CINXE.COM

Martin Bazant - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Martin Bazant - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="patYltY2SZPl4wDKTCKm6QMw/R2npPf/ICeMOPcF2HC+GYdnfBqtsirsPxPSKaLWHTEKXrssxEBGtB5E4NuDow==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="martin bazant" /> <meta name="description" content="Martin Bazant: 26 Followers, 1 Following, 399 Research papers. Research interests: Electrochemistry, Electrochemical Engineering, and Electrokinetics." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '9387f500ddcbb8d05c67bef28a2fe0334f1aafb8'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15268,"monthly_visitors":"113 million","monthly_visitor_count":113692424,"monthly_visitor_count_in_millions":113,"user_count":277716939,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1733023072000); window.Aedu.timeDifference = new Date().getTime() - 1733023072000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-3e572e3b706c3ed2ec5b2c1cb44a411fadc81f62a97963cb7bd9c327a0a9d5f2.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-2e8d3f30eaaddd1debd6ce4630b3453b23a23c91ac7c823ddf8822879835b029.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/MartinBazant" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-ae3d0ee232cd83d11499343688b0160a3c7db15e95cb2d0844cae78d49ea53f1.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":11428,"name":"Electrochemical Engineering","url":"https://www.academia.edu/Documents/in/Electrochemical_Engineering"},{"id":87778,"name":"Electrokinetics","url":"https://www.academia.edu/Documents/in/Electrokinetics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":23991,"name":"Batteries","url":"https://www.academia.edu/Documents/in/Batteries"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":36763,"name":"Aerosols","url":"https://www.academia.edu/Documents/in/Aerosols"},{"id":24546,"name":"Transport phenomena","url":"https://www.academia.edu/Documents/in/Transport_phenomena"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/MartinBazant&quot;,&quot;location&quot;:&quot;/MartinBazant&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/MartinBazant&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-8f681381-a23b-4d8e-a87e-783259ba2a26"></div> <div id="ProfileCheckPaperUpdate-react-component-8f681381-a23b-4d8e-a87e-783259ba2a26"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Martin Bazant</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Martin" data-follow-user-id="212365431" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="212365431"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">26</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="212365431">View All (8)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="212365431" href="https://www.academia.edu/Documents/in/Electrochemistry"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/MartinBazant&quot;,&quot;location&quot;:&quot;/MartinBazant&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/MartinBazant&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Electrochemistry&quot;]}" data-trace="false" data-dom-id="Pill-react-component-4b7ced1e-52c9-42f3-b0fa-6ada18651f34"></div> <div id="Pill-react-component-4b7ced1e-52c9-42f3-b0fa-6ada18651f34"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="212365431" href="https://www.academia.edu/Documents/in/Electrochemical_Engineering"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Electrochemical Engineering&quot;]}" data-trace="false" data-dom-id="Pill-react-component-b1863f87-be3e-4fbe-b576-8f87d7109c81"></div> <div id="Pill-react-component-b1863f87-be3e-4fbe-b576-8f87d7109c81"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="212365431" href="https://www.academia.edu/Documents/in/Electrokinetics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Electrokinetics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-2d2c78ab-7b69-441d-9d12-af0890e6a5b4"></div> <div id="Pill-react-component-2d2c78ab-7b69-441d-9d12-af0890e6a5b4"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="212365431" href="https://www.academia.edu/Documents/in/Microfluidics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Microfluidics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-d999ed35-5f0c-4411-b776-a726fbe8ea0e"></div> <div id="Pill-react-component-d999ed35-5f0c-4411-b776-a726fbe8ea0e"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="212365431" href="https://www.academia.edu/Documents/in/Batteries"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Batteries&quot;]}" data-trace="false" data-dom-id="Pill-react-component-712ef7a1-27ca-4962-8a45-135212e14c97"></div> <div id="Pill-react-component-712ef7a1-27ca-4962-8a45-135212e14c97"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Martin Bazant</h3></div><div class="js-work-strip profile--work_container" data-work-id="124413722"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124413722/Lithium_ion_intercalation_by_coupled_ion_electron_transfer"><img alt="Research paper thumbnail of Lithium-ion intercalation by coupled ion-electron transfer" class="work-thumbnail" src="https://attachments.academia-assets.com/118644026/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124413722/Lithium_ion_intercalation_by_coupled_ion_electron_transfer">Lithium-ion intercalation by coupled ion-electron transfer</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="73bbdffe7d4db12aeb70a7741e3bdee8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118644026,&quot;asset_id&quot;:124413722,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118644026/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124413722"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124413722"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124413722; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124413722]").text(description); $(".js-view-count[data-work-id=124413722]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124413722; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124413722']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124413722, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "73bbdffe7d4db12aeb70a7741e3bdee8" } } $('.js-work-strip[data-work-id=124413722]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124413722,"title":"Lithium-ion intercalation by coupled ion-electron transfer","translated_title":"","metadata":{"grobid_abstract":"Lithium-ion batteries are powering a revolution in electrification, but the underlying intercalation 25","publication_date":{"day":20,"month":5,"year":2024,"errors":{}},"grobid_abstract_attachment_id":118644026},"translated_abstract":null,"internal_url":"https://www.academia.edu/124413722/Lithium_ion_intercalation_by_coupled_ion_electron_transfer","translated_internal_url":"","created_at":"2024-10-04T04:07:42.692-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118644026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118644026/thumbnails/1.jpg","file_name":"lithium-ion-intercalation-by-coupled-ion-electron-transfer.pdf","download_url":"https://www.academia.edu/attachments/118644026/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lithium_ion_intercalation_by_coupled_ion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118644026/lithium-ion-intercalation-by-coupled-ion-electron-transfer-libre.pdf?1728042218=\u0026response-content-disposition=attachment%3B+filename%3DLithium_ion_intercalation_by_coupled_ion.pdf\u0026Expires=1733026672\u0026Signature=DacV3tT4yJDrqWHKDAusIdqiHTB3IooD3ROcmHVY~-SDWVQnif-X8yLnxW3Q-7poqEpWt45MqSTtTwA~jiauFUDKDaVdRICQ-4vFv42cpLgjr2fILBenYOO4C-qLngy5Jrhno6vn4LmwdVg5dw~E2NsKeXl2TQiGrNtferG6Z6ejoD4QVQAzpYtHiEPGUg5U9cRyGHNdJRRHBjUY9laCX-lM2LZUWy5wt-7xM9yQP~UVkz-e8kwbOSVTawpjd-zmg5PzFUUQdag1t7sB9up9QcEvO4WFgBFer-e3WZHFCcl3DZurb6K9bDxYqiGAdQgWY0GNZrmEUYVasgvmMZLFAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lithium_ion_intercalation_by_coupled_ion_electron_transfer","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":118644026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118644026/thumbnails/1.jpg","file_name":"lithium-ion-intercalation-by-coupled-ion-electron-transfer.pdf","download_url":"https://www.academia.edu/attachments/118644026/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lithium_ion_intercalation_by_coupled_ion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118644026/lithium-ion-intercalation-by-coupled-ion-electron-transfer-libre.pdf?1728042218=\u0026response-content-disposition=attachment%3B+filename%3DLithium_ion_intercalation_by_coupled_ion.pdf\u0026Expires=1733026672\u0026Signature=DacV3tT4yJDrqWHKDAusIdqiHTB3IooD3ROcmHVY~-SDWVQnif-X8yLnxW3Q-7poqEpWt45MqSTtTwA~jiauFUDKDaVdRICQ-4vFv42cpLgjr2fILBenYOO4C-qLngy5Jrhno6vn4LmwdVg5dw~E2NsKeXl2TQiGrNtferG6Z6ejoD4QVQAzpYtHiEPGUg5U9cRyGHNdJRRHBjUY9laCX-lM2LZUWy5wt-7xM9yQP~UVkz-e8kwbOSVTawpjd-zmg5PzFUUQdag1t7sB9up9QcEvO4WFgBFer-e3WZHFCcl3DZurb6K9bDxYqiGAdQgWY0GNZrmEUYVasgvmMZLFAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":147028,"name":"Intercalation Chemistry","url":"https://www.academia.edu/Documents/in/Intercalation_Chemistry"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"}],"urls":[{"id":44971752,"url":"https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/6647155791aefa6ce13c1e59/original/lithium-ion-intercalation-by-coupled-ion-electron-transfer.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817507"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817507/Transverse_flow_in_thin_superhydrophobic_channels"><img alt="Research paper thumbnail of Transverse flow in thin superhydrophobic channels" class="work-thumbnail" src="https://attachments.academia-assets.com/116610088/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817507/Transverse_flow_in_thin_superhydrophobic_channels">Transverse flow in thin superhydrophobic channels</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, Nov 10, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6882854d087350853a1668c49ec2eb1a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610088,&quot;asset_id&quot;:121817507,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610088/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817507"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817507"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817507; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817507]").text(description); $(".js-view-count[data-work-id=121817507]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817507; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817507']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817507, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6882854d087350853a1668c49ec2eb1a" } } $('.js-work-strip[data-work-id=121817507]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817507,"title":"Transverse flow in thin superhydrophobic channels","translated_title":"","metadata":{"publisher":"American Physical Society","grobid_abstract":"We provide some general theoretical results to guide the optimization of transverse hydrodynamic phenomena in superhydrophobic channels. Our focus is on the canonical micro-and nanofluidic geometry of a parallel-plate channel with an arbitrary two-component (low-slip and high-slip) coarse texture, varying on scales larger than the channel thickness. By analyzing rigorous bounds on the permeability, over all possible patterns, we optimize the area fractions, slip lengths, geometry and orientation of the surface texture to maximize transverse flow. In the case of two aligned striped surfaces, very strong transverse flows are possible. Optimized superhydrophobic surfaces may find applications in passive microfluidic mixing and amplification of transverse electrokinetic phenomena.","publication_date":{"day":10,"month":11,"year":2010,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":116610088},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817507/Transverse_flow_in_thin_superhydrophobic_channels","translated_internal_url":"","created_at":"2024-07-06T05:18:33.804-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610088,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610088/thumbnails/1.jpg","file_name":"1007.pdf","download_url":"https://www.academia.edu/attachments/116610088/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transverse_flow_in_thin_superhydrophobic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610088/1007-libre.pdf?1720269706=\u0026response-content-disposition=attachment%3B+filename%3DTransverse_flow_in_thin_superhydrophobic.pdf\u0026Expires=1733026672\u0026Signature=MbWYuhtw5wZSEK7tlIo0Q9NV0d2zybuhH3Dr12sP0iGpLTz0mj9cXcQeNFlbfF6yAewinRGnMVqsuipxJD4sgk-K0Ka557dJv2qsNz1qR2KYqkYSQnDBbfNVzS0S5xPYjXfPixhpc8a4X~cTnjDIER3Gs96ldWSFFesCtMvn5VLu5dT-JJsUfZcqP0v9t6twLZLJxkzWxffAxbL~68A5gwNw9bvlNxwM~W0w-yEkayrH1uW4YdRzpjW4h21sYtp4R7x1r1sldYeFKX~JekYd9~xLQIEj~XCDmWsAH~V-~ZPV75POiNKzIgbhaQ3NUo~5wV0pYfAXO3kDxhhY1OBMTA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Transverse_flow_in_thin_superhydrophobic_channels","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610088,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610088/thumbnails/1.jpg","file_name":"1007.pdf","download_url":"https://www.academia.edu/attachments/116610088/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transverse_flow_in_thin_superhydrophobic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610088/1007-libre.pdf?1720269706=\u0026response-content-disposition=attachment%3B+filename%3DTransverse_flow_in_thin_superhydrophobic.pdf\u0026Expires=1733026672\u0026Signature=MbWYuhtw5wZSEK7tlIo0Q9NV0d2zybuhH3Dr12sP0iGpLTz0mj9cXcQeNFlbfF6yAewinRGnMVqsuipxJD4sgk-K0Ka557dJv2qsNz1qR2KYqkYSQnDBbfNVzS0S5xPYjXfPixhpc8a4X~cTnjDIER3Gs96ldWSFFesCtMvn5VLu5dT-JJsUfZcqP0v9t6twLZLJxkzWxffAxbL~68A5gwNw9bvlNxwM~W0w-yEkayrH1uW4YdRzpjW4h21sYtp4R7x1r1sldYeFKX~JekYd9~xLQIEj~XCDmWsAH~V-~ZPV75POiNKzIgbhaQ3NUo~5wV0pYfAXO3kDxhhY1OBMTA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":54418,"name":"Geometry","url":"https://www.academia.edu/Documents/in/Geometry"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173495,"name":"APS","url":"https://www.academia.edu/Documents/in/APS"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":1749681,"name":"Surface Texture","url":"https://www.academia.edu/Documents/in/Surface_Texture"}],"urls":[{"id":43393527,"url":"http://arxiv.org/pdf/1007.1122"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817506"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817506/Microfluidic_pumping_by_induced_charge_electro_osmosis"><img alt="Research paper thumbnail of Microfluidic pumping by induced-charge electro-osmosis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817506/Microfluidic_pumping_by_induced_charge_electro_osmosis">Microfluidic pumping by induced-charge electro-osmosis</a></div><div class="wp-workCard_item"><span>APS March Meeting Abstracts</span><span>, Nov 1, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Motivated by recent work on AC electro-osmosis, a general theory of ``induced-charge electro-osmo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Motivated by recent work on AC electro-osmosis, a general theory of ``induced-charge electro-osmosis&amp;amp;#39;&amp;amp;#39; (ICEO) has been developed, and a variety of new microfluidic pumping and mixing strategies have been proposed using weak DC and AC applied voltages [physics/0304090, physics/0306100]. ICEO slip of a liquid electrolyte generally occurs at polarizable (metal or dielectric) surfaces in response to applied electric fields. Due</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817506"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817506"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817506; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817506]").text(description); $(".js-view-count[data-work-id=121817506]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817506; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817506']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817506, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121817506]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817506,"title":"Microfluidic pumping by induced-charge electro-osmosis","translated_title":"","metadata":{"abstract":"Motivated by recent work on AC electro-osmosis, a general theory of ``induced-charge electro-osmosis\u0026amp;#39;\u0026amp;#39; (ICEO) has been developed, and a variety of new microfluidic pumping and mixing strategies have been proposed using weak DC and AC applied voltages [physics/0304090, physics/0306100]. ICEO slip of a liquid electrolyte generally occurs at polarizable (metal or dielectric) surfaces in response to applied electric fields. Due","publication_date":{"day":1,"month":11,"year":2003,"errors":{}},"publication_name":"APS March Meeting Abstracts"},"translated_abstract":"Motivated by recent work on AC electro-osmosis, a general theory of ``induced-charge electro-osmosis\u0026amp;#39;\u0026amp;#39; (ICEO) has been developed, and a variety of new microfluidic pumping and mixing strategies have been proposed using weak DC and AC applied voltages [physics/0304090, physics/0306100]. ICEO slip of a liquid electrolyte generally occurs at polarizable (metal or dielectric) surfaces in response to applied electric fields. Due","internal_url":"https://www.academia.edu/121817506/Microfluidic_pumping_by_induced_charge_electro_osmosis","translated_internal_url":"","created_at":"2024-07-06T05:18:33.645-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Microfluidic_pumping_by_induced_charge_electro_osmosis","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[],"research_interests":[{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":394477,"name":"Time Dependent","url":"https://www.academia.edu/Documents/in/Time_Dependent"},{"id":440924,"name":"Surface Properties","url":"https://www.academia.edu/Documents/in/Surface_Properties"},{"id":480226,"name":"Surface Charge","url":"https://www.academia.edu/Documents/in/Surface_Charge"},{"id":983062,"name":"Zeta Potential","url":"https://www.academia.edu/Documents/in/Zeta_Potential"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"}],"urls":[{"id":43393526,"url":"https://ui.adsabs.harvard.edu/abs/2003APS..DFD.AD005L/abstract"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817505"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817505/Application_of_the_Cell_Potential_Method_To_Predict_Phase_Equilibria_of_Multicomponent_Gas_Hydrate_Systems"><img alt="Research paper thumbnail of Application of the Cell Potential Method To Predict Phase Equilibria of Multicomponent Gas Hydrate Systems" class="work-thumbnail" src="https://attachments.academia-assets.com/116610086/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817505/Application_of_the_Cell_Potential_Method_To_Predict_Phase_Equilibria_of_Multicomponent_Gas_Hydrate_Systems">Application of the Cell Potential Method To Predict Phase Equilibria of Multicomponent Gas Hydrate Systems</a></div><div class="wp-workCard_item"><span>Journal of Physical Chemistry B</span><span>, Mar 31, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dbdfa40551e36691354389e3fc3a3e73" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610086,&quot;asset_id&quot;:121817505,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610086/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817505"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817505"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817505; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817505]").text(description); $(".js-view-count[data-work-id=121817505]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817505; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817505']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817505, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dbdfa40551e36691354389e3fc3a3e73" } } $('.js-work-strip[data-work-id=121817505]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817505,"title":"Application of the Cell Potential Method To Predict Phase Equilibria of Multicomponent Gas Hydrate Systems","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"We present the application of a mathematical method reported earlier 1 by which the van der Waals-Platteeuw statistical mechanical model with the Lennard-Jones and Devonshire approximation can be posed as an integral equation with the unknown function being the intermolecular potential between the guest molecules and the host molecules. This method allows us to solve for the potential directly for hydrates for which the Langmuir constants are computed, either from experimental data or from ab initio data. Given the assumptions made in the van der Waals-Platteeuw model with the spherical-cell approximation, there are an infinite number of solutions; however, the only solution without cusps is a unique central-well solution in which the potential is at a finite minimum at the center to the cage. From this central-well solution, we have found the potential well depths and volumes of negative energy for 16 single-component hydrate systems: ethane (C 2 H 6), cyclopropane (C 3 H 6), methane (CH 4), argon (Ar), and chlorodifluoromethane (R-22) in structure I; and ethane (C 2 H 6), cyclopropane (C 3 H 6), propane (C 3 H 8), isobutane (C 4 H 10), methane (CH 4), argon (Ar), trichlorofluoromethane (R-11), dichlorodifluoromethane (R-12), bromotrifluoromethane (R-13B1), chloroform (CHCl 3), and 1,1,1,2-tetrafluoroethane (R-134a) in structure II. This method and the calculated cell potentials were validated by predicting existing mixed hydrate phase equilibrium data without any fitting parameters and calculating mixture phase diagrams for methane, ethane, isobutane, and cyclopropane mixtures. Several structural transitions that have been determined experimentally as well as some structural transitions that have not been examined experimentally were also predicted. In the methane-cyclopropane hydrate system, a structural transition from structure I to structure II and back to structure I is predicted to occur outside of the known structure II range for the cyclopropane hydrate. Quintuple (L w-sI-sII-L hc-V) points have been predicted for the ethane-propane-water (277.3 K, 12.28 bar, and x eth,waterfree) 0.676) and ethane-isobutanewater (274.7 K, 7.18 bar, and x eth,waterfree) 0.81) systems.","publication_date":{"day":31,"month":3,"year":2005,"errors":{}},"publication_name":"Journal of Physical Chemistry B","grobid_abstract_attachment_id":116610086},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817505/Application_of_the_Cell_Potential_Method_To_Predict_Phase_Equilibria_of_Multicomponent_Gas_Hydrate_Systems","translated_internal_url":"","created_at":"2024-07-06T05:18:33.471-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610086,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610086/thumbnails/1.jpg","file_name":"Anderson_2005_J_Phys_Chem_B_IP9.pdf","download_url":"https://www.academia.edu/attachments/116610086/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Application_of_the_Cell_Potential_Method.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610086/Anderson_2005_J_Phys_Chem_B_IP9-libre.pdf?1720269710=\u0026response-content-disposition=attachment%3B+filename%3DApplication_of_the_Cell_Potential_Method.pdf\u0026Expires=1733026672\u0026Signature=E9GfRPSfv4AYnO-FAX83IOJtf0Mm0HfTPmW3fEfAmXEpFiXS02rqBRc-hPS~B0L7UMuJp6TkQoMRxlTZ6tNuZhlj37AZCSg15S7MgPtSFF7w6k7i3U~NORwMZpei03U151jQuVb4e3wD73NONqq2kkotN-f6SklmIvWH1oxj~~xiUKIeC2PWAzWgFkwlXUl5hs6FHH8iyO6~U81WnhoLPvjqrhEWmPAF2~nSEpk7qqPQxCIYkdeuZizdRU~pCaqPNIdQ56YX1-WGGD50RZInapzdP82RX2jIBiFyZG4i0Z2hPDL1CldNXqR70adXbD1-3vqldUuNogZ3YMcjbsXn3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Application_of_the_Cell_Potential_Method_To_Predict_Phase_Equilibria_of_Multicomponent_Gas_Hydrate_Systems","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610086,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610086/thumbnails/1.jpg","file_name":"Anderson_2005_J_Phys_Chem_B_IP9.pdf","download_url":"https://www.academia.edu/attachments/116610086/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Application_of_the_Cell_Potential_Method.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610086/Anderson_2005_J_Phys_Chem_B_IP9-libre.pdf?1720269710=\u0026response-content-disposition=attachment%3B+filename%3DApplication_of_the_Cell_Potential_Method.pdf\u0026Expires=1733026672\u0026Signature=E9GfRPSfv4AYnO-FAX83IOJtf0Mm0HfTPmW3fEfAmXEpFiXS02rqBRc-hPS~B0L7UMuJp6TkQoMRxlTZ6tNuZhlj37AZCSg15S7MgPtSFF7w6k7i3U~NORwMZpei03U151jQuVb4e3wD73NONqq2kkotN-f6SklmIvWH1oxj~~xiUKIeC2PWAzWgFkwlXUl5hs6FHH8iyO6~U81WnhoLPvjqrhEWmPAF2~nSEpk7qqPQxCIYkdeuZizdRU~pCaqPNIdQ56YX1-WGGD50RZInapzdP82RX2jIBiFyZG4i0Z2hPDL1CldNXqR70adXbD1-3vqldUuNogZ3YMcjbsXn3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":23612,"name":"Gas Hydrate","url":"https://www.academia.edu/Documents/in/Gas_Hydrate"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":95528,"name":"Phase equilibria","url":"https://www.academia.edu/Documents/in/Phase_equilibria"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":210248,"name":"Cyclopropane","url":"https://www.academia.edu/Documents/in/Cyclopropane"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":309949,"name":"Propane","url":"https://www.academia.edu/Documents/in/Propane"},{"id":864976,"name":"Integral Equation","url":"https://www.academia.edu/Documents/in/Integral_Equation"},{"id":1025209,"name":"Argon","url":"https://www.academia.edu/Documents/in/Argon"},{"id":1120502,"name":"Experimental Data","url":"https://www.academia.edu/Documents/in/Experimental_Data"},{"id":1123280,"name":"Hydrate","url":"https://www.academia.edu/Documents/in/Hydrate"},{"id":2037336,"name":"Phase Equilibrium","url":"https://www.academia.edu/Documents/in/Phase_Equilibrium"},{"id":3094058,"name":"Krypton","url":"https://www.academia.edu/Documents/in/Krypton"},{"id":4108054,"name":"phase diagram","url":"https://www.academia.edu/Documents/in/phase_diagram"}],"urls":[{"id":43393525,"url":"http://www-math.mit.edu/~bazant/papers/pdf/Anderson_2005_J_Phys_Chem_B_IP9.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817504"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817504/Theory_of_the_Double_Layer_in_Water_in_Salt_Electrolytes"><img alt="Research paper thumbnail of Theory of the Double Layer in Water-in-Salt Electrolytes" class="work-thumbnail" src="https://attachments.academia-assets.com/116610103/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817504/Theory_of_the_Double_Layer_in_Water_in_Salt_Electrolytes">Theory of the Double Layer in Water-in-Salt Electrolytes</a></div><div class="wp-workCard_item"><span>Journal of Physical Chemistry Letters</span><span>, Oct 4, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1c161fe1281d63753e1286e19a51afc7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610103,&quot;asset_id&quot;:121817504,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610103/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817504"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817504"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817504; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817504]").text(description); $(".js-view-count[data-work-id=121817504]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817504; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817504']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817504, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1c161fe1281d63753e1286e19a51afc7" } } $('.js-work-strip[data-work-id=121817504]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817504,"title":"Theory of the Double Layer in Water-in-Salt Electrolytes","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"One challenge in developing the next generation of lithium-ion batteries is the replacement of organic electrolytes, which are flammable and most often contain toxic and thermally unstable lithium salts, with safer, environmentally friendly alternatives. Recently developed Water-in-Salt Electrolytes (WiSEs) were found to be a promising alternative, having also enhanced electrochemical stability. In this work, we develop a simple modified Poisson-Fermi theory, which demonstrates the fine interplay between electrosorption, solvation, and ion correlations. The phenomenological parameters are extracted from molecular simulations, also performed here. The theory reproduces the electrical double layer structure of WiSEs with remarkable accuracy.","publication_date":{"day":4,"month":10,"year":2018,"errors":{}},"publication_name":"Journal of Physical Chemistry Letters","grobid_abstract_attachment_id":116610103},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817504/Theory_of_the_Double_Layer_in_Water_in_Salt_Electrolytes","translated_internal_url":"","created_at":"2024-07-06T05:18:33.291-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610103,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610103/thumbnails/1.jpg","file_name":"1808.06118.pdf","download_url":"https://www.academia.edu/attachments/116610103/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Theory_of_the_Double_Layer_in_Water_in_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610103/1808.06118-libre.pdf?1720269720=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_the_Double_Layer_in_Water_in_S.pdf\u0026Expires=1733026672\u0026Signature=SObacQ8nAO2hXoGt4E2IA7mOvNWub8zuAEkp8zRpinJeYQVCHT6111-9R3-9u--jTmJYADPcaIbOxdDPfFs3cJ4TSnrWrRIKOCGCk-HghrT2sj6DCng~cSwXRPHIPGq7k7YCIVQBV5g-8F1uXoXXmeD7Y9S0408tIxJGeT6sY~DJGH2Et7l2whIPfO4pTkNJvHU~VMw-U7XH7jMU0-7wEb2VC382tF-kuwmOrvNK~W9OK3zeXLyaEIZOn9HuiyVW9lf1-DZT~J8I4blvkUsA8M8cuXT4Dr1UuwJ7aocQWPEfFeNVuZlAeLRoVNkqCBqzqsZ5W9VD6oDrVf0zPORuBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Theory_of_the_Double_Layer_in_Water_in_Salt_Electrolytes","translated_slug":"","page_count":29,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610103,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610103/thumbnails/1.jpg","file_name":"1808.06118.pdf","download_url":"https://www.academia.edu/attachments/116610103/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Theory_of_the_Double_Layer_in_Water_in_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610103/1808.06118-libre.pdf?1720269720=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_the_Double_Layer_in_Water_in_S.pdf\u0026Expires=1733026672\u0026Signature=SObacQ8nAO2hXoGt4E2IA7mOvNWub8zuAEkp8zRpinJeYQVCHT6111-9R3-9u--jTmJYADPcaIbOxdDPfFs3cJ4TSnrWrRIKOCGCk-HghrT2sj6DCng~cSwXRPHIPGq7k7YCIVQBV5g-8F1uXoXXmeD7Y9S0408tIxJGeT6sY~DJGH2Et7l2whIPfO4pTkNJvHU~VMw-U7XH7jMU0-7wEb2VC382tF-kuwmOrvNK~W9OK3zeXLyaEIZOn9HuiyVW9lf1-DZT~J8I4blvkUsA8M8cuXT4Dr1UuwJ7aocQWPEfFeNVuZlAeLRoVNkqCBqzqsZ5W9VD6oDrVf0zPORuBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":49735,"name":"Solvation","url":"https://www.academia.edu/Documents/in/Solvation"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":2468700,"name":"environmentally friendly","url":"https://www.academia.edu/Documents/in/environmentally_friendly"},{"id":3370278,"name":"Flammable Liquid","url":"https://www.academia.edu/Documents/in/Flammable_Liquid"}],"urls":[{"id":43393524,"url":"https://doi.org/10.1021/acs.jpclett.8b02543"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817503"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817503/Electrochemical_Kinetics_of_Degradation_of_Graphite_Anodes_in_Lithium_Ion_Batteries"><img alt="Research paper thumbnail of Electrochemical Kinetics of Degradation of Graphite Anodes in Lithium Ion Batteries" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817503/Electrochemical_Kinetics_of_Degradation_of_Graphite_Anodes_in_Lithium_Ion_Batteries">Electrochemical Kinetics of Degradation of Graphite Anodes in Lithium Ion Batteries</a></div><div class="wp-workCard_item"><span>Meeting abstracts</span><span>, May 1, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Desp...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Despite its importance, the fundamental mechanisms remain unclear, primarily because of the complicated reaction pathways involved[1–3]. SEI growth can be both electrochemical and chemical in nature[4], and thus, it is a strong function of the potential and degree of lithiation of the electrode. We model the early-stage and long-term growth of SEI by accurately capturing the potential dependence of its formation kinetics as well as long term rate limiting steps, and validating it against the world’s largest open source battery cycling data, generated in-house[5]. This is done using the Multiphase Porous Electrode Theory (MPET) framework[6] on graphite (phase separating) and carbon black (non phase separating) particles. Lithium plating is another key degradation phenomenon that has been elusive, and it becomes important while trying to fast-charge batteries, i.e., 0% - 80% state-of-charge in 30 mins. We show that lithium plating is a key function of electrode morphology, phase-separation dynamics and potential. Phase-separation in graphite is modeled in the electrode using the Cahn-Hilliard Reaction framework described by Bazant[7]. We understand the electrochemistry of the onset of lithium plating with in-situ measurements connected to real time cell potential in a phase-separating electrode for the first time[8]. Results indicate that the peak SEI-forming currents are higher for higher driving currents. Also, we find that SEI only grows during electrode lithiation, i.e. the battery only degrades while being charged. We also find that onset of lithium plating is correctly captured only when phase separation in active material is accounted for. Further, the onset of plating is delayed on electrodes with a thick SEI layer – understanding SEI/plating coupling is integral to predicting fast charging manufacturing protocols for LIBs. This work holds promise for the predictive design of procedures[9] for manufacture and formation of LIBs. [1] Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104, 12282–12291. <a href="https://doi.org/10.1021/jp002526b" rel="nofollow">https://doi.org/10.1021/jp002526b</a>. [2] Horstmann, B.; Single, F.; Latz, A. Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation, Current Opinion in Electrochemistry 13, 62-69 2019. [3] Nie, M.; Abraham, D. P.; Seo, D. M.; Chen, Y.; Bose, A.; Lucht, B. L. Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. J. Phys. Chem. C 2013, 117 (48), 25381–25389, <a href="https://doi.org/10.1021/jp409765w" rel="nofollow">https://doi.org/10.1021/jp409765w</a>. [4] Das, S.; Attia, P. M.; Chueh, W. C.; Bazant, M. Z. Electrochemical Kinetics of SEI Growth on Carbon Black: Part II. Modeling. J. Electrochem. Soc. 2019, 166 (4), E107– E118. <a href="https://doi.org/10.1149/2.0241904jes" rel="nofollow">https://doi.org/10.1149/2.0241904jes</a>. [5] Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166 (4), E97–E106. <a href="https://doi.org/10.1149/2.0231904jes" rel="nofollow">https://doi.org/10.1149/2.0231904jes</a>. [6] Smith, R. B.; Bazant, M. Z. Multiphase Porous Electrode Theory, J. Electrochem. Soc. 2017, 164 (11). <a href="https://doi.org/10.1149/2.0171711jes" rel="nofollow">https://doi.org/10.1149/2.0171711jes</a>. [7] Bazant, M. Z., Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Accounts of Chemical Research, 46(5), 1144–1160. <a href="https://doi.org/10.1021/ar300145c" rel="nofollow">https://doi.org/10.1021/ar300145c</a> [8] T. Gao, Y. Han, S. Das, T. Zhou, D. Fraggedakis, N. Nadkarni, C. N. Yeh, W. Chueh, J. Li, M.Z. Bazant, Interplay of lithium intercalation and plating on graphite using in-situ optical measurements, submitted. [9] Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; McCloskey, B. D.; Chueh, W. C. and Cui, Y.; Nano Letters 2019 19 (8), 5140-5148. DOI: 10.1021/acs.nanolett.9b01515</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817503"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817503"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817503; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817503]").text(description); $(".js-view-count[data-work-id=121817503]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817503; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817503']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817503, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121817503]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817503,"title":"Electrochemical Kinetics of Degradation of Graphite Anodes in Lithium Ion Batteries","translated_title":"","metadata":{"abstract":"Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Despite its importance, the fundamental mechanisms remain unclear, primarily because of the complicated reaction pathways involved[1–3]. SEI growth can be both electrochemical and chemical in nature[4], and thus, it is a strong function of the potential and degree of lithiation of the electrode. We model the early-stage and long-term growth of SEI by accurately capturing the potential dependence of its formation kinetics as well as long term rate limiting steps, and validating it against the world’s largest open source battery cycling data, generated in-house[5]. This is done using the Multiphase Porous Electrode Theory (MPET) framework[6] on graphite (phase separating) and carbon black (non phase separating) particles. Lithium plating is another key degradation phenomenon that has been elusive, and it becomes important while trying to fast-charge batteries, i.e., 0% - 80% state-of-charge in 30 mins. We show that lithium plating is a key function of electrode morphology, phase-separation dynamics and potential. Phase-separation in graphite is modeled in the electrode using the Cahn-Hilliard Reaction framework described by Bazant[7]. We understand the electrochemistry of the onset of lithium plating with in-situ measurements connected to real time cell potential in a phase-separating electrode for the first time[8]. Results indicate that the peak SEI-forming currents are higher for higher driving currents. Also, we find that SEI only grows during electrode lithiation, i.e. the battery only degrades while being charged. We also find that onset of lithium plating is correctly captured only when phase separation in active material is accounted for. Further, the onset of plating is delayed on electrodes with a thick SEI layer – understanding SEI/plating coupling is integral to predicting fast charging manufacturing protocols for LIBs. This work holds promise for the predictive design of procedures[9] for manufacture and formation of LIBs. [1] Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104, 12282–12291. https://doi.org/10.1021/jp002526b. [2] Horstmann, B.; Single, F.; Latz, A. Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation, Current Opinion in Electrochemistry 13, 62-69 2019. [3] Nie, M.; Abraham, D. P.; Seo, D. M.; Chen, Y.; Bose, A.; Lucht, B. L. Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. J. Phys. Chem. C 2013, 117 (48), 25381–25389, https://doi.org/10.1021/jp409765w. [4] Das, S.; Attia, P. M.; Chueh, W. C.; Bazant, M. Z. Electrochemical Kinetics of SEI Growth on Carbon Black: Part II. Modeling. J. Electrochem. Soc. 2019, 166 (4), E107– E118. https://doi.org/10.1149/2.0241904jes. [5] Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166 (4), E97–E106. https://doi.org/10.1149/2.0231904jes. [6] Smith, R. B.; Bazant, M. Z. Multiphase Porous Electrode Theory, J. Electrochem. Soc. 2017, 164 (11). https://doi.org/10.1149/2.0171711jes. [7] Bazant, M. Z., Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Accounts of Chemical Research, 46(5), 1144–1160. https://doi.org/10.1021/ar300145c [8] T. Gao, Y. Han, S. Das, T. Zhou, D. Fraggedakis, N. Nadkarni, C. N. Yeh, W. Chueh, J. Li, M.Z. Bazant, Interplay of lithium intercalation and plating on graphite using in-situ optical measurements, submitted. [9] Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; McCloskey, B. D.; Chueh, W. C. and Cui, Y.; Nano Letters 2019 19 (8), 5140-5148. DOI: 10.1021/acs.nanolett.9b01515","publisher":"Electrochemical Society","publication_date":{"day":1,"month":5,"year":2020,"errors":{}},"publication_name":"Meeting abstracts"},"translated_abstract":"Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Despite its importance, the fundamental mechanisms remain unclear, primarily because of the complicated reaction pathways involved[1–3]. SEI growth can be both electrochemical and chemical in nature[4], and thus, it is a strong function of the potential and degree of lithiation of the electrode. We model the early-stage and long-term growth of SEI by accurately capturing the potential dependence of its formation kinetics as well as long term rate limiting steps, and validating it against the world’s largest open source battery cycling data, generated in-house[5]. This is done using the Multiphase Porous Electrode Theory (MPET) framework[6] on graphite (phase separating) and carbon black (non phase separating) particles. Lithium plating is another key degradation phenomenon that has been elusive, and it becomes important while trying to fast-charge batteries, i.e., 0% - 80% state-of-charge in 30 mins. We show that lithium plating is a key function of electrode morphology, phase-separation dynamics and potential. Phase-separation in graphite is modeled in the electrode using the Cahn-Hilliard Reaction framework described by Bazant[7]. We understand the electrochemistry of the onset of lithium plating with in-situ measurements connected to real time cell potential in a phase-separating electrode for the first time[8]. Results indicate that the peak SEI-forming currents are higher for higher driving currents. Also, we find that SEI only grows during electrode lithiation, i.e. the battery only degrades while being charged. We also find that onset of lithium plating is correctly captured only when phase separation in active material is accounted for. Further, the onset of plating is delayed on electrodes with a thick SEI layer – understanding SEI/plating coupling is integral to predicting fast charging manufacturing protocols for LIBs. This work holds promise for the predictive design of procedures[9] for manufacture and formation of LIBs. [1] Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104, 12282–12291. https://doi.org/10.1021/jp002526b. [2] Horstmann, B.; Single, F.; Latz, A. Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation, Current Opinion in Electrochemistry 13, 62-69 2019. [3] Nie, M.; Abraham, D. P.; Seo, D. M.; Chen, Y.; Bose, A.; Lucht, B. L. Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. J. Phys. Chem. C 2013, 117 (48), 25381–25389, https://doi.org/10.1021/jp409765w. [4] Das, S.; Attia, P. M.; Chueh, W. C.; Bazant, M. Z. Electrochemical Kinetics of SEI Growth on Carbon Black: Part II. Modeling. J. Electrochem. Soc. 2019, 166 (4), E107– E118. https://doi.org/10.1149/2.0241904jes. [5] Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166 (4), E97–E106. https://doi.org/10.1149/2.0231904jes. [6] Smith, R. B.; Bazant, M. Z. Multiphase Porous Electrode Theory, J. Electrochem. Soc. 2017, 164 (11). https://doi.org/10.1149/2.0171711jes. [7] Bazant, M. Z., Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Accounts of Chemical Research, 46(5), 1144–1160. https://doi.org/10.1021/ar300145c [8] T. Gao, Y. Han, S. Das, T. Zhou, D. Fraggedakis, N. Nadkarni, C. N. Yeh, W. Chueh, J. Li, M.Z. Bazant, Interplay of lithium intercalation and plating on graphite using in-situ optical measurements, submitted. [9] Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; McCloskey, B. D.; Chueh, W. C. and Cui, Y.; Nano Letters 2019 19 (8), 5140-5148. DOI: 10.1021/acs.nanolett.9b01515","internal_url":"https://www.academia.edu/121817503/Electrochemical_Kinetics_of_Degradation_of_Graphite_Anodes_in_Lithium_Ion_Batteries","translated_internal_url":"","created_at":"2024-07-06T05:18:33.115-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electrochemical_Kinetics_of_Degradation_of_Graphite_Anodes_in_Lithium_Ion_Batteries","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":72820,"name":"Graphite","url":"https://www.academia.edu/Documents/in/Graphite"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":1131651,"name":"Anode","url":"https://www.academia.edu/Documents/in/Anode"},{"id":3604167,"name":"Meeting Abstracts","url":"https://www.academia.edu/Documents/in/Meeting_Abstracts"}],"urls":[{"id":43393523,"url":"https://doi.org/10.1149/ma2020-01164mtgabs"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817502"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817502/Simple_Formula_for_Marcus_Hush_Chidsey_Kinetics"><img alt="Research paper thumbnail of Simple Formula for Marcus-Hush-Chidsey Kinetics" class="work-thumbnail" src="https://attachments.academia-assets.com/116610085/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817502/Simple_Formula_for_Marcus_Hush_Chidsey_Kinetics">Simple Formula for Marcus-Hush-Chidsey Kinetics</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jul 21, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="edacf3be4ff708c7e9892e31230f69f3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610085,&quot;asset_id&quot;:121817502,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610085/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817502"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817502"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817502; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817502]").text(description); $(".js-view-count[data-work-id=121817502]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817502; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817502']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817502, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "edacf3be4ff708c7e9892e31230f69f3" } } $('.js-work-strip[data-work-id=121817502]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817502,"title":"Simple Formula for Marcus-Hush-Chidsey Kinetics","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"The Marcus-Hush-Chidsey (MHC) model is well known in electro-analytical chemistry as a successful microscopic theory of outer-sphere electron transfer at metal electrodes, but it is unfamiliar and rarely used in electrochemical engineering. One reason may be the difficulty of evaluating the MHC reaction rate, which is defined as an improper integral of the Marcus rate over the Fermi distribution of electron energies. Here, we report a simple analytical approximation of the MHC integral that interpolates between exact asymptotic limits for large overpotentials, as well as for large or small reorganization energies, and exhibits less than 5% relative error for all reasonable parameter values. This result enables the MHC model to be considered as a practical alternative to the ubiquitous Butler-Volmer equation for improved understanding and engineering of electrochemical systems.","publication_date":{"day":21,"month":7,"year":2014,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":116610085},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817502/Simple_Formula_for_Marcus_Hush_Chidsey_Kinetics","translated_internal_url":"","created_at":"2024-07-06T05:18:32.955-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610085,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610085/thumbnails/1.jpg","file_name":"1407.pdf","download_url":"https://www.academia.edu/attachments/116610085/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simple_Formula_for_Marcus_Hush_Chidsey_K.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610085/1407-libre.pdf?1720269709=\u0026response-content-disposition=attachment%3B+filename%3DSimple_Formula_for_Marcus_Hush_Chidsey_K.pdf\u0026Expires=1733026672\u0026Signature=U8RXVXQE3m5eZ3Aa9Whau8OUARibaO4ww6HI~vDOUlqpQtmdGQRf8CaOwu9JvQa3BHWZwHGjoiMd1F-BjC4eR2MWLrKYVqHyUuBkR0sFBfFWHzOUEr1Vo1C2vbSlTZqNEYUjZBSRD~V-zJeJoOcZELOkK6~N~C4gdoKwzLjc5t0TgxT83uJyCvMx0Pi1gc~TLge3LDsRfgOKGsEIcwC6N1DIWPhpxKLdqvod7~zwRD8KBDfefL~21qxbM~OFWsC4eaMDfyGjoLeUMBZYxYGEv8HWpHVLgLkI9lo34btS79gYDAh~plhI4c1Y1EYwt2Yoe1eTgFD8Dor1LS00mBo6~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Simple_Formula_for_Marcus_Hush_Chidsey_Kinetics","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610085,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610085/thumbnails/1.jpg","file_name":"1407.pdf","download_url":"https://www.academia.edu/attachments/116610085/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simple_Formula_for_Marcus_Hush_Chidsey_K.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610085/1407-libre.pdf?1720269709=\u0026response-content-disposition=attachment%3B+filename%3DSimple_Formula_for_Marcus_Hush_Chidsey_K.pdf\u0026Expires=1733026672\u0026Signature=U8RXVXQE3m5eZ3Aa9Whau8OUARibaO4ww6HI~vDOUlqpQtmdGQRf8CaOwu9JvQa3BHWZwHGjoiMd1F-BjC4eR2MWLrKYVqHyUuBkR0sFBfFWHzOUEr1Vo1C2vbSlTZqNEYUjZBSRD~V-zJeJoOcZELOkK6~N~C4gdoKwzLjc5t0TgxT83uJyCvMx0Pi1gc~TLge3LDsRfgOKGsEIcwC6N1DIWPhpxKLdqvod7~zwRD8KBDfefL~21qxbM~OFWsC4eaMDfyGjoLeUMBZYxYGEv8HWpHVLgLkI9lo34btS79gYDAh~plhI4c1Y1EYwt2Yoe1eTgFD8Dor1LS00mBo6~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":62806,"name":"Electroanalytical Chemistry","url":"https://www.academia.edu/Documents/in/Electroanalytical_Chemistry"},{"id":83359,"name":"Electron Transfer","url":"https://www.academia.edu/Documents/in/Electron_Transfer"},{"id":118104,"name":"Electron","url":"https://www.academia.edu/Documents/in/Electron"}],"urls":[{"id":43393522,"url":"http://arxiv.org/pdf/1407.5370"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817501"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817501/Droplet_breakup_in_flow_past_an_obstacle_A_capillary_instability_due_to_permeability_variations"><img alt="Research paper thumbnail of Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations" class="work-thumbnail" src="https://attachments.academia-assets.com/116610089/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817501/Droplet_breakup_in_flow_past_an_obstacle_A_capillary_instability_due_to_permeability_variations">Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations</a></div><div class="wp-workCard_item"><span>EPL</span><span>, Dec 1, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8b860b8f060bcbd0ba20a7b389742f0f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610089,&quot;asset_id&quot;:121817501,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610089/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817501"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817501"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817501; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817501]").text(description); $(".js-view-count[data-work-id=121817501]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817501; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817501']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817501, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8b860b8f060bcbd0ba20a7b389742f0f" } } $('.js-work-strip[data-work-id=121817501]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817501,"title":"Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations","translated_title":"","metadata":{"publisher":"EDP Sciences","grobid_abstract":"In multiphase flow in confined geometries an elementary event concerns the interaction of a droplet with an obstacle. As a model of this configuration we study the collision of a droplet with a circular post that spans a significant fraction of the cross section of a microfluidic channel. We demonstrate that there exist conditions for which a drop moves completely around the obstacle without breaking, while for the same geometry but higher speeds the drop breaks. Therefore, we identify a critical value of the capillary number above which a drop will break. We explain the results with a one-dimensional model characterizing the flow in the narrow gaps on either side of the obstacle, which identifies a surface-tension-driven instability associated with a variation in the permeability in the flow direction. The model captures the major features of the experimental observations.","publication_date":{"day":1,"month":12,"year":2010,"errors":{}},"publication_name":"EPL","grobid_abstract_attachment_id":116610089},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817501/Droplet_breakup_in_flow_past_an_obstacle_A_capillary_instability_due_to_permeability_variations","translated_internal_url":"","created_at":"2024-07-06T05:18:32.758-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610089,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610089/thumbnails/1.jpg","file_name":"articleEPL4has.pdf","download_url":"https://www.academia.edu/attachments/116610089/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Droplet_breakup_in_flow_past_an_obstacle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610089/articleEPL4has-libre.pdf?1720269708=\u0026response-content-disposition=attachment%3B+filename%3DDroplet_breakup_in_flow_past_an_obstacle.pdf\u0026Expires=1733026672\u0026Signature=WQpt6-4e7dPUTiDvrAwl7BuiBcEaXxrpCDJOphmuKlSxAjKVsJbmwatyrvkBwmj5HO7-7JGSsxqmZ1ENIK4J-JgTdKD8cURaTPHvy1pSop6JQ-fj7RZ03-Edcexe4BJwVwGBOCVFg08JCwm-bb-~0slo2E~tbym6EIoDabZfH0Br2ZQh2tTJChAWVGq9mf56pME3dN12CAZgVZAgmAxdr-qAOn~8uboF2gNubAql-uD0NIIBVk7zkP8OZwY5hOSYvi6QQI5ATijEK~sl0P21rwUMVhFp-L67dCPJRt1bDsaFO59WbOwZyIL4guYdgfBmb5lQ6g4aryp-pe6QeBUPKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Droplet_breakup_in_flow_past_an_obstacle_A_capillary_instability_due_to_permeability_variations","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610089,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610089/thumbnails/1.jpg","file_name":"articleEPL4has.pdf","download_url":"https://www.academia.edu/attachments/116610089/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Droplet_breakup_in_flow_past_an_obstacle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610089/articleEPL4has-libre.pdf?1720269708=\u0026response-content-disposition=attachment%3B+filename%3DDroplet_breakup_in_flow_past_an_obstacle.pdf\u0026Expires=1733026672\u0026Signature=WQpt6-4e7dPUTiDvrAwl7BuiBcEaXxrpCDJOphmuKlSxAjKVsJbmwatyrvkBwmj5HO7-7JGSsxqmZ1ENIK4J-JgTdKD8cURaTPHvy1pSop6JQ-fj7RZ03-Edcexe4BJwVwGBOCVFg08JCwm-bb-~0slo2E~tbym6EIoDabZfH0Br2ZQh2tTJChAWVGq9mf56pME3dN12CAZgVZAgmAxdr-qAOn~8uboF2gNubAql-uD0NIIBVk7zkP8OZwY5hOSYvi6QQI5ATijEK~sl0P21rwUMVhFp-L67dCPJRt1bDsaFO59WbOwZyIL4guYdgfBmb5lQ6g4aryp-pe6QeBUPKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116610087,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610087/thumbnails/1.jpg","file_name":"articleEPL4has.pdf","download_url":"https://www.academia.edu/attachments/116610087/download_file","bulk_download_file_name":"Droplet_breakup_in_flow_past_an_obstacle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610087/articleEPL4has-libre.pdf?1720269714=\u0026response-content-disposition=attachment%3B+filename%3DDroplet_breakup_in_flow_past_an_obstacle.pdf\u0026Expires=1733026672\u0026Signature=R1uSYLtGrvbj02Q2gCd5JTLAoaP0us4aIHiah9hHsJ24LqR50faowPyIYfEay3z8Nm3bY84~dsXYOeNbLBOcrFAXSOYsMWu7kSnYWY~gbpmCT94xZDonuS3Cfinsqq6aOqORP9K2oG01GsF5IUiSfehmSGN6DAP-IShMBgFWfd1j1vDj~STqWgklkqCbd14VN1AGZmphT~JTtNQpP7rPreubXDVoaaJppLy~sZO0fJZDPZXdwBrfuge7TASTNtl8dEB-9Ek2qB0SyhXA7frfwgVMEy6mT1LID9nJS~Y1qFrohkrs0teRzH61aJtje4uchGm-3N9Hs3hYi381rP84Pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":7114,"name":"Multiphase Flow","url":"https://www.academia.edu/Documents/in/Multiphase_Flow"},{"id":63679,"name":"Instability","url":"https://www.academia.edu/Documents/in/Instability"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":148392,"name":"EPL","url":"https://www.academia.edu/Documents/in/EPL"},{"id":394521,"name":"Surface Tension","url":"https://www.academia.edu/Documents/in/Surface_Tension"},{"id":404000,"name":"Cross Section","url":"https://www.academia.edu/Documents/in/Cross_Section"},{"id":758185,"name":"Capillary Number","url":"https://www.academia.edu/Documents/in/Capillary_Number"},{"id":895034,"name":"Obstacle","url":"https://www.academia.edu/Documents/in/Obstacle"},{"id":3735670,"name":"Critical value","url":"https://www.academia.edu/Documents/in/Critical_value"}],"urls":[{"id":43393521,"url":"https://dspace.mit.edu/bitstream/1721.1/69152/1/articleEPL4has.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817500"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817500/Origin_and_hysteresis_of_lithium_compositional_spatiodynamics_within_battery_primary_particles"><img alt="Research paper thumbnail of Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles" class="work-thumbnail" src="https://attachments.academia-assets.com/116610084/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817500/Origin_and_hysteresis_of_lithium_compositional_spatiodynamics_within_battery_primary_particles">Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles</a></div><div class="wp-workCard_item"><span>Science</span><span>, Aug 5, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1a3f0a7734655566bda9bc2e7dfb812f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610084,&quot;asset_id&quot;:121817500,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610084/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817500"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817500"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817500; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817500]").text(description); $(".js-view-count[data-work-id=121817500]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817500; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817500']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817500, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1a3f0a7734655566bda9bc2e7dfb812f" } } $('.js-work-strip[data-work-id=121817500]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817500,"title":"Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles","translated_title":"","metadata":{"publisher":"American Association for the Advancement of Science","grobid_abstract":"The kinetics and uniformity of ion insertion reactions at the solid-liquid interface govern the rate capability and lifetime, respectively, of electrochemical devices such as Li-ion batteries. Using an operando x-ray microscopy platform that maps the dynamics of the Li composition and insertion rate in Li x FePO 4 , we found that nanoscale spatial variations in rate and in composition control the lithiation pathway at the subparticle length scale. Specifically, spatial variations in the insertion rate constant lead to the formation of nonuniform domains, and the composition dependence of the rate constant amplifies nonuniformities during delithiation but suppresses them during lithiation, and moreover stabilizes the solid solution during lithiation. This coupling of lithium composition and surface reaction rates controls the kinetics and uniformity during electrochemical ion insertion.","publication_date":{"day":5,"month":8,"year":2016,"errors":{}},"publication_name":"Science","grobid_abstract_attachment_id":116610084},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817500/Origin_and_hysteresis_of_lithium_compositional_spatiodynamics_within_battery_primary_particles","translated_internal_url":"","created_at":"2024-07-06T05:18:32.576-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610084,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610084/thumbnails/1.jpg","file_name":"566.full.pdf","download_url":"https://www.academia.edu/attachments/116610084/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Origin_and_hysteresis_of_lithium_composi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610084/566.full-libre.pdf?1720269714=\u0026response-content-disposition=attachment%3B+filename%3DOrigin_and_hysteresis_of_lithium_composi.pdf\u0026Expires=1733026672\u0026Signature=VSvMDxH51uWtTsloIFmLhJjzEgBZFO7ObZXnKiLCN-pehzuvNr~0KSVQ5bL0Yxc0j5TpVTHe2nNrbq2MIlbHNkBKsTmjHJFDSpWjuhDBgW4sIPBd5PZ28ptbJa296gOA1CvDPV4X4D3LxNd2YKPZPKoYBH3gyoUOLJG9fXbeu~~fgEMarFvxzfGPl~2EdJiNml7aL0Q94xbcVyvn7w5rzooNql-o3QSd3qQaIoRVp8fVHW0JUTnwGX64ERAFcP4W1NCEA8c-RQaDgnnMDVxt~ax-8h9yqN2wRPVX6~zL-D1MBZT5ED0bGQDWmbJ8g0XeebY17aHYcMQK1y6kTPGefQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Origin_and_hysteresis_of_lithium_compositional_spatiodynamics_within_battery_primary_particles","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610084,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610084/thumbnails/1.jpg","file_name":"566.full.pdf","download_url":"https://www.academia.edu/attachments/116610084/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Origin_and_hysteresis_of_lithium_composi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610084/566.full-libre.pdf?1720269714=\u0026response-content-disposition=attachment%3B+filename%3DOrigin_and_hysteresis_of_lithium_composi.pdf\u0026Expires=1733026672\u0026Signature=VSvMDxH51uWtTsloIFmLhJjzEgBZFO7ObZXnKiLCN-pehzuvNr~0KSVQ5bL0Yxc0j5TpVTHe2nNrbq2MIlbHNkBKsTmjHJFDSpWjuhDBgW4sIPBd5PZ28ptbJa296gOA1CvDPV4X4D3LxNd2YKPZPKoYBH3gyoUOLJG9fXbeu~~fgEMarFvxzfGPl~2EdJiNml7aL0Q94xbcVyvn7w5rzooNql-o3QSd3qQaIoRVp8fVHW0JUTnwGX64ERAFcP4W1NCEA8c-RQaDgnnMDVxt~ax-8h9yqN2wRPVX6~zL-D1MBZT5ED0bGQDWmbJ8g0XeebY17aHYcMQK1y6kTPGefQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":6779,"name":"Science","url":"https://www.academia.edu/Documents/in/Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":43005,"name":"Hysteresis","url":"https://www.academia.edu/Documents/in/Hysteresis"},{"id":145369,"name":"Cycling","url":"https://www.academia.edu/Documents/in/Cycling"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"}],"urls":[{"id":43393520,"url":"https://science.sciencemag.org/content/sci/353/6299/566.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817499"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817499/Boundary_Layer_Analysis_of_Membraneless_Electrochemical_Cells"><img alt="Research paper thumbnail of Boundary Layer Analysis of Membraneless Electrochemical Cells" class="work-thumbnail" src="https://attachments.academia-assets.com/116610083/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817499/Boundary_Layer_Analysis_of_Membraneless_Electrochemical_Cells">Boundary Layer Analysis of Membraneless Electrochemical Cells</a></div><div class="wp-workCard_item"><span>Journal of The Electrochemical Society</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bb69d5d8ffb418d90388ba0d1bbd37ac" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610083,&quot;asset_id&quot;:121817499,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610083/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817499"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817499"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817499; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817499]").text(description); $(".js-view-count[data-work-id=121817499]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817499; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817499']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817499, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bb69d5d8ffb418d90388ba0d1bbd37ac" } } $('.js-work-strip[data-work-id=121817499]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817499,"title":"Boundary Layer Analysis of Membraneless Electrochemical Cells","translated_title":"","metadata":{"publisher":"Electrochemical Society","grobid_abstract":"A mathematical theory is presented for the charging and discharging behavior of membraneless electrochemical cells that rely on slow diffusion in laminar flow to separate the half reactions. Ion transport is described by the Nernst-Planck equations for a flowing quasi-neutral electrolyte with heterogeneous Butler-Volmer kinetics. Analytical approximations for the current-voltage relation and the concentration and potential profiles are derived by boundary layer analysis (in the relevant limit of large Peclet numbers) and validated against finite-element numerical solutions. Both Poiseuille and plug flows are considered to describe channels of various geometries, with and without porous flow channels. The tradeoff between power density and reactant crossover and utilization is predicted analytically. The theory is applied to the membrane-less Hydrogen Bromine Laminar Flow Battery and found to accurately predict the experimental and simulated current-voltage data for different flow rates and reactant concentrations, during both charging and discharging. This establishes the utility of the theory to understand and optimize the performance of membrane-less electrochemical flow cells, which could also be extended to other fluidic architectures.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Journal of The Electrochemical Society","grobid_abstract_attachment_id":116610083},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817499/Boundary_Layer_Analysis_of_Membraneless_Electrochemical_Cells","translated_internal_url":"","created_at":"2024-07-06T05:18:32.375-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610083,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610083/thumbnails/1.jpg","file_name":"Bazant_Boundary_20layer.pdf","download_url":"https://www.academia.edu/attachments/116610083/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Boundary_Layer_Analysis_of_Membraneless.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610083/Bazant_Boundary_20layer-libre.pdf?1720269720=\u0026response-content-disposition=attachment%3B+filename%3DBoundary_Layer_Analysis_of_Membraneless.pdf\u0026Expires=1733026672\u0026Signature=CC1VGNFrSjZCW3Ypt2UHVzCvY3fcybrgz~1sm1UMoMJSUGPiR7lwbGV3FzVs7m0VcZxYff1lp1r2~8ZKj0HcMmax6Gn87JV0C3zogU~RN9ig1UyLPfW7WsXmrQdPj71f5~wFB5f~VfFENUCAeUOdmnaxQzMVx1klrYplZ1cM7HPKv6MddFAfyIJxB3sowXnt1obXzt29aqIvYBOszSCgyIQljSCdhShe0wFvgl~yhLoo7WNR1KwxAh8Rng408PCApBmpzLUyuz7y8vCE~8Ryu9VZqS3NBuq5EZgAanXVxYsYmuuGI-JDtCyTY7bm3gcTNEDWVzWzAIL7ZOc98r-TSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Boundary_Layer_Analysis_of_Membraneless_Electrochemical_Cells","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610083,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610083/thumbnails/1.jpg","file_name":"Bazant_Boundary_20layer.pdf","download_url":"https://www.academia.edu/attachments/116610083/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Boundary_Layer_Analysis_of_Membraneless.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610083/Bazant_Boundary_20layer-libre.pdf?1720269720=\u0026response-content-disposition=attachment%3B+filename%3DBoundary_Layer_Analysis_of_Membraneless.pdf\u0026Expires=1733026672\u0026Signature=CC1VGNFrSjZCW3Ypt2UHVzCvY3fcybrgz~1sm1UMoMJSUGPiR7lwbGV3FzVs7m0VcZxYff1lp1r2~8ZKj0HcMmax6Gn87JV0C3zogU~RN9ig1UyLPfW7WsXmrQdPj71f5~wFB5f~VfFENUCAeUOdmnaxQzMVx1klrYplZ1cM7HPKv6MddFAfyIJxB3sowXnt1obXzt29aqIvYBOszSCgyIQljSCdhShe0wFvgl~yhLoo7WNR1KwxAh8Rng408PCApBmpzLUyuz7y8vCE~8Ryu9VZqS3NBuq5EZgAanXVxYsYmuuGI-JDtCyTY7bm3gcTNEDWVzWzAIL7ZOc98r-TSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":685326,"name":"Boundary Layer","url":"https://www.academia.edu/Documents/in/Boundary_Layer"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"}],"urls":[{"id":43393519,"url":"https://dspace.mit.edu/bitstream/1721.1/91489/1/Bazant_Boundary%20layer.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817498"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817498/Induced_Charge_Electrophoresis_of_Metallodielectric_Particles"><img alt="Research paper thumbnail of Induced-Charge Electrophoresis of Metallodielectric Particles" class="work-thumbnail" src="https://attachments.academia-assets.com/116610082/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817498/Induced_Charge_Electrophoresis_of_Metallodielectric_Particles">Induced-Charge Electrophoresis of Metallodielectric Particles</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, Feb 4, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d4f65a6c1a5892c785ded522d8d089a9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610082,&quot;asset_id&quot;:121817498,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610082/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817498"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817498"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817498; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817498]").text(description); $(".js-view-count[data-work-id=121817498]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817498; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817498']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817498, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d4f65a6c1a5892c785ded522d8d089a9" } } $('.js-work-strip[data-work-id=121817498]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817498,"title":"Induced-Charge Electrophoresis of Metallodielectric Particles","translated_title":"","metadata":{"publisher":"American Physical Society","grobid_abstract":"The application of AC electric fields in aqueous suspensions of anisotropic particles leads to unbalanced liquid flows and nonlinear, induced-charge electrophoretic (ICEP) motion. We report experimental observations of the motion of \"Janus\" microparticles with one dielectric and one metal-coated hemisphere induced by uniform fields of frequency 100 Hz-10 kHz in NaCl solutions. The motion is perpendicular to the field axis and persists after particles are attracted to a glass wall. This phenomenon may find applications in microactuators, microsensors, and microfluidic devices.","publication_date":{"day":4,"month":2,"year":2008,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":116610082},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817498/Induced_Charge_Electrophoresis_of_Metallodielectric_Particles","translated_internal_url":"","created_at":"2024-07-06T05:18:32.192-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610082,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610082/thumbnails/1.jpg","file_name":"0708.pdf","download_url":"https://www.academia.edu/attachments/116610082/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Induced_Charge_Electrophoresis_of_Metall.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610082/0708-libre.pdf?1720269707=\u0026response-content-disposition=attachment%3B+filename%3DInduced_Charge_Electrophoresis_of_Metall.pdf\u0026Expires=1733026672\u0026Signature=JsfwCLHfzPZfSHyReqDTiaUtFSb3o4GFqIqO65tVi7i96Wy-Mud3D516uf~AGJQn1bP2puyJ7zTZBqy4NiyWdFnygy~C2DTJTH-RtU0du7cmina1vKF27rdnS66MbDFt30OHHldcnDYqvqCrmXXofx~ooadbYz0YXsYl4wa8SWPB7LhLTew9X29xVWTKP0r~Tx9BXPeNdU-Kb5a6P9pywBwx0ZE~VKD-RmzvCFpO2oi4MpE~AbcmyZWivkIJTHCYucKe09jGaETrVkrKJ877GFac0wUFHf3f5ZDBPT2jia3fri6Eak2-VNj3SfYKYK5NZMzXncX1Y6~R5-ICqQRKHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Induced_Charge_Electrophoresis_of_Metallodielectric_Particles","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610082,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610082/thumbnails/1.jpg","file_name":"0708.pdf","download_url":"https://www.academia.edu/attachments/116610082/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Induced_Charge_Electrophoresis_of_Metall.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610082/0708-libre.pdf?1720269707=\u0026response-content-disposition=attachment%3B+filename%3DInduced_Charge_Electrophoresis_of_Metall.pdf\u0026Expires=1733026672\u0026Signature=JsfwCLHfzPZfSHyReqDTiaUtFSb3o4GFqIqO65tVi7i96Wy-Mud3D516uf~AGJQn1bP2puyJ7zTZBqy4NiyWdFnygy~C2DTJTH-RtU0du7cmina1vKF27rdnS66MbDFt30OHHldcnDYqvqCrmXXofx~ooadbYz0YXsYl4wa8SWPB7LhLTew9X29xVWTKP0r~Tx9BXPeNdU-Kb5a6P9pywBwx0ZE~VKD-RmzvCFpO2oi4MpE~AbcmyZWivkIJTHCYucKe09jGaETrVkrKJ877GFac0wUFHf3f5ZDBPT2jia3fri6Eak2-VNj3SfYKYK5NZMzXncX1Y6~R5-ICqQRKHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":102207,"name":"DIELECTRIC","url":"https://www.academia.edu/Documents/in/DIELECTRIC"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":247872,"name":"Janus Particles","url":"https://www.academia.edu/Documents/in/Janus_Particles"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":4094150,"name":"perpendicular","url":"https://www.academia.edu/Documents/in/perpendicular"}],"urls":[{"id":43393518,"url":"http://arxiv.org/pdf/0708.2417"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817497"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817497/_Invited_Digital_Presentation_Driven_Nucleation_and_Growth_in_Lithium_Batteries"><img alt="Research paper thumbnail of (Invited, Digital Presentation) Driven Nucleation and Growth in Lithium Batteries" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817497/_Invited_Digital_Presentation_Driven_Nucleation_and_Growth_in_Lithium_Batteries">(Invited, Digital Presentation) Driven Nucleation and Growth in Lithium Batteries</a></div><div class="wp-workCard_item"><span>Meeting abstracts</span><span>, Jul 7, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This talk will describe the physics of driven nucleation and growth in battery materials. The res...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This talk will describe the physics of driven nucleation and growth in battery materials. The resulting nonequilibrium pattern formation may be either reaction-limited or transport limited. Examples of the former include driven phase separation in Li-ion batteries, electrodeposition in Li-air batteries, and Li plating in Li-ion batteries, controlled by electro-autocatalysis and competing electrochemical reactions. Examples of the latter include stable electrodeposition in Li-metal batteries with charged porous separators, controlled by deionization shock waves.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817497"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817497"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817497; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817497]").text(description); $(".js-view-count[data-work-id=121817497]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817497; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817497']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817497, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121817497]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817497,"title":"(Invited, Digital Presentation) Driven Nucleation and Growth in Lithium Batteries","translated_title":"","metadata":{"abstract":"This talk will describe the physics of driven nucleation and growth in battery materials. The resulting nonequilibrium pattern formation may be either reaction-limited or transport limited. Examples of the former include driven phase separation in Li-ion batteries, electrodeposition in Li-air batteries, and Li plating in Li-ion batteries, controlled by electro-autocatalysis and competing electrochemical reactions. Examples of the latter include stable electrodeposition in Li-metal batteries with charged porous separators, controlled by deionization shock waves.","publisher":"Electrochemical Society","publication_date":{"day":7,"month":7,"year":2022,"errors":{}},"publication_name":"Meeting abstracts"},"translated_abstract":"This talk will describe the physics of driven nucleation and growth in battery materials. The resulting nonequilibrium pattern formation may be either reaction-limited or transport limited. Examples of the former include driven phase separation in Li-ion batteries, electrodeposition in Li-air batteries, and Li plating in Li-ion batteries, controlled by electro-autocatalysis and competing electrochemical reactions. Examples of the latter include stable electrodeposition in Li-metal batteries with charged porous separators, controlled by deionization shock waves.","internal_url":"https://www.academia.edu/121817497/_Invited_Digital_Presentation_Driven_Nucleation_and_Growth_in_Lithium_Batteries","translated_internal_url":"","created_at":"2024-07-06T05:18:32.007-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"_Invited_Digital_Presentation_Driven_Nucleation_and_Growth_in_Lithium_Batteries","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":756424,"name":"Autocatalysis","url":"https://www.academia.edu/Documents/in/Autocatalysis"},{"id":3604167,"name":"Meeting Abstracts","url":"https://www.academia.edu/Documents/in/Meeting_Abstracts"}],"urls":[{"id":43393517,"url":"https://doi.org/10.1149/ma2022-01231136mtgabs"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817496"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817496/Understanding_the_Interplay_between_Li_Intercalation_and_Li_Plating_Using_Single_Graphite_Particle_Electrochemistry"><img alt="Research paper thumbnail of Understanding the Interplay between Li Intercalation and Li Plating Using Single Graphite Particle Electrochemistry" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817496/Understanding_the_Interplay_between_Li_Intercalation_and_Li_Plating_Using_Single_Graphite_Particle_Electrochemistry">Understanding the Interplay between Li Intercalation and Li Plating Using Single Graphite Particle Electrochemistry</a></div><div class="wp-workCard_item"><span>Meeting abstracts</span><span>, May 1, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Potential safety hazard of lithium ion batteries, their long recharging time and performance degr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Potential safety hazard of lithium ion batteries, their long recharging time and performance degradation during usage are the major obstacles that prevent the wide adoption of electric vehicles in our society. Lithium plating on graphite anode is considered the leading cause of thermal runaway, degradation and the barrier for fast charging. However, the onset of lithium plating on graphite anodes is not well understood. For the first time, we resolved the spatial dynamics of lithiation of a single graphite particle using in-situ optical microscopy, and shed light on the interplay between lithium intercalation and plating. Enabled by simultaneously monitoring of the voltage, phase transformation and lithium plating, we are able to elucidate the energetics and kinetics of the two competing reactions, and establish a comprehensive mechanistic picture of Li plating mechanism on graphite anode. The proposed mechanism was further validated by simulation using a 1-D phase field model. This work is therefore providing insights on guidelines of designing graphite anode and operating LiB for reducing the risk of lithium plating.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817496"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817496"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817496; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817496]").text(description); $(".js-view-count[data-work-id=121817496]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817496; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817496']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817496, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121817496]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817496,"title":"Understanding the Interplay between Li Intercalation and Li Plating Using Single Graphite Particle Electrochemistry","translated_title":"","metadata":{"abstract":"Potential safety hazard of lithium ion batteries, their long recharging time and performance degradation during usage are the major obstacles that prevent the wide adoption of electric vehicles in our society. Lithium plating on graphite anode is considered the leading cause of thermal runaway, degradation and the barrier for fast charging. However, the onset of lithium plating on graphite anodes is not well understood. For the first time, we resolved the spatial dynamics of lithiation of a single graphite particle using in-situ optical microscopy, and shed light on the interplay between lithium intercalation and plating. Enabled by simultaneously monitoring of the voltage, phase transformation and lithium plating, we are able to elucidate the energetics and kinetics of the two competing reactions, and establish a comprehensive mechanistic picture of Li plating mechanism on graphite anode. The proposed mechanism was further validated by simulation using a 1-D phase field model. This work is therefore providing insights on guidelines of designing graphite anode and operating LiB for reducing the risk of lithium plating.","publisher":"Electrochemical Society","publication_date":{"day":1,"month":5,"year":2020,"errors":{}},"publication_name":"Meeting abstracts"},"translated_abstract":"Potential safety hazard of lithium ion batteries, their long recharging time and performance degradation during usage are the major obstacles that prevent the wide adoption of electric vehicles in our society. Lithium plating on graphite anode is considered the leading cause of thermal runaway, degradation and the barrier for fast charging. However, the onset of lithium plating on graphite anodes is not well understood. For the first time, we resolved the spatial dynamics of lithiation of a single graphite particle using in-situ optical microscopy, and shed light on the interplay between lithium intercalation and plating. Enabled by simultaneously monitoring of the voltage, phase transformation and lithium plating, we are able to elucidate the energetics and kinetics of the two competing reactions, and establish a comprehensive mechanistic picture of Li plating mechanism on graphite anode. The proposed mechanism was further validated by simulation using a 1-D phase field model. This work is therefore providing insights on guidelines of designing graphite anode and operating LiB for reducing the risk of lithium plating.","internal_url":"https://www.academia.edu/121817496/Understanding_the_Interplay_between_Li_Intercalation_and_Li_Plating_Using_Single_Graphite_Particle_Electrochemistry","translated_internal_url":"","created_at":"2024-07-06T05:18:31.732-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Understanding_the_Interplay_between_Li_Intercalation_and_Li_Plating_Using_Single_Graphite_Particle_Electrochemistry","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":72820,"name":"Graphite","url":"https://www.academia.edu/Documents/in/Graphite"},{"id":147028,"name":"Intercalation Chemistry","url":"https://www.academia.edu/Documents/in/Intercalation_Chemistry"},{"id":3604167,"name":"Meeting Abstracts","url":"https://www.academia.edu/Documents/in/Meeting_Abstracts"}],"urls":[{"id":43393516,"url":"https://doi.org/10.1149/ma2020-012447mtgabs"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817495"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817495/Fast_ac_electro_osmotic_micropumps_with_nonplanar_electrodes"><img alt="Research paper thumbnail of Fast ac electro-osmotic micropumps with nonplanar electrodes" class="work-thumbnail" src="https://attachments.academia-assets.com/116610100/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817495/Fast_ac_electro_osmotic_micropumps_with_nonplanar_electrodes">Fast ac electro-osmotic micropumps with nonplanar electrodes</a></div><div class="wp-workCard_item"><span>Applied Physics Letters</span><span>, Oct 2, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b2067a41ae072b000ee8261995f52785" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610100,&quot;asset_id&quot;:121817495,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610100/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817495"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817495"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817495; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817495]").text(description); $(".js-view-count[data-work-id=121817495]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817495; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817495']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817495, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b2067a41ae072b000ee8261995f52785" } } $('.js-work-strip[data-work-id=121817495]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817495,"title":"Fast ac electro-osmotic micropumps with nonplanar electrodes","translated_title":"","metadata":{"publisher":"American Institute of Physics","ai_title_tag":"3D Electro-Osmotic Micropumps: Enhanced Flow Rates and Efficiency","grobid_abstract":"This letter demonstrates dramatic improvements in flow rate and frequency range over conventional planar AC electro-osmotic (ACEO) pumps by exploiting three-dimensional (3D) stepped electrodes. A 3D ACEO pump was fabricated by electroplating steps on a symmetric electrode array and tested against a state-of-the-art asymmetric planar ACEO pump in a microfluidic loop. For all frequencies (0.1-100 kHz), the 3D pump had a faster flow rate, in some cases by an order of magnitude. Our experimental results suggest that, after some optimization, mm/sec velocities will be attainable with alternating battery voltages, which presents an exciting opportunity for microfluidics. Manuscript Microfluidics is a growing area of science and technology with important applications in biomedical devices and portable electronics. Traditional pressure-driven flows do not scale well with miniaturization, due to large viscous stresses, so other pumping techniques have been explored 1. An attractive alternative is electro-osmosis, the effective slip of a liquid electrolyte past a solid surface in","publication_date":{"day":2,"month":10,"year":2006,"errors":{}},"publication_name":"Applied Physics Letters","grobid_abstract_attachment_id":116610100},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817495/Fast_ac_electro_osmotic_micropumps_with_nonplanar_electrodes","translated_internal_url":"","created_at":"2024-07-06T05:18:31.499-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610100,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610100/thumbnails/1.jpg","file_name":"a08319f361f045bb3e279280c331c51774b2.pdf","download_url":"https://www.academia.edu/attachments/116610100/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fast_ac_electro_osmotic_micropumps_with.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610100/a08319f361f045bb3e279280c331c51774b2-libre.pdf?1720269697=\u0026response-content-disposition=attachment%3B+filename%3DFast_ac_electro_osmotic_micropumps_with.pdf\u0026Expires=1733026672\u0026Signature=VzBUYUDse6xLQNYQpTQ6g2MTCLyUR2V1Y0PJ0jdWlGFhiINrRs-LLCr7pHNvfwfYX5wBo1o~u08BJ7XZFYnuf~pAiZYzxr-0mVy4eEUyLgMzmUzzlgA5so3gx-GEHvRSvr6wVYcQLNdMmk29~d654QbO8Qkv0hv-qKQ8lfsDX5RUKWKzuutNQuzpkZF4bsJtdys8uFXA-j0g0y7xuKCexwNH7XHtuFtIcEGbMflrfVqJ1Wf01O5uGaZfJt1WEzUOI79hjBY-rkEEMRYNyrKoCHgjKPeuSfFAPNrUm-F73kRZ-22IPvP0lK4xWK2NmrmmIl7kvx3DerWDqtXx0loQug__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fast_ac_electro_osmotic_micropumps_with_nonplanar_electrodes","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610100,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610100/thumbnails/1.jpg","file_name":"a08319f361f045bb3e279280c331c51774b2.pdf","download_url":"https://www.academia.edu/attachments/116610100/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fast_ac_electro_osmotic_micropumps_with.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610100/a08319f361f045bb3e279280c331c51774b2-libre.pdf?1720269697=\u0026response-content-disposition=attachment%3B+filename%3DFast_ac_electro_osmotic_micropumps_with.pdf\u0026Expires=1733026672\u0026Signature=VzBUYUDse6xLQNYQpTQ6g2MTCLyUR2V1Y0PJ0jdWlGFhiINrRs-LLCr7pHNvfwfYX5wBo1o~u08BJ7XZFYnuf~pAiZYzxr-0mVy4eEUyLgMzmUzzlgA5so3gx-GEHvRSvr6wVYcQLNdMmk29~d654QbO8Qkv0hv-qKQ8lfsDX5RUKWKzuutNQuzpkZF4bsJtdys8uFXA-j0g0y7xuKCexwNH7XHtuFtIcEGbMflrfVqJ1Wf01O5uGaZfJt1WEzUOI79hjBY-rkEEMRYNyrKoCHgjKPeuSfFAPNrUm-F73kRZ-22IPvP0lK4xWK2NmrmmIl7kvx3DerWDqtXx0loQug__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":898062,"name":"Flow Rate","url":"https://www.academia.edu/Documents/in/Flow_Rate"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"}],"urls":[{"id":43393515,"url":"https://doi.org/10.1063/1.2358823"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817494"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817494/Electrochemical_Kinetics_of_Graphite_Degradation_in_Lithium_Ion_Batteries"><img alt="Research paper thumbnail of Electrochemical Kinetics of Graphite Degradation in Lithium-Ion Batteries" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817494/Electrochemical_Kinetics_of_Graphite_Degradation_in_Lithium_Ion_Batteries">Electrochemical Kinetics of Graphite Degradation in Lithium-Ion Batteries</a></div><div class="wp-workCard_item"><span>Meeting abstracts</span><span>, Nov 23, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Desp...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Despite its importance, the fundamental mechanisms remain unclear, primarily because of the complicated reaction pathways involved [1–3]. SEI growth can be both electrochemical and chemical in nature [4,5], and thus, it is a strong function of the potential and degree of lithiation of the electrode. We model the early-stage and long-term growth of SEI by accurately capturing the potential dependence of its formation kinetics as well as long term rate limiting steps. Battery degradation involves a complex interplay of multiple phenomena, most of which are unknown. Our model captures some of the essential trends that we see while cycling hundreds of commercial cells [6]. This is done using the Multiphase Porous Electrode Theory (MPET) framework [7] on graphite (phase separating) and carbon black (non phase separating) particles. Lithium plating is another key degradation phenomenon that has been elusive, and it becomes important while trying to fast-charge batteries, i.e., 0% - 80% state-of-charge in 30 mins. We show that lithium plating is a key function of electrode morphology, phase-separation dynamics and potential. Phase-separation in graphite is modeled in the electrode using the Cahn-Hilliard Reaction framework described by Bazant [8]. We understand the electrochemistry of the onset of lithium plating with in-situ measurements connected to real time cell potential in a phase-separating electrode [9]. Results indicate that the peak SEI-forming currents are higher for higher driving currents and that SEI only grows during electrode lithiation, i.e. the battery only degrades while being charged. Additionally we capture a transition in the time-dependence of capacity fade from a steep initial drop to a more gradual ‘square-root-of-time’ trend by modeling the SEI as a bilayer with different rate-limiting steps for each type of SEI. We also find that onset of lithium plating is correctly captured only when phase separation in active material is accounted for. Further, the onset of plating is delayed on electrodes with a thick SEI layer – understanding SEI/plating coupling is integral to predicting fast charging manufacturing protocols for LIBs. This work holds promise for the predictive design of procedures [10] for manufacture and formation of LIBs. [1] Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104, 12282–12291. <a href="https://doi.org/10.1021/jp002526b" rel="nofollow">https://doi.org/10.1021/jp002526b</a>. [2] Horstmann, B.; Single, F.; Latz, A. Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation, Current Opinion in Electrochemistry 13, 62-69 2019. [3] Nie, M.; Abraham, D. P.; Seo, D. M.; Chen, Y.; Bose, A.; Lucht, B. L. Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. J. Phys. Chem. C 2013, 117 (48), 25381–25389, <a href="https://doi.org/10.1021/jp409765w" rel="nofollow">https://doi.org/10.1021/jp409765w</a>. [4] Das, S.; Attia, P. M.; Chueh, W. C.; Bazant, M. Z. Electrochemical Kinetics of SEI Growth on Carbon Black: Part II. Modeling. J. Electrochem. Soc. 2019, 166 (4), E107– E118. <a href="https://doi.org/10.1149/2.0241904jes" rel="nofollow">https://doi.org/10.1149/2.0241904jes</a>. [5] Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166 (4), E97–E106. <a href="https://doi.org/10.1149/2.0231904jes" rel="nofollow">https://doi.org/10.1149/2.0231904jes</a>. [6] Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., ... &amp;amp;amp; Bazant, M. Z. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 4(5), 383-391. [7] Smith, R. B.; Bazant, M. Z. Multiphase Porous Electrode Theory, J. Electrochem. Soc. 2017, 164 (11). <a href="https://doi.org/10.1149/2.0171711jes" rel="nofollow">https://doi.org/10.1149/2.0171711jes</a>. [8] Bazant, M. Z., Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Accounts of Chemical Research, 46(5), 1144–1160. <a href="https://doi.org/10.1021/ar300145c" rel="nofollow">https://doi.org/10.1021/ar300145c</a> [9] T. Gao, Y. Han, S. Das, T. Zhou, D. Fraggedakis, N. Nadkarni, C. N. Yeh, W. Chueh, J. Li, M.Z. Bazant, Interplay of lithium intercalation and plating on graphite using in-situ optical measurements, submitted. [10] Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; McCloskey, B. D.; Chueh, W. C. and Cui, Y.; Nano Letters 2019 19 (8), 5140-5148. DOI: 10.1021/acs.nanolett.9b01515</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817494"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817494"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817494; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817494]").text(description); $(".js-view-count[data-work-id=121817494]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817494; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817494']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817494, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121817494]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817494,"title":"Electrochemical Kinetics of Graphite Degradation in Lithium-Ion Batteries","translated_title":"","metadata":{"abstract":"Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Despite its importance, the fundamental mechanisms remain unclear, primarily because of the complicated reaction pathways involved [1–3]. SEI growth can be both electrochemical and chemical in nature [4,5], and thus, it is a strong function of the potential and degree of lithiation of the electrode. We model the early-stage and long-term growth of SEI by accurately capturing the potential dependence of its formation kinetics as well as long term rate limiting steps. Battery degradation involves a complex interplay of multiple phenomena, most of which are unknown. Our model captures some of the essential trends that we see while cycling hundreds of commercial cells [6]. This is done using the Multiphase Porous Electrode Theory (MPET) framework [7] on graphite (phase separating) and carbon black (non phase separating) particles. Lithium plating is another key degradation phenomenon that has been elusive, and it becomes important while trying to fast-charge batteries, i.e., 0% - 80% state-of-charge in 30 mins. We show that lithium plating is a key function of electrode morphology, phase-separation dynamics and potential. Phase-separation in graphite is modeled in the electrode using the Cahn-Hilliard Reaction framework described by Bazant [8]. We understand the electrochemistry of the onset of lithium plating with in-situ measurements connected to real time cell potential in a phase-separating electrode [9]. Results indicate that the peak SEI-forming currents are higher for higher driving currents and that SEI only grows during electrode lithiation, i.e. the battery only degrades while being charged. Additionally we capture a transition in the time-dependence of capacity fade from a steep initial drop to a more gradual ‘square-root-of-time’ trend by modeling the SEI as a bilayer with different rate-limiting steps for each type of SEI. We also find that onset of lithium plating is correctly captured only when phase separation in active material is accounted for. Further, the onset of plating is delayed on electrodes with a thick SEI layer – understanding SEI/plating coupling is integral to predicting fast charging manufacturing protocols for LIBs. This work holds promise for the predictive design of procedures [10] for manufacture and formation of LIBs. [1] Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104, 12282–12291. https://doi.org/10.1021/jp002526b. [2] Horstmann, B.; Single, F.; Latz, A. Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation, Current Opinion in Electrochemistry 13, 62-69 2019. [3] Nie, M.; Abraham, D. P.; Seo, D. M.; Chen, Y.; Bose, A.; Lucht, B. L. Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. J. Phys. Chem. C 2013, 117 (48), 25381–25389, https://doi.org/10.1021/jp409765w. [4] Das, S.; Attia, P. M.; Chueh, W. C.; Bazant, M. Z. Electrochemical Kinetics of SEI Growth on Carbon Black: Part II. Modeling. J. Electrochem. Soc. 2019, 166 (4), E107– E118. https://doi.org/10.1149/2.0241904jes. [5] Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166 (4), E97–E106. https://doi.org/10.1149/2.0231904jes. [6] Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., ... \u0026amp;amp; Bazant, M. Z. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 4(5), 383-391. [7] Smith, R. B.; Bazant, M. Z. Multiphase Porous Electrode Theory, J. Electrochem. Soc. 2017, 164 (11). https://doi.org/10.1149/2.0171711jes. [8] Bazant, M. Z., Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Accounts of Chemical Research, 46(5), 1144–1160. https://doi.org/10.1021/ar300145c [9] T. Gao, Y. Han, S. Das, T. Zhou, D. Fraggedakis, N. Nadkarni, C. N. Yeh, W. Chueh, J. Li, M.Z. Bazant, Interplay of lithium intercalation and plating on graphite using in-situ optical measurements, submitted. [10] Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; McCloskey, B. D.; Chueh, W. C. and Cui, Y.; Nano Letters 2019 19 (8), 5140-5148. DOI: 10.1021/acs.nanolett.9b01515","publisher":"Electrochemical Society","publication_date":{"day":23,"month":11,"year":2020,"errors":{}},"publication_name":"Meeting abstracts"},"translated_abstract":"Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Despite its importance, the fundamental mechanisms remain unclear, primarily because of the complicated reaction pathways involved [1–3]. SEI growth can be both electrochemical and chemical in nature [4,5], and thus, it is a strong function of the potential and degree of lithiation of the electrode. We model the early-stage and long-term growth of SEI by accurately capturing the potential dependence of its formation kinetics as well as long term rate limiting steps. Battery degradation involves a complex interplay of multiple phenomena, most of which are unknown. Our model captures some of the essential trends that we see while cycling hundreds of commercial cells [6]. This is done using the Multiphase Porous Electrode Theory (MPET) framework [7] on graphite (phase separating) and carbon black (non phase separating) particles. Lithium plating is another key degradation phenomenon that has been elusive, and it becomes important while trying to fast-charge batteries, i.e., 0% - 80% state-of-charge in 30 mins. We show that lithium plating is a key function of electrode morphology, phase-separation dynamics and potential. Phase-separation in graphite is modeled in the electrode using the Cahn-Hilliard Reaction framework described by Bazant [8]. We understand the electrochemistry of the onset of lithium plating with in-situ measurements connected to real time cell potential in a phase-separating electrode [9]. Results indicate that the peak SEI-forming currents are higher for higher driving currents and that SEI only grows during electrode lithiation, i.e. the battery only degrades while being charged. Additionally we capture a transition in the time-dependence of capacity fade from a steep initial drop to a more gradual ‘square-root-of-time’ trend by modeling the SEI as a bilayer with different rate-limiting steps for each type of SEI. We also find that onset of lithium plating is correctly captured only when phase separation in active material is accounted for. Further, the onset of plating is delayed on electrodes with a thick SEI layer – understanding SEI/plating coupling is integral to predicting fast charging manufacturing protocols for LIBs. This work holds promise for the predictive design of procedures [10] for manufacture and formation of LIBs. [1] Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104, 12282–12291. https://doi.org/10.1021/jp002526b. [2] Horstmann, B.; Single, F.; Latz, A. Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation, Current Opinion in Electrochemistry 13, 62-69 2019. [3] Nie, M.; Abraham, D. P.; Seo, D. M.; Chen, Y.; Bose, A.; Lucht, B. L. Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. J. Phys. Chem. C 2013, 117 (48), 25381–25389, https://doi.org/10.1021/jp409765w. [4] Das, S.; Attia, P. M.; Chueh, W. C.; Bazant, M. Z. Electrochemical Kinetics of SEI Growth on Carbon Black: Part II. Modeling. J. Electrochem. Soc. 2019, 166 (4), E107– E118. https://doi.org/10.1149/2.0241904jes. [5] Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166 (4), E97–E106. https://doi.org/10.1149/2.0231904jes. [6] Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., ... \u0026amp;amp; Bazant, M. Z. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 4(5), 383-391. [7] Smith, R. B.; Bazant, M. Z. Multiphase Porous Electrode Theory, J. Electrochem. Soc. 2017, 164 (11). https://doi.org/10.1149/2.0171711jes. [8] Bazant, M. Z., Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Accounts of Chemical Research, 46(5), 1144–1160. https://doi.org/10.1021/ar300145c [9] T. Gao, Y. Han, S. Das, T. Zhou, D. Fraggedakis, N. Nadkarni, C. N. Yeh, W. Chueh, J. Li, M.Z. Bazant, Interplay of lithium intercalation and plating on graphite using in-situ optical measurements, submitted. [10] Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; McCloskey, B. D.; Chueh, W. C. and Cui, Y.; Nano Letters 2019 19 (8), 5140-5148. DOI: 10.1021/acs.nanolett.9b01515","internal_url":"https://www.academia.edu/121817494/Electrochemical_Kinetics_of_Graphite_Degradation_in_Lithium_Ion_Batteries","translated_internal_url":"","created_at":"2024-07-06T05:18:31.314-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electrochemical_Kinetics_of_Graphite_Degradation_in_Lithium_Ion_Batteries","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":72820,"name":"Graphite","url":"https://www.academia.edu/Documents/in/Graphite"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":3604167,"name":"Meeting Abstracts","url":"https://www.academia.edu/Documents/in/Meeting_Abstracts"}],"urls":[{"id":43393514,"url":"https://doi.org/10.1149/ma2020-021110mtgabs"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817493"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817493/Electrochemical_Impedance_of_a_Battery_Electrode_with_Anisotropic_Active_Particles"><img alt="Research paper thumbnail of Electrochemical Impedance of a Battery Electrode with Anisotropic Active Particles" class="work-thumbnail" src="https://attachments.academia-assets.com/116610081/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817493/Electrochemical_Impedance_of_a_Battery_Electrode_with_Anisotropic_Active_Particles">Electrochemical Impedance of a Battery Electrode with Anisotropic Active Particles</a></div><div class="wp-workCard_item"><span>Electrochimica Acta</span><span>, Jun 1, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4eb1745daad4a75032b437a5915ee9ea" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610081,&quot;asset_id&quot;:121817493,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610081/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817493"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817493"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817493; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817493]").text(description); $(".js-view-count[data-work-id=121817493]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817493; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817493']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817493, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4eb1745daad4a75032b437a5915ee9ea" } } $('.js-work-strip[data-work-id=121817493]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817493,"title":"Electrochemical Impedance of a Battery Electrode with Anisotropic Active Particles","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Impedance of Battery Electrodes with Anisotropic Particles","grobid_abstract":"Electrochemical impedance spectra for battery electrodes are usually interpreted using models that assume isotropic active particles, having uniform current density and symmetric diffusivities. While this can be reasonable for amorphous or polycrystalline materials with randomly oriented grains, modern electrode materials increasingly consist of highly anisotropic, single-crystalline, nanoparticles, with different impedance characteristics. In this paper, analytical expressions are derived for the impedance of anisotropic particles with tensorial diffusivities and orientation-dependent surface reaction rates and capacitances. The resulting impedance spectrum contains clear signatures of the anisotropic material properties and aspect ratio, as well as statistical variations in any of these parameters.","publication_date":{"day":1,"month":6,"year":2014,"errors":{}},"publication_name":"Electrochimica Acta","grobid_abstract_attachment_id":116610081},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817493/Electrochemical_Impedance_of_a_Battery_Electrode_with_Anisotropic_Active_Particles","translated_internal_url":"","created_at":"2024-07-06T05:18:31.119-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610081,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610081/thumbnails/1.jpg","file_name":"Bazant_EMB_20to_20June_202016_20Electrochemical_20impedance.pdf","download_url":"https://www.academia.edu/attachments/116610081/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Electrochemical_Impedance_of_a_Battery_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610081/Bazant_EMB_20to_20June_202016_20Electrochemical_20impedance-libre.pdf?1720269730=\u0026response-content-disposition=attachment%3B+filename%3DElectrochemical_Impedance_of_a_Battery_E.pdf\u0026Expires=1733026672\u0026Signature=FSVoQIh0gxGVUrlRvttqDzer-q5ACguS0gduJO71fKhsoOm2U2Cjyl-r8RVZgGcgCh~nx1RJg08N2OPzbeZjvNvhNPil0ZrXSlFT7lnwI0HSqNv4fHA~2j8iBqY8Ps1yxCwQV1xNnod2IMf4s1uytAaHG7r6C1O1JHmxLBjf6hoMU6nugOlYV~r3NP3AYMeA2Ej4T1Ot8dKJxZZY3IiWxJ0WgEl8jylO~uH9xfAITBDtFZUR-wZKO8CRX1xrIgovFGP6I-M1Q1wd-Ynz8truJW4f9ujLlJIAJ2hOZ8BDMAQH4GaTWAV~7785GcB97vCBuRGwJQHB-m~mNIQdf1RF~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Electrochemical_Impedance_of_a_Battery_Electrode_with_Anisotropic_Active_Particles","translated_slug":"","page_count":67,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610081,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610081/thumbnails/1.jpg","file_name":"Bazant_EMB_20to_20June_202016_20Electrochemical_20impedance.pdf","download_url":"https://www.academia.edu/attachments/116610081/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Electrochemical_Impedance_of_a_Battery_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610081/Bazant_EMB_20to_20June_202016_20Electrochemical_20impedance-libre.pdf?1720269730=\u0026response-content-disposition=attachment%3B+filename%3DElectrochemical_Impedance_of_a_Battery_E.pdf\u0026Expires=1733026672\u0026Signature=FSVoQIh0gxGVUrlRvttqDzer-q5ACguS0gduJO71fKhsoOm2U2Cjyl-r8RVZgGcgCh~nx1RJg08N2OPzbeZjvNvhNPil0ZrXSlFT7lnwI0HSqNv4fHA~2j8iBqY8Ps1yxCwQV1xNnod2IMf4s1uytAaHG7r6C1O1JHmxLBjf6hoMU6nugOlYV~r3NP3AYMeA2Ej4T1Ot8dKJxZZY3IiWxJ0WgEl8jylO~uH9xfAITBDtFZUR-wZKO8CRX1xrIgovFGP6I-M1Q1wd-Ynz8truJW4f9ujLlJIAJ2hOZ8BDMAQH4GaTWAV~7785GcB97vCBuRGwJQHB-m~mNIQdf1RF~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116610080,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610080/thumbnails/1.jpg","file_name":"Bazant_EMB_20to_20June_202016_20Electrochemical_20impedance.pdf","download_url":"https://www.academia.edu/attachments/116610080/download_file","bulk_download_file_name":"Electrochemical_Impedance_of_a_Battery_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610080/Bazant_EMB_20to_20June_202016_20Electrochemical_20impedance-libre.pdf?1720269734=\u0026response-content-disposition=attachment%3B+filename%3DElectrochemical_Impedance_of_a_Battery_E.pdf\u0026Expires=1733026672\u0026Signature=THWM3FiDtskX~9YVLmztFPEVr~FVNE0Im2qirhZOuqzxhkHUSoD8nlKuz34VlOCvk6h1R9MSUMpB~GdqR~3go9~R-oa9djdHmiJDYNJ757z~7YmsNNX3WeR4WWFmoRE6edMRO6TNcQ7j06CWJuLm-z2~XTtL5HWInIlXCr1aF8XMWMd-AkIEAj6bH-wXTBgAw8B2PLHlVYGLWEGe~hf37e7tddckjdXXA6NLmFMHA7OfKZGoxtSV57-UxHy3bN6iWcSKJMDiMJNxshfRQBFWU7fL~WuHX7DyoxZnF2lTe1L7b7EAQQYcKqpKsShbweR-LjkLi0qI8vVQFMLRF5Do3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"},{"id":2493627,"name":"Electrical Impedance","url":"https://www.academia.edu/Documents/in/Electrical_Impedance"}],"urls":[{"id":43393513,"url":"https://dspace.mit.edu/bitstream/1721.1/110573/1/Bazant_EMB%20to%20June%202016%20Electrochemical%20impedance.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817492"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817492/Suppression_of_Phase_Separation_in_LiFePO_sub_4_sub_Nanoparticles_During_Battery_Discharge"><img alt="Research paper thumbnail of Suppression of Phase Separation in LiFePO&lt;sub&gt;4&lt;/sub&gt; Nanoparticles During Battery Discharge" class="work-thumbnail" src="https://attachments.academia-assets.com/116610079/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817492/Suppression_of_Phase_Separation_in_LiFePO_sub_4_sub_Nanoparticles_During_Battery_Discharge">Suppression of Phase Separation in LiFePO&lt;sub&gt;4&lt;/sub&gt; Nanoparticles During Battery Discharge</a></div><div class="wp-workCard_item"><span>Nano Letters</span><span>, Oct 20, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d5901437046dd0c903c057d86b6127c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610079,&quot;asset_id&quot;:121817492,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610079/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817492"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817492"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817492; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817492]").text(description); $(".js-view-count[data-work-id=121817492]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817492; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817492']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817492, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d5901437046dd0c903c057d86b6127c2" } } $('.js-work-strip[data-work-id=121817492]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817492,"title":"Suppression of Phase Separation in LiFePO\u003csub\u003e4\u003c/sub\u003e Nanoparticles During Battery Discharge","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Using a novel electrochemical phase-field model, we question the common belief that Li x FePO 4 nanoparticles separate into Li-rich and Li-poor phases during battery discharge. For small currents, spinodal decomposition or nucleation leads to moving phase boundaries. Above a critical current density (in the Tafel regime), the spinodal disappears, and particles fill homogeneously, which may explain the superior rate capability and long cycle life of nano-LiFePO 4 cathodes.","publication_date":{"day":20,"month":10,"year":2011,"errors":{}},"publication_name":"Nano Letters","grobid_abstract_attachment_id":116610079},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817492/Suppression_of_Phase_Separation_in_LiFePO_sub_4_sub_Nanoparticles_During_Battery_Discharge","translated_internal_url":"","created_at":"2024-07-06T05:18:29.908-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610079,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610079/thumbnails/1.jpg","file_name":"1108.pdf","download_url":"https://www.academia.edu/attachments/116610079/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Suppression_of_Phase_Separation_in_LiFeP.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610079/1108-libre.pdf?1720269730=\u0026response-content-disposition=attachment%3B+filename%3DSuppression_of_Phase_Separation_in_LiFeP.pdf\u0026Expires=1733026672\u0026Signature=STAYaEt5QOqAjOsu94PVervSdshFio7sRDy4bdTwadlVVTriWMcqHt5xa6NYt40iq8qrFBCpIj6nP8zGnjx9wb5b14qeC4lt70TfNTT8tZAwGXOcSosdf5d~KskyGDsjppBVdCFqGV3XIXa82Voj4pAV84EJoPe3PmIeS31QtYBfxkmqnmASWO1qb3Eo0isRmh-IekLCWh5CVH2RxdUwnrl73fIEQoOnO0FYXk8tSPF1A3aok9qhWT-lhXLKhZY57FVLq2Gc4LoFrWu1oUoRwBcZI2KO8SP7uF4pgz5nbR34EnDETE~FUYIWQYZxJKEugYZquSwI2ABTCMl090vK4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Suppression_of_Phase_Separation_in_LiFePO_sub_4_sub_Nanoparticles_During_Battery_Discharge","translated_slug":"","page_count":27,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610079,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610079/thumbnails/1.jpg","file_name":"1108.pdf","download_url":"https://www.academia.edu/attachments/116610079/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Suppression_of_Phase_Separation_in_LiFeP.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610079/1108-libre.pdf?1720269730=\u0026response-content-disposition=attachment%3B+filename%3DSuppression_of_Phase_Separation_in_LiFeP.pdf\u0026Expires=1733026672\u0026Signature=STAYaEt5QOqAjOsu94PVervSdshFio7sRDy4bdTwadlVVTriWMcqHt5xa6NYt40iq8qrFBCpIj6nP8zGnjx9wb5b14qeC4lt70TfNTT8tZAwGXOcSosdf5d~KskyGDsjppBVdCFqGV3XIXa82Voj4pAV84EJoPe3PmIeS31QtYBfxkmqnmASWO1qb3Eo0isRmh-IekLCWh5CVH2RxdUwnrl73fIEQoOnO0FYXk8tSPF1A3aok9qhWT-lhXLKhZY57FVLq2Gc4LoFrWu1oUoRwBcZI2KO8SP7uF4pgz5nbR34EnDETE~FUYIWQYZxJKEugYZquSwI2ABTCMl090vK4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116610078,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610078/thumbnails/1.jpg","file_name":"1108.pdf","download_url":"https://www.academia.edu/attachments/116610078/download_file","bulk_download_file_name":"Suppression_of_Phase_Separation_in_LiFeP.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610078/1108-libre.pdf?1720269740=\u0026response-content-disposition=attachment%3B+filename%3DSuppression_of_Phase_Separation_in_LiFeP.pdf\u0026Expires=1733026672\u0026Signature=c30gx94NzgUmLial~dvsew4lxf7PZ6s3Rm2E8ybaDPSBM2vtaovAje48866AE2h9v5XAUjasPaJmhiDzo6zLBZDeT~wt3fBmj4QJfTa8O1deMPyxplXR3KJ1rbUptCmzgUwrVOkeocnblMQkT3~NgquuugzIyCr4YK2eyEHEbvdbUimY45c5mjetWNc-l--xpCD5L~oipUCiHkwcoO1gsUvLeocK6wjM9MjFPe3g4OPmQ26MSm9YoMUXkJ3FcUBDjtmhOsZS~AgkelSucsLj844JYxxVy474GOh3ZOlrUu8oo84xSlahGOaRT-uhwqN16YvztWnfWnf3smhI2dyOXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":8950,"name":"Nanoparticle","url":"https://www.academia.edu/Documents/in/Nanoparticle"},{"id":9293,"name":"Lithium","url":"https://www.academia.edu/Documents/in/Lithium"},{"id":13621,"name":"Nanoparticles","url":"https://www.academia.edu/Documents/in/Nanoparticles"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":186094,"name":"Electron Transport","url":"https://www.academia.edu/Documents/in/Electron_Transport"},{"id":415783,"name":"Spinodal Decomposition","url":"https://www.academia.edu/Documents/in/Spinodal_Decomposition"},{"id":415784,"name":"Phase Separation","url":"https://www.academia.edu/Documents/in/Phase_Separation"},{"id":541785,"name":"Phosphates","url":"https://www.academia.edu/Documents/in/Phosphates"},{"id":846015,"name":"Electrodes","url":"https://www.academia.edu/Documents/in/Electrodes"},{"id":1012066,"name":"Spinodal","url":"https://www.academia.edu/Documents/in/Spinodal"},{"id":1131650,"name":"Cathode","url":"https://www.academia.edu/Documents/in/Cathode"}],"urls":[{"id":43393512,"url":"http://arxiv.org/pdf/1108.2326"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817491"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817491/Induced_Charge_Electrokinetic_Phenomena_Theory_and_Microfluidic_Applications"><img alt="Research paper thumbnail of Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/116610077/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817491/Induced_Charge_Electrokinetic_Phenomena_Theory_and_Microfluidic_Applications">Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, Feb 10, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0fb38f604823d82a6638217ecd497c39" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610077,&quot;asset_id&quot;:121817491,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610077/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817491"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817491"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817491; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817491]").text(description); $(".js-view-count[data-work-id=121817491]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817491; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817491']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817491, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0fb38f604823d82a6638217ecd497c39" } } $('.js-work-strip[data-work-id=121817491]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817491,"title":"Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications","translated_title":"","metadata":{"publisher":"American Physical Society","grobid_abstract":"We give a general, physical description of \"induced-charge electro-osmosis\" (ICEO), the nonlinear electrokinetic slip at a polarizable surface, in the context of some new techniques for microfluidic pumping and mixing. ICEO generalizes \"AC electro-osmosis\" at micro-electrode arrays to various dielectric and conducting structures in weak DC or AC electric fields. The basic effect produces micro-vortices to enhance mixing in microfluidic devices, while various broken symmetries-controlled potential, irregular shape, non-uniform surface properties, and field gradients-can be exploited to produce streaming flows. Although we emphasize the qualitative picture of ICEO, we also briefly describe the mathematical theory (for thin double layers and weak fields) and apply it to a metal cylinder with a dielectric coating in a suddenly applied DC field.","publication_date":{"day":10,"month":2,"year":2004,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":116610077},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817491/Induced_Charge_Electrokinetic_Phenomena_Theory_and_Microfluidic_Applications","translated_internal_url":"","created_at":"2024-07-06T05:18:29.715-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610077,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610077/thumbnails/1.jpg","file_name":"0306100.pdf","download_url":"https://www.academia.edu/attachments/116610077/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Induced_Charge_Electrokinetic_Phenomena.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610077/0306100-libre.pdf?1720269710=\u0026response-content-disposition=attachment%3B+filename%3DInduced_Charge_Electrokinetic_Phenomena.pdf\u0026Expires=1733026672\u0026Signature=dggjZO0rJUM03vFhevhb5u0Jqjk7gRRzHG9BJILHd7hMFB3U1iwUrE2Z3U3wcxJIMC0MTj9Ckpe0gF0Dy86cN-Pj673F7lTvYEJyUQLUV9FX4~XnsbWF5OKAD9tzv-kRK93JySd9v6UDW85-iEScUmTOHsAACfLX5PygZ-KQrC4GUPyxhzPcqTVC6o~wHJR8WqWeFxpOotL-m~cbKx0SEe~qjorD09FMkDXYlNolBK5kVVdwQ7Rt0~vTveoDbihJwlhSkMzGHXs-fF9b06UwrhKQIX6qdvBb0rkX4R-SbG7jQU3y2mGvB2HXRSObmjOjz2kIhd0oQs6nK84ogwaXVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Induced_Charge_Electrokinetic_Phenomena_Theory_and_Microfluidic_Applications","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610077,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610077/thumbnails/1.jpg","file_name":"0306100.pdf","download_url":"https://www.academia.edu/attachments/116610077/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Induced_Charge_Electrokinetic_Phenomena.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610077/0306100-libre.pdf?1720269710=\u0026response-content-disposition=attachment%3B+filename%3DInduced_Charge_Electrokinetic_Phenomena.pdf\u0026Expires=1733026672\u0026Signature=dggjZO0rJUM03vFhevhb5u0Jqjk7gRRzHG9BJILHd7hMFB3U1iwUrE2Z3U3wcxJIMC0MTj9Ckpe0gF0Dy86cN-Pj673F7lTvYEJyUQLUV9FX4~XnsbWF5OKAD9tzv-kRK93JySd9v6UDW85-iEScUmTOHsAACfLX5PygZ-KQrC4GUPyxhzPcqTVC6o~wHJR8WqWeFxpOotL-m~cbKx0SEe~qjorD09FMkDXYlNolBK5kVVdwQ7Rt0~vTveoDbihJwlhSkMzGHXs-fF9b06UwrhKQIX6qdvBb0rkX4R-SbG7jQU3y2mGvB2HXRSObmjOjz2kIhd0oQs6nK84ogwaXVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":53436,"name":"Microelectrode array","url":"https://www.academia.edu/Documents/in/Microelectrode_array"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":209105,"name":"Double Layer","url":"https://www.academia.edu/Documents/in/Double_Layer"},{"id":440924,"name":"Surface Properties","url":"https://www.academia.edu/Documents/in/Surface_Properties"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1306846,"name":"Electrostatic Induction","url":"https://www.academia.edu/Documents/in/Electrostatic_Induction"},{"id":1843565,"name":"Stream Flow","url":"https://www.academia.edu/Documents/in/Stream_Flow"}],"urls":[{"id":43393511,"url":"http://arxiv.org/pdf/physics/0306100"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817490/The_effect_of_step_height_on_the_performance_of_three_dimensional_ac_electro_osmotic_microfluidic_pumps"><img alt="Research paper thumbnail of The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps" class="work-thumbnail" src="https://attachments.academia-assets.com/116610099/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817490/The_effect_of_step_height_on_the_performance_of_three_dimensional_ac_electro_osmotic_microfluidic_pumps">The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps</a></div><div class="wp-workCard_item"><span>Journal of Colloid and Interface Science</span><span>, May 1, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="657ea7b42b439f96cd9133fc84b5e2d5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610099,&quot;asset_id&quot;:121817490,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610099/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817490]").text(description); $(".js-view-count[data-work-id=121817490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "657ea7b42b439f96cd9133fc84b5e2d5" } } $('.js-work-strip[data-work-id=121817490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817490,"title":"The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Impact of Step Height on 3D AC Electro-Osmotic Pump Performance","grobid_abstract":"Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the \"fluid conveyor belt\" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.","publication_date":{"day":1,"month":5,"year":2007,"errors":{}},"publication_name":"Journal of Colloid and Interface Science","grobid_abstract_attachment_id":116610099},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817490/The_effect_of_step_height_on_the_performance_of_three_dimensional_ac_electro_osmotic_microfluidic_pumps","translated_internal_url":"","created_at":"2024-07-06T05:18:29.512-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610099,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610099/thumbnails/1.jpg","file_name":"Urbanski_2007_J_Coll_Inter_Sci_ACEM3.pdf","download_url":"https://www.academia.edu/attachments/116610099/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_effect_of_step_height_on_the_perform.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610099/Urbanski_2007_J_Coll_Inter_Sci_ACEM3-libre.pdf?1720269695=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_step_height_on_the_perform.pdf\u0026Expires=1733026672\u0026Signature=MhgU3IJjEX5PRTlXrEZNsPBE9ICgZ61mPPNd2b4R91c9UxjQDy2RtMmTEYoVJ7wrDdlphMj2qrIEf22ePXqBuiV8IUSJx104x-z6q5z1tYH40mZZqsi-OCgnBLkYsQzLGF6pYaTNuxWY1f38S7xgR5B8ksBdvDeClkJpeUwvogy0NDCEv2bQ6mI32RzB9CXLV5wGAln7iGOVcCmyYj1uoV1embxWJx3DG0GKchYPPpOReZ44sxeLYskRzMPwgnyoG-JbCA69VHRi9ui~E5cOCS3UXBKCNj5y6wJ~poBC~Z~s-xVA-N2N4eEQmp-xrXY2AkhxYDwpRhZl6a4vavz7~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_effect_of_step_height_on_the_performance_of_three_dimensional_ac_electro_osmotic_microfluidic_pumps","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610099,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610099/thumbnails/1.jpg","file_name":"Urbanski_2007_J_Coll_Inter_Sci_ACEM3.pdf","download_url":"https://www.academia.edu/attachments/116610099/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_effect_of_step_height_on_the_perform.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610099/Urbanski_2007_J_Coll_Inter_Sci_ACEM3-libre.pdf?1720269695=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_step_height_on_the_perform.pdf\u0026Expires=1733026672\u0026Signature=MhgU3IJjEX5PRTlXrEZNsPBE9ICgZ61mPPNd2b4R91c9UxjQDy2RtMmTEYoVJ7wrDdlphMj2qrIEf22ePXqBuiV8IUSJx104x-z6q5z1tYH40mZZqsi-OCgnBLkYsQzLGF6pYaTNuxWY1f38S7xgR5B8ksBdvDeClkJpeUwvogy0NDCEv2bQ6mI32RzB9CXLV5wGAln7iGOVcCmyYj1uoV1embxWJx3DG0GKchYPPpOReZ44sxeLYskRzMPwgnyoG-JbCA69VHRi9ui~E5cOCS3UXBKCNj5y6wJ~poBC~Z~s-xVA-N2N4eEQmp-xrXY2AkhxYDwpRhZl6a4vavz7~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"},{"id":76608,"name":"Microfabrication","url":"https://www.academia.edu/Documents/in/Microfabrication"},{"id":87778,"name":"Electrokinetics","url":"https://www.academia.edu/Documents/in/Electrokinetics"},{"id":87779,"name":"Electrohydrodynamics","url":"https://www.academia.edu/Documents/in/Electrohydrodynamics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":215075,"name":"Experimental Study","url":"https://www.academia.edu/Documents/in/Experimental_Study"},{"id":225478,"name":"Electro-Osmosis","url":"https://www.academia.edu/Documents/in/Electro-Osmosis"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":389165,"name":"Voltage","url":"https://www.academia.edu/Documents/in/Voltage"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":609176,"name":"Osmosis","url":"https://www.academia.edu/Documents/in/Osmosis"},{"id":970774,"name":"Ionic Strength","url":"https://www.academia.edu/Documents/in/Ionic_Strength"},{"id":1115377,"name":"Colloid","url":"https://www.academia.edu/Documents/in/Colloid"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"}],"urls":[{"id":43393510,"url":"https://doi.org/10.1016/j.jcis.2007.01.095"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817489"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817489/Ultrafast_High_pressure_AC_Electro_osmotic_Pumps_for_Portable_Biomedical_Microfluidics"><img alt="Research paper thumbnail of Ultrafast High-pressure AC Electro-osmotic Pumps for Portable Biomedical Microfluidics" class="work-thumbnail" src="https://attachments.academia-assets.com/116610105/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817489/Ultrafast_High_pressure_AC_Electro_osmotic_Pumps_for_Portable_Biomedical_Microfluidics">Ultrafast High-pressure AC Electro-osmotic Pumps for Portable Biomedical Microfluidics</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ae9fe24cea208778b9f36934d60ba9be" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610105,&quot;asset_id&quot;:121817489,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610105/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817489"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817489"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817489; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817489]").text(description); $(".js-view-count[data-work-id=121817489]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817489; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817489']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817489, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ae9fe24cea208778b9f36934d60ba9be" } } $('.js-work-strip[data-work-id=121817489]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817489,"title":"Ultrafast High-pressure AC Electro-osmotic Pumps for Portable Biomedical Microfluidics","translated_title":"","metadata":{"grobid_abstract":"In this paper, the development of a novel low power (mW), low current (mA) AC microfluidic pump is described that is capable of generating kPa head pressures.","publication_date":{"day":1,"month":10,"year":2009,"errors":{}},"grobid_abstract_attachment_id":116610105},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817489/Ultrafast_High_pressure_AC_Electro_osmotic_Pumps_for_Portable_Biomedical_Microfluidics","translated_internal_url":"","created_at":"2024-07-06T05:18:29.364-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610105,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610105/thumbnails/1.jpg","file_name":"0908.pdf","download_url":"https://www.academia.edu/attachments/116610105/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultrafast_High_pressure_AC_Electro_osmot.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610105/0908-libre.pdf?1720269699=\u0026response-content-disposition=attachment%3B+filename%3DUltrafast_High_pressure_AC_Electro_osmot.pdf\u0026Expires=1733026672\u0026Signature=WwbWR3hUHRVFjjT7A3nhstsuPchPEr9qAQ1-VVcnztyxZsJ39inGrr-YA2XcFKmtZDQ133r4Rfx8byMXrQ-XNG21F7GQ5ICo35NuI50kmJb-7LRwa1a-9ZpY~XxjA7IV67NAbVs3ITSVqb31nL0C5ixbF8LxEW8nHfEKAFjK4MhkDwXBwQfORQfJEABDLVU8r7kWrE9xK5SkTYBg84hyaiMP7olNeBtcDasXf-AYI8Y5W7LB5qOqu~k-wgP9KXSbUoLYDF5wvfUlpB1ttSbdZoWqb2cacloUUzo9tMlNdTi-JHPexVuKCaoWnDH-rAuBdsMI-0aGcJu65~lll6vOSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ultrafast_High_pressure_AC_Electro_osmotic_Pumps_for_Portable_Biomedical_Microfluidics","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610105,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610105/thumbnails/1.jpg","file_name":"0908.pdf","download_url":"https://www.academia.edu/attachments/116610105/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultrafast_High_pressure_AC_Electro_osmot.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610105/0908-libre.pdf?1720269699=\u0026response-content-disposition=attachment%3B+filename%3DUltrafast_High_pressure_AC_Electro_osmot.pdf\u0026Expires=1733026672\u0026Signature=WwbWR3hUHRVFjjT7A3nhstsuPchPEr9qAQ1-VVcnztyxZsJ39inGrr-YA2XcFKmtZDQ133r4Rfx8byMXrQ-XNG21F7GQ5ICo35NuI50kmJb-7LRwa1a-9ZpY~XxjA7IV67NAbVs3ITSVqb31nL0C5ixbF8LxEW8nHfEKAFjK4MhkDwXBwQfORQfJEABDLVU8r7kWrE9xK5SkTYBg84hyaiMP7olNeBtcDasXf-AYI8Y5W7LB5qOqu~k-wgP9KXSbUoLYDF5wvfUlpB1ttSbdZoWqb2cacloUUzo9tMlNdTi-JHPexVuKCaoWnDH-rAuBdsMI-0aGcJu65~lll6vOSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":4107,"name":"High Pressure","url":"https://www.academia.edu/Documents/in/High_Pressure"},{"id":11669,"name":"Lab On A Chip","url":"https://www.academia.edu/Documents/in/Lab_On_A_Chip"},{"id":16496,"name":"Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Fluid_Dynamics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":66744,"name":"Biomedical Research","url":"https://www.academia.edu/Documents/in/Biomedical_Research"},{"id":129385,"name":"DNA hybridization","url":"https://www.academia.edu/Documents/in/DNA_hybridization"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":291038,"name":"Pressure","url":"https://www.academia.edu/Documents/in/Pressure"},{"id":437832,"name":"Distilled Water","url":"https://www.academia.edu/Documents/in/Distilled_Water"},{"id":846015,"name":"Electrodes","url":"https://www.academia.edu/Documents/in/Electrodes"},{"id":925816,"name":"Electroosmosis","url":"https://www.academia.edu/Documents/in/Electroosmosis"},{"id":970774,"name":"Ionic Strength","url":"https://www.academia.edu/Documents/in/Ionic_Strength"},{"id":1145520,"name":"Equipment Design","url":"https://www.academia.edu/Documents/in/Equipment_Design"},{"id":1155594,"name":"Lab on a chip Devices","url":"https://www.academia.edu/Documents/in/Lab_on_a_chip_Devices"},{"id":2430296,"name":"Proof of Concept","url":"https://www.academia.edu/Documents/in/Proof_of_Concept"}],"urls":[{"id":43393509,"url":"https://dspace.mit.edu/openaccess-disseminate/1721.1/69641"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="13852317" id="papers"><div class="js-work-strip profile--work_container" data-work-id="124413722"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124413722/Lithium_ion_intercalation_by_coupled_ion_electron_transfer"><img alt="Research paper thumbnail of Lithium-ion intercalation by coupled ion-electron transfer" class="work-thumbnail" src="https://attachments.academia-assets.com/118644026/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124413722/Lithium_ion_intercalation_by_coupled_ion_electron_transfer">Lithium-ion intercalation by coupled ion-electron transfer</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="73bbdffe7d4db12aeb70a7741e3bdee8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118644026,&quot;asset_id&quot;:124413722,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118644026/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124413722"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124413722"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124413722; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124413722]").text(description); $(".js-view-count[data-work-id=124413722]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124413722; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124413722']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124413722, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "73bbdffe7d4db12aeb70a7741e3bdee8" } } $('.js-work-strip[data-work-id=124413722]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124413722,"title":"Lithium-ion intercalation by coupled ion-electron transfer","translated_title":"","metadata":{"grobid_abstract":"Lithium-ion batteries are powering a revolution in electrification, but the underlying intercalation 25","publication_date":{"day":20,"month":5,"year":2024,"errors":{}},"grobid_abstract_attachment_id":118644026},"translated_abstract":null,"internal_url":"https://www.academia.edu/124413722/Lithium_ion_intercalation_by_coupled_ion_electron_transfer","translated_internal_url":"","created_at":"2024-10-04T04:07:42.692-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118644026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118644026/thumbnails/1.jpg","file_name":"lithium-ion-intercalation-by-coupled-ion-electron-transfer.pdf","download_url":"https://www.academia.edu/attachments/118644026/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lithium_ion_intercalation_by_coupled_ion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118644026/lithium-ion-intercalation-by-coupled-ion-electron-transfer-libre.pdf?1728042218=\u0026response-content-disposition=attachment%3B+filename%3DLithium_ion_intercalation_by_coupled_ion.pdf\u0026Expires=1733026672\u0026Signature=DacV3tT4yJDrqWHKDAusIdqiHTB3IooD3ROcmHVY~-SDWVQnif-X8yLnxW3Q-7poqEpWt45MqSTtTwA~jiauFUDKDaVdRICQ-4vFv42cpLgjr2fILBenYOO4C-qLngy5Jrhno6vn4LmwdVg5dw~E2NsKeXl2TQiGrNtferG6Z6ejoD4QVQAzpYtHiEPGUg5U9cRyGHNdJRRHBjUY9laCX-lM2LZUWy5wt-7xM9yQP~UVkz-e8kwbOSVTawpjd-zmg5PzFUUQdag1t7sB9up9QcEvO4WFgBFer-e3WZHFCcl3DZurb6K9bDxYqiGAdQgWY0GNZrmEUYVasgvmMZLFAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lithium_ion_intercalation_by_coupled_ion_electron_transfer","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":118644026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118644026/thumbnails/1.jpg","file_name":"lithium-ion-intercalation-by-coupled-ion-electron-transfer.pdf","download_url":"https://www.academia.edu/attachments/118644026/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lithium_ion_intercalation_by_coupled_ion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118644026/lithium-ion-intercalation-by-coupled-ion-electron-transfer-libre.pdf?1728042218=\u0026response-content-disposition=attachment%3B+filename%3DLithium_ion_intercalation_by_coupled_ion.pdf\u0026Expires=1733026672\u0026Signature=DacV3tT4yJDrqWHKDAusIdqiHTB3IooD3ROcmHVY~-SDWVQnif-X8yLnxW3Q-7poqEpWt45MqSTtTwA~jiauFUDKDaVdRICQ-4vFv42cpLgjr2fILBenYOO4C-qLngy5Jrhno6vn4LmwdVg5dw~E2NsKeXl2TQiGrNtferG6Z6ejoD4QVQAzpYtHiEPGUg5U9cRyGHNdJRRHBjUY9laCX-lM2LZUWy5wt-7xM9yQP~UVkz-e8kwbOSVTawpjd-zmg5PzFUUQdag1t7sB9up9QcEvO4WFgBFer-e3WZHFCcl3DZurb6K9bDxYqiGAdQgWY0GNZrmEUYVasgvmMZLFAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":147028,"name":"Intercalation Chemistry","url":"https://www.academia.edu/Documents/in/Intercalation_Chemistry"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"}],"urls":[{"id":44971752,"url":"https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/6647155791aefa6ce13c1e59/original/lithium-ion-intercalation-by-coupled-ion-electron-transfer.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817507"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817507/Transverse_flow_in_thin_superhydrophobic_channels"><img alt="Research paper thumbnail of Transverse flow in thin superhydrophobic channels" class="work-thumbnail" src="https://attachments.academia-assets.com/116610088/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817507/Transverse_flow_in_thin_superhydrophobic_channels">Transverse flow in thin superhydrophobic channels</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, Nov 10, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6882854d087350853a1668c49ec2eb1a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610088,&quot;asset_id&quot;:121817507,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610088/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817507"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817507"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817507; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817507]").text(description); $(".js-view-count[data-work-id=121817507]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817507; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817507']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817507, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6882854d087350853a1668c49ec2eb1a" } } $('.js-work-strip[data-work-id=121817507]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817507,"title":"Transverse flow in thin superhydrophobic channels","translated_title":"","metadata":{"publisher":"American Physical Society","grobid_abstract":"We provide some general theoretical results to guide the optimization of transverse hydrodynamic phenomena in superhydrophobic channels. Our focus is on the canonical micro-and nanofluidic geometry of a parallel-plate channel with an arbitrary two-component (low-slip and high-slip) coarse texture, varying on scales larger than the channel thickness. By analyzing rigorous bounds on the permeability, over all possible patterns, we optimize the area fractions, slip lengths, geometry and orientation of the surface texture to maximize transverse flow. In the case of two aligned striped surfaces, very strong transverse flows are possible. Optimized superhydrophobic surfaces may find applications in passive microfluidic mixing and amplification of transverse electrokinetic phenomena.","publication_date":{"day":10,"month":11,"year":2010,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":116610088},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817507/Transverse_flow_in_thin_superhydrophobic_channels","translated_internal_url":"","created_at":"2024-07-06T05:18:33.804-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610088,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610088/thumbnails/1.jpg","file_name":"1007.pdf","download_url":"https://www.academia.edu/attachments/116610088/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transverse_flow_in_thin_superhydrophobic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610088/1007-libre.pdf?1720269706=\u0026response-content-disposition=attachment%3B+filename%3DTransverse_flow_in_thin_superhydrophobic.pdf\u0026Expires=1733026672\u0026Signature=MbWYuhtw5wZSEK7tlIo0Q9NV0d2zybuhH3Dr12sP0iGpLTz0mj9cXcQeNFlbfF6yAewinRGnMVqsuipxJD4sgk-K0Ka557dJv2qsNz1qR2KYqkYSQnDBbfNVzS0S5xPYjXfPixhpc8a4X~cTnjDIER3Gs96ldWSFFesCtMvn5VLu5dT-JJsUfZcqP0v9t6twLZLJxkzWxffAxbL~68A5gwNw9bvlNxwM~W0w-yEkayrH1uW4YdRzpjW4h21sYtp4R7x1r1sldYeFKX~JekYd9~xLQIEj~XCDmWsAH~V-~ZPV75POiNKzIgbhaQ3NUo~5wV0pYfAXO3kDxhhY1OBMTA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Transverse_flow_in_thin_superhydrophobic_channels","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610088,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610088/thumbnails/1.jpg","file_name":"1007.pdf","download_url":"https://www.academia.edu/attachments/116610088/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transverse_flow_in_thin_superhydrophobic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610088/1007-libre.pdf?1720269706=\u0026response-content-disposition=attachment%3B+filename%3DTransverse_flow_in_thin_superhydrophobic.pdf\u0026Expires=1733026672\u0026Signature=MbWYuhtw5wZSEK7tlIo0Q9NV0d2zybuhH3Dr12sP0iGpLTz0mj9cXcQeNFlbfF6yAewinRGnMVqsuipxJD4sgk-K0Ka557dJv2qsNz1qR2KYqkYSQnDBbfNVzS0S5xPYjXfPixhpc8a4X~cTnjDIER3Gs96ldWSFFesCtMvn5VLu5dT-JJsUfZcqP0v9t6twLZLJxkzWxffAxbL~68A5gwNw9bvlNxwM~W0w-yEkayrH1uW4YdRzpjW4h21sYtp4R7x1r1sldYeFKX~JekYd9~xLQIEj~XCDmWsAH~V-~ZPV75POiNKzIgbhaQ3NUo~5wV0pYfAXO3kDxhhY1OBMTA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":54418,"name":"Geometry","url":"https://www.academia.edu/Documents/in/Geometry"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173495,"name":"APS","url":"https://www.academia.edu/Documents/in/APS"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":1749681,"name":"Surface Texture","url":"https://www.academia.edu/Documents/in/Surface_Texture"}],"urls":[{"id":43393527,"url":"http://arxiv.org/pdf/1007.1122"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817506"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817506/Microfluidic_pumping_by_induced_charge_electro_osmosis"><img alt="Research paper thumbnail of Microfluidic pumping by induced-charge electro-osmosis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817506/Microfluidic_pumping_by_induced_charge_electro_osmosis">Microfluidic pumping by induced-charge electro-osmosis</a></div><div class="wp-workCard_item"><span>APS March Meeting Abstracts</span><span>, Nov 1, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Motivated by recent work on AC electro-osmosis, a general theory of ``induced-charge electro-osmo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Motivated by recent work on AC electro-osmosis, a general theory of ``induced-charge electro-osmosis&amp;amp;#39;&amp;amp;#39; (ICEO) has been developed, and a variety of new microfluidic pumping and mixing strategies have been proposed using weak DC and AC applied voltages [physics/0304090, physics/0306100]. ICEO slip of a liquid electrolyte generally occurs at polarizable (metal or dielectric) surfaces in response to applied electric fields. Due</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817506"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817506"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817506; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817506]").text(description); $(".js-view-count[data-work-id=121817506]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817506; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817506']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817506, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121817506]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817506,"title":"Microfluidic pumping by induced-charge electro-osmosis","translated_title":"","metadata":{"abstract":"Motivated by recent work on AC electro-osmosis, a general theory of ``induced-charge electro-osmosis\u0026amp;#39;\u0026amp;#39; (ICEO) has been developed, and a variety of new microfluidic pumping and mixing strategies have been proposed using weak DC and AC applied voltages [physics/0304090, physics/0306100]. ICEO slip of a liquid electrolyte generally occurs at polarizable (metal or dielectric) surfaces in response to applied electric fields. Due","publication_date":{"day":1,"month":11,"year":2003,"errors":{}},"publication_name":"APS March Meeting Abstracts"},"translated_abstract":"Motivated by recent work on AC electro-osmosis, a general theory of ``induced-charge electro-osmosis\u0026amp;#39;\u0026amp;#39; (ICEO) has been developed, and a variety of new microfluidic pumping and mixing strategies have been proposed using weak DC and AC applied voltages [physics/0304090, physics/0306100]. ICEO slip of a liquid electrolyte generally occurs at polarizable (metal or dielectric) surfaces in response to applied electric fields. Due","internal_url":"https://www.academia.edu/121817506/Microfluidic_pumping_by_induced_charge_electro_osmosis","translated_internal_url":"","created_at":"2024-07-06T05:18:33.645-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Microfluidic_pumping_by_induced_charge_electro_osmosis","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[],"research_interests":[{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":394477,"name":"Time Dependent","url":"https://www.academia.edu/Documents/in/Time_Dependent"},{"id":440924,"name":"Surface Properties","url":"https://www.academia.edu/Documents/in/Surface_Properties"},{"id":480226,"name":"Surface Charge","url":"https://www.academia.edu/Documents/in/Surface_Charge"},{"id":983062,"name":"Zeta Potential","url":"https://www.academia.edu/Documents/in/Zeta_Potential"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"}],"urls":[{"id":43393526,"url":"https://ui.adsabs.harvard.edu/abs/2003APS..DFD.AD005L/abstract"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817505"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817505/Application_of_the_Cell_Potential_Method_To_Predict_Phase_Equilibria_of_Multicomponent_Gas_Hydrate_Systems"><img alt="Research paper thumbnail of Application of the Cell Potential Method To Predict Phase Equilibria of Multicomponent Gas Hydrate Systems" class="work-thumbnail" src="https://attachments.academia-assets.com/116610086/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817505/Application_of_the_Cell_Potential_Method_To_Predict_Phase_Equilibria_of_Multicomponent_Gas_Hydrate_Systems">Application of the Cell Potential Method To Predict Phase Equilibria of Multicomponent Gas Hydrate Systems</a></div><div class="wp-workCard_item"><span>Journal of Physical Chemistry B</span><span>, Mar 31, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dbdfa40551e36691354389e3fc3a3e73" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610086,&quot;asset_id&quot;:121817505,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610086/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817505"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817505"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817505; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817505]").text(description); $(".js-view-count[data-work-id=121817505]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817505; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817505']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817505, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dbdfa40551e36691354389e3fc3a3e73" } } $('.js-work-strip[data-work-id=121817505]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817505,"title":"Application of the Cell Potential Method To Predict Phase Equilibria of Multicomponent Gas Hydrate Systems","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"We present the application of a mathematical method reported earlier 1 by which the van der Waals-Platteeuw statistical mechanical model with the Lennard-Jones and Devonshire approximation can be posed as an integral equation with the unknown function being the intermolecular potential between the guest molecules and the host molecules. This method allows us to solve for the potential directly for hydrates for which the Langmuir constants are computed, either from experimental data or from ab initio data. Given the assumptions made in the van der Waals-Platteeuw model with the spherical-cell approximation, there are an infinite number of solutions; however, the only solution without cusps is a unique central-well solution in which the potential is at a finite minimum at the center to the cage. From this central-well solution, we have found the potential well depths and volumes of negative energy for 16 single-component hydrate systems: ethane (C 2 H 6), cyclopropane (C 3 H 6), methane (CH 4), argon (Ar), and chlorodifluoromethane (R-22) in structure I; and ethane (C 2 H 6), cyclopropane (C 3 H 6), propane (C 3 H 8), isobutane (C 4 H 10), methane (CH 4), argon (Ar), trichlorofluoromethane (R-11), dichlorodifluoromethane (R-12), bromotrifluoromethane (R-13B1), chloroform (CHCl 3), and 1,1,1,2-tetrafluoroethane (R-134a) in structure II. This method and the calculated cell potentials were validated by predicting existing mixed hydrate phase equilibrium data without any fitting parameters and calculating mixture phase diagrams for methane, ethane, isobutane, and cyclopropane mixtures. Several structural transitions that have been determined experimentally as well as some structural transitions that have not been examined experimentally were also predicted. In the methane-cyclopropane hydrate system, a structural transition from structure I to structure II and back to structure I is predicted to occur outside of the known structure II range for the cyclopropane hydrate. Quintuple (L w-sI-sII-L hc-V) points have been predicted for the ethane-propane-water (277.3 K, 12.28 bar, and x eth,waterfree) 0.676) and ethane-isobutanewater (274.7 K, 7.18 bar, and x eth,waterfree) 0.81) systems.","publication_date":{"day":31,"month":3,"year":2005,"errors":{}},"publication_name":"Journal of Physical Chemistry B","grobid_abstract_attachment_id":116610086},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817505/Application_of_the_Cell_Potential_Method_To_Predict_Phase_Equilibria_of_Multicomponent_Gas_Hydrate_Systems","translated_internal_url":"","created_at":"2024-07-06T05:18:33.471-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610086,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610086/thumbnails/1.jpg","file_name":"Anderson_2005_J_Phys_Chem_B_IP9.pdf","download_url":"https://www.academia.edu/attachments/116610086/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Application_of_the_Cell_Potential_Method.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610086/Anderson_2005_J_Phys_Chem_B_IP9-libre.pdf?1720269710=\u0026response-content-disposition=attachment%3B+filename%3DApplication_of_the_Cell_Potential_Method.pdf\u0026Expires=1733026672\u0026Signature=E9GfRPSfv4AYnO-FAX83IOJtf0Mm0HfTPmW3fEfAmXEpFiXS02rqBRc-hPS~B0L7UMuJp6TkQoMRxlTZ6tNuZhlj37AZCSg15S7MgPtSFF7w6k7i3U~NORwMZpei03U151jQuVb4e3wD73NONqq2kkotN-f6SklmIvWH1oxj~~xiUKIeC2PWAzWgFkwlXUl5hs6FHH8iyO6~U81WnhoLPvjqrhEWmPAF2~nSEpk7qqPQxCIYkdeuZizdRU~pCaqPNIdQ56YX1-WGGD50RZInapzdP82RX2jIBiFyZG4i0Z2hPDL1CldNXqR70adXbD1-3vqldUuNogZ3YMcjbsXn3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Application_of_the_Cell_Potential_Method_To_Predict_Phase_Equilibria_of_Multicomponent_Gas_Hydrate_Systems","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610086,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610086/thumbnails/1.jpg","file_name":"Anderson_2005_J_Phys_Chem_B_IP9.pdf","download_url":"https://www.academia.edu/attachments/116610086/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Application_of_the_Cell_Potential_Method.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610086/Anderson_2005_J_Phys_Chem_B_IP9-libre.pdf?1720269710=\u0026response-content-disposition=attachment%3B+filename%3DApplication_of_the_Cell_Potential_Method.pdf\u0026Expires=1733026672\u0026Signature=E9GfRPSfv4AYnO-FAX83IOJtf0Mm0HfTPmW3fEfAmXEpFiXS02rqBRc-hPS~B0L7UMuJp6TkQoMRxlTZ6tNuZhlj37AZCSg15S7MgPtSFF7w6k7i3U~NORwMZpei03U151jQuVb4e3wD73NONqq2kkotN-f6SklmIvWH1oxj~~xiUKIeC2PWAzWgFkwlXUl5hs6FHH8iyO6~U81WnhoLPvjqrhEWmPAF2~nSEpk7qqPQxCIYkdeuZizdRU~pCaqPNIdQ56YX1-WGGD50RZInapzdP82RX2jIBiFyZG4i0Z2hPDL1CldNXqR70adXbD1-3vqldUuNogZ3YMcjbsXn3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":23612,"name":"Gas Hydrate","url":"https://www.academia.edu/Documents/in/Gas_Hydrate"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":95528,"name":"Phase equilibria","url":"https://www.academia.edu/Documents/in/Phase_equilibria"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":210248,"name":"Cyclopropane","url":"https://www.academia.edu/Documents/in/Cyclopropane"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":309949,"name":"Propane","url":"https://www.academia.edu/Documents/in/Propane"},{"id":864976,"name":"Integral Equation","url":"https://www.academia.edu/Documents/in/Integral_Equation"},{"id":1025209,"name":"Argon","url":"https://www.academia.edu/Documents/in/Argon"},{"id":1120502,"name":"Experimental Data","url":"https://www.academia.edu/Documents/in/Experimental_Data"},{"id":1123280,"name":"Hydrate","url":"https://www.academia.edu/Documents/in/Hydrate"},{"id":2037336,"name":"Phase Equilibrium","url":"https://www.academia.edu/Documents/in/Phase_Equilibrium"},{"id":3094058,"name":"Krypton","url":"https://www.academia.edu/Documents/in/Krypton"},{"id":4108054,"name":"phase diagram","url":"https://www.academia.edu/Documents/in/phase_diagram"}],"urls":[{"id":43393525,"url":"http://www-math.mit.edu/~bazant/papers/pdf/Anderson_2005_J_Phys_Chem_B_IP9.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817504"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817504/Theory_of_the_Double_Layer_in_Water_in_Salt_Electrolytes"><img alt="Research paper thumbnail of Theory of the Double Layer in Water-in-Salt Electrolytes" class="work-thumbnail" src="https://attachments.academia-assets.com/116610103/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817504/Theory_of_the_Double_Layer_in_Water_in_Salt_Electrolytes">Theory of the Double Layer in Water-in-Salt Electrolytes</a></div><div class="wp-workCard_item"><span>Journal of Physical Chemistry Letters</span><span>, Oct 4, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1c161fe1281d63753e1286e19a51afc7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610103,&quot;asset_id&quot;:121817504,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610103/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817504"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817504"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817504; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817504]").text(description); $(".js-view-count[data-work-id=121817504]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817504; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817504']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817504, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1c161fe1281d63753e1286e19a51afc7" } } $('.js-work-strip[data-work-id=121817504]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817504,"title":"Theory of the Double Layer in Water-in-Salt Electrolytes","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"One challenge in developing the next generation of lithium-ion batteries is the replacement of organic electrolytes, which are flammable and most often contain toxic and thermally unstable lithium salts, with safer, environmentally friendly alternatives. Recently developed Water-in-Salt Electrolytes (WiSEs) were found to be a promising alternative, having also enhanced electrochemical stability. In this work, we develop a simple modified Poisson-Fermi theory, which demonstrates the fine interplay between electrosorption, solvation, and ion correlations. The phenomenological parameters are extracted from molecular simulations, also performed here. The theory reproduces the electrical double layer structure of WiSEs with remarkable accuracy.","publication_date":{"day":4,"month":10,"year":2018,"errors":{}},"publication_name":"Journal of Physical Chemistry Letters","grobid_abstract_attachment_id":116610103},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817504/Theory_of_the_Double_Layer_in_Water_in_Salt_Electrolytes","translated_internal_url":"","created_at":"2024-07-06T05:18:33.291-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610103,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610103/thumbnails/1.jpg","file_name":"1808.06118.pdf","download_url":"https://www.academia.edu/attachments/116610103/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Theory_of_the_Double_Layer_in_Water_in_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610103/1808.06118-libre.pdf?1720269720=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_the_Double_Layer_in_Water_in_S.pdf\u0026Expires=1733026672\u0026Signature=SObacQ8nAO2hXoGt4E2IA7mOvNWub8zuAEkp8zRpinJeYQVCHT6111-9R3-9u--jTmJYADPcaIbOxdDPfFs3cJ4TSnrWrRIKOCGCk-HghrT2sj6DCng~cSwXRPHIPGq7k7YCIVQBV5g-8F1uXoXXmeD7Y9S0408tIxJGeT6sY~DJGH2Et7l2whIPfO4pTkNJvHU~VMw-U7XH7jMU0-7wEb2VC382tF-kuwmOrvNK~W9OK3zeXLyaEIZOn9HuiyVW9lf1-DZT~J8I4blvkUsA8M8cuXT4Dr1UuwJ7aocQWPEfFeNVuZlAeLRoVNkqCBqzqsZ5W9VD6oDrVf0zPORuBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Theory_of_the_Double_Layer_in_Water_in_Salt_Electrolytes","translated_slug":"","page_count":29,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610103,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610103/thumbnails/1.jpg","file_name":"1808.06118.pdf","download_url":"https://www.academia.edu/attachments/116610103/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Theory_of_the_Double_Layer_in_Water_in_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610103/1808.06118-libre.pdf?1720269720=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_the_Double_Layer_in_Water_in_S.pdf\u0026Expires=1733026672\u0026Signature=SObacQ8nAO2hXoGt4E2IA7mOvNWub8zuAEkp8zRpinJeYQVCHT6111-9R3-9u--jTmJYADPcaIbOxdDPfFs3cJ4TSnrWrRIKOCGCk-HghrT2sj6DCng~cSwXRPHIPGq7k7YCIVQBV5g-8F1uXoXXmeD7Y9S0408tIxJGeT6sY~DJGH2Et7l2whIPfO4pTkNJvHU~VMw-U7XH7jMU0-7wEb2VC382tF-kuwmOrvNK~W9OK3zeXLyaEIZOn9HuiyVW9lf1-DZT~J8I4blvkUsA8M8cuXT4Dr1UuwJ7aocQWPEfFeNVuZlAeLRoVNkqCBqzqsZ5W9VD6oDrVf0zPORuBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":49735,"name":"Solvation","url":"https://www.academia.edu/Documents/in/Solvation"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":2468700,"name":"environmentally friendly","url":"https://www.academia.edu/Documents/in/environmentally_friendly"},{"id":3370278,"name":"Flammable Liquid","url":"https://www.academia.edu/Documents/in/Flammable_Liquid"}],"urls":[{"id":43393524,"url":"https://doi.org/10.1021/acs.jpclett.8b02543"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817503"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817503/Electrochemical_Kinetics_of_Degradation_of_Graphite_Anodes_in_Lithium_Ion_Batteries"><img alt="Research paper thumbnail of Electrochemical Kinetics of Degradation of Graphite Anodes in Lithium Ion Batteries" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817503/Electrochemical_Kinetics_of_Degradation_of_Graphite_Anodes_in_Lithium_Ion_Batteries">Electrochemical Kinetics of Degradation of Graphite Anodes in Lithium Ion Batteries</a></div><div class="wp-workCard_item"><span>Meeting abstracts</span><span>, May 1, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Desp...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Despite its importance, the fundamental mechanisms remain unclear, primarily because of the complicated reaction pathways involved[1–3]. SEI growth can be both electrochemical and chemical in nature[4], and thus, it is a strong function of the potential and degree of lithiation of the electrode. We model the early-stage and long-term growth of SEI by accurately capturing the potential dependence of its formation kinetics as well as long term rate limiting steps, and validating it against the world’s largest open source battery cycling data, generated in-house[5]. This is done using the Multiphase Porous Electrode Theory (MPET) framework[6] on graphite (phase separating) and carbon black (non phase separating) particles. Lithium plating is another key degradation phenomenon that has been elusive, and it becomes important while trying to fast-charge batteries, i.e., 0% - 80% state-of-charge in 30 mins. We show that lithium plating is a key function of electrode morphology, phase-separation dynamics and potential. Phase-separation in graphite is modeled in the electrode using the Cahn-Hilliard Reaction framework described by Bazant[7]. We understand the electrochemistry of the onset of lithium plating with in-situ measurements connected to real time cell potential in a phase-separating electrode for the first time[8]. Results indicate that the peak SEI-forming currents are higher for higher driving currents. Also, we find that SEI only grows during electrode lithiation, i.e. the battery only degrades while being charged. We also find that onset of lithium plating is correctly captured only when phase separation in active material is accounted for. Further, the onset of plating is delayed on electrodes with a thick SEI layer – understanding SEI/plating coupling is integral to predicting fast charging manufacturing protocols for LIBs. This work holds promise for the predictive design of procedures[9] for manufacture and formation of LIBs. [1] Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104, 12282–12291. <a href="https://doi.org/10.1021/jp002526b" rel="nofollow">https://doi.org/10.1021/jp002526b</a>. [2] Horstmann, B.; Single, F.; Latz, A. Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation, Current Opinion in Electrochemistry 13, 62-69 2019. [3] Nie, M.; Abraham, D. P.; Seo, D. M.; Chen, Y.; Bose, A.; Lucht, B. L. Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. J. Phys. Chem. C 2013, 117 (48), 25381–25389, <a href="https://doi.org/10.1021/jp409765w" rel="nofollow">https://doi.org/10.1021/jp409765w</a>. [4] Das, S.; Attia, P. M.; Chueh, W. C.; Bazant, M. Z. Electrochemical Kinetics of SEI Growth on Carbon Black: Part II. Modeling. J. Electrochem. Soc. 2019, 166 (4), E107– E118. <a href="https://doi.org/10.1149/2.0241904jes" rel="nofollow">https://doi.org/10.1149/2.0241904jes</a>. [5] Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166 (4), E97–E106. <a href="https://doi.org/10.1149/2.0231904jes" rel="nofollow">https://doi.org/10.1149/2.0231904jes</a>. [6] Smith, R. B.; Bazant, M. Z. Multiphase Porous Electrode Theory, J. Electrochem. Soc. 2017, 164 (11). <a href="https://doi.org/10.1149/2.0171711jes" rel="nofollow">https://doi.org/10.1149/2.0171711jes</a>. [7] Bazant, M. Z., Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Accounts of Chemical Research, 46(5), 1144–1160. <a href="https://doi.org/10.1021/ar300145c" rel="nofollow">https://doi.org/10.1021/ar300145c</a> [8] T. Gao, Y. Han, S. Das, T. Zhou, D. Fraggedakis, N. Nadkarni, C. N. Yeh, W. Chueh, J. Li, M.Z. Bazant, Interplay of lithium intercalation and plating on graphite using in-situ optical measurements, submitted. [9] Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; McCloskey, B. D.; Chueh, W. C. and Cui, Y.; Nano Letters 2019 19 (8), 5140-5148. DOI: 10.1021/acs.nanolett.9b01515</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817503"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817503"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817503; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817503]").text(description); $(".js-view-count[data-work-id=121817503]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817503; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817503']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817503, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121817503]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817503,"title":"Electrochemical Kinetics of Degradation of Graphite Anodes in Lithium Ion Batteries","translated_title":"","metadata":{"abstract":"Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Despite its importance, the fundamental mechanisms remain unclear, primarily because of the complicated reaction pathways involved[1–3]. SEI growth can be both electrochemical and chemical in nature[4], and thus, it is a strong function of the potential and degree of lithiation of the electrode. We model the early-stage and long-term growth of SEI by accurately capturing the potential dependence of its formation kinetics as well as long term rate limiting steps, and validating it against the world’s largest open source battery cycling data, generated in-house[5]. This is done using the Multiphase Porous Electrode Theory (MPET) framework[6] on graphite (phase separating) and carbon black (non phase separating) particles. Lithium plating is another key degradation phenomenon that has been elusive, and it becomes important while trying to fast-charge batteries, i.e., 0% - 80% state-of-charge in 30 mins. We show that lithium plating is a key function of electrode morphology, phase-separation dynamics and potential. Phase-separation in graphite is modeled in the electrode using the Cahn-Hilliard Reaction framework described by Bazant[7]. We understand the electrochemistry of the onset of lithium plating with in-situ measurements connected to real time cell potential in a phase-separating electrode for the first time[8]. Results indicate that the peak SEI-forming currents are higher for higher driving currents. Also, we find that SEI only grows during electrode lithiation, i.e. the battery only degrades while being charged. We also find that onset of lithium plating is correctly captured only when phase separation in active material is accounted for. Further, the onset of plating is delayed on electrodes with a thick SEI layer – understanding SEI/plating coupling is integral to predicting fast charging manufacturing protocols for LIBs. This work holds promise for the predictive design of procedures[9] for manufacture and formation of LIBs. [1] Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104, 12282–12291. https://doi.org/10.1021/jp002526b. [2] Horstmann, B.; Single, F.; Latz, A. Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation, Current Opinion in Electrochemistry 13, 62-69 2019. [3] Nie, M.; Abraham, D. P.; Seo, D. M.; Chen, Y.; Bose, A.; Lucht, B. L. Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. J. Phys. Chem. C 2013, 117 (48), 25381–25389, https://doi.org/10.1021/jp409765w. [4] Das, S.; Attia, P. M.; Chueh, W. C.; Bazant, M. Z. Electrochemical Kinetics of SEI Growth on Carbon Black: Part II. Modeling. J. Electrochem. Soc. 2019, 166 (4), E107– E118. https://doi.org/10.1149/2.0241904jes. [5] Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166 (4), E97–E106. https://doi.org/10.1149/2.0231904jes. [6] Smith, R. B.; Bazant, M. Z. Multiphase Porous Electrode Theory, J. Electrochem. Soc. 2017, 164 (11). https://doi.org/10.1149/2.0171711jes. [7] Bazant, M. Z., Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Accounts of Chemical Research, 46(5), 1144–1160. https://doi.org/10.1021/ar300145c [8] T. Gao, Y. Han, S. Das, T. Zhou, D. Fraggedakis, N. Nadkarni, C. N. Yeh, W. Chueh, J. Li, M.Z. Bazant, Interplay of lithium intercalation and plating on graphite using in-situ optical measurements, submitted. [9] Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; McCloskey, B. D.; Chueh, W. C. and Cui, Y.; Nano Letters 2019 19 (8), 5140-5148. DOI: 10.1021/acs.nanolett.9b01515","publisher":"Electrochemical Society","publication_date":{"day":1,"month":5,"year":2020,"errors":{}},"publication_name":"Meeting abstracts"},"translated_abstract":"Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Despite its importance, the fundamental mechanisms remain unclear, primarily because of the complicated reaction pathways involved[1–3]. SEI growth can be both electrochemical and chemical in nature[4], and thus, it is a strong function of the potential and degree of lithiation of the electrode. We model the early-stage and long-term growth of SEI by accurately capturing the potential dependence of its formation kinetics as well as long term rate limiting steps, and validating it against the world’s largest open source battery cycling data, generated in-house[5]. This is done using the Multiphase Porous Electrode Theory (MPET) framework[6] on graphite (phase separating) and carbon black (non phase separating) particles. Lithium plating is another key degradation phenomenon that has been elusive, and it becomes important while trying to fast-charge batteries, i.e., 0% - 80% state-of-charge in 30 mins. We show that lithium plating is a key function of electrode morphology, phase-separation dynamics and potential. Phase-separation in graphite is modeled in the electrode using the Cahn-Hilliard Reaction framework described by Bazant[7]. We understand the electrochemistry of the onset of lithium plating with in-situ measurements connected to real time cell potential in a phase-separating electrode for the first time[8]. Results indicate that the peak SEI-forming currents are higher for higher driving currents. Also, we find that SEI only grows during electrode lithiation, i.e. the battery only degrades while being charged. We also find that onset of lithium plating is correctly captured only when phase separation in active material is accounted for. Further, the onset of plating is delayed on electrodes with a thick SEI layer – understanding SEI/plating coupling is integral to predicting fast charging manufacturing protocols for LIBs. This work holds promise for the predictive design of procedures[9] for manufacture and formation of LIBs. [1] Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104, 12282–12291. https://doi.org/10.1021/jp002526b. [2] Horstmann, B.; Single, F.; Latz, A. Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation, Current Opinion in Electrochemistry 13, 62-69 2019. [3] Nie, M.; Abraham, D. P.; Seo, D. M.; Chen, Y.; Bose, A.; Lucht, B. L. Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. J. Phys. Chem. C 2013, 117 (48), 25381–25389, https://doi.org/10.1021/jp409765w. [4] Das, S.; Attia, P. M.; Chueh, W. C.; Bazant, M. Z. Electrochemical Kinetics of SEI Growth on Carbon Black: Part II. Modeling. J. Electrochem. Soc. 2019, 166 (4), E107– E118. https://doi.org/10.1149/2.0241904jes. [5] Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166 (4), E97–E106. https://doi.org/10.1149/2.0231904jes. [6] Smith, R. B.; Bazant, M. Z. Multiphase Porous Electrode Theory, J. Electrochem. Soc. 2017, 164 (11). https://doi.org/10.1149/2.0171711jes. [7] Bazant, M. Z., Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Accounts of Chemical Research, 46(5), 1144–1160. https://doi.org/10.1021/ar300145c [8] T. Gao, Y. Han, S. Das, T. Zhou, D. Fraggedakis, N. Nadkarni, C. N. Yeh, W. Chueh, J. Li, M.Z. Bazant, Interplay of lithium intercalation and plating on graphite using in-situ optical measurements, submitted. [9] Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; McCloskey, B. D.; Chueh, W. C. and Cui, Y.; Nano Letters 2019 19 (8), 5140-5148. DOI: 10.1021/acs.nanolett.9b01515","internal_url":"https://www.academia.edu/121817503/Electrochemical_Kinetics_of_Degradation_of_Graphite_Anodes_in_Lithium_Ion_Batteries","translated_internal_url":"","created_at":"2024-07-06T05:18:33.115-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electrochemical_Kinetics_of_Degradation_of_Graphite_Anodes_in_Lithium_Ion_Batteries","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":72820,"name":"Graphite","url":"https://www.academia.edu/Documents/in/Graphite"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":1131651,"name":"Anode","url":"https://www.academia.edu/Documents/in/Anode"},{"id":3604167,"name":"Meeting Abstracts","url":"https://www.academia.edu/Documents/in/Meeting_Abstracts"}],"urls":[{"id":43393523,"url":"https://doi.org/10.1149/ma2020-01164mtgabs"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817502"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817502/Simple_Formula_for_Marcus_Hush_Chidsey_Kinetics"><img alt="Research paper thumbnail of Simple Formula for Marcus-Hush-Chidsey Kinetics" class="work-thumbnail" src="https://attachments.academia-assets.com/116610085/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817502/Simple_Formula_for_Marcus_Hush_Chidsey_Kinetics">Simple Formula for Marcus-Hush-Chidsey Kinetics</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jul 21, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="edacf3be4ff708c7e9892e31230f69f3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610085,&quot;asset_id&quot;:121817502,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610085/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817502"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817502"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817502; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817502]").text(description); $(".js-view-count[data-work-id=121817502]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817502; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817502']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817502, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "edacf3be4ff708c7e9892e31230f69f3" } } $('.js-work-strip[data-work-id=121817502]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817502,"title":"Simple Formula for Marcus-Hush-Chidsey Kinetics","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"The Marcus-Hush-Chidsey (MHC) model is well known in electro-analytical chemistry as a successful microscopic theory of outer-sphere electron transfer at metal electrodes, but it is unfamiliar and rarely used in electrochemical engineering. One reason may be the difficulty of evaluating the MHC reaction rate, which is defined as an improper integral of the Marcus rate over the Fermi distribution of electron energies. Here, we report a simple analytical approximation of the MHC integral that interpolates between exact asymptotic limits for large overpotentials, as well as for large or small reorganization energies, and exhibits less than 5% relative error for all reasonable parameter values. This result enables the MHC model to be considered as a practical alternative to the ubiquitous Butler-Volmer equation for improved understanding and engineering of electrochemical systems.","publication_date":{"day":21,"month":7,"year":2014,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":116610085},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817502/Simple_Formula_for_Marcus_Hush_Chidsey_Kinetics","translated_internal_url":"","created_at":"2024-07-06T05:18:32.955-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610085,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610085/thumbnails/1.jpg","file_name":"1407.pdf","download_url":"https://www.academia.edu/attachments/116610085/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simple_Formula_for_Marcus_Hush_Chidsey_K.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610085/1407-libre.pdf?1720269709=\u0026response-content-disposition=attachment%3B+filename%3DSimple_Formula_for_Marcus_Hush_Chidsey_K.pdf\u0026Expires=1733026672\u0026Signature=U8RXVXQE3m5eZ3Aa9Whau8OUARibaO4ww6HI~vDOUlqpQtmdGQRf8CaOwu9JvQa3BHWZwHGjoiMd1F-BjC4eR2MWLrKYVqHyUuBkR0sFBfFWHzOUEr1Vo1C2vbSlTZqNEYUjZBSRD~V-zJeJoOcZELOkK6~N~C4gdoKwzLjc5t0TgxT83uJyCvMx0Pi1gc~TLge3LDsRfgOKGsEIcwC6N1DIWPhpxKLdqvod7~zwRD8KBDfefL~21qxbM~OFWsC4eaMDfyGjoLeUMBZYxYGEv8HWpHVLgLkI9lo34btS79gYDAh~plhI4c1Y1EYwt2Yoe1eTgFD8Dor1LS00mBo6~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Simple_Formula_for_Marcus_Hush_Chidsey_Kinetics","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610085,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610085/thumbnails/1.jpg","file_name":"1407.pdf","download_url":"https://www.academia.edu/attachments/116610085/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simple_Formula_for_Marcus_Hush_Chidsey_K.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610085/1407-libre.pdf?1720269709=\u0026response-content-disposition=attachment%3B+filename%3DSimple_Formula_for_Marcus_Hush_Chidsey_K.pdf\u0026Expires=1733026672\u0026Signature=U8RXVXQE3m5eZ3Aa9Whau8OUARibaO4ww6HI~vDOUlqpQtmdGQRf8CaOwu9JvQa3BHWZwHGjoiMd1F-BjC4eR2MWLrKYVqHyUuBkR0sFBfFWHzOUEr1Vo1C2vbSlTZqNEYUjZBSRD~V-zJeJoOcZELOkK6~N~C4gdoKwzLjc5t0TgxT83uJyCvMx0Pi1gc~TLge3LDsRfgOKGsEIcwC6N1DIWPhpxKLdqvod7~zwRD8KBDfefL~21qxbM~OFWsC4eaMDfyGjoLeUMBZYxYGEv8HWpHVLgLkI9lo34btS79gYDAh~plhI4c1Y1EYwt2Yoe1eTgFD8Dor1LS00mBo6~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":62806,"name":"Electroanalytical Chemistry","url":"https://www.academia.edu/Documents/in/Electroanalytical_Chemistry"},{"id":83359,"name":"Electron Transfer","url":"https://www.academia.edu/Documents/in/Electron_Transfer"},{"id":118104,"name":"Electron","url":"https://www.academia.edu/Documents/in/Electron"}],"urls":[{"id":43393522,"url":"http://arxiv.org/pdf/1407.5370"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817501"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817501/Droplet_breakup_in_flow_past_an_obstacle_A_capillary_instability_due_to_permeability_variations"><img alt="Research paper thumbnail of Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations" class="work-thumbnail" src="https://attachments.academia-assets.com/116610089/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817501/Droplet_breakup_in_flow_past_an_obstacle_A_capillary_instability_due_to_permeability_variations">Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations</a></div><div class="wp-workCard_item"><span>EPL</span><span>, Dec 1, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8b860b8f060bcbd0ba20a7b389742f0f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610089,&quot;asset_id&quot;:121817501,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610089/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817501"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817501"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817501; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817501]").text(description); $(".js-view-count[data-work-id=121817501]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817501; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817501']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817501, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8b860b8f060bcbd0ba20a7b389742f0f" } } $('.js-work-strip[data-work-id=121817501]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817501,"title":"Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations","translated_title":"","metadata":{"publisher":"EDP Sciences","grobid_abstract":"In multiphase flow in confined geometries an elementary event concerns the interaction of a droplet with an obstacle. As a model of this configuration we study the collision of a droplet with a circular post that spans a significant fraction of the cross section of a microfluidic channel. We demonstrate that there exist conditions for which a drop moves completely around the obstacle without breaking, while for the same geometry but higher speeds the drop breaks. Therefore, we identify a critical value of the capillary number above which a drop will break. We explain the results with a one-dimensional model characterizing the flow in the narrow gaps on either side of the obstacle, which identifies a surface-tension-driven instability associated with a variation in the permeability in the flow direction. The model captures the major features of the experimental observations.","publication_date":{"day":1,"month":12,"year":2010,"errors":{}},"publication_name":"EPL","grobid_abstract_attachment_id":116610089},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817501/Droplet_breakup_in_flow_past_an_obstacle_A_capillary_instability_due_to_permeability_variations","translated_internal_url":"","created_at":"2024-07-06T05:18:32.758-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610089,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610089/thumbnails/1.jpg","file_name":"articleEPL4has.pdf","download_url":"https://www.academia.edu/attachments/116610089/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Droplet_breakup_in_flow_past_an_obstacle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610089/articleEPL4has-libre.pdf?1720269708=\u0026response-content-disposition=attachment%3B+filename%3DDroplet_breakup_in_flow_past_an_obstacle.pdf\u0026Expires=1733026672\u0026Signature=WQpt6-4e7dPUTiDvrAwl7BuiBcEaXxrpCDJOphmuKlSxAjKVsJbmwatyrvkBwmj5HO7-7JGSsxqmZ1ENIK4J-JgTdKD8cURaTPHvy1pSop6JQ-fj7RZ03-Edcexe4BJwVwGBOCVFg08JCwm-bb-~0slo2E~tbym6EIoDabZfH0Br2ZQh2tTJChAWVGq9mf56pME3dN12CAZgVZAgmAxdr-qAOn~8uboF2gNubAql-uD0NIIBVk7zkP8OZwY5hOSYvi6QQI5ATijEK~sl0P21rwUMVhFp-L67dCPJRt1bDsaFO59WbOwZyIL4guYdgfBmb5lQ6g4aryp-pe6QeBUPKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Droplet_breakup_in_flow_past_an_obstacle_A_capillary_instability_due_to_permeability_variations","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610089,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610089/thumbnails/1.jpg","file_name":"articleEPL4has.pdf","download_url":"https://www.academia.edu/attachments/116610089/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Droplet_breakup_in_flow_past_an_obstacle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610089/articleEPL4has-libre.pdf?1720269708=\u0026response-content-disposition=attachment%3B+filename%3DDroplet_breakup_in_flow_past_an_obstacle.pdf\u0026Expires=1733026672\u0026Signature=WQpt6-4e7dPUTiDvrAwl7BuiBcEaXxrpCDJOphmuKlSxAjKVsJbmwatyrvkBwmj5HO7-7JGSsxqmZ1ENIK4J-JgTdKD8cURaTPHvy1pSop6JQ-fj7RZ03-Edcexe4BJwVwGBOCVFg08JCwm-bb-~0slo2E~tbym6EIoDabZfH0Br2ZQh2tTJChAWVGq9mf56pME3dN12CAZgVZAgmAxdr-qAOn~8uboF2gNubAql-uD0NIIBVk7zkP8OZwY5hOSYvi6QQI5ATijEK~sl0P21rwUMVhFp-L67dCPJRt1bDsaFO59WbOwZyIL4guYdgfBmb5lQ6g4aryp-pe6QeBUPKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116610087,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610087/thumbnails/1.jpg","file_name":"articleEPL4has.pdf","download_url":"https://www.academia.edu/attachments/116610087/download_file","bulk_download_file_name":"Droplet_breakup_in_flow_past_an_obstacle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610087/articleEPL4has-libre.pdf?1720269714=\u0026response-content-disposition=attachment%3B+filename%3DDroplet_breakup_in_flow_past_an_obstacle.pdf\u0026Expires=1733026672\u0026Signature=R1uSYLtGrvbj02Q2gCd5JTLAoaP0us4aIHiah9hHsJ24LqR50faowPyIYfEay3z8Nm3bY84~dsXYOeNbLBOcrFAXSOYsMWu7kSnYWY~gbpmCT94xZDonuS3Cfinsqq6aOqORP9K2oG01GsF5IUiSfehmSGN6DAP-IShMBgFWfd1j1vDj~STqWgklkqCbd14VN1AGZmphT~JTtNQpP7rPreubXDVoaaJppLy~sZO0fJZDPZXdwBrfuge7TASTNtl8dEB-9Ek2qB0SyhXA7frfwgVMEy6mT1LID9nJS~Y1qFrohkrs0teRzH61aJtje4uchGm-3N9Hs3hYi381rP84Pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":7114,"name":"Multiphase Flow","url":"https://www.academia.edu/Documents/in/Multiphase_Flow"},{"id":63679,"name":"Instability","url":"https://www.academia.edu/Documents/in/Instability"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":148392,"name":"EPL","url":"https://www.academia.edu/Documents/in/EPL"},{"id":394521,"name":"Surface Tension","url":"https://www.academia.edu/Documents/in/Surface_Tension"},{"id":404000,"name":"Cross Section","url":"https://www.academia.edu/Documents/in/Cross_Section"},{"id":758185,"name":"Capillary Number","url":"https://www.academia.edu/Documents/in/Capillary_Number"},{"id":895034,"name":"Obstacle","url":"https://www.academia.edu/Documents/in/Obstacle"},{"id":3735670,"name":"Critical value","url":"https://www.academia.edu/Documents/in/Critical_value"}],"urls":[{"id":43393521,"url":"https://dspace.mit.edu/bitstream/1721.1/69152/1/articleEPL4has.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817500"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817500/Origin_and_hysteresis_of_lithium_compositional_spatiodynamics_within_battery_primary_particles"><img alt="Research paper thumbnail of Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles" class="work-thumbnail" src="https://attachments.academia-assets.com/116610084/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817500/Origin_and_hysteresis_of_lithium_compositional_spatiodynamics_within_battery_primary_particles">Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles</a></div><div class="wp-workCard_item"><span>Science</span><span>, Aug 5, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1a3f0a7734655566bda9bc2e7dfb812f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610084,&quot;asset_id&quot;:121817500,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610084/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817500"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817500"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817500; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817500]").text(description); $(".js-view-count[data-work-id=121817500]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817500; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817500']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817500, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1a3f0a7734655566bda9bc2e7dfb812f" } } $('.js-work-strip[data-work-id=121817500]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817500,"title":"Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles","translated_title":"","metadata":{"publisher":"American Association for the Advancement of Science","grobid_abstract":"The kinetics and uniformity of ion insertion reactions at the solid-liquid interface govern the rate capability and lifetime, respectively, of electrochemical devices such as Li-ion batteries. Using an operando x-ray microscopy platform that maps the dynamics of the Li composition and insertion rate in Li x FePO 4 , we found that nanoscale spatial variations in rate and in composition control the lithiation pathway at the subparticle length scale. Specifically, spatial variations in the insertion rate constant lead to the formation of nonuniform domains, and the composition dependence of the rate constant amplifies nonuniformities during delithiation but suppresses them during lithiation, and moreover stabilizes the solid solution during lithiation. This coupling of lithium composition and surface reaction rates controls the kinetics and uniformity during electrochemical ion insertion.","publication_date":{"day":5,"month":8,"year":2016,"errors":{}},"publication_name":"Science","grobid_abstract_attachment_id":116610084},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817500/Origin_and_hysteresis_of_lithium_compositional_spatiodynamics_within_battery_primary_particles","translated_internal_url":"","created_at":"2024-07-06T05:18:32.576-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610084,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610084/thumbnails/1.jpg","file_name":"566.full.pdf","download_url":"https://www.academia.edu/attachments/116610084/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Origin_and_hysteresis_of_lithium_composi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610084/566.full-libre.pdf?1720269714=\u0026response-content-disposition=attachment%3B+filename%3DOrigin_and_hysteresis_of_lithium_composi.pdf\u0026Expires=1733026672\u0026Signature=VSvMDxH51uWtTsloIFmLhJjzEgBZFO7ObZXnKiLCN-pehzuvNr~0KSVQ5bL0Yxc0j5TpVTHe2nNrbq2MIlbHNkBKsTmjHJFDSpWjuhDBgW4sIPBd5PZ28ptbJa296gOA1CvDPV4X4D3LxNd2YKPZPKoYBH3gyoUOLJG9fXbeu~~fgEMarFvxzfGPl~2EdJiNml7aL0Q94xbcVyvn7w5rzooNql-o3QSd3qQaIoRVp8fVHW0JUTnwGX64ERAFcP4W1NCEA8c-RQaDgnnMDVxt~ax-8h9yqN2wRPVX6~zL-D1MBZT5ED0bGQDWmbJ8g0XeebY17aHYcMQK1y6kTPGefQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Origin_and_hysteresis_of_lithium_compositional_spatiodynamics_within_battery_primary_particles","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610084,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610084/thumbnails/1.jpg","file_name":"566.full.pdf","download_url":"https://www.academia.edu/attachments/116610084/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Origin_and_hysteresis_of_lithium_composi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610084/566.full-libre.pdf?1720269714=\u0026response-content-disposition=attachment%3B+filename%3DOrigin_and_hysteresis_of_lithium_composi.pdf\u0026Expires=1733026672\u0026Signature=VSvMDxH51uWtTsloIFmLhJjzEgBZFO7ObZXnKiLCN-pehzuvNr~0KSVQ5bL0Yxc0j5TpVTHe2nNrbq2MIlbHNkBKsTmjHJFDSpWjuhDBgW4sIPBd5PZ28ptbJa296gOA1CvDPV4X4D3LxNd2YKPZPKoYBH3gyoUOLJG9fXbeu~~fgEMarFvxzfGPl~2EdJiNml7aL0Q94xbcVyvn7w5rzooNql-o3QSd3qQaIoRVp8fVHW0JUTnwGX64ERAFcP4W1NCEA8c-RQaDgnnMDVxt~ax-8h9yqN2wRPVX6~zL-D1MBZT5ED0bGQDWmbJ8g0XeebY17aHYcMQK1y6kTPGefQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":6779,"name":"Science","url":"https://www.academia.edu/Documents/in/Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":43005,"name":"Hysteresis","url":"https://www.academia.edu/Documents/in/Hysteresis"},{"id":145369,"name":"Cycling","url":"https://www.academia.edu/Documents/in/Cycling"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"}],"urls":[{"id":43393520,"url":"https://science.sciencemag.org/content/sci/353/6299/566.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817499"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817499/Boundary_Layer_Analysis_of_Membraneless_Electrochemical_Cells"><img alt="Research paper thumbnail of Boundary Layer Analysis of Membraneless Electrochemical Cells" class="work-thumbnail" src="https://attachments.academia-assets.com/116610083/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817499/Boundary_Layer_Analysis_of_Membraneless_Electrochemical_Cells">Boundary Layer Analysis of Membraneless Electrochemical Cells</a></div><div class="wp-workCard_item"><span>Journal of The Electrochemical Society</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bb69d5d8ffb418d90388ba0d1bbd37ac" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610083,&quot;asset_id&quot;:121817499,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610083/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817499"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817499"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817499; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817499]").text(description); $(".js-view-count[data-work-id=121817499]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817499; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817499']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817499, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bb69d5d8ffb418d90388ba0d1bbd37ac" } } $('.js-work-strip[data-work-id=121817499]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817499,"title":"Boundary Layer Analysis of Membraneless Electrochemical Cells","translated_title":"","metadata":{"publisher":"Electrochemical Society","grobid_abstract":"A mathematical theory is presented for the charging and discharging behavior of membraneless electrochemical cells that rely on slow diffusion in laminar flow to separate the half reactions. Ion transport is described by the Nernst-Planck equations for a flowing quasi-neutral electrolyte with heterogeneous Butler-Volmer kinetics. Analytical approximations for the current-voltage relation and the concentration and potential profiles are derived by boundary layer analysis (in the relevant limit of large Peclet numbers) and validated against finite-element numerical solutions. Both Poiseuille and plug flows are considered to describe channels of various geometries, with and without porous flow channels. The tradeoff between power density and reactant crossover and utilization is predicted analytically. The theory is applied to the membrane-less Hydrogen Bromine Laminar Flow Battery and found to accurately predict the experimental and simulated current-voltage data for different flow rates and reactant concentrations, during both charging and discharging. This establishes the utility of the theory to understand and optimize the performance of membrane-less electrochemical flow cells, which could also be extended to other fluidic architectures.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Journal of The Electrochemical Society","grobid_abstract_attachment_id":116610083},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817499/Boundary_Layer_Analysis_of_Membraneless_Electrochemical_Cells","translated_internal_url":"","created_at":"2024-07-06T05:18:32.375-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610083,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610083/thumbnails/1.jpg","file_name":"Bazant_Boundary_20layer.pdf","download_url":"https://www.academia.edu/attachments/116610083/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Boundary_Layer_Analysis_of_Membraneless.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610083/Bazant_Boundary_20layer-libre.pdf?1720269720=\u0026response-content-disposition=attachment%3B+filename%3DBoundary_Layer_Analysis_of_Membraneless.pdf\u0026Expires=1733026672\u0026Signature=CC1VGNFrSjZCW3Ypt2UHVzCvY3fcybrgz~1sm1UMoMJSUGPiR7lwbGV3FzVs7m0VcZxYff1lp1r2~8ZKj0HcMmax6Gn87JV0C3zogU~RN9ig1UyLPfW7WsXmrQdPj71f5~wFB5f~VfFENUCAeUOdmnaxQzMVx1klrYplZ1cM7HPKv6MddFAfyIJxB3sowXnt1obXzt29aqIvYBOszSCgyIQljSCdhShe0wFvgl~yhLoo7WNR1KwxAh8Rng408PCApBmpzLUyuz7y8vCE~8Ryu9VZqS3NBuq5EZgAanXVxYsYmuuGI-JDtCyTY7bm3gcTNEDWVzWzAIL7ZOc98r-TSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Boundary_Layer_Analysis_of_Membraneless_Electrochemical_Cells","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610083,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610083/thumbnails/1.jpg","file_name":"Bazant_Boundary_20layer.pdf","download_url":"https://www.academia.edu/attachments/116610083/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Boundary_Layer_Analysis_of_Membraneless.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610083/Bazant_Boundary_20layer-libre.pdf?1720269720=\u0026response-content-disposition=attachment%3B+filename%3DBoundary_Layer_Analysis_of_Membraneless.pdf\u0026Expires=1733026672\u0026Signature=CC1VGNFrSjZCW3Ypt2UHVzCvY3fcybrgz~1sm1UMoMJSUGPiR7lwbGV3FzVs7m0VcZxYff1lp1r2~8ZKj0HcMmax6Gn87JV0C3zogU~RN9ig1UyLPfW7WsXmrQdPj71f5~wFB5f~VfFENUCAeUOdmnaxQzMVx1klrYplZ1cM7HPKv6MddFAfyIJxB3sowXnt1obXzt29aqIvYBOszSCgyIQljSCdhShe0wFvgl~yhLoo7WNR1KwxAh8Rng408PCApBmpzLUyuz7y8vCE~8Ryu9VZqS3NBuq5EZgAanXVxYsYmuuGI-JDtCyTY7bm3gcTNEDWVzWzAIL7ZOc98r-TSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":685326,"name":"Boundary Layer","url":"https://www.academia.edu/Documents/in/Boundary_Layer"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"}],"urls":[{"id":43393519,"url":"https://dspace.mit.edu/bitstream/1721.1/91489/1/Bazant_Boundary%20layer.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817498"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817498/Induced_Charge_Electrophoresis_of_Metallodielectric_Particles"><img alt="Research paper thumbnail of Induced-Charge Electrophoresis of Metallodielectric Particles" class="work-thumbnail" src="https://attachments.academia-assets.com/116610082/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817498/Induced_Charge_Electrophoresis_of_Metallodielectric_Particles">Induced-Charge Electrophoresis of Metallodielectric Particles</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, Feb 4, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d4f65a6c1a5892c785ded522d8d089a9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610082,&quot;asset_id&quot;:121817498,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610082/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817498"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817498"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817498; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817498]").text(description); $(".js-view-count[data-work-id=121817498]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817498; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817498']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817498, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d4f65a6c1a5892c785ded522d8d089a9" } } $('.js-work-strip[data-work-id=121817498]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817498,"title":"Induced-Charge Electrophoresis of Metallodielectric Particles","translated_title":"","metadata":{"publisher":"American Physical Society","grobid_abstract":"The application of AC electric fields in aqueous suspensions of anisotropic particles leads to unbalanced liquid flows and nonlinear, induced-charge electrophoretic (ICEP) motion. We report experimental observations of the motion of \"Janus\" microparticles with one dielectric and one metal-coated hemisphere induced by uniform fields of frequency 100 Hz-10 kHz in NaCl solutions. The motion is perpendicular to the field axis and persists after particles are attracted to a glass wall. This phenomenon may find applications in microactuators, microsensors, and microfluidic devices.","publication_date":{"day":4,"month":2,"year":2008,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":116610082},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817498/Induced_Charge_Electrophoresis_of_Metallodielectric_Particles","translated_internal_url":"","created_at":"2024-07-06T05:18:32.192-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610082,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610082/thumbnails/1.jpg","file_name":"0708.pdf","download_url":"https://www.academia.edu/attachments/116610082/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Induced_Charge_Electrophoresis_of_Metall.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610082/0708-libre.pdf?1720269707=\u0026response-content-disposition=attachment%3B+filename%3DInduced_Charge_Electrophoresis_of_Metall.pdf\u0026Expires=1733026672\u0026Signature=JsfwCLHfzPZfSHyReqDTiaUtFSb3o4GFqIqO65tVi7i96Wy-Mud3D516uf~AGJQn1bP2puyJ7zTZBqy4NiyWdFnygy~C2DTJTH-RtU0du7cmina1vKF27rdnS66MbDFt30OHHldcnDYqvqCrmXXofx~ooadbYz0YXsYl4wa8SWPB7LhLTew9X29xVWTKP0r~Tx9BXPeNdU-Kb5a6P9pywBwx0ZE~VKD-RmzvCFpO2oi4MpE~AbcmyZWivkIJTHCYucKe09jGaETrVkrKJ877GFac0wUFHf3f5ZDBPT2jia3fri6Eak2-VNj3SfYKYK5NZMzXncX1Y6~R5-ICqQRKHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Induced_Charge_Electrophoresis_of_Metallodielectric_Particles","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610082,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610082/thumbnails/1.jpg","file_name":"0708.pdf","download_url":"https://www.academia.edu/attachments/116610082/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Induced_Charge_Electrophoresis_of_Metall.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610082/0708-libre.pdf?1720269707=\u0026response-content-disposition=attachment%3B+filename%3DInduced_Charge_Electrophoresis_of_Metall.pdf\u0026Expires=1733026672\u0026Signature=JsfwCLHfzPZfSHyReqDTiaUtFSb3o4GFqIqO65tVi7i96Wy-Mud3D516uf~AGJQn1bP2puyJ7zTZBqy4NiyWdFnygy~C2DTJTH-RtU0du7cmina1vKF27rdnS66MbDFt30OHHldcnDYqvqCrmXXofx~ooadbYz0YXsYl4wa8SWPB7LhLTew9X29xVWTKP0r~Tx9BXPeNdU-Kb5a6P9pywBwx0ZE~VKD-RmzvCFpO2oi4MpE~AbcmyZWivkIJTHCYucKe09jGaETrVkrKJ877GFac0wUFHf3f5ZDBPT2jia3fri6Eak2-VNj3SfYKYK5NZMzXncX1Y6~R5-ICqQRKHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":102207,"name":"DIELECTRIC","url":"https://www.academia.edu/Documents/in/DIELECTRIC"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":247872,"name":"Janus Particles","url":"https://www.academia.edu/Documents/in/Janus_Particles"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":4094150,"name":"perpendicular","url":"https://www.academia.edu/Documents/in/perpendicular"}],"urls":[{"id":43393518,"url":"http://arxiv.org/pdf/0708.2417"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817497"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817497/_Invited_Digital_Presentation_Driven_Nucleation_and_Growth_in_Lithium_Batteries"><img alt="Research paper thumbnail of (Invited, Digital Presentation) Driven Nucleation and Growth in Lithium Batteries" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817497/_Invited_Digital_Presentation_Driven_Nucleation_and_Growth_in_Lithium_Batteries">(Invited, Digital Presentation) Driven Nucleation and Growth in Lithium Batteries</a></div><div class="wp-workCard_item"><span>Meeting abstracts</span><span>, Jul 7, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This talk will describe the physics of driven nucleation and growth in battery materials. The res...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This talk will describe the physics of driven nucleation and growth in battery materials. The resulting nonequilibrium pattern formation may be either reaction-limited or transport limited. Examples of the former include driven phase separation in Li-ion batteries, electrodeposition in Li-air batteries, and Li plating in Li-ion batteries, controlled by electro-autocatalysis and competing electrochemical reactions. Examples of the latter include stable electrodeposition in Li-metal batteries with charged porous separators, controlled by deionization shock waves.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817497"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817497"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817497; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817497]").text(description); $(".js-view-count[data-work-id=121817497]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817497; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817497']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817497, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121817497]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817497,"title":"(Invited, Digital Presentation) Driven Nucleation and Growth in Lithium Batteries","translated_title":"","metadata":{"abstract":"This talk will describe the physics of driven nucleation and growth in battery materials. The resulting nonequilibrium pattern formation may be either reaction-limited or transport limited. Examples of the former include driven phase separation in Li-ion batteries, electrodeposition in Li-air batteries, and Li plating in Li-ion batteries, controlled by electro-autocatalysis and competing electrochemical reactions. Examples of the latter include stable electrodeposition in Li-metal batteries with charged porous separators, controlled by deionization shock waves.","publisher":"Electrochemical Society","publication_date":{"day":7,"month":7,"year":2022,"errors":{}},"publication_name":"Meeting abstracts"},"translated_abstract":"This talk will describe the physics of driven nucleation and growth in battery materials. The resulting nonequilibrium pattern formation may be either reaction-limited or transport limited. Examples of the former include driven phase separation in Li-ion batteries, electrodeposition in Li-air batteries, and Li plating in Li-ion batteries, controlled by electro-autocatalysis and competing electrochemical reactions. Examples of the latter include stable electrodeposition in Li-metal batteries with charged porous separators, controlled by deionization shock waves.","internal_url":"https://www.academia.edu/121817497/_Invited_Digital_Presentation_Driven_Nucleation_and_Growth_in_Lithium_Batteries","translated_internal_url":"","created_at":"2024-07-06T05:18:32.007-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"_Invited_Digital_Presentation_Driven_Nucleation_and_Growth_in_Lithium_Batteries","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":756424,"name":"Autocatalysis","url":"https://www.academia.edu/Documents/in/Autocatalysis"},{"id":3604167,"name":"Meeting Abstracts","url":"https://www.academia.edu/Documents/in/Meeting_Abstracts"}],"urls":[{"id":43393517,"url":"https://doi.org/10.1149/ma2022-01231136mtgabs"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817496"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817496/Understanding_the_Interplay_between_Li_Intercalation_and_Li_Plating_Using_Single_Graphite_Particle_Electrochemistry"><img alt="Research paper thumbnail of Understanding the Interplay between Li Intercalation and Li Plating Using Single Graphite Particle Electrochemistry" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817496/Understanding_the_Interplay_between_Li_Intercalation_and_Li_Plating_Using_Single_Graphite_Particle_Electrochemistry">Understanding the Interplay between Li Intercalation and Li Plating Using Single Graphite Particle Electrochemistry</a></div><div class="wp-workCard_item"><span>Meeting abstracts</span><span>, May 1, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Potential safety hazard of lithium ion batteries, their long recharging time and performance degr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Potential safety hazard of lithium ion batteries, their long recharging time and performance degradation during usage are the major obstacles that prevent the wide adoption of electric vehicles in our society. Lithium plating on graphite anode is considered the leading cause of thermal runaway, degradation and the barrier for fast charging. However, the onset of lithium plating on graphite anodes is not well understood. For the first time, we resolved the spatial dynamics of lithiation of a single graphite particle using in-situ optical microscopy, and shed light on the interplay between lithium intercalation and plating. Enabled by simultaneously monitoring of the voltage, phase transformation and lithium plating, we are able to elucidate the energetics and kinetics of the two competing reactions, and establish a comprehensive mechanistic picture of Li plating mechanism on graphite anode. The proposed mechanism was further validated by simulation using a 1-D phase field model. This work is therefore providing insights on guidelines of designing graphite anode and operating LiB for reducing the risk of lithium plating.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817496"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817496"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817496; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817496]").text(description); $(".js-view-count[data-work-id=121817496]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817496; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817496']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817496, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121817496]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817496,"title":"Understanding the Interplay between Li Intercalation and Li Plating Using Single Graphite Particle Electrochemistry","translated_title":"","metadata":{"abstract":"Potential safety hazard of lithium ion batteries, their long recharging time and performance degradation during usage are the major obstacles that prevent the wide adoption of electric vehicles in our society. Lithium plating on graphite anode is considered the leading cause of thermal runaway, degradation and the barrier for fast charging. However, the onset of lithium plating on graphite anodes is not well understood. For the first time, we resolved the spatial dynamics of lithiation of a single graphite particle using in-situ optical microscopy, and shed light on the interplay between lithium intercalation and plating. Enabled by simultaneously monitoring of the voltage, phase transformation and lithium plating, we are able to elucidate the energetics and kinetics of the two competing reactions, and establish a comprehensive mechanistic picture of Li plating mechanism on graphite anode. The proposed mechanism was further validated by simulation using a 1-D phase field model. This work is therefore providing insights on guidelines of designing graphite anode and operating LiB for reducing the risk of lithium plating.","publisher":"Electrochemical Society","publication_date":{"day":1,"month":5,"year":2020,"errors":{}},"publication_name":"Meeting abstracts"},"translated_abstract":"Potential safety hazard of lithium ion batteries, their long recharging time and performance degradation during usage are the major obstacles that prevent the wide adoption of electric vehicles in our society. Lithium plating on graphite anode is considered the leading cause of thermal runaway, degradation and the barrier for fast charging. However, the onset of lithium plating on graphite anodes is not well understood. For the first time, we resolved the spatial dynamics of lithiation of a single graphite particle using in-situ optical microscopy, and shed light on the interplay between lithium intercalation and plating. Enabled by simultaneously monitoring of the voltage, phase transformation and lithium plating, we are able to elucidate the energetics and kinetics of the two competing reactions, and establish a comprehensive mechanistic picture of Li plating mechanism on graphite anode. The proposed mechanism was further validated by simulation using a 1-D phase field model. This work is therefore providing insights on guidelines of designing graphite anode and operating LiB for reducing the risk of lithium plating.","internal_url":"https://www.academia.edu/121817496/Understanding_the_Interplay_between_Li_Intercalation_and_Li_Plating_Using_Single_Graphite_Particle_Electrochemistry","translated_internal_url":"","created_at":"2024-07-06T05:18:31.732-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Understanding_the_Interplay_between_Li_Intercalation_and_Li_Plating_Using_Single_Graphite_Particle_Electrochemistry","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":72820,"name":"Graphite","url":"https://www.academia.edu/Documents/in/Graphite"},{"id":147028,"name":"Intercalation Chemistry","url":"https://www.academia.edu/Documents/in/Intercalation_Chemistry"},{"id":3604167,"name":"Meeting Abstracts","url":"https://www.academia.edu/Documents/in/Meeting_Abstracts"}],"urls":[{"id":43393516,"url":"https://doi.org/10.1149/ma2020-012447mtgabs"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817495"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817495/Fast_ac_electro_osmotic_micropumps_with_nonplanar_electrodes"><img alt="Research paper thumbnail of Fast ac electro-osmotic micropumps with nonplanar electrodes" class="work-thumbnail" src="https://attachments.academia-assets.com/116610100/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817495/Fast_ac_electro_osmotic_micropumps_with_nonplanar_electrodes">Fast ac electro-osmotic micropumps with nonplanar electrodes</a></div><div class="wp-workCard_item"><span>Applied Physics Letters</span><span>, Oct 2, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b2067a41ae072b000ee8261995f52785" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610100,&quot;asset_id&quot;:121817495,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610100/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817495"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817495"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817495; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817495]").text(description); $(".js-view-count[data-work-id=121817495]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817495; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817495']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817495, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b2067a41ae072b000ee8261995f52785" } } $('.js-work-strip[data-work-id=121817495]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817495,"title":"Fast ac electro-osmotic micropumps with nonplanar electrodes","translated_title":"","metadata":{"publisher":"American Institute of Physics","ai_title_tag":"3D Electro-Osmotic Micropumps: Enhanced Flow Rates and Efficiency","grobid_abstract":"This letter demonstrates dramatic improvements in flow rate and frequency range over conventional planar AC electro-osmotic (ACEO) pumps by exploiting three-dimensional (3D) stepped electrodes. A 3D ACEO pump was fabricated by electroplating steps on a symmetric electrode array and tested against a state-of-the-art asymmetric planar ACEO pump in a microfluidic loop. For all frequencies (0.1-100 kHz), the 3D pump had a faster flow rate, in some cases by an order of magnitude. Our experimental results suggest that, after some optimization, mm/sec velocities will be attainable with alternating battery voltages, which presents an exciting opportunity for microfluidics. Manuscript Microfluidics is a growing area of science and technology with important applications in biomedical devices and portable electronics. Traditional pressure-driven flows do not scale well with miniaturization, due to large viscous stresses, so other pumping techniques have been explored 1. An attractive alternative is electro-osmosis, the effective slip of a liquid electrolyte past a solid surface in","publication_date":{"day":2,"month":10,"year":2006,"errors":{}},"publication_name":"Applied Physics Letters","grobid_abstract_attachment_id":116610100},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817495/Fast_ac_electro_osmotic_micropumps_with_nonplanar_electrodes","translated_internal_url":"","created_at":"2024-07-06T05:18:31.499-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610100,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610100/thumbnails/1.jpg","file_name":"a08319f361f045bb3e279280c331c51774b2.pdf","download_url":"https://www.academia.edu/attachments/116610100/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fast_ac_electro_osmotic_micropumps_with.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610100/a08319f361f045bb3e279280c331c51774b2-libre.pdf?1720269697=\u0026response-content-disposition=attachment%3B+filename%3DFast_ac_electro_osmotic_micropumps_with.pdf\u0026Expires=1733026672\u0026Signature=VzBUYUDse6xLQNYQpTQ6g2MTCLyUR2V1Y0PJ0jdWlGFhiINrRs-LLCr7pHNvfwfYX5wBo1o~u08BJ7XZFYnuf~pAiZYzxr-0mVy4eEUyLgMzmUzzlgA5so3gx-GEHvRSvr6wVYcQLNdMmk29~d654QbO8Qkv0hv-qKQ8lfsDX5RUKWKzuutNQuzpkZF4bsJtdys8uFXA-j0g0y7xuKCexwNH7XHtuFtIcEGbMflrfVqJ1Wf01O5uGaZfJt1WEzUOI79hjBY-rkEEMRYNyrKoCHgjKPeuSfFAPNrUm-F73kRZ-22IPvP0lK4xWK2NmrmmIl7kvx3DerWDqtXx0loQug__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fast_ac_electro_osmotic_micropumps_with_nonplanar_electrodes","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610100,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610100/thumbnails/1.jpg","file_name":"a08319f361f045bb3e279280c331c51774b2.pdf","download_url":"https://www.academia.edu/attachments/116610100/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fast_ac_electro_osmotic_micropumps_with.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610100/a08319f361f045bb3e279280c331c51774b2-libre.pdf?1720269697=\u0026response-content-disposition=attachment%3B+filename%3DFast_ac_electro_osmotic_micropumps_with.pdf\u0026Expires=1733026672\u0026Signature=VzBUYUDse6xLQNYQpTQ6g2MTCLyUR2V1Y0PJ0jdWlGFhiINrRs-LLCr7pHNvfwfYX5wBo1o~u08BJ7XZFYnuf~pAiZYzxr-0mVy4eEUyLgMzmUzzlgA5so3gx-GEHvRSvr6wVYcQLNdMmk29~d654QbO8Qkv0hv-qKQ8lfsDX5RUKWKzuutNQuzpkZF4bsJtdys8uFXA-j0g0y7xuKCexwNH7XHtuFtIcEGbMflrfVqJ1Wf01O5uGaZfJt1WEzUOI79hjBY-rkEEMRYNyrKoCHgjKPeuSfFAPNrUm-F73kRZ-22IPvP0lK4xWK2NmrmmIl7kvx3DerWDqtXx0loQug__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":898062,"name":"Flow Rate","url":"https://www.academia.edu/Documents/in/Flow_Rate"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"}],"urls":[{"id":43393515,"url":"https://doi.org/10.1063/1.2358823"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817494"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817494/Electrochemical_Kinetics_of_Graphite_Degradation_in_Lithium_Ion_Batteries"><img alt="Research paper thumbnail of Electrochemical Kinetics of Graphite Degradation in Lithium-Ion Batteries" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817494/Electrochemical_Kinetics_of_Graphite_Degradation_in_Lithium_Ion_Batteries">Electrochemical Kinetics of Graphite Degradation in Lithium-Ion Batteries</a></div><div class="wp-workCard_item"><span>Meeting abstracts</span><span>, Nov 23, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Desp...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Despite its importance, the fundamental mechanisms remain unclear, primarily because of the complicated reaction pathways involved [1–3]. SEI growth can be both electrochemical and chemical in nature [4,5], and thus, it is a strong function of the potential and degree of lithiation of the electrode. We model the early-stage and long-term growth of SEI by accurately capturing the potential dependence of its formation kinetics as well as long term rate limiting steps. Battery degradation involves a complex interplay of multiple phenomena, most of which are unknown. Our model captures some of the essential trends that we see while cycling hundreds of commercial cells [6]. This is done using the Multiphase Porous Electrode Theory (MPET) framework [7] on graphite (phase separating) and carbon black (non phase separating) particles. Lithium plating is another key degradation phenomenon that has been elusive, and it becomes important while trying to fast-charge batteries, i.e., 0% - 80% state-of-charge in 30 mins. We show that lithium plating is a key function of electrode morphology, phase-separation dynamics and potential. Phase-separation in graphite is modeled in the electrode using the Cahn-Hilliard Reaction framework described by Bazant [8]. We understand the electrochemistry of the onset of lithium plating with in-situ measurements connected to real time cell potential in a phase-separating electrode [9]. Results indicate that the peak SEI-forming currents are higher for higher driving currents and that SEI only grows during electrode lithiation, i.e. the battery only degrades while being charged. Additionally we capture a transition in the time-dependence of capacity fade from a steep initial drop to a more gradual ‘square-root-of-time’ trend by modeling the SEI as a bilayer with different rate-limiting steps for each type of SEI. We also find that onset of lithium plating is correctly captured only when phase separation in active material is accounted for. Further, the onset of plating is delayed on electrodes with a thick SEI layer – understanding SEI/plating coupling is integral to predicting fast charging manufacturing protocols for LIBs. This work holds promise for the predictive design of procedures [10] for manufacture and formation of LIBs. [1] Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104, 12282–12291. <a href="https://doi.org/10.1021/jp002526b" rel="nofollow">https://doi.org/10.1021/jp002526b</a>. [2] Horstmann, B.; Single, F.; Latz, A. Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation, Current Opinion in Electrochemistry 13, 62-69 2019. [3] Nie, M.; Abraham, D. P.; Seo, D. M.; Chen, Y.; Bose, A.; Lucht, B. L. Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. J. Phys. Chem. C 2013, 117 (48), 25381–25389, <a href="https://doi.org/10.1021/jp409765w" rel="nofollow">https://doi.org/10.1021/jp409765w</a>. [4] Das, S.; Attia, P. M.; Chueh, W. C.; Bazant, M. Z. Electrochemical Kinetics of SEI Growth on Carbon Black: Part II. Modeling. J. Electrochem. Soc. 2019, 166 (4), E107– E118. <a href="https://doi.org/10.1149/2.0241904jes" rel="nofollow">https://doi.org/10.1149/2.0241904jes</a>. [5] Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166 (4), E97–E106. <a href="https://doi.org/10.1149/2.0231904jes" rel="nofollow">https://doi.org/10.1149/2.0231904jes</a>. [6] Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., ... &amp;amp;amp; Bazant, M. Z. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 4(5), 383-391. [7] Smith, R. B.; Bazant, M. Z. Multiphase Porous Electrode Theory, J. Electrochem. Soc. 2017, 164 (11). <a href="https://doi.org/10.1149/2.0171711jes" rel="nofollow">https://doi.org/10.1149/2.0171711jes</a>. [8] Bazant, M. Z., Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Accounts of Chemical Research, 46(5), 1144–1160. <a href="https://doi.org/10.1021/ar300145c" rel="nofollow">https://doi.org/10.1021/ar300145c</a> [9] T. Gao, Y. Han, S. Das, T. Zhou, D. Fraggedakis, N. Nadkarni, C. N. Yeh, W. Chueh, J. Li, M.Z. Bazant, Interplay of lithium intercalation and plating on graphite using in-situ optical measurements, submitted. [10] Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; McCloskey, B. D.; Chueh, W. C. and Cui, Y.; Nano Letters 2019 19 (8), 5140-5148. DOI: 10.1021/acs.nanolett.9b01515</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817494"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817494"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817494; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817494]").text(description); $(".js-view-count[data-work-id=121817494]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817494; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817494']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817494, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121817494]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817494,"title":"Electrochemical Kinetics of Graphite Degradation in Lithium-Ion Batteries","translated_title":"","metadata":{"abstract":"Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Despite its importance, the fundamental mechanisms remain unclear, primarily because of the complicated reaction pathways involved [1–3]. SEI growth can be both electrochemical and chemical in nature [4,5], and thus, it is a strong function of the potential and degree of lithiation of the electrode. We model the early-stage and long-term growth of SEI by accurately capturing the potential dependence of its formation kinetics as well as long term rate limiting steps. Battery degradation involves a complex interplay of multiple phenomena, most of which are unknown. Our model captures some of the essential trends that we see while cycling hundreds of commercial cells [6]. This is done using the Multiphase Porous Electrode Theory (MPET) framework [7] on graphite (phase separating) and carbon black (non phase separating) particles. Lithium plating is another key degradation phenomenon that has been elusive, and it becomes important while trying to fast-charge batteries, i.e., 0% - 80% state-of-charge in 30 mins. We show that lithium plating is a key function of electrode morphology, phase-separation dynamics and potential. Phase-separation in graphite is modeled in the electrode using the Cahn-Hilliard Reaction framework described by Bazant [8]. We understand the electrochemistry of the onset of lithium plating with in-situ measurements connected to real time cell potential in a phase-separating electrode [9]. Results indicate that the peak SEI-forming currents are higher for higher driving currents and that SEI only grows during electrode lithiation, i.e. the battery only degrades while being charged. Additionally we capture a transition in the time-dependence of capacity fade from a steep initial drop to a more gradual ‘square-root-of-time’ trend by modeling the SEI as a bilayer with different rate-limiting steps for each type of SEI. We also find that onset of lithium plating is correctly captured only when phase separation in active material is accounted for. Further, the onset of plating is delayed on electrodes with a thick SEI layer – understanding SEI/plating coupling is integral to predicting fast charging manufacturing protocols for LIBs. This work holds promise for the predictive design of procedures [10] for manufacture and formation of LIBs. [1] Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104, 12282–12291. https://doi.org/10.1021/jp002526b. [2] Horstmann, B.; Single, F.; Latz, A. Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation, Current Opinion in Electrochemistry 13, 62-69 2019. [3] Nie, M.; Abraham, D. P.; Seo, D. M.; Chen, Y.; Bose, A.; Lucht, B. L. Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. J. Phys. Chem. C 2013, 117 (48), 25381–25389, https://doi.org/10.1021/jp409765w. [4] Das, S.; Attia, P. M.; Chueh, W. C.; Bazant, M. Z. Electrochemical Kinetics of SEI Growth on Carbon Black: Part II. Modeling. J. Electrochem. Soc. 2019, 166 (4), E107– E118. https://doi.org/10.1149/2.0241904jes. [5] Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166 (4), E97–E106. https://doi.org/10.1149/2.0231904jes. [6] Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., ... \u0026amp;amp; Bazant, M. Z. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 4(5), 383-391. [7] Smith, R. B.; Bazant, M. Z. Multiphase Porous Electrode Theory, J. Electrochem. Soc. 2017, 164 (11). https://doi.org/10.1149/2.0171711jes. [8] Bazant, M. Z., Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Accounts of Chemical Research, 46(5), 1144–1160. https://doi.org/10.1021/ar300145c [9] T. Gao, Y. Han, S. Das, T. Zhou, D. Fraggedakis, N. Nadkarni, C. N. Yeh, W. Chueh, J. Li, M.Z. Bazant, Interplay of lithium intercalation and plating on graphite using in-situ optical measurements, submitted. [10] Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; McCloskey, B. D.; Chueh, W. C. and Cui, Y.; Nano Letters 2019 19 (8), 5140-5148. DOI: 10.1021/acs.nanolett.9b01515","publisher":"Electrochemical Society","publication_date":{"day":23,"month":11,"year":2020,"errors":{}},"publication_name":"Meeting abstracts"},"translated_abstract":"Growth of the solid electrolyte interphase (SEI) is a major driver of capacity fade in LIBs. Despite its importance, the fundamental mechanisms remain unclear, primarily because of the complicated reaction pathways involved [1–3]. SEI growth can be both electrochemical and chemical in nature [4,5], and thus, it is a strong function of the potential and degree of lithiation of the electrode. We model the early-stage and long-term growth of SEI by accurately capturing the potential dependence of its formation kinetics as well as long term rate limiting steps. Battery degradation involves a complex interplay of multiple phenomena, most of which are unknown. Our model captures some of the essential trends that we see while cycling hundreds of commercial cells [6]. This is done using the Multiphase Porous Electrode Theory (MPET) framework [7] on graphite (phase separating) and carbon black (non phase separating) particles. Lithium plating is another key degradation phenomenon that has been elusive, and it becomes important while trying to fast-charge batteries, i.e., 0% - 80% state-of-charge in 30 mins. We show that lithium plating is a key function of electrode morphology, phase-separation dynamics and potential. Phase-separation in graphite is modeled in the electrode using the Cahn-Hilliard Reaction framework described by Bazant [8]. We understand the electrochemistry of the onset of lithium plating with in-situ measurements connected to real time cell potential in a phase-separating electrode [9]. Results indicate that the peak SEI-forming currents are higher for higher driving currents and that SEI only grows during electrode lithiation, i.e. the battery only degrades while being charged. Additionally we capture a transition in the time-dependence of capacity fade from a steep initial drop to a more gradual ‘square-root-of-time’ trend by modeling the SEI as a bilayer with different rate-limiting steps for each type of SEI. We also find that onset of lithium plating is correctly captured only when phase separation in active material is accounted for. Further, the onset of plating is delayed on electrodes with a thick SEI layer – understanding SEI/plating coupling is integral to predicting fast charging manufacturing protocols for LIBs. This work holds promise for the predictive design of procedures [10] for manufacture and formation of LIBs. [1] Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104, 12282–12291. https://doi.org/10.1021/jp002526b. [2] Horstmann, B.; Single, F.; Latz, A. Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation, Current Opinion in Electrochemistry 13, 62-69 2019. [3] Nie, M.; Abraham, D. P.; Seo, D. M.; Chen, Y.; Bose, A.; Lucht, B. L. Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. J. Phys. Chem. C 2013, 117 (48), 25381–25389, https://doi.org/10.1021/jp409765w. [4] Das, S.; Attia, P. M.; Chueh, W. C.; Bazant, M. Z. Electrochemical Kinetics of SEI Growth on Carbon Black: Part II. Modeling. J. Electrochem. Soc. 2019, 166 (4), E107– E118. https://doi.org/10.1149/2.0241904jes. [5] Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166 (4), E97–E106. https://doi.org/10.1149/2.0231904jes. [6] Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., ... \u0026amp;amp; Bazant, M. Z. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 4(5), 383-391. [7] Smith, R. B.; Bazant, M. Z. Multiphase Porous Electrode Theory, J. Electrochem. Soc. 2017, 164 (11). https://doi.org/10.1149/2.0171711jes. [8] Bazant, M. Z., Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Accounts of Chemical Research, 46(5), 1144–1160. https://doi.org/10.1021/ar300145c [9] T. Gao, Y. Han, S. Das, T. Zhou, D. Fraggedakis, N. Nadkarni, C. N. Yeh, W. Chueh, J. Li, M.Z. Bazant, Interplay of lithium intercalation and plating on graphite using in-situ optical measurements, submitted. [10] Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; McCloskey, B. D.; Chueh, W. C. and Cui, Y.; Nano Letters 2019 19 (8), 5140-5148. DOI: 10.1021/acs.nanolett.9b01515","internal_url":"https://www.academia.edu/121817494/Electrochemical_Kinetics_of_Graphite_Degradation_in_Lithium_Ion_Batteries","translated_internal_url":"","created_at":"2024-07-06T05:18:31.314-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electrochemical_Kinetics_of_Graphite_Degradation_in_Lithium_Ion_Batteries","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":72820,"name":"Graphite","url":"https://www.academia.edu/Documents/in/Graphite"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":3604167,"name":"Meeting Abstracts","url":"https://www.academia.edu/Documents/in/Meeting_Abstracts"}],"urls":[{"id":43393514,"url":"https://doi.org/10.1149/ma2020-021110mtgabs"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817493"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817493/Electrochemical_Impedance_of_a_Battery_Electrode_with_Anisotropic_Active_Particles"><img alt="Research paper thumbnail of Electrochemical Impedance of a Battery Electrode with Anisotropic Active Particles" class="work-thumbnail" src="https://attachments.academia-assets.com/116610081/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817493/Electrochemical_Impedance_of_a_Battery_Electrode_with_Anisotropic_Active_Particles">Electrochemical Impedance of a Battery Electrode with Anisotropic Active Particles</a></div><div class="wp-workCard_item"><span>Electrochimica Acta</span><span>, Jun 1, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4eb1745daad4a75032b437a5915ee9ea" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610081,&quot;asset_id&quot;:121817493,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610081/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817493"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817493"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817493; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817493]").text(description); $(".js-view-count[data-work-id=121817493]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817493; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817493']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817493, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4eb1745daad4a75032b437a5915ee9ea" } } $('.js-work-strip[data-work-id=121817493]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817493,"title":"Electrochemical Impedance of a Battery Electrode with Anisotropic Active Particles","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Impedance of Battery Electrodes with Anisotropic Particles","grobid_abstract":"Electrochemical impedance spectra for battery electrodes are usually interpreted using models that assume isotropic active particles, having uniform current density and symmetric diffusivities. While this can be reasonable for amorphous or polycrystalline materials with randomly oriented grains, modern electrode materials increasingly consist of highly anisotropic, single-crystalline, nanoparticles, with different impedance characteristics. In this paper, analytical expressions are derived for the impedance of anisotropic particles with tensorial diffusivities and orientation-dependent surface reaction rates and capacitances. The resulting impedance spectrum contains clear signatures of the anisotropic material properties and aspect ratio, as well as statistical variations in any of these parameters.","publication_date":{"day":1,"month":6,"year":2014,"errors":{}},"publication_name":"Electrochimica Acta","grobid_abstract_attachment_id":116610081},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817493/Electrochemical_Impedance_of_a_Battery_Electrode_with_Anisotropic_Active_Particles","translated_internal_url":"","created_at":"2024-07-06T05:18:31.119-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610081,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610081/thumbnails/1.jpg","file_name":"Bazant_EMB_20to_20June_202016_20Electrochemical_20impedance.pdf","download_url":"https://www.academia.edu/attachments/116610081/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Electrochemical_Impedance_of_a_Battery_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610081/Bazant_EMB_20to_20June_202016_20Electrochemical_20impedance-libre.pdf?1720269730=\u0026response-content-disposition=attachment%3B+filename%3DElectrochemical_Impedance_of_a_Battery_E.pdf\u0026Expires=1733026672\u0026Signature=FSVoQIh0gxGVUrlRvttqDzer-q5ACguS0gduJO71fKhsoOm2U2Cjyl-r8RVZgGcgCh~nx1RJg08N2OPzbeZjvNvhNPil0ZrXSlFT7lnwI0HSqNv4fHA~2j8iBqY8Ps1yxCwQV1xNnod2IMf4s1uytAaHG7r6C1O1JHmxLBjf6hoMU6nugOlYV~r3NP3AYMeA2Ej4T1Ot8dKJxZZY3IiWxJ0WgEl8jylO~uH9xfAITBDtFZUR-wZKO8CRX1xrIgovFGP6I-M1Q1wd-Ynz8truJW4f9ujLlJIAJ2hOZ8BDMAQH4GaTWAV~7785GcB97vCBuRGwJQHB-m~mNIQdf1RF~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Electrochemical_Impedance_of_a_Battery_Electrode_with_Anisotropic_Active_Particles","translated_slug":"","page_count":67,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610081,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610081/thumbnails/1.jpg","file_name":"Bazant_EMB_20to_20June_202016_20Electrochemical_20impedance.pdf","download_url":"https://www.academia.edu/attachments/116610081/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Electrochemical_Impedance_of_a_Battery_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610081/Bazant_EMB_20to_20June_202016_20Electrochemical_20impedance-libre.pdf?1720269730=\u0026response-content-disposition=attachment%3B+filename%3DElectrochemical_Impedance_of_a_Battery_E.pdf\u0026Expires=1733026672\u0026Signature=FSVoQIh0gxGVUrlRvttqDzer-q5ACguS0gduJO71fKhsoOm2U2Cjyl-r8RVZgGcgCh~nx1RJg08N2OPzbeZjvNvhNPil0ZrXSlFT7lnwI0HSqNv4fHA~2j8iBqY8Ps1yxCwQV1xNnod2IMf4s1uytAaHG7r6C1O1JHmxLBjf6hoMU6nugOlYV~r3NP3AYMeA2Ej4T1Ot8dKJxZZY3IiWxJ0WgEl8jylO~uH9xfAITBDtFZUR-wZKO8CRX1xrIgovFGP6I-M1Q1wd-Ynz8truJW4f9ujLlJIAJ2hOZ8BDMAQH4GaTWAV~7785GcB97vCBuRGwJQHB-m~mNIQdf1RF~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116610080,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610080/thumbnails/1.jpg","file_name":"Bazant_EMB_20to_20June_202016_20Electrochemical_20impedance.pdf","download_url":"https://www.academia.edu/attachments/116610080/download_file","bulk_download_file_name":"Electrochemical_Impedance_of_a_Battery_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610080/Bazant_EMB_20to_20June_202016_20Electrochemical_20impedance-libre.pdf?1720269734=\u0026response-content-disposition=attachment%3B+filename%3DElectrochemical_Impedance_of_a_Battery_E.pdf\u0026Expires=1733026672\u0026Signature=THWM3FiDtskX~9YVLmztFPEVr~FVNE0Im2qirhZOuqzxhkHUSoD8nlKuz34VlOCvk6h1R9MSUMpB~GdqR~3go9~R-oa9djdHmiJDYNJ757z~7YmsNNX3WeR4WWFmoRE6edMRO6TNcQ7j06CWJuLm-z2~XTtL5HWInIlXCr1aF8XMWMd-AkIEAj6bH-wXTBgAw8B2PLHlVYGLWEGe~hf37e7tddckjdXXA6NLmFMHA7OfKZGoxtSV57-UxHy3bN6iWcSKJMDiMJNxshfRQBFWU7fL~WuHX7DyoxZnF2lTe1L7b7EAQQYcKqpKsShbweR-LjkLi0qI8vVQFMLRF5Do3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"},{"id":2493627,"name":"Electrical Impedance","url":"https://www.academia.edu/Documents/in/Electrical_Impedance"}],"urls":[{"id":43393513,"url":"https://dspace.mit.edu/bitstream/1721.1/110573/1/Bazant_EMB%20to%20June%202016%20Electrochemical%20impedance.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817492"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817492/Suppression_of_Phase_Separation_in_LiFePO_sub_4_sub_Nanoparticles_During_Battery_Discharge"><img alt="Research paper thumbnail of Suppression of Phase Separation in LiFePO&lt;sub&gt;4&lt;/sub&gt; Nanoparticles During Battery Discharge" class="work-thumbnail" src="https://attachments.academia-assets.com/116610079/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817492/Suppression_of_Phase_Separation_in_LiFePO_sub_4_sub_Nanoparticles_During_Battery_Discharge">Suppression of Phase Separation in LiFePO&lt;sub&gt;4&lt;/sub&gt; Nanoparticles During Battery Discharge</a></div><div class="wp-workCard_item"><span>Nano Letters</span><span>, Oct 20, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d5901437046dd0c903c057d86b6127c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610079,&quot;asset_id&quot;:121817492,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610079/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817492"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817492"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817492; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817492]").text(description); $(".js-view-count[data-work-id=121817492]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817492; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817492']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817492, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d5901437046dd0c903c057d86b6127c2" } } $('.js-work-strip[data-work-id=121817492]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817492,"title":"Suppression of Phase Separation in LiFePO\u003csub\u003e4\u003c/sub\u003e Nanoparticles During Battery Discharge","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Using a novel electrochemical phase-field model, we question the common belief that Li x FePO 4 nanoparticles separate into Li-rich and Li-poor phases during battery discharge. For small currents, spinodal decomposition or nucleation leads to moving phase boundaries. Above a critical current density (in the Tafel regime), the spinodal disappears, and particles fill homogeneously, which may explain the superior rate capability and long cycle life of nano-LiFePO 4 cathodes.","publication_date":{"day":20,"month":10,"year":2011,"errors":{}},"publication_name":"Nano Letters","grobid_abstract_attachment_id":116610079},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817492/Suppression_of_Phase_Separation_in_LiFePO_sub_4_sub_Nanoparticles_During_Battery_Discharge","translated_internal_url":"","created_at":"2024-07-06T05:18:29.908-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610079,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610079/thumbnails/1.jpg","file_name":"1108.pdf","download_url":"https://www.academia.edu/attachments/116610079/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Suppression_of_Phase_Separation_in_LiFeP.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610079/1108-libre.pdf?1720269730=\u0026response-content-disposition=attachment%3B+filename%3DSuppression_of_Phase_Separation_in_LiFeP.pdf\u0026Expires=1733026672\u0026Signature=STAYaEt5QOqAjOsu94PVervSdshFio7sRDy4bdTwadlVVTriWMcqHt5xa6NYt40iq8qrFBCpIj6nP8zGnjx9wb5b14qeC4lt70TfNTT8tZAwGXOcSosdf5d~KskyGDsjppBVdCFqGV3XIXa82Voj4pAV84EJoPe3PmIeS31QtYBfxkmqnmASWO1qb3Eo0isRmh-IekLCWh5CVH2RxdUwnrl73fIEQoOnO0FYXk8tSPF1A3aok9qhWT-lhXLKhZY57FVLq2Gc4LoFrWu1oUoRwBcZI2KO8SP7uF4pgz5nbR34EnDETE~FUYIWQYZxJKEugYZquSwI2ABTCMl090vK4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Suppression_of_Phase_Separation_in_LiFePO_sub_4_sub_Nanoparticles_During_Battery_Discharge","translated_slug":"","page_count":27,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610079,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610079/thumbnails/1.jpg","file_name":"1108.pdf","download_url":"https://www.academia.edu/attachments/116610079/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Suppression_of_Phase_Separation_in_LiFeP.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610079/1108-libre.pdf?1720269730=\u0026response-content-disposition=attachment%3B+filename%3DSuppression_of_Phase_Separation_in_LiFeP.pdf\u0026Expires=1733026672\u0026Signature=STAYaEt5QOqAjOsu94PVervSdshFio7sRDy4bdTwadlVVTriWMcqHt5xa6NYt40iq8qrFBCpIj6nP8zGnjx9wb5b14qeC4lt70TfNTT8tZAwGXOcSosdf5d~KskyGDsjppBVdCFqGV3XIXa82Voj4pAV84EJoPe3PmIeS31QtYBfxkmqnmASWO1qb3Eo0isRmh-IekLCWh5CVH2RxdUwnrl73fIEQoOnO0FYXk8tSPF1A3aok9qhWT-lhXLKhZY57FVLq2Gc4LoFrWu1oUoRwBcZI2KO8SP7uF4pgz5nbR34EnDETE~FUYIWQYZxJKEugYZquSwI2ABTCMl090vK4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116610078,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610078/thumbnails/1.jpg","file_name":"1108.pdf","download_url":"https://www.academia.edu/attachments/116610078/download_file","bulk_download_file_name":"Suppression_of_Phase_Separation_in_LiFeP.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610078/1108-libre.pdf?1720269740=\u0026response-content-disposition=attachment%3B+filename%3DSuppression_of_Phase_Separation_in_LiFeP.pdf\u0026Expires=1733026672\u0026Signature=c30gx94NzgUmLial~dvsew4lxf7PZ6s3Rm2E8ybaDPSBM2vtaovAje48866AE2h9v5XAUjasPaJmhiDzo6zLBZDeT~wt3fBmj4QJfTa8O1deMPyxplXR3KJ1rbUptCmzgUwrVOkeocnblMQkT3~NgquuugzIyCr4YK2eyEHEbvdbUimY45c5mjetWNc-l--xpCD5L~oipUCiHkwcoO1gsUvLeocK6wjM9MjFPe3g4OPmQ26MSm9YoMUXkJ3FcUBDjtmhOsZS~AgkelSucsLj844JYxxVy474GOh3ZOlrUu8oo84xSlahGOaRT-uhwqN16YvztWnfWnf3smhI2dyOXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":8950,"name":"Nanoparticle","url":"https://www.academia.edu/Documents/in/Nanoparticle"},{"id":9293,"name":"Lithium","url":"https://www.academia.edu/Documents/in/Lithium"},{"id":13621,"name":"Nanoparticles","url":"https://www.academia.edu/Documents/in/Nanoparticles"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":186094,"name":"Electron Transport","url":"https://www.academia.edu/Documents/in/Electron_Transport"},{"id":415783,"name":"Spinodal Decomposition","url":"https://www.academia.edu/Documents/in/Spinodal_Decomposition"},{"id":415784,"name":"Phase Separation","url":"https://www.academia.edu/Documents/in/Phase_Separation"},{"id":541785,"name":"Phosphates","url":"https://www.academia.edu/Documents/in/Phosphates"},{"id":846015,"name":"Electrodes","url":"https://www.academia.edu/Documents/in/Electrodes"},{"id":1012066,"name":"Spinodal","url":"https://www.academia.edu/Documents/in/Spinodal"},{"id":1131650,"name":"Cathode","url":"https://www.academia.edu/Documents/in/Cathode"}],"urls":[{"id":43393512,"url":"http://arxiv.org/pdf/1108.2326"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817491"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817491/Induced_Charge_Electrokinetic_Phenomena_Theory_and_Microfluidic_Applications"><img alt="Research paper thumbnail of Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/116610077/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817491/Induced_Charge_Electrokinetic_Phenomena_Theory_and_Microfluidic_Applications">Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, Feb 10, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0fb38f604823d82a6638217ecd497c39" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610077,&quot;asset_id&quot;:121817491,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610077/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817491"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817491"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817491; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817491]").text(description); $(".js-view-count[data-work-id=121817491]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817491; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817491']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817491, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0fb38f604823d82a6638217ecd497c39" } } $('.js-work-strip[data-work-id=121817491]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817491,"title":"Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications","translated_title":"","metadata":{"publisher":"American Physical Society","grobid_abstract":"We give a general, physical description of \"induced-charge electro-osmosis\" (ICEO), the nonlinear electrokinetic slip at a polarizable surface, in the context of some new techniques for microfluidic pumping and mixing. ICEO generalizes \"AC electro-osmosis\" at micro-electrode arrays to various dielectric and conducting structures in weak DC or AC electric fields. The basic effect produces micro-vortices to enhance mixing in microfluidic devices, while various broken symmetries-controlled potential, irregular shape, non-uniform surface properties, and field gradients-can be exploited to produce streaming flows. Although we emphasize the qualitative picture of ICEO, we also briefly describe the mathematical theory (for thin double layers and weak fields) and apply it to a metal cylinder with a dielectric coating in a suddenly applied DC field.","publication_date":{"day":10,"month":2,"year":2004,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":116610077},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817491/Induced_Charge_Electrokinetic_Phenomena_Theory_and_Microfluidic_Applications","translated_internal_url":"","created_at":"2024-07-06T05:18:29.715-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610077,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610077/thumbnails/1.jpg","file_name":"0306100.pdf","download_url":"https://www.academia.edu/attachments/116610077/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Induced_Charge_Electrokinetic_Phenomena.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610077/0306100-libre.pdf?1720269710=\u0026response-content-disposition=attachment%3B+filename%3DInduced_Charge_Electrokinetic_Phenomena.pdf\u0026Expires=1733026672\u0026Signature=dggjZO0rJUM03vFhevhb5u0Jqjk7gRRzHG9BJILHd7hMFB3U1iwUrE2Z3U3wcxJIMC0MTj9Ckpe0gF0Dy86cN-Pj673F7lTvYEJyUQLUV9FX4~XnsbWF5OKAD9tzv-kRK93JySd9v6UDW85-iEScUmTOHsAACfLX5PygZ-KQrC4GUPyxhzPcqTVC6o~wHJR8WqWeFxpOotL-m~cbKx0SEe~qjorD09FMkDXYlNolBK5kVVdwQ7Rt0~vTveoDbihJwlhSkMzGHXs-fF9b06UwrhKQIX6qdvBb0rkX4R-SbG7jQU3y2mGvB2HXRSObmjOjz2kIhd0oQs6nK84ogwaXVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Induced_Charge_Electrokinetic_Phenomena_Theory_and_Microfluidic_Applications","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610077,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610077/thumbnails/1.jpg","file_name":"0306100.pdf","download_url":"https://www.academia.edu/attachments/116610077/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Induced_Charge_Electrokinetic_Phenomena.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610077/0306100-libre.pdf?1720269710=\u0026response-content-disposition=attachment%3B+filename%3DInduced_Charge_Electrokinetic_Phenomena.pdf\u0026Expires=1733026672\u0026Signature=dggjZO0rJUM03vFhevhb5u0Jqjk7gRRzHG9BJILHd7hMFB3U1iwUrE2Z3U3wcxJIMC0MTj9Ckpe0gF0Dy86cN-Pj673F7lTvYEJyUQLUV9FX4~XnsbWF5OKAD9tzv-kRK93JySd9v6UDW85-iEScUmTOHsAACfLX5PygZ-KQrC4GUPyxhzPcqTVC6o~wHJR8WqWeFxpOotL-m~cbKx0SEe~qjorD09FMkDXYlNolBK5kVVdwQ7Rt0~vTveoDbihJwlhSkMzGHXs-fF9b06UwrhKQIX6qdvBb0rkX4R-SbG7jQU3y2mGvB2HXRSObmjOjz2kIhd0oQs6nK84ogwaXVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":53436,"name":"Microelectrode array","url":"https://www.academia.edu/Documents/in/Microelectrode_array"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":209105,"name":"Double Layer","url":"https://www.academia.edu/Documents/in/Double_Layer"},{"id":440924,"name":"Surface Properties","url":"https://www.academia.edu/Documents/in/Surface_Properties"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1306846,"name":"Electrostatic Induction","url":"https://www.academia.edu/Documents/in/Electrostatic_Induction"},{"id":1843565,"name":"Stream Flow","url":"https://www.academia.edu/Documents/in/Stream_Flow"}],"urls":[{"id":43393511,"url":"http://arxiv.org/pdf/physics/0306100"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817490/The_effect_of_step_height_on_the_performance_of_three_dimensional_ac_electro_osmotic_microfluidic_pumps"><img alt="Research paper thumbnail of The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps" class="work-thumbnail" src="https://attachments.academia-assets.com/116610099/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817490/The_effect_of_step_height_on_the_performance_of_three_dimensional_ac_electro_osmotic_microfluidic_pumps">The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps</a></div><div class="wp-workCard_item"><span>Journal of Colloid and Interface Science</span><span>, May 1, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="657ea7b42b439f96cd9133fc84b5e2d5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610099,&quot;asset_id&quot;:121817490,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610099/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817490]").text(description); $(".js-view-count[data-work-id=121817490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "657ea7b42b439f96cd9133fc84b5e2d5" } } $('.js-work-strip[data-work-id=121817490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817490,"title":"The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Impact of Step Height on 3D AC Electro-Osmotic Pump Performance","grobid_abstract":"Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the \"fluid conveyor belt\" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.","publication_date":{"day":1,"month":5,"year":2007,"errors":{}},"publication_name":"Journal of Colloid and Interface Science","grobid_abstract_attachment_id":116610099},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817490/The_effect_of_step_height_on_the_performance_of_three_dimensional_ac_electro_osmotic_microfluidic_pumps","translated_internal_url":"","created_at":"2024-07-06T05:18:29.512-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610099,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610099/thumbnails/1.jpg","file_name":"Urbanski_2007_J_Coll_Inter_Sci_ACEM3.pdf","download_url":"https://www.academia.edu/attachments/116610099/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_effect_of_step_height_on_the_perform.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610099/Urbanski_2007_J_Coll_Inter_Sci_ACEM3-libre.pdf?1720269695=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_step_height_on_the_perform.pdf\u0026Expires=1733026672\u0026Signature=MhgU3IJjEX5PRTlXrEZNsPBE9ICgZ61mPPNd2b4R91c9UxjQDy2RtMmTEYoVJ7wrDdlphMj2qrIEf22ePXqBuiV8IUSJx104x-z6q5z1tYH40mZZqsi-OCgnBLkYsQzLGF6pYaTNuxWY1f38S7xgR5B8ksBdvDeClkJpeUwvogy0NDCEv2bQ6mI32RzB9CXLV5wGAln7iGOVcCmyYj1uoV1embxWJx3DG0GKchYPPpOReZ44sxeLYskRzMPwgnyoG-JbCA69VHRi9ui~E5cOCS3UXBKCNj5y6wJ~poBC~Z~s-xVA-N2N4eEQmp-xrXY2AkhxYDwpRhZl6a4vavz7~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_effect_of_step_height_on_the_performance_of_three_dimensional_ac_electro_osmotic_microfluidic_pumps","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610099,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610099/thumbnails/1.jpg","file_name":"Urbanski_2007_J_Coll_Inter_Sci_ACEM3.pdf","download_url":"https://www.academia.edu/attachments/116610099/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_effect_of_step_height_on_the_perform.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610099/Urbanski_2007_J_Coll_Inter_Sci_ACEM3-libre.pdf?1720269695=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_step_height_on_the_perform.pdf\u0026Expires=1733026672\u0026Signature=MhgU3IJjEX5PRTlXrEZNsPBE9ICgZ61mPPNd2b4R91c9UxjQDy2RtMmTEYoVJ7wrDdlphMj2qrIEf22ePXqBuiV8IUSJx104x-z6q5z1tYH40mZZqsi-OCgnBLkYsQzLGF6pYaTNuxWY1f38S7xgR5B8ksBdvDeClkJpeUwvogy0NDCEv2bQ6mI32RzB9CXLV5wGAln7iGOVcCmyYj1uoV1embxWJx3DG0GKchYPPpOReZ44sxeLYskRzMPwgnyoG-JbCA69VHRi9ui~E5cOCS3UXBKCNj5y6wJ~poBC~Z~s-xVA-N2N4eEQmp-xrXY2AkhxYDwpRhZl6a4vavz7~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"},{"id":76608,"name":"Microfabrication","url":"https://www.academia.edu/Documents/in/Microfabrication"},{"id":87778,"name":"Electrokinetics","url":"https://www.academia.edu/Documents/in/Electrokinetics"},{"id":87779,"name":"Electrohydrodynamics","url":"https://www.academia.edu/Documents/in/Electrohydrodynamics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":215075,"name":"Experimental Study","url":"https://www.academia.edu/Documents/in/Experimental_Study"},{"id":225478,"name":"Electro-Osmosis","url":"https://www.academia.edu/Documents/in/Electro-Osmosis"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":389165,"name":"Voltage","url":"https://www.academia.edu/Documents/in/Voltage"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":609176,"name":"Osmosis","url":"https://www.academia.edu/Documents/in/Osmosis"},{"id":970774,"name":"Ionic Strength","url":"https://www.academia.edu/Documents/in/Ionic_Strength"},{"id":1115377,"name":"Colloid","url":"https://www.academia.edu/Documents/in/Colloid"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"}],"urls":[{"id":43393510,"url":"https://doi.org/10.1016/j.jcis.2007.01.095"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121817489"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121817489/Ultrafast_High_pressure_AC_Electro_osmotic_Pumps_for_Portable_Biomedical_Microfluidics"><img alt="Research paper thumbnail of Ultrafast High-pressure AC Electro-osmotic Pumps for Portable Biomedical Microfluidics" class="work-thumbnail" src="https://attachments.academia-assets.com/116610105/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121817489/Ultrafast_High_pressure_AC_Electro_osmotic_Pumps_for_Portable_Biomedical_Microfluidics">Ultrafast High-pressure AC Electro-osmotic Pumps for Portable Biomedical Microfluidics</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ae9fe24cea208778b9f36934d60ba9be" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116610105,&quot;asset_id&quot;:121817489,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116610105/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121817489"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121817489"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121817489; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121817489]").text(description); $(".js-view-count[data-work-id=121817489]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121817489; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121817489']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121817489, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ae9fe24cea208778b9f36934d60ba9be" } } $('.js-work-strip[data-work-id=121817489]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121817489,"title":"Ultrafast High-pressure AC Electro-osmotic Pumps for Portable Biomedical Microfluidics","translated_title":"","metadata":{"grobid_abstract":"In this paper, the development of a novel low power (mW), low current (mA) AC microfluidic pump is described that is capable of generating kPa head pressures.","publication_date":{"day":1,"month":10,"year":2009,"errors":{}},"grobid_abstract_attachment_id":116610105},"translated_abstract":null,"internal_url":"https://www.academia.edu/121817489/Ultrafast_High_pressure_AC_Electro_osmotic_Pumps_for_Portable_Biomedical_Microfluidics","translated_internal_url":"","created_at":"2024-07-06T05:18:29.364-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":212365431,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116610105,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610105/thumbnails/1.jpg","file_name":"0908.pdf","download_url":"https://www.academia.edu/attachments/116610105/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultrafast_High_pressure_AC_Electro_osmot.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610105/0908-libre.pdf?1720269699=\u0026response-content-disposition=attachment%3B+filename%3DUltrafast_High_pressure_AC_Electro_osmot.pdf\u0026Expires=1733026672\u0026Signature=WwbWR3hUHRVFjjT7A3nhstsuPchPEr9qAQ1-VVcnztyxZsJ39inGrr-YA2XcFKmtZDQ133r4Rfx8byMXrQ-XNG21F7GQ5ICo35NuI50kmJb-7LRwa1a-9ZpY~XxjA7IV67NAbVs3ITSVqb31nL0C5ixbF8LxEW8nHfEKAFjK4MhkDwXBwQfORQfJEABDLVU8r7kWrE9xK5SkTYBg84hyaiMP7olNeBtcDasXf-AYI8Y5W7LB5qOqu~k-wgP9KXSbUoLYDF5wvfUlpB1ttSbdZoWqb2cacloUUzo9tMlNdTi-JHPexVuKCaoWnDH-rAuBdsMI-0aGcJu65~lll6vOSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ultrafast_High_pressure_AC_Electro_osmotic_Pumps_for_Portable_Biomedical_Microfluidics","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":212365431,"first_name":"Martin","middle_initials":null,"last_name":"Bazant","page_name":"MartinBazant","domain_name":"independent","created_at":"2022-01-14T11:23:45.012-08:00","display_name":"Martin Bazant","url":"https://independent.academia.edu/MartinBazant"},"attachments":[{"id":116610105,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116610105/thumbnails/1.jpg","file_name":"0908.pdf","download_url":"https://www.academia.edu/attachments/116610105/download_file?st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&st=MTczMzAyMzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultrafast_High_pressure_AC_Electro_osmot.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116610105/0908-libre.pdf?1720269699=\u0026response-content-disposition=attachment%3B+filename%3DUltrafast_High_pressure_AC_Electro_osmot.pdf\u0026Expires=1733026672\u0026Signature=WwbWR3hUHRVFjjT7A3nhstsuPchPEr9qAQ1-VVcnztyxZsJ39inGrr-YA2XcFKmtZDQ133r4Rfx8byMXrQ-XNG21F7GQ5ICo35NuI50kmJb-7LRwa1a-9ZpY~XxjA7IV67NAbVs3ITSVqb31nL0C5ixbF8LxEW8nHfEKAFjK4MhkDwXBwQfORQfJEABDLVU8r7kWrE9xK5SkTYBg84hyaiMP7olNeBtcDasXf-AYI8Y5W7LB5qOqu~k-wgP9KXSbUoLYDF5wvfUlpB1ttSbdZoWqb2cacloUUzo9tMlNdTi-JHPexVuKCaoWnDH-rAuBdsMI-0aGcJu65~lll6vOSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":4107,"name":"High Pressure","url":"https://www.academia.edu/Documents/in/High_Pressure"},{"id":11669,"name":"Lab On A Chip","url":"https://www.academia.edu/Documents/in/Lab_On_A_Chip"},{"id":16496,"name":"Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Fluid_Dynamics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":66744,"name":"Biomedical Research","url":"https://www.academia.edu/Documents/in/Biomedical_Research"},{"id":129385,"name":"DNA hybridization","url":"https://www.academia.edu/Documents/in/DNA_hybridization"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":291038,"name":"Pressure","url":"https://www.academia.edu/Documents/in/Pressure"},{"id":437832,"name":"Distilled Water","url":"https://www.academia.edu/Documents/in/Distilled_Water"},{"id":846015,"name":"Electrodes","url":"https://www.academia.edu/Documents/in/Electrodes"},{"id":925816,"name":"Electroosmosis","url":"https://www.academia.edu/Documents/in/Electroosmosis"},{"id":970774,"name":"Ionic Strength","url":"https://www.academia.edu/Documents/in/Ionic_Strength"},{"id":1145520,"name":"Equipment Design","url":"https://www.academia.edu/Documents/in/Equipment_Design"},{"id":1155594,"name":"Lab on a chip Devices","url":"https://www.academia.edu/Documents/in/Lab_on_a_chip_Devices"},{"id":2430296,"name":"Proof of Concept","url":"https://www.academia.edu/Documents/in/Proof_of_Concept"}],"urls":[{"id":43393509,"url":"https://dspace.mit.edu/openaccess-disseminate/1721.1/69641"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "e4334a817e7807eefa3a0c8751f223626017b356ba9d977b4870b8eca404e7b9", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="2wtHQW6q90j0LZf6Ztz1TgN2nbb+F+1i21l2nAgBj+7AuZiwxIYTaTsiqCP41/FxHXdq9eKf3t29yuTgH9/UPQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/MartinBazant" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="dIP2NTWl6+su36nezPrwKzkFtldZ2R9eTQ5f8O8BuPNvMSnEn4kPyuHQlgdS8fQUJwRBFEVRLOErnc2M+N/jIA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10