CINXE.COM

Search results for: compost

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: compost</title> <meta name="description" content="Search results for: compost"> <meta name="keywords" content="compost"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="compost" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="compost"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 124</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: compost</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Assessment of Compost Usage Quality and Quality for Agricultural Use: A Case Study of Hebron District, Palestine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20A.%20Sarhan">Mohammed A. A. Sarhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Issam%20A.%20Al-Khatib"> Issam A. Al-Khatib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complying with the technical specifications of compost production is of high importance not only for environmental protection but also for increasing the productivity and promotion of compost use by farmers in agriculture. This study focuses on the compost quality of the Palestinian market and farmers’ attitudes toward agricultural use of compost. The quality is assessed through selection of 20 compost samples of different suppliers and producers and lab testing for quality parameters, while the farmers’ attitudes to compost use for agriculture are evaluated through survey questionnaire of 321 farmers in the Hebron area. The results showed that the compost in the Palestinian markets is of medium quality due to partial or non-compliance with the quality standards and guidelines. The Palestinian farmers showed a positive attitude since 91.2% of them have the desire to use compost in agriculture. The results also showed that knowledge of difference between compost and chemical fertilizers, perception of compost benefits and previously experiencing problems in compost use, are significant factors affecting the farmers’ attitude toward the use of compost as an organic fertilizer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attitude" title="attitude">attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=compost%20quality" title=" compost quality"> compost quality</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizer" title=" organic fertilizer"> organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=manure" title=" manure"> manure</a> </p> <a href="https://publications.waset.org/abstracts/93546/assessment-of-compost-usage-quality-and-quality-for-agricultural-use-a-case-study-of-hebron-district-palestine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> The Effects of Agricultural Waste Compost Applications on Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilker%20S%C3%B6nmez">Ilker Sönmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Kaplan"> Mustafa Kaplan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wastes that come out as a result of agricultural productions are disposed randomly and always by burning. Agricultural wastes have a great volume and agricultural wastes cause environmental pollution. Spent mushroom compost and cut flower carnation wastes have a serious potential in Turkey and especially in Antalya. One of the best evaluation methods of agricultural wastes is composting methods and so agricultural wastes transformed for a new product. In this study, agricultural wastes were evaluated the effects of compost and organic material on soil pH, EC, soil organic matter, and macro-micro nutrient contents of soil that it growth carnation. The effects of compost applications on soils were found to be statistically significant. Organic material applications have caused an increase in all physical and chemical parameters except for pH that pH decreased with compost added in soils. The best results among the compost applications were determined R1 compost that R1 compost included %75 Carnation Wastes + %25 Spent Mushroom Compost. The structural properties of soils can be improved with reusing of agricultural wastes by composting so it can be provided that decreasing the harmful effects of organic wastes on the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20wastes" title="agricultural wastes">agricultural wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=carnation%20wastes" title=" carnation wastes"> carnation wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20material" title=" organic material"> organic material</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20mushroom%20compost" title=" spent mushroom compost"> spent mushroom compost</a> </p> <a href="https://publications.waset.org/abstracts/28976/the-effects-of-agricultural-waste-compost-applications-on-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> The Effects of Cow Manure Treated by Fruit Beetle Larvae, Waxworms and Tiger Worms on Plant Growth in Relation to Its Use as Potting Compost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20S.%20Alwaneen">Waleed S. Alwaneen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dairy industry is flourishing in world to provide milk and milk products to local population. Besides milk products, dairy industries also generate a substantial amount of cow manure that significantly affects the environment. Moreover, heat produced during the decomposition of the cow manure adversely affects the crop germination. Different companies are producing vermicompost using different species of worms/larvae to overcome the harmful effects using fresh manure. Tiger worm treatment enhanced plant growth, especially in the compost-manure ratio (75% compost, 25% cow manure), followed by a ratio of 50% compost, 50% cow manure. &nbsp;Results also indicated that plant growth in Waxworm treated manure was weak as compared to plant growth in compost treated with Fruit Beetle (FB), Waxworms (WW), and Control (C) especially in the compost (25% compost, 75% cow manure) and 100% cow manure where there was no growth at all. Freshplant weight, fresh leaf weight and fresh root weight were significantly higher in the compost treated with Tiger worms in (75% compost, 25% cow manure); no evidence was seen for any significant differences in the dry root weight measurement between FB, Tiger worms (TW), WW, Control (C) in all composts. TW produced the best product, especially at the compost ratio of 75% compost, 25% cow manure followed by 50% compost, 50% cow manure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fruit%20beetle" title="fruit beetle">fruit beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=tiger%20worms" title=" tiger worms"> tiger worms</a>, <a href="https://publications.waset.org/abstracts/search?q=waxworms" title=" waxworms"> waxworms</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a> </p> <a href="https://publications.waset.org/abstracts/112712/the-effects-of-cow-manure-treated-by-fruit-beetle-larvae-waxworms-and-tiger-worms-on-plant-growth-in-relation-to-its-use-as-potting-compost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Sex-Dependent Fitness Improvement of Hercules Beetle Larvae by Amendment of Thermophile-Fermented Compost to Humus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Futo%20Asano">Futo Asano</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuke%20Yatsushiro"> Yusuke Yatsushiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirokuni%20Miyamoto"> Hirokuni Miyamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroaki%20Kodama"> Hiroaki Kodama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A thermophile-fermented compost is produced using small fishes, crabs, and shrimps under a high temperature (approximately 75℃) by fermentation-associated self-heating. This compost has been used as a feed additive for pigs and hens in Japan, and the fecundity of this livestock is enhanced. Firmicutes is a dominant phylum in the microbial composition of the compost. We first reported that improvement of female larval fitness of Hercules beetle can be achieved by amendment of this compost to the humus. When the 90-d-old larvae were reared for subsequent 72 days in the humus with this compost, the growth of female larvae was significantly enhanced when compared with the growth of female larvae in the humus without the compost. In contrast, the growth of male larvae in the compost-free humus was the same as the larvae grow in the compost-amended humus. The bacterial composition of the feces of larvae was determined at 0 days and 46 days after transfer to the humus with or without the compost. The most dominant bacterium in the feces was Xylanimonas. Interestingly, the growth improvement of female larvae was associated with an increased abundance of Mollicutes in the fecal samples. These results indicate that the compost act as a probiotic material for enhancing the female larvae growth by supporting Mollicutes. Here, we tried to isolate Mollicutes from the contents of the midgut and hindgut of the 3rd instar female larvae of the Hercules beetle. These gut contents were spread onto a selective agar medium for Mollicutes (PPLO agar broth, BD Difco, NJ, USA). Although we isolated none of the Mollicutes until now, several bacteria that are closely related to Xylanimonas and Luteimicrobium were isolated. These isolates have xylanase and glucanase (CMCase) activities. We show the gut bacterial profiles of larvae and discuss how the fitness of female larvae of the Hercules beetle is improved by the compost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=beetle" title=" beetle"> beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=mollicutes" title=" mollicutes"> mollicutes</a>, <a href="https://publications.waset.org/abstracts/search?q=woody%20biomass" title=" woody biomass"> woody biomass</a> </p> <a href="https://publications.waset.org/abstracts/156759/sex-dependent-fitness-improvement-of-hercules-beetle-larvae-by-amendment-of-thermophile-fermented-compost-to-humus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Effects of Organic Amendments on Primary Nutrients (N, P and K) in a Sandy Soil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nejib%20Turki">Nejib Turki</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Kouki%20Khalfallah"> Karima Kouki Khalfallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of six treatments of organic amendments were evaluated on a sandy soil in the region of Soukra in Tunisia. T1: cattle manure 55 t.ha-1, T2: commercial compost from Germany to 1 t.ha-1, T3: a mixture of 27.5 t.ha-1 of T1 with 0.5 t. ha-1 of T2, T4: commercial compost from France 2 t.ha-1, T5: a Tunisian commercial compost to 10 t.ha-1 and T0: control without treatment. The nitrogen in the soil increase to 0.029 g.kg-1 of soil treatment for the T1 and 0.021 g. kg-1 of soil treatment for the T3. The highest content of P2O5 has been registered by the T3 treatment that 0.44 g kg-1 soil with respect to the control (T0), which shows a content of 0.36 g.kg-1 soil. The soil was initially characterized by a potassium content of 0.8 g kg-1 soil, K2O exchangeable rate varied between 0.63 g.Kg-1 and 0.71 g.kg-1 soil respectively T2 and T1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20amendement" title=" organic amendement"> organic amendement</a>, <a href="https://publications.waset.org/abstracts/search?q=Ntot" title=" Ntot"> Ntot</a>, <a href="https://publications.waset.org/abstracts/search?q=P2O5" title=" P2O5"> P2O5</a>, <a href="https://publications.waset.org/abstracts/search?q=K2O" title=" K2O"> K2O</a> </p> <a href="https://publications.waset.org/abstracts/19419/effects-of-organic-amendments-on-primary-nutrients-n-p-and-k-in-a-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">632</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Evaluation of Calendula officinalis L. Flower Dry Weight, Flower Diameter, and Number of Flower in Plant Variabilities under Effect of Compost and Nitrogen Different Levels in Four Harvest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Rezazadeh">Amin Rezazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Farahpour"> Parisa Farahpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Arezoo%20Rezazadeh"> Arezoo Rezazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Sam%20Deliri"> Morteza Sam Deliri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigate the effects of nitrogen and compost different levels on qualitative and quantitative performance of Calendula officinalis L. herb, an experiment was carried out in the research field of Chalous Azad University in 2011-2012. The experiment was done in factorial form as a randomized complete block design, in three replicates. Treatments consisted of nitrogen and compost. Considered nitrogen levels consisted of N0=0, N1=50, N2=100 kg/ha and compost levels were including C0=0, C1=6, C2=12 ton/ha. Investigated characteristics consisted of flower dry weight, number of flowers in plant, flower diameter. The results showed, nitrogen and compost treatments had statistically significant influence (p ≤ 0.01) on studied characteristics. Flower dry weight, flower diameter and number of flower in plant characteristics has been studied in four harvest; as, the performance of these characteristics had increasing procedure from the first harvest up to the forth harvest; and, in the fourth harvest, it has reached to its` maximum level. As, up to the forth harvest, the maximum flower dry weight, flower diameter and number of flower in plant obtained by C1× N2 (C1=6 ton/ha compost and N2=100 kg/ha nitrogen) treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calendula" title="calendula">calendula</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid" title=" flavonoid"> flavonoid</a> </p> <a href="https://publications.waset.org/abstracts/2557/evaluation-of-calendula-officinalis-l-flower-dry-weight-flower-diameter-and-number-of-flower-in-plant-variabilities-under-effect-of-compost-and-nitrogen-different-levels-in-four-harvest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Effect of Compost Application on Uptake and Allocation of Heavy Metals and Plant Nutrients and Quality of Oriental Tobacco Krumovgrad 90</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20R.%20Angelova">Violina R. Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Venelina%20T.%20Popova"> Venelina T. Popova</a>, <a href="https://publications.waset.org/abstracts/search?q=Radka%20V.%20Ivanova"> Radka V. Ivanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Givko%20T.%20Ivanov"> Givko T. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov"> Krasimir I. Ivanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparative research on the impact of compost on uptake and allocation of nutrients and heavy metals and quality of Oriental tobacco Krumovgrad 90 has been carried out. The experiment was performed on an agricultural field contaminated by the lead zinc smelter near the town of Kardzali, Bulgaria, after closing the lead production. The compost treatments had significant effects on the uptake and allocation of plant nutrients and heavy metals. The incorporation of compost leads to decrease in the amount of heavy metals present in the tobacco leaves, with Cd, Pb and Zn having values of 36%, 12% and 6%, respectively. Application of the compost leads to increased content of potassium, calcium and magnesium in the leaves of tobacco, and therefore, may favorably affect the burning properties of tobacco. The incorporation of compost in the soil has a negative impact on the quality and typicality of the oriental tobacco variety of Krumovgrad 90. The incorporation of compost leads to an increase in the size of the tobacco plant leaves, the leaves become darker in colour, less fleshy and undergo a change in form, becoming (much) broader in the second, third and fourth stalk position. This is accompanied by a decrease in the quality of the tobacco. The incorporation of compost also results in an increase in the mineral substances (pure ash), total nicotine and nitrogen, and a reduction in the amount of reducing sugars, which causes the quality of the tobacco leaves to deteriorate (particularly in the third and fourth harvests). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title="chemical composition">chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=oriental%20tobacco" title=" oriental tobacco"> oriental tobacco</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/55340/effect-of-compost-application-on-uptake-and-allocation-of-heavy-metals-and-plant-nutrients-and-quality-of-oriental-tobacco-krumovgrad-90" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Impact of Compost Application with Different Rates of Chemical Fertilizers on Corn Growth and Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reda%20Abdel-Aziz">Reda Abdel-Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural activities in Egypt generate annually around 35 million tons of waste. Composting is one of the most promising technologies to turnover waste in a more economical way, for many centuries. Composting has been used as a mean of recycling organic matter back into the soil to improve soil structure and fertility. Field experiments were conducted in two governorates, Giza and Al-Monofia, to find out the effect of compost with different rates of chemical fertilizers on growth and yield of corn (Zea mays L.) during two constitutive seasons of 2012 and 2013. The experiment, laid out in a randomized complete block design (RCBD), was carried out on five farmers’ fields in each governorate. The treatments were: unfertilized control, full dose of NPK (120, 30, and 50 kg/acre, respectively), compost at rate of 20 ton/acre, compost at rate of 10 ton/acre + 25% of chemical fertilizer, compost at rate of 10 ton/acre + 50% of chemical fertilizer and compost at rate of 10 ton/acre + 75% of chemical fertilizer. Results revealed a superiority of the treatment of compost at rate of 10 ton/acre + 50% of NPK that caused significant improvement in growth, yield and nutrient uptakes of corn in the two governorates during the two constitutive seasons. Results showed that agricultural waste could be composted into value added soil amendment to enhance efficiency of chemical fertilizer. Composting of agricultural waste could also reduce the chemical fertilizers potential hazard to the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title="agricultural waste">agricultural waste</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizers" title=" chemical fertilizers"> chemical fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20production" title=" corn production"> corn production</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/7349/impact-of-compost-application-with-different-rates-of-chemical-fertilizers-on-corn-growth-and-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> The Effect of Biochar, Inoculated Biochar and Compost Biological Component of the Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helena%20Dvo%C5%99%C3%A1%C4%8Dkov%C3%A1">Helena Dvořáčková</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikajlo%20Irina"> Mikajlo Irina</a>, <a href="https://publications.waset.org/abstracts/search?q=Z%C3%A1hora%20Jaroslav"> Záhora Jaroslav</a>, <a href="https://publications.waset.org/abstracts/search?q=Elbl%20Jakub"> Elbl Jakub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biochar can be produced from the waste matter and its application has been associated with returning of carbon in large amounts into the soil. The impacts of this material on physical and chemical properties of soil have been described. The biggest part of the research work is dedicated to the hypothesis of this material’s toxic effects on the soil life regarding its effect on the soil biological component. At present, it has been worked on methods which could eliminate these undesirable properties of biochar. One of the possibilities is to mix biochar with organic material, such as compost, or focusing on the natural processes acceleration in the soil. In the experiment has been used as the addition of compost as well as the elimination of toxic substances by promoting microbial activity in aerated water environment. Biochar was aerated for 7 days in a container with a volume of 20 l. This way modified biochar had six times higher biomass production and reduce mineral nitrogen leaching. Better results have been achieved by mixing biochar with compost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaching%20of%20nitrogen" title="leaching of nitrogen">leaching of nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a> </p> <a href="https://publications.waset.org/abstracts/42873/the-effect-of-biochar-inoculated-biochar-and-compost-biological-component-of-the-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Physical Characteristics of Locally Composts Produced in Saudi Arabia and the Need for Regulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Al-Turki">Ahmad Al-Turki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composting is the suitable way of recycling organic waste for agricultural application and environment protection. In Saudi Arabia, several composting facilities are available and producing high quantity of composts. The aim of this study is to evaluate the physical characteristics of composts manufactured in Saudi Arabia and acquire a comprehensive image of its quality through the comparative with international standards of compost quality such as CCQC and PAS-100. In the present study different locally produced compost were identified and most of the producing factories were visited during the manufacturing of composts. Representative samples of different compost production stage were collected and Physical characteristics were determined, which included moisture content, bulk density, percentage of sand and the size of distribution of the compost particles. Results showed wide variations in all parameters investigated. Results of the study indicated generally that there is a wide variation in the physical characteristics of the types of compost under study. The initial moister contents in composts were generally low, it was less than 60% in most samples and not sufficient for microbial activities for biodegradation in 96% of the 96% of the types of compost and this will impede the decomposition of organic materials. The initial bulk density values ranged from 117 gL-1 to 1110.0 gL-1, while the final apparent bulk density ranged from 340.0 gL-1 to 1000gL-1 and about 45.4 % did not meet the ideal bulk density value. Sand percents in composts were between 3.3 % and 12.5%. This study has confirmed the need for a standard specification for compost manufactured in Saudi Arabia for agricultural use based on international standards for compost and soil characteristics and climatic conditions in Saudi Arabia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity" title=" maturity"> maturity</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20material" title=" organic material"> organic material</a> </p> <a href="https://publications.waset.org/abstracts/3506/physical-characteristics-of-locally-composts-produced-in-saudi-arabia-and-the-need-for-regulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Production and Application of Organic Waste Compost for Urban Agriculture in Emerging Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alemayehu%20Agizew%20Woldeamanuel">Alemayehu Agizew Woldeamanuel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mekonnen%20Maschal%20Tarekegn"> Mekonnen Maschal Tarekegn</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Mohan%20Balakrishina"> Raj Mohan Balakrishina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composting is one of the conventional techniques adopted for organic waste management, but the practice is very limited in emerging cities despite the most of the waste generated is organic. This paper aims to examine the viability of composting for organic waste management in the emerging city of Addis Ababa, Ethiopia, by addressing the composting practice, quality of compost, and application of compost in urban agriculture. The study collects data using compost laboratory testing and urban farm households’ survey and uses descriptive analysis on the state of compost production and application, physicochemical analysis of the compost samples, and regression analysis on the urban farmer’s willingness to pay for compost. The findings of the study indicated that there is composting practice at a small scale, most of the producers use unsorted feedstock materials, aerobic composting is dominantly used, and the maturation period ranged from four to ten weeks. The carbon content of the compost ranges from 30.8 to 277.1 due to the type of feedstock applied, and this surpasses the ideal proportions for C:N ratio. The total nitrogen, pH, organic matter, and moisture content are relatively optimal. The levels of heavy metals measured for Mn, Cu, Pb, Cd and Cr⁶⁺ in the compost samples are also insignificant. In the urban agriculture sector, chemical fertilizer is the dominant type of soil input in crop productions but vegetable producers use a combination of both fertilizer and other organic inputs, including compost. The willingness to pay for compost depends on income, household size, gender, type of soil inputs, monitoring soil fertility, the main product of the farm, farming method and farm ownership. Finally, this study recommends the need for collaboration among stakeholders’ along the value chain of waste, awareness creation on the benefits of composting and addressing challenges faced by both compost producers and users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composting" title="composting">composting</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20city" title=" emerging city"> emerging city</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20waste%20management" title=" organic waste management"> organic waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20agriculture" title=" urban agriculture"> urban agriculture</a> </p> <a href="https://publications.waset.org/abstracts/136992/production-and-application-of-organic-waste-compost-for-urban-agriculture-in-emerging-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Compost Enriched with Actinomyces and Bacillus Polymyxa Algae as a Partial Substitute for Mineral N in Ewaise Mango Orchards</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelaziz%20Sheba%20Abdelrahman">Abdelaziz Sheba Abdelrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compost enriched with actinomyces and Bacillus polymyxa algae as a Partial Substitute for Mineral N in Ewaise Mango Orchards Organic fertiliser, compost enriched with actinomyces, and the biofertilizer Bacillus polymyxa algae were used as a partial replacement for mineral N fertiliser in Ewaise mango orchards during the 2019 and 2020 seasons. When compared to using mineral N alone, the results showed that reducing the percentage of mineral N fertiliser from 100 to 50% and using compost enriched with actinomyces at 25 to 50% and Bacillus polymyxa had an announced promotion on leaf area, total chlorophylls, leaf N, P, and K, yield, and fruit quality. The use of compost enriched with actinomyces and Bacillus polymyxa, as well as mineral N, resulted in a significant decrease in nitrite in the pulp. Reducing mineral N to 25% of the suitable N had a negative impact on yield. The application of appropriate N via 50% inorganic N + compost enriched with actinomyces at 50% + Bacillus polymyxa algae increased yield quantitatively and qualitatively in Ewaise mango orchards. This promised treatment significantly reduced nitrite levels in the pulp fruit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacillus%20polymyxa%20algae" title="bacillus polymyxa algae">bacillus polymyxa algae</a>, <a href="https://publications.waset.org/abstracts/search?q=fertiliser" title=" fertiliser"> fertiliser</a>, <a href="https://publications.waset.org/abstracts/search?q=biofertilizer" title=" biofertilizer"> biofertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=ewaise%20mango" title=" ewaise mango"> ewaise mango</a> </p> <a href="https://publications.waset.org/abstracts/155019/compost-enriched-with-actinomyces-and-bacillus-polymyxa-algae-as-a-partial-substitute-for-mineral-n-in-ewaise-mango-orchards" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Potato Production under Brakish Water and Compost Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samih%20Abubaker">Samih Abubaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Abuserhan"> Amjad Abuserhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghandi%20Anfoka"> Ghandi Anfoka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potato yield reduction and soil salt accumulation are the main obstacles of using brackish water in irrigation. This study was carried out at Al- Balqa` Applied University research station, to investigate the impact of compost use on potato production and salt accumulation in the soil under brackish water, during 2014 growing season. Whole tubers of three imported potato cultivars (Spunta, Faluka and Ammbetion) were planted in pots with different soil and compost percentages (0, 20, 40, 60, 80, and 100%) and were irrigated with three water salinity levels (1.25, 5 and 10 ds/cm). A split-split plot design was used, where potato cultivars were arranged in the main plots, the brackish water treatments were in the sub-main and the soil amended treatments were in the sub-sub plots. Potato yield was generally decreased only when pots were irrigated by water of 10 ds/cm salinity compared with 1.25 and 5 ds/cm. Drainage water salinity, however, was increased as compost percentage increased. Nevertheless, salt accumulation in the growing media was decreased as the compost percentage level increased. Therefore, it can be concluded that brackish water, up to 5 ds/cm can be used to irrigate potato especially, when organic amendments were added to the soil to promote plant growth, yield and reduce salt accumulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brackish%20water" title="brackish water">brackish water</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20accumulation" title=" salt accumulation "> salt accumulation </a> </p> <a href="https://publications.waset.org/abstracts/27857/potato-production-under-brakish-water-and-compost-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Mineral Nitrogen Retention, Nitrogen Availability and Plant Growth in the Soil Influenced by Addition of Organic and Mineral Fertilizers: Lysimetric Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luk%C3%A1%C5%A1%20Plo%C5%A1ek">Lukáš Plošek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Hyn%C5%A1t"> Jaroslav Hynšt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Z%C3%A1hora"> Jaroslav Záhora</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Elbl"> Jakub Elbl</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%C3%ADn%20Kintl"> Antonín Kintl</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Charousov%C3%A1"> Ivana Charousová</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Kov%C3%A1csov%C3%A1"> Silvia Kovácsová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compost can influence soil fertility and plant health. At the same time compost can play an important role in the nitrogen cycle and it can influence leaching of mineral nitrogen from soil to underground water. This paper deals with the influence of compost addition and mineral nitrogen fertilizer on leaching of mineral nitrogen, nitrogen availability in microbial biomass and plant biomass production in the lysimetric experiment. Twenty-one lysimeters were filed with topsoil and subsoil collected in the area of protection zone of underground source of drinking water - Březová nad Svitavou. The highest leaching of mineral nitrogen was detected in the variant fertilized only mineral nitrogen fertilizer (624.58 mg m-2), the lowest leaching was recorded in the variant with high addition of compost (315.51 mg m-2). On the other hand, losses of mineral nitrogen are not in connection with the losses of available form of nitrogen in microbial biomass. Because loss of mineral nitrogen was detected in variant with the least change in the availability of N in microbial biomass. The leaching of mineral nitrogen, yields as well as the results concerning nitrogen availability from the first year of long term experiment suggest that compost can positive influence the leaching of nitrogen into underground water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title="nitrogen">nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20production" title=" biomass production"> biomass production</a>, <a href="https://publications.waset.org/abstracts/search?q=lysimeter" title=" lysimeter "> lysimeter </a> </p> <a href="https://publications.waset.org/abstracts/7531/mineral-nitrogen-retention-nitrogen-availability-and-plant-growth-in-the-soil-influenced-by-addition-of-organic-and-mineral-fertilizers-lysimetric-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Study of the Effect of Humic Acids on Soil Salinity Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20El%20Hasini">S. El Hasini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Azzouzi"> M. El Azzouzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De%20Nobili"> M. De Nobili</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Azim"> K. Azim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zouahri"> A. Zouahri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil salinization is one of the most severe environmental hazards which threaten sustainable agriculture in arid and semi-arid regions, including Morocco. In this regard the application of organic matter to saline soil has confirmed its effectiveness. The present study was aimed to examine the effect of humic acid which represent, among others, the important component of organic matter that contributes to reduce soil salinity. In fact, different composts taken from Agadir (Morocco), with different C/N ratio, were tested. After extraction and purification of humic acid, the interaction with Na2CO3 was carried out. The reduction of salinity is calculated as a value expressed in mg Na2CO3 equivalent/g HA. The results showed that humic acid had generally a significant effect on salinity. In that respect, the hypothesis proposed that carboxylic groups of humic acid create bonds with excess sodium in the soil to form a coherent complex which descends by leaching operation. The comparison between composts was based on C/N ratio, it showed that the compost with the lower ratio C/N had the most important effect on salinity reduction, whereas the compost with higher C/N ratio was less effective. The study is attended also to evaluate the quality of each compost by determining the humification index, we noticed that the compost which have the lowest C/N (20) ratio was relatively less stable, where a greater predominance of the humified substances, when the compost with C/N ratio is 35 exhibited higher stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=humic%20acid" title=" humic acid"> humic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter" title=" organic matter"> organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a> </p> <a href="https://publications.waset.org/abstracts/42742/study-of-the-effect-of-humic-acids-on-soil-salinity-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Comparative Analysis of Enzyme Activities Concerned in Decomposition of Toluene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayuko%20Itsuki">Ayuko Itsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachiyo%20Aburatani"> Sachiyo Aburatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, pollutions of the environment by toxic substances become a serious problem. While there are many methods of environmental clean-up, the methods by microorganisms are considered to be reasonable and safety for environment. Compost is known that it catabolize the meladorous substancess in its production process, however the mechanism of its catabolizing system is not known yet. In the catabolization process, organic matters turn into inorganic by the released enzymes from lots of microorganisms which live in compost. In other words, the cooperative of activated enzymes in the compost decomposes malodorous substances. Thus, clarifying the interaction among enzymes is important for revealing the catabolizing system of meladorous substance in compost. In this study, we utilized statistical method to infer the interaction among enzymes. We developed a method which combined partial correlation with cross correlation to estimate the relevance between enzymes especially from time series data of few variables. Because of using cross correlation, we can estimate not only the associative structure but also the reaction pathway. We applied the developed method to the enzyme measured data and estimated an interaction among the enzymes in decomposition mechanism of toluene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzyme%20activities" title="enzyme activities">enzyme activities</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=toluene" title=" toluene"> toluene</a> </p> <a href="https://publications.waset.org/abstracts/2728/comparative-analysis-of-enzyme-activities-concerned-in-decomposition-of-toluene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Combinated Effect of Cadmium and Municipal Solid Waste Compost Addition on Physicochemical and Biochemical Proprieties of Soil and Lolium Perenne Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Mbarki%20Marian%20Brestic">Sonia Mbarki Marian Brestic</a>, <a href="https://publications.waset.org/abstracts/search?q=Artemio%20Cerda%20Naceur%20Jedidi"> Artemio Cerda Naceur Jedidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Antonnio%20Pascual%20Chedly%20Abdelly"> Jose Antonnio Pascual Chedly Abdelly </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the effect addition bio-amendment as compost to an agricultural soil for growing plant lolium perenne irrigated with a CdCl2 solution at 50 µM on physicochemical soils characteristics and plant production in laboratory condition. Even microbial activity indexes (acid phosphatase, β-glucosidase, urease, and dehydrogenase) was determined. Basal respiration was the most affected index, while enzymatic activities and microbial biomass showed a decrease due to the cadmium treatments. We noticed that this clay soil with higher pH showed inhibition of basal respiration. Our results provide evidence for the importance of ameliorating effect compost on plant growth even when soil was added with cadmium solution at 50 µmoml.l-1. Soil heavy metal concentrations depended on heavy metals types, increased substantially with cadmium increase and with compost addition, but the recorded values were below the toxicity limits in soils and plants except for cadmium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20activity" title=" enzymatic activity"> enzymatic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=lolium%20perenne" title=" lolium perenne"> lolium perenne</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a> </p> <a href="https://publications.waset.org/abstracts/65607/combinated-effect-of-cadmium-and-municipal-solid-waste-compost-addition-on-physicochemical-and-biochemical-proprieties-of-soil-and-lolium-perenne-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Use of Silicate or Chicken Compost in Calacarious Soil on Productivity and Mineral Status of Wheat Plants under Different Levels of Phosphorus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan">Hanan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Siam"> S. Siam</a>, <a href="https://publications.waset.org/abstracts/search?q=Safaa%20A.%20Mahmoud"> Safaa A. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Taalab"> A. S. Taalab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pot experiment was conducted in greenhouse of NRC, Dokki, Cairo, Egypt to study the response of wheat plants to different levels of superphosphate at (60kg P2O5 or 30 kg P2O5) with or without potassium silicate or chicken compost (2.5 ton/fed.) on growth yield and nutrients status especially, and phosphorus and silica availability. Data reveal that the addition either chicken or compost increased significantly affected on all the growth and yield parameters as well as nutrients status and protein of the different parts of wheat plants if compared with control (60kg P2O5 or 30 kg P2O5). Data also reveal that the highest mean values were obtained when potassium silicate with was added to 60 kg P2O5, while the lowest values of the previous parameters were obtained when 30 kg P2O5 alone was added to plants. Furthermore, data indicated that the highest mean values of all mentioned parameters were obtained when chicken compost was applied with any rate of P as compared with silica addition at the same rates of P. According to the results, the highest values of all mentioned parameters were obtained when addition of chicken compost and potassium silicate including the high rate of P at (60 kg P2O5) while the lowest values of the previous parameters were obtained when plants received of phosphorus (30 kg P2O5) alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=chicken%20compost" title=" chicken compost"> chicken compost</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium" title=" potassium"> potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=silicate" title=" silicate"> silicate</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients%20status" title=" nutrients status"> nutrients status</a> </p> <a href="https://publications.waset.org/abstracts/44593/use-of-silicate-or-chicken-compost-in-calacarious-soil-on-productivity-and-mineral-status-of-wheat-plants-under-different-levels-of-phosphorus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Physical and Chemical Properties during Home Composting of Municipal Organic Solid Waste in Jordan and Production of Organic Fertilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munir%20Rusan">Munir Rusan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Municipal waste management (MWM) represents a cornerstone in the effort to preserve the environment, which guarantees a healthy living environment for communities. MWM is directly affected by population growth and population density, urbanization, and tourism. In Jordan, MWM is currently managed by transferring and dumping waste into landfills. Landfills are mostly saturated and cannot receive any more waste. Besides, the organic waste, which accounts for 50% of municipal waste, will be naturally fermented in the landfills creating an unpleasant odor and emits greenhouse gases as well as generate organic leachates that are harmful to the environment. Organic waste can be aerobically composted and generate organic fertilizer called compost. Compost is very beneficial to soil and plant growth and, in general, to the ecosystem. Home composting is very common in most developed countries, but unfortunately, in developing countries such as Jordan, such an approach is not practiced and is not even socially well acceptable. The objective of this study was to evaluate the physical and chemical properties of home composting materials and to produce compost for further use as a soil amendment. The effect of compost soil application on the soil-plant system was evaluated. The soil application of the compost resulted in enhancing soil organic matter and soil N, P, and K content. The plant growth was also improved quantitatively and qualitatively. It was concluded that composting of municipal organic solid waste and soil application of the compost has a significant positive impact on the environment and soil-plant productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composting" title="composting">composting</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solid%20waste" title=" organic solid waste"> organic solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=plant" title=" plant"> plant</a> </p> <a href="https://publications.waset.org/abstracts/164293/physical-and-chemical-properties-during-home-composting-of-municipal-organic-solid-waste-in-jordan-and-production-of-organic-fertilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> The Trial Using Bio-Product for Reducing Arsenic Heavy Metal in Soil in Grow Organic Vegetables </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nittaya%20Nokham">Nittaya Nokham</a>, <a href="https://publications.waset.org/abstracts/search?q=Nattaphon%20Kamon"> Nattaphon Kamon</a>, <a href="https://publications.waset.org/abstracts/search?q=Pipatpong%20%20%20%20Pimkhot"> Pipatpong Pimkhot</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedcharada%20Yusuk"> Pedcharada Yusuk </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Testing efficacy of a bio-product (bp) to reduce amount of arsenic was carried out in soil which were used for cultivation of organic vegetables, at Watchan Royal Project Development Center, Kulayaniwattana district, Chiang Mai. The test consists of 6 treatments e.g. Tr.1) Control: To underlie the planting pits (pp)with compost; Tr.2) Using bp: To underlie thepp with compost mixed with (+) bp at 100 g/pit; Tr.3) Using bp: To underlie the pp with compost + bp at 100 g/pit and to spray the vegetables with bp at 2 l/20 l of water, once a week; Tr.4) Using bp: To spread the compost bp on the planting area at 3 kg/1 m2 ; Tr.5) Using bp: To spread the compost + bp on the planting area at 3 kg/1 m2and to spray vegetables with bp at 2 l/20 l of water; Tr.6) Using bp: To spray vegetables with bp at 2 l/20 l of water. Result showed that after first trial of pointed cabbage cultivation, only Tr.6 had a small reduction of arsenic; while the others had higher amount of the metal. After second trial of growing red oak leaf, Tr.6 had more reduction of arsenic while Tr.5 and Tr.3 had less reduction compared to Tr.6 but more reduction than the others. In the third trial of growing mustard, very small reduction could be found on Tr.6 and Tr.5 but more reduction in Tr.3. For the fourth (last) trial with cos romaine lettuce: Tr.6, Tr.5 showed most reduction of arsenic to about half of the original amount. So, it can be concluded that this bio-product can help reducing arsenic when using this product by spraying the bp to vegetables at concentration of 2 l/20 l of water once week (Tr.6), or using the bio-product mixed with compost to spread on the planting area at 3 kg/1 m2 together with spraying the product (Tr.5). The results obtained from continuous planting 4 kinds of vegetables at the same area. The amount of arsenic found in roots and stem is very small in the 4 vegetables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20vegetables" title="organic vegetables">organic vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-product" title=" bio-product"> bio-product</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic" title=" arsenic"> arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/77108/the-trial-using-bio-product-for-reducing-arsenic-heavy-metal-in-soil-in-grow-organic-vegetables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Rida">S. Rida</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Saadani%20Hassani"> O. Saadani Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20R%E2%80%99zina"> Q. R’zina</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Saadaoui"> N. Saadaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Fares"> K. Fares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime" title=" sugar beet lime"> sugar beet lime</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/42132/agronomic-value-of-wastewater-and-sugar-beet-lime-sludge-compost-on-radish-crop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> The Role of Home Composting in Waste Management Cost Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Hassanshahi">Nahid Hassanshahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayoub%20Karimi-Jashni"> Ayoub Karimi-Jashni</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Talebbeydokhti"> Nasser Talebbeydokhti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20compost" title=" home compost"> home compost</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20waste" title=" reducing waste"> reducing waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/81989/the-role-of-home-composting-in-waste-management-cost-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Contributions of Microbial Activities to Tomato Growth and Yield under an Organic Production System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Babalola">O. A. Babalola</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F%20Adekunle"> A. F Adekunle</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Oladeji"> F. Oladeji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Osungbade"> A. T. Osungbade</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Akinlaja"> O. A. Akinlaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimizing microbiological activities in an organic crop production system is crucial to the realization of optimum growth and development of the crops. Field and pot experiments were conducted to assess soil microbial activities, growth and yield of tomato varieties in response to 4 rates of composted plant and animal residues. The compost rates were 0, 5, 10 and 20 t ha-1, and improved Ibadan and Ibadan local constituted the varieties. Fungi population, microbial biomass nitrogen, cellulase and proteinase activities were significantly higher (P≤ 0.05) at the rhizosphere of the local variety than that of improved variety. This led to a significantly higher number of branches, plant height, leaf area, number of fruits and less days to maturity in the local variety. Furthermore, compost-amended soil had significantly higher microbial populations, microbial biomass N, P and C, enzyme activities, soil N, P and organic carbon than control, but amendment of 20 t ha-1 gave significantly higher values than other compost rates. Consequently, growth parameters and tissue N significantly increased in all compost treatments while dry matter yield and weight of fruits were significantly higher in soil amended with 20 t ha-1. Correlation analysis showed that microbial activities at 6 weeks after transplanting (6 WAT) were more consistently and highly correlated with growth and yield parameters. It was concluded that microbial activities could be optimized to improve the yield of the two tomato varieties in an organic production system, through the application of compost, particularly at 20 t ha-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activities" title=" microbial activities"> microbial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20contribution" title=" microbial contribution"> microbial contribution</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20growth%20and%20yield" title=" tomato growth and yield"> tomato growth and yield</a> </p> <a href="https://publications.waset.org/abstracts/81437/contributions-of-microbial-activities-to-tomato-growth-and-yield-under-an-organic-production-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Sludge and Compost Amendments in Tropical Soils: Impact on Coriander (Coriandrum sativum) Nutrient Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20L%C3%B3pez-Moreno">M. López-Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Lugo%20Avil%C3%A9s"> L. Lugo Avilés</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rom%C3%A1n"> F. Román</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Lugo%20Rosas"> J. Lugo Rosas</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hern%C3%A1ndez-Viezcas%20Jr."> J. Hernández-Viezcas Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Peralta-Videa"> Peralta-Videa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Gardea-Torresdey"> J. Gardea-Torresdey </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degradation of agricultural soils has increased rapidly during the last 20 years due to the indiscriminate use of pesticides and other anthropogenic activities. Currently, there is an urgent need of soil restoration to increase agricultural production. Utilization of sewage sludge or municipal solid waste is an important way to recycle nutrient elements and improve soil quality. With these amendments, nutrient availability in the aqueous phase might be increased and production of healthier crops can be accomplished. This research project aimed to achieve sustainable management of tropical agricultural soils, specifically in Puerto Rico, through the amendment of water treatment plant sludge’s. This practice avoids landfill disposal of sewage sludge and at the same time results cost-effective practice for recycling solid waste residues. Coriander sativum was cultivated in a compost-soil-sludge mixture at different proportions. Results showed that Coriander grown in a mixture of 25% compost+50% Voladora soi+25% sludge had the best growth and development. High chlorophyll content (33.01 ± 0.8) was observed in Coriander plants cultivated in 25% compost+62.5% Coloso soil+ 12.5% sludge compared to plants grown with no sludge (32.59 ± 0.7). ICP-OES analysis showed variations in mineral element contents (macro and micronutrients) in coriander plant grown I soil amended with sludge and compost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=Coriandrum%20sativum" title=" Coriandrum sativum"> Coriandrum sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20sludge" title=" waste sludge"> waste sludge</a> </p> <a href="https://publications.waset.org/abstracts/18109/sludge-and-compost-amendments-in-tropical-soils-impact-on-coriander-coriandrum-sativum-nutrient-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> The Use of Synthetic Soil for The Vegetables Cultivation in Conditions of Limited Water Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Italo%20Luigi%20de%20Paoli">Italo Luigi de Paoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of synthetic soil for the vegetables cultivation in conditions of limited water consumption The separate collection of urban organic waste and green waste for the countries of the European Union averages 100 kg / inhabitant x year with an annual growth of about 10%. The production of quality compost averages 38% - 40% of the production of organic waste material. Most of the compost produced is used as an organic soil improver in those nutrient-poor soils in order to improve its quality. This study seeks to enhance the production of quality compost by creating a synthetic soil, where the percentages of compost on average oscillate between 50% and 60% in which, with appropriate precautions, different species of horticultural can be grown in conditions of high environmental safety without the use of pesticides and with a consumption of water used for irrigation limited to the actual evaporation of the plants. The project started in 2018 and is still ongoing, confirms its validity through a series of different horticultural productions, especially if this technology is applied where the availability of land suitable for the cultivation of vegetables is limited and where the use of water for irrigation represents a cultural criticality. Furthermore, the creation of "open field" crops, together with their automation, represents a further possibility in the concrete development of such technologies, giving the final product organoleptic characteristics equal if not superior to what the market offers today for human nutrition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20%20scarcity" title="water scarcity">water scarcity</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20foods" title=" vegetable foods"> vegetable foods</a>, <a href="https://publications.waset.org/abstracts/search?q=syntetic%20soil" title=" syntetic soil"> syntetic soil</a> </p> <a href="https://publications.waset.org/abstracts/140909/the-use-of-synthetic-soil-for-the-vegetables-cultivation-in-conditions-of-limited-water-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Response of Canola Traits to Integrated Fertilization Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khosro%20Mohammadi">Khosro Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effect of different resources of farmyard manure, compost and biofertilizers on grain yield and quality of canola (Talaieh cultivar), an experiment was conducted at Kurdistan region. Experimental units were arranged in split-split plots design based on randomized complete blocks with three replications. Main plots consisted of two locations with difference in soil texture (L1): Agricultural Research Center of Sanandaj and (L2): Islamic Azad University of Sanandaj, as location levels. Also, five strategies for obtaining the base fertilizer requirement including (N1): farmyard manure; (N2): compost; (N3): chemical fertilizers; (N4): farm yard manure + compost and (N5): farm yard manure + compost + chemical fertilizers were considered in split plots. Four levels of biofertilizers were (B1): Bacillus lentus and Pseudomonas putida; (B2): Trichoderma harzianum; (B3): Bacillus lentus and Pseudomonas putida & Trichoderma harzianum; and (B4): control. Results showed that location, different resources of fertilizer and interactions of them have a significant effect on grain yield. The highest grain yield (4660 kg/ha) was obtained from treatment, that farmyard manure, compost and biofertilizers were co application in clay loam soil (Gerizeh station). Different methods of fertilization have a significant effect on leaf chlorophyll. Highest amount of chlorophyll (38 Spad) was obtained from co application of farmyard manure, chemical fertilizers and compost (N5 treatment). Location, basal fertilizers and biofertilizers have a significant effect on N, S and N/S of canola seed. Oil content was decreased in Gerizeh station, but oil yield had a significant increasing than Azad University station. Co application of compost and farmyard manure produced highest percent of oleic acid (61.5 %) and linoleic acid (22.9 %). Co application of compost and farmyard manure has a significant increase in oleic acid and linoleic acid. Finally, L1N5B3 treatment, that compost, farmyard manure and biofertilizers were co application in Gerizeh station in compare to other treatments, selected as a best treatment of experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20texture" title="soil texture">soil texture</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizer" title=" organic fertilizer"> organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizer" title=" chemical fertilizer"> chemical fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=Canola" title=" Canola"> Canola</a> </p> <a href="https://publications.waset.org/abstracts/27156/response-of-canola-traits-to-integrated-fertilization-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Rhizoremediation of Contaminated Soils in Sub-Saharan Africa: Experimental Insights of Microbe Growth and Effects of Paspalum Spp. for Degrading Hydrocarbons in Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Adade-Boateng">David Adade-Boateng</a>, <a href="https://publications.waset.org/abstracts/search?q=Benard%20Fei%20Baffoe"> Benard Fei Baffoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Colin%20A.%20Booth"> Colin A. Booth</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20A.%20Fullen"> Michael A. Fullen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Remediation of diesel fuel, oil and grease in contaminated soils obtained from a mine site in Ghana are explored using rhizoremediation technology with different levels of nutrient amendments (i.e. N (nitrogen) in Compost (0.2, 0.5 and 0.8%), Urea (0.2, 0.5 and 0.8%) and Topsoil (0.2, 0.5 and 0.8%)) for a native species. A Ghanaian native grass species, Paspalum spp. from the Poaceae family, indicative across Sub-Saharan Africa, was selected following the development of essential and desirable growth criteria. Vegetative parts of the species were subjected to ten treatments in a Randomized Complete Block Design (RCBD) in three replicates. The plant-associated microbial community was examined in Paspalum spp. An assessment of the influence of Paspalum spp on the abundance and activity of micro-organisms in the rhizosphere revealed a build-up of microbial communities over a three month period. This was assessed using the MPN method, which showed rhizospheric samples from the treatments were significantly different (P <0.05). Multiple comparisons showed how microbial populations built-up in the rhizosphere for the different treatments. Treatments G (0.2% compost), H (0.5% compost) and I (0.8% compost) performed significantly better done other treatments, while treatments D (0.2% topsoil) and F (0.8% topsoil) were insignificant. Furthermore, treatment A (0.2% urea), B (0.5% urea), C (0.8% urea) and E (0.5% topsoil) also performed the same. Residual diesel and oil concentrations (as total petroleum hydrocarbons, TPH and oil and grease) were measured using infra-red spectroscopy and gravimetric methods, respectively. The presence of single species successfully enhanced the removal of hydrocarbons from soil. Paspalum spp. subjected to compost levels (0.5% and 0.8%) and topsoil levels (0.5% and 0.8%) showed significantly lower residual hydrocarbon concentrations compared to those treated with Urea. A strong relationship (p<0.001) between the abundance of hydrocarbon degrading micro-organisms in the rhizosphere and hydrocarbon biodegradation was demonstrated for rhizospheric samples with treatment G (0.2% compost), H (0.5% compost) and I (0.8% compost) (P <0.001). The same level of amendment with 0.8% compost (N-level) can improve the application effectiveness. These findings have wide-reaching implications for the environmental management of soils contaminated by hydrocarbons in Sub-Saharan Africa. However, it is necessary to further investigate the in situ rhizoremediation potential of Paspalum spp. at the field scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhizoremediation" title="rhizoremediation">rhizoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20population" title=" microbial population"> microbial population</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizospheric%20sample" title=" rhizospheric sample"> rhizospheric sample</a>, <a href="https://publications.waset.org/abstracts/search?q=treatments" title=" treatments"> treatments</a> </p> <a href="https://publications.waset.org/abstracts/51358/rhizoremediation-of-contaminated-soils-in-sub-saharan-africa-experimental-insights-of-microbe-growth-and-effects-of-paspalum-spp-for-degrading-hydrocarbons-in-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Potential of Sunflower (Helianthus annuus L.) for Phytoremediation of Soils Contaminated with Heavy Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20R.%20Angelova">Violina R. Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20N.%20Perifanova-Nemska"> Mariana N. Perifanova-Nemska</a>, <a href="https://publications.waset.org/abstracts/search?q=Galina%20P.%20Uzunova"> Galina P. Uzunova</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov"> Krasimir I. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Huu%20Q.%20Lee"> Huu Q. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field study was conducted to evaluate the efficacy of the sunflower (<em>Helianthus annuus </em>L.) for phytoremediation of contaminated soils. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. Field experiments with a randomized, complete block design with five treatments (control, compost amendments added at 20 and 40 t/daa, and vemicompost amendments added at 20 and 40 t/daa) were carried out. The accumulation of heavy metals in the sunflower plant and the quality of the sunflower oil (heavy metals and fatty acid composition) were determined. The tested organic amendments significantly influenced the uptake of Pb, Zn and Cd by the sunflower plant. The incorporation of 40 t/decare of compost and 20 t/decare of vermicompost to the soil led to an increase in the ability of the sunflower to take up and accumulate Cd, Pb and Zn. Sunflower can be subjected to the accumulators of Pb, Zn and Cd and can be successfully used for phytoremediation of contaminated soils with heavy metals. The 40 t/daa compost treatment led to a decrease in heavy metal content in sunflower oil to below the regulated limits. Oil content and fatty acids composition were affected by compost and vermicompost amendment treatments. Adding compost and vermicompost increased the oil content in the seeds. Adding organic amendments increased the content of stearic, palmitoleic and oleic acids, and reduced the content of palmitic and gadoleic acids in sunflower oil. The possibility of further industrial processing of seeds to oil and use of the obtained oil will make sunflowers economically interesting crops for farmers of phytoremediation technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=polluted%20soils" title=" polluted soils"> polluted soils</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower" title=" sunflower"> sunflower</a> </p> <a href="https://publications.waset.org/abstracts/52411/potential-of-sunflower-helianthus-annuus-l-for-phytoremediation-of-soils-contaminated-with-heavy-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Mitigating Food Insecurity and Malnutrition by Promoting Carbon Farming via a Solar-Powered Enzymatic Composting Bioreactor with Arduino-Based Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Molin%20A.">Molin A.</a>, <a href="https://publications.waset.org/abstracts/search?q=De%20Ramos%20J.%20M."> De Ramos J. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Cadion%20L.%20G."> Cadion L. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pico%20R.%20L."> Pico R. L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malnutrition and food insecurity represent significant global challenges affecting millions of individuals, particularly in low-income and developing regions. The researchers created a solar-powered enzymatic composting bioreactor with an Arduino-based monitoring system for pH, humidity, and temperature. It manages mixed municipal solid wastes incorporating industrial enzymes and whey additives for accelerated composting and minimized carbon footprint. Within 15 days, the bioreactor yielded 54.54% compost compared to 44.85% from traditional methods, increasing yield by nearly 10%. Tests showed that the bioreactor compost had 4.84% NPK, passing metal analysis standards, while the traditional pit compost had 3.86% NPK; both are suitable for agriculture. Statistical analyses, including ANOVA and Tukey's HSD test, revealed significant differences in agricultural yield across different compost types based on leaf length, width, and number of leaves. The study compared the effects of different composts on Brassica rapa subsp. Chinesis (Petchay) and Brassica juncea (Mustasa) plant growth. For Pechay, significant effects of compost type on plant leaf length (F(5,84) = 62.33, η² = 0.79) and leaf width (F(5,84) = 12.35, η² = 0.42) were found. For Mustasa, significant effects of compost type on leaf length (F(4,70) = 20.61, η² = 0.54), leaf width (F(4,70) = 19.24, η² = 0.52), and number of leaves (F(4,70) = 13.17, η² = 0.43) were observed. This study explores the effectiveness of the enzymatic composting bioreactor and its viability in promoting carbon farming as a solution to food insecurity and malnutrition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malnutrition" title="malnutrition">malnutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20insecurity" title=" food insecurity"> food insecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20composting%20bioreactor" title=" enzymatic composting bioreactor"> enzymatic composting bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=arduino-based%20monitoring%20system" title=" arduino-based monitoring system"> arduino-based monitoring system</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20farming" title=" carbon farming"> carbon farming</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20additive" title=" whey additive"> whey additive</a>, <a href="https://publications.waset.org/abstracts/search?q=NPK%20level" title=" NPK level"> NPK level</a> </p> <a href="https://publications.waset.org/abstracts/185261/mitigating-food-insecurity-and-malnutrition-by-promoting-carbon-farming-via-a-solar-powered-enzymatic-composting-bioreactor-with-arduino-based-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Monitoring Soil Organic Amendments Under Arid Climate: Evolution of Soil Quality and of Two Consecutive Barley Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houda%20Oueriemmi">Houda Oueriemmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Susan%20Kidd"> Petra Susan Kidd</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Trasar-Cepeda"> Carmen Trasar-Cepeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Rodr%C3%ADguez-Garrido"> Beatriz Rodríguez-Garrido</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Moussa"> Mohamed Moussa</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81ngeles%20Prieto-Fern%C3%A1ndez"> Ángeles Prieto-Fernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ouessar"> Mohamed Ouessar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic amendments are generally used for improving the fertility of arid and semi-arid soils. However, the price of farmyard manure, the organic amendment typically applied to many arid and semi-arid soils has highly increased in the last years. To investigate at field scale whether cheap, highly available organic amendments, such as sewage sludge compost and municipal solid waste compost, may be acceptable as substitutes for farmyard manure is therefore of great interest. A field plots experiment was carried out to assess the effects of a single application of three organic amendments on soil fertility, distribution of trace elements and on barley yield. Municipal solid waste compost (MSWC), farmyard manure (FYM) and sewage sludge compost (SSC) were applied at rates of 0, 20, 40 and 60 t ha⁻¹, and barley was cultivated in two consecutive years. Plant samples and soils were collected for laboratory analyses after two consecutive harvests. Compared with unamended soil, the application of the three organic residues improved the fertility of the topsoil, showing a significant dose-dependent increase of TOC, N, P contents up to the highest dose of 60 t ha⁻¹ (0.74%, 0.06% and 40 mg kg⁻¹, respectively). The enhancement of soil nutrient status impacted positively on grain yield (up to 51%). The distribution of trace elements in the soil, analysed by a sequential extraction procedure, revealed that the MSWC increased the acid-extractable Co and Cu and reducible Ni, while SSC increased reducible Co and Ni and oxidisable Cu, relative to the control soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste%20compost" title="municipal solid waste compost">municipal solid waste compost</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge%20compost" title=" sewage sludge compost"> sewage sludge compost</a>, <a href="https://publications.waset.org/abstracts/search?q=fertility" title=" fertility"> fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a> </p> <a href="https://publications.waset.org/abstracts/159940/monitoring-soil-organic-amendments-under-arid-climate-evolution-of-soil-quality-and-of-two-consecutive-barley-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=compost&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=compost&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=compost&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=compost&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=compost&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10