> FEM for Stress Reduction by Optimal Auxiliary Holes in a Uniaxially Loaded Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basavaraj%20R.%20Endigeri">Basavaraj R. Endigeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Shriharsh%20Desphande"> Shriharsh Desphande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimization and reduction of stress concentration around holes in a uniaxially loaded plate is one of the important design criteria in many of the engineering applications. These stress risers will lead to failure of the component at the region of high stress concentration which has to be avoided by means of providing auxiliary holes on either side of the parent hole. By literature survey it is known that till date, there is no analytical solution documented to reduce the stress concentration by providing auxiliary holes expect for fever geometries. In the present work, plate with a hole subjected to uniaxial load is analyzed with the numerical method to determine the optimum sizes and locations for the auxillary holes for different center hole diameter to plate width ratios. The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 8.0 is used to carry out analysis and optimization is performed to determine the location and radii for optimum values of auxiliary holes to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. It is found from the work that introduction of auxiliary holes on either side of central circular hole will reduce stress concentration factor by a factor of 19 to 21 percentage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor" title=" stress concentration factor"> stress concentration factor</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20holes" title=" auxiliary holes"> auxiliary holes</a> </p> <a href="https://publications.waset.org/abstracts/6004/fem-for-stress-reduction-by-optimal-auxiliary-holes-in-a-uniaxially-loaded-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4961</span> Performances of Two-Segment Crash Box with Holes under Oblique Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moch%20Agus%20Choiron">Moch Agus Choiron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crash box design has been developed to obtain optimum energy absorption. In this study, two-segment crash box design with holes is investigated under oblique load. The deformation behavior and crash energy absorption are observed. The analysis was performed using finite element method. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. The models consist of 2 and 4 holes laid within ¼, ½ and ¾ from first segment length. 100 mm aluminum crash box and frontal crash velocity of 16 km/jam were selected. Based on simulation results, it can be concluded that 2 holes located at ¾ has the largest crash energy absorption. This behavior associated with deformation pattern, which produces higher number of folding than other models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crash%20Box" title="crash Box">crash Box</a>, <a href="https://publications.waset.org/abstracts/search?q=two-segments" title=" two-segments"> two-segments</a>, <a href="https://publications.waset.org/abstracts/search?q=holes%20configuration" title=" holes configuration"> holes configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20load" title=" oblique load"> oblique load</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20pattern" title=" deformation pattern"> deformation pattern</a> </p> <a href="https://publications.waset.org/abstracts/40085/performances-of-two-segment-crash-box-with-holes-under-oblique-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4960</span> A Numerical Study on the Flow in a Pipe with Perforated Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myeong%20Hee%20Jeong">Myeong Hee Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of perforated plate and tubes is common in applications such as vehicle exhaust silencers, attenuators in air moving ducts and duct linings in jet engines. Also, perforated plate flow conditioners designed to improve flow distribution upstream of an orifice plate flow meter typically have 50–60% free area but these generally employ a non-uniform distribution of holes of several sizes to encourage the formation of a fully developed pipe flow velocity distribution. In this study, therefore, numerical investigations on the flow characteristics with the various perforated plates have been performed and then compared to the case without a perforated plate. Three different models are adopted such as a flat perforated plate, a convex perforated plate in the direction of the inlet, and a convex perforated plate in the direction of the outlet. Simulation results show that the pressure drop with and without perforated plates are similar each other. However, it can be found that that the different shaped perforated plates influence the velocity contour, flow uniformity index, and location of the fully developed fluid flow. These results can be used as a practical guide to the best design of pipe with the perforated plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perforated%20plate" title="perforated plate">perforated plate</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20uniformity" title=" flow uniformity"> flow uniformity</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe%20turbulent%20flow" title=" pipe turbulent flow"> pipe turbulent flow</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20%28Computational%20Fluid%20Dynamics%29" title=" CFD (Computational Fluid Dynamics) "> CFD (Computational Fluid Dynamics) </a> </p> <a href="https://publications.waset.org/abstracts/23752/a-numerical-study-on-the-flow-in-a-pipe-with-perforated-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">691</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4959</span> Study of Photonic Crystal Band Gap and Hexagonal Microcavity Based on Elliptical Shaped Holes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benmerkhi">A. Benmerkhi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bounouioua"> A. Bounouioua</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouchemat"> M. Bouchemat</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Bouchemat"> T. Bouchemat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a numerical optical properties of a triangular periodic lattice of elliptical air holes. We report the influence of the ratio (semi-major axis length of elliptical hole to the filling ratio) on the photonic band gap. Then by using the finite difference time domain (FDTD) algorithm, the resonant wavelength of the point defect microcavities in a two-dimensional photonic crystal (PC) shifts towards the low wavelengths with significantly increased filing ratio. It can be noted that the Q factor is gradually changed to higher when the filling ratio increases. It is due to an increase in reflectivity of the PC mirror. Also we theoretically investigate the H1 cavity, where the value of semi-major axis (Rx) of the six holes surrounding the cavity are fixed at 0.5a and the Rx of the two edge air holes are fixed at the optimum value of 0.52a. The highest Q factor of 4.1359 × 10<sup>6</sup> is achieved at the resonant mode located at λ = 1.4970 µm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal" title="photonic crystal">photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=microcavity" title=" microcavity"> microcavity</a>, <a href="https://publications.waset.org/abstracts/search?q=filling%20ratio" title=" filling ratio"> filling ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptical%20holes" title=" elliptical holes"> elliptical holes</a> </p> <a href="https://publications.waset.org/abstracts/119036/study-of-photonic-crystal-band-gap-and-hexagonal-microcavity-based-on-elliptical-shaped-holes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4958</span> Thermodynamics of Stable Micro Black Holes Production by Modeling from the LHC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aref%20Yazdani">Aref Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Tofighi"> Ali Tofighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study a simulative model for production of stable micro black holes based on investigation on thermodynamics of LHC experiment. We show that how this production can be achieved through a thermodynamic process of stability. Indeed, this process can be done through a very small amount of powerful fuel. By applying the second law of black hole thermodynamics at the scale of quantum gravity and perturbation expansion of the given entropy function, a time-dependent potential function is obtained which is illustrated with exact numerical values in higher dimensions. Seeking for the conditions for stability of micro black holes is another purpose of this study. This is proven through an injection method of putting the exact amount of energy into the final phase of the production which is equivalent to the same energy injection into the center of collision at the LHC in order to stabilize the produced particles. Injection of energy into the center of collision at the LHC is a new pattern that it is worth a try for the first time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20black%20holes" title="micro black holes">micro black holes</a>, <a href="https://publications.waset.org/abstracts/search?q=LHC%20experiment" title=" LHC experiment"> LHC experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20holes%20thermodynamics" title=" black holes thermodynamics"> black holes thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=extra%20dimensions%20model" title=" extra dimensions model"> extra dimensions model</a> </p> <a href="https://publications.waset.org/abstracts/128968/thermodynamics-of-stable-micro-black-holes-production-by-modeling-from-the-lhc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4957</span> Numerical and Experimental Investigation of Impeller Trimming on Fluid Flow inside a Centrifugal Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rouhollah%20Torabi">Rouhollah Torabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Chavoshi"> Ashkan Chavoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheyda%20Almasi"> Sheyda Almasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shima%20Almasi"> Shima Almasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the effect of impeller trim on centrifugal pump performance is studied and the most important effect which is decreasing the flow rate, differential head and efficiency is analyzed. For this case a low specific speed centrifugal pump is simulated with CFD. Total flow inside the pump including the secondary flow in sidewall gap which form internal leakage is modeled simultaneously in CFX software. The flow field in different area of pumps such as inside impeller, volute, balance holes and leakage through wear rings are studied. To validate the results experimental tests are done for various impeller diameters. Results also compared with analytic equations which predict pump performance with trimmed impeller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pump" title="centrifugal pump">centrifugal pump</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=trim" title=" trim"> trim</a> </p> <a href="https://publications.waset.org/abstracts/24849/numerical-and-experimental-investigation-of-impeller-trimming-on-fluid-flow-inside-a-centrifugal-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4956</span> Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Constantin%20Z.%20Leshan">Constantin Z. Leshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=border%20of%20the%20Universe" title="border of the Universe">border of the Universe</a>, <a href="https://publications.waset.org/abstracts/search?q=causality%20violation" title=" causality violation"> causality violation</a>, <a href="https://publications.waset.org/abstracts/search?q=perfect%20isolation" title=" perfect isolation"> perfect isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20jumps" title=" quantum jumps"> quantum jumps</a> </p> <a href="https://publications.waset.org/abstracts/55259/discontinuous-spacetime-with-vacuum-holes-as-explanation-for-gravitation-quantum-mechanics-and-teleportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4955</span> FEM for Stress Reduction by Optimal Auxiliary Holes in a Loaded Plate with Elliptical Hole </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basavaraj%20R.%20Endigeri">Basavaraj R. Endigeri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Sarganachari"> S. G. Sarganachari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel is widely used in machine parts, structural equipment and many other applications. In many steel structural elements, holes of different shapes and orientations are made with a view to satisfy the design requirements. The presence of holes in steel elements creates stress concentration, which eventually reduce the mechanical strength of the structure. Therefore, it is of great importance to investigate the state of stress around the holes for the safety and properties design of such elements. By literature survey, it is known that till date, there is no analytical solution to reduce the stress concentration by providing auxiliary holes at a definite location and radii in a steel plate. The numerical method can be used to determine the optimum location and radii of auxiliary holes. In the present work plate with an elliptical hole, for a steel material subjected to uniaxial load is analyzed and the effect of stress concentration is graphically represented .The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 11.0 is used to analyse the steel plate. The analysis is carried out using a plane 42 element. Further the ANSYS optimization model is used to determine the location and radii for optimum values of auxiliary hole to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. The results of this study are in the form of the graphs for determining the locations and diameter of optimal auxiliary holes. The graph of stress concentration v/s central hole diameter to plate width ratio. The Finite Elements results of the study indicates that the stress concentration effect of central elliptical hole in an uniaxial loaded plate can be reduced by introducing auxiliary holes on either side of the central circular hole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor" title=" stress concentration factor"> stress concentration factor</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20holes" title=" auxiliary holes"> auxiliary holes</a> </p> <a href="https://publications.waset.org/abstracts/17326/fem-for-stress-reduction-by-optimal-auxiliary-holes-in-a-loaded-plate-with-elliptical-hole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4954</span> An Energy Holes Avoidance Routing Protocol for Underwater Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Khan">A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mahmood"> H. Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Underwater Wireless Sensor Networks (UWSNs), sensor nodes close to water surface (final destination) are often preferred for selection as forwarders. However, their frequent selection makes them depleted of their limited battery power. In consequence, these nodes die during early stage of network operation and create energy holes where forwarders are not available for packets forwarding. These holes severely affect network throughput. As a result, system performance significantly degrades. In this paper, a routing protocol is proposed to avoid energy holes during packets forwarding. The proposed protocol does not require the conventional position information (localization) of holes to avoid them. Localization is cumbersome; energy is inefficient and difficult to achieve in underwater environment where sensor nodes change their positions with water currents. Forwarders with the lowest water pressure level and the maximum number of neighbors are preferred to forward packets. These two parameters together minimize packet drop by following the paths where maximum forwarders are available. To avoid interference along the paths with the maximum forwarders, a packet holding time is defined for each forwarder. Simulation results reveal superior performance of the proposed scheme than the counterpart technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20holes" title="energy holes">energy holes</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=routing" title=" routing"> routing</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater" title=" underwater"> underwater</a> </p> <a href="https://publications.waset.org/abstracts/77618/an-energy-holes-avoidance-routing-protocol-for-underwater-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4953</span> CFD Simulation on Gas Turbine Blade and Effect of Twisted Hole Shape on Film Cooling Effectiveness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thulodin%20Mat%20Lazim">Thulodin Mat Lazim</a>, <a href="https://publications.waset.org/abstracts/search?q=Aminuddin%20Saat"> Aminuddin Saat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Fakhir%20Abdulwahid"> Ammar Fakhir Abdulwahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaid%20Sattar%20Kareem"> Zaid Sattar Kareem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Film cooling is one of the cooling systems investigated for the application to gas turbine blades. Gas turbines use film cooling in addition to turbulence internal cooling to protect the blades outer surface from hot gases. The present study concentrates on the numerical investigation of film cooling performance for a row of twisted cylindrical holes in modern turbine blade. The adiabatic film effectiveness and the heat transfer coefficient are determined numerical on a flat plate downstream of a row of inclined different cross section area hole exit by using Computational Fluid Dynamics (CFD). The swirling motion of the film coolant was induced the twisted angle of film cooling holes, which inclined an angle of α toward the vertical direction and surface of blade turbine. The holes angle α of the impingement mainstream was changed from 90°, 65°, 45°, 30° and 20°. The film cooling effectiveness on surface of blade turbine wall was measured by using 3D Computational Fluid Dynamics (CFD). Results showed that the effectiveness of rectangular twisted hole has the effectiveness among other cross section area of the hole at blowing ratio (0.5, 1, 1.5 and 2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbine%20blade%20cooling" title="turbine blade cooling">turbine blade cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20cooling" title=" film cooling"> film cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry%20shape%20of%20hole" title=" geometry shape of hole"> geometry shape of hole</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/6868/cfd-simulation-on-gas-turbine-blade-and-effect-of-twisted-hole-shape-on-film-cooling-effectiveness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4952</span> Optimization of an Electro-Submersible Pump for Crude Oil Extraction Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deisy%20Becerra">Deisy Becerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Rios"> Nicolas Rios</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Asuaje"> Miguel Asuaje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Electrical Submersible Pump (ESP) is one of the most artificial lifting methods used in the last years, which consists of a serial arrangement of centrifugal pumps. One of the main concerns when handling crude oil is the formation of O/W or W/O (oil/water or water/oil) emulsions inside the pump, due to the shear rate imparted and the presence of high molecular weight substances that act as natural surfactants. Therefore, it is important to perform an analysis of the flow patterns inside the pump to increase the percentage of oil recovered using the centrifugal force and the difference in density between the oil and the water to generate the separation of liquid phases. For this study, a Computational Fluid Dynamic (CFD) model was developed on STAR-CCM+ software based on 3D geometry of a Franklin Electric 4400 4' four-stage ESP. In this case, the modification of the last stage was carried out to improve the centrifugal effect inside the pump, and a perforated double tube was designed with three different holes configurations disposed at the outlet section, through which the cut water flows. The arrangement of holes used has different geometrical configurations such as circles, rectangles, and irregular shapes determined as grating around the tube. The two-phase flow was modeled using an Eulerian approach with the Volume of Fluid (VOF) method, which predicts the distribution and movement of larger interfaces in immiscible phases. Different water-oil compositions were evaluated, such as 70-30% v/v, 80-20% v/v and 90-10% v/v, respectively. Finally, greater recovery of oil was obtained. For the several compositions evaluated, the volumetric oil fraction was greater than 0.55 at the pump outlet. Similarly, it is possible to show an inversely proportional relationship between the Water/Oil rate (WOR) and the volumetric flow. The volumetric fractions evaluated, the oil flow increased approximately between 41%-10% for circular perforations and 49%-19% for rectangular shaped perforations, regarding the inlet flow. Besides, the elimination of the pump diffuser in the last stage of the pump reduced the head by approximately 20%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamic" title="computational fluid dynamic">computational fluid dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20submersible%20pump" title=" electrical submersible pump"> electrical submersible pump</a>, <a href="https://publications.waset.org/abstracts/search?q=ESP" title=" ESP"> ESP</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20flow" title=" two phase flow"> two phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20of%20fluid" title=" volume of fluid"> volume of fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF" title=" VOF"> VOF</a>, <a href="https://publications.waset.org/abstracts/search?q=water%2Foil%20rate" title=" water/oil rate"> water/oil rate</a>, <a href="https://publications.waset.org/abstracts/search?q=WOR" title=" WOR"> WOR</a> </p> <a href="https://publications.waset.org/abstracts/126003/optimization-of-an-electro-submersible-pump-for-crude-oil-extraction-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4951</span> Buckling Analysis of Laminated Composite Plates with Central Holes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratyasha%20Patnaik">Pratyasha Patnaik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Asha"> A. V. Asha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laminated composite plates are made up of plates consisting of layers bonded together and made up of materials chemically different from each other but combined macroscopically. These have an application in aircrafts, railway coaches, bridges etc. because they are easy to handle, have got improved properties and the cost of their fabrication is low. But their failure can lead to catastrophic disasters. And generally, the failure of these structures is due to the combined effect of excessive stresses on it and buckling. Hence, the buckling behavior of these kinds of plates should be analyzed properly. Holes are provided either at the center or elsewhere in the laminar plates for the purpose of pipes for electric cables or other purposes. Due to the presence of holes in the plates, the stress concentration is near to the holes and the stiffness of the plates is reduced. In this study, the effect of a cut-out, its shape, different boundary conditions, length/thickness ratio, stacking sequence, and ply orientation has been studied. The analysis was carried out with laminated composite plates with circular, square and triangular cut-outs. Results show the effect of different cut-out shapes, boundary conditions, the orientation of layers and length/thickness ratio of the buckling load <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling" title="buckling">buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20plates" title=" composite plates"> composite plates</a>, <a href="https://publications.waset.org/abstracts/search?q=cut-out" title=" cut-out"> cut-out</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress "> stress </a> </p> <a href="https://publications.waset.org/abstracts/47770/buckling-analysis-of-laminated-composite-plates-with-central-holes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4950</span> Retrofitting of Bridge Piers against the Scour Damages: Case Study of the Marand-Soofian Route Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shatirah%20Akib">Shatirah Akib</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Basser"> Hossein Basser</a>, <a href="https://publications.waset.org/abstracts/search?q=Hojat%20Karami"> Hojat Karami</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Jahangirzadeh"> Afshin Jahangirzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bridge piers which are constructed in the track of high water rivers cause some variations in the flow patterns. This variation mostly is a result of the changes in river sections. Decreasing the river section, bridge piers significantly impress the flow patterns. Once the flow approaches the piers, the stream lines change their order, causing the appearance of different flow patterns around the bridge piers. New flow patterns are created following the geometry and the other technical characteristics of the piers. One of the most significant consequences of this event is the scour generated around the bridge piers which threatens the safety of the structure. In order to determine the properties of scour holes, to find maximum depth of the scour is an important factor. In this manuscript a numerical simulation of the scour around Marand-Soofian route bridge piers has been carried out via SSIIM 2.0 Software and the amount of maximum scour has been achieved subsequently. Eventually the methods for retrofitting of bridge piers against scours and also the methods for decreasing the amount of scour have been offered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scour" title="scour">scour</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20pier" title=" bridge pier"> bridge pier</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=SSIIM%202.0" title=" SSIIM 2.0"> SSIIM 2.0</a> </p> <a href="https://publications.waset.org/abstracts/4847/retrofitting-of-bridge-piers-against-the-scour-damages-case-study-of-the-marand-soofian-route-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4949</span> Numerical Modeling the Cavitating Flow in Injection Nozzle Holes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridha%20Zgolli">Ridha Zgolli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Kanfoudi"> Hatem Kanfoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cavitating flows inside a diesel injection nozzle hole were simulated using a mixture model. A 2D numerical model is proposed in this paper to simulate steady cavitating flows. The Reynolds-averaged Navier-Stokes equations are solved for the liquid and vapor mixture, which is considered as a single fluid with variable density which is expressed as function of the vapor volume fraction. The closure of this variable is provided by the transport equation with a source term TEM. The processes of evaporation and condensation are governed by changes in pressure within the flow. The source term is implanted in the CFD code ANSYS CFX. The influence of numerical and physical parameters is presented in details. The numerical simulations are in good agreement with the experimental data for steady flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation" title="cavitation">cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20nozzle" title=" injection nozzle"> injection nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=k%E2%80%93%CF%89" title=" k–ω"> k–ω</a> </p> <a href="https://publications.waset.org/abstracts/8089/numerical-modeling-the-cavitating-flow-in-injection-nozzle-holes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4948</span> Improvement in Acoustic Performance at Low Frequency via Application of Acoustic Resistance of Vented Hole in In-Ear Earphones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzu-Hsuan%20Lei">Tzu-Hsuan Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Chien%20Wu"> Shu-Chien Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuang-Che%20Lo"> Kuang-Che Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Chi%20Liu"> Shu-Chi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Cheng%20Liu"> Yu-Cheng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of this study was on the effects of air propagation associated with vented holes on acoustic resistance properties. A cylindrical hole with diameter and depth of 0.7 mm and 1.0 mm, respectively, was the research target. By constructing a finite element analytical model of its sound field properties, the acoustic-specific airflow resistance relationships were obtained for the differences in sound pressure and flow velocity at the two ends of this vented hole. In addition, the acoustic properties of this vented hole were included in the in-ear earphone simulation model to complete the sound pressure curve simulation analysis of the in-ear earphone system with a vented hole of corresponding size. Then, the simulation results were compared with actual measurements obtained from the standard system. Based on the results, when the in-ear earphone vented hole simulation model considered the simulated specific airflow resistance values of this cylindrical hole, the overall simulated sound pressure performance was highly consistent with that of measured values. The difference in the first peak values of sound pressure at mid-to-low frequencies was reduced from 5.64% when the simulation model did not consider the specific airflow resistance of the cylindrical hole to 1.18%, and the accuracy of the overall simulation was around 70%. This indicates the importance of the acoustic resistance properties of vented holes. Moreover, as specific airflow resistance values were able to be further quantified, the accuracy of the entire in-ear earphone simulation was ultimately and effectively elevated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=specific%20airflow%20resistance" title="specific airflow resistance">specific airflow resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=vented%20holes" title=" vented holes"> vented holes</a>, <a href="https://publications.waset.org/abstracts/search?q=in-ear%20earphone" title=" in-ear earphone"> in-ear earphone</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/186158/improvement-in-acoustic-performance-at-low-frequency-via-application-of-acoustic-resistance-of-vented-hole-in-in-ear-earphones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4947</span> Experimental Characterization and Modelling of Microfluidic Radial Diffusers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Chappel">Eric Chappel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitry%20Dumont-Fillon"> Dimitry Dumont-Fillon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Musard"> Hugo Musard</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20van%20Lintel"> Harald van Lintel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A microfluidic radial diffuser typically comprises a hole in a membrane, a small gap and pillar centred with the hole. The fluid is forced to flow radially in this gap between the membrane and the pillar. Such diffusers are notably used to form flow control valves, wherein several holes are machined into a flexible membrane progressively deflecting against pillars as the pressure increases. The fluidic modelling of such diffuser is made difficult by the presence of a transition region between the hole and the diffuser itself. An experimental investigation has been conducted using SOI wafers to form membranes with only one centred hole and Pyrex wafers for the substrate and pillars, both wafers being anodically bonded after alignment. A simple fluidic model accounting for the specific geometry of the diffuser is proposed and compared to experimental results. A good match is obtained, for Reynolds number in the range 0.5 to 35 using the analytical formula of a radial diffuser in the laminar regime with an effective inner radius that is 40% smaller than the real radius, in order to simulate correctly the flow constriction at the entrance of the diffuser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radial%20diffuser" title="radial diffuser">radial diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control%20valve" title=" flow control valve"> flow control valve</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a> </p> <a href="https://publications.waset.org/abstracts/84032/experimental-characterization-and-modelling-of-microfluidic-radial-diffusers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4946</span> Unsteady Simulation of Burning Off Carbon Deposition in a Coke Oven</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uzu-Kuei%20Hsu">Uzu-Kuei Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Keh-Chin%20Chang"> Keh-Chin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Joo-Guan%20Hang"> Joo-Guan Hang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Hsien%20Tai"> Chang-Hsien Tai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon Deposits are often occurred inside the industrial coke oven during the coking process. Accumulation of carbon deposits may cause a big issue, which seriously influences the coking operation. The carbon is burning off by injecting fresh air through pipes into coke oven which is an efficient way practically operated in industries. The burning off carbon deposition in coke oven performed by Computational Fluid Dynamics (CFD) method has provided an evaluation of the feasibility study. A three-dimensional, transient, turbulent reacting flow simulation has performed with three different injecting air flow rate and another kind of injecting configuration. The result shows that injection higher air flow rate would effectively reduce the carbon deposits. In the meantime, the opened charging holes would suck extra oxygen from the atmosphere to participate in reactions. In term of coke oven operating limits, the wall temperatures are monitored to prevent over-heating of the adiabatic walls during the burn-off process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coke%20oven" title="coke oven">coke oven</a>, <a href="https://publications.waset.org/abstracts/search?q=burning%20off" title=" burning off"> burning off</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20deposits" title=" carbon deposits"> carbon deposits</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20combustion" title=" carbon combustion"> carbon combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/19052/unsteady-simulation-of-burning-off-carbon-deposition-in-a-coke-oven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">692</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4945</span> On Energy Condition Violation for Shifting Negative Mass Black Holes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Urue%C3%B1a%20Palomo">Manuel Urueña Palomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we introduce the study of a new solution to gravitational singularities by violating the energy conditions of the Penrose Hawking singularity theorems. We consider that a shift to negative energies, and thus, to negative masses, takes place at the event horizon of a black hole, justified by the original, singular and exact Schwarzschild solution. These negative energies are supported by relativistic particle physics considering the negative energy solutions of the Dirac equation, which states that a time transformation shifts to a negative energy particle. In either general relativity or full Newtonian mechanics, these negative masses are predicted to be repulsive. It is demonstrated that the model fits actual observations, and could possibly clarify the size of observed and unexplained supermassive black holes, when considering the inflation that would take place inside the event horizon where massive particles interact antigravitationally. An approximated solution of the model proposed could be simulated in order to compare it with these observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20holes" title="black holes">black holes</a>, <a href="https://publications.waset.org/abstracts/search?q=CPT%20symmetry" title=" CPT symmetry"> CPT symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20mass" title=" negative mass"> negative mass</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20transformation" title=" time transformation"> time transformation</a> </p> <a href="https://publications.waset.org/abstracts/122009/on-energy-condition-violation-for-shifting-negative-mass-black-holes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4944</span> Fibers Presence Effects on Air Flow of Attenuator of Spun-Bond Production System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Ghassembaglou">Nasser Ghassembaglou</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Bolek"> Abdullah Bolek</a>, <a href="https://publications.waset.org/abstracts/search?q=Oktay%20Yilmaz"> Oktay Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ertan%20Oznergiz"> Ertan Oznergiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hikmet%20Kocabas"> Hikmet Kocabas</a>, <a href="https://publications.waset.org/abstracts/search?q=Safak%20Yilmaz"> Safak Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High quality air filters production using nanofibers, as a functional material, has frequently been investigated. As it is more environmentally friendly, melting method has been selected to produce nanofibers. Spun-bond production systems consist of extruder, spin-pump, nozzle package and attenuators. Spin-pump makes molten polymer steady, which flows through extruder. Fibers are formed by regular melts passing through nuzzle holes under high pressure. Attenuator prolongs fibers to micron size to be collected on a conveyor. Different designs of attenuator systems have been studied in this research; new analysis have been done on existed designs considering fibers effect on air flow; it was comprehended that, at fibers presence, there is an air flow which agglomerates fibers as a negative effect. So some new representations have been designed and CFD analysis have been done on them. Afterwards, one of these representations selected as the most optimum and effective design which is brought in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attenuator" title="attenuator">attenuator</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=spun-bond" title=" spun-bond"> spun-bond</a> </p> <a href="https://publications.waset.org/abstracts/35474/fibers-presence-effects-on-air-flow-of-attenuator-of-spun-bond-production-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4943</span> Generalized Up-downlink Transmission using Black-White Hole Entanglement Generated by Two-level System Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arif%20Jalil">Muhammad Arif Jalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Xaythavay%20Luangvilay"> Xaythavay Luangvilay</a>, <a href="https://publications.waset.org/abstracts/search?q=Montree%20Bunruangses"> Montree Bunruangses</a>, <a href="https://publications.waset.org/abstracts/search?q=Somchat%20Sonasang"> Somchat Sonasang</a>, <a href="https://publications.waset.org/abstracts/search?q=Preecha%20Yupapin"> Preecha Yupapin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Black and white holes form the entangled pair⟨BH│WH⟩, where a white hole occurs when the particle moves at the same speed as light. The entangled black-white hole pair is at the center with the radian between the gap. When the speed of particle motion is slower than light, the black hole is gravitational (positive gravity), where the white hole is smaller than the black hole. On the downstream side, the entangled pair appears to have a black hole outside the gap increases until the white holes disappear, which is the emptiness paradox. On the upstream side, when moving faster than light, white holes form times tunnels, with black holes becoming smaller. It will continue to move faster and further when the black hole disappears and becomes a wormhole (Singularity) that is only a white hole in emptiness (Emptiness). This research studies use of black and white holes generated by a two-level circuit for communication transmission carriers, in which high ability and capacity of data transmission can be obtained. The black and white hole pair can be generated by the two-level system circuit when the speech of a particle on the circuit is equal to the speed of light. The black hole forms when the particle speed has increased from slower to equal to the light speed, while the white hole is established when the particle comes down faster than light. They are bound by the entangled pair, signal and idler, ⟨Signal│Idler⟩, and the virtual ones for the white hole, which has an angular displacement of half of π radian. A two-level system is made from an electronic circuit to create black and white holes bound by the entangled bits that are immune or cloning-free from thieves. Start by creating a wave-particle behavior when its speed is equal to light black hole is in the middle of the entangled pair, which is the two bit gate. The required information can be input into the system and wrapped by the black hole carrier. A timeline (Tunnel) occurs when the wave-particle speed is faster than light, from which the entangle pair is collapsed. The transmitted information is safely in the time tunnel. The required time and space can be modulated via the input for the downlink operation. The downlink is established when the particle speed is given by a frequency(energy) form is down and entered into the entangled gap, where this time the white hole is established. The information with the required destination is wrapped by the white hole and retrieved by the clients at the destination. The black and white holes are disappeared, and the information can be recovered and used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloning%20free" title="cloning free">cloning free</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20machine" title=" time machine"> time machine</a>, <a href="https://publications.waset.org/abstracts/search?q=teleportation" title=" teleportation"> teleportation</a>, <a href="https://publications.waset.org/abstracts/search?q=two-level%20system" title=" two-level system"> two-level system</a> </p> <a href="https://publications.waset.org/abstracts/176235/generalized-up-downlink-transmission-using-black-white-hole-entanglement-generated-by-two-level-system-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4942</span> Performance of Constant Load Feed Machining for Robotic Drilling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youji%20Miyake">Youji Miyake</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In aircraft assembly, a large number of preparatory holes are required for screw and rivet joints. Currently, many holes are drilled manually because it is difficult to machine the holes using conventional computerized numerical control(CNC) machines. The application of industrial robots to drill the hole has been considered as an alternative to the CNC machines. However, the rigidity of robot arms is so low that vibration is likely to occur during drilling. In this study, it is proposed constant-load feed machining as a method to perform high-precision drilling while minimizing the thrust force, which is considered to be the cause of vibration. In this method, the drill feed is realized by a constant load applied onto the tool so that the thrust force is theoretically kept below the applied load. The performance of the proposed method was experimentally examined through the deep hole drilling of plastic and simultaneous drilling of metal/plastic stack plates. It was confirmed that the deep hole drilling and simultaneous drilling could be performed without generating vibration by controlling the tool feed rate in the appropriate range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constant%20load%20feed%20machining" title="constant load feed machining">constant load feed machining</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20drilling" title=" robotic drilling"> robotic drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20hole" title=" deep hole"> deep hole</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20drilling" title=" simultaneous drilling "> simultaneous drilling </a> </p> <a href="https://publications.waset.org/abstracts/137018/performance-of-constant-load-feed-machining-for-robotic-drilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4941</span> Flow Duration Curve Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Fuladipanah">Mehdi Fuladipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Jorabloo"> Mehdi Jorabloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of river ecosystem. Then, it is very serious to determine ecosystem flow requirement. In this paper, flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude were determined as 1-day, 3-day, 7-day, and 30 day. According the second method, hydraulic alteration indices often had low and medium range. In order to maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m3.s-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ardabil" title="ardabil">ardabil</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20flow" title=" environmental flow"> environmental flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20duration%20curve" title=" flow duration curve"> flow duration curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Gharasou%20river" title=" Gharasou river"> Gharasou river</a> </p> <a href="https://publications.waset.org/abstracts/22653/flow-duration-curve-method-to-evaluate-environmental-flow-case-study-of-gharasou-river-ardabil-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">683</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4940</span> A Study of ZY3 Satellite Digital Elevation Model Verification and Refinement with Shuttle Radar Topography Mission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Wang">Bo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the first high-resolution civil optical satellite, ZY-3 satellite is able to obtain high-resolution multi-view images with three linear array sensors. The images can be used to generate Digital Elevation Models (DEM) through dense matching of stereo images. However, due to the clouds, forest, water and buildings covered on the images, there are some problems in the dense matching results such as outliers and areas failed to be matched (matching holes). This paper introduced an algorithm to verify the accuracy of DEM that generated by ZY-3 satellite with Shuttle Radar Topography Mission (SRTM). Since the accuracy of SRTM (Internal accuracy: 5 m; External accuracy: 15 m) is relatively uniform in the worldwide, it may be used to improve the accuracy of ZY-3 DEM. Based on the analysis of mass DEM and SRTM data, the processing can be divided into two aspects. The registration of ZY-3 DEM and SRTM can be firstly performed using the conjugate line features and area features matched between these two datasets. Then the ZY-3 DEM can be refined by eliminating the matching outliers and filling the matching holes. The matching outliers can be eliminated based on the statistics on Local Vector Binning (LVB). The matching holes can be filled by the elevation interpolated from SRTM. Some works are also conducted for the accuracy statistics of the ZY-3 DEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZY-3%20satellite%20imagery" title="ZY-3 satellite imagery">ZY-3 satellite imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=SRTM" title=" SRTM"> SRTM</a>, <a href="https://publications.waset.org/abstracts/search?q=refinement" title=" refinement"> refinement</a> </p> <a href="https://publications.waset.org/abstracts/76112/a-study-of-zy3-satellite-digital-elevation-model-verification-and-refinement-with-shuttle-radar-topography-mission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4939</span> Investigation Effect of External Flow to Exhaust Gas Flow at Heavy Commercial Vehicle with CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Kanta%C5%9F">F. Kantaş</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Boyac%C4%B1"> D. Boyacı</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Din%C3%A7"> C. Dinç </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exhaust systems plays an important role in thermal heat management. Exhaust manifold picks burned gas from engine and exhaust pipes transmit exhaust gas to muffler, exhaust gas is reacted chemically to avoid noxious gas and sound is reduced in muffler then gas is threw out with tail pipe from muffler. Exhaust gas flows out from tail pipe and this hot gas flows to many parts that available around tail pipe and muffler, like spare tire, transmission, pipes etc. These parts are heated by hot exhaust gas. Also vehicle on ride, external flow effects exhaust gas flow and exhaust gas behavior is changed. It's impossible to understand which parts are heated by hot exhaust gas in tests. To understand this phenomena, exhaust gas flow is solved in CFD also external flow due to vehicle movement must be solved with exhaust gas flow. Because external flow effects exhaust gas flow behavior with many parameters. This paper investigates external flow effects exhaust gas flow behavior and other critical parameters effect exhaust gas flow behavior, like different tail pipe design, exhaust gas mass flow in critic vehicle driving situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust" title="exhaust">exhaust</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20flow" title=" gas flow"> gas flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow" title=" external flow "> external flow </a> </p> <a href="https://publications.waset.org/abstracts/17975/investigation-effect-of-external-flow-to-exhaust-gas-flow-at-heavy-commercial-vehicle-with-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4938</span> Hot Air Flow Annealing of MAPbI₃ Perovskite: Structural and Optical Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouad%20Ouafi">Mouad Ouafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahoucine%20Atourki"> Lahoucine Atourki</a>, <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Laanab"> Larbi Laanab</a>, <a href="https://publications.waset.org/abstracts/search?q=Erika%20Vega"> Erika Vega</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Mollar"> Miguel Mollar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernabe%20Marib"> Bernabe Marib</a>, <a href="https://publications.waset.org/abstracts/search?q=Boujemaa%20Jaber"> Boujemaa Jaber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the astonishing emergence of the methylammonium lead triiodide perovskite as a promising light harvester for solar cells, their physical properties in solution-processed MAPbI₃ are still crucial and need to be improved. The objective of this work is to investigate the hot airflow effect during the growth of MAPbI₃ films using the spin-coating process on their structural, optical and morphological proprieties. The experimental results show that many physical proprieties of the perovskite strongly depend on the air flow temperature and the optimization which has a beneficial effect on the perovskite quality. In fact, a clear improvement of the crystallinity and the crystallite size of MAPbI₃ perovskite is demonstrated by the XRD analyses, when the airflow temperature is increased up to 100°C. Alternatively, as far as the surface morphology is concerned, SEM micrographs show that significant homogenous nucleation, uniform surface distribution and pin holes free with highest surface coverture of 98% are achieved when the airflow temperature reaches 100°C. At this temperature, the improvement is also observed when considering the optical properties of the films. By contrast, a remarkable degradation of the MAPbI₃ perovskites associated to the PbI₂ phase formation is noticed, when the hot airflow temperature is higher than 100°C, especially 300°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20air%20flow" title="hot air flow">hot air flow</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallinity" title=" crystallinity"> crystallinity</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20coverage" title=" surface coverage"> surface coverage</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite%20morphology" title=" perovskite morphology"> perovskite morphology</a> </p> <a href="https://publications.waset.org/abstracts/102435/hot-air-flow-annealing-of-mapbi3-perovskite-structural-and-optical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4937</span> Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Hazwan%20bin%20Yusof">Mohd Hazwan bin Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Katanoda"> Hiroshi Katanoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75 mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization" title="flow visualization">flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20measurement" title=" pressure measurement"> pressure measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20flow" title=" reverse flow"> reverse flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20tube" title=" vortex tube"> vortex tube</a> </p> <a href="https://publications.waset.org/abstracts/10289/measurement-of-reverse-flow-generated-at-cold-exit-of-vortex-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20holes&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20holes&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20holes&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20holes&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20holes&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20holes&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20holes&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20holes&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20holes&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20holes&page=165">165</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20holes&page=166">166</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20holes&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>