CINXE.COM

Search results for: carbon combustion

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: carbon combustion</title> <meta name="description" content="Search results for: carbon combustion"> <meta name="keywords" content="carbon combustion"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="carbon combustion" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="carbon combustion"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3664</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: carbon combustion</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3664</span> Effect of Carbon Nanotubes Functionalization with Nitrogen Groups on Pollutant Emissions in an Internal Combustion Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Gamboa">David Gamboa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernardo%20Herrera"> Bernardo Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Cacua"> Karen Cacua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials have been explored as alternatives to reduce particulate matter from diesel engines, which is one of the most common pollutants of the air in urban centers. However, the use of nanomaterials as additives for diesel has to overcome the instability of the dispersions to be considered viable for commercial use. In this work, functionalization of carbon nanotubes with amide groups was performed to improve the stability of these nanomaterials in a mix of 90% petroleum diesel and 10% palm oil biodiesel (B10) in concentrations of 50 and 100 ppm. The resulting nano fuel was used as the fuel for a stationary internal combustion engine, where the particulate matter, NOx, and CO were measured. The results showed that the use of amide groups significantly enhances the time for the carbon nanotubes to remain suspended in the fuel, and at the same time, these nanomaterials helped to reduce the particulate matter and NOx emissions. However, the CO emissions with nano fuel were higher than those ones with the combustion of B10. These results suggest that carbon nanotubes have thermal and catalytic effects on the combustion of B10. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20combustion%20engine" title=" internal combustion engine"> internal combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/156085/effect-of-carbon-nanotubes-functionalization-with-nitrogen-groups-on-pollutant-emissions-in-an-internal-combustion-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3663</span> Carbon Dioxide Capture, Utilization, and Storage: Sequestration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankur%20Sachan">Ankur Sachan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide being the most anthropogenic greenhouse gas,it needs to be isolated from entering into atmosphere. Carbon capture and storage is process that captures CO2 emitted from various sources, separates it from other gases and stores it in a safe place preferably in underground geological formations for large period of time. It is then purified and monitored so that can be made to reuse. Monoethanolamine, zeolitic imidazolate framework, microalgae, membranes etc are utilized to capture CO2. Post-combustion, pre-combustion and oxyfuel combustion along with chemical looping combustion are technologies for scrubbing CO2. The properties of CO2 being easily miscible and readily dissolving in oil with impurities makes it capable for numerous applications such as in producing oil by enhanced oil recovery (EOR), Bio CCS Algal Synthesis etc. CO2-EOR operation is capable to produce million barrels of oil and extend the field's lifetime as in case of Weyburn Oil Field in Canada. The physical storage of CO2 is technically the most feasible direction provided that the associated safety and sustainability issues can be met and new materials for CCUS process at low cost are urgently found so that so that fossil based systems with carbon capture are cost competitive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20capture" title="carbon capture">carbon capture</a>, <a href="https://publications.waset.org/abstracts/search?q=CCUS" title=" CCUS"> CCUS</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil "> oil </a> </p> <a href="https://publications.waset.org/abstracts/20310/carbon-dioxide-capture-utilization-and-storage-sequestration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3662</span> Estimation of Energy Efficiency of Blue Hydrogen Production Onboard of Ships</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Chin%20Law">Li Chin Law</a>, <a href="https://publications.waset.org/abstracts/search?q=Epaminondas%20Mastorakos"> Epaminondas Mastorakos</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Roslee%20Othman"> Mohd Roslee Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonis%20Trakakis"> Antonis Trakakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper introduces an alternative concept of carbon capture for shipping by using pre-combustion carbon capture technology (Pre-CCS), which was proven to be less energy intensive than post-combustion carbon capture from the engine exhaust. Energy assessment on amine-based post-combustion CCS on LNG-fuelled ships showed that the energy efficiency of CCS ships reduced from 48% to 36.6%. Then, an energy assessment was carried out to compare the power and heat requirements of the most used hydrogen production methods and carbon capture technologies. Steam methane reformer (SMR) was found to be 20% more energy efficient and achieved a higher methane conversion than auto thermal reaction and methane decomposition. Next, pressure swing adsorber (PSA) has shown a lower energy requirement than membrane separation, cryogenic separation, and amine absorption in pre-combustion carbon capture. Hence, an integrated system combining SMR and PSA (SMR-PSA) with waste heat integration (WHR) was proposed. This optimized SMR-based integrated system has achieved 65% of CO₂ reduction with less than 7-percentage point of energy penalty (41.7% of energy efficiency). Further integration of post-combustion CCS with the SMR-PSA integrated system improved carbon capture rate to 86.3% with 9-percentage points of energy penalty (39% energy efficiency). The proposed system was shown to be able to meet the carbon reduction targets set by International Maritime Organization (IMO) with certain energy penalties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shipping" title="shipping">shipping</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonisation" title=" decarbonisation"> decarbonisation</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuels" title=" alternative fuels"> alternative fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20carbon" title=" low carbon"> low carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20capture" title=" carbon capture"> carbon capture</a> </p> <a href="https://publications.waset.org/abstracts/162788/estimation-of-energy-efficiency-of-blue-hydrogen-production-onboard-of-ships" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3661</span> Numerical Investigation of Oxy-Fuel Combustion in Gasoline Engine for Carbon Capture and Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Peng">Zhijun Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Li"> Xiang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Dayou%20Li"> Dayou Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Raouf%20Mobasheri"> Raouf Mobasheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Aitouche"> Abdel Aitouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To implement carbon capture and storage (CCS) for eliminating carbon dioxide (CO₂) emissions, this paper describes a study on oxy-fuel combustion (OFC) with an ethanol-gasoline dual-fuel spark ignition (DFSI) engine under economical oxygen consumption at low and mid-high loads which was performed by 1D simulation. It is demonstrated that under OFC mode without other optimisation, brake mean effective pressure (BMEP) can meet the requirement at mid-high load, but it has a considerable decline at low load compared to conventional air combustion (CAC) mode. Moreover, there is a considerable deterioration in brake specific fuel consumption (BSFC) compared to that of CAC mode. A practical method is proposed to optimise the DFSI engine performance under OFC mode by changing intake charge components and utilising appropriate water injection (WI) strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxy-fuel%20combustion" title="oxy-fuel combustion">oxy-fuel combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-fuel%20spark%20ignition%20engine" title=" dual-fuel spark ignition engine"> dual-fuel spark ignition engine</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=gasoline" title=" gasoline"> gasoline</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20simulation" title=" computer simulation"> computer simulation</a> </p> <a href="https://publications.waset.org/abstracts/150775/numerical-investigation-of-oxy-fuel-combustion-in-gasoline-engine-for-carbon-capture-and-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3660</span> A Mini-Review on Effect of Magnetic Field and Material on Combustion Engines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Santhosh">A. N. Santhosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Hegde"> Vinay Hegde</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vinod%20Kumar"> S. Vinod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Giria"> R. Giria</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20L.%20Rakesh"> D. L. Rakesh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Raghu"> M. S. Raghu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, research on automobile engineering is in high demand, particularly in the field of fuel combustion. A large number of fossil fuels are being used in combustion, which may get exhausted in the near future and are not economical. To this end, research on the use of magnetic material in combustion engines is in progress to enhance the efficiency of fuel. The present review describes the chemical, physical and mathematical theory behind the magnetic materials along with the working principle of the internal combustion engine. The effect of different magnets like ferrite magnet, Neodymium magnet, and electromagnets was discussed. The effect of magnetic field on the consumption of the fuel, brake thermal efficiency, carbon monoxide, Oxides of Nitrogen, carbon dioxide, and hydrocarbon emission, along with smoke density, have been discussed in detail. Detailed mathematical modelling that shows the effect of magnetic field on fuel combustion is elaborated. Required pictorial representations are included wherever necessary. This review article could serve as a base for studying the effect of magnetic materials on IC engines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title="magnetic field">magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=energizer" title=" energizer"> energizer</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20conditioner" title=" fuel conditioner"> fuel conditioner</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20reduction" title=" emission reduction"> emission reduction</a> </p> <a href="https://publications.waset.org/abstracts/151751/a-mini-review-on-effect-of-magnetic-field-and-material-on-combustion-engines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3659</span> Advantages of Multispectral Imaging for Accurate Gas Temperature Profile Retrieval from Fire Combustion Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean-Philippe%20Gagnon">Jean-Philippe Gagnon</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Saute"> Benjamin Saute</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Boubanga-Tombet"> Stéphane Boubanga-Tombet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. However, it is well known that most combustion gases such as carbon dioxide (CO₂), water vapor (H₂O), and carbon monoxide (CO) selectively absorb/emit infrared radiation at discrete energies, i.e., over a very narrow spectral range. Therefore, temperature profiles of most combustion processes derived from conventional broadband imaging are inaccurate without prior knowledge or assumptions about the spectral emissivity properties of the combustion gases. Using spectral filters allows estimating these critical emissivity parameters in addition to providing selectivity regarding the chemical nature of the combustion gases. However, due to the turbulent nature of most flames, it is crucial that such information be obtained without sacrificing temporal resolution. For this reason, Telops has developed a time-resolved multispectral imaging system which combines a high-performance broadband camera synchronized with a rotating spectral filter wheel. In order to illustrate the benefits of using this system to characterize combustion experiments, measurements were carried out using a Telops MS-IR MW on a very simple combustion system: a wood fire. The temperature profiles calculated using the spectral information from the different channels were compared with corresponding temperature profiles obtained with conventional broadband imaging. The results illustrate the benefits of the Telops MS-IR cameras for the characterization of laminar and turbulent combustion systems at a high temporal resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrared" title="infrared">infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral" title=" multispectral"> multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=broadband" title=" broadband"> broadband</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20temperature" title=" gas temperature"> gas temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20camera" title=" IR camera"> IR camera</a> </p> <a href="https://publications.waset.org/abstracts/146725/advantages-of-multispectral-imaging-for-accurate-gas-temperature-profile-retrieval-from-fire-combustion-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3658</span> CFD Analysis of Ammonia/Hydrogen Combustion Performance under Partially Premixed and Non-premixed Modes with Varying Inlet Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Alekxandra%20B.%20Sison">Maria Alekxandra B. Sison</a>, <a href="https://publications.waset.org/abstracts/search?q=Reginald%20C.%20Mallare"> Reginald C. Mallare</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Albert%20M.%20Mendoza"> Joseph Albert M. Mendoza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ammonia (NH₃) is the alternative carbon-free fuel of the future for its promising applications. Investigations on NH₃-fuel blends recommend using hydrogen (H₂) to increase the heating value of NH3, promote combustion performance, and improve NOx efflux mitigation. To further examine the effects of this concept, the study analyzed the combustion performance, in terms of turbulence, combustion efficiency (CE), and NOx emissions, of NH3/fuel with variations of combustor diameter ratio, H2 fuel mole fraction, and fuel mass flow rate (ṁ). The simulations were performed using Computational Fluid Dynamics (CFD) modeling to represent a non-premixed (NP) and partially premixed (PP) combustion under a two-dimensional ultra-low NOx Rich-Burn, Quick-Quench, Lean-Burn (RQL) combustor. Governed by the Detached Eddy Simulation model, it was found that the diameter ratio greatly affects the turbulence in PP and NP mode, whereas ṁ in PP should be prioritized when increasing CE. The NOx emission is minimal during PP combustion, but NP combustion suggested modifying ṁ to achieve higher CE and Reynolds number without sacrificing the NO generation from the reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20efficiency" title="combustion efficiency">combustion efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-stage%20combustor" title=" dual-stage combustor"> dual-stage combustor</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx%20emission" title=" NOx emission"> NOx emission</a> </p> <a href="https://publications.waset.org/abstracts/174237/cfd-analysis-of-ammoniahydrogen-combustion-performance-under-partially-premixed-and-non-premixed-modes-with-varying-inlet-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3657</span> Laminar Burning Velocity NH₃/H₂+Air Mixtures at Elevated Temperatures and Pressures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talal%20Hasan">Talal Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Mohammad"> Akram Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon-free combustion has great attention in today’s research for its unlimited benefits regarding various factors, and ammonia is considered a potential carbon-free alternative gas despite its flame characteristics. The Shrestha mechanism and Chemkin-Pro software will be used for numerical data. Firstly, experimental and numerical results should show good agreement to move for studying the laminar flame speed of ammonia under various conditions. Ammonia flame speed will be investigated under normal conditions (298 K, 1 atm) as well as under the influence of a range of equivalence ratios (0.6-1.8), elevated temperatures (298,323,373,423, and 473), elevated pressures (1 atm- 70 atm) and finally at varying hydrogen content (0-100%). Therefore, this work will understand the ammonia laminar flame speed characteristics and how and to what extent hydrogen can improve ammonia combustion intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminar%20burning%20velocity" title="laminar burning velocity">laminar burning velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a> </p> <a href="https://publications.waset.org/abstracts/166246/laminar-burning-velocity-nh3h2air-mixtures-at-elevated-temperatures-and-pressures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3656</span> Low NOx Combustion Technology for Minimizing NOx </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sewon%20Kim">Sewon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Changyeop%20Lee"> Changyeop Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A noble low NOx combustion technology, based on partial oxidation combustion concept in a fuel rich combustion zone, is successfully applied in this research. The burner is designed such that a portion of fuel is heated and pre-vaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, and fuel distribution ratio on the emissions of NOx and CO are experimentally investigated. This newly developed combustion technology is successfully applied to industrial furnace, and showed extremely low NOx emission levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20NOx" title="low NOx">low NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=burner" title=" burner"> burner</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20rich" title=" fuel rich"> fuel rich</a> </p> <a href="https://publications.waset.org/abstracts/17272/low-nox-combustion-technology-for-minimizing-nox" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3655</span> Characterization of Fe Doped ZnO Synthesised by Sol-Gel and Combustion Routes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ravindiran">M. Ravindiran</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Shankar"> P. Shankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the comparison of two synthesis methods, namely, sol-gel, and combustion to prepare Fe doped ZnO nano material. Characterization results for structural, optical and magnetic properties were analyzed for the sol gel and combustion synthesis derived materials. Magnetic studies of the prepared compounds reveal that the combustion synthesis derived material has good magnetization of 50 emu/gm with a better hysteresis loop curve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DMS" title="DMS">DMS</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic" title=" ferromagnetic"> ferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis%20methods" title=" synthesis methods"> synthesis methods</a> </p> <a href="https://publications.waset.org/abstracts/28107/characterization-of-fe-doped-zno-synthesised-by-sol-gel-and-combustion-routes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3654</span> Performance and Combustion Characteristics of a DI Diesel Engine Fueled with Jatropha Methyl Esters and its Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20V.%20Kolhe">Ajay V. Kolhe</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20E.%20Shelke"> R. E. Shelke</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Khandare"> S. S. Khandare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study discusses the performance and combustion characteristics of a direct injection diesel engine fueled with Jatropha methyl ester (JME). In order to determine the performance and combustion characteristics, the experiments were conducted at the constant speed mode (1500rpm) under the full load condition of the engine on single cylinder 4-stroke CI engine. The result indicated that when the test engine was fuelled with JME, the engine performance slightly weakened, the combustion characteristics slightly changed when compared to petroleum based diesel fuel. The biodiesel caused reduction in carbon monoxide (CO), unburned hydrocarbon (HC) emissions, but they caused to increases in nitrogen oxides (NOx) emissions. The useful brake power obtained is similar to diesel fuel for all loads. Oxygen content in the exhaust is more with JME blend due to the reason that fuel itself contains oxygen. JME as a new Biodiesel and its blends can be used in diesel engines without any engine modification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=CI%20engine" title=" CI engine"> CI engine</a>, <a href="https://publications.waset.org/abstracts/search?q=jatropha%20curcas%20oil" title=" jatropha curcas oil"> jatropha curcas oil</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20and%20emission" title=" performance and emission"> performance and emission</a> </p> <a href="https://publications.waset.org/abstracts/5707/performance-and-combustion-characteristics-of-a-di-diesel-engine-fueled-with-jatropha-methyl-esters-and-its-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3653</span> Combustion Characteristics of Bioethanol-Biodiesel-Diesel Fuel Blends Used in a Common Rail Diesel Engine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Aydogan">Hasan Aydogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The changes in the performance, emission and combustion characteristics of bioethanol-safflower biodiesel and diesel fuel blends used in a common rail diesel engine were investigated in this experimental study. E20B20D60 (20% bioethanol, 20% biodiesel, 60% diesel fuel by volume), E30B20D50, E50B20D30 and diesel fuel (D) were used as fuel. The tests were performed at full throttle valve opening and variable engine speeds. The results of the tests showed decreases in engine power, engine torque, carbon monoxide (CO), hydrocarbon (HC) and smoke density values with the use of bioethanol-biodiesel and diesel fuel blends, whereas, increases were observed in nitrogen oxide (NOx) and brake specific fuel consumption (BSFC) values. When combustion characteristics were examined, it was seen that the values were close to one another. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=safflower" title=" safflower"> safflower</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20characteristics" title=" combustion characteristics"> combustion characteristics</a> </p> <a href="https://publications.waset.org/abstracts/6129/combustion-characteristics-of-bioethanol-biodiesel-diesel-fuel-blends-used-in-a-common-rail-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3652</span> Sensitivity Analysis of the Heat Exchanger Design in Net Power Oxy-Combustion Cycle for Carbon Capture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hirbod%20Varasteh">Hirbod Varasteh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Gohari%20Darabkhani"> Hamidreza Gohari Darabkhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global warming and its impact on climate change is one of main challenges for current century. Global warming is mainly due to the emission of greenhouse gases (GHG) and carbon dioxide (CO<sub>2</sub>) is known to be the major contributor to the GHG emission profile. Whilst the energy sector is the primary source for CO<sub>2</sub> emission, Carbon Capture and Storage (CCS) are believed to be the solution for controlling this emission. Oxyfuel combustion (Oxy-combustion) is one of the major technologies for capturing CO<sub>2</sub> from power plants. For gas turbines, several Oxy-combustion power cycles (Oxyturbine cycles) have been investigated by means of thermodynamic analysis. NetPower cycle is one of the leading oxyturbine power cycles with almost full carbon capture capability from a natural gas fired power plant. In this manuscript, sensitivity analysis of the heat exchanger design in NetPower cycle is completed by means of process modelling. The heat capacity variation and supercritical CO<sub>2 </sub>with gaseous admixtures are considered for multi-zone analysis with Aspen Plus software. It is found that the heat exchanger design has a major role to increase the efficiency of NetPower cycle. The pinch-point analysis is done to extract the composite and grand composite curve for the heat exchanger. In this paper, relationship between the cycle efficiency and the minimum approach temperature (∆Tmin) of the heat exchanger has also been evaluated. &nbsp;Increase in ∆Tmin causes a decrease in the temperature of the recycle flue gases (RFG) and an overall decrease in the required power for the recycled gas compressor. The main challenge in the design of heat exchangers in power plants is a tradeoff between the capital and operational costs. To achieve lower ∆Tmin, larger size of heat exchanger is required. This means a higher capital cost but leading to a better heat recovery and lower operational cost. To achieve this, ∆Tmin is selected from the minimum point in the diagrams of capital and operational costs. This study provides an insight into the NetPower Oxy-combustion cycle&rsquo;s performance analysis and operational condition based on its heat exchanger design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20capture%20and%20storage" title="carbon capture and storage">carbon capture and storage</a>, <a href="https://publications.waset.org/abstracts/search?q=oxy-combustion" title=" oxy-combustion"> oxy-combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=netpower%20cycle" title=" netpower cycle"> netpower cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=oxy%20turbine%20cycles" title=" oxy turbine cycles"> oxy turbine cycles</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20emission" title=" zero emission"> zero emission</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger%20design" title=" heat exchanger design"> heat exchanger design</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20carbon%20dioxide" title=" supercritical carbon dioxide"> supercritical carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=oxy-fuel%20power%20plant" title=" oxy-fuel power plant"> oxy-fuel power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=pinch%20point%20analysis" title=" pinch point analysis"> pinch point analysis</a> </p> <a href="https://publications.waset.org/abstracts/85218/sensitivity-analysis-of-the-heat-exchanger-design-in-net-power-oxy-combustion-cycle-for-carbon-capture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3651</span> Na Promoted Ni/γ-Al2O3 Catalysts Prepared by Solution Combustion Method for Syngas Methanation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Zeng">Yan Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ni-based catalysts with different amounts of Na as promoter from 2 to 6 wt % were prepared by solution combustion method. The catalytic activity was investigated in syngas methanation reaction. Carbon oxides conversion and methane selectivity are greatly influenced by sodium loading. Adding 2 wt% Na remarkably improves catalytic activity and long-term stability, attributed to its smaller mean NiO particle size, better distribution, and milder metal-support interaction. However, excess addition of Na results in deactivation distinctly due to the blockage of active sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nickel%20catalysts" title="nickel catalysts">nickel catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas%20methanation" title=" syngas methanation"> syngas methanation</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium" title=" sodium"> sodium</a>, <a href="https://publications.waset.org/abstracts/search?q=solution%20combustion%20method" title=" solution combustion method "> solution combustion method </a> </p> <a href="https://publications.waset.org/abstracts/9499/na-promoted-nigh-al2o3-catalysts-prepared-by-solution-combustion-method-for-syngas-methanation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3650</span> Numerical Analysis of Engine Performance and Emission of a 2-Stroke Opposed Piston Hydrogen Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahamin%20Bazooyar">Bahamin Bazooyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyan%20Wang"> Xinyan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Zhao"> Hua Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a zero-carbon fuel, hydrogen can be used in combustion engines to avoid carbon emissions. This paper numerically investigates the engine performance of a two-stroke opposed piston hydrogen engine by using three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations. The engine displacement is 12.2 cm, and the compression ratio of 39. RANS simulations with the k-ε turbulence model and coupled chemistry combustion models are performed at an engine speed of 4500 rpm and hydrogen flow rate of up to 100 gr/s. In order to model the hydrogen injection process, the hydrogen nozzle was meshed with refined mesh, and injection pressure varied between 100 and 200 bars. In order to optimize the hydrogen combustion process, the injection timing was optimized between 15 before the top dead center and 10. The results showed that the combustion efficiency was mostly influenced by the injection pressures due to its impact on the fuel/air mixing and charge inhomogeneity. Nitrogen oxide (NOₓ) emissions are well correlated with engine peak temperatures, demonstrating that the thermal NO mechanism is dominant under engine conditions. Through the optimization of hydrogen injection timing and pressure, the peak thermal efficiency of 45 and NOx emission of 15 ppm/kWh can be achieved at an injection timing of 350 CA and pressure of 160 bars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engine" title="engine">engine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=two-stroke" title=" two-stroke"> two-stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=opposed-piston" title=" opposed-piston"> opposed-piston</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonisation" title=" decarbonisation"> decarbonisation</a> </p> <a href="https://publications.waset.org/abstracts/194593/numerical-analysis-of-engine-performance-and-emission-of-a-2-stroke-opposed-piston-hydrogen-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3649</span> Design of Low-Emission Catalytically Stabilized Combustion Chamber Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annapurna%20Basavaraju">Annapurna Basavaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Marn"> Andreas Marn</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Heitmeir"> Franz Heitmeir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Advisory Council for Aeronautics Research in Europe (ACARE) is cognizant for the overall reduction of NOx emissions by 80% in its vision 2020. Moreover small turbo engines have higher fuel specific emissions compared to large engines due to their limited combustion chamber size. In order to fulfill these requirements, novel combustion concepts are essential. This motivates to carry out the research on the current state of art, catalytic stabilized combustion chamber using hydrogen in small jet engines which are designed and investigated both numerically and experimentally during this project. Catalytic combustion concepts can also be adopted for low caloric fuels and are therefore not constrained to only hydrogen. However, hydrogen has high heating value and has the major advantage of producing only the nitrogen oxides as pollutants during the combustion, thus eliminating the interest on other emissions such as Carbon monoxides etc. In the present work, the combustion chamber is designed based on the ‘Rich catalytic Lean burn’ concept. The experiments are conducted for the characteristic operating range of an existing engine. This engine has been tested successfully at Institute of Thermal Turbomachinery and Machine Dynamics (ITTM), Technical University Graz. One of the facts that the efficient combustion is a result of proper mixing of fuel-air mixture, considerable significance is given to the selection of appropriate mixer. This led to the design of three diverse configurations of mixers and is investigated experimentally and numerically. Subsequently the best mixer would be equipped in the main combustion chamber and used throughout the experimentation. Furthermore, temperatures and pressures would be recorded at various locations inside the combustion chamber and the exhaust emissions will also be analyzed. The instrumented combustion chamber would be inspected at the engine relevant inlet conditions for nine different sets of catalysts at the Hot Flow Test Facility (HFTF) of the institute. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20combustion" title="catalytic combustion">catalytic combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=mixer" title=" mixer"> mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx%20emissions" title=" NOx emissions"> NOx emissions</a> </p> <a href="https://publications.waset.org/abstracts/71565/design-of-low-emission-catalytically-stabilized-combustion-chamber-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3648</span> Experimental Study on Different Load Operation and Rapid Load-change Characteristics of Pulverized Coal Combustion with Self-preheating Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongliang%20Ding">Hongliang Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziqu%20Ouyang"> Ziqu Ouyang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the basic national conditions that the energy structure is dominated by coal, it is of great significance to realize deep and flexible peak shaving of boilers in pulverized coal power plants, and maximize the consumption of renewable energy in the power grid, to ensure China's energy security and scientifically achieve the goals of carbon peak and carbon neutrality. With the promising self-preheating combustion technology, which had the potential of broad-load regulation and rapid response to load changes, this study mainly investigated the different load operation and rapid load-change characteristics of pulverized coal combustion. Four effective load-stabilization bases were proposed according to preheating temperature, coal gas composition (calorific value), combustion temperature (spatial mean temperature and mean square temperature fluctuation coefficient), and flue gas emissions (CO and NOx concentrations), on the basis of which the load-change rates were calculated to assess the load response characteristics. Due to the improvement of the physicochemical properties of pulverized coal after preheating, stable ignition and combustion conditions could be obtained even at a low load of 25%, with a combustion efficiency of over 97.5%, and NOx emission reached the lowest at 50% load, with the concentration of 50.97 mg/Nm3 (@6%O2). Additionally, the load ramp-up stage displayed higher load-change rates than the load ramp-down stage, with maximum rates of 3.30 %/min and 3.01 %/min, respectively. Furthermore, the driving force formed by high step load was conducive to the increase of load-change rate. The rates based on the preheating indicator attained the highest value of 3.30 %/min, while the rates based on the combustion indicator peaked at 2.71 %/min. In comparison, the combustion indicator accurately described the system’s combustion state and load changes, whereas the preheating indicator was easier to acquire, with a higher load-change rate, hence the appropriate evaluation strategy should depend on the actual situation. This study verified a feasible method for deep and flexible peak shaving of coal-fired power units, further providing basic data and technical supports for future engineering applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clean%20coal%20combustion" title="clean coal combustion">clean coal combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=load-change%20rate" title=" load-change rate"> load-change rate</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20shaving" title=" peak shaving"> peak shaving</a>, <a href="https://publications.waset.org/abstracts/search?q=self-preheating" title=" self-preheating"> self-preheating</a> </p> <a href="https://publications.waset.org/abstracts/164487/experimental-study-on-different-load-operation-and-rapid-load-change-characteristics-of-pulverized-coal-combustion-with-self-preheating-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3647</span> Combustion and Emission Characteristics in a Can-Type Combustion Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selvakuma%20Kumaresh">Selvakuma Kumaresh</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combustion phenomenon will be accomplished effectively by the development of low emission combustor. One of the significant factors influencing the entire Combustion process is the mixing between a swirling angular jet (Primary Air) and the non-swirling inner jet (fuel). To study this fundamental flow, the chamber had to be designed in such a manner that the combustion process to sustain itself in a continuous manner and the temperature of the products is sufficiently below the maximum working temperature in the turbine. This study is used to develop the effective combustion with low unburned combustion products by adopting the concept of high swirl flow and motility of holes in the secondary chamber. The proper selection of a swirler is needed to reduce emission which can be concluded from the emission of Nox and CO2. The capture of CO2 is necessary to mitigate CO2 emissions from natural gas. Thus the suppression of unburned gases is a meaningful objective for the development of high performance combustor without affecting turbine blade temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion" title="combustion">combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a>, <a href="https://publications.waset.org/abstracts/search?q=can-type%20combustion%20chamber" title=" can-type combustion chamber"> can-type combustion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=motility%20of%20holes" title=" motility of holes"> motility of holes</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20flow" title=" swirl flow"> swirl flow</a> </p> <a href="https://publications.waset.org/abstracts/11885/combustion-and-emission-characteristics-in-a-can-type-combustion-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3646</span> Unsteady Simulation of Burning Off Carbon Deposition in a Coke Oven</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uzu-Kuei%20Hsu">Uzu-Kuei Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Keh-Chin%20Chang"> Keh-Chin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Joo-Guan%20Hang"> Joo-Guan Hang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Hsien%20Tai"> Chang-Hsien Tai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon Deposits are often occurred inside the industrial coke oven during the coking process. Accumulation of carbon deposits may cause a big issue, which seriously influences the coking operation. The carbon is burning off by injecting fresh air through pipes into coke oven which is an efficient way practically operated in industries. The burning off carbon deposition in coke oven performed by Computational Fluid Dynamics (CFD) method has provided an evaluation of the feasibility study. A three-dimensional, transient, turbulent reacting flow simulation has performed with three different injecting air flow rate and another kind of injecting configuration. The result shows that injection higher air flow rate would effectively reduce the carbon deposits. In the meantime, the opened charging holes would suck extra oxygen from the atmosphere to participate in reactions. In term of coke oven operating limits, the wall temperatures are monitored to prevent over-heating of the adiabatic walls during the burn-off process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coke%20oven" title="coke oven">coke oven</a>, <a href="https://publications.waset.org/abstracts/search?q=burning%20off" title=" burning off"> burning off</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20deposits" title=" carbon deposits"> carbon deposits</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20combustion" title=" carbon combustion"> carbon combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/19052/unsteady-simulation-of-burning-off-carbon-deposition-in-a-coke-oven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">693</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3645</span> Reactivities of Turkish Lignites during Oxygen Enriched Combustion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Uguz">Ozlem Uguz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Demirci"> Ali Demirci</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanzade%20Haykiri-Acma"> Hanzade Haykiri-Acma</a>, <a href="https://publications.waset.org/abstracts/search?q=Serdar%20Yaman"> Serdar Yaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignitic coal holds its position as Turkey’s most important indigenous energy source to generate energy in thermal power plants. Hence, efficient and environmental-friendly use of lignite in electricity generation is of great importance. Thus, clean coal technologies have been planned to mitigate emissions and provide more efficient burning in power plants. In this context, oxygen enriched combustion (oxy-combustion) is regarded as one of the clean coal technologies, which based on burning with oxygen concentrations higher than that in air. As it is known that the most of the Turkish coals are low rank with high mineral matter content, unburnt carbon trapped in ash is, unfortunately, high, and it leads significant losses in the overall efficiencies of the thermal plants. Besides, the necessity of burning huge amounts of these low calorific value lignites to get the desired amount of energy also results in the formation of large amounts of ash that is rich in unburnt carbon. Oxygen enriched combustion technology enables to increase the burning efficiency through the complete burning of almost all of the carbon content of the fuel. This also contributes to the protection of air quality and emission levels drop reasonably. The aim of this study is to investigate the unburnt carbon content and the burning reactivities of several different lignite samples under oxygen enriched conditions. For this reason, the combined effects of temperature and oxygen/nitrogen ratios in the burning atmosphere were investigated and interpreted. To do this, Turkish lignite samples from Adıyaman-Gölbaşı and Kütahya-Tunçbilek regions were characterized first by proximate and ultimate analyses and the burning profiles were derived using DTA (Differential Thermal Analysis) curves. Then, these lignites were subjected to slow burning process in a horizontal tube furnace at different temperatures (200ºC, 400ºC, 600ºC for Adıyaman-Gölbaşı lignite and 200ºC, 450ºC, 800ºC for Kütahya-Tunçbilek lignite) under atmospheres having O₂+N₂ proportions of 21%O₂+79%N₂, 30%O₂+70%N₂, 40%O₂+60%N₂, and 50%O₂+50%N₂. These burning temperatures were specified based on the burning profiles derived from the DTA curves. The residues obtained from these burning tests were also analyzed by proximate and ultimate analyses to detect the unburnt carbon content along with the unused energy potential. Reactivity of these lignites was calculated using several methodologies. Burning yield under air condition (21%O₂+79%N₂) was used a benchmark value to compare the effectiveness of oxygen enriched conditions. It was concluded that oxygen enriched combustion method enhanced the combustion efficiency and lowered the unburnt carbon content of ash. Combustion of low-rank coals under oxygen enriched conditions was found to be a promising way to improve the efficiency of the lignite-firing energy systems. However, cost-benefit analysis should be considered for a better justification of this method since the use of more oxygen brings an unignorable additional cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal" title="coal">coal</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20enriched%20combustion" title=" oxygen enriched combustion"> oxygen enriched combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity" title=" reactivity"> reactivity</a> </p> <a href="https://publications.waset.org/abstracts/65018/reactivities-of-turkish-lignites-during-oxygen-enriched-combustion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3644</span> Production of Hydrogen and Carbon Monoxide Fuel Gas From Pine Needles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Despina%20Vamvuka">Despina Vamvuka</a>, <a href="https://publications.waset.org/abstracts/search?q=Despina%20Pentari"> Despina Pentari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forestry wastes are readily available in large quantities around the world. Based on European Green Deal for the deployment of renewable and decarbonized energy by 2050, as well as global energy crisis, energy recovery from such wastes reducing greenhouse gas emissions is very attractive. Gasification has superior environmental performance to combustion, producing a clean fuel gas utilized in internal combustion engines, gas turbines, solid oxide fuel cells, or for synthesis of liquid bio-fuels and value-added chemicals. In this work, pine needles, which are abundantly found in Mediterranean countries, were gasified by either steam or carbon dioxide via a two-step process to improve reactivity and eliminate tar, employing a fixed bed unit and a thermal analysis system. Solid, liquid and gaseous products from the whole process were characterized and their energy potential was determined. Thermal behaviour, reactivity, conversion and energy recovery were examined. The gasification process took place above 650°C. At 950°C conversion and energy recovery were 77% dry and 2 under a flow of steam and 85% dry and 2.9 under a flow of carbon dioxide, respectively. Organic matter was almost completely converted to syngas, the yield of which varied between 89% and 99%. The higher heating values of biochar, bio-oil and pyrolysis gas were 27.8 MJ/kg, 33.5 MJ/kg and 13.6 MJ/m3. Upon steam or carbon dioxide gasification, the higher heating value of syngas produced was 11.5 MJ/m3 and 12.7 MJ/m3, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gasification" title="gasification">gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=steam" title=" steam"> steam</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a> </p> <a href="https://publications.waset.org/abstracts/154105/production-of-hydrogen-and-carbon-monoxide-fuel-gas-from-pine-needles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3643</span> A Novel Combustion Engine, Design and Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Effati">M. A. Effati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Hojjati"> M. R. Hojjati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Razmdideh"> M. Razmdideh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, engine developments have focused on internal combustion engine design call for increased engine power, reduced engine size and improved fuel economy, simultaneously. In this paper, a novel design for combustion engine is proposed. Two combustion chambers were designed in two sides of cylinder. Piston was designed in a way that two sides of piston would transfer heat energy due to combustion to linear motion. This motion would convert to rotary motion through the designed mechanism connected to connecting rod. Connecting rod operation was analyzed to evaluate applied stress in 3000, 4500 and 6000 rpm. Boundary conditions including generated pressure in each side of cylinder in these 3 situations was calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20engine" title="combustion engine">combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%0D%0Aelement%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/33327/a-novel-combustion-engine-design-and-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3642</span> Instability of H2-O2-CO2 Premixed Flames on Flat Burner </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaewpradap%20Amornrat">Kaewpradap Amornrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Endo%20Takahiro"> Endo Takahiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadowaki%20Satoshi"> Kadowaki Satoshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The combustion of hydrogen-oxygen (H2-O2) mixtures was investigated to consider the reduction of carbon dioxide (CO2) and nitrogen oxide (NOx) as the greenhouse emission. Normally, the flame speed of combustion H2-O2 mixtures are very fast thus it is necessary to control the limit of mixtures with CO2 addition as H2-O2-CO2 combustion. The limit of hydrogen was set and replaced by CO2 with O2:CO2 ratio as 1:3.76, 1:4 and 1:5 for this study. In this study, the combustion of H2-O2 -CO2 on flat burner at equivalence ratio =0.5 was investigated for 10, 15 and 20 L/min of flow rate mixtures. When the ratio of CO2 increases, the power spectral density is lower, the size of attractor and cellular flame become larger because the decrease of hydrogen replaced by CO2 affects the diffusive-thermal instability. Moreover, the flow rate mixtures increases, the power spectral density increases, the size of reconstructed attractor and cell size become smaller due to decreasing of instability. The results show that the variation of CO2 and mixture flow rate affects the instability of cellular premixed flames on flat burner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=instability" title="instability">instability</a>, <a href="https://publications.waset.org/abstracts/search?q=H2-O2-CO2%20combustion" title=" H2-O2-CO2 combustion"> H2-O2-CO2 combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20burner" title=" flat burner"> flat burner</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusive-thermal%20instability" title=" diffusive-thermal instability"> diffusive-thermal instability</a> </p> <a href="https://publications.waset.org/abstracts/17224/instability-of-h2-o2-co2-premixed-flames-on-flat-burner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3641</span> Reaction Rate of Olive Stone during Combustion in a Bubbling Fluidized Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Soria-Verdugo">A. Soria-Verdugo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rubio-Rubio"> M. Rubio-Rubio</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Arrieta"> J. Arrieta</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Garc%C3%ADa-Hernando"> N. García-Hernando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combustion of biomass is a promising alternative to reduce the high pollutant emission levels associated to the combustion of fossil flues due to the net null emission of CO<sub>2</sub> attributed to biomass. However, the biomass selected should also have low contents of nitrogen and sulfur to limit the NO<sub>x</sub> and SO<sub>x</sub> emissions derived from its combustion. In this sense, olive stone is an excellent fuel to power combustion reactors with reduced levels of pollutant emissions. In this work, the combustion of olive stone particles is analyzed experimentally in a thermogravimetric analyzer (TGA) and in a bubbling fluidized bed reactor (BFB). The bubbling fluidized bed reactor was installed over a scale, conforming a macro-TGA. In both equipment, the evolution of the mass of the samples was registered as the combustion process progressed. The results show a much faster combustion process in the bubbling fluidized bed reactor compared to the thermogravimetric analyzer measurements, due to the higher heat transfer coefficient and the abrasion of the fuel particles by the bed material in the BFB reactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20stone" title="olive stone">olive stone</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20rate" title=" reaction rate"> reaction rate</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed" title=" fluidized bed"> fluidized bed</a> </p> <a href="https://publications.waset.org/abstracts/89807/reaction-rate-of-olive-stone-during-combustion-in-a-bubbling-fluidized-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3640</span> The Effect of Combustion Chamber Deposits (CCD) on Homogeneous Change Compression Ignition (HCCI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmagid%20A.%20Khattabi">Abdulmagid A. Khattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Hablus"> Ahmed A. Hablus</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20Ab.%20M.%20Shafah"> Osama Ab. M. Shafah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this work is to understand how the thermal influence of combustion chamber deposits can be utilized to expand the operating range of HCCI combustion. In order to do this, two main objectives must first be met; tracking deposit formation trends in an HCCI engine and determining the sensitivity of HCCI combustion to CCD. This requires testing that demonstrates the differences in combustion between a clean engine and one with deposits coating the chamber. This will involve a long-term test that tracks the effects of CCD on combustion. The test will start with a clean engine. One baseline HCCI operating point is maintained for the duration of the test during which gradual combustion chamber deposit formation will occur. Combustion parameters, including heat release rates and emissions will be tracked for the duration and compared to the case of a clean engine. This work will begin by detailing the specifics of the test procedure and measurements taken throughout the test. Then a review of the effects of the gradual formation of deposits in the engine will be given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuels" title="fuels">fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20atomization" title=" fuel atomization"> fuel atomization</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20factor" title=" pattern factor"> pattern factor</a>, <a href="https://publications.waset.org/abstracts/search?q=alternate%20fuels%20combustion" title=" alternate fuels combustion"> alternate fuels combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20gas%20turbine%20combustion" title=" efficiency gas turbine combustion"> efficiency gas turbine combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20blow%20out" title=" lean blow out"> lean blow out</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20and%20liner%20wall%20temperature" title=" exhaust and liner wall temperature"> exhaust and liner wall temperature</a> </p> <a href="https://publications.waset.org/abstracts/13801/the-effect-of-combustion-chamber-deposits-ccd-on-homogeneous-change-compression-ignition-hcci" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3639</span> Arc Plasma Thermochemical Preparation of Coal to Effective Combustion in Thermal Power Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Messerle">Vladimir Messerle</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20Ustimenko"> Alexandr Ustimenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Lavrichshev"> Oleg Lavrichshev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents plasma technology for solid fuel ignition and combustion. Plasma activation promotes more effective and environmentally friendly low-rank coal ignition and combustion. To realise this technology at coal fired power plants plasma-fuel systems (PFS) were developed. PFS improve efficiency of power coals combustion and decrease harmful emission. PFS is pulverized coal burner equipped with arc plasma torch. Plasma torch is the main element of the PFS. Plasma forming gas is air. It is blown through the electrodes forming plasma flame. Temperature of this flame is varied from 5000 to 6000 K. Plasma torch power is varied from 100 to 350 kW and geometrical sizes are the following: the height is 0.4-0.5 m and diameter is 0.2-0.25 m. The base of the PFS technology is plasma thermochemical preparation of coal for burning. It consists of heating of the pulverized coal and air mixture by arc plasma up to temperature of coal volatiles release and char carbon partial gasification. In the PFS coal-air mixture is deficient in oxygen and carbon is oxidised mainly to carbon monoxide. As a result, at the PFS exit a highly reactive mixture is formed of combustible gases and partially burned char particles, together with products of combustion, while the temperature of the gaseous mixture is around 1300 K. Further mixing with the air promotes intensive ignition and complete combustion of the prepared fuel. PFS have been tested for boilers start up and pulverized coal flame stabilization in different countries at power boilers of 75 to 950 t/h steam productivity. They were equipped with different types of pulverized coal burners (direct flow, muffle and swirl burners). At PFS testing power coals of all ranks (lignite, bituminous, anthracite and their mixtures) were incinerated. Volatile content of them was from 4 to 50%, ash varied from 15 to 48% and heat of combustion was from 1600 to 6000 kcal/kg. To show the advantages of the plasma technology before conventional technologies of coal combustion numerical investigation of plasma ignition, gasification and thermochemical preparation of a pulverized coal for incineration in an experimental furnace with heat capacity of 3 MW was fulfilled. Two computer-codes were used for the research. The computer simulation experiments were conducted for low-rank bituminous coal of 44% ash content. The boiler operation has been studied at the conventional mode of combustion and with arc plasma activation of coal combustion. The experiments and computer simulation showed ecological efficiency of the plasma technology. When a plasma torch operates in the regime of plasma stabilization of pulverized coal flame, NOX emission is reduced twice and amount of unburned carbon is reduced four times. Acknowledgement: This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.613.21.0005, project RFMEFI61314X0005). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal" title="coal">coal</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition" title=" ignition"> ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma-fuel%20system" title=" plasma-fuel system"> plasma-fuel system</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20torch" title=" plasma torch"> plasma torch</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20power%20plant" title=" thermal power plant"> thermal power plant</a> </p> <a href="https://publications.waset.org/abstracts/57021/arc-plasma-thermochemical-preparation-of-coal-to-effective-combustion-in-thermal-power-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3638</span> Rapid Assessment the Ability of Forest Vegetation in Kulonprogo to Store Carbon Using Multispectral Satellite Imagery and Vegetation Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ima%20Rahmawati">Ima Rahmawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Hafizul%20Kalam"> Nur Hafizul Kalam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of industrial and economic sectors in various countries very rapidly caused raising the greenhouse gas (GHG) emissions. Greenhouse gases are dominated by carbon dioxide (CO2) and methane (CH4) in the atmosphere that make the surface temperature of the earth always increase. The increasing gases caused by incomplete combustion of fossil fuels such as petroleum and coals and also high rate of deforestation. Yogyakarta Special Province which every year always become tourist destination, has a great potency in increasing of greenhouse gas emissions mainly from the incomplete combustion. One of effort to reduce the concentration of gases in the atmosphere is keeping and empowering the existing forests in the Province of Yogyakarta, especially forest in Kulonprogro is to be maintained the greenness so that it can absorb and store carbon maximally. Remote sensing technology can be used to determine the ability of forests to absorb carbon and it is connected to the density of vegetation. The purpose of this study is to determine the density of the biomass of forest vegetation and determine the ability of forests to store carbon through Photo-interpretation and Geographic Information System approach. Remote sensing imagery that used in this study is LANDSAT 8 OLI year 2015 recording. LANDSAT 8 OLI imagery has 30 meters spatial resolution for multispectral bands and it can give general overview the condition of the carbon stored from every density of existing vegetation. The method is the transformation of vegetation index combined with allometric calculation of field data then doing regression analysis. The results are model maps of density and capability level of forest vegetation in Kulonprogro, Yogyakarta in storing carbon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=kulonprogo" title=" kulonprogo"> kulonprogo</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20vegetation" title=" forest vegetation"> forest vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation%20index" title=" vegetation index"> vegetation index</a> </p> <a href="https://publications.waset.org/abstracts/41473/rapid-assessment-the-ability-of-forest-vegetation-in-kulonprogo-to-store-carbon-using-multispectral-satellite-imagery-and-vegetation-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3637</span> Experimental Research on the Effect of Activating Temperature on Combustion and Nox Emission Characteristics of Pulverized Coal in a Novel Purification-combustion Reaction System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziqu%20Ouyang">Ziqu Ouyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Su"> Kun Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel efficient and clean coal combustion system, namely the purification-combustion system, was designed by the Institute of Engineering Thermal Physics, Chinese Academy of Science, in 2022. Among them, the purification system was composed of a mesothermal activating unit and a hyperthermal reductive unit, and the combustion system was composed of a mild combustion system. In the purification-combustion system, the deep in-situ removal of coal-N could be realized by matching the temperature and atmosphere in each unit, and thus the NOx emission was controlled effectively. To acquire the methods for realizing the efficient and clean coal combustion, this study investigated the effect of the activating temperature (including 822 °C, 858 °C, 933 °C, 991 °C), which was the key factor affecting the system operation, on combustion and NOx emission characteristics of pulverized coal in a 30 kW purification-combustion test bench. The research result turned out that the activating temperature affected the combustion and NOx emission characteristics significantly. As the activating temperature increased, the temperature increased first and then decreased in the mild combustion unit, and the temperature change in the lower part was much higher than that in the upper part. Moreover, the main combustion region was always located at the top of the unit under different activating temperatures, and the combustion intensity along the unit was weakened gradually. Increasing the activating temperature excessively could destroy the reductive atmosphere early in the upper part of the unit, which wasn’t conducive to the full removal of coal-N in the reductive coal char. As the activating temperature increased, the combustion efficiency increased first and then decreased, while the NOx emission decreased first and then increased, illustrating that increasing the activating temperature properly promoted the efficient and clean coal combustion, but there was a limit to its growth. In this study, the optimal activating temperature was 858 °C. Hence, this research illustrated that increasing the activating temperature properly could realize the mutual matching of improving the combustion efficiency and reducing the NOx emission, and thus guaranteed the clean and efficient coal combustion well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activating%20temperature" title="activating temperature">activating temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20characteristics" title=" combustion characteristics"> combustion characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=nox%20emission" title=" nox emission"> nox emission</a>, <a href="https://publications.waset.org/abstracts/search?q=purification-combustion%20system" title=" purification-combustion system"> purification-combustion system</a> </p> <a href="https://publications.waset.org/abstracts/164482/experimental-research-on-the-effect-of-activating-temperature-on-combustion-and-nox-emission-characteristics-of-pulverized-coal-in-a-novel-purification-combustion-reaction-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3636</span> Application of Flue Gas Recirculation in Fluidized Bed Combustor for Energy Efficiency Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chien-Song%20Chyang">Chien-Song Chyang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a fluidized-bed combustion system, excess air ratio (EAR) and superficial velocity are major operating parameters affecting combustion behaviors, and these 2 factors are dependent variables since both fluidizing gas and combustion-supporting agent are air. EAR will change when superficial velocity alters, so that the effect of superficial velocity and/or EAR on combustion behaviors cannot be examined under a specific condition. When stage combustion is executed, one can discuss the effect of EAR under a certain specific superficial velocity, but the flow rate of secondary air and EAR are dependent. In order to investigate the effect of excess air ratio on the combustion behavior of a fluidized combustion system, the flue gas recirculation was adapted by the author in 2007. We can maintain a fixed flow rate of primary gas or secondary gas and change excess oxygen as an independent variable by adjusting the recirculated flue gas appropriately. In another word, we can investigate the effect of excess oxygen on the combustion behavior at a certain primary gas flow, or at a certain hydrodynamics conditions. This technique can be used at a lower turndown ratio to maintain the residual oxygen in the flue gas at a certain value. All the experiments were conducted in a pilot scale fluidized bed combustor. The fluidized bed combustor can be divided into four parts, i.e., windbox, distributor, combustion chamber, and freeboard. The combustion chamber with a cross-section of 0.8 m × 0.4 m was constructed of 6 mm carbon steel lined with 150 mm refractory to reduce heat loss. Above the combustion chamber, the freeboard is 0.64 m in inner diameter. A total of 27 tuyeres with orifices of 5 and 3 mm inside diameters mounted on a 6 mm stainless-steel plate were used as the gas distributor with an open-area-ratio of 0.52%. The Primary gas and secondary gas were fixed at 3 Nm3/min and 1 Nm3/min respectively. The bed temperature was controlled by three heat transfer tubes inserted into the bubbling bed zone. The experimental data shows that bed temperature, CO and NO emissions increase with the stoichiometric oxygen of the primary gas. NO emissions decrease with the stoichiometric oxygen of the primary. Compared with part of primary air substituted with nitrogen, a lower NO emission can be obtained while flue gas recirculation applies as part of primary air. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20combustion" title="fluidized bed combustion">fluidized bed combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=flue%20gas%20circulation" title=" flue gas circulation"> flue gas circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=NO%20emission" title=" NO emission"> NO emission</a>, <a href="https://publications.waset.org/abstracts/search?q=recycle" title=" recycle"> recycle</a> </p> <a href="https://publications.waset.org/abstracts/54914/application-of-flue-gas-recirculation-in-fluidized-bed-combustor-for-energy-efficiency-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3635</span> Preparation of Ceramic Hollow Fiber Membranes for CO2 Capture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Wei%20Huang">Kai-Wei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Lin"> Yi-Feng Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to have chemical resistance, high heat resistance and mechanical strength of ceramic hollow fiber membrane into a membrane contactor, and the combustion process is applied (Post-combustion capture) of the carbon dioxide absorption device. In this paper, we would investigate the effect of the ceramic membrane hydrophobicity to the flux of the carbon dioxide adsorption. To improve the applicability of the ceramic film. We use the dry-wet spinning method with the high temperature sintering process for preparing a ceramic hollow fiber membranes to increase the filling density per unit volume of the membrane. The PESf/Al2O3 ratio of 1:5 was prepared ceramic hollow fibers membrane precursors and investigate the relationship of the different sintering temperature to the membrane pore size and porosity. It can be found that the membrane via the sintering temperature of 1400 °C prepared with the highest porosity of 70%, while the membrane via the sintering temperature of 1600 °C prepared although has a minimum porosity of about 54%, but also has the smallest average pore size of about 0.2 μm. The hydrophilic ceramic hollow fiber membranes which after high-temperature sintering were changed into hydrophobic successfully via the 0.02M FAS modifier. The hydrophobic ceramic hollow fiber membranes with different sintering temperature, the membrane which was prepared via 1400 °C sintering has the highest carbon dioxide adsorption about 4.2 × 10-4 (mole/m2s). The membrane prepared via 1500 °C sintering has the carbon dioxide adsorption about 3.8 × 10-3 (mole/m2s),and the membrane prepared via 1600 °C sintering has the lowest carbon dioxide adsorption about 2.68 × 10-3 (mole/m2s).All of them have reusability and in long time operation, the membrane which was prepared via 1600 °C sintering has the smallest pores and also could operate for three days. After the test, the 1600 °C sintering ceramic hollow fiber membrane was most suitable for the factory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20capture" title="carbon dioxide capture">carbon dioxide capture</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20contactor" title=" membrane contactor"> membrane contactor</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title=" ceramic membrane"> ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20hollow%20fiber%20membrane" title=" ceramic hollow fiber membrane"> ceramic hollow fiber membrane</a> </p> <a href="https://publications.waset.org/abstracts/21521/preparation-of-ceramic-hollow-fiber-membranes-for-co2-capture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20combustion&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20combustion&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20combustion&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20combustion&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20combustion&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20combustion&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20combustion&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20combustion&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20combustion&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20combustion&amp;page=122">122</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20combustion&amp;page=123">123</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20combustion&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10