CINXE.COM
Search results for: Composting
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Composting</title> <meta name="description" content="Search results for: Composting"> <meta name="keywords" content="Composting"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Composting" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Composting"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 79</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Composting</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> The Composting Process from a Waste Management Method to a Remediation Procedure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Petruzzelli">G. Petruzzelli</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pedron"> F. Pedron</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Grifoni"> M. Grifoni</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Gorini"> F. Gorini</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rosellini"> I. Rosellini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Pezzarossa"> B. Pezzarossa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composting is a controlled technology to enhance the natural aerobic process of organic wastes degradation. The resulting product is a humified material that is principally recyclable for agricultural purpose. The composting process is one of the most important tools for waste management, by the European Community legislation. In recent years composting has been increasingly used as a remediation technology to remove biodegradable contaminants from soil, and to modulate heavy metals bioavailability in phytoremediation strategies. An optimization in the recovery of resources from wastes through composting could enhance soil fertility and promote its use in the remediation biotechnologies of contaminated soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=biopile" title=" biopile"> biopile</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20clean-up" title=" soil clean-up"> soil clean-up</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20recycling" title=" waste recycling"> waste recycling</a> </p> <a href="https://publications.waset.org/abstracts/6245/the-composting-process-from-a-waste-management-method-to-a-remediation-procedure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> The Effect of Parameter Controls for Manure Composting in Waste Recycling Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junyoung%20Kim">Junyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Shangwha%20Cha"> Shangwha Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Soomee%20Kang"> Soomee Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jake%20S.%20Byun"> Jake S. Byun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study shows the effect of parameter controls for livestock manure composting in waste recycling process for the development of a new design of a microorganism-oriented- composting system. Based on the preliminary studies, only the temperature control by changing mechanical mixing can reduce microorganisms’ biodegradability from 3 to 6 months to 15 days, saving the consumption of energy and manual labor. The final degree of fermentation in just 5 days of composting increased to ‘3’ comparing the compost standard level ‘4’ in Korea, others standards were all satisfied. This result shows that the controlling the optimum microorganism parameter using an ICT device connected to mixing condition can increase the effectiveness of fermentation system and reduce odor to nearly zero, and lead to upgrade the composting method than the conventional <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manure%20composting" title="manure composting">manure composting</a>, <a href="https://publications.waset.org/abstracts/search?q=odor%20removal" title=" odor removal"> odor removal</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20control" title=" parameter control"> parameter control</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20recycling" title=" waste recycling"> waste recycling</a> </p> <a href="https://publications.waset.org/abstracts/60596/the-effect-of-parameter-controls-for-manure-composting-in-waste-recycling-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Valorization of Beer Brewing Wastes by Composting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Silva">M. E. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Br%C3%A1s"> I. Brás</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work was to study the viability of recycling the residual yeast and diatomaceous earth (RYDE) slurry generated by the beer brewing industry by composting with animal manures, as well as to evaluate the quality of the composts obtained. Two pilot composting trials were carried out with different mixes: cow manure/RYDE slurry (Pile CM) and sheep manure/RYDE slurry (Pile SM). For all piles, wood chips were applied as bulking agent. The process was monitored by evaluating standard physical and chemical parameters. The compost quality was assessed by the heavy metals content and phytotoxicity. Both piles reached a thermophilic phase in the first day, however having different trends. The pH showed a slight alkaline character. The C/N reached values lower than 19 at the end of composting process. Generally, all the piles exhibited absence of heavy metals. However, the pile SM exhibited phytotoxicity. This study showed that RYDE slurry can be valorized by composting with cow manure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beer%20brewing%20wastes" title="beer brewing wastes">beer brewing wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/67688/valorization-of-beer-brewing-wastes-by-composting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Wastewater from the Food Industry: Characteristics and Possibilities of Sediments on the Basis of the Dairy Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Ga%C5%82wa-Widera">Monika Gałwa-Widera</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Kwarciak%E2%80%93Koz%C5%82owska"> Anna Kwarciak–Kozłowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucyna%20S%C5%82awik-Dembiczak"> Lucyna Sławik-Dembiczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Issues relating to management of sewage sludge from small and medium-sized wastewater treatment plants is a vital issue, which deal with such scholars as well as those directly involved in the issue of wastewater treatment and management of sedimentary. According to the Law on Waste generating waste is responsible for such processing to the product obtained impacted on the environment minimally. In small and medium-sized wastewater treatment plants have to deal with the technology of sludge management technology is far from drying and incineration of sewage sludge. So here you can use other technologies. One of them is the composting of sewage sludge. It is a process of processing and disposal of sewage sludge that effectively their disposal. By composting, we can obtain a product that contains significant amounts of organic matter to assess the fertilizing qualities. Modifications to the ongoing process in biological reactors allow for more rapid receipt of a wholesome product. The research presented and discussed in this publication relate to assist the composting process of sewage sludge and biomass structural material in the shares of rates: 35% biomass, 55% sludge, 10% structural material using a method which involves the re-spawning batch composting physical methods leachate from the composting process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=industry" title=" industry"> industry</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/17534/wastewater-from-the-food-industry-characteristics-and-possibilities-of-sediments-on-the-basis-of-the-dairy-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Co-Composting of Poultry Manure with Different Organic Amendments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Silva">M. E. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Br%C3%A1s"> I. Brás</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the influence of different organic amendments on the quality of poultry manure compost, three pilot composting trials were carried out with different mixes: poultry manure/carcasse meal/ashes/grape pomace (Pile 1), poultry manure/ cellulosic sludge (Pile 2) and poultry manure (Pile 3). For all piles, wood chips were applied as bulking agent. The process was monitored, over time, by evaluating standard physical and chemical parameters, such as, pH, electric conductivity, moisture, organic matter and ash content, total carbon and total nitrogen content, carbon/nitrogen ratio (C/N) and content in mineral elements. Piles 1 and 2 reached a thermophilic phase, however having different trends. Pile 1 reached this phase earlier than Pile 2. For both, the pH showed a slight alkaline character and the electric conductivity was lower than 2 mS/cm. Also, the initial C/N value was 22 and reached values lower than 15 at the end of composting process. The total N content of the Pile 1 increased slightly during composting, in contrast with the others piles. At the end of composting process, the phosphorus content ranged between 54 and 236 mg/kg dry matter, for Pile 2 and 3, respectively. Generally, the Piles 1 and 3 exhibited similar heavy metals content. This study showed that organic amendments can be used as carbon source, given that the final composts presented parameters within the range of those recommended in the 2<sup>nd</sup> Draft of EU regulation proposal (DG Env.A.2 2001) for compost quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-composting" title="co-composting">co-composting</a>, <a href="https://publications.waset.org/abstracts/search?q=compost%20quality" title=" compost quality"> compost quality</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20ammendment" title=" organic ammendment"> organic ammendment</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20manure" title=" poultry manure"> poultry manure</a> </p> <a href="https://publications.waset.org/abstracts/51249/co-composting-of-poultry-manure-with-different-organic-amendments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Effect of Windrow Management on Ammonia and Nitrous Oxide Emissions from Swine Manure Composting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nanh%20Lovanh">Nanh Lovanh</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Loughrin"> John Loughrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kimberly%20Cook"> Kimberly Cook</a>, <a href="https://publications.waset.org/abstracts/search?q=Phil%20Silva"> Phil Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung-Taek%20Oh"> Byung-Taek Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the era of sustainability, utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large concentrated volumes of animal manure produced from livestock operations and the limited amount of available nearby agricultural land areas necessitated the need for volume reduction of these animal wastes. Composting of these animal manures is a viable option for biomass and pathogenic reduction in the environment. Nevertheless, composting also increases the potential loss of available nutrients for crop production as well as unwanted emission of anthropogenic air pollutants due to the loss of ammonia and other compounds via volatilization. In this study, we examine the emission of ammonia and nitrous oxide from swine manure windrows to evaluate the benefit of biomass reduction in conjunction with the potential loss of available nutrients. The feedstock for the windrows was obtained from swine farm in Kentucky where swine manure was mixed with wood shaving as absorbent material. Static flux chambers along with photoacoustic gas analyzer were used to monitor ammonia and nitrous oxide concentrations during the composting process. The results show that ammonia and nitrous oxide fluxes were quite high during the initial composting process and after the turning of each compost pile. Over the period of roughly three months of composting, the biochemical oxygen demand (BOD) decreased by about 90%. Although composting of animal waste is quite beneficial for biomass reduction, composting may not be economically feasible from an agronomical point of view due to time, nutrient loss (N loss), and potential environmental pollution (ammonia and greenhouse gas emissions). Therefore, additional studies are needed to assess and validate the economics and environmental impact of animal (swine) manure composting (e.g., crop yield or impact on climate change). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=windrow" title="windrow">windrow</a>, <a href="https://publications.waset.org/abstracts/search?q=swine%20manure" title=" swine manure"> swine manure</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrous%20oxide" title=" nitrous oxide"> nitrous oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=fluxes" title=" fluxes"> fluxes</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a> </p> <a href="https://publications.waset.org/abstracts/9615/effect-of-windrow-management-on-ammonia-and-nitrous-oxide-emissions-from-swine-manure-composting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Comparative Analysis of Pit Composting and Vermicomposting in a Tropical Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Ewemoje%20Oluseyi">E. Ewemoje Oluseyi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Ewemoje"> T. A. Ewemoje</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Adedeji"> A. A. Adedeji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodegradable solid waste disposal and management has been a major problem in Nigeria and indiscriminate dumping of this waste either into watercourses or drains has led to environmental hazards affecting public health. The study investigated the nutrients level of pit composting and vermicomposting. Wooden bins 60 cm × 30 cm × 30 cm<sup>3</sup> in size were constructed and bedding materials (sawdust, egg shell, paper and grasses) and red worms (<em>Eisenia fetida</em>) introduced to facilitate the free movement and protection of the worms against harsh weather. A pit of 100 cm × 100 cm × 100 cm<sup>3</sup> was dug and worms were introduced into the pit, which was turned every two weeks. Food waste was fed to the red worms in the bin and pit, respectively. The composts were harvested after 100 days and analysed. The analyses gave: nitrogen has average value 0.87 % and 1.29 %; phosphorus 0.66 % and 1.78 %; potassium 4.35 % and 6.27 % for the pit and vermicomposting, respectively. Higher nutrient status of vermicomposting over pit composting may be attributed to the secretions in the intestinal tracts of worms which are more readily available for plant growth. However, iron and aluminium were more in the pit compost than the vermin compost and this may be attributed to the iron and aluminium already present in the soil before the composting took place. Other nutrients in ppm concentrations were aluminium 4,999.50 and 3,989.33; iron 2,131.83 and 633.40 for the pit and vermicomposting, respectively. These nutrients are only needed by plants in small quantities. Hence, vermicomposting has the higher concentration of essential nutrients necessary for healthy plant growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20wastes" title="food wastes">food wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=pit%20composting" title=" pit composting"> pit composting</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20nutrient%20status" title=" plant nutrient status"> plant nutrient status</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20environment" title=" tropical environment"> tropical environment</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicomposting" title=" vermicomposting"> vermicomposting</a> </p> <a href="https://publications.waset.org/abstracts/39757/comparative-analysis-of-pit-composting-and-vermicomposting-in-a-tropical-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Enhancement of Rice Straw Composting Using UV Induced Mutants of Penicillium Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20N.%20M.%20El%20Sebai">T. N. M. El Sebai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Khattab"> A. A. Khattab</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafaa%20M.%20Abd-El%20Rahim"> Wafaa M. Abd-El Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Moawad"> H. Moawad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fungal mutant strains have produced cellulase and xylanase enzymes, and have induced high hydrolysis with enhanced of rice straw. The mutants were obtained by exposing Penicillium strain to UV-light treatments. Screening and selection after treatment with UV-light were carried out using cellulolytic and xylanolytic clear zones method to select the hypercellulolytic and hyperxylanolytic mutants. These mutants were evaluated for their cellulase and xylanase enzyme production as well as their abilities for biodegradation of rice straw. The mutant 12 UV/1 produced 306.21% and 209.91% cellulase and xylanase, respectively, as compared with the original wild type strain. This mutant showed high capacity of rice straw degradation. The effectiveness of tested mutant strain and that of wild strain was compared in relation to enhancing the composting process of rice straw and animal manures mixture. The results obtained showed that the compost product of inoculated mixture with mutant strain (12 UV/1) was the best compared to the wild strain and un-inoculated mixture. Analysis of the composted materials showed that the characteristics of the produced compost were close to those of the high quality standard compost. The results obtained in the present work suggest that the combination between rice straw and animal manure could be used for enhancing the composting process of rice straw and particularly when applied with fungal decomposer accelerating the composting process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20straw" title="rice straw">rice straw</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20mutants" title=" UV mutants"> UV mutants</a>, <a href="https://publications.waset.org/abstracts/search?q=Penicillium" title=" Penicillium"> Penicillium</a> </p> <a href="https://publications.waset.org/abstracts/7467/enhancement-of-rice-straw-composting-using-uv-induced-mutants-of-penicillium-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Physical and Chemical Properties during Home Composting of Municipal Organic Solid Waste in Jordan and Production of Organic Fertilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munir%20Rusan">Munir Rusan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Municipal waste management (MWM) represents a cornerstone in the effort to preserve the environment, which guarantees a healthy living environment for communities. MWM is directly affected by population growth and population density, urbanization, and tourism. In Jordan, MWM is currently managed by transferring and dumping waste into landfills. Landfills are mostly saturated and cannot receive any more waste. Besides, the organic waste, which accounts for 50% of municipal waste, will be naturally fermented in the landfills creating an unpleasant odor and emits greenhouse gases as well as generate organic leachates that are harmful to the environment. Organic waste can be aerobically composted and generate organic fertilizer called compost. Compost is very beneficial to soil and plant growth and, in general, to the ecosystem. Home composting is very common in most developed countries, but unfortunately, in developing countries such as Jordan, such an approach is not practiced and is not even socially well acceptable. The objective of this study was to evaluate the physical and chemical properties of home composting materials and to produce compost for further use as a soil amendment. The effect of compost soil application on the soil-plant system was evaluated. The soil application of the compost resulted in enhancing soil organic matter and soil N, P, and K content. The plant growth was also improved quantitatively and qualitatively. It was concluded that composting of municipal organic solid waste and soil application of the compost has a significant positive impact on the environment and soil-plant productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composting" title="composting">composting</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solid%20waste" title=" organic solid waste"> organic solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=plant" title=" plant"> plant</a> </p> <a href="https://publications.waset.org/abstracts/164293/physical-and-chemical-properties-during-home-composting-of-municipal-organic-solid-waste-in-jordan-and-production-of-organic-fertilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Production and Application of Organic Waste Compost for Urban Agriculture in Emerging Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alemayehu%20Agizew%20Woldeamanuel">Alemayehu Agizew Woldeamanuel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mekonnen%20Maschal%20Tarekegn"> Mekonnen Maschal Tarekegn</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Mohan%20Balakrishina"> Raj Mohan Balakrishina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composting is one of the conventional techniques adopted for organic waste management, but the practice is very limited in emerging cities despite the most of the waste generated is organic. This paper aims to examine the viability of composting for organic waste management in the emerging city of Addis Ababa, Ethiopia, by addressing the composting practice, quality of compost, and application of compost in urban agriculture. The study collects data using compost laboratory testing and urban farm households’ survey and uses descriptive analysis on the state of compost production and application, physicochemical analysis of the compost samples, and regression analysis on the urban farmer’s willingness to pay for compost. The findings of the study indicated that there is composting practice at a small scale, most of the producers use unsorted feedstock materials, aerobic composting is dominantly used, and the maturation period ranged from four to ten weeks. The carbon content of the compost ranges from 30.8 to 277.1 due to the type of feedstock applied, and this surpasses the ideal proportions for C:N ratio. The total nitrogen, pH, organic matter, and moisture content are relatively optimal. The levels of heavy metals measured for Mn, Cu, Pb, Cd and Cr⁶⁺ in the compost samples are also insignificant. In the urban agriculture sector, chemical fertilizer is the dominant type of soil input in crop productions but vegetable producers use a combination of both fertilizer and other organic inputs, including compost. The willingness to pay for compost depends on income, household size, gender, type of soil inputs, monitoring soil fertility, the main product of the farm, farming method and farm ownership. Finally, this study recommends the need for collaboration among stakeholders’ along the value chain of waste, awareness creation on the benefits of composting and addressing challenges faced by both compost producers and users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composting" title="composting">composting</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20city" title=" emerging city"> emerging city</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20waste%20management" title=" organic waste management"> organic waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20agriculture" title=" urban agriculture"> urban agriculture</a> </p> <a href="https://publications.waset.org/abstracts/136992/production-and-application-of-organic-waste-compost-for-urban-agriculture-in-emerging-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Exploring Determinants of Farmers` Perceptions of Domestic Compost Production in Urban Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chethika%20Gunasiri%20Wadumestrige%20Dona">Chethika Gunasiri Wadumestrige Dona</a>, <a href="https://publications.waset.org/abstracts/search?q=Geetha%20Mohan"> Geetha Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kensuke%20Fukushi"> Kensuke Fukushi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid waste in urban areas, especially from organic materials like garden waste, food, and degradable sources, can create health and environmental problems if not managed properly. Urban agriculture has emerged as a potential solution in developing countries to mitigate these issues. It offers the possibility of low-carbon economies and knowledge and innovation dissemination. Domestic composting is a significant aspect of urban agriculture, and its success relies on the attitudes of those who practice it. This study examines the perspectives of 402 urban farmers in the Colombo District, Sri Lanka, regarding domestic compost production. It aims to identify the factors that influence these perspectives. The research found that urban farmers are willing to participate in domestic composting because they believe that it facilitates effective recycling of organic waste within their households. The study used an ordinal regression model to determine the factors that shape farmers' perspectives. Age, family size, and crop preferences are significant determinants of the adoption of domestic composting practices among urban farmers in the Colombo District. These findings highlight the importance of understanding and addressing farmers' attitudes in designing effective waste management strategies. In addition, the study also emphasizes the need for tailored interventions that align with farmers' beliefs and preferences to enhance the adoption and implementation of domestic composting practices in urban areas. The insights gained from this study contribute to the academic discourse and offer practical guidance for policymakers and urban planners seeking to promote sustainable waste management practices and support the adoption of urban agriculture in the broader context of urban development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20agriculture" title="urban agriculture">urban agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=domestic%20composting" title=" domestic composting"> domestic composting</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers%60%20perspectives" title=" farmers` perspectives"> farmers` perspectives</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20development" title=" sustainable urban development"> sustainable urban development</a> </p> <a href="https://publications.waset.org/abstracts/186106/exploring-determinants-of-farmers-perceptions-of-domestic-compost-production-in-urban-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> The Effects of Agricultural Waste Compost Applications on Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilker%20S%C3%B6nmez">Ilker Sönmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Kaplan"> Mustafa Kaplan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wastes that come out as a result of agricultural productions are disposed randomly and always by burning. Agricultural wastes have a great volume and agricultural wastes cause environmental pollution. Spent mushroom compost and cut flower carnation wastes have a serious potential in Turkey and especially in Antalya. One of the best evaluation methods of agricultural wastes is composting methods and so agricultural wastes transformed for a new product. In this study, agricultural wastes were evaluated the effects of compost and organic material on soil pH, EC, soil organic matter, and macro-micro nutrient contents of soil that it growth carnation. The effects of compost applications on soils were found to be statistically significant. Organic material applications have caused an increase in all physical and chemical parameters except for pH that pH decreased with compost added in soils. The best results among the compost applications were determined R1 compost that R1 compost included %75 Carnation Wastes + %25 Spent Mushroom Compost. The structural properties of soils can be improved with reusing of agricultural wastes by composting so it can be provided that decreasing the harmful effects of organic wastes on the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20wastes" title="agricultural wastes">agricultural wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=carnation%20wastes" title=" carnation wastes"> carnation wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20material" title=" organic material"> organic material</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20mushroom%20compost" title=" spent mushroom compost"> spent mushroom compost</a> </p> <a href="https://publications.waset.org/abstracts/28976/the-effects-of-agricultural-waste-compost-applications-on-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Physico-Chemical and Microbial Changes of Organic Fertilizers after Compositing Processes under Arid Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oustani%20Mabrouka">Oustani Mabrouka</a>, <a href="https://publications.waset.org/abstracts/search?q=Halilat%20Med%20Tahar"> Halilat Med Tahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The physico-chemical properties of poultry droppings indicate that this waste can be an excellent way to enrich the soil with low fertility that is the case in arid soils (low organic matter content), but its concentrations in some microbial and chemical components make them potentially dangerous and toxic contaminants if they are used directly in fresh state. On other hand, the accumulation of plant residues in the crop areas can become a source of plant disease and affects the quality of the environment. The biotechnological processes that we have identified appear to alleviate these problems. It leads to the stabilization and processing of wastes into a product of good hygienic quality and high fertilizer value by the composting test. In this context, a trial was conducted in composting operations in the region of Ouargla located in southern Algeria. Composing test was conducted in a completely randomized design experiment. Three mixtures were prepared, in pits of 1 m3 volume for each mixture. Each pit is composed by mixture of poultry droppings and crushed plant residues in amount of 40 and 60% respectively: C1: Droppings + Straw (P.D +S) , C2: Poultry Droppings + Olive Wastes (P.D+O.W) , C3: Poultry Droppings + Date palm residues (P.D+D.P). Before and after the composting process, physico-chemical parameters (temperature, moisture, pH, electrical conductivity, total carbon and total nitrogen) were studied. The stability of the biological system was noticed after 90 days. The results of physico-chemical and microbiological compost obtained from three mixtures: C1: (P.D +S) , C2: (P.D+O.W) and C3: (P.D +D.P) shows at the end of composting process, three composts characterized by the final products were characterized by their high agronomic and environmental interest with a good physico chemical characteristics in particularly a low C/N ratio with 15.15, 10.01 and 15.36 % for (P.D + S), (P.D. + O.W) and (P.D. +D.P), respectively, reflecting a stabilization and maturity of the composts. On the other hand, a significant increase of temperature was recorded at the first days of composting for all treatments, which is correlated with a strong reduction of the pathogenic micro flora contained in poultry dropings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arid%20environment" title="Arid environment">Arid environment</a>, <a href="https://publications.waset.org/abstracts/search?q=Composting" title=" Composting"> Composting</a>, <a href="https://publications.waset.org/abstracts/search?q=Date%20palm%20residues" title=" Date palm residues"> Date palm residues</a>, <a href="https://publications.waset.org/abstracts/search?q=Olive%20wastes" title=" Olive wastes"> Olive wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=Pathogenic%20microorganisms" title=" Pathogenic microorganisms"> Pathogenic microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=Poultry%20Droppings" title=" Poultry Droppings"> Poultry Droppings</a>, <a href="https://publications.waset.org/abstracts/search?q=Straw" title=" Straw"> Straw</a> </p> <a href="https://publications.waset.org/abstracts/21679/physico-chemical-and-microbial-changes-of-organic-fertilizers-after-compositing-processes-under-arid-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Mitigating Food Insecurity and Malnutrition by Promoting Carbon Farming via a Solar-Powered Enzymatic Composting Bioreactor with Arduino-Based Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Molin%20A.">Molin A.</a>, <a href="https://publications.waset.org/abstracts/search?q=De%20Ramos%20J.%20M."> De Ramos J. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Cadion%20L.%20G."> Cadion L. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pico%20R.%20L."> Pico R. L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malnutrition and food insecurity represent significant global challenges affecting millions of individuals, particularly in low-income and developing regions. The researchers created a solar-powered enzymatic composting bioreactor with an Arduino-based monitoring system for pH, humidity, and temperature. It manages mixed municipal solid wastes incorporating industrial enzymes and whey additives for accelerated composting and minimized carbon footprint. Within 15 days, the bioreactor yielded 54.54% compost compared to 44.85% from traditional methods, increasing yield by nearly 10%. Tests showed that the bioreactor compost had 4.84% NPK, passing metal analysis standards, while the traditional pit compost had 3.86% NPK; both are suitable for agriculture. Statistical analyses, including ANOVA and Tukey's HSD test, revealed significant differences in agricultural yield across different compost types based on leaf length, width, and number of leaves. The study compared the effects of different composts on Brassica rapa subsp. Chinesis (Petchay) and Brassica juncea (Mustasa) plant growth. For Pechay, significant effects of compost type on plant leaf length (F(5,84) = 62.33, η² = 0.79) and leaf width (F(5,84) = 12.35, η² = 0.42) were found. For Mustasa, significant effects of compost type on leaf length (F(4,70) = 20.61, η² = 0.54), leaf width (F(4,70) = 19.24, η² = 0.52), and number of leaves (F(4,70) = 13.17, η² = 0.43) were observed. This study explores the effectiveness of the enzymatic composting bioreactor and its viability in promoting carbon farming as a solution to food insecurity and malnutrition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malnutrition" title="malnutrition">malnutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20insecurity" title=" food insecurity"> food insecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20composting%20bioreactor" title=" enzymatic composting bioreactor"> enzymatic composting bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=arduino-based%20monitoring%20system" title=" arduino-based monitoring system"> arduino-based monitoring system</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20farming" title=" carbon farming"> carbon farming</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20additive" title=" whey additive"> whey additive</a>, <a href="https://publications.waset.org/abstracts/search?q=NPK%20level" title=" NPK level"> NPK level</a> </p> <a href="https://publications.waset.org/abstracts/185261/mitigating-food-insecurity-and-malnutrition-by-promoting-carbon-farming-via-a-solar-powered-enzymatic-composting-bioreactor-with-arduino-based-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Effect of Aeration on Co-Composting of Mixture of Food Waste with Sawdust and Sewage Sludge from Nicosia Waste Water Treatment Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azad%20Khalid">Azad Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ime%20Akanyeti"> Ime Akanyeti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> About 68% of the urban solid waste generated in Turkish Republic of Northern Cyprus TRNC is household solid waste, at present, its disposal in landfills. In other hand more than 3000 ton per year of sewage sludge produces in Nicosia waste water treatment plant, the produced sludge piled up without any processing. Co-composting of organic fraction of municipal solid waste and sewage sludge is diverting of municipal solid waste from landfills and best disposal of wastewater sewage sludge. Three 10 L insulated bioreactor R1, R2 and R3 obtained with aeration rate 0.05 m3/h.kg for R2 and R3, R1 was without aeration. The mixture was destined with ratio of sewage sludge: food waste: sawdust; 1:5:0.8 (w/w). The effective of aeration monitored during 42 days of process through investigation in key parameter moisture, C/N ratio, temperature and pH. Results show that the high moisture content cause problem and around 60% recommend, C/N ratio decreased about 17% in aerated reactors and 10% in without aeration and mixture volume reduced in volume 40% in final compost with size of 1.00 to 20.0 mm. temperature in reactors with aeration reached thermophilic phase above 50 °C and <40 °C in without aeration. The final pH is 6.1 in R1, 8.23 in R2 and 8.1 in R3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeration" title="aeration">aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20waste" title=" food waste"> food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=sawdust" title=" sawdust"> sawdust</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a> </p> <a href="https://publications.waset.org/abstracts/172531/effect-of-aeration-on-co-composting-of-mixture-of-food-waste-with-sawdust-and-sewage-sludge-from-nicosia-waste-water-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> The Role of Home Composting in Waste Management Cost Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Hassanshahi">Nahid Hassanshahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayoub%20Karimi-Jashni"> Ayoub Karimi-Jashni</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Talebbeydokhti"> Nasser Talebbeydokhti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20compost" title=" home compost"> home compost</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20waste" title=" reducing waste"> reducing waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/81989/the-role-of-home-composting-in-waste-management-cost-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Impact of Compost Application with Different Rates of Chemical Fertilizers on Corn Growth and Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reda%20Abdel-Aziz">Reda Abdel-Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural activities in Egypt generate annually around 35 million tons of waste. Composting is one of the most promising technologies to turnover waste in a more economical way, for many centuries. Composting has been used as a mean of recycling organic matter back into the soil to improve soil structure and fertility. Field experiments were conducted in two governorates, Giza and Al-Monofia, to find out the effect of compost with different rates of chemical fertilizers on growth and yield of corn (Zea mays L.) during two constitutive seasons of 2012 and 2013. The experiment, laid out in a randomized complete block design (RCBD), was carried out on five farmers’ fields in each governorate. The treatments were: unfertilized control, full dose of NPK (120, 30, and 50 kg/acre, respectively), compost at rate of 20 ton/acre, compost at rate of 10 ton/acre + 25% of chemical fertilizer, compost at rate of 10 ton/acre + 50% of chemical fertilizer and compost at rate of 10 ton/acre + 75% of chemical fertilizer. Results revealed a superiority of the treatment of compost at rate of 10 ton/acre + 50% of NPK that caused significant improvement in growth, yield and nutrient uptakes of corn in the two governorates during the two constitutive seasons. Results showed that agricultural waste could be composted into value added soil amendment to enhance efficiency of chemical fertilizer. Composting of agricultural waste could also reduce the chemical fertilizers potential hazard to the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title="agricultural waste">agricultural waste</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizers" title=" chemical fertilizers"> chemical fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20production" title=" corn production"> corn production</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/7349/impact-of-compost-application-with-different-rates-of-chemical-fertilizers-on-corn-growth-and-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Identification and Characterisation of Oil Sludge Degrading Bacteria Isolated from Compost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Ubani">O. Ubani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20I.%20Atagana"> H. I. Atagana</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Thantsha"> M. S. Thantsha</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Adeleke"> R. Adeleke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oil sludge components (polycyclic aromatic hydrocarbons, PAHs) have been found to be cytotoxic, mutagenic and potentially carcinogenic and microorganisms such as bacteria and fungi can degrade the oil sludge to less toxic compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading potentials from the co-composting of oil sludge and different animal manure. These bacteria were isolated on the mineral base medium and mineral salt agar plates as a growth control. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR) of the 16S rDNA gene with specific primers (16S-P1 PCR and 16S-P2 PCR). The amplicons were sequenced and sequences were compared with the known nucleotides from the gene bank database. The phylogenetical analyses of the isolates showed that they belong to 3 different clades namely Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to genera Bacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus species. The results showed that Bacillus species were more dominant in all treated compost piles. Based on their characteristics these bacterial isolates have high potential to utilise PAHs of different molecular weights as carbon and energy sources. These identified bacteria are of special significance in their capacity to emulsify the PAHs and their ability to utilize them. Thus, they could be potentially useful for bioremediation of oil sludge and composting processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioaugmentation" title="bioaugmentation">bioaugmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20sludge" title=" oil sludge"> oil sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20manures" title=" animal manures"> animal manures</a> </p> <a href="https://publications.waset.org/abstracts/4256/identification-and-characterisation-of-oil-sludge-degrading-bacteria-isolated-from-compost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> A Study of Fecal Sludge Management in Auroville and Its Surrounding Villages in Tamilnadu, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preethi%20Grace%20Theva%20Neethi%20Dhas">Preethi Grace Theva Neethi Dhas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A healthy human gut microbiome has commensal and symbiotic functions in digestion and is a decisive factor for human health. The soil microbiome is a crucial component in the ecosystem of soils and their health and resilience. Changes in soil microbiome are linked to human health. Ever since the industrial era, the human and the soil microbiome have been going through drastic changes. The soil microbiome has changed due to industrialization and extensive agricultural practices, whereas humans have less contact with soil and increased intake of highly processed foods, leading to changes in the human gut microbiome. Regenerating the soil becomes crucial in maintaining a healthy ecosystem. The nutrients, once obtained from the soil, need to be given back to the soil. Soil degradation needs to be addressed in effective ways, like adding organic nutrients back to the soil. Manure from animals and humans needs to be returned to the soil, which can complete the nutrient cycle in the soil. On the other hand, fecal sludge management (FSM) is a growing concern in many parts of the developing world. Hence, it becomes crucial to treat and reuse fecal sludge in a safe manner, i.e., low in risk to human health. Co-composting fecal sludge with organic wastes is a practice that allows the safe management of fecal sludge and the safe application of nutrients to the soil. This paper will discuss the possible impact of co-composting fecal sludge with coconut choir waste on the soil, water, and ecosystem at large. Impact parameters like nitrogen, phosphorus, and fecal coliforms will be analyzed. The overall impact of fecal sludge application on the soil will be researched and presented in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fecal%20sludge%20management" title="fecal sludge management">fecal sludge management</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20cycle" title=" nutrient cycle"> nutrient cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a> </p> <a href="https://publications.waset.org/abstracts/175735/a-study-of-fecal-sludge-management-in-auroville-and-its-surrounding-villages-in-tamilnadu-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Measuring the Effect of Co-Composting Oil Sludge with Pig, Cow, Horse And Poultry Manures on the Degradation in Selected Polycyclic Aromatic Hydrocarbons Concentrations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ubani%20Onyedikachi">Ubani Onyedikachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Atagana%20Harrison%20Ifeanyichukwu"> Atagana Harrison Ifeanyichukwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Thantsha%20Mapitsi%20Silvester"> Thantsha Mapitsi Silvester</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Components of oil sludge (PAHs) are known cytotoxic, mutagenic and potentially carcinogenic compounds also bacteria and fungi have been found to degrade PAHs to innocuous compounds. This study is aimed at measuring the effect of pig, cow, horse and poultry manures on the degradation in selected PAHs present in oil sludge. Soil spiked with oil sludge was co-composted differently with each manure in a ratio of 2:1 (w/w) spiked soil: manure and wood-chips in a ratio of 2:1 (w/v) spiked soil: wood-chips. Control was set up similar as the one above but without manure. The mixtures were incubated for 10 months at room temperature. Compost piles were turned weekly and moisture level was maintained at between 50% and 70%. Moisture level, pH, temperature, CO2 evolution and oxygen consumption were measured monthly and the ash content at the end of experimentation. Highest temperature reached was 27.5 °C in all compost heaps, pH ranged from 5.5 to 7.8 and CO2 evolution was highest in poultry manure at 18.78μg/dwt/day. Microbial growth and activities were enhanced; bacteria identified were Bacillus, Arthrobacter and Staphylococcus species. Percentage reduction in PAHs was measured using automated soxhlet extractor with Dichloromethane coupled with gas chromatography/mass spectrometry (GC/MS). Results from PAH measurements showed reduction between 77% and 99%. Co-composting of spiked soils with animal manures enhanced the reduction in PAHs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20manures" title="animal manures">animal manures</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=co-composting" title=" co-composting"> co-composting</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20refinery%20sludge" title=" oil refinery sludge"> oil refinery sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a> </p> <a href="https://publications.waset.org/abstracts/31222/measuring-the-effect-of-co-composting-oil-sludge-with-pig-cow-horse-and-poultry-manures-on-the-degradation-in-selected-polycyclic-aromatic-hydrocarbons-concentrations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Rida">S. Rida</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Saadani%20Hassani"> O. Saadani Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20R%E2%80%99zina"> Q. R’zina</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Saadaoui"> N. Saadaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Fares"> K. Fares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime" title=" sugar beet lime"> sugar beet lime</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/42132/agronomic-value-of-wastewater-and-sugar-beet-lime-sludge-compost-on-radish-crop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Online Monitoring of Airborne Bioaerosols Released from a Composting, Green Waste Site</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Sodeau">John Sodeau</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20O%27Connor"> David O'Connor</a>, <a href="https://publications.waset.org/abstracts/search?q=Shane%20Daly"> Shane Daly</a>, <a href="https://publications.waset.org/abstracts/search?q=Stig%20Hellebust"> Stig Hellebust</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is the first to employ the online WIBS (Waveband Integrated Biosensor Sensor) technique for the monitoring of bioaerosol emissions and non-fluorescing “dust” released from a composting/green waste site. The purpose of the research was to provide a “proof of principle” for using WIBS to monitor such a location continually over days and nights in order to construct comparative “bioaerosol site profiles”. Current impaction/culturing methods take many days to achieve results available by the WIBS technique in seconds.The real-time data obtained was then used to assess variations of the bioaerosol counts as a function of size, “shape”, site location, working activity levels, time of day, relative humidity, wind speeds and wind directions. Three short campaigns were undertaken, one classified as a “light” workload period, another as a “heavy” workload period and finally a weekend when the site was closed. One main bioaerosol size regime was found to predominate: 0.5 micron to 3 micron with morphologies ranging from elongated to elipsoidal/spherical. The real-time number-concentration data were consistent with an Andersen sampling protocol that was employed at the site. The number-concentrations of fluorescent particles as a proportion of total particles counted amounted, on average, to ~1% for the “light” workday period, ~7% for the “heavy” workday period and ~18% for the weekend. The bioaerosol release profiles at the weekend were considerably different from those monitored during the working weekdays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioaerosols" title="bioaerosols">bioaerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20counting%20in%20real-time" title=" particle counting in real-time"> particle counting in real-time</a> </p> <a href="https://publications.waset.org/abstracts/24496/online-monitoring-of-airborne-bioaerosols-released-from-a-composting-green-waste-site" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Energy and Carbon Footprint Analysis of Food Waste Treatment Alternatives for Hong Kong</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Iqbal">Asad Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Feixiang%20Zan"> Feixiang Zan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoming%20Liu"> Xiaoming Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guang-Hao%20Chen"> Guang-Hao Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water, food, and energy nexus is a vital subject to achieve sustainable development goals worldwide. Wastewater (WW) and food waste (FW) from municipal sources are primary contributors to their respective wastage sum from a country. Along with the loss of these invaluable natural resources, their treatment systems also consume a lot of abiotic energy and resources input with a perceptible contribution to global warming. Hence, the global paradigm has evolved from simple pollution mitigation to a resource recovery system (RRS). In this study, the prospects of six alternative FW treatment scenarios are quantitatively evaluated for Hong Kong in terms of energy use and greenhouse emissions (GHEs) potential, using life cycle assessment (LCA). Considered scenarios included: aerobic composting, anaerobic digestion (AD), combine AD and composting (ADC), co-disposal, and treatment with wastewater (CoD-WW), incineration, and conventional landfilling as base-case. Results revealed that in terms of GHEs saving, all-new scenarios performed significantly better than conventional landfilling, with ADC scenario as best-case and incineration, AD alone, CoD-WW ranked as second, third, and fourth best respectively. Whereas, composting was the worst-case scenario in terms of energy balance, while incineration ranked best and AD alone, ADC, and CoD-WW ranked as second, third, and fourth best, respectively. However, these results are highly sensitive to boundary settings, e.g., the inclusion of the impact of biogenic carbon emissions and waste collection and transportation, and several other influential parameters. The study provides valuable insights and policy guidelines for the decision-makers locally and a generic modelling template for environmental impact assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20waste" title="food waste">food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20recovery" title=" resource recovery"> resource recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20emissions" title=" greenhouse emissions"> greenhouse emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20balance" title=" energy balance"> energy balance</a> </p> <a href="https://publications.waset.org/abstracts/115805/energy-and-carbon-footprint-analysis-of-food-waste-treatment-alternatives-for-hong-kong" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Preparation of Polyethylene/Cashewnut Flour/ Gum Arabic Polymer Blends Through Melt-blending and Determination of Their Biodegradation by Composting Method for Possible Reduction of Polyethylene-based Wastes from the Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20Umar%20Birnin-yauri">Abubakar Umar Birnin-yauri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plastic wastes arising from Polyethylene (PE)-based materials are increasingly becoming environmental problem, this is owed to the fact that these PE waste materials will only decompose over hundreds, or even thousands of years, during which they cause serious environmental problems. In this research, Polymer blends prepared from PE, Cashewnut flour (CNF) and Gum Arabic (GA) were studied in order to assay their biodegradation potentials via composting method. Different sample formulations were made i.e., X1= (70% PE, 25% CNF and 5% GA, X2= (70% PE, 20% CNF and 10% GA), X3= (70% PE, 15% CNF and 15% GA), X4 = (70% PE, 10% CNF and 20% GA) and X5 = (70% PE, 5% CNF and 25% GA) respectively. The results obtained showed that X1 recorded weight loss of 9.89% of its original weight after the first 20 days and 37.45% after 100 day, and X2 lost 12.67 % after the first 20 days and 42.56% after 100day, sample X5 experienced the greatest weight lost in the two methods adopted which are 52.9% and 57.89%. Instrumental analysis such as Fourier Transform Infrared Spectroscopy, Thermogravimetric analysis and Scanning electron microscopy were performed on the polymer blends before and after biodegradation. The study revealed that the biodegradation of the polymer blends is influenced by the contents of both the CNF and GA added into the blends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title="polyethylene">polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=cashewnut" title=" cashewnut"> cashewnut</a>, <a href="https://publications.waset.org/abstracts/search?q=gum%20Arabic" title=" gum Arabic"> gum Arabic</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=blend" title=" blend"> blend</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/166351/preparation-of-polyethylenecashewnut-flour-gum-arabic-polymer-blends-through-melt-blending-and-determination-of-their-biodegradation-by-composting-method-for-possible-reduction-of-polyethylene-based-wastes-from-the-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Compost Bioremediation of Oil Refinery Sludge by Using Different Manures in a Laboratory Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Ubani">O. Ubani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20I.%20Atagana"> H. I. Atagana</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Thantsha"> M. S. Thantsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to measure the reduction in polycyclic aromatic hydrocarbons (PAHs) content in oil sludge by co-composting the sludge with pig, cow, horse and poultry manures under laboratory conditions. Four kilograms of soil spiked with 800 g of oil sludge was co-composted differently with each manure in a ratio of 2:1 (w/w) spiked soil:manure and wood-chips in a ratio of 2:1 (w/v) spiked soil:wood-chips. Control was set up similar as the one above but without manure. Mixtures were incubated for 10 months at room temperature. Compost piles were turned weekly and moisture level was maintained at between 50% and 70%. Moisture level, pH, temperature, CO2 evolution and oxygen consumption were measured monthly and the ash content at the end of experimentation. Bacteria capable of utilizing PAHs were isolated, purified and characterized by molecular techniques using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), amplification of the 16S rDNA gene using the specific primers (16S-P1 PCR and 16S-P2 PCR) and the amplicons were sequenced. Extent of reduction of PAHs was measured using automated soxhlet extractor with dichloromethane as the extraction solvent coupled with gas chromatography/mass spectrometry (GC/MS). Temperature did not exceed 27.5O°C in all compost heaps, pH ranged from 5.5 to 7.8 and CO2 evolution was highest in poultry manure at 18.78 µg/dwt/day. Microbial growth and activities were enhanced. Bacteria identified were Bacillus, Arthrobacter and Staphylococcus species. Results from PAH measurements showed reduction between 77 and 99%. The results from the control experiments may be because it was invaded by fungi. Co-composting of spiked soils with animal manures enhanced the reduction in PAHs. Interestingly, all bacteria isolated and identified in this study were present in all treatments, including the control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=co-composting" title=" co-composting"> co-composting</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20refinery%20sludge" title=" oil refinery sludge"> oil refinery sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria%20spp" title=" bacteria spp"> bacteria spp</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20manures" title=" animal manures"> animal manures</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20techniques" title=" molecular techniques"> molecular techniques</a> </p> <a href="https://publications.waset.org/abstracts/4255/compost-bioremediation-of-oil-refinery-sludge-by-using-different-manures-in-a-laboratory-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Res2ValHUM: Creation of Resource Management Tool and Microbial Consortia Isolation and Identification </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ribeiro">A. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Val%C3%A9rio"> N. Valério</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Vilarinho"> C. Vilarinho</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Araujo"> J. Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Carvalho"> J. Carvalho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Res2ValHUM project involves institutions from the Spanish Autonomous Region of Galicia and the north of Portugal (districts of Porto and Braga) and has as overall objectives of promotion of composting as an process for the correct managing of organic waste, valorization of compost in different fields or applications for the constitution of products with high added value, reducing of raw materials losses, and reduction of the amount of waste throw in landfills. Three main actions were designed to achieve the objectives: development of a management tool to improve collection and residue channeling for composting, sensibilization of the population for composting and characterization of the chemical and biological properties of compost and humic and fulvic substances to envisage high-value applications of compost. Here we present the cooperative activity of Galician and northern Portuguese institutions to valorize organic waste in both regions with common socio-economic characteristics and residue management problems. Results from the creation of the resource manage tool proved the existence of a large number of agricultural wastes that could be valorized. In the North of Portugal, the wastes from maize, oats, potato, apple, grape pomace, rye, and olive pomace can be highlighted. In the Autonomous Region of Galicia the wastes from maize, wheat, potato, apple, and chestnuts can be emphasized. Regarding the isolation and identification of microbial consortia from compost samples, results proved microorganisms belong mainly to the genus <em>Bacillus</em> spp. Among all the species identified in compost samples, <em>Bacillus licheniformis</em> can be highlighted in the production of humic and fulvic acids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20wastes" title="agricultural wastes">agricultural wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20licheniformis" title=" Bacillus licheniformis"> Bacillus licheniformis</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20spp." title=" Bacillus spp."> Bacillus spp.</a>, <a href="https://publications.waset.org/abstracts/search?q=humic-acids" title=" humic-acids"> humic-acids</a>, <a href="https://publications.waset.org/abstracts/search?q=fulvic-acids" title=" fulvic-acids"> fulvic-acids</a> </p> <a href="https://publications.waset.org/abstracts/116625/res2valhum-creation-of-resource-management-tool-and-microbial-consortia-isolation-and-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nutcha%20Taneepanichskul">Nutcha Taneepanichskul</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20C.%20Hailes"> Helen C. Hailes</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Miodownik"> Mark Miodownik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20plastics" title="biodegradable plastics">biodegradable plastics</a>, <a href="https://publications.waset.org/abstracts/search?q=sorting%20technology" title=" sorting technology"> sorting technology</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20imaging%20technology" title=" hyperspectral imaging technology"> hyperspectral imaging technology</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20algorithms" title=" machine learning algorithms"> machine learning algorithms</a> </p> <a href="https://publications.waset.org/abstracts/171285/automatic-identification-and-classification-of-contaminated-biodegradable-plastics-using-machine-learning-algorithms-and-hyperspectral-imaging-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Use of Fruit Beetles, Waxworms Larvae and Tiger Worms in Waste Conditioning for Composting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20S.%20Alwaneen">Waleed S. Alwaneen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many countries, cow dung is used as farm manure and for biogas production. Several bacterial strains associated with cow dung such as <em>Campylobacter</em>, <em>Salmonella</em> sp. and <em>Escherichia</em> <em>coli</em> cause serious human diseases. The objective of the present study was to investigate the use of insect larvae including fruit beetle, waxworms and tiger worms to improve the breakdown of agricultural wastes and reduce their pathogen loads. Fresh cow faeces were collected from a cattle farm and distributed into plastic boxes (100 g/box). Each box was provided with 10 larvae of fruit beetle, Waxworms and Tiger worms, respectively. There were 3 replicates in each treatment including the control. Bacteria were isolated weekly from both control and cow faeces to which larvae were added to determine the bacterial populations. Results revealed that the bacterial load was higher in the cow faeces treated with fruit beetles than in the control, while the bacterial load was lower in the cow faeces treated with waxworms and tiger worms than in the control. The activities of the fruit beetle larvae led to the cow faeces being liquefied which provided a more conducive growing media for bacteria. Therefore, higher bacterial load in the cow faeces treated with fruit beetle might be attributed to the liquefaction of cow faeces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fruit%20beetle" title="fruit beetle">fruit beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=waxworms" title=" waxworms"> waxworms</a>, <a href="https://publications.waset.org/abstracts/search?q=tiger%20worms" title=" tiger worms"> tiger worms</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20conditioning" title=" waste conditioning"> waste conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a> </p> <a href="https://publications.waset.org/abstracts/73415/use-of-fruit-beetles-waxworms-larvae-and-tiger-worms-in-waste-conditioning-for-composting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Isolation and Selection of Strains Perspective for Sewage Sludge Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Zh.%20Aupova">A. Zh. Aupova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ulankyzy"> A. Ulankyzy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sarsenova"> A. Sarsenova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kussayin"> A. Kussayin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Turarbek"> Sh. Turarbek</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Moldagulova"> N. Moldagulova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kurmanbayev"> A. Kurmanbayev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the methods of organic waste bioconversion into environmentally-friendly fertilizer is composting. Microorganisms that produce hydrolytic enzymes play a significant role in accelerating the process of organic waste composting. We studied the enzymatic potential (amylase, protease, cellulase, lipase, urease activity) of bacteria isolated from the sewage sludge of Nur-Sultan, Rudny, and Fort-Shevchenko cities, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha for processing organic waste and identifying active strains. Microorganism isolation was carried out by the cultures enrichment method on liquid nutrient media, followed by inoculating on different solid media to isolate individual colonies. As a result, sixty-one microorganisms were isolated, three of which were thermophiles (DS1, DS2, and DS3). The highest number of isolates, twenty-one and eighteen, were isolated from sewage sludge of Nur-Sultan and Rudny cities, respectively. Ten isolates were isolated from the wastewater of the sewage treatment plant in Fort-Shevchenko. From the dacha soil of Nur-Sultan city and freshly cut grass - 9 and 5 isolates were revealed, respectively. The lipolytic, proteolytic, amylolytic, cellulolytic, ureolytic, and oil-oxidizing activities of isolates were studied. According to the results of experiments, starch hydrolysis (amylolytic activity) was found in 2 isolates - CB2/2, and CB2/1. Three isolates - CB2, CB2/1, and CB1/1 were selected for the highest ability to break down casein. Among isolated 61 bacterial cultures, three isolates could break down fats - CB3, CBG1/1, and IL3. Seven strains had cellulolytic activity - DS1, DS2, IL3, IL5, P2, P5, and P3. Six isolates rapidly decomposed urea. Isolate P1 could break down casein and cellulose. Isolate DS3 was a thermophile and had cellulolytic activity. Thus, based on the conducted studies, 15 isolates were selected as a potential for sewage sludge composting - CB2, CB3, CB1/1, CB2/2, CBG1/1, CB2/1, DS1, DS2, DS3, IL3, IL5, P1, P2, P5, P3. Selected strains were identified on a mass spectrometer (Maldi-TOF). The isolate - CB 3 was referred to the genus Rhodococcus rhodochrous; two isolates CB2 and CB1 / 1 - to Bacillus cereus, CB 2/2 - to Cryseobacterium arachidis, CBG 1/1 - to Pseudoxanthomonas sp., CB2/1 - to Bacillus megaterium, DS1 - to Pediococcus acidilactici, DS2 - to Paenibacillus residui, DS3 - to Brevibacillus invocatus, three strains IL3, P5, P3 - to Enterobacter cloacae, two strains IL5, P2 - to Ochrobactrum intermedium, and P1 - Bacillus lichenoformis. Hence, 60 isolates were isolated from the wastewater of the cities of Nur-Sultan, Rudny, Fort-Shevchenko, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha. Based on the highest enzymatic activity, 15 active isolates were selected and identified. These strains may become the candidates for bio preparation for sewage sludge processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title="sewage sludge">sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20activity" title=" enzymatic activity"> enzymatic activity</a> </p> <a href="https://publications.waset.org/abstracts/151903/isolation-and-selection-of-strains-perspective-for-sewage-sludge-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Influence of Synergistic/Antagonistic Mixtures of Oligomeric Stabilizers on the Biodegradation of γ-Sterilized Polyolefins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameh%20A.%20S.%20Thabit%20Alariqi">Sameh A. S. Thabit Alariqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our previous studies aimed to investigate the biodegradation of γ-sterilized polyolefins in composting and microbial culture environments at different doses and γ-dose rates. It was concluded from the previous studies that the pretreatment of γ-irradiation can accelerate the biodegradation of neat polymer matrix in biotic conditions significantly. A similar work was carried out to study the stabilization of γ-sterilized polyolefins using different mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene (EP) copolymer has been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and hydroperoxide decomposers. Results were discussed by comparing the stabilizing efficiency, combination and consumption of stabilizers and the synergistic and antagonistic effects was explained through the interaction between the stabilizers. In this attempt, we have aimed to study the influence of the synergistic and antagonistic mixtures of oligomeric stabilizers on the biodegradation of the γ-irradiated polyolefins in composting and microbial culture. Neat and stabilized films of EP copolymer irradiated under γ-radiation and incubated in compost and fungal culture environments. The changes in functional groups, surface morphology, mechanical properties and intrinsic viscosity in polymer chains were characterized by FT-IR spectroscopy, SEM, instron, and viscometric measurements respectively. Results were discussed by comparing the effect of different stabilizers, stabilizers mixtures on the biodegradation of the γ-irradiated polyolefins. It was found that the biodegradation significantly depends on the components of stabilization system, mobility, interaction, and consumption of stabilizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-irradiation" title=" γ-irradiation"> γ-irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=polyolefins" title=" polyolefins"> polyolefins</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/21171/influence-of-synergisticantagonistic-mixtures-of-oligomeric-stabilizers-on-the-biodegradation-of-gh-sterilized-polyolefins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Composting&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Composting&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Composting&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>