CINXE.COM

원 (기하학) - 위키백과, 우리 모두의 백과사전

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="ko" dir="ltr"> <head> <meta charset="UTF-8"> <title>원 (기하학) - 위키백과, 우리 모두의 백과사전</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )kowikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"ko", "wgMonthNames":["","1월","2월","3월","4월","5월","6월","7월","8월","9월","10월","11월","12월"],"wgRequestId":"68441562-d6e2-4c1c-88cd-2f3c6d3834db","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"원_(기하학)","wgTitle":"원 (기하학)","wgCurRevisionId":37124337,"wgRevisionId":37124337,"wgArticleId":20676,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["해결되지 않은 속성이 있는 문서","CS1 - 영어 인용 (en)","위키데이터 속성 P18을 사용하는 문서","위키데이터 속성 P373을 사용하는 문서","위키데이터 속성 P227을 사용하는 문서","위키데이터 속성 P244를 사용하는 문서","위키데이터 속성 P691을 사용하는 문서","위키데이터 속성 P1368을 사용하는 문서","위키데이터 속성 P7859를 사용하는 문서","위키데이터 속성 P8189를 사용하는 문서", "영어 표기를 포함한 문서","GND 식별자를 포함한 위키백과 문서","J9U 식별자를 포함한 위키백과 문서","LCCN 식별자를 포함한 위키백과 문서","LNB 식별자를 포함한 위키백과 문서","NKC 식별자를 포함한 위키백과 문서","원 (기하학)","기하학","원뿔 곡선"],"wgPageViewLanguage":"ko","wgPageContentLanguage":"ko","wgPageContentModel":"wikitext","wgRelevantPageName":"원_(기하학)","wgRelevantArticleId":20676,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ko","pageLanguageDir":"ltr","pageVariantFallbacks":"ko"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength" :20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q17278","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.SectionFont":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready", "ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.directcommons","ext.gadget.edittools","ext.gadget.refToolbar","ext.gadget.siteNotice","ext.gadget.scrollUpButton","ext.gadget.strikethroughTOC","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints", "ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ko&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=ko&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ko&amp;modules=ext.gadget.SectionFont&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=ko&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Cercle_noir_100%25.svg/1200px-Cercle_noir_100%25.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Cercle_noir_100%25.svg/800px-Cercle_noir_100%25.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Cercle_noir_100%25.svg/640px-Cercle_noir_100%25.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="원 (기하학) - 위키백과, 우리 모두의 백과사전"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ko.m.wikipedia.org/wiki/%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)"> <link rel="alternate" type="application/x-wiki" title="편집" href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="위키백과 (ko)"> <link rel="EditURI" type="application/rsd+xml" href="//ko.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ko.wikipedia.org/wiki/%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ko"> <link rel="alternate" type="application/atom+xml" title="위키백과 아톰 피드" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-원_기하학 rootpage-원_기하학 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">본문으로 이동</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="사이트"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="주 메뉴" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">주 메뉴</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">주 메뉴</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">숨기기</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 둘러보기 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8C%80%EB%AC%B8" title="대문으로 가기 [z]" accesskey="z"><span>대문</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C" title="위키의 최근 바뀐 목록 [r]" accesskey="r"><span>최근 바뀜</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%ED%8F%AC%ED%84%B8:%EC%9A%94%EC%A6%98_%ED%99%94%EC%A0%9C" title="최근의 소식 알아 보기"><span>요즘 화제</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EC%9E%84%EC%9D%98%EB%AC%B8%EC%84%9C" title="무작위로 선택된 문서 불러오기 [x]" accesskey="x"><span>임의의 문서로</span></a></li> </ul> </div> </div> <div id="p-사용자_모임" class="vector-menu mw-portlet mw-portlet-사용자_모임" > <div class="vector-menu-heading"> 사용자 모임 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-projectchat" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%82%AC%EB%9E%91%EB%B0%A9"><span>사랑방</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%82%AC%EC%9A%A9%EC%9E%90_%EB%AA%A8%EC%9E%84" title="위키백과 참여자를 위한 토론/대화 공간입니다."><span>사용자 모임</span></a></li><li id="n-request" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%9A%94%EC%B2%AD"><span>관리 요청</span></a></li> </ul> </div> </div> <div id="p-편집_안내" class="vector-menu mw-portlet mw-portlet-편집_안내" > <div class="vector-menu-heading"> 편집 안내 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-helpintro" class="mw-list-item"><a href="/wiki/%EB%8F%84%EC%9B%80%EB%A7%90:%EC%86%8C%EA%B0%9C"><span>소개</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8F%84%EC%9B%80%EB%A7%90" title="도움말"><span>도움말</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A0%95%EC%B1%85%EA%B3%BC_%EC%A7%80%EC%B9%A8"><span>정책과 지침</span></a></li><li id="n-qna" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A7%88%EB%AC%B8%EB%B0%A9"><span>질문방</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8C%80%EB%AC%B8" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="위키백과" src="/static/images/mobile/copyright/wikipedia-wordmark-ko.svg" style="width: 7.5em; height: 1.75em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-ko.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%ED%8A%B9%EC%88%98:%EA%B2%80%EC%83%89" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="위키백과 검색 [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>검색</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="위키백과 검색" aria-label="위키백과 검색" autocapitalize="sentences" title="위키백과 검색 [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="특수:검색"> </div> <button class="cdx-button cdx-search-input__end-button">검색</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="개인 도구"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="보이기"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="문서의 글꼴 크기, 폭, 색의 모습을 변경합니다" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="보이기" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">보이기</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_ko.wikipedia.org&amp;uselang=ko" class=""><span>기부</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EA%B3%84%EC%A0%95%EB%A7%8C%EB%93%A4%EA%B8%B0&amp;returnto=%EC%9B%90+%28%EA%B8%B0%ED%95%98%ED%95%99%29" title="계정을 만들고 로그인하는 것이 좋습니다. 하지만 필수는 아닙니다" class=""><span>계정 만들기</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EB%A1%9C%EA%B7%B8%EC%9D%B8&amp;returnto=%EC%9B%90+%28%EA%B8%B0%ED%95%98%ED%95%99%29" title="위키백과에 로그인하면 여러가지 편리한 기능을 사용할 수 있습니다. [o]" accesskey="o" class=""><span>로그인</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="더 많은 옵션" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="개인 도구" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">개인 도구</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="사용자 메뉴" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_ko.wikipedia.org&amp;uselang=ko"><span>기부</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EA%B3%84%EC%A0%95%EB%A7%8C%EB%93%A4%EA%B8%B0&amp;returnto=%EC%9B%90+%28%EA%B8%B0%ED%95%98%ED%95%99%29" title="계정을 만들고 로그인하는 것이 좋습니다. 하지만 필수는 아닙니다"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>계정 만들기</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EB%A1%9C%EA%B7%B8%EC%9D%B8&amp;returnto=%EC%9B%90+%28%EA%B8%B0%ED%95%98%ED%95%99%29" title="위키백과에 로그인하면 여러가지 편리한 기능을 사용할 수 있습니다. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>로그인</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 로그아웃한 편집자를 위한 문서 <a href="/wiki/%EB%8F%84%EC%9B%80%EB%A7%90:%EC%86%8C%EA%B0%9C" aria-label="편집에 관해 더 알아보기"><span>더 알아보기</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%82%B4%EA%B8%B0%EC%97%AC" title="이 IP 주소의 편집 목록 [y]" accesskey="y"><span>기여</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%82%B4%EC%82%AC%EC%9A%A9%EC%9E%90%ED%86%A0%EB%A1%A0" title="현재 사용하는 IP 주소에 대한 토론 문서 [n]" accesskey="n"><span>토론</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="사이트"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="목차" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">목차</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">숨기기</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">처음 위치</div> </a> </li> <li id="toc-용어" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#용어"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>용어</span> </div> </a> <ul id="toc-용어-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-역사" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#역사"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>역사</span> </div> </a> <ul id="toc-역사-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-해석적_성질" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#해석적_성질"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>해석적 성질</span> </div> </a> <button aria-controls="toc-해석적_성질-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>해석적 성질 하위섹션 토글하기</span> </button> <ul id="toc-해석적_성질-sublist" class="vector-toc-list"> <li id="toc-둘레와_넓이" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#둘레와_넓이"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>둘레와 넓이</span> </div> </a> <ul id="toc-둘레와_넓이-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-방정식" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#방정식"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>방정식</span> </div> </a> <ul id="toc-방정식-sublist" class="vector-toc-list"> <li id="toc-데카르트_좌표계" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#데카르트_좌표계"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.1</span> <span>데카르트 좌표계</span> </div> </a> <ul id="toc-데카르트_좌표계-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-극좌표계" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#극좌표계"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.2</span> <span>극좌표계</span> </div> </a> <ul id="toc-극좌표계-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-복소평면" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#복소평면"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.3</span> <span>복소평면</span> </div> </a> <ul id="toc-복소평면-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-접선의_방정식" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#접선의_방정식"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>접선의 방정식</span> </div> </a> <ul id="toc-접선의_방정식-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-기하적_성질" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#기하적_성질"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>기하적 성질</span> </div> </a> <button aria-controls="toc-기하적_성질-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>기하적 성질 하위섹션 토글하기</span> </button> <ul id="toc-기하적_성질-sublist" class="vector-toc-list"> <li id="toc-대칭" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#대칭"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>대칭</span> </div> </a> <ul id="toc-대칭-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-호와_현" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#호와_현"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>호와 현</span> </div> </a> <ul id="toc-호와_현-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-원과_직선의_위치_관계" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#원과_직선의_위치_관계"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>원과 직선의 위치 관계</span> </div> </a> <ul id="toc-원과_직선의_위치_관계-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-두_원의_위치_관계" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#두_원의_위치_관계"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>두 원의 위치 관계</span> </div> </a> <ul id="toc-두_원의_위치_관계-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-중심각과_원주각" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#중심각과_원주각"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>중심각과 원주각</span> </div> </a> <ul id="toc-중심각과_원주각-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-접선" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#접선"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>접선</span> </div> </a> <ul id="toc-접선-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-원의_직교" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#원의_직교"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>원의 직교</span> </div> </a> <ul id="toc-원의_직교-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-작도" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#작도"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>작도</span> </div> </a> <button aria-controls="toc-작도-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>작도 하위섹션 토글하기</span> </button> <ul id="toc-작도-sublist" class="vector-toc-list"> <li id="toc-공선점이_아닌_세_점을_지나는_원" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#공선점이_아닌_세_점을_지나는_원"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>공선점이 아닌 세 점을 지나는 원</span> </div> </a> <ul id="toc-공선점이_아닌_세_점을_지나는_원-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-원의_중심" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#원의_중심"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>원의 중심</span> </div> </a> <ul id="toc-원의_중심-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-원적_문제" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#원적_문제"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>원적 문제</span> </div> </a> <ul id="toc-원적_문제-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-기타_관련_주제" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#기타_관련_주제"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>기타 관련 주제</span> </div> </a> <button aria-controls="toc-기타_관련_주제-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>기타 관련 주제 하위섹션 토글하기</span> </button> <ul id="toc-기타_관련_주제-sublist" class="vector-toc-list"> <li id="toc-내접원,_외접원,_방접원" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#내접원,_외접원,_방접원"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>내접원, 외접원, 방접원</span> </div> </a> <ul id="toc-내접원,_외접원,_방접원-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-문학" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#문학"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>문학</span> </div> </a> <ul id="toc-문학-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-같이_보기" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#같이_보기"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>같이 보기</span> </div> </a> <ul id="toc-같이_보기-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-각주" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#각주"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>각주</span> </div> </a> <ul id="toc-각주-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-외부_링크" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#외부_링크"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>외부 링크</span> </div> </a> <ul id="toc-외부_링크-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="목차" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="목차 토글" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">목차 토글</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">원 (기하학)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="다른 언어로 문서를 방문합니다. 144개 언어로 읽을 수 있습니다" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-144" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">144개 언어</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Sirkel" title="Sirkel – 아프리칸스어" lang="af" hreflang="af" data-title="Sirkel" data-language-autonym="Afrikaans" data-language-local-name="아프리칸스어" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Kreis_(Geometrie)" title="Kreis (Geometrie) – 독일어(스위스)" lang="gsw" hreflang="gsw" data-title="Kreis (Geometrie)" data-language-autonym="Alemannisch" data-language-local-name="독일어(스위스)" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8A%AD%E1%89%A5" title="ክብ – 암하라어" lang="am" hreflang="am" data-title="ክብ" data-language-autonym="አማርኛ" data-language-local-name="암하라어" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Circumferencia" title="Circumferencia – 아라곤어" lang="an" hreflang="an" data-title="Circumferencia" data-language-autonym="Aragonés" data-language-local-name="아라곤어" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ar badge-Q17437796 badge-featuredarticle mw-list-item" title="알찬 글"><a href="https://ar.wikipedia.org/wiki/%D8%AF%D8%A7%D8%A6%D8%B1%D8%A9" title="دائرة – 아랍어" lang="ar" hreflang="ar" data-title="دائرة" data-language-autonym="العربية" data-language-local-name="아랍어" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D8%AF%D8%A7%D9%8A%D8%B1%D9%87" title="دايره – 이집트 아랍어" lang="arz" hreflang="arz" data-title="دايره" data-language-autonym="مصرى" data-language-local-name="이집트 아랍어" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%AC%E0%A7%83%E0%A6%A4%E0%A7%8D%E0%A6%A4" title="বৃত্ত – 아삼어" lang="as" hreflang="as" data-title="বৃত্ত" data-language-autonym="অসমীয়া" data-language-local-name="아삼어" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Circunferencia" title="Circunferencia – 아스투리아어" lang="ast" hreflang="ast" data-title="Circunferencia" data-language-autonym="Asturianu" data-language-local-name="아스투리아어" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-ay mw-list-item"><a href="https://ay.wikipedia.org/wiki/Muyu" title="Muyu – 아이마라어" lang="ay" hreflang="ay" data-title="Muyu" data-language-autonym="Aymar aru" data-language-local-name="아이마라어" class="interlanguage-link-target"><span>Aymar aru</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/%C3%87evr%C9%99" title="Çevrə – 아제르바이잔어" lang="az" hreflang="az" data-title="Çevrə" data-language-autonym="Azərbaycanca" data-language-local-name="아제르바이잔어" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%AF%D8%A7%DB%8C%D8%B1%D9%87" title="دایره – South Azerbaijani" lang="azb" hreflang="azb" data-title="دایره" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D3%98%D0%B9%D0%BB%D3%99%D0%BD%D3%99" title="Әйләнә – 바슈키르어" lang="ba" hreflang="ba" data-title="Әйләнә" data-language-autonym="Башҡортса" data-language-local-name="바슈키르어" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Apskr%C4%97t%C4%97ms" title="Apskrėtėms – Samogitian" lang="sgs" hreflang="sgs" data-title="Apskrėtėms" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Bilog" title="Bilog – Central Bikol" lang="bcl" hreflang="bcl" data-title="Bilog" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%90%D0%BA%D1%80%D1%83%D0%B6%D0%BD%D0%B0%D1%81%D1%86%D1%8C" title="Акружнасць – 벨라루스어" lang="be" hreflang="be" data-title="Акружнасць" data-language-autonym="Беларуская" data-language-local-name="벨라루스어" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%90%D0%BA%D1%80%D1%83%D0%B6%D1%8B%D0%BD%D0%B0" title="Акружына – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Акружына" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9E%D0%BA%D1%80%D1%8A%D0%B6%D0%BD%D0%BE%D1%81%D1%82" title="Окръжност – 불가리아어" lang="bg" hreflang="bg" data-title="Окръжност" data-language-autonym="Български" data-language-local-name="불가리아어" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AC%E0%A7%83%E0%A6%A4%E0%A7%8D%E0%A6%A4" title="বৃত্ত – 벵골어" lang="bn" hreflang="bn" data-title="বৃত্ত" data-language-autonym="বাংলা" data-language-local-name="벵골어" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bo mw-list-item"><a href="https://bo.wikipedia.org/wiki/%E0%BD%A6%E0%BE%92%E0%BD%BC%E0%BD%A2%E0%BC%8B%E0%BD%90%E0%BD%B2%E0%BD%82%E0%BC%8B" title="སྒོར་ཐིག་ – 티베트어" lang="bo" hreflang="bo" data-title="སྒོར་ཐིག་" data-language-autonym="བོད་ཡིག" data-language-local-name="티베트어" class="interlanguage-link-target"><span>བོད་ཡིག</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Kelc%27h" title="Kelc&#039;h – 브르타뉴어" lang="br" hreflang="br" data-title="Kelc&#039;h" data-language-autonym="Brezhoneg" data-language-local-name="브르타뉴어" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Kru%C5%BEnica" title="Kružnica – 보스니아어" lang="bs" hreflang="bs" data-title="Kružnica" data-language-autonym="Bosanski" data-language-local-name="보스니아어" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Circumfer%C3%A8ncia" title="Circumferència – 카탈로니아어" lang="ca" hreflang="ca" data-title="Circumferència" data-language-autonym="Català" data-language-local-name="카탈로니아어" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%A8%D8%A7%D8%B2%D9%86%DB%95_(%D8%A6%DB%95%D9%86%D8%AF%D8%A7%D8%B2%DB%95)" title="بازنە (ئەندازە) – 소라니 쿠르드어" lang="ckb" hreflang="ckb" data-title="بازنە (ئەندازە)" data-language-autonym="کوردی" data-language-local-name="소라니 쿠르드어" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Kru%C5%BEnice" title="Kružnice – 체코어" lang="cs" hreflang="cs" data-title="Kružnice" data-language-autonym="Čeština" data-language-local-name="체코어" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%C3%87%D0%B0%D0%B2%D1%80%D0%B0%D0%BA%C4%83%D1%88" title="Çавракăш – 추바시어" lang="cv" hreflang="cv" data-title="Çавракăш" data-language-autonym="Чӑвашла" data-language-local-name="추바시어" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Cylch" title="Cylch – 웨일스어" lang="cy" hreflang="cy" data-title="Cylch" data-language-autonym="Cymraeg" data-language-local-name="웨일스어" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Cirkel" title="Cirkel – 덴마크어" lang="da" hreflang="da" data-title="Cirkel" data-language-autonym="Dansk" data-language-local-name="덴마크어" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Kreis" title="Kreis – 독일어" lang="de" hreflang="de" data-title="Kreis" data-language-autonym="Deutsch" data-language-local-name="독일어" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-dsb mw-list-item"><a href="https://dsb.wikipedia.org/wiki/Cera_krejza" title="Cera krejza – 저지 소르비아어" lang="dsb" hreflang="dsb" data-title="Cera krejza" data-language-autonym="Dolnoserbski" data-language-local-name="저지 소르비아어" class="interlanguage-link-target"><span>Dolnoserbski</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9A%CF%8D%CE%BA%CE%BB%CE%BF%CF%82" title="Κύκλος – 그리스어" lang="el" hreflang="el" data-title="Κύκλος" data-language-autonym="Ελληνικά" data-language-local-name="그리스어" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Ser%C4%87_(giometr%C3%ACa)" title="Serć (giometrìa) – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Serć (giometrìa)" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Circle" title="Circle – 영어" lang="en" hreflang="en" data-title="Circle" data-language-autonym="English" data-language-local-name="영어" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Cirklo" title="Cirklo – 에스페란토어" lang="eo" hreflang="eo" data-title="Cirklo" data-language-autonym="Esperanto" data-language-local-name="에스페란토어" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/C%C3%ADrculo" title="Círculo – 스페인어" lang="es" hreflang="es" data-title="Círculo" data-language-autonym="Español" data-language-local-name="스페인어" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Ringjoon" title="Ringjoon – 에스토니아어" lang="et" hreflang="et" data-title="Ringjoon" data-language-autonym="Eesti" data-language-local-name="에스토니아어" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zirkulu" title="Zirkulu – 바스크어" lang="eu" hreflang="eu" data-title="Zirkulu" data-language-autonym="Euskara" data-language-local-name="바스크어" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa badge-Q17437798 badge-goodarticle mw-list-item" title="좋은 글"><a href="https://fa.wikipedia.org/wiki/%D8%AF%D8%A7%DB%8C%D8%B1%D9%87" title="دایره – 페르시아어" lang="fa" hreflang="fa" data-title="دایره" data-language-autonym="فارسی" data-language-local-name="페르시아어" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Ympyr%C3%A4" title="Ympyrä – 핀란드어" lang="fi" hreflang="fi" data-title="Ympyrä" data-language-autonym="Suomi" data-language-local-name="핀란드어" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Ts%C3%B5%C3%B5rjuun" title="Tsõõrjuun – Võro" lang="vro" hreflang="vro" data-title="Tsõõrjuun" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fj mw-list-item"><a href="https://fj.wikipedia.org/wiki/Iwirini" title="Iwirini – 피지어" lang="fj" hreflang="fj" data-title="Iwirini" data-language-autonym="Na Vosa Vakaviti" data-language-local-name="피지어" class="interlanguage-link-target"><span>Na Vosa Vakaviti</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Sirkul" title="Sirkul – 페로어" lang="fo" hreflang="fo" data-title="Sirkul" data-language-autonym="Føroyskt" data-language-local-name="페로어" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Cercle" title="Cercle – 프랑스어" lang="fr" hreflang="fr" data-title="Cercle" data-language-autonym="Français" data-language-local-name="프랑스어" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Kreis_(Geometrii)" title="Kreis (Geometrii) – 북부 프리지아어" lang="frr" hreflang="frr" data-title="Kreis (Geometrii)" data-language-autonym="Nordfriisk" data-language-local-name="북부 프리지아어" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Ciorcal" title="Ciorcal – 아일랜드어" lang="ga" hreflang="ga" data-title="Ciorcal" data-language-autonym="Gaeilge" data-language-local-name="아일랜드어" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E5%9C%93%E5%BD%A2" title="圓形 – 간어" lang="gan" hreflang="gan" data-title="圓形" data-language-autonym="贛語" data-language-local-name="간어" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Serk" title="Serk – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Serk" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gd mw-list-item"><a href="https://gd.wikipedia.org/wiki/Cearcall" title="Cearcall – 스코틀랜드 게일어" lang="gd" hreflang="gd" data-title="Cearcall" data-language-autonym="Gàidhlig" data-language-local-name="스코틀랜드 게일어" class="interlanguage-link-target"><span>Gàidhlig</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Circunferencia" title="Circunferencia – 갈리시아어" lang="gl" hreflang="gl" data-title="Circunferencia" data-language-autonym="Galego" data-language-local-name="갈리시아어" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%B5%E0%AA%B0%E0%AB%8D%E0%AA%A4%E0%AB%81%E0%AA%B3" title="વર્તુળ – 구자라트어" lang="gu" hreflang="gu" data-title="વર્તુળ" data-language-autonym="ગુજરાતી" data-language-local-name="구자라트어" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-gv mw-list-item"><a href="https://gv.wikipedia.org/wiki/Kiarkyl" title="Kiarkyl – 맹크스어" lang="gv" hreflang="gv" data-title="Kiarkyl" data-language-autonym="Gaelg" data-language-local-name="맹크스어" class="interlanguage-link-target"><span>Gaelg</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A2%D7%92%D7%9C" title="מעגל – 히브리어" lang="he" hreflang="he" data-title="מעגל" data-language-autonym="עברית" data-language-local-name="히브리어" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B5%E0%A5%83%E0%A4%A4%E0%A5%8D%E0%A4%A4" title="वृत्त – 힌디어" lang="hi" hreflang="hi" data-title="वृत्त" data-language-autonym="हिन्दी" data-language-local-name="힌디어" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Circle" title="Circle – 피지 힌디어" lang="hif" hreflang="hif" data-title="Circle" data-language-autonym="Fiji Hindi" data-language-local-name="피지 힌디어" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Kru%C5%BEnica" title="Kružnica – 크로아티아어" lang="hr" hreflang="hr" data-title="Kružnica" data-language-autonym="Hrvatski" data-language-local-name="크로아티아어" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hsb mw-list-item"><a href="https://hsb.wikipedia.org/wiki/Kru%C5%BEnica" title="Kružnica – 고지 소르비아어" lang="hsb" hreflang="hsb" data-title="Kružnica" data-language-autonym="Hornjoserbsce" data-language-local-name="고지 소르비아어" class="interlanguage-link-target"><span>Hornjoserbsce</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/S%C3%A8k_(non)" title="Sèk (non) – 아이티어" lang="ht" hreflang="ht" data-title="Sèk (non)" data-language-autonym="Kreyòl ayisyen" data-language-local-name="아이티어" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/K%C3%B6r_(geometria)" title="Kör (geometria) – 헝가리어" lang="hu" hreflang="hu" data-title="Kör (geometria)" data-language-autonym="Magyar" data-language-local-name="헝가리어" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%87%D6%80%D5%BB%D5%A1%D5%B6%D5%A1%D5%A3%D5%AB%D5%AE" title="Շրջանագիծ – 아르메니아어" lang="hy" hreflang="hy" data-title="Շրջանագիծ" data-language-autonym="Հայերեն" data-language-local-name="아르메니아어" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Circulo" title="Circulo – 인터링구아" lang="ia" hreflang="ia" data-title="Circulo" data-language-autonym="Interlingua" data-language-local-name="인터링구아" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Lingkaran" title="Lingkaran – 인도네시아어" lang="id" hreflang="id" data-title="Lingkaran" data-language-autonym="Bahasa Indonesia" data-language-local-name="인도네시아어" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Cirklo" title="Cirklo – 이도어" lang="io" hreflang="io" data-title="Cirklo" data-language-autonym="Ido" data-language-local-name="이도어" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Hringur_(r%C3%BAmfr%C3%A6%C3%B0i)" title="Hringur (rúmfræði) – 아이슬란드어" lang="is" hreflang="is" data-title="Hringur (rúmfræði)" data-language-autonym="Íslenska" data-language-local-name="아이슬란드어" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Circonferenza" title="Circonferenza – 이탈리아어" lang="it" hreflang="it" data-title="Circonferenza" data-language-autonym="Italiano" data-language-local-name="이탈리아어" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%86%86_(%E6%95%B0%E5%AD%A6)" title="円 (数学) – 일본어" lang="ja" hreflang="ja" data-title="円 (数学)" data-language-autonym="日本語" data-language-local-name="일본어" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Soerkl" title="Soerkl – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Soerkl" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/Bunderan" title="Bunderan – 자바어" lang="jv" hreflang="jv" data-title="Bunderan" data-language-autonym="Jawa" data-language-local-name="자바어" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%AC%E1%83%A0%E1%83%94%E1%83%AC%E1%83%98%E1%83%A0%E1%83%98" title="წრეწირი – 조지아어" lang="ka" hreflang="ka" data-title="წრეწირი" data-language-autonym="ქართული" data-language-local-name="조지아어" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Tawinest" title="Tawinest – 커바일어" lang="kab" hreflang="kab" data-title="Tawinest" data-language-autonym="Taqbaylit" data-language-local-name="커바일어" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A8%D0%B5%D2%A3%D0%B1%D0%B5%D1%80" title="Шеңбер – 카자흐어" lang="kk" hreflang="kk" data-title="Шеңбер" data-language-autonym="Қазақша" data-language-local-name="카자흐어" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%9A%E1%9E%84%E1%9F%92%E1%9E%9C%E1%9E%84%E1%9F%8B" title="រង្វង់ – 크메르어" lang="km" hreflang="km" data-title="រង្វង់" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="크메르어" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%B5%E0%B3%83%E0%B2%A4%E0%B3%8D%E0%B2%A4" title="ವೃತ್ತ – 칸나다어" lang="kn" hreflang="kn" data-title="ವೃತ್ತ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="칸나다어" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Gilover" title="Gilover – 쿠르드어" lang="ku" hreflang="ku" data-title="Gilover" data-language-autonym="Kurdî" data-language-local-name="쿠르드어" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-kw mw-list-item"><a href="https://kw.wikipedia.org/wiki/Kylgh" title="Kylgh – 콘월어" lang="kw" hreflang="kw" data-title="Kylgh" data-language-autonym="Kernowek" data-language-local-name="콘월어" class="interlanguage-link-target"><span>Kernowek</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%90%D0%B9%D0%BB%D0%B0%D0%BD%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Айлана (математика) – 키르기스어" lang="ky" hreflang="ky" data-title="Айлана (математика)" data-language-autonym="Кыргызча" data-language-local-name="키르기스어" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Circulus" title="Circulus – 라틴어" lang="la" hreflang="la" data-title="Circulus" data-language-autonym="Latina" data-language-local-name="라틴어" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Krees_(Geometrie)" title="Krees (Geometrie) – 룩셈부르크어" lang="lb" hreflang="lb" data-title="Krees (Geometrie)" data-language-autonym="Lëtzebuergesch" data-language-local-name="룩셈부르크어" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Sirculo" title="Sirculo – 링구아 프랑카 노바" lang="lfn" hreflang="lfn" data-title="Sirculo" data-language-autonym="Lingua Franca Nova" data-language-local-name="링구아 프랑카 노바" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Cirkel" title="Cirkel – 림버거어" lang="li" hreflang="li" data-title="Cirkel" data-language-autonym="Limburgs" data-language-local-name="림버거어" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/S%C3%A9rcc" title="Sércc – Lombard" lang="lmo" hreflang="lmo" data-title="Sércc" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Apskritimas" title="Apskritimas – 리투아니아어" lang="lt" hreflang="lt" data-title="Apskritimas" data-language-autonym="Lietuvių" data-language-local-name="리투아니아어" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Ri%C5%86%C4%B7a_l%C4%ABnija" title="Riņķa līnija – 라트비아어" lang="lv" hreflang="lv" data-title="Riņķa līnija" data-language-autonym="Latviešu" data-language-local-name="라트비아어" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Faribolana" title="Faribolana – 말라가시어" lang="mg" hreflang="mg" data-title="Faribolana" data-language-autonym="Malagasy" data-language-local-name="말라가시어" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-mhr mw-list-item"><a href="https://mhr.wikipedia.org/wiki/%D0%9E%D2%A5%D0%B3%D0%BE" title="Оҥго – Eastern Mari" lang="mhr" hreflang="mhr" data-title="Оҥго" data-language-autonym="Олык марий" data-language-local-name="Eastern Mari" class="interlanguage-link-target"><span>Олык марий</span></a></li><li class="interlanguage-link interwiki-min mw-list-item"><a href="https://min.wikipedia.org/wiki/Lingkaran" title="Lingkaran – 미낭카바우어" lang="min" hreflang="min" data-title="Lingkaran" data-language-autonym="Minangkabau" data-language-local-name="미낭카바우어" class="interlanguage-link-target"><span>Minangkabau</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437796 badge-featuredarticle mw-list-item" title="알찬 글"><a href="https://mk.wikipedia.org/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%B8%D1%86%D0%B0" title="Кружница – 마케도니아어" lang="mk" hreflang="mk" data-title="Кружница" data-language-autonym="Македонски" data-language-local-name="마케도니아어" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B5%E0%B5%83%E0%B4%A4%E0%B5%8D%E0%B4%A4%E0%B4%82" title="വൃത്തം – 말라얄람어" lang="ml" hreflang="ml" data-title="വൃത്തം" data-language-autonym="മലയാളം" data-language-local-name="말라얄람어" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A2%D0%BE%D0%B9%D1%80%D0%BE%D0%B3" title="Тойрог – 몽골어" lang="mn" hreflang="mn" data-title="Тойрог" data-language-autonym="Монгол" data-language-local-name="몽골어" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B5%E0%A4%B0%E0%A5%8D%E0%A4%A4%E0%A5%81%E0%A4%B3" title="वर्तुळ – 마라티어" lang="mr" hreflang="mr" data-title="वर्तुळ" data-language-autonym="मराठी" data-language-local-name="마라티어" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Bulatan" title="Bulatan – 말레이어" lang="ms" hreflang="ms" data-title="Bulatan" data-language-autonym="Bahasa Melayu" data-language-local-name="말레이어" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%85%E1%80%80%E1%80%BA%E1%80%9D%E1%80%AD%E1%80%AF%E1%80%84%E1%80%BA%E1%80%B8" title="စက်ဝိုင်း – 버마어" lang="my" hreflang="my" data-title="စက်ဝိုင်း" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="버마어" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Krink" title="Krink – 저지 독일어" lang="nds" hreflang="nds" data-title="Krink" data-language-autonym="Plattdüütsch" data-language-local-name="저지 독일어" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%B5%E0%A5%83%E0%A4%A4" title="वृत – 네팔어" lang="ne" hreflang="ne" data-title="वृत" data-language-autonym="नेपाली" data-language-local-name="네팔어" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-new mw-list-item"><a href="https://new.wikipedia.org/wiki/%E0%A4%9A%E0%A4%BE%E0%A4%95%E0%A4%83" title="चाकः – 네와르어" lang="new" hreflang="new" data-title="चाकः" data-language-autonym="नेपाल भाषा" data-language-local-name="네와르어" class="interlanguage-link-target"><span>नेपाल भाषा</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Cirkel" title="Cirkel – 네덜란드어" lang="nl" hreflang="nl" data-title="Cirkel" data-language-autonym="Nederlands" data-language-local-name="네덜란드어" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Sirkel" title="Sirkel – 노르웨이어(니노르스크)" lang="nn" hreflang="nn" data-title="Sirkel" data-language-autonym="Norsk nynorsk" data-language-local-name="노르웨이어(니노르스크)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Sirkel" title="Sirkel – 노르웨이어(보크말)" lang="nb" hreflang="nb" data-title="Sirkel" data-language-autonym="Norsk bokmål" data-language-local-name="노르웨이어(보크말)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Cercle" title="Cercle – 오크어" lang="oc" hreflang="oc" data-title="Cercle" data-language-autonym="Occitan" data-language-local-name="오크어" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Geengoo" title="Geengoo – 오로모어" lang="om" hreflang="om" data-title="Geengoo" data-language-autonym="Oromoo" data-language-local-name="오로모어" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%AC%E0%AD%83%E0%AC%A4%E0%AD%8D%E0%AC%A4" title="ବୃତ୍ତ – 오리야어" lang="or" hreflang="or" data-title="ବୃତ୍ତ" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="오리야어" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%9A%E0%A9%B1%E0%A8%95%E0%A8%B0" title="ਚੱਕਰ – 펀잡어" lang="pa" hreflang="pa" data-title="ਚੱਕਰ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="펀잡어" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pih mw-list-item"><a href="https://pih.wikipedia.org/wiki/Sirkil" title="Sirkil – Norfuk / Pitkern" lang="pih" hreflang="pih" data-title="Sirkil" data-language-autonym="Norfuk / Pitkern" data-language-local-name="Norfuk / Pitkern" class="interlanguage-link-target"><span>Norfuk / Pitkern</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Okr%C4%85g" title="Okrąg – 폴란드어" lang="pl" hreflang="pl" data-title="Okrąg" data-language-autonym="Polski" data-language-local-name="폴란드어" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%AF%D8%A7%D8%A6%D8%B1%DB%81" title="دائرہ – Western Punjabi" lang="pnb" hreflang="pnb" data-title="دائرہ" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%DA%AF%D8%B1%D8%AF%DA%A9%D9%87" title="گردکه – 파슈토어" lang="ps" hreflang="ps" data-title="گردکه" data-language-autonym="پښتو" data-language-local-name="파슈토어" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Circunfer%C3%AAncia" title="Circunferência – 포르투갈어" lang="pt" hreflang="pt" data-title="Circunferência" data-language-autonym="Português" data-language-local-name="포르투갈어" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/P%27allta_muyu" title="P&#039;allta muyu – 케추아어" lang="qu" hreflang="qu" data-title="P&#039;allta muyu" data-language-autonym="Runa Simi" data-language-local-name="케추아어" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Cerc" title="Cerc – 루마니아어" lang="ro" hreflang="ro" data-title="Cerc" data-language-autonym="Română" data-language-local-name="루마니아어" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-roa-rup mw-list-item"><a href="https://roa-rup.wikipedia.org/wiki/%C8%9Aerc%C4%BEiu" title="Țercľiu – 아로마니아어" lang="rup" hreflang="rup" data-title="Țercľiu" data-language-autonym="Armãneashti" data-language-local-name="아로마니아어" class="interlanguage-link-target"><span>Armãneashti</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9E%D0%BA%D1%80%D1%83%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Окружность – 러시아어" lang="ru" hreflang="ru" data-title="Окружность" data-language-autonym="Русский" data-language-local-name="러시아어" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D0%9A%D1%80%D1%83%D0%B3" title="Круг – 루신어" lang="rue" hreflang="rue" data-title="Круг" data-language-autonym="Русиньскый" data-language-local-name="루신어" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Raing" title="Raing – 스코틀랜드어" lang="sco" hreflang="sco" data-title="Raing" data-language-autonym="Scots" data-language-local-name="스코틀랜드어" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://sd.wikipedia.org/wiki/%DA%AF%D9%88%D9%84" title="گول – 신디어" lang="sd" hreflang="sd" data-title="گول" data-language-autonym="سنڌي" data-language-local-name="신디어" class="interlanguage-link-target"><span>سنڌي</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Kru%C5%BEnica" title="Kružnica – 세르비아-크로아티아어" lang="sh" hreflang="sh" data-title="Kružnica" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="세르비아-크로아티아어" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Circle" title="Circle – Simple English" lang="en-simple" hreflang="en-simple" data-title="Circle" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Kru%C5%BEnica" title="Kružnica – 슬로바키아어" lang="sk" hreflang="sk" data-title="Kružnica" data-language-autonym="Slovenčina" data-language-local-name="슬로바키아어" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Kro%C5%BEnica" title="Krožnica – 슬로베니아어" lang="sl" hreflang="sl" data-title="Krožnica" data-language-autonym="Slovenščina" data-language-local-name="슬로베니아어" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Denderedzwa" title="Denderedzwa – 쇼나어" lang="sn" hreflang="sn" data-title="Denderedzwa" data-language-autonym="ChiShona" data-language-local-name="쇼나어" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Goobo" title="Goobo – 소말리아어" lang="so" hreflang="so" data-title="Goobo" data-language-autonym="Soomaaliga" data-language-local-name="소말리아어" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Rrethi" title="Rrethi – 알바니아어" lang="sq" hreflang="sq" data-title="Rrethi" data-language-autonym="Shqip" data-language-local-name="알바니아어" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%B8%D1%86%D0%B0" title="Кружница – 세르비아어" lang="sr" hreflang="sr" data-title="Кружница" data-language-autonym="Српски / srpski" data-language-local-name="세르비아어" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Bunderan_(%C3%A9lmu_ukur)" title="Bunderan (élmu ukur) – 순다어" lang="su" hreflang="su" data-title="Bunderan (élmu ukur)" data-language-autonym="Sunda" data-language-local-name="순다어" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Cirkel" title="Cirkel – 스웨덴어" lang="sv" hreflang="sv" data-title="Cirkel" data-language-autonym="Svenska" data-language-local-name="스웨덴어" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Duara" title="Duara – 스와힐리어" lang="sw" hreflang="sw" data-title="Duara" data-language-autonym="Kiswahili" data-language-local-name="스와힐리어" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%9F%E0%AF%8D%E0%AE%9F%E0%AE%AE%E0%AF%8D" title="வட்டம் – 타밀어" lang="ta" hreflang="ta" data-title="வட்டம்" data-language-autonym="தமிழ்" data-language-local-name="타밀어" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B5%E0%B1%83%E0%B0%A4%E0%B1%8D%E0%B0%A4%E0%B0%AE%E0%B1%81" title="వృత్తము – 텔루구어" lang="te" hreflang="te" data-title="వృత్తము" data-language-autonym="తెలుగు" data-language-local-name="텔루구어" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B9%E0%B8%9B%E0%B8%A7%E0%B8%87%E0%B8%81%E0%B8%A5%E0%B8%A1" title="รูปวงกลม – 태국어" lang="th" hreflang="th" data-title="รูปวงกลม" data-language-autonym="ไทย" data-language-local-name="태국어" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Bilog" title="Bilog – 타갈로그어" lang="tl" hreflang="tl" data-title="Bilog" data-language-autonym="Tagalog" data-language-local-name="타갈로그어" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/%C3%87ember" title="Çember – 터키어" lang="tr" hreflang="tr" data-title="Çember" data-language-autonym="Türkçe" data-language-local-name="터키어" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D3%98%D0%B9%D0%BB%D3%99%D0%BD%D3%99" title="Әйләнә – 타타르어" lang="tt" hreflang="tt" data-title="Әйләнә" data-language-autonym="Татарча / tatarça" data-language-local-name="타타르어" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BB%D0%BE" title="Коло – 우크라이나어" lang="uk" hreflang="uk" data-title="Коло" data-language-autonym="Українська" data-language-local-name="우크라이나어" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AF%D8%A7%D8%A6%D8%B1%DB%81" title="دائرہ – 우르두어" lang="ur" hreflang="ur" data-title="دائرہ" data-language-autonym="اردو" data-language-local-name="우르두어" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Aylana" title="Aylana – 우즈베크어" lang="uz" hreflang="uz" data-title="Aylana" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="우즈베크어" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Sercio" title="Sercio – Venetian" lang="vec" hreflang="vec" data-title="Sercio" data-language-autonym="Vèneto" data-language-local-name="Venetian" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90%C6%B0%E1%BB%9Dng_tr%C3%B2n" title="Đường tròn – 베트남어" lang="vi" hreflang="vi" data-title="Đường tròn" data-language-autonym="Tiếng Việt" data-language-local-name="베트남어" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Lidong" title="Lidong – 와라이어" lang="war" hreflang="war" data-title="Lidong" data-language-autonym="Winaray" data-language-local-name="와라이어" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%9C%86" title="圆 – 우어" lang="wuu" hreflang="wuu" data-title="圆" data-language-autonym="吴语" data-language-local-name="우어" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xh mw-list-item"><a href="https://xh.wikipedia.org/wiki/Isazinge" title="Isazinge – 코사어" lang="xh" hreflang="xh" data-title="Isazinge" data-language-autonym="IsiXhosa" data-language-local-name="코사어" class="interlanguage-link-target"><span>IsiXhosa</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A7%D7%A8%D7%99%D7%99%D7%96" title="קרייז – 이디시어" lang="yi" hreflang="yi" data-title="קרייז" data-language-autonym="ייִדיש" data-language-local-name="이디시어" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://yo.wikipedia.org/wiki/%C3%92b%C3%ACr%C3%ADpo" title="Òbìrípo – 요루바어" lang="yo" hreflang="yo" data-title="Òbìrípo" data-language-autonym="Yorùbá" data-language-local-name="요루바어" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-za mw-list-item"><a href="https://za.wikipedia.org/wiki/Luenz" title="Luenz – 주앙어" lang="za" hreflang="za" data-title="Luenz" data-language-autonym="Vahcuengh" data-language-local-name="주앙어" class="interlanguage-link-target"><span>Vahcuengh</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%9C%86" title="圆 – 중국어" lang="zh" hreflang="zh" data-title="圆" data-language-autonym="中文" data-language-local-name="중국어" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%9C%93" title="圓 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="圓" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/%C3%8E%E2%81%BF-h%C3%AAng" title="Îⁿ-hêng – 민난어" lang="nan" hreflang="nan" data-title="Îⁿ-hêng" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="민난어" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%9C%93%E5%BD%A2" title="圓形 – 광둥어" lang="yue" hreflang="yue" data-title="圓形" data-language-autonym="粵語" data-language-local-name="광둥어" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q17278#sitelinks-wikipedia" title="언어 간 링크 편집" class="wbc-editpage">링크 편집</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="이름공간"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)" title="본문 보기 [c]" accesskey="c"><span>문서</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/%ED%86%A0%EB%A1%A0:%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)" rel="discussion" title="문서의 내용에 대한 토론 문서 [t]" accesskey="t"><span>토론</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="언어 변종 바꾸기" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">한국어</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="보기"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)"><span>읽기</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit" title="이 문서의 원본 코드를 편집 [e]" accesskey="e"><span>편집</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=history" title="이 문서의 과거 편집 내역입니다. [h]" accesskey="h"><span>역사 보기</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="페이지 도구"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="도구" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">도구</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">도구</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">숨기기</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="더 많은 옵션" > <div class="vector-menu-heading"> 동작 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)"><span>읽기</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit" title="이 문서의 원본 코드를 편집 [e]" accesskey="e"><span>편집</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=history"><span>역사 보기</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 일반 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EA%B0%80%EB%A6%AC%ED%82%A4%EB%8A%94%EB%AC%B8%EC%84%9C/%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)" title="여기를 가리키는 모든 위키 문서의 목록 [j]" accesskey="j"><span>여기를 가리키는 문서</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%A7%81%ED%81%AC%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C/%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)" rel="nofollow" title="이 문서에서 링크한 문서의 최근 바뀜 [k]" accesskey="k"><span>가리키는 글의 최근 바뀜</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/위키백과:파일_올리기" title="파일 올리기 [u]" accesskey="u"><span>파일 올리기</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%ED%8A%B9%EC%88%98%EB%AC%B8%EC%84%9C" title="모든 특수 문서의 목록 [q]" accesskey="q"><span>특수 문서 목록</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;oldid=37124337" title="이 문서의 이 판에 대한 고유 링크"><span>고유 링크</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=info" title="이 문서에 대한 자세한 정보"><span>문서 정보</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%9D%B4%EB%AC%B8%EC%84%9C%EC%9D%B8%EC%9A%A9&amp;page=%EC%9B%90_%28%EA%B8%B0%ED%95%98%ED%95%99%29&amp;id=37124337&amp;wpFormIdentifier=titleform" title="이 문서를 인용하는 방법에 대한 정보"><span>이 문서 인용하기</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:UrlShortener&amp;url=https%3A%2F%2Fko.wikipedia.org%2Fwiki%2F%25EC%259B%2590_%28%25EA%25B8%25B0%25ED%2595%2598%25ED%2595%2599%29"><span>축약된 URL 얻기</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:QrCode&amp;url=https%3A%2F%2Fko.wikipedia.org%2Fwiki%2F%25EC%259B%2590_%28%25EA%25B8%25B0%25ED%2595%2598%25ED%2595%2599%29"><span>QR 코드 다운로드</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> 인쇄/내보내기 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%B1%85&amp;bookcmd=book_creator&amp;referer=%EC%9B%90+%28%EA%B8%B0%ED%95%98%ED%95%99%29"><span>책 만들기</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:DownloadAsPdf&amp;page=%EC%9B%90_%28%EA%B8%B0%ED%95%98%ED%95%99%29&amp;action=show-download-screen"><span>PDF로 다운로드</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;printable=yes" title="이 문서의 인쇄용 판 [p]" accesskey="p"><span>인쇄용 판</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 다른 프로젝트 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Circle_area" hreflang="en"><span>위키미디어 공용</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q17278" title="데이터 저장소에 연결된 항목을 가리키는 링크 [g]" accesskey="g"><span>위키데이터 항목</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="페이지 도구"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="보이기"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">보이기</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">숨기기</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">위키백과, 우리 모두의 백과사전.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ko" dir="ltr"><p><span class="nowrap"></span> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Cercle_noir_100%25.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Cercle_noir_100%25.svg/220px-Cercle_noir_100%25.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Cercle_noir_100%25.svg/330px-Cercle_noir_100%25.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/40/Cercle_noir_100%25.svg/440px-Cercle_noir_100%25.svg.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>원</figcaption></figure> <p><a href="/wiki/%EA%B8%B0%ED%95%98%ED%95%99" title="기하학">기하학</a>에서 <b>원</b>(圓, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>&#58; </span><span lang="en">circle</span>)은 평면 위의 한 <a href="/wiki/%EC%A0%90_(%EA%B8%B0%ED%95%98%ED%95%99)" title="점 (기하학)">점</a>에 이르는 <a href="/wiki/%EA%B1%B0%EB%A6%AC" title="거리">거리</a>가 일정한 <a href="/wiki/%ED%8F%89%EB%A9%B4" title="평면">평면</a> 위의 점들의 <a href="/wiki/%EC%A7%91%ED%95%A9" title="집합">집합</a>으로 정의되는 도형이다. 이러한 점을 원의 <a href="/wiki/%EC%A4%91%EC%8B%AC_(%EA%B8%B0%ED%95%98%ED%95%99)" title="중심 (기하학)">중심</a>이라고 하고, 중심과 원 위의 점을 잇는 선분 또는 이들의 공통된 길이를 원의 <a href="/wiki/%EB%B0%98%EC%A7%80%EB%A6%84" title="반지름">반지름</a>이라고 한다. </p><p>원은 <a href="/wiki/%EC%9D%B4%EC%B0%A8_%EA%B3%A1%EC%84%A0" class="mw-redirect" title="이차 곡선">이차 곡선</a>의 일종인 <a href="/wiki/%ED%83%80%EC%9B%90" title="타원">타원</a>에서 <a href="/wiki/%EC%9D%B4%EC%8B%AC%EB%A5%A0" title="이심률">이심률</a>이 0인 경우이다. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="용어"><span id=".EC.9A.A9.EC.96.B4"></span>용어</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=1" title="부분 편집: 용어"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Circle_lines_2_ko.svg" class="mw-file-description"><img alt="원과 그 위의 반지름, 지름, 현, 호" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Circle_lines_2_ko.svg/220px-Circle_lines_2_ko.svg.png" decoding="async" width="220" height="207" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Circle_lines_2_ko.svg/330px-Circle_lines_2_ko.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Circle_lines_2_ko.svg/440px-Circle_lines_2_ko.svg.png 2x" data-file-width="596" data-file-height="562" /></a><figcaption>현, 지름, 반지름, 할선, 접선</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Circle_slices_2_ko.svg" class="mw-file-description"><img alt="원과 그 위의 호, 활꼴, 부채꼴" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a1/Circle_slices_2_ko.svg/220px-Circle_slices_2_ko.svg.png" decoding="async" width="220" height="209" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a1/Circle_slices_2_ko.svg/330px-Circle_slices_2_ko.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a1/Circle_slices_2_ko.svg/440px-Circle_slices_2_ko.svg.png 2x" data-file-width="507" data-file-height="482" /></a><figcaption>호, 활꼴, 부채꼴</figcaption></figure> <p>원과 관련된 기본적인 용어들은 다음과 같다. </p> <ul><li><b><a href="/wiki/%EB%8B%A8%EC%9C%84%EC%9B%90" title="단위원">단위원</a></b>: 반지름이 1인 원</li> <li><b><a href="/wiki/%EB%8F%99%EC%8B%AC%EC%9B%90" title="동심원">동심원</a></b>: 중심이 같은 두 원</li> <li><b><a href="/wiki/%EB%B0%98%EC%9B%90" title="반원">반원</a></b>: 중심각이 <a href="/wiki/%ED%8F%89%EA%B0%81" title="평각">평각</a>인 부채꼴(활꼴)</li> <li><b><a href="/wiki/%EB%B0%98%EC%A7%80%EB%A6%84" title="반지름">반지름</a></b>: 원의 중심과 그 원 위의 <a href="/wiki/%EC%A0%90" class="mw-disambig" title="점">점</a>을 잇는 <a href="/wiki/%EC%84%A0%EB%B6%84" title="선분">선분</a> 또는 그 선분의 길이. 반지름의 길이는 지름의 2분의 1이다.</li> <li><b><a href="/wiki/%EB%B6%80%EC%B1%84%EA%BC%B4" title="부채꼴">부채꼴</a></b>: 두 개의 반지름과 하나의 호로 둘러싸인 영역</li> <li><b><a href="/wiki/%EC%82%AC%EB%B6%84%EC%9B%90" class="mw-redirect" title="사분원">사분원</a></b>: 중심각이 <a href="/wiki/%EC%A7%81%EA%B0%81" title="직각">직각</a>인 부채꼴</li> <li><b><a href="/wiki/%EC%9B%90%EB%91%98%EB%A0%88" title="원둘레">원주</a></b>: 원의 둘레</li> <li><b><a href="/wiki/%EC%9B%90%EC%A3%BC%EA%B0%81" title="원주각">원주각</a></b>: 한 끝점을 공유하는 두 현이 원 내부에서 이루는 각. 크기는 이에 대응하는 중심각의 1/2이다.</li> <li><b><a href="/wiki/%EC%9B%90%ED%8C%90" title="원판">원판</a></b>: 원으로 둘러싸인 도형</li> <li><b><a href="/w/index.php?title=%EC%9B%90%ED%99%98_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;redlink=1" class="new" title="원환 (기하학) (없는 문서)">원환</a></b>: 두 <a href="/wiki/%EB%8F%99%EC%8B%AC%EC%9B%90" title="동심원">동심원</a>으로 둘러싸인 도형</li> <li><b><a href="/wiki/%EC%A0%91%EC%84%A0" title="접선">접선</a></b>: 원과 한 점에서 만나는 직선</li> <li><b><a href="/wiki/%EC%A0%91%ED%98%84%EA%B0%81" title="접현각">접현각</a></b>: 원의 현과 현의 한 끝점에서의 접선이 이루는 각</li> <li><b><a href="/wiki/%EC%A4%91%EC%8B%AC_(%EA%B8%B0%ED%95%98%ED%95%99)" title="중심 (기하학)">중심</a></b>: 원 위의 임의의 점에 이르는 거리가 일정한 그 원을 포함하는 평면 위의 점</li> <li><b><a href="/wiki/%EC%A4%91%EC%8B%AC%EA%B0%81" title="중심각">중심각</a></b>: 호의 두 끝점을 지나는 반지름이 호와 같은 쪽에서 이루는 각. 크기는 이에 대응하는 원주각의 2배이다.</li> <li><b><a href="/wiki/%EC%A7%80%EB%A6%84" title="지름">지름</a></b>: 원의 중심을 지나는 현 또는 그 길이. 길이는 반지름의 2배이다.</li> <li><b><a href="/w/index.php?title=%EC%BC%A4%EB%A0%88%ED%98%B8&amp;action=edit&amp;redlink=1" class="new" title="켤레호 (없는 문서)">켤레호</a></b>: 원의 합하여 원주 전체를 이루는 두 호</li> <li><b><a href="/wiki/%ED%95%A0%EC%84%A0" title="할선">할선</a></b>: 원과 두 점에서 만나는 직선</li> <li><b><a href="/wiki/%ED%98%84_(%EA%B8%B0%ED%95%98%ED%95%99)" title="현 (기하학)">현</a></b>: 원 위의 두 점을 잇는 선분</li> <li><b><a href="/wiki/%ED%98%B8_(%EA%B8%B0%ED%95%98%ED%95%99)" title="호 (기하학)">호</a></b>: 원의 일부가 되는 곡선</li> <li><b><a href="/wiki/%ED%99%9C%EA%BC%B4" title="활꼴">활꼴</a></b>: 같은 끝점을 갖는 호와 현으로 둘러싸인 영역</li> <li><b><a href="/wiki/%EC%8B%9C_(%EA%B8%B0%ED%95%98%ED%95%99)" title="시 (기하학)">시</a></b>: 할선의 중점을 수선의 발로 하는 선</li></ul> <div style="clear:both;"></div> <div class="mw-heading mw-heading2"><h2 id="역사"><span id=".EC.97.AD.EC.82.AC"></span>역사</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=2" title="부분 편집: 역사"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%EA%B8%B0%EC%9B%90%EC%A0%84_5%EC%84%B8%EA%B8%B0" title="기원전 5세기">기원전 5세기</a>경 <a href="/wiki/%EC%95%88%ED%8B%B0%ED%8F%B0" title="안티폰">안티폰</a>은 <a href="/wiki/%EC%A0%95%EB%8B%A4%EA%B0%81%ED%98%95" title="정다각형">정다각형</a>의 변 수를 계속 늘려가면 결국엔 원이 된다고 생각했다. 이에 15세기 독일의 신학자 <a href="/w/index.php?title=%EC%BF%A0%EC%82%AC%EC%9D%98_%EB%8B%88%EC%BD%9C%EB%9D%BC%EC%9A%B0%EC%8A%A4&amp;action=edit&amp;redlink=1" class="new" title="쿠사의 니콜라우스 (없는 문서)">니콜라우스</a>는 아무리 변을 늘려도 원이 될 수는 없다는 사상으로 반박했다. </p> <div class="mw-heading mw-heading2"><h2 id="해석적_성질"><span id=".ED.95.B4.EC.84.9D.EC.A0.81_.EC.84.B1.EC.A7.88"></span>해석적 성질</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=3" title="부분 편집: 해석적 성질"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="둘레와_넓이"><span id=".EB.91.98.EB.A0.88.EC.99.80_.EB.84.93.EC.9D.B4"></span>둘레와 넓이</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=4" title="부분 편집: 둘레와 넓이"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Circle_area_2_ko.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Circle_area_2_ko.svg/220px-Circle_area_2_ko.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Circle_area_2_ko.svg/330px-Circle_area_2_ko.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/67/Circle_area_2_ko.svg/440px-Circle_area_2_ko.svg.png 2x" data-file-width="562" data-file-height="562" /></a><figcaption>원의 넓이는 색칠된 정사각형의 넓이의 π배이다.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Area_of_a_circle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Area_of_a_circle.svg/220px-Area_of_a_circle.svg.png" decoding="async" width="220" height="94" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Area_of_a_circle.svg/330px-Area_of_a_circle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Area_of_a_circle.svg/440px-Area_of_a_circle.svg.png 2x" data-file-width="1175" data-file-height="500" /></a><figcaption>반지름의 길이가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>인 원은 무한히 작은 부채꼴들로 쪼개어 가로 길이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7447766f482372c761858f993f1432bd3671b0dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:1.676ex;" alt="{\displaystyle \pi r}"></span>, 세로 길이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>의 직사각형으로 만들 수 있다.</figcaption></figure> <p>어떤 원의 반지름의 길이를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>라고 하고, 지름의 길이를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>라고 하면, 원의 <a href="/wiki/%EB%91%98%EB%A0%88" title="둘레">둘레</a>는 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C=2\pi r=\pi d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>=</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>r</mi> <mo>=</mo> <mi>&#x03C0;<!-- π --></mi> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C=2\pi r=\pi d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c784450428d0cbe9bcea87111b862f3504e51d5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.054ex; height:2.176ex;" alt="{\displaystyle C=2\pi r=\pi d}"></span></dd></dl> <p>이다. 여기서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span>는 <a href="/wiki/%EC%9B%90%EC%A3%BC%EC%9C%A8" title="원주율">원주율</a>이다. 이는 약 3.1415…를 값으로 하는 <a href="/wiki/%EC%B4%88%EC%9B%94%EC%88%98" title="초월수">초월수</a>이다. </p><p>어떤 원의 반지름의 길이를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>라고 하고, 지름의 길이를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>라고 하고, 둘레를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>라고 하면, 원(으로 둘러싸인 <a href="/wiki/%EB%8F%84%ED%98%95" title="도형">도형</a>)의 <a href="/wiki/%EB%84%93%EC%9D%B4" title="넓이">넓이</a>는 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\pi r^{2}={\frac {\pi d^{2}}{4}}={\frac {C^{2}}{4\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\pi r^{2}={\frac {\pi d^{2}}{4}}={\frac {C^{2}}{4\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/756092a411e7a026363fb5be5620fcbb841e9529" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.602ex; height:5.676ex;" alt="{\displaystyle A=\pi r^{2}={\frac {\pi d^{2}}{4}}={\frac {C^{2}}{4\pi }}}"></span></dd></dl> <p>이다. <a href="/wiki/%EB%93%B1%EC%A3%BC_%EB%B6%80%EB%93%B1%EC%8B%9D" class="mw-redirect" title="등주 부등식">등주 부등식</a>에 따르면, 이는 둘레가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>인 닫힌 곡선으로 둘러싸인 도형이 가질 수 있는 최대 넓이이다. </p> <div style="clear:both;"></div> <div class="mw-heading mw-heading3"><h3 id="방정식"><span id=".EB.B0.A9.EC.A0.95.EC.8B.9D"></span>방정식</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=5" title="부분 편집: 방정식"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="데카르트_좌표계"><span id=".EB.8D.B0.EC.B9.B4.EB.A5.B4.ED.8A.B8_.EC.A2.8C.ED.91.9C.EA.B3.84"></span>데카르트 좌표계</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=6" title="부분 편집: 데카르트 좌표계"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Circle_center_(2,_1)_radius_3.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/Circle_center_%282%2C_1%29_radius_3.svg/220px-Circle_center_%282%2C_1%29_radius_3.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/Circle_center_%282%2C_1%29_radius_3.svg/330px-Circle_center_%282%2C_1%29_radius_3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/de/Circle_center_%282%2C_1%29_radius_3.svg/440px-Circle_center_%282%2C_1%29_radius_3.svg.png 2x" data-file-width="562" data-file-height="562" /></a><figcaption>중심이 <span class="nowrap">(2, 1)</span>이고 반지름이 3인 원</figcaption></figure> <p>2차원 <a href="/wiki/%EB%8D%B0%EC%B9%B4%EB%A5%B4%ED%8A%B8_%EC%A2%8C%ED%91%9C%EA%B3%84" title="데카르트 좌표계">데카르트 좌표계</a> 위의 중심이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span>이고 반지름이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>인 원의 방정식은 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da8888bb9e8d52fd12fbc05a98715f64c105a884" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.162ex; height:3.176ex;" alt="{\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}"></span></dd></dl> <p>이다.<sup id="cite_ref-Gibson_1-0" class="reference"><a href="#cite_note-Gibson-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:22, §3</sup></span> 이는 <a href="/wiki/%ED%94%BC%ED%83%80%EA%B3%A0%EB%9D%BC%EC%8A%A4_%EC%A0%95%EB%A6%AC" title="피타고라스 정리">피타고라스 정리</a>를 통해 유도된다. </p><p>2차원 데카르트 좌표계 위의 원의 방정식의 일반적인 꼴은 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}+dx+ey+f=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>d</mi> <mi>x</mi> <mo>+</mo> <mi>e</mi> <mi>y</mi> <mo>+</mo> <mi>f</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+y^{2}+dx+ey+f=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99d0b0d8746ab7f5665573531334cc83c3ebcf07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:26.284ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}+dx+ey+f=0}"></span></dd></dl> <p>이다. 단, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d,e,f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d,e,f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dca5b0133e3a8eacd9e7dd7e8a0b1d0f9b2ce721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.646ex; height:2.509ex;" alt="{\displaystyle d,e,f}"></span>는 <a href="/wiki/%EC%8B%A4%EC%88%98" title="실수">실수</a>이며, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d^{2}+e^{2}-f&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d^{2}+e^{2}-f&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5daf94dcad6caad44482de8b0d5d506b320a4c95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.63ex; height:3.009ex;" alt="{\displaystyle d^{2}+e^{2}-f&gt;0}"></span></dd></dl> <p>이어야 한다.<sup id="cite_ref-Gibson_1-1" class="reference"><a href="#cite_note-Gibson-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:23, §3.2</sup></span> 좌변은 반지름의 4배에 대응하며, '=0'일 경우 <a href="/wiki/%ED%95%9C%EC%9B%90%EC%86%8C_%EC%A7%91%ED%95%A9" title="한원소 집합">한원소 집합</a>이 되고, '&lt;0'일 경우 <a href="/wiki/%EA%B3%B5%EC%A7%91%ED%95%A9" title="공집합">공집합</a>이 된다.<sup id="cite_ref-Gibson_1-2" class="reference"><a href="#cite_note-Gibson-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:24, §3.2, Example 3.2</sup></span> </p><p>평면 위의 모든 원은 적절한 데카르트 좌표계를 취했을 때 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}=r^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+y^{2}=r^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37dd4f282df84a83620f71dc52345122e0e3a514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.64ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}=r^{2}}"></span></dd></dl> <p>와 같은 표준적인 방정식으로 표현된다. 단, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23cbbcd53bd13620bc53490e3eec42790850b452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.176ex;" alt="{\displaystyle r&gt;0}"></span>이어야 한다. 이러한 꼴의 방정식을 얻으려면 원의 중심을 좌표계의 원점으로 삼기만 하면 된다. </p><p>2차원 데카르트 좌표계 위의 중심이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span>이고 반지름이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>인 원은 다음과 같은 <a href="/w/index.php?title=%EB%A7%A4%EA%B0%9C%EB%B3%80%EC%88%98_%EB%B0%A9%EC%A0%95%EC%8B%9D&amp;action=edit&amp;redlink=1" class="new" title="매개변수 방정식 (없는 문서)">매개변수 방정식</a>을 갖는다.<sup id="cite_ref-Gibson_1-3" class="reference"><a href="#cite_note-Gibson-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:23, §3.2, (3.5)</sup></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}x=a+r\cos t\\y=b+r\sin t\end{matrix}}\qquad (0\leq t&lt;2\pi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>r</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mi>r</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>t</mi> </mtd> </mtr> </mtable> </mrow> <mspace width="2em" /> <mo stretchy="false">(</mo> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>t</mi> <mo>&lt;</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}x=a+r\cos t\\y=b+r\sin t\end{matrix}}\qquad (0\leq t&lt;2\pi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24042c7f02d9ece6185eba021a200810ddd61708" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.171ex; height:6.176ex;" alt="{\displaystyle {\begin{matrix}x=a+r\cos t\\y=b+r\sin t\end{matrix}}\qquad (0\leq t&lt;2\pi )}"></span></dd></dl> <p>여기서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos ,\sin }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>,</mo> <mi>sin</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos ,\sin }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb709f682d4c55a7ce4af4cbef8aa5da94f4e72b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.001ex; height:2.509ex;" alt="{\displaystyle \cos ,\sin }"></span>은 각각 <a href="/wiki/%EC%BD%94%EC%82%AC%EC%9D%B8_%ED%95%A8%EC%88%98" class="mw-redirect" title="코사인 함수">코사인 함수</a>와 <a href="/wiki/%EC%82%AC%EC%9D%B8_%ED%95%A8%EC%88%98" class="mw-redirect" title="사인 함수">사인 함수</a>이고, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>는 매개 변수이다. </p> <div class="mw-heading mw-heading4"><h4 id="극좌표계"><span id=".EA.B7.B9.EC.A2.8C.ED.91.9C.EA.B3.84"></span>극좌표계</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=7" title="부분 편집: 극좌표계"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r34311305">.mw-parser-output .hatnote{}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span>&#160;<a href="/wiki/%EA%B7%B9%EC%A2%8C%ED%91%9C%EA%B3%84#원의_극좌표_방정식" title="극좌표계">극좌표계 §&#160;원의 극좌표 방정식</a> 문서를 참고하십시오.</div> <p>데카르트 좌표 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span> 대신 <a href="/wiki/%EA%B7%B9%EC%A2%8C%ED%91%9C" class="mw-redirect" title="극좌표">극좌표</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r,\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r,\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed8396fdc359fb06c93722137c959e7496e47ed6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.982ex; height:2.843ex;" alt="{\displaystyle (r,\theta )}"></span>를 사용할 수도 있다. 즉, <a href="/wiki/%EA%B7%B9%EC%A2%8C%ED%91%9C%EA%B3%84" title="극좌표계">극좌표계</a> 위의 중심이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r_{0},\theta _{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r_{0},\theta _{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/081118f53768b7ba0aa01cb89676c270d0d5657a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.091ex; height:2.843ex;" alt="{\displaystyle (r_{0},\theta _{0})}"></span>이고 반지름이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>인 원의 방정식은 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{2}-2rr_{0}\cos(\theta -\theta _{0})+r_{0}^{2}=R^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>r</mi> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{2}-2rr_{0}\cos(\theta -\theta _{0})+r_{0}^{2}=R^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99104d7d0dd15a9aba4501d4d22a960be8fc6c8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.5ex; height:3.343ex;" alt="{\displaystyle r^{2}-2rr_{0}\cos(\theta -\theta _{0})+r_{0}^{2}=R^{2}}"></span></dd></dl> <p>이다. </p> <div class="mw-heading mw-heading4"><h4 id="복소평면"><span id=".EB.B3.B5.EC.86.8C.ED.8F.89.EB.A9.B4"></span>복소평면</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=8" title="부분 편집: 복소평면"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>데카르트 좌표나 극좌표를 <a href="/wiki/%EB%B3%B5%EC%86%8C%EC%88%98" title="복소수">복소수</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>로 대신하면, 원과 <a href="/wiki/%EC%A7%81%EC%84%A0" title="직선">직선</a>의 통일된 방정식을 얻을 수 있다. </p><p><a href="/wiki/%EB%B3%B5%EC%86%8C%ED%8F%89%EB%A9%B4" title="복소평면">복소평면</a> 위에서, 중심이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"></span>이고 반지름이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23cbbcd53bd13620bc53490e3eec42790850b452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.176ex;" alt="{\displaystyle r&gt;0}"></span>인 원의 방정식은 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z-z_{0}|=r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z-z_{0}|=r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/463ec9ecfd720ea970063ad16b6b81371eeb2def" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.505ex; height:2.843ex;" alt="{\displaystyle |z-z_{0}|=r}"></span></dd></dl> <p>이다. 여기서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\cdot |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\cdot |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4570d0a1c9fb8f2f413f0b73ce846dd1eb1dca3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.973ex; height:2.843ex;" alt="{\displaystyle |\cdot |}"></span>는 복소수의 <a href="/wiki/%EC%A0%88%EB%8C%93%EA%B0%92" title="절댓값">절댓값</a>이다. </p><p>또한 복소평면 위의 원의 방정식의 일반적인 꼴은 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Az{\bar {z}}+{\bar {B}}z+B{\bar {z}}+C=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>z</mi> <mo>+</mo> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>C</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Az{\bar {z}}+{\bar {B}}z+B{\bar {z}}+C=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18229c58c21383fc075db2a446eaa10912aff70c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:24.588ex; height:2.676ex;" alt="{\displaystyle Az{\bar {z}}+{\bar {B}}z+B{\bar {z}}+C=0}"></span></dd></dl> <p>이다. 여기서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow /> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07339d89909a24ef54713d145736261b1fb31123" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0; margin-bottom: -0.338ex; width:1.162ex; height:2.009ex;" alt="{\displaystyle {\bar {}}}"></span>는 <a href="/wiki/%EC%BC%A4%EB%A0%88_%EB%B3%B5%EC%86%8C%EC%88%98" title="켤레 복소수">켤레 복소수</a>이다. 단, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/823f6c4a5d684b894365111fb3429cc9319eb2d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.543ex; height:2.509ex;" alt="{\displaystyle A,C}"></span>는 <a href="/wiki/%EC%8B%A4%EC%88%98" title="실수">실수</a>이고, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>는 복소수이며, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |B|^{2}-AC&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mi>C</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |B|^{2}-AC&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b72ee753ddbad56670096412da091fd359158694" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.723ex; height:3.343ex;" alt="{\displaystyle |B|^{2}-AC&gt;0}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09eef67fa2249348d853a4295747d2d61f759556" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.004ex; height:2.676ex;" alt="{\displaystyle A\neq 0}"></span></dd></dl> <p>이어야 한다. 또한, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09eef67fa2249348d853a4295747d2d61f759556" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.004ex; height:2.676ex;" alt="{\displaystyle A\neq 0}"></span> 대신 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75c34024483e6fb7c89e45aff3882ebf11d95a00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.004ex; height:2.176ex;" alt="{\displaystyle A=0}"></span>을 취하고 다른 조건을 그대로 두면 복소평면 위의 직선의 방정식의 일반적인 꼴을 얻는다. 즉, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09eef67fa2249348d853a4295747d2d61f759556" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.004ex; height:2.676ex;" alt="{\displaystyle A\neq 0}"></span>이라는 조건을 제거하고 다른 조건을 그대로 두면 <a href="/w/index.php?title=%EC%9D%BC%EB%B0%98%ED%99%94_%EC%9B%90&amp;action=edit&amp;redlink=1" class="new" title="일반화 원 (없는 문서)">일반화 원</a>의 방정식의 일반적인 꼴을 얻는다. </p> <div class="mw-heading mw-heading3"><h3 id="접선의_방정식"><span id=".EC.A0.91.EC.84.A0.EC.9D.98_.EB.B0.A9.EC.A0.95.EC.8B.9D"></span>접선의 방정식</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=9" title="부분 편집: 접선의 방정식"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>2차원 데카르트 좌표계 위에서, 원 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da8888bb9e8d52fd12fbc05a98715f64c105a884" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.162ex; height:3.176ex;" alt="{\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}"></span></dd></dl> <p>의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},y_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0},y_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29c296094af9a1c665425debeac5eaab99a37a04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.421ex; height:2.843ex;" alt="{\displaystyle (x_{0},y_{0})}"></span>을 접점으로 하는 <a href="/wiki/%EC%A0%91%EC%84%A0" title="접선">접선</a>의 방정식은 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0}-a)(x-a)+(y_{0}-b)(y-b)=r^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0}-a)(x-a)+(y_{0}-b)(y-b)=r^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e94879c620fa2172e4ff7c0088a1f4770edcb45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.158ex; height:3.176ex;" alt="{\displaystyle (x_{0}-a)(x-a)+(y_{0}-b)(y-b)=r^{2}}"></span></dd></dl> <p>이다. </p><p>원 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da8888bb9e8d52fd12fbc05a98715f64c105a884" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.162ex; height:3.176ex;" alt="{\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}"></span></dd></dl> <p>의 기울기가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>인 접선의 방정식은 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y-b=m(x-a)\pm r{\sqrt {m^{2}+1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo>=</mo> <mi>m</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>&#x00B1;<!-- ± --></mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y-b=m(x-a)\pm r{\sqrt {m^{2}+1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae6a41ad9f48e5ec7aa3e72d14f7fcfa8bac5f4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.652ex; height:3.509ex;" alt="{\displaystyle y-b=m(x-a)\pm r{\sqrt {m^{2}+1}}}"></span></dd></dl> <p>이다. </p> <div class="mw-heading mw-heading2"><h2 id="기하적_성질"><span id=".EA.B8.B0.ED.95.98.EC.A0.81_.EC.84.B1.EC.A7.88"></span>기하적 성질</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=10" title="부분 편집: 기하적 성질"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="대칭"><span id=".EB.8C.80.EC.B9.AD"></span>대칭</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=11" title="부분 편집: 대칭"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r27642678/mw-parser-output/.tmulti">.mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}</style><div class="thumb tmulti tnone"><div class="thumbinner" style="width:682px;max-width:682px"><div class="trow"><div class="tsingle" style="width:358px;max-width:358px"><div class="thumbimage" style="height:242px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Homothetic_centers_of_two_given_nonconcentric_circles.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Homothetic_centers_of_two_given_nonconcentric_circles.svg/356px-Homothetic_centers_of_two_given_nonconcentric_circles.svg.png" decoding="async" width="356" height="242" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Homothetic_centers_of_two_given_nonconcentric_circles.svg/534px-Homothetic_centers_of_two_given_nonconcentric_circles.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Homothetic_centers_of_two_given_nonconcentric_circles.svg/712px-Homothetic_centers_of_two_given_nonconcentric_circles.svg.png 2x" data-file-width="721" data-file-height="491" /></a></span></div></div><div class="tsingle" style="width:320px;max-width:320px"><div class="thumbimage" style="height:242px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Circle_passing_through_three_given_points.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Circle_passing_through_three_given_points.svg/318px-Circle_passing_through_three_given_points.svg.png" decoding="async" width="318" height="243" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Circle_passing_through_three_given_points.svg/477px-Circle_passing_through_three_given_points.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Circle_passing_through_three_given_points.svg/636px-Circle_passing_through_three_given_points.svg.png 2x" data-file-width="643" data-file-height="491" /></a></span></div></div></div></div></div> <ul><li>원은 지름에 대한 <a href="/wiki/%EB%B0%98%EC%82%AC_(%EA%B8%B0%ED%95%98%ED%95%99)" title="반사 (기하학)">반사</a>와 원의 중심에 대한 <a href="/wiki/%ED%9A%8C%EC%A0%84_(%EA%B8%B0%ED%95%98%ED%95%99)" title="회전 (기하학)">회전</a>에 대하여 대칭이다.<sup id="cite_ref-Martin_2-0" class="reference"><a href="#cite_note-Martin-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:227, §20.1, Theorem 20.3</sup></span> <ul><li>즉, 원의 <a href="/w/index.php?title=%EB%8C%80%EC%B9%AD%EA%B5%B0_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;redlink=1" class="new" title="대칭군 (기하학) (없는 문서)">대칭군</a>은 2차원 <a href="/wiki/%EC%A7%81%EA%B5%90%EA%B5%B0" title="직교군">직교군</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {O} (2,\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">O</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {O} (2,\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6679f051ceca07e43c7cdfe28a7db4c7da5f195" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.492ex; height:2.843ex;" alt="{\displaystyle \operatorname {O} (2,\mathbb {R} )}"></span>이다.</li></ul></li> <li>임의의 두 원은 서로 <a href="/wiki/%EC%A4%91%EC%8B%AC_%EB%8B%AE%EC%9D%8C" class="mw-redirect" title="중심 닮음">중심 닮음</a>이며, <a href="/wiki/%EB%8F%99%EC%8B%AC%EC%9B%90" title="동심원">동심원</a>이 아닐 경우 두 원의 중심을 잇는 선분의 반지름의 비에 따른 내분점 및 외분점을 <a href="/w/index.php?title=%EB%8B%AE%EC%9D%8C_%EC%A4%91%EC%8B%AC&amp;action=edit&amp;redlink=1" class="new" title="닮음 중심 (없는 문서)">닮음 중심</a>으로 갖는다.<sup id="cite_ref-Johnson_3-0" class="reference"><a href="#cite_note-Johnson-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:19, §25</sup></span></li></ul> <ul><li>반지름의 길이가 같은 모든 원은 서로 <a href="/wiki/%ED%95%A9%EB%8F%99_(%EA%B8%B0%ED%95%98%ED%95%99)" title="합동 (기하학)">합동</a>이다.<sup id="cite_ref-Isaacs_4-0" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:23, §1F</sup></span></li> <li><a href="/wiki/%EA%B3%B5%EC%84%A0%EC%A0%90" title="공선점">공선점</a>이 아닌 세 점을 지나는 원은 항상 유일하게 존재한다.<sup id="cite_ref-Isaacs_4-1" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:23, §1F, Theorem 1.15</sup></span> <ul><li>즉, 모든 <a href="/wiki/%EC%82%BC%EA%B0%81%ED%98%95" title="삼각형">삼각형</a>의 <a href="/wiki/%EC%99%B8%EC%A0%91%EC%9B%90" title="외접원">외접원</a>은 유일하게 존재한다.</li> <li>즉, 임의의 세 점을 지나는 <a href="/w/index.php?title=%EC%9D%BC%EB%B0%98%ED%99%94_%EC%9B%90&amp;action=edit&amp;redlink=1" class="new" title="일반화 원 (없는 문서)">일반화 원</a>은 항상 유일하게 존재한다.</li></ul></li></ul> <div class="mw-heading mw-heading3"><h3 id="호와_현"><span id=".ED.98.B8.EC.99.80_.ED.98.84"></span>호와 현</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=12" title="부분 편집: 호와 현"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r27642678/mw-parser-output/.tmulti"><div class="thumb tmulti tnone"><div class="thumbinner" style="width:912px;max-width:912px"><div class="trow"><div class="tsingle" style="width:226px;max-width:226px"><div class="thumbimage" style="height:171px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Perpendicular_bisector_of_a_circle_chord.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Perpendicular_bisector_of_a_circle_chord.svg/224px-Perpendicular_bisector_of_a_circle_chord.svg.png" decoding="async" width="224" height="171" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Perpendicular_bisector_of_a_circle_chord.svg/336px-Perpendicular_bisector_of_a_circle_chord.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Perpendicular_bisector_of_a_circle_chord.svg/448px-Perpendicular_bisector_of_a_circle_chord.svg.png 2x" data-file-width="643" data-file-height="491" /></a></span></div></div><div class="tsingle" style="width:226px;max-width:226px"><div class="thumbimage" style="height:171px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Circle_power_1.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Circle_power_1.svg/224px-Circle_power_1.svg.png" decoding="async" width="224" height="171" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Circle_power_1.svg/336px-Circle_power_1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Circle_power_1.svg/448px-Circle_power_1.svg.png 2x" data-file-width="643" data-file-height="491" /></a></span></div></div><div class="tsingle" style="width:226px;max-width:226px"><div class="thumbimage" style="height:171px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Circle_power_2.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Circle_power_2.svg/224px-Circle_power_2.svg.png" decoding="async" width="224" height="171" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Circle_power_2.svg/336px-Circle_power_2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Circle_power_2.svg/448px-Circle_power_2.svg.png 2x" data-file-width="643" data-file-height="491" /></a></span></div></div><div class="tsingle" style="width:226px;max-width:226px"><div class="thumbimage" style="height:171px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Distance_between_a_point_and_a_chord_of_the_circle.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/Distance_between_a_point_and_a_chord_of_the_circle.svg/224px-Distance_between_a_point_and_a_chord_of_the_circle.svg.png" decoding="async" width="224" height="171" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/Distance_between_a_point_and_a_chord_of_the_circle.svg/336px-Distance_between_a_point_and_a_chord_of_the_circle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/de/Distance_between_a_point_and_a_chord_of_the_circle.svg/448px-Distance_between_a_point_and_a_chord_of_the_circle.svg.png 2x" data-file-width="643" data-file-height="491" /></a></span></div></div></div></div></div> <ul><li>현의 <a href="/wiki/%EC%88%98%EC%A7%81_%EC%9D%B4%EB%93%B1%EB%B6%84%EC%84%A0" title="수직 이등분선">수직 이등분선</a>은 원의 중심을 지난다.<sup id="cite_ref-Martin_2-1" class="reference"><a href="#cite_note-Martin-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:227, §20.1, Theorem 20.2</sup></span> <ul><li>즉, 현에 수직인 지름은 현을 이등분한다.<sup id="cite_ref-Martin_2-2" class="reference"><a href="#cite_note-Martin-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:227, §20.1, Theorem 20.2</sup></span></li> <li>즉, 지름이 아닌 현을 이등분하는 지름은 현에 수직이다.<sup id="cite_ref-Martin_2-3" class="reference"><a href="#cite_note-Martin-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:227, §20.1, Theorem 20.2</sup></span></li></ul></li> <li>지름은 원의 가장 긴 현이다.<sup id="cite_ref-Isaacs_4-2" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:23, §1F</sup></span></li> <li>(<a href="/wiki/%EB%B0%A9%EB%A9%B1_%EC%A0%95%EB%A6%AC" class="mw-redirect" title="방멱 정리">방멱 정리</a>) 원 위에 있지 않은 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>를 지나는 두 직선 가운데 하나는 원과 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>와 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>에서 만나고, 다른 하나는 원과 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>와 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span>에서 만난다고 하면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PA\cdot PB=PC\cdot PD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>A</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>P</mi> <mi>B</mi> <mo>=</mo> <mi>P</mi> <mi>C</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>P</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PA\cdot PB=PC\cdot PD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf7728250e7f9f94ed380d3527ce1e54be893e12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:20.636ex; height:2.176ex;" alt="{\displaystyle PA\cdot PB=PC\cdot PD}"></span>이다.<sup id="cite_ref-Isaacs_4-3" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:47, §1H, Theorem 1.35</sup></span></li> <li>원 위의 점과 현 사이의 거리와 지름의 곱은 점과 현의 양 끝점 사이의 거리의 곱과 같다.<sup id="cite_ref-Johnson_3-1" class="reference"><a href="#cite_note-Johnson-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:71, §101</sup></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="원과_직선의_위치_관계"><span id=".EC.9B.90.EA.B3.BC_.EC.A7.81.EC.84.A0.EC.9D.98_.EC.9C.84.EC.B9.98_.EA.B4.80.EA.B3.84"></span>원과 직선의 위치 관계</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=13" title="부분 편집: 원과 직선의 위치 관계"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r27642678/mw-parser-output/.tmulti"><div class="thumb tmulti tnone"><div class="thumbinner" style="width:681px;max-width:681px"><div class="trow"><div class="tsingle" style="width:225px;max-width:225px"><div class="thumbimage" style="height:170px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Circle-line_intersection_1.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Circle-line_intersection_1.svg/223px-Circle-line_intersection_1.svg.png" decoding="async" width="223" height="170" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Circle-line_intersection_1.svg/335px-Circle-line_intersection_1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Circle-line_intersection_1.svg/446px-Circle-line_intersection_1.svg.png 2x" data-file-width="643" data-file-height="491" /></a></span></div></div><div class="tsingle" style="width:225px;max-width:225px"><div class="thumbimage" style="height:170px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Circle-line_intersection_2.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Circle-line_intersection_2.svg/223px-Circle-line_intersection_2.svg.png" decoding="async" width="223" height="170" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Circle-line_intersection_2.svg/335px-Circle-line_intersection_2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Circle-line_intersection_2.svg/446px-Circle-line_intersection_2.svg.png 2x" data-file-width="643" data-file-height="491" /></a></span></div></div><div class="tsingle" style="width:225px;max-width:225px"><div class="thumbimage" style="height:170px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Circle-line_intersection_3.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Circle-line_intersection_3.svg/223px-Circle-line_intersection_3.svg.png" decoding="async" width="223" height="170" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Circle-line_intersection_3.svg/335px-Circle-line_intersection_3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Circle-line_intersection_3.svg/446px-Circle-line_intersection_3.svg.png 2x" data-file-width="643" data-file-height="491" /></a></span></div></div></div></div></div> <p>평면 위의 원과 직선의 위치 관계는 원의 중심에서 직선까지의 거리 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>와 원의 반지름 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>의 대소 관계에 따라 다음과 같은 경우로 나뉜다. </p> <ul><li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d&gt;r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>&gt;</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d&gt;r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cec536c81a7994e4e257932a37384ca59530625" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.363ex; height:2.176ex;" alt="{\displaystyle d&gt;r}"></span>라면, 원과 직선은 만나지 않는다.</li> <li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21cf89a5a7cb251bc64932aa6bf549ede7e10ff0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.363ex; height:2.176ex;" alt="{\displaystyle d=r}"></span>라면, 원과 직선은 한 점에서 만난다. 즉, 직선은 원의 <a href="/wiki/%EC%A0%91%EC%84%A0" title="접선">접선</a>이다.</li> <li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d&lt;r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>&lt;</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d&lt;r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b7736b56a7efaa6856ffdb2cb1b8b82361db639" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.363ex; height:2.176ex;" alt="{\displaystyle d&lt;r}"></span>라면, 원과 직선은 두 점에서 만난다. 즉, 직선은 원의 <a href="/wiki/%ED%95%A0%EC%84%A0" title="할선">할선</a>이다.</li></ul> <div class="mw-heading mw-heading3"><h3 id="두_원의_위치_관계"><span id=".EB.91.90_.EC.9B.90.EC.9D.98_.EC.9C.84.EC.B9.98_.EA.B4.80.EA.B3.84"></span>두 원의 위치 관계</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=14" title="부분 편집: 두 원의 위치 관계"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r27642678/mw-parser-output/.tmulti"><div class="thumb tmulti tnone"><div class="thumbinner" style="width:681px;max-width:681px"><div class="trow"><div class="tsingle" style="width:225px;max-width:225px"><div class="thumbimage" style="height:187px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Circle-circle_intersection_1.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Circle-circle_intersection_1.svg/223px-Circle-circle_intersection_1.svg.png" decoding="async" width="223" height="187" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Circle-circle_intersection_1.svg/335px-Circle-circle_intersection_1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Circle-circle_intersection_1.svg/446px-Circle-circle_intersection_1.svg.png 2x" data-file-width="585" data-file-height="491" /></a></span></div></div><div class="tsingle" style="width:225px;max-width:225px"><div class="thumbimage" style="height:187px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Circle-circle_intersection_2.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Circle-circle_intersection_2.svg/223px-Circle-circle_intersection_2.svg.png" decoding="async" width="223" height="187" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Circle-circle_intersection_2.svg/335px-Circle-circle_intersection_2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Circle-circle_intersection_2.svg/446px-Circle-circle_intersection_2.svg.png 2x" data-file-width="585" data-file-height="491" /></a></span></div></div><div class="tsingle" style="width:225px;max-width:225px"><div class="thumbimage" style="height:187px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Circle-circle_intersection_3.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Circle-circle_intersection_3.svg/223px-Circle-circle_intersection_3.svg.png" decoding="async" width="223" height="187" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Circle-circle_intersection_3.svg/335px-Circle-circle_intersection_3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Circle-circle_intersection_3.svg/446px-Circle-circle_intersection_3.svg.png 2x" data-file-width="585" data-file-height="491" /></a></span></div></div></div></div></div> <p>두 원의 위치 관계는 두 원의 반지름 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R,r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>,</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R,r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06bb20a122b49cad876a2fb55b141e8ec1b816f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.847ex; height:2.509ex;" alt="{\displaystyle R,r}"></span>와 두 중심 사이의 거리 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>에 따라 다음과 같은 경우로 나뉜다. </p> <ul><li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d&gt;R+r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>&gt;</mo> <mi>R</mi> <mo>+</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d&gt;R+r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/598e8f4026358b0d63a245b4d16fd09c5dca4702" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.967ex; height:2.343ex;" alt="{\displaystyle d&gt;R+r}"></span>이거나 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d&lt;|R-r|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>R</mi> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d&lt;|R-r|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0a9e768e9f0890b5240a0752d04fa8919f0fb12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.261ex; height:2.843ex;" alt="{\displaystyle d&lt;|R-r|}"></span>라면, 두 원은 만나지 않는다. <ul><li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d&gt;R+r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>&gt;</mo> <mi>R</mi> <mo>+</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d&gt;R+r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/598e8f4026358b0d63a245b4d16fd09c5dca4702" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.967ex; height:2.343ex;" alt="{\displaystyle d&gt;R+r}"></span>라면, 두 원은 서로의 외부에 놓이며, 교점을 가지지 않는다.</li> <li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d&lt;|R-r|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>R</mi> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d&lt;|R-r|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0a9e768e9f0890b5240a0752d04fa8919f0fb12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.261ex; height:2.843ex;" alt="{\displaystyle d&lt;|R-r|}"></span>라면, 작은 원은 큰 원의 내부에 놓이며, 교점을 가지지 않는다.</li></ul></li> <li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=R+r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mi>R</mi> <mo>+</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=R+r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3976c94c0b3757e834461e0ce7a80a3080ba3dd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.967ex; height:2.343ex;" alt="{\displaystyle d=R+r}"></span>이거나 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=|R-r|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>R</mi> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=|R-r|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2dcbe22ee439de8b2e179aa77053235d2ebb09b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.261ex; height:2.843ex;" alt="{\displaystyle d=|R-r|}"></span>라면, 두 원은 한 점에서 만난다. 즉, 두 원은 서로 접한다. <ul><li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=R+r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mi>R</mi> <mo>+</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=R+r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3976c94c0b3757e834461e0ce7a80a3080ba3dd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.967ex; height:2.343ex;" alt="{\displaystyle d=R+r}"></span>라면, 두 원은 서로의 외부에서 접한다. 즉, 두 원은 외접한다.</li> <li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=|R-r|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>R</mi> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=|R-r|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2dcbe22ee439de8b2e179aa77053235d2ebb09b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.261ex; height:2.843ex;" alt="{\displaystyle d=|R-r|}"></span>라면, 작은 원이 큰 원의 내부에서 큰 원에 접한다. 즉, 두 원은 내접한다.</li></ul></li> <li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |R-r|&lt;d&lt;R+r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>R</mi> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mi>d</mi> <mo>&lt;</mo> <mi>R</mi> <mo>+</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |R-r|&lt;d&lt;R+r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a88bec1939f7b9d4d6ae42b9a49c26d456441c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.013ex; height:2.843ex;" alt="{\displaystyle |R-r|&lt;d&lt;R+r}"></span>라면, 두 원은 두 점에서 만난다.</li></ul> <div class="mw-heading mw-heading3"><h3 id="중심각과_원주각"><span id=".EC.A4.91.EC.8B.AC.EA.B0.81.EA.B3.BC_.EC.9B.90.EC.A3.BC.EA.B0.81"></span>중심각과 원주각</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=15" title="부분 편집: 중심각과 원주각"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r27642678/mw-parser-output/.tmulti"><div class="thumb tmulti tnone"><div class="thumbinner" style="width:682px;max-width:682px"><div class="trow"><div class="tsingle" style="width:220px;max-width:220px"><div class="thumbimage" style="height:206px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:%EC%A4%91%EC%8B%AC%EA%B0%81%EA%B3%BC%EC%9B%90%EC%A3%BC%EA%B0%81.PNG" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/%EC%A4%91%EC%8B%AC%EA%B0%81%EA%B3%BC%EC%9B%90%EC%A3%BC%EA%B0%81.PNG/218px-%EC%A4%91%EC%8B%AC%EA%B0%81%EA%B3%BC%EC%9B%90%EC%A3%BC%EA%B0%81.PNG" decoding="async" width="218" height="206" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/2/2e/%EC%A4%91%EC%8B%AC%EA%B0%81%EA%B3%BC%EC%9B%90%EC%A3%BC%EA%B0%81.PNG 1.5x" data-file-width="289" data-file-height="273" /></a></span></div></div><div class="tsingle" style="width:212px;max-width:212px"><div class="thumbimage" style="height:206px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:%EC%BC%A4%EB%A0%88%ED%98%B8%EC%9D%98%EC%9B%90%EC%A3%BC%EA%B0%81.PNG" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/1/1a/%EC%BC%A4%EB%A0%88%ED%98%B8%EC%9D%98%EC%9B%90%EC%A3%BC%EA%B0%81.PNG" decoding="async" width="210" height="206" class="mw-file-element" data-file-width="205" data-file-height="201" /></a></span></div></div><div class="tsingle" style="width:244px;max-width:244px"><div class="thumbimage" style="height:206px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:%EB%82%B4%EC%A0%91%EC%82%AC%EA%B0%81%ED%98%95%EC%9D%98%EC%99%B8%EA%B0%81.PNG" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e3/%EB%82%B4%EC%A0%91%EC%82%AC%EA%B0%81%ED%98%95%EC%9D%98%EC%99%B8%EA%B0%81.PNG/242px-%EB%82%B4%EC%A0%91%EC%82%AC%EA%B0%81%ED%98%95%EC%9D%98%EC%99%B8%EA%B0%81.PNG" decoding="async" width="242" height="206" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/e/e3/%EB%82%B4%EC%A0%91%EC%82%AC%EA%B0%81%ED%98%95%EC%9D%98%EC%99%B8%EA%B0%81.PNG 1.5x" data-file-width="257" data-file-height="219" /></a></span></div></div></div></div></div> <ul><li>주어진 호에 대한 <a href="/wiki/%EC%9B%90%EC%A3%BC%EA%B0%81" title="원주각">원주각</a>의 크기는 그 호에 대한 <a href="/wiki/%EC%A4%91%EC%8B%AC%EA%B0%81" title="중심각">중심각</a>의 1/2이다.<sup id="cite_ref-Isaacs_4-4" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:25, §1F, Theorem 1.16</sup></span></li> <li>같은 호에 대한 두 원주각의 크기는 서로 같다.<sup id="cite_ref-Isaacs_4-5" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:25, §1F</sup></span></li> <li><a href="/w/index.php?title=%EC%BC%A4%EB%A0%88%ED%98%B8&amp;action=edit&amp;redlink=1" class="new" title="켤레호 (없는 문서)">켤레호</a>에 대한 두 중심각은 서로 <a href="/wiki/%EB%B3%B4%EA%B0%81" class="mw-redirect" title="보각">보각</a>이다. <ul><li>즉, <a href="/wiki/%EB%82%B4%EC%A0%91_%EC%82%AC%EA%B0%81%ED%98%95" title="내접 사각형">내접 사각형</a>의 두 대각은 서로 <a href="/wiki/%EB%B3%B4%EA%B0%81" class="mw-redirect" title="보각">보각</a>이다.<sup id="cite_ref-Isaacs_4-6" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:26, §1F, Corollary 1.17</sup></span></li> <li>즉, 내접 사각형의 외각의 크기는 <a href="/w/index.php?title=%EB%82%B4%EB%8C%80%EA%B0%81&amp;action=edit&amp;redlink=1" class="new" title="내대각 (없는 문서)">내대각</a>과 같다.</li></ul></li></ul> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r27642678/mw-parser-output/.tmulti"><div class="thumb tmulti tnone"><div class="thumbinner" style="width:512px;max-width:512px"><div class="trow"><div class="tsingle" style="width:247px;max-width:247px"><div class="thumbimage" style="height:244px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:%EC%A7%80%EB%A6%84%EC%9D%98%EC%9B%90%EC%A3%BC%EA%B0%81.PNG" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/7/73/%EC%A7%80%EB%A6%84%EC%9D%98%EC%9B%90%EC%A3%BC%EA%B0%81.PNG" decoding="async" width="245" height="245" class="mw-file-element" data-file-width="215" data-file-height="215" /></a></span></div></div><div class="tsingle" style="width:261px;max-width:261px"><div class="thumbimage" style="height:244px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:%EC%A0%91%EC%84%A0%EA%B3%BC%EC%9B%90%EC%A3%BC%EA%B0%81.PNG" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f5/%EC%A0%91%EC%84%A0%EA%B3%BC%EC%9B%90%EC%A3%BC%EA%B0%81.PNG/259px-%EC%A0%91%EC%84%A0%EA%B3%BC%EC%9B%90%EC%A3%BC%EA%B0%81.PNG" decoding="async" width="259" height="244" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/f/f5/%EC%A0%91%EC%84%A0%EA%B3%BC%EC%9B%90%EC%A3%BC%EA%B0%81.PNG 1.5x" data-file-width="266" data-file-height="251" /></a></span></div></div></div></div></div> <ul><li>(<a href="/wiki/%ED%83%88%EB%A0%88%EC%8A%A4_%EC%A0%95%EB%A6%AC_(%EC%A7%80%EB%A6%84)" title="탈레스 정리 (지름)">탈레스 정리</a>) 지름에 대한 원주각은 직각이다. <ul><li>즉, 삼각형의 <a href="/wiki/%EC%99%B8%EC%8B%AC" class="mw-redirect" title="외심">외심</a>이 변 위에 있을 필요충분조건은 <a href="/wiki/%EC%A7%81%EA%B0%81_%EC%82%BC%EA%B0%81%ED%98%95" class="mw-redirect" title="직각 삼각형">직각 삼각형</a>이다.<sup id="cite_ref-Isaacs_4-7" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:30, §1F, Corollary 1.22</sup></span></li></ul></li> <li>원의 두 현이 원 내부에서 이루는 각의 크기는 이 각과 <a href="/wiki/%EB%A7%9E%EA%BC%AD%EC%A7%80%EA%B0%81" title="맞꼭지각">맞꼭지각</a>의 내부에 포함되는 두 호에 대한 중심각의 합의 1/2이다.<sup id="cite_ref-Isaacs_4-8" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:27, §1F, Corollary 1.19</sup></span></li> <li>원의 두 할선이 원 외부에서 이루는 각의 크기는 이 각의 내부에 포함되는 두 호에 대한 중심각의 차의 1/2이다.<sup id="cite_ref-Isaacs_4-9" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:27, §1F, Corollary 1.18</sup></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="접선"><span id=".EC.A0.91.EC.84.A0"></span>접선</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=16" title="부분 편집: 접선"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r27642678/mw-parser-output/.tmulti"><div class="thumb tmulti tnone"><div class="thumbinner" style="width:682px;max-width:682px"><div class="trow"><div class="tsingle" style="width:290px;max-width:290px"><div class="thumbimage" style="height:269px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:%EB%B0%98%EC%A7%80%EB%A6%84%EA%B3%BC%EC%A0%91%EC%84%A0%EC%9D%98%EA%B0%81.PNG" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a1/%EB%B0%98%EC%A7%80%EB%A6%84%EA%B3%BC%EC%A0%91%EC%84%A0%EC%9D%98%EA%B0%81.PNG/288px-%EB%B0%98%EC%A7%80%EB%A6%84%EA%B3%BC%EC%A0%91%EC%84%A0%EC%9D%98%EA%B0%81.PNG" decoding="async" width="288" height="270" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/a/a1/%EB%B0%98%EC%A7%80%EB%A6%84%EA%B3%BC%EC%A0%91%EC%84%A0%EC%9D%98%EA%B0%81.PNG 1.5x" data-file-width="314" data-file-height="294" /></a></span></div></div><div class="tsingle" style="width:388px;max-width:388px"><div class="thumbimage" style="height:269px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/%ED%8C%8C%EC%9D%BC:%ED%98%84%EA%B3%BC%EB%B9%84%EB%A1%802.PNG" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/2/27/%ED%98%84%EA%B3%BC%EB%B9%84%EB%A1%802.PNG" decoding="async" width="386" height="270" class="mw-file-element" data-file-width="372" data-file-height="260" /></a></span></div></div></div></div></div> <ul><li>원 위의 한 점을 지나는 원의 접선은 유일하게 존재하고, 이는 이 점을 지나는 반지름에 수직이다.<sup id="cite_ref-Martin_2-4" class="reference"><a href="#cite_note-Martin-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:228, §20.1, Theorem 20.4</sup></span><sup id="cite_ref-Isaacs_4-10" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:30-31, §1F</sup></span> <ul><li>즉, 반지름의 반지름 끝점에서의 수선은 원에 접한다.<sup id="cite_ref-Martin_2-5" class="reference"><a href="#cite_note-Martin-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:228, §20.1, Theorem 20.4</sup></span></li> <li>즉, 원의 접선의 접점에서의 수선은 원의 중심을 지난다.</li></ul></li> <li>원 외부의 한 점을 지나는 원의 접선은 정확히 2개이고, 이 점과 두 접점 사이의 거리는 같으며, 두 접선이 이루는 각과 두 접점을 지나는 반지름이 이루는 각은 서로 보각이다.</li> <li>원의 <a href="/wiki/%EC%A0%91%ED%98%84%EA%B0%81" title="접현각">접현각</a>의 크기는 현을 기준으로 이와 같은 쪽에 있는 호에 대한 중심각의 1/2이다.<sup id="cite_ref-Isaacs_4-11" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:31, §1F, Theorem 1.23</sup></span></li> <li>원의 접선과 할선이 원 외부에서 이루는 각은 각의 내부에 포함된 두 호의 중심각의 차의 1/2이다.<sup id="cite_ref-Isaacs_4-12" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:31, §1F, Corollary 1.24</sup></span></li> <li>외접하는 두 원의 교점을 지나는 두 공통 할선 사이의 두 현은 서로 <a href="/wiki/%ED%8F%89%ED%96%89" title="평행">평행</a>한다.<sup id="cite_ref-Isaacs_4-13" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:31, §1F, Problem 1.25</sup></span></li> <li>(접선에 대한 <a href="/wiki/%EB%B0%A9%EB%A9%B1_%EC%A0%95%EB%A6%AC" class="mw-redirect" title="방멱 정리">방멱 정리</a>)원 외부의 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>를 지나는 두 직선 가운데 하나는 원과 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>와 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>에서 만나고, 하나는 원에 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>에서 접한다고 하면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PA\cdot PB=PT^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>A</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>P</mi> <mi>B</mi> <mo>=</mo> <mi>P</mi> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PA\cdot PB=PT^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/764bda769ea31dce92930fa7833f67e0e19d045a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:16.295ex; height:2.676ex;" alt="{\displaystyle PA\cdot PB=PT^{2}}"></span>이다.</li></ul> <div class="mw-heading mw-heading3"><h3 id="원의_직교"><span id=".EC.9B.90.EC.9D.98_.EC.A7.81.EA.B5.90"></span>원의 직교</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=17" title="부분 편집: 원의 직교"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>두 원의 교점에서의 두 접선이 서로 <a href="/wiki/%EC%88%98%EC%A7%81" class="mw-redirect" title="수직">수직</a>일 경우 두 원이 서로 <a href="/wiki/%EC%A7%81%EA%B5%90" title="직교">직교</a>한다고 한다.<sup id="cite_ref-Johnson_3-2" class="reference"><a href="#cite_note-Johnson-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:33, §48</sup></span></li> <li>두 원의 반지름이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r,r'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>,</mo> <msup> <mi>r</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r,r'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/179e9475ca1b29a7c61b5c18fe65dfcce08dd3ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.816ex; height:2.843ex;" alt="{\displaystyle r,r&#039;}"></span>이고, 두 중심 사이의 거리가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>라고 할 때, 두 원이 서로 직교할 필요충분조건은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{2}+{r'}^{2}=d^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>r</mi> <mo>&#x2032;</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{2}+{r'}^{2}=d^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca8f51689f1944eb085780790db0a42ffc5c83f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.102ex; height:3.176ex;" alt="{\displaystyle r^{2}+{r&#039;}^{2}=d^{2}}"></span>이다.<sup id="cite_ref-Johnson_3-3" class="reference"><a href="#cite_note-Johnson-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:34, §48</sup></span></li> <li>주어진 원에 직교하고 중심이 원 외부의 주어진 점인 원은 유일하게 존재한다.<sup id="cite_ref-Johnson_3-4" class="reference"><a href="#cite_note-Johnson-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:34, §48</sup></span></li> <li>주어진 원에 직교하고 원의 지름이 아닌 현의 두 끝점을 지나는 원은 유일하게 존재한다.<sup id="cite_ref-Johnson_3-5" class="reference"><a href="#cite_note-Johnson-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:34, §48</sup></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="작도"><span id=".EC.9E.91.EB.8F.84"></span>작도</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=18" title="부분 편집: 작도"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="공선점이_아닌_세_점을_지나는_원"><span id=".EA.B3.B5.EC.84.A0.EC.A0.90.EC.9D.B4_.EC.95.84.EB.8B.8C_.EC.84.B8_.EC.A0.90.EC.9D.84_.EC.A7.80.EB.82.98.EB.8A.94_.EC.9B.90"></span>공선점이 아닌 세 점을 지나는 원</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=19" title="부분 편집: 공선점이 아닌 세 점을 지나는 원"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>공선점이 아닌 세 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B,C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B,C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ce2acf22b93dfbd22373336bd9c22dbd98a49d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.341ex; height:2.509ex;" alt="{\displaystyle A,B,C}"></span>를 지나는 원은 컴퍼스와 자를 사용하여 다음과 같이 <a href="/wiki/%EC%9E%91%EB%8F%84" class="mw-redirect" title="작도">작도</a>할 수 있다. </p> <ul><li>선분 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04153f9681e5b06066357774475c04aaef3a8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.507ex; height:2.176ex;" alt="{\displaystyle AB}"></span>의 <a href="/wiki/%EC%88%98%EC%A7%81_%EC%9D%B4%EB%93%B1%EB%B6%84%EC%84%A0" title="수직 이등분선">수직 이등분선</a>을 그린다.</li> <li>선분 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle BC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle BC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74e0f24a49061dcd63874f7d81f395b5f38800f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.53ex; height:2.176ex;" alt="{\displaystyle BC}"></span>의 수직 이등분선을 그린다.</li> <li>선분 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04153f9681e5b06066357774475c04aaef3a8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.507ex; height:2.176ex;" alt="{\displaystyle AB}"></span>와 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle BC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle BC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74e0f24a49061dcd63874f7d81f395b5f38800f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.53ex; height:2.176ex;" alt="{\displaystyle BC}"></span>의 교점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span>를 취한다.</li> <li>점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span>를 중심으로 하고 선분 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle OA}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle OA}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db864cf94e2655d6a7b56c7479f63933e97afb06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.516ex; height:2.176ex;" alt="{\displaystyle OA}"></span>를 반지름으로 하는 원을 그린다. 이 경우 원은 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B,C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B,C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ce2acf22b93dfbd22373336bd9c22dbd98a49d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.341ex; height:2.509ex;" alt="{\displaystyle A,B,C}"></span>를 지난다.</li></ul> <div class="mw-heading mw-heading3"><h3 id="원의_중심"><span id=".EC.9B.90.EC.9D.98_.EC.A4.91.EC.8B.AC"></span>원의 중심</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=20" title="부분 편집: 원의 중심"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>주어진 원의 중심은 컴퍼스와 자를 사용하여 다음과 같이 작도할 수 있다. </p> <ul><li>원 위의 두 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96c3298ea9aa77c226be56a7d8515baaa517b90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.541ex; height:2.509ex;" alt="{\displaystyle A,B}"></span>을 취한다.</li> <li>선분 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04153f9681e5b06066357774475c04aaef3a8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.507ex; height:2.176ex;" alt="{\displaystyle AB}"></span>의 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>에서의 수선 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle BP}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle BP}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d10edbefafdfad44a1cec72a3cd172ec539f36eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.509ex; height:2.176ex;" alt="{\displaystyle BP}"></span>를 그린다.</li> <li>직선 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle BP}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle BP}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d10edbefafdfad44a1cec72a3cd172ec539f36eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.509ex; height:2.176ex;" alt="{\displaystyle BP}"></span>와 원의 교점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>를 취한다. 이 경우 선분 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b930d133ca536a071bec52a9acc4b05482890d53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.509ex; height:2.176ex;" alt="{\displaystyle AC}"></span>는 원의 지름이다.</li> <li>또 다른 지름 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A'C'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <msup> <mi>C</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A'C'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46480381f20bf3a55d0ba51ec4f836903faca314" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.91ex; height:2.509ex;" alt="{\displaystyle A&#039;C&#039;}"></span>을 작도한다.</li> <li>선분 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b930d133ca536a071bec52a9acc4b05482890d53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.509ex; height:2.176ex;" alt="{\displaystyle AC}"></span>와 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A'C'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <msup> <mi>C</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A'C'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46480381f20bf3a55d0ba51ec4f836903faca314" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.91ex; height:2.509ex;" alt="{\displaystyle A&#039;C&#039;}"></span>의 교점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span>를 취한다. 이 경우 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span>는 원의 중심이다.</li></ul> <div class="mw-heading mw-heading3"><h3 id="원적_문제"><span id=".EC.9B.90.EC.A0.81_.EB.AC.B8.EC.A0.9C"></span>원적 문제</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=21" title="부분 편집: 원적 문제"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span>&#160;이 부분의 본문은 <a href="/wiki/%EC%9B%90%EC%A0%81_%EB%AC%B8%EC%A0%9C" title="원적 문제">원적 문제</a>입니다.</div> <p><a href="/wiki/%EC%9B%90%EC%A0%81_%EB%AC%B8%EC%A0%9C" title="원적 문제">원적 문제</a>는 주어진 원과 넓이가 같은 정사각형을 컴퍼스와 자로 작도하는 문제를 일컫는다. 이는 <a href="/wiki/%EC%9B%90%EC%A3%BC%EC%9C%A8" title="원주율">원주율</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span>가 <a href="/wiki/%EC%B4%88%EC%9B%94%EC%88%98" title="초월수">초월수</a>이므로 불가능하다. </p> <div class="mw-heading mw-heading2"><h2 id="기타_관련_주제"><span id=".EA.B8.B0.ED.83.80_.EA.B4.80.EB.A0.A8_.EC.A3.BC.EC.A0.9C"></span>기타 관련 주제</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=22" title="부분 편집: 기타 관련 주제"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="내접원,_외접원,_방접원"><span id=".EB.82.B4.EC.A0.91.EC.9B.90.2C_.EC.99.B8.EC.A0.91.EC.9B.90.2C_.EB.B0.A9.EC.A0.91.EC.9B.90"></span>내접원, 외접원, 방접원</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=23" title="부분 편집: 내접원, 외접원, 방접원"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>모든 삼각형은 유일한 <a href="/wiki/%EB%82%B4%EC%A0%91%EC%9B%90" title="내접원">내접원</a> 및 <a href="/wiki/%EC%99%B8%EC%A0%91%EC%9B%90" title="외접원">외접원</a>과 정확히 3개의 <a href="/wiki/%EB%B0%A9%EC%A0%91%EC%9B%90" title="방접원">방접원</a>을 갖는다. 그러나, 일반적으로 <a href="/wiki/%EB%8B%A4%EA%B0%81%ED%98%95" title="다각형">다각형</a>은 내접원이나 외접원을 가질 필요가 없다. 어떤 다각형이 모든 변에 접하는 원을 가질 경우, 이 다각형을 <a href="/w/index.php?title=%EC%99%B8%EC%A0%91_%EB%8B%A4%EA%B0%81%ED%98%95&amp;action=edit&amp;redlink=1" class="new" title="외접 다각형 (없는 문서)">외접 다각형</a>이라고 한다. 어떤 다각형이 모든 꼭짓점을 지나는 원을 가질 경우, 이 다각형을 <a href="/wiki/%EB%82%B4%EC%A0%91_%EB%8B%A4%EA%B0%81%ED%98%95" class="mw-redirect" title="내접 다각형">내접 다각형</a>이라고 한다. 동시에 외접 다각형이며 내접 다각형인 다각형을 <a href="/w/index.php?title=%EC%9D%B4%EC%A4%91%EC%A4%91%EC%8B%AC_%EB%8B%A4%EA%B0%81%ED%98%95&amp;action=edit&amp;redlink=1" class="new" title="이중중심 다각형 (없는 문서)">이중중심 다각형</a>이라고 한다. 예를 들어, 모든 삼각형과 모든 <a href="/wiki/%EC%A0%95%EB%8B%A4%EA%B0%81%ED%98%95" title="정다각형">정다각형</a>은 이중중심 다각형이다. </p><p>주어진 원의 내접 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>각형 가운데 넓이가 가장 큰 것은 정<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>각형이다.<sup id="cite_ref-Isaacs_4-14" class="reference"><a href="#cite_note-Isaacs-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:35, §1G</sup></span> </p> <div class="mw-heading mw-heading2"><h2 id="문학"><span id=".EB.AC.B8.ED.95.99"></span>문학</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=24" title="부분 편집: 문학"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>에드윈 A. 애보트의 공상 <a href="/wiki/%EC%88%98%ED%95%99" title="수학">수학</a> 소설 《<a href="/wiki/%ED%94%8C%EB%9E%AB%EB%9E%9C%EB%93%9C" title="플랫랜드">플랫랜드</a>》에서는 원이 <a href="/wiki/%EC%84%B1%EC%A7%81%EC%9E%90" title="성직자">성직자</a>로 출현하며, 평면도형들 중 가장 고귀한 계급으로 여겨진다.</li></ul> <div class="mw-heading mw-heading2"><h2 id="같이_보기"><span id=".EA.B0.99.EC.9D.B4_.EB.B3.B4.EA.B8.B0"></span>같이 보기</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=25" title="부분 편집: 같이 보기"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%EC%9D%BC%EA%B0%81%ED%98%95" title="일각형">일각형</a></li> <li><a href="/wiki/%EA%B5%AC_(%EA%B8%B0%ED%95%98%ED%95%99)" title="구 (기하학)">구</a></li> <li><a href="/wiki/%EC%9B%90%EA%B8%B0%EB%91%A5" title="원기둥">원기둥</a></li> <li><a href="/wiki/%EB%B6%80%EC%B1%84%EA%BC%B4" title="부채꼴">부채꼴</a></li> <li><a href="/wiki/%EC%BB%B4%ED%8D%BC%EC%8A%A4" title="컴퍼스">컴퍼스</a></li> <li><a href="/wiki/%EC%9B%90%EC%A3%BC%EC%9C%A8" title="원주율">원주율</a></li> <li><a href="/wiki/%ED%95%98%EC%9C%84%ED%97%8C%EC%8A%A4_%EC%9B%90%EB%A6%AC" title="하위헌스 원리">하위헌스 원리</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="각주"><span id=".EA.B0.81.EC.A3.BC"></span>각주</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=26" title="부분 편집: 각주"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r35556958">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Gibson-1"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Gibson_1-0">가</a></sup> <sup><a href="#cite_ref-Gibson_1-1">나</a></sup> <sup><a href="#cite_ref-Gibson_1-2">다</a></sup> <sup><a href="#cite_ref-Gibson_1-3">라</a></sup></span> <span class="reference-text"><cite class="citation book">Gibson, C. G. (2003). &#12298;Elementary Euclidean geometry&#12299; (영어). Cambridge: Cambridge University Press. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a>&#160;<a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-0-521-83448-3" title="특수:책찾기/978-0-521-83448-3"><bdi>978-0-521-83448-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elementary+Euclidean+geometry&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2003&amp;rft.isbn=978-0-521-83448-3&amp;rft.aulast=Gibson&amp;rft.aufirst=C.+G.&amp;rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EC%9B%90+%28%EA%B8%B0%ED%95%98%ED%95%99%29" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Martin-2"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Martin_2-0">가</a></sup> <sup><a href="#cite_ref-Martin_2-1">나</a></sup> <sup><a href="#cite_ref-Martin_2-2">다</a></sup> <sup><a href="#cite_ref-Martin_2-3">라</a></sup> <sup><a href="#cite_ref-Martin_2-4">마</a></sup> <sup><a href="#cite_ref-Martin_2-5">바</a></sup></span> <span class="reference-text"><cite class="citation book">Martin, George E. (1975). &#12298;The Foundations of Geometry and the Non-Euclidean Plane&#12299;. Undergraduate Texts in Mathematics (영어). New York, NY: Springer. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2F978-1-4612-5725-7">10.1007/978-1-4612-5725-7</a>. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a>&#160;<a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-1-4612-5727-1" title="특수:책찾기/978-1-4612-5727-1"><bdi>978-1-4612-5727-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Foundations+of+Geometry+and+the+Non-Euclidean+Plane&amp;rft.place=New+York%2C+NY&amp;rft.series=Undergraduate+Texts+in+Mathematics&amp;rft.pub=Springer&amp;rft.date=1975&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4612-5725-7&amp;rft.isbn=978-1-4612-5727-1&amp;rft.aulast=Martin&amp;rft.aufirst=George+E.&amp;rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EC%9B%90+%28%EA%B8%B0%ED%95%98%ED%95%99%29" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Johnson-3"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Johnson_3-0">가</a></sup> <sup><a href="#cite_ref-Johnson_3-1">나</a></sup> <sup><a href="#cite_ref-Johnson_3-2">다</a></sup> <sup><a href="#cite_ref-Johnson_3-3">라</a></sup> <sup><a href="#cite_ref-Johnson_3-4">마</a></sup> <sup><a href="#cite_ref-Johnson_3-5">바</a></sup></span> <span class="reference-text"><cite class="citation book">Johnson, Roger A. (1960) [1929]. &#12298;Advanced Euclidean Geometry&#12299; (영어). New York, N. Y.: Dover Publications.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Euclidean+Geometry&amp;rft.place=New+York%2C+N.+Y.&amp;rft.pub=Dover+Publications&amp;rft.date=1960&amp;rft.aulast=Johnson&amp;rft.aufirst=Roger+A.&amp;rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EC%9B%90+%28%EA%B8%B0%ED%95%98%ED%95%99%29" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Isaacs-4"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Isaacs_4-0">가</a></sup> <sup><a href="#cite_ref-Isaacs_4-1">나</a></sup> <sup><a href="#cite_ref-Isaacs_4-2">다</a></sup> <sup><a href="#cite_ref-Isaacs_4-3">라</a></sup> <sup><a href="#cite_ref-Isaacs_4-4">마</a></sup> <sup><a href="#cite_ref-Isaacs_4-5">바</a></sup> <sup><a href="#cite_ref-Isaacs_4-6">사</a></sup> <sup><a href="#cite_ref-Isaacs_4-7">아</a></sup> <sup><a href="#cite_ref-Isaacs_4-8">자</a></sup> <sup><a href="#cite_ref-Isaacs_4-9">차</a></sup> <sup><a href="#cite_ref-Isaacs_4-10">카</a></sup> <sup><a href="#cite_ref-Isaacs_4-11">타</a></sup> <sup><a href="#cite_ref-Isaacs_4-12">파</a></sup> <sup><a href="#cite_ref-Isaacs_4-13">하</a></sup> <sup><a href="#cite_ref-Isaacs_4-14">거</a></sup></span> <span class="reference-text"><cite class="citation book">Isaacs, I. Martin (2001). &#12298;Geometry for College Students&#12299;. The Brooks/Cole Series in Advanced Mathematics (영어). Brooks/Cole. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a>&#160;<a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/0-534-35179-4" title="특수:책찾기/0-534-35179-4"><bdi>0-534-35179-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometry+for+College+Students&amp;rft.series=The+Brooks%2FCole+Series+in+Advanced+Mathematics&amp;rft.pub=Brooks%2FCole&amp;rft.date=2001&amp;rft.isbn=0-534-35179-4&amp;rft.aulast=Isaacs&amp;rft.aufirst=I.+Martin&amp;rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EC%9B%90+%28%EA%B8%B0%ED%95%98%ED%95%99%29" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="외부_링크"><span id=".EC.99.B8.EB.B6.80_.EB.A7.81.ED.81.AC"></span>외부 링크</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;action=edit&amp;section=27" title="부분 편집: 외부 링크"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> 위키미디어 공용에 <span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Circle_area?uselang=ko">원</a></span> 관련 미디어 분류가 있습니다.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r36480591">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:", ";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" / ";font-weight:normal}</style><style data-mw-deduplicate="TemplateStyles:r36429174">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox" aria-labelledby="원뿔_곡선" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><style data-mw-deduplicate="TemplateStyles:r34311309">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-보기"><a href="/wiki/%ED%8B%80:%EC%9B%90%EB%BF%94_%EA%B3%A1%EC%84%A0" title="틀:원뿔 곡선"><abbr title="이 틀을 보기" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">v</abbr></a></li><li class="nv-토론"><a href="/w/index.php?title=%ED%8B%80%ED%86%A0%EB%A1%A0:%EC%9B%90%EB%BF%94_%EA%B3%A1%EC%84%A0&amp;action=edit&amp;redlink=1" class="new" title="틀토론:원뿔 곡선 (없는 문서)"><abbr title="이 틀에 관해 토론하기" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">t</abbr></a></li><li class="nv-편집"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%AC%B8%EC%84%9C%ED%8E%B8%EC%A7%91/%ED%8B%80:%EC%9B%90%EB%BF%94_%EA%B3%A1%EC%84%A0" title="특수:문서편집/틀:원뿔 곡선"><abbr title="이 틀을 편집하기" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">e</abbr></a></li></ul></div><div id="원뿔_곡선" style="font-size:114%;margin:0 4em"><a href="/wiki/%EC%9B%90%EB%BF%94_%EA%B3%A1%EC%84%A0" title="원뿔 곡선">원뿔 곡선</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">원</a></li> <li><a href="/wiki/%ED%83%80%EC%9B%90" title="타원">타원</a></li> <li><a href="/wiki/%ED%8F%AC%EB%AC%BC%EC%84%A0" title="포물선">포물선</a></li> <li><a href="/wiki/%EC%8C%8D%EA%B3%A1%EC%84%A0" title="쌍곡선">쌍곡선</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36429174"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A0%84%EA%B1%B0_%ED%86%B5%EC%A0%9C" title="위키백과:전거 통제">전거 통제</a>: 국가 <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q17278#identifiers" title="위키데이터에서 편집하기"><img alt="위키데이터에서 편집하기" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4032962-8">독일</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://uli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007286430105171">이스라엘</a></span></li> <li><span class="uid"><abbr title="Circle"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85026057">미국</a></abbr></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://kopkatalogs.lv/F?func=direct&amp;local_base=lnc10&amp;doc_number=000321923&amp;P_CON_LNG=ENG">라트비아</a></span></li> <li><span class="uid"><abbr title="kružnice"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph121971&amp;CON_LNG=ENG">체코</a></abbr></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐f29sm Cached time: 20241123010553 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.480 seconds Real time usage: 0.759 seconds Preprocessor visited node count: 2686/1000000 Post‐expand include size: 36064/2097152 bytes Template argument size: 1026/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 27/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 37580/5000000 bytes Lua time usage: 0.175/10.000 seconds Lua memory usage: 4529139/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 499.507 1 -total 31.37% 156.681 1 틀:위키데이터_속성_추적 17.79% 88.880 1 틀:각주 15.02% 75.012 1 틀:원뿔_곡선 14.64% 73.152 1 틀:둘러보기_상자 13.51% 67.459 4 틀:서적_인용 7.60% 37.963 7 틀:여러_그림 6.18% 30.873 1 틀:전거_통제 6.03% 30.129 1 틀:위키공용분류-줄 5.21% 26.015 1 틀:Sister-inline --> <!-- Saved in parser cache with key kowiki:pcache:idhash:20676-0!canonical and timestamp 20241123010553 and revision id 37124337. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">원본 주소 "<a dir="ltr" href="https://ko.wikipedia.org/w/index.php?title=원_(기하학)&amp;oldid=37124337">https://ko.wikipedia.org/w/index.php?title=원_(기하학)&amp;oldid=37124337</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%B6%84%EB%A5%98" title="특수:분류">분류</a>: <ul><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)" title="분류:원 (기하학)">원 (기하학)</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EA%B8%B0%ED%95%98%ED%95%99" title="분류:기하학">기하학</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9B%90%EB%BF%94_%EA%B3%A1%EC%84%A0" title="분류:원뿔 곡선">원뿔 곡선</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">숨은 분류: <ul><li><a href="/wiki/%EB%B6%84%EB%A5%98:%ED%95%B4%EA%B2%B0%EB%90%98%EC%A7%80_%EC%95%8A%EC%9D%80_%EC%86%8D%EC%84%B1%EC%9D%B4_%EC%9E%88%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:해결되지 않은 속성이 있는 문서">해결되지 않은 속성이 있는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:CS1_-_%EC%98%81%EC%96%B4_%EC%9D%B8%EC%9A%A9_(en)" title="분류:CS1 - 영어 인용 (en)">CS1 - 영어 인용 (en)</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P18%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P18을 사용하는 문서">위키데이터 속성 P18을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P373%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P373을 사용하는 문서">위키데이터 속성 P373을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P227%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P227을 사용하는 문서">위키데이터 속성 P227을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P244%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P244를 사용하는 문서">위키데이터 속성 P244를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P691%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P691을 사용하는 문서">위키데이터 속성 P691을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P1368%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P1368을 사용하는 문서">위키데이터 속성 P1368을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P7859%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P7859를 사용하는 문서">위키데이터 속성 P7859를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P8189%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P8189를 사용하는 문서">위키데이터 속성 P8189를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%98%81%EC%96%B4_%ED%91%9C%EA%B8%B0%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EB%AC%B8%EC%84%9C" title="분류:영어 표기를 포함한 문서">영어 표기를 포함한 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:GND_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:GND 식별자를 포함한 위키백과 문서">GND 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:J9U_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:J9U 식별자를 포함한 위키백과 문서">J9U 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:LCCN_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:LCCN 식별자를 포함한 위키백과 문서">LCCN 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:LNB_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:LNB 식별자를 포함한 위키백과 문서">LNB 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:NKC_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:NKC 식별자를 포함한 위키백과 문서">NKC 식별자를 포함한 위키백과 문서</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 이 문서는 2024년 5월 17일 (금) 13:24에 마지막으로 편집되었습니다.</li> <li id="footer-info-copyright">모든 문서는 <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.ko">크리에이티브 커먼즈 저작자표시-동일조건변경허락 4.0</a>에 따라 사용할 수 있으며, 추가적인 조건이 적용될 수 있습니다. 자세한 내용은 <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/ko">이용 약관</a>을 참고하십시오.<br />Wikipedia®는 미국 및 다른 국가에 등록되어 있는 <a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org">Wikimedia Foundation, Inc.</a> 소유의 등록 상표입니다.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">개인정보처리방침</a></li> <li id="footer-places-about"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%86%8C%EA%B0%9C">위키백과 소개</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%A9%B4%EC%B1%85_%EC%A1%B0%ED%95%AD">면책 조항</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">행동 강령</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">개발자</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ko.wikipedia.org">통계</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">쿠키 정책</a></li> <li id="footer-places-mobileview"><a href="//ko.m.wikipedia.org/w/index.php?title=%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">모바일 보기</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-lsb4r","wgBackendResponseTime":172,"wgPageParseReport":{"limitreport":{"cputime":"0.480","walltime":"0.759","ppvisitednodes":{"value":2686,"limit":1000000},"postexpandincludesize":{"value":36064,"limit":2097152},"templateargumentsize":{"value":1026,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":27,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":37580,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 499.507 1 -total"," 31.37% 156.681 1 틀:위키데이터_속성_추적"," 17.79% 88.880 1 틀:각주"," 15.02% 75.012 1 틀:원뿔_곡선"," 14.64% 73.152 1 틀:둘러보기_상자"," 13.51% 67.459 4 틀:서적_인용"," 7.60% 37.963 7 틀:여러_그림"," 6.18% 30.873 1 틀:전거_통제"," 6.03% 30.129 1 틀:위키공용분류-줄"," 5.21% 26.015 1 틀:Sister-inline"]},"scribunto":{"limitreport-timeusage":{"value":"0.175","limit":"10.000"},"limitreport-memusage":{"value":4529139,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-f29sm","timestamp":"20241123010553","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\uc6d0 (\uae30\ud558\ud559)","url":"https:\/\/ko.wikipedia.org\/wiki\/%EC%9B%90_(%EA%B8%B0%ED%95%98%ED%95%99)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q17278","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q17278","author":{"@type":"Organization","name":"\uc704\ud0a4\ubbf8\ub514\uc5b4 \ud504\ub85c\uc81d\ud2b8 \uae30\uc5ec\uc790"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-05-21T16:05:11Z","dateModified":"2024-05-17T04:24:26Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/40\/Cercle_noir_100%25.svg","headline":"\ud3c9\uba74 \uc704\uc758 \ud55c \uc810\uc5d0 \uc774\ub974\ub294 \uac70\ub9ac\uac00 \uc77c\uc815\ud55c \ud3c9\uba74 \uc704\uc758 \uc810\ub4e4\uc758 \uc9d1\ud569\uc73c\ub85c \uc815\uc758\ub418\ub294 \ub3c4\ud615"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10