CINXE.COM
ACP - Recent
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!--[if lt IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 lt-ie7 co-ui"> <![endif]--> <!--[if IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 co-ui"> <![endif]--> <!--[if IE 8]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 co-ui"> <![endif]--> <!--[if gt IE 8]><!--> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js co-ui"> <!--<![endif]--> <!-- remove class no-js if js is available --><head> <!-- BEGIN_HEAD --> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="theme-color" content="#000000" /> <meta name="application-name" content="1" /> <meta name="msapplication-TileColor" content="#FFFFFF" /> <link rel="preconnect" crossorigin="" href="https://contentmanager.copernicus.org/" /><link rel="icon" size="16x16" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_16x16_.ico" type="image/x-icon" /><link rel="icon" size="24x24" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_24x24_.ico" type="image/x-icon" /><link rel="icon" size="32x32" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_32x32_.ico" type="image/x-icon" /><link rel="icon" size="48x48" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_48x48_.ico" type="image/x-icon" /><link rel="icon" size="64x64" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_64x64_.ico" type="image/x-icon" /><link rel="icon" size="228x228" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_228x228_.png" type="image/png-icon" /><link rel="icon" size="195x195" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_195x195_.png" type="image/png-icon" /><link rel="icon" size="196x196" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_196x196_.png" type="image/png-icon" /><link rel="icon" size="128x128" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_128x128_.png" type="image/png-icon" /><link rel="icon" size="96x96" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_96x96_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="180x180" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_180x180_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="120x120" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_120x120_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="152x152" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_152x152_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="76x76" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_76x76_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="57x57" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_57x57_.ico" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="144x144" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_144x144_.png" type="image/png-icon" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/mustache/2.3.0/mustache.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/jquery.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/js/copernicus.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/htmlgenerator-v2.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.js"></script><link rel="stylesheet" type="text/css" media="all" id="hasBootstrap" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-media.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-grid.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-reboot.min.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/popper.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/bootstrap.min.js"></script><link rel="preconnect" crossorigin="" href="https://cdn.copernicus.org/" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/copernicus-min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/fontawesome.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/fonts/FontAwesome/5.11.2_and_4.7.0/css/all.font.css" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/237997/10/ssl" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/2154804/10/ssl" /><link rel="stylesheet" type="text/css" media="print" href="https://contentmanager.copernicus.org/2154805/10/ssl" /><script src="https://contentmanager.copernicus.org/1672/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/1468/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/402/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/2154808/10/ssl" type="text/javascript"> </script><!-- END_HEAD --><meta name="global_projectID" content="10" /><meta name="global_pageID" content="297" /><meta name="global_pageIdentifier" content="home" /><meta name="global_moBaseURL" content="https://meetingorganizer.copernicus.org/" /><meta name="global_projectShortcut" content="ACP" /><meta name="global_projectDomain" content="https://www.atmospheric-chemistry-and-physics.net/" /> <title>ACP - Recent</title> <meta name="data-non-mobile-optimized-message" content="" /><script id="networker"> window.isSafari = /^((?!chrome|android).)*safari/i.test(navigator.userAgent); /** * */ function createToastsFunctionality() { const toastsWrapper = $('<div>') .attr('aria-live', 'polite') .attr('aria-atomic', 'true') .addClass('toasts-notifications-wrapper'); $('body').append(toastsWrapper); } function isOS() { return [ 'iPad Simulator', 'iPhone Simulator', 'iPod Simulator', 'iPad', 'iPhone', 'iPod' ].includes(navigator.platform) || (navigator.userAgent.includes("Mac") && "ontouchend" in document) } /** * * @param notificationContent */ function addToast(notificationContent) { const toast = $('<div>').addClass('toast').attr('role', 'alert').attr('aria-live', 'assertive') .attr('aria-atomic', 'true').attr('data-autohide', 'false'); const toastHeader = $('<div>').addClass('toast-header'); const toastHeaderTitle = $('<strong>').addClass('mr-auto').html(notificationContent.title); const toastHeaderCloseButton = $('<button>').addClass('ml-2').addClass('mb-1').addClass('close').attr('type', 'button') .attr('data-dismiss', 'toast'); const toastHeaderCloseIcon = $('<span>').attr('aria-hidden', 'true').html('×'); let url = ''; if (notificationContent.hasOwnProperty('url')) { url = notificationContent.url; } else { url = 'https://networker.copernicus.org/my-network'; } const toastBody = $('<div>').addClass('toast-body').html('<a target="_blank" href="' + url + '">' + notificationContent.text + '</a>'); $(toastHeaderCloseButton).append(toastHeaderCloseIcon); $(toastHeader).append(toastHeaderTitle); $(toastHeader).append(toastHeaderCloseButton); $(toast).append(toastHeader); $(toast).append(toastBody); $('.toasts-notifications-wrapper').append(toast); $('.toast').toast('show'); } function coNetworker_sendUsersLocation(location, userHash, publicLabel, projectID, application) { if (templateHasBootstrap()) { createToastsFunctionality(); } userHash = userHash || 'null'; location = location || 'c_content_manager::getProjectTemplateMobileOpt'; publicLabel = publicLabel || ''; if (publicLabel === ''){ publicLabel = location; } if (userHash !== null && userHash.length > 5) { try { if(typeof window.ws === 'undefined' || window.ws === null || !window.ws) { window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } else { window.ws.close(1000); window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } const data = { 'type': 'status', 'action': 'start', 'data': { 'userIdentifier': userHash, 'projectID': projectID, 'coApp': application, 'location': location, 'publicLabel': publicLabel } }; if (window.ws === 1) { window.ws.send(JSON.stringify(data)); } else { window.ws.onopen = function (msg) { window.ws.send(JSON.stringify(data)); dispatchEvent(new CustomEvent('loadCommonNetworker')); }; window.ws.onmessage = function (event) { try { const data = JSON.parse(event.data); switch (data.type) { case 'notification': const pushNotificationData = data.data; if (pushNotificationData.hasOwnProperty('user') && pushNotificationData.user.length > 5 && pushNotificationData.user === userHash) { window.showPushNotification(pushNotificationData); } break; } } catch (e) { console.log(e); } } } } catch (e) { console.error(e); } } } window.showPushNotification = function (notificationContent) { showMessage(notificationContent); function showMessage(notificationContent){ if (templateHasBootstrap()) { showBootstrapModal(notificationContent); } } function showBootstrapModal(notificationContent) { const randomId = getRandomInt(100,999); let modal = $('<div>').addClass('modal').attr('id', 'modal-notification' + randomId); let modalDialog = $('<div>').addClass('modal-dialog'); let modalContent = $('<div>').addClass('modal-content'); let modalBody = $('<div>').addClass('modal-body'); let message = $('<div>').addClass('modal-push-message').html('<h3 class="mb-3">' + notificationContent.title + '</h3><p>' + notificationContent.text + '</p>'); let buttonsWrapper = $('<div>').addClass('row'); let buttonsWrapperCol = $('<div>').addClass('col-12').addClass('text-right'); let buttonCancel = $('<button>').addClass('btn').addClass('btn-danger').addClass('mr-2').html('Cancel') let buttonSuccess = $('<button>').addClass('btn').addClass('btn-success').html('OK') $(buttonsWrapper).append(buttonsWrapperCol); $(buttonsWrapperCol).append(buttonCancel); $(buttonsWrapperCol).append(buttonSuccess); $(modalBody).append(message).append(buttonsWrapper); $(modalContent).append(modalBody); $(modalDialog).append(modalContent); $(modal).append(modalDialog); $(buttonCancel).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); }); $(buttonSuccess).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); handleOnclickNotification(notificationContent); }); $(modal).modal('show'); setTimeout(() => { dispatchEvent(new CustomEvent('modalLoaded', {'detail': 'modal-notification' + randomId})); }, 1000); } window.addEventListener('modalLoaded', function (event) { setTimeout(() => { $('#' + event.detail).modal('hide'); }, 9000); }); function handleOnclickNotification(notificationContent) { if (notificationContent.hasOwnProperty('withConnect') && notificationContent.withConnect.length > 0) { acceptContactRequest(notificationContent); } if (notificationContent.hasOwnProperty('url')) { if (window.isSafari && isOS()) { window.location.href = notificationContent.url; } else { window.open(notificationContent.url, '_blank').focus(); } } else { if (window.isSafari && isOS()) { window.open('https://networker.copernicus.org/my-network', '_blank'); } else { window.open('https://networker.copernicus.org/my-network', '_blank').focus(); } } } /** * * @param notificationContent */ function acceptContactRequest(notificationContent) { const formData = new FormData(); formData.append('r', notificationContent.userFrom); formData.append('a', 'a'); $.ajax({ url: 'https://networker.copernicus.org/handle-request-job', type: 'POST', data: formData, processData: false, contentType: false, xhrFields: { withCredentials: true }, beforeSend: function () { $('.splash').fadeIn(); $('.lightbox').fadeIn(); } }) .done(function (dataResponse) { const data = JSON.parse(dataResponse); let text = 'Please consider joining the text chat now.'; window.sendPushNotification({ title: window.userDataCommonNetworker.name + ' aims to chat with you.', text: text, user: data.message.userIdentifier, url: notificationContent.url }); $('.splash').fadeOut(); $('.lightbox').fadeOut(); }) .fail(function (error) { $('.splash').fadeOut(); $('.lightbox').fadeOut(); }); } } function templateHasBootstrap() { const bootstrap = document.getElementById('hasBootstrap'); return bootstrap !== null && typeof bootstrap !== 'undefined'; } coNetworker_sendUsersLocation(); dispatchEvent(new CustomEvent('loadCommonNetworker')); function getRandomInt(min, max) { min = Math.ceil(min); max = Math.floor(max); return Math.floor(Math.random() * (max - min + 1)) + min; } </script> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css"> <base href="/"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/apps/htmlgenerator/css/htmlgenerator.css?v=1"> <meta name="citation_fulltext_world_readable" content=""> <meta name="citation_publisher" content=""/> <meta name="citation_title" content=""/> <meta name="citation_abstract" content=""/> <meta name="citation_journal_title" content=""/> <meta name="citation_doi" content="https://doi.org/"/> <meta name="citation_firstpage" content=""/> <meta name="citation_lastpage" content=""/> <meta name="citation_xml_url" content=""/> <meta name="citation_language" content="English"/> <meta name="libraryUrl" content=""/> <link rel="icon" href="https://www.atmospheric-chemistry-and-physics.net/favicon.ico" type="image/x-icon"/> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/template_jquery-ui-touch.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/js/respond.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/highstock/2.0.4/highstock.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/CoPublisher.js"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { fonts: ["TeX"] ,linebreaks: { automatic: true, width: "90% container" } } }); </script> <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=MML_HTMLorMML-full"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script> <script type="text/javascript"> /* <![CDATA[ */ /* ]]> */ </script> <style type="text/css"> .top_menu { margin-right: 0!important; } </style> </head><body><header id="printheader" class="d-none d-print-block container"> <img src="https://contentmanager.copernicus.org/800952/10/ssl" alt="" style="width: 508px; height: 223px;" /> </header> <header class="d-print-none mb-n3 version-2023"> <div class="container"> <div class="row no-gutters mr-0 ml-0 align-items-center header-wrapper mb-lg-3"> <div class="col-auto pr-3"> <div class="layout__moodboard-logo-year-container"> <a class="layout__moodboard-logo-link" target="_blank" href="http://www.egu.eu"> <div class="layout__moodboard-logo"> <img src="https://contentmanager.copernicus.org/800952/10/ssl" alt="" style="width: 508px; height: 223px;" /> </div> </a> </div> </div> <div class="d-none d-lg-block col text-md-right layout__title-desktop"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> Atmospheric Chemistry and Physics </a> </div> </div> <div class="d-none d-md-block d-lg-none col text-md-right layout__title-tablet"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> Atmospheric Chemistry and Physics </a> </div> </div> <div class="col layout__m-location-and-time-mobile d-md-none text-center layout__title-mobile"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> ACP </a> </div> <!-- End Logo --> <div class="col-auto text-right"> <button class="navbar-toggler light mx-auto mr-sm-0" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbar_menu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon light"></span> </button> </div> <!-- Topbar --> <div class="topbar d-print-none"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </div> <!-- End Topbar --> </div> </div> <div class="banner-navigation-breadcrumbs-wrapper"> <div id="navigation"> <nav class="container navbar navbar-expand-lg navbar-light"><!-- Logo --> <div class="collapse navbar-collapse CMSCONTAINER" id="navbar_menu"> <div id="cmsbox_126167" class="cmsbox navbar-collapse"><button style="display: none;" class="navbar-toggler navigation-extended-toggle-button" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="navbar-collapse CMSCONTAINER collapse show" id="navbarSupportedContent"> <ul class="navbar-nav mr-auto no-styling"> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/home.html"><i class='fal fa-home fa-lg' title='Home'></i></a> </li> <li class="nav-item megamenu "> <a target="_self" class="nav-link dropdown-toggle active " href="#" id="navbarDropdown10845" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Articles & preprints <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10845"> <div class="container"> <div class="row"> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Recent</div> <div class="dropdown-item level-2 active " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/">Recent papers</a> </div> <div class="dropdown-header">Highlights</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/acp_letters.html">ACP Letters</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/editors_choice.html">Editor's choice</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/opinion.html">Opinions</a> </div> <div class="dropdown-header">Regular articles</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/research_article.html">Research articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/review_article.html">Review articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/measurement_report.html">Measurement reports</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/technical_note.html">Technical notes</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Special issues</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/special_issue_overview.html">SI overview articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/special_issues.html">Published SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/scheduled_sis.html">Scheduled SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/how_to_apply_for_an_si.html">How to apply for an SI</a> </div> <div class="dropdown-header">EGU Compilations</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egu-letters.net/">EGU Letters</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://encyclopedia-of-geosciences.net/">Encyclopedia of Geosciences</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egusphere.net/">EGUsphere</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Alerts</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/subscribe_to_alerts.html">Subscribe to alerts</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/submission.html">Submission</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown10849" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Policies <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10849"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/licence_and_copyright.html">Licence & copyright</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/general_terms.html">General terms</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/guidelines_for_authors.html">Guidelines for authors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/guidelines_for_editors.html">Guidelines for editors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/publication_policy.html">Publication policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/data_policy.html">Data policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/publication_ethics.html">Publication ethics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/inclusivity_in_global_research.html">Inclusivity in global research</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/competing_interests_policy.html">Competing interests policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/appeals_and_complaints.html">Appeals & complaints</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/proofreading_guidelines.html">Proofreading guidelines</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_authors.html">Obligations for authors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_editors.html">Obligations for editors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_referees.html">Obligations for referees</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/author_name_change.html">Inclusive author name-change policy</a> </div> </div> </div> </div> </div> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown300" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Peer review <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown300"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/interactive_review_process.html">Interactive review process</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/finding_an_editor.html">Finding an editor</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/review_criteria.html">Review criteria</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a data-non-mobile-optimized="1" target="_parent" class="" href="https://editor.copernicus.org/ACP/my_manuscript_overview">Manuscript tracking</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/reviewer_recognition.html">Reviewer recognition</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/editorial_board.html">Editorial board</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown29677" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Awards <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown29677"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/outstanding-referee-awards.html">Outstanding referee awards</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/outstanding-editor-award.html">Outstanding editor award</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/paul-crutzen-publication-award.html">Paul Crutzen Publication award</a> </div> </div> </div> </div> </div> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown6086" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">About <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown6086"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/aims_and_scope.html">Aims & scope</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/subject_areas.html">Subject areas</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/manuscript_types.html">Manuscript types</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/article_processing_charges.html">Article processing charges</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/financial_support.html">Financial support</a> </div> <div class="dropdown dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="dropdown-toggle dropdown-item " href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press.html" > News & press<span class="caret"></span> </a> <div class="dropdown-menu level-2 " aria-labelledby="navbarDropdown316"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2019-11-27_thanks-to-cristina-facchini-and-rolf-sander-and-welcome-to-barbara-ervens.html">Many thanks to Cristina Facchini and Rolf Sander and welcome to Barbara Ervens as executive editor of ACP</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2020-08-28_first-acp-letter-published.html">First ACP Letter: The value of remote marine aerosol measurements for constraining radiative forcing uncertainty</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-01-14_atmospheric-evolution-of-emissions-from-a-boreal-forest-fire-the-formation-of-highly-functionalized-oxygen-nitrogen-and-sulfur-containing-organic-compounds.html">Atmospheric evolution of emissions from a boreal forest fire: the formation of highly functionalized oxygen-, nitrogen-, and sulfur-containing organic compounds</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-04-25_observing-the-timescales-of-aerosol-cloud-interactions-in-snapshot-satellite-images.html">Observing the timescales of aerosol–cloud interactions in snapshot satellite images</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-10-15_new-acp-letter-how-alkaline-compounds-control-atmospheric-aerosol-particle-acidity.html">New ACP Letter: How alkaline compounds control atmospheric aerosol particle acidity</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-11-16_changes-in-biomass-burning-wetland-extent-or-agriculture-drive-atmospheric-nh3-trends-in-select-african-regions.html">Changes in biomass burning, wetland extent, or agriculture drive atmospheric NH3 trends in select African regions</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2022-07-18_two-of-acps-founding-executive-editors-step-down.html">Two of ACP's founding executive editors step down</a> </div> </div> </div> </div> </div> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/egu_resources.html">EGU resources</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/promote_your_work.html">Promote your work</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/journal_statistics.html">Journal statistics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/journal_metrics.html">Journal metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/abstracted_and_indexed.html">Abstracted & indexed</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/article_level_metrics.html">Article level metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/faqs.html">FAQs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/contact.html">Contact</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/xml_harvesting_and_oai-pmh.html">XML harvesting & OAI-PMH</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/egu_publications.html">EGU publications</a> </li> <li class="nav-item "> <a target="_blank" class="nav-link " data-non-mobile-optimized="1" href="https://editor.copernicus.org/ACP/"><i class='fal fa-sign-in-alt fa-lg' title='Login'></i></a> </li> <!-- Topbar --> <li class="d-print-none d-lg-none pt-2 topbar-mobile"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </li> <!-- End Topbar --> </ul> </div> </div></div> </nav> </div> <section id="banner" class="banner dzsparallaxer use-loading auto-init height-is-based-on-content mode-scroll loaded dzsprx-readyall"> <div class="divimage dzsparallaxer--target layout__moodboard-banner" data-src="" style=""></div> <div id="headers-content-container" class="container CMSCONTAINER"> <div id="cmsbox_126230" class="cmsbox "> <span class="header-small text-uppercase"> </span> <h1 class="display-4 header-get-function home-header hide-md-on-version2023"> Recent </h1> </div></div> </section> <div id="breadcrumbs" class="breadcrumbs"> <div class="container"> <div class="row align-items-center"> <div class="d-none d-sm-block text-nowrap pageactions"></div> <!-- START_SEARCH --> <!-- END_SEARCH --> <!-- The template part snippet fo breadcrubs is in source code--> <div class="justify-content-between col-auto col-md CMSCONTAINER" id="breadcrumbs_content_container"><div id="cmsbox_1088152" class="cmsbox "><!-- tpl: templates/get_functions/get_breadcrumbs/index --> <!-- START_BREADCRUMBS_CONTAINER --> <ol class="breadcrumb"> <!-- START_BREADCRUMBS --> <li class="breadcrumb-item home"><a href="https://www.atmospheric-chemistry-and-physics.net">Home</a></li> <li class="breadcrumb-item"><a href="https://ACP.copernicus.org">Articles & preprints</a></li> <!-- END_BREADCRUMBS --> </ol> <!-- END_BREADCRUMBS_CONTAINER --> </div></div> <div class="col col-md-4 text-right page-search CMSCONTAINER" id="search_content_container"><div id="cmsbox_1088035" class="cmsbox "><!-- v1.31 --> <!-- 1.31: added placeholder for test system sanitizing--> <!-- 1.3: #855 --> <!-- 1.2: #166 --> <!-- CMS ressources/FinderBreadcrumbBox.html --> <!-- START_SITE_SEARCH --> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div> <div class="row align-items-center no-gutters py-1" id="search-wrapper"> <div class="col-auto pl-0 pr-1"> <a id="templateSearchInfoBtn" role="button" tabindex="99" data-container="body" data-toggle="popover" data-placement="bottom" data-trigger="click"><span class="fal fa-info-circle"></span></a> </div> <div class="col pl-0 pr-1"> <input type="search" placeholder="Search" name="q" class="form-control form-control-sm" id="search_query_solr"/> </div> <div class="col-auto pl-0"> <button title="Start site search" id="start_site_search_solr" class="btn btn-sm btn-success"><span class="co-search"></span></button> </div> </div> <div class="text-left"> <div id="templateSearchInfo" class="d-none"> <div> <p> Multiple terms: term1 term2<br /> <i>red apples</i><br /> returns results with all terms like:<br /> <i>Fructose levels in <strong>red</strong> and <strong>green</strong> apples</i><br /> </p> <p> Precise match in quotes: "term1 term2"<br /> <i>"red apples"</i><br /> returns results matching exactly like:<br /> <i>Anthocyanin biosynthesis in <strong>red apples</strong></i><br /> </p> <p> Exclude a term with -: term1 -term2<br /> <i>apples -red</i><br /> returns results containing <i><strong>apples</strong></i> but not <i><strong>red</strong></i>:<br /> <i>Malic acid in green <strong>apples</strong></i><br /> </p> </div> </div> <div class="modal " id="templateSearchResultModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content"> <div class="modal-header modal-header--sticky shadow one-column d-block"> <div class="row no-gutters mx-1"> <div class="col mr-3"> <h1 class="" id="resultsSearchHeader"><span id="templateSearchResultNr"></span> hit<span id="templateSearchResultNrPlural">s</span> for <span id="templateSearchResultTerm"></span></h1> </div> <div class="col-auto"> <a id="scrolltopmodal" href="javascript:void(0)" onclick="scrollModalTop();" style="display: none;"><i class="co-home"></i></a> </div> <div class="col-auto"> <button data-dismiss="modal" aria-label="Close" class="btn btn-danger mt-1">Close</button> </div> </div> </div> <div class="modal-body one-column"> <!-- $$co-sanitizing-slot1$$ --> <div class="grid-container mx-n3"><div class="grid-85 tablet-grid-85"> <button aria-label="Refine" id="refineSearchModal" class="btn btn-primary float-left mt-4">Refine your search</button> <button aria-label="Refine" id="refineSearchModalHide" class="btn btn-danger float-left d-none mt-4">Hide refinement</button> </div></div> <div class="grid-container mx-n3"><div class="grid-100 tablet-grid-100"><div id="templateRefineSearch" class="d-none"></div></div></div> <div id="templateSearchResultContainer" class="searchResultsModal mx-n3"></div> <div class="grid-container mb-0"><div class="grid-100 tablet-grid-100"><div id="templateSearchResultContainerEmpty" class="co-notification d-none">There are no results for your search term.</div></div></div> </div> </div> </div> </div> </div> <!-- feedback network problems --> <div class="modal " id="templateSearchErrorModal1" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Network problems</h1> <div class="co-error">We are sorry, but your search could not be completed due to network problems. Please try again later.</div> </div> </div> </div> </div> <!-- feedback server timeout --> <div class="modal " id="templateSearchErrorModal2" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Server timeout</h1> <div class="co-error">We are sorry, but your search could not be completed due to server timeouts. Please try again later.</div> </div> </div> </div> </div> <!-- feedback invalid search term --> <div class="modal " id="templateSearchErrorModal3" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Empty search term</h1> <div class="co-error">You have applied the search with an empty search term. Please revisit and try again.</div> </div> </div> </div> </div> <!-- feedback too many requests --> <div class="modal " id="templateSearchErrorModal4" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Too many requests</h1> <div class="co-error">We are sorry, but we have received too many parallel search requests. Please try again later.</div> </div> </div> </div> </div> <!-- loading --> <div class="modal " id="templateSearchLoadingModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-sm modal-dialog-centered"> <div class="modal-content p-3 co_LoadingDotsContainer"> <div class="modal-body"> <div class="text">Searching</div> <div class="dots d-flex justify-content-center"><div class="dot"></div><div class="dot"></div><div class="dot"></div></div></div> </div> </div> </div> </div> <style> /*.modal {*/ /* background: rgba(255, 255, 255, 0.8);*/ /*}*/ .modal-header--sticky { position: sticky; top: 0; background-color: inherit; z-index: 1055; } .grid-container { margin-bottom: 1em; /*padding-left: 0;*/ /*padding-right: 0;*/ } #templateSearchInfo{ display: none; background-color: var(--background-color-primary); margin-top: 1px; z-index: 5; border: 1px solid var(--color-primary); opacity: .8; font-size: .7rem; border-radius: .25rem; } #templateSearchLoadingModal .co_LoadingDotsContainer { z-index: 1000; } #templateSearchLoadingModal .co_LoadingDotsContainer .text { text-align: center; font-weight: bold; padding-bottom: 1rem; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot { background-color: #0072BC; border: 2px solid white; border-radius: 50%; float: left; height: 2rem; width: 2rem; margin: 0 5px; -webkit-transform: scale(0); transform: scale(0); -webkit-animation: animation_dots_breath 1000ms ease infinite 0ms; animation: animation_dots_breath 1000ms ease infinite 0ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(2) { -webkit-animation: animation_dots_breath 1000ms ease infinite 300ms; animation: animation_dots_breath 1000ms ease infinite 300ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(3) { -webkit-animation: animation_dots_breath 1000ms ease infinite 600ms; animation: animation_dots_breath 1000ms ease infinite 600ms; } #templateSearchResultModal [class*="grid-"] { padding-left: 10px !important; padding-right: 10px !important; } #templateSearchResultTerm { font-weight: bold; } #resultsSearchHeader { display: block !important; } #scrolltopmodal { font-size: 3.0em; margin-top: 0 !important; margin-right: 15px; } @-webkit-keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @media (min-width: 768px) and (max-width: 991px) { #templateSearchResultModal .modal-dialog { max-width: 90%; } } </style> <script> if(document.querySelector('meta[name="global_moBaseURL"]').content == "https://meetingorganizer.copernicus.org/") FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder-app')+"search/library.php"; else FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder')+"search/library.php"; SEARCH_INPUT = document.getElementById('search_query_solr'); SEARCH_INPUT_MODAL = document.getElementById('search_query_modal'); searchRunning = false; offset = 20; INITIAL_OFFSET = 20; var MutationObserver = window.MutationObserver || window.WebKitMutationObserver || window.MozMutationObserver; const targetNodeSearchModal = document.getElementById("templateSearchResultModal"); const configSearchModal = { attributes: true, childList: true, subtree: true }; // Callback function to execute when mutations are observed const callbackSearchModal = (mutationList, observer) => { for (const mutation of mutationList) { if (mutation.type === "childList") { // console.log("A child node has been added or removed."); picturesGallery(); } else if (mutation.type === "attributes") { // console.log(`The ${mutation.attributeName} attribute was modified.`); } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callbackSearchModal); // Start observing the target node for configured mutations observer.observe(targetNodeSearchModal, configSearchModal); function _addEventListener() { document.getElementById('search_query_solr').addEventListener('keypress', (e) => { if (e.key === 'Enter') _runSearch(); }); document.getElementById('start_site_search_solr').addEventListener('click', (e) => { _runSearch(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $('#templateSearchResultModal').scroll(function() { if ($(this).scrollTop()) { $('#scrolltopmodal:hidden').stop(true, true).fadeIn().css("display","inline-block"); } else { $('#scrolltopmodal').stop(true, true).fadeOut(); } }); } function scrollModalTop() { $('#templateSearchResultModal').animate({ scrollTop: 0 }, 'slow'); // $('#templateSearchResultModal').scrollTop(0); } function picturesGallery() { $('body').off('click', '.paperlist-avatar img'); $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; if (typeof search_gallery != "undefined") { search_gallery = null; } $('body').on('click', '#templateSearchResultContainer .paperlist-avatar img', function (e) { if(searchPaperListAvatarThumb.length === 0 && searchPaperListAvatar.length === 0) { $('#templateSearchResultContainer .paperlist-avatar img').each(function () { var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption = $(this).attr('data-caption'); var figure = { src: webversion, w: width, h: height, title: caption }; searchPaperListAvatarThumb.push($(this)[0]); searchPaperListAvatar.push(figure); }); } var target = $(this); var index = $('#templateSearchResultContainer .paperlist-avatar img').index(target); var options = { showHideOpacity:false, bgOpacity:0.8, index:index, spacing:0.15, history: false, focus:false, getThumbBoundsFn: function(index) { var thumbnail = searchPaperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; search_gallery = new PhotoSwipe( search_pswpElement, PhotoSwipeUI_Default,[searchPaperListAvatar[index]],options); search_gallery.init(); }); } function showError(code, msg) { console.error(code, msg); $("#templateSearchLoadingModal").modal("hide"); switch(code) { case -3: // http request fail case -2: // invalid MO response case 4: // CORS case 1: // project $("#templateSearchErrorModal1").modal({}); break; case -1: // timeout $("#templateSearchErrorModal2").modal({}); break; case 2: // empty term $("#templateSearchErrorModal3").modal({}); break; case 3: // DOS $("#templateSearchErrorModal4").modal({}); break; default: $("#templateSearchErrorModal1").modal({}); break; } } function clearForm() { var myFormElement = document.getElementById("library-filters") var elements = myFormElement.elements; $(".form-check-input").prop('checked', false).change().parent().removeClass('active'); for(i=0; i<elements.length; i++) { field_type = elements[i].type.toLowerCase(); switch(field_type) { case "text": case "password": case "textarea": case "hidden": elements[i].value = ""; break; case "radio": case "checkbox": if (elements[i].checked) { elements[i].checked = false; } break; case "select-one": case "select-multi": elements[i].selectedIndex = -1; break; default: break; } } } function generateShowMoreButton(offset, term) { var code = '<button aria-label="ShowMore" id="showMore" class="btn btn-success float-right mr-2" data-offset="' + offset + '">Show more</button>'; return code; } function hideModal(id) { $("#"+id).modal('hide'); } function showModal(id) { $("#"+id).modal({}); } function prepareForPhotoSwipe() { searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; } function _sendAjax(projectID, term) { let httpRequest = new XMLHttpRequest(); if(searchRunning) { console.log("Search running"); return; } if (!httpRequest) { console.error("Giving up :( Cannot create an XMLHTTP instance"); showError(-1); return false; } // httpRequest.timeout = 20000; // time in milliseconds httpRequest.withCredentials = false; httpRequest.ontimeout = (e) => { showError(-1, "result timeout"); searchRunning = false; }; httpRequest.onreadystatechange = function() { if (httpRequest.readyState === XMLHttpRequest.DONE) { searchRunning = false; if (httpRequest.status === 200) { let rs = JSON.parse(httpRequest.responseText); if(rs) { if(rs.isError) { showError(rs.errorCode, rs.errorMessage); } else { let html = rs.resultHTMLs; $("#modal_search_query").val(rs.term); $("#templateSearchResultTerm").html(rs.term); $("#templateSearchResultNr").html(rs.resultsNr); $("#templateRefineSearch").html(rs.filter); if(rs.filter == false) { console.log('filter empty'); $("#refineSearchModal").removeClass('d-block').addClass('d-none'); } if(rs.resultsNr==1) $("#templateSearchResultNrPlural").hide(); else $("#templateSearchResultNrPlural").show(); if(rs.resultsNr==0) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(""); $("#templateSearchResultContainerEmpty").removeClass("d-none"); showModal('templateSearchResultModal'); } else { if((rs.resultsNr - offset)>0) { html = html + generateShowMoreButton(offset, term); } $("#templateSearchResultContainerEmpty").addClass("d-none"); if( offset == INITIAL_OFFSET) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(html); showModal('templateSearchResultModal'); } else { $('#showMore').remove(); startHtml = $("#templateSearchResultContainer").html(); $("#templateSearchResultContainer").html(startHtml + html); } // prepareForPhotoSwipe(); } } } else { showError(-2, "invalid result"); } } else { showError(-3, "There was a problem with the request."); } } }; if(offset == INITIAL_OFFSET) { hideModal('templateSearchResultModal'); showModal('templateSearchLoadingModal'); } httpRequest.open("GET", FINDER_URL+"?project="+projectID+"&term="+encodeURI(term)+((offset>INITIAL_OFFSET)?("&offset="+(offset-INITIAL_OFFSET)) : "")); httpRequest.send(); searchRunning = true; } function _runSearch() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var term = _searchTrimInput(SEARCH_INPUT.value); if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } function _searchTrimInput(str) { return str.replace(/^\s+|\s+$/gm, ''); } function run() { _addEventListener(); $('#templateSearchInfoBtn, #modalSearchInfoBtn').popover({ sanitize: false, html: true, content: $("#templateSearchInfo").html(), placement: "bottom", template: '<div class="popover" role="tooltip"><div class="arrow"></div><button class="m-1 float-right btn btn-sm btn-danger" id="templateSearchInfoClose"><i class="fas fa-times-circle"></i></button><h3 class="popover-header"></h3><div class="popover-body"></div></div>', title: "Search tips", }); $(document).click(function (e) { let t = $(e.target); let a = t && t.attr("data-toggle")!=="popover" && t.parent().attr("data-toggle")!=="popover"; let b = t && $(".popover").has(t).length===0; if(a && b) { $('#templateSearchInfoBtn').popover('hide'); $('#modalSearchInfoBtn').popover('hide'); } }); $('#templateSearchInfoBtn').on('shown.bs.popover', function () { $("#templateSearchInfoClose").click(function(e){ $('#templateSearchInfoBtn').popover('hide'); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }) $('#templateSearchResultModal').on('hidden.bs.modal', function(e) { $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); var pswpElement = document.querySelectorAll('.pswp')[0]; var gallery = null; var paperListAvatar = []; var paperListAvatarThumb = []; $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); $('body').on('click', '.paperlist-avatar img', function (e) { if(paperListAvatarThumb.length === 0 && paperListAvatar.length === 0){ $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); } var target = $(this); var index = $('.paperlist-avatar img').index(target); var options = { showHideOpacity:true, bgOpacity:0.8, index:index, spacing:0.15, getThumbBoundsFn: function(index) { var thumbnail = paperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; gallery = new PhotoSwipe( pswpElement, PhotoSwipeUI_Default,[paperListAvatar[index]],options); gallery.init(); }); }); $('#templateSearchResultModal').on('hide.bs.modal', function(e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); offset = INITIAL_OFFSET; }) $(document).on("click", "#showMore", function(e){ offset+=INITIAL_OFFSET; runSearchModal() e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $(document).ready(function() { $(document).on("click", "#refineSearchModal", function (e) { $("#templateRefineSearch").removeClass('d-none').addClass('d-block'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#refineSearchModalHide", function (e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#modal_start_site_search", function (e) { runSearchModal(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }); } function runSearchModal() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var queryString = $('#library-filters').serialize(); var term = _searchTrimInput($('#modal_search_query').val()); term+='&'+queryString; if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } if(document.getElementById('search_query_solr')) { run(); } </script> <!-- END_SITE_SEARCH --></div></div> </div> </div> </div> </div> </header> <!--=== Content ===--> <main class="one-column version-2023"> <div id="content" class="container"> <div id="page_content_container" class="CMSCONTAINER row"> <div class="col"> <div class="level2Toc"> <div class="grid-container"> <div class="grid-100"> <div class="tab co-angel-left hide-on-desktop"></div> <div class="tab co-angel-right hide-on-desktop"></div> <div class="mobile-citation"> <ul class="tab-navigation no-styling"> <li class="tab0.recent active"><nobr><a href="https://acp.copernicus.org/recent_papers.html">Recent</a></nobr></li><li class="tab5.byTopics hide-on-mobile"><nobr><a href="https://acp.copernicus.org/by_topics.html">By topics</a></nobr></li><li class="tab6.byMsTypes hide-on-mobile"><nobr><a href="https://acp.copernicus.org/by_ms_types.html">By MS types</a></nobr></li><li class="tab7.mostDownloaded"><nobr><a href="https://acp.copernicus.org/most_downloaded.html">Most downloaded</a></nobr></li><li class="tab8.mostCommented"><nobr><a href="https://acp.copernicus.org/most_commented.html">Most commented</a></nobr></li><li class="tab99.volumes"><nobr><a href="https://acp.copernicus.org/articles/volumes.html">Journal volumes</a></nobr></li><li class="tab100.discussion"><nobr><a href="https://acp.copernicus.org/preprints/preprints.html">Preprints</a></nobr></li> </ul> </div> </div> </div> <div class="row no-gutters auto-fixed-top-forced"> <div class="col-12 mb-3 hide-on-fixed"> <div class="row no-gutters"> <div class="col-12"> The following lists the recent preprints posted on EGUsphere with ACP-related topics as well as final revised papers published recently in ACP. </div> </div> </div> <div class="col-12 hide-on-fixed"> <div class="grid-container show-js paperList-filter" style="display: none;"> <div class="grid-100"> <form class="radio" autocomplete="off"> <div class="row no-gutters"> <div class="col-auto mr-2"> <label> <input type="radio" class="show-hide" name="paperListFilter" checked="checked" value="all" data-bubble="true" data-show=".paperList-final,.paperList-discussion"> All papers </label> </div> <div class="col-auto mr-2"> <label> <input type="radio" class="show-hide" name="paperListFilter" value="final" data-bubble="true" data-show=".paperList-final" data-hide=".paperList-discussion"> Final revised papers only </label> </div> <div class="col-auto mr-2"> <label> <input type="radio" class="show-hide" name="paperListFilter" value="discussion" data-bubble="true" data-show=".paperList-discussion" data-hide=".paperList-final"> Preprints only </label> </div> </div> </form> </div> </div> </div> <div class="col-12 pb-3 show-on-fixed recent-selection-wrapper" style="display:none;"> <button type="button" class="btn btn-primary">Filters</button> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13025/2024/acp-24-13025-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13025/2024/acp-24-13025-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13025/2024/acp-24-13025-2024-avatar-web.png" data-width="600" data-height="301" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 26 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13025/2024/">Analysis of the cloud fraction adjustment to aerosols and its dependence on meteorological controls using explainable machine learning</a> <div class="authors">Yichen Jia, Hendrik Andersen, and Jan Cermak</div> <div class="citation">Atmos. Chem. Phys., 24, 13025–13045, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13025-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13025-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_113384" data-show=".short_summary_113384" data-hide=".short_summary_button_113384" >Short summary</span> <div class="j-widget__max short_summary short_summary_113384" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We present a near-global observation-based explainable machine learning framework to quantify the response of cloud fraction (CLF) of marine low clouds to cloud droplet number concentration (<em>N</em><sub>d</sub>), accounting for the covariations with meteorological factors. This approach provides a novel data-driven method to analyse the CLF adjustment by assessing the CLF sensitivity to <em>N</em><sub>d</sub> and numerous meteorological factors as well as the dependence of the <em>N</em><sub>d</sub>–CLF sensitivity on the meteorological conditions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_113384" data-show=".short_summary_button_113384">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13025/2024/acp-24-13025-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13025/2024/acp-24-13025-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13025/2024/acp-24-13025-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="301" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13001/2024/acp-24-13001-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13001/2024/acp-24-13001-2024-avatar-thumb80.png" data-caption="© Anderson et al. 2024, adapted by Duncan" data-web="https://acp.copernicus.org/articles/24/13001/2024/acp-24-13001-2024-avatar-web.png" data-width="600" data-height="217" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 26 Nov 2024</div> <div class="highlightType" > | Highlight paper</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13001/2024/">Opinion: Beyond global means – novel space-based approaches to indirectly constrain the concentrations of and trends and variations in the tropospheric hydroxyl radical (OH)</a> <div class="authors">Bryan N. Duncan, Daniel C. Anderson, Arlene M. Fiore, Joanna Joiner, Nickolay A. Krotkov, Can Li, Dylan B. Millet, Julie M. Nicely, Luke D. Oman, Jason M. St. Clair, Joshua D. Shutter, Amir H. Souri, Sarah A. Strode, Brad Weir, Glenn M. Wolfe, Helen M. Worden, and Qindan Zhu</div> <div class="citation">Atmos. Chem. Phys., 24, 13001–13023, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13001-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13001-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122151" data-show=".short_summary_122151" data-hide=".short_summary_button_122151" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_122151 ml-2" data-show=".ce_comment_122151" data-hide=".ce_comment_button_122151">Executive editor</span> <div class="j-widget__max short_summary short_summary_122151" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Trace gases emitted to or formed within the atmosphere may be chemically or physically removed from the atmosphere. One trace gas, the hydroxyl radical (OH), is responsible for initiating the chemical removal of many trace gases, including some greenhouse gases. Despite its importance, scientists have not been able to adequately measure OH. In this opinion piece, we discuss promising new methods to indirectly constrain OH using satellite data of trace gases that control the abundance of OH. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122151" data-show=".short_summary_button_122151">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_122151 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Tropospheric OH plays a central role in the chemical degradation and formation of air pollutants and climate-relevant trace gases. Traditional direct measurements of the extremely short-lived OH radicals provide localised information on the OH budget. Due to the high technical complexity and scarcity of such measurements, they are practically unsuitable for mapping global spatio-temporal OH distributions. Budget analyses of long-lived tracers (e.g. methyl chloroform) that react exclusively with OH provide estimates of the global mean OH and its temporal variability, but lack spatial resolution. This forward-looking opinion paper discusses new ideas and proposals to constrain global chemical sources and sinks of tropospheric OH using satellite and suborbital observations. The proposed approaches promise a better understanding of the global OH budget at higher spatial and temporal resolution than has been possible to date. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_122151" data-show=".ce_comment_button_122151">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13001/2024/acp-24-13001-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13001/2024/acp-24-13001-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13001/2024/acp-24-13001-2024-avatar-web.png" data-width="600" data-caption="© Anderson et al. 2024, adapted by Duncan" data-height="217" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 26 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2064/">Downward and upward revisions of Chinese emissions of black carbon and CO in bottom-up inventories are still required: an integrated analysis of WRF/CMAQ model and EMeRGe observations in East Asia in spring 2018</a> <div class="authors">Phuc Thi Minh Ha, Yugo Kanaya, Kazuyo Yamaji, Syuichi Itahashi, Satoru Chatani, Takashi Sekiya, Maria Dolores Andrés Hernández, John Philip Burrows, Hans Schlager, Michael Lichtenstern, Mira Poehlker, and Bruna Holanda</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2064,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2064,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121694" data-show=".short_summary_121694" data-hide=".short_summary_button_121694" >Short summary</span> <div class="j-widget__max short_summary short_summary_121694" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Black carbon and CO are important to climate change. EMeRGe airborne observation can identify the suitability of emission inventories used in CMAQv5.0.2 model for Asian polluted regions. GFEDv4.1s is suitable for fire emissions. Anthropogenic BC and CO emissions from Philippines (REASv2.1) are insufficient. The estimated Chinese emissions in 2018 are 0.65±0.25 TgBC, 166±65 TgCO and 12.4±4.8 PgCO<sub>2</sub>, suggesting a reduction and increment for China's BC and CO emissions in the HTAPv2.2z inventory. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121694" data-show=".short_summary_button_121694">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 26 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3579/">Spatially separate production of hydrogen oxides and nitric oxide in lightning</a> <div class="authors">Jena M. Jenkins and William H. Brune</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3579,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3579,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125128" data-show=".short_summary_125128" data-hide=".short_summary_button_125128" >Short summary</span> <div class="j-widget__max short_summary short_summary_125128" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Both the atmosphere’s primary cleaner, the hydroxyl radical, and nitric oxide are generated in extreme amounts by lightning, and laboratory and modelling experiments demonstrate that these molecules are generated in different places in lightning flashes. Thus the hydroxyl radical is not immediately consumed by the nitric oxide and instead is available to remove other pollutants in the atmosphere. Additionally, substantial nitrous acid is also likely generated by lightning. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125128" data-show=".short_summary_button_125128">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 26 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3586/">Stratospheric Aerosol Intervention Experiment for the Chemistry-Climate Model Intercomparison Project</a> <div class="authors">Simone Tilmes, Ewa M. Bednarz, Andrin Jörimann, Daniele Visioni, Douglas E. Kinnison, Gabriel Chiodo, and David Plummer</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3586,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3586,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125143" data-show=".short_summary_125143" data-hide=".short_summary_button_125143" >Short summary</span> <div class="j-widget__max short_summary short_summary_125143" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This paper describes the details of a new multi-model intercomparison experiment to assess the effects of Stratospheric Aerosol Injections on stratospheric chemistry and dynamics and, therefore, ozone. In this experiment, all models will use the same prescribed stratospheric aerosol distribution and fixed sea-surface temperatures and sea ice. We discuss the advantages and differences of this more constrained experiment compared to previous more interactive model experiments. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125143" data-show=".short_summary_button_125143">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 26 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3659/">Radiative and climate effects of aerosol scattering in long-wave radiation based on global climate modeling</a> <div class="authors">Thomas Drugé, Pierre Nabat, Martine Michou, and Marc Mallet</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3659,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3659,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125267" data-show=".short_summary_125267" data-hide=".short_summary_button_125267" >Short summary</span> <div class="j-widget__max short_summary short_summary_125267" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Aerosol scattering in long-wave radiation is often neglected in climate models. In this study, we analyze its impact through a physical modeling of this process in the CNRM ARPEGE-Climat model. It mainly leads to surface LW radiation increases across Sahara, Sahel and Arabian Peninsula, resulting in daily minimum near-surface temperature rises. Other changes in atmospheric fields are also simulated. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125267" data-show=".short_summary_button_125267">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12963/2024/acp-24-12963-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12963/2024/acp-24-12963-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12963/2024/acp-24-12963-2024-avatar-web.png" data-width="408" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12963/2024/">Analysis of the day-to-day variability of ozone vertical profiles in the lower troposphere during the 2022 Paris ACROSS campaign</a> <div class="authors">Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec</div> <div class="citation">Atmos. Chem. Phys., 24, 12963–12983, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12963-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12963-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119014" data-show=".short_summary_119014" data-hide=".short_summary_button_119014" >Short summary</span> <div class="j-widget__max short_summary short_summary_119014" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119014" data-show=".short_summary_button_119014">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12963/2024/acp-24-12963-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12963/2024/acp-24-12963-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12963/2024/acp-24-12963-2024-avatar-web.png" data-width="408" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12985/2024/acp-24-12985-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12985/2024/acp-24-12985-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12985/2024/acp-24-12985-2024-avatar-web.png" data-width="600" data-height="398" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12985/2024/">Technical note: High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 1: Continuous flow analysis of the SIGMA-D ice core using the wide-range Single-Particle Soot Photometer and a high-efficiency nebulizer</a> <div class="authors">Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki</div> <div class="citation">Atmos. Chem. Phys., 24, 12985–13000, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12985-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12985-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120372" data-show=".short_summary_120372" data-hide=".short_summary_button_120372" >Short summary</span> <div class="j-widget__max short_summary short_summary_120372" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We developed a continuous flow analysis system to analyze an ice core from northwestern Greenland and coupled it with an improved refractory black carbon (rBC) measurement technique. This allowed accurate high-resolution analyses of size distributions and concentrations of rBC particles with diameters of 70 nm–4 μm for the past 350 years. Our results provide crucial insights into rBC's climatic effects. We also found previous ice core studies substantially underestimated rBC mass concentrations. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120372" data-show=".short_summary_button_120372">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12985/2024/acp-24-12985-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12985/2024/acp-24-12985-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12985/2024/acp-24-12985-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="398" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3298/">Measurement report: size-resolved particle effective density measured by the AAC-SMPS and implications for chemical composition</a> <div class="authors">Yao Song, Jing Wei, Wenlong Zhao, Jinmei Ding, Xiangyu Pei, Fei Zhang, Zhengning Xu, Ruifang Shi, Ya Wei, Lu Zhang, Lingling Jin, and Zhibin Wang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3298,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3298,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124354" data-show=".short_summary_124354" data-hide=".short_summary_button_124354" >Short summary</span> <div class="j-widget__max short_summary short_summary_124354" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates the size-resolved effective density (<em>ρ</em><sub>eff</sub>) of aerosol particles in Hangzhou using an AAC-SMPS. The <em>ρ</em><sub>eff</sub> values ranged from 1.47 to 1.63 g/cm<sup>3</sup>, increasing with particle diameter. Smaller particles showed significant diurnal density variations. The relationship between <em>ρ</em><sub>eff</sub> and particle diameter varies due to differences in the chemical composition of the particles. A new method to derive size-resolved chemical composition of particles from <em>ρ</em><sub>eff</sub> was proposed. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124354" data-show=".short_summary_button_124354">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2776/">Technical note: Reconstructing surface missing aerosol elemental carbon data in long-term series with ensemble learning</a> <div class="authors">Qingxiao Meng, Yunjiang Zhang, Sheng Zhong, Jie Fang, Lili Tang, Yongcai Rao, Minfeng Zhou, Jian Qiu, Xiaofeng Xu, Jean-Eudes Petit, Olivier Favez, and Xinlei Ge</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2776,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2776,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123166" data-show=".short_summary_123166" data-hide=".short_summary_button_123166" >Short summary</span> <div class="j-widget__max short_summary short_summary_123166" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We developed a new method to reconstruct missing elemental carbon (EC) data in four Chinese cities from 2013 to 2023. Using machine learning, we accurately filled data gaps and introduced a new approach to analyze EC trends. Our findings reveal a significant decline in EC due to stricter pollution controls, though this slowed after 2020. This study provides a versatile framework for addressing data gaps and supports strategies to reduce urban air pollution and its climate impacts. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123166" data-show=".short_summary_button_123166">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3075/">First Reported Detection of a Winter Continental Gamma-Ray Glow in Europe</a> <div class="authors">Jakub Šlegl, Zbyněk Sokol, Petr Pešice, Ronald Langer, Igor Strhárský, Jana Popová, Martin Kákona, Iva Ambrožová, and Ondřej Ploc</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3075,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3075,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123758" data-show=".short_summary_123758" data-hide=".short_summary_button_123758" >Short summary</span> <div class="j-widget__max short_summary short_summary_123758" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We observed the first-ever gamma-ray glow from a winter thunderstorm in Europe. Typically, these high-energy radiation events are linked to strong electric fields, but we found a surprisingly weak field at ground level. This suggests that the electric field higher up in the cloud plays a key role. Using advanced instruments, we gained new insights into how thunderstorms produce radiation, especially under rare winter conditions. This challenges existing theories. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123758" data-show=".short_summary_button_123758">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3201/">Significant influence of oxygenated volatile organic compounds on atmospheric chemistry analysis: A case study in a typical industrial city in China</a> <div class="authors">Jingwen Dai, Kun Zhang, Yanli Feng, Xin Yi, Rui Li, Jin Xue, Qing Li, Lishu Shi, Jiaqiang Liao, Yanan Yi, Fangting Wang, Liumei Yang, Hui Chen, Ling Huang, Jiani Tan, Yangjun Wang, and Li Li</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3201,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3201,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124006" data-show=".short_summary_124006" data-hide=".short_summary_button_124006" >Short summary</span> <div class="j-widget__max short_summary short_summary_124006" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Oxygenated volatile organic compounds (OVOCs) are important ozone (O<sub>3</sub>) precursors. However, most of O<sub>3</sub> formation analysis based on the box model (OBM) don't include OVOCs constraint To access the interference of OVOCs on O<sub>3</sub> simulation, this study conducted field campaign and OBM analysis. The results indicates that no OVOCs constraint in the OBM can lead to overestimate of OVOCs, free radicals, and O<sub>3</sub>. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124006" data-show=".short_summary_button_124006">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3471/">Rapid Increases of Ozone Concentrations over Tibetan Plateau Caused by Local and Non-Local Factors</a> <div class="authors">Chenghao Xu, Jintai Lin, Hao Kong, Junli Jin, Lulu Chen, and Xiaobin Xu</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3471,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3471,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124773" data-show=".short_summary_124773" data-hide=".short_summary_button_124773" >Short summary</span> <div class="j-widget__max short_summary short_summary_124773" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We observed a strong increase in deseasonalized ozone at urban stations on the Tibetan Plateau from 2015 to 2019, far exceeding the trend at the baseline station Waliguan and the Tibet Plateau average trend of four tropospheric ozone products. By combining multiple datasets and modeling approaches, we identified the main contributing factors as more frequent transport passing through the lower layers of high-emission regions and the rapid increase in anthropogenic nitrogen oxide emissions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124773" data-show=".short_summary_button_124773">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2996/">Tracking daily NO<sub><em>x</em></sub> emissions from an urban agglomeration based on TROPOMI NO<sub>2</sub> and a local ensemble transform Kalman filter</a> <div class="authors">Yawen Kong, Bo Zheng, and Yuxi Liu</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2996,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2996,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123597" data-show=".short_summary_123597" data-hide=".short_summary_button_123597" >Short summary</span> <div class="j-widget__max short_summary short_summary_123597" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Current high-resolution satellite remote sensing technologies provide a unique opportunity to derive timely, high-resolution emission data. We developed an emission inversion system to assimilate satellite NO<sub>2</sub> data to obtain daily, kilometer-scale NO<em><sub>x</sub></em> emission inventories. Our results enhance inventory accuracy, allowing us to capture the effects of pollution control policies on daily emissions (e.g., during COVID-19 lockdown) and improve fine-scale air quality modeling. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123597" data-show=".short_summary_button_123597">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 22 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3550/">Kinetics of the reactions of OH with CO, NO, NO<sub>2</sub> and of HO<sub>2</sub> with NO<sub>2</sub> in air at 1 atm pressure, room temperature and tropospheric water vapour concentrations</a> <div class="authors">Michael Rolletter, Andreas Hofzumahaus, Anna Novelli, Andreas Wahner, and Hendrik Fuchs</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3550,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3550,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125062" data-show=".short_summary_125062" data-hide=".short_summary_button_125062" >Short summary</span> <div class="j-widget__max short_summary short_summary_125062" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Highly accurate rate coefficients of termolecular reactions between OH and HO<sub>2</sub> radicals and reactive nitrogen oxides were measured for conditions in the lower troposphere, providing improved constraints on recommended values. No dependence on water vapour was found except for the HO<sub>2</sub>+NO<sub>2</sub> reaction, which can be explained by an enhanced rate coefficient of the NO<sub>2</sub> reaction with the water complex of the HO<sub>2</sub> radical. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125062" data-show=".short_summary_button_125062">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 22 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2827/">The role of surface-active macromolecules in the ice nucleating ability of lignin, Snomax, and agricultural soil extracts</a> <div class="authors">Kathleen A. Thompson, Paul Bieber, Anna J. Miller, Nicole Link, Benjamin J. Murray, and Nadine Borduas-Dedekind</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2827,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2827,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123279" data-show=".short_summary_123279" data-hide=".short_summary_button_123279" >Short summary</span> <div class="j-widget__max short_summary short_summary_123279" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Lignin and Snomax are surface-active macromolecules that show a relationship between increasing concentrations, decreasing surface tension, and increasing ice-nucleating ability. However, this relationship did not hold for agricultural soil extracts collected in the UK and Canada. Hydrophobic interfaces play an important role in the ice-nucleating activity of organic matter; as the complexity of the sample increases, the hydrophobic interfaces in the bulk compete with the air-water interface. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123279" data-show=".short_summary_button_123279">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12881/2024/acp-24-12881-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12881/2024/acp-24-12881-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12881/2024/acp-24-12881-2024-avatar-web.png" data-width="578" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12881/2024/">Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign</a> <div class="authors">Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy</div> <div class="citation">Atmos. Chem. Phys., 24, 12881–12901, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12881-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12881-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_117223" data-show=".short_summary_117223" data-hide=".short_summary_button_117223" >Short summary</span> <div class="j-widget__max short_summary short_summary_117223" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_117223" data-show=".short_summary_button_117223">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12881/2024/acp-24-12881-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12881/2024/acp-24-12881-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12881/2024/acp-24-12881-2024-avatar-web.png" data-width="578" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12943/2024/acp-24-12943-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12943/2024/acp-24-12943-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12943/2024/acp-24-12943-2024-avatar-web.png" data-width="600" data-height="455" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12943/2024/">The atmospheric oxidizing capacity in China – Part 2: Sensitivity to emissions of primary pollutants</a> <div class="authors">Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang</div> <div class="citation">Atmos. Chem. Phys., 24, 12943–12962, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12943-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12943-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118617" data-show=".short_summary_118617" data-hide=".short_summary_button_118617" >Short summary</span> <div class="j-widget__max short_summary short_summary_118617" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This paper employs a regional chemical transport model to quantify the sensitivity of air pollutants and photochemical parameters to specified emission reductions in China for representative winter and summer conditions. The study provides insights into further air quality control in China with reduced primary emissions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118617" data-show=".short_summary_button_118617">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12943/2024/acp-24-12943-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12943/2024/acp-24-12943-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12943/2024/acp-24-12943-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="455" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-web.png" data-width="600" data-height="436" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12925/2024/">Upper-stratospheric temperature trends: new results from the Optical Spectrograph and InfraRed Imager System (OSIRIS)</a> <div class="authors">Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, William Randel, Sean Davis, Michael Schwartz, Nathaniel Livesey, and Anne Smith</div> <div class="citation">Atmos. Chem. Phys., 24, 12925–12941, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12925-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12925-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119738" data-show=".short_summary_119738" data-hide=".short_summary_button_119738" >Short summary</span> <div class="j-widget__max short_summary short_summary_119738" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Greenhouse gas emissions that warm the troposphere also result in stratospheric cooling. The cooling rate is difficult to quantify above 35 km due to a deficit of long-term observational data with high vertical resolution in this region. We use satellite observations from several instruments, including a new temperature product from OSIRIS, to show that the upper stratosphere, from 35–60 km, cooled by 0.5 to 1 K per decade over 2005–2021 and by 0.6 K per decade over 1979–2021. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119738" data-show=".short_summary_button_119738">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="436" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12903/2024/acp-24-12903-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12903/2024/acp-24-12903-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12903/2024/acp-24-12903-2024-avatar-web.png" data-width="471" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12903/2024/">Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)</a> <div class="authors">T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O.T. Pye</div> <div class="citation">Atmos. Chem. Phys., 24, 12903–12924, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12903-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12903-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120826" data-show=".short_summary_120826" data-hide=".short_summary_button_120826" >Short summary</span> <div class="j-widget__max short_summary short_summary_120826" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We develop the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 2 to improve predictions of formaldehyde in ambient air compared to satellite-, aircraft-, and ground-based observations. With the updated chemistry, we estimate the cancer risk from inhalation exposure to ambient formaldehyde across the contiguous USA and predict that 40 % of this risk is controllable through reductions in anthropogenic emissions of nitrogen oxides and reactive organic carbon. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120826" data-show=".short_summary_button_120826">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12903/2024/acp-24-12903-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12903/2024/acp-24-12903-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12903/2024/acp-24-12903-2024-avatar-web.png" data-width="471" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3051/">Variation in shortwave water vapour continuum and impact on clear-sky shortwave radiative feedback</a> <div class="authors">Kaah P. Menang, Stefan A. Buehler, Lukas Kluft, Robin J. Hogan, and Florian E. Roemer</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3051,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3051,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123717" data-show=".short_summary_123717" data-hide=".short_summary_button_123717" >Short summary</span> <div class="j-widget__max short_summary short_summary_123717" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We investigated how the uncertainty in representing water vapour continuum absorption in the shortwave affects clear-sky shortwave radiative feedback. For current surface temperature, the impact is modest (<2 %). In a warmer world, continuum induced error in estimated shortwave feedback is up to ~5 %. Using the MT_CKD model in radiative transfer calculations may lead to an underestimation of the shortwave feedback. Constraining shortwave continuum will contribute to reducing these discrepancies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123717" data-show=".short_summary_button_123717">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3310/">Evaluating spatiotemporal variations and exposure risk of ground-level ozone concentrations across China from 2000 to 2020 using satellite-derived high-resolution data</a> <div class="authors">Qingqing He, Jingru Cao, Pablo E. Saide, Tong Ye, and Weihang Wang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3310,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3310,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124373" data-show=".short_summary_124373" data-hide=".short_summary_button_124373" >Short summary</span> <div class="j-widget__max short_summary short_summary_124373" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We explored variations in ground ozone and exposure risk hotspots across China (2000–2020) at multiple spatiotemporal scales using a high-resolution dataset derived from satellite LST via a machine-learning hindcast framework. The dataset was validated using cross-validation and external measurements. A non-monotonous trend emerged, with turning points around 2007 and 2015, showing regional variation. Ozone levels >100 μg/m<sup>3</sup> shifted from June to May, while levels >160 μg/m<sup>3</sup> expanded in the NCP. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124373" data-show=".short_summary_button_124373">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2503/">Sources and trends of Black Carbon Aerosol in a Megacity of Nanjing, East China After the China Clean Action Plan and Three-Year Action Plan</a> <div class="authors">Abudurexiati Abulimiti, Yanlin Zhang, Mingyuan Yu, Yihang Hong, Yu-Chi Lin, Chaman Gul, and Fang Cao</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2503,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2503,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122468" data-show=".short_summary_122468" data-hide=".short_summary_button_122468" >Short summary</span> <div class="j-widget__max short_summary short_summary_122468" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> To improve air quality, the Chinese government implemented strict clean air actions. We explored how black carbon (BC) responded to these actions and found that the reduction in liquid fuel use was the main factor driving the decrease in BC levels. Additionally, meteorological factors also played a significant role in the long-term trends of BC. These factors should be considered in future emission reduction policies to further enhance air quality improvements. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122468" data-show=".short_summary_button_122468">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12843/2024/acp-24-12843-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12843/2024/acp-24-12843-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12843/2024/acp-24-12843-2024-avatar-web.png" data-width="600" data-height="160" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12843/2024/">Emissions of methane from coal fields, thermal power plants, and wetlands and their implications for atmospheric methane across the south Asian region</a> <div class="authors">Mahalakshmi Venkata Dangeti, Mahesh Pathakoti, Kanchana Lakshmi Asuri, Sujatha Peethani, Ibrahim Shaik, Rajan Krishnan Sundara, Vijay Kumar Sagar, Raja Pushpanathan, Yogesh Kumar Tiwari, and Prakash Chauhan</div> <div class="citation">Atmos. Chem. Phys., 24, 12843–12859, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12843-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12843-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118073" data-show=".short_summary_118073" data-hide=".short_summary_button_118073" >Short summary</span> <div class="j-widget__max short_summary short_summary_118073" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The present study investigated the space–time variability of <em>X</em>CH<sub>4</sub> over coal fields, power plants, and wetlands using long-term GOSAT and S5/TROPOMI data. The XCH4 variability associated with the heterogenous sources present in the south Asian (India) region and their implications for atmospheric XCH4 concentrations were evaluated. The CH<sub>4</sub> concentrations were mapped against the emissions in the agro-climatic zones, and a statistically high correlation was found in the Indo-Gangetic Plain region. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118073" data-show=".short_summary_button_118073">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12843/2024/acp-24-12843-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12843/2024/acp-24-12843-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12843/2024/acp-24-12843-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="160" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12861/2024/acp-24-12861-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12861/2024/acp-24-12861-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12861/2024/acp-24-12861-2024-avatar-web.png" data-width="600" data-height="519" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12861/2024/">Review of source analyses of ambient volatile organic compounds considering reactive losses: methods of reducing loss effects, impacts of losses, and sources</a> <div class="authors">Baoshuang Liu, Yao Gu, Yutong Wu, Qili Dai, Shaojie Song, Yinchang Feng, and Philip K. Hopke</div> <div class="citation">Atmos. Chem. Phys., 24, 12861–12879, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12861-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12861-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119055" data-show=".short_summary_119055" data-hide=".short_summary_button_119055" >Short summary</span> <div class="j-widget__max short_summary short_summary_119055" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Reactive loss of volatile organic compounds (VOCs) is a long-term issue yet to be resolved in VOC source analyses. We assess common methods of, and existing issues in, reducing losses, impacts of losses, and sources in current source analyses. We offer a potential supporting role for solving issues of VOC conversion. Source analyses of consumed VOCs that reacted to produce ozone and secondary organic aerosols can play an important role in the effective control of secondary pollution in air. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119055" data-show=".short_summary_button_119055">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12861/2024/acp-24-12861-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12861/2024/acp-24-12861-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12861/2024/acp-24-12861-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="519" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3159/">Investigating the link between mineral dust hematite content and intensive optical properties by means of lidar measurements and aerosol modelling</a> <div class="authors">Sofía Gómez Maqueo Anaya, Dietrich Althausen, Julian Hofer, Moritz Haarig, Ulla Wandinger, Bernd Heinold, Ina Tegen, Matthias Faust, Holger Baars, Albert Ansmann, Ronny Engelmann, Annett Skupin, Birgit Heese, and Kerstin Schepanski</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3159,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3159,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123929" data-show=".short_summary_123929" data-hide=".short_summary_button_123929" >Short summary</span> <div class="j-widget__max short_summary short_summary_123929" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates how hematite (an iron oxide mineral) in the Saharan Desert dust affects how dust particles interact with radiation. Using lidar data from Cabo Verde (2021–2022) and hematite content from atmospheric model simulations, the results show that higher hematite fraction leads to stronger particle backscattering at specific wavelengths. These findings can improve the representaiton of mineral dust in climate models, particularly regarding their radiative effect. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123929" data-show=".short_summary_button_123929">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3222/">Measurement Report: Influence of particle density on secondary ice production by graupel and ice pellet collisions</a> <div class="authors">Sudha Yadav, Lilly Metten, Pierre Grzegorczyk, Alexander Theis, Subir Kumar Mitra, and Miklós Szakáll</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3222,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3222,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124045" data-show=".short_summary_124045" data-hide=".short_summary_button_124045" >Short summary</span> <div class="j-widget__max short_summary short_summary_124045" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We conducted laboratory studies on the fragmentation of ice particles by collision. Graupels were created by riming at -7 and -15 °C simulating also rotation and tumbling. Ice pellets were generated by freezing water in 3D-printed spherical molds. The number of fragments generated by collision was between 1 and 20, and strongly dependent on the density of the graupel. We also showed that the number of fragments becomes zero when the particle suffers more than three collisions in a row. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124045" data-show=".short_summary_button_124045">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2930/">High-resolution air quality maps for Bucharest using Mixed-Effects Modeling Framework</a> <div class="authors">Camelia Talianu, Jeni Vasilescu, Doina Nicolae, Alexandru Ilie, Andrei Dandocsi, Anca Nemuc, and Livio Belegante</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2930,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2930,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123481" data-show=".short_summary_123481" data-hide=".short_summary_button_123481" >Short summary</span> <div class="j-widget__max short_summary short_summary_123481" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Bucharest, Romania's capital, has successfully used mobile measurements and mixed-effects LUR models to derive seasonal maps of near-surface PM<sub>10</sub>, NO<sub>2</sub>, and UFP. The data was collected during two intensive campaigns, covering high-traffic streets, residential, industrial, and commercial districts. The model's performance was evaluated, demonstrating its potential for high-resolution mapping in other cities with well-characterized urban structures and diverse in situ monitoring stations. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123481" data-show=".short_summary_button_123481">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3501/">Cold pools mediate mesoscale adjustments of trade-cumulus fields to changes in cloud-droplet number concentration</a> <div class="authors">Pouriya Alinaghi, Fredrik Jansson, Daniel A. Blázquez, and Franziska Glassmeier</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3501,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3501,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124882" data-show=".short_summary_124882" data-hide=".short_summary_button_124882" >Short summary</span> <div class="j-widget__max short_summary short_summary_124882" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Shallow clouds in the trades are a major source of uncertainty in climate projections. These clouds organize into striking mesoscale patterns that are exactly what climate models lack. This study explores the origin of such patterns and investigates how variations in microscale properties control them. The importance of microscale effects is compared to that of large-scale forcing on the mesoscale organization of trade-cumulus fields. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124882" data-show=".short_summary_button_124882">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3462/">Measurement Report: A survey of meteorological and cloud properties during ACTIVATE's postfrontal flights and their suitability for Lagrangian case studies</a> <div class="authors">Florian Tornow, Ann Fridlind, George Tselioudis, Brian Cairns, Andrew Ackerman, Seethala Chellappan, David Painemal, Paquita Zuidema, Christiane Voigt, Simon Kirschler, and Armin Sorooshian</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3462,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3462,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124742" data-show=".short_summary_124742" data-hide=".short_summary_button_124742" >Short summary</span> <div class="j-widget__max short_summary short_summary_124742" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The recent NASA campaign ACTIVATE (Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment) performed 71 tandem flights in mid-latitude marine cold-air outbreaks off the US Eastern seaboard. We provide meteorological and cloud transition stage context, allowing us to identify days that are most suitable for Lagrangian modeling and analysis. Surveyed cloud properties show signatures of cloud microphysical processes, such as cloud-top entrainment and secondary ice formation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124742" data-show=".short_summary_button_124742">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12793/2024/acp-24-12793-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12793/2024/acp-24-12793-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12793/2024/acp-24-12793-2024-avatar-web.png" data-width="600" data-height="516" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12793/2024/">The presence of clouds lowers climate sensitivity in the MPI-ESM1.2 climate model</a> <div class="authors">Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen</div> <div class="citation">Atmos. Chem. Phys., 24, 12793–12806, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12793-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12793-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118490" data-show=".short_summary_118490" data-hide=".short_summary_button_118490" >Short summary</span> <div class="j-widget__max short_summary short_summary_118490" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Clouds play a crucial role in the Earth's energy balance, as they can either warm up or cool down the area they cover depending on their height and depth. They are expected to alter their behaviour under climate change, affecting the warming generated by greenhouse gases. This paper proposes a new method to estimate their overall effect on this warming by simulating a climate where clouds are transparent. Results show that with the model used, clouds have a stabilising effect on climate. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118490" data-show=".short_summary_button_118490">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12793/2024/acp-24-12793-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12793/2024/acp-24-12793-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12793/2024/acp-24-12793-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="516" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12823/2024/acp-24-12823-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12823/2024/acp-24-12823-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12823/2024/acp-24-12823-2024-avatar-web.png" data-width="511" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12823/2024/">Clouds and precipitation in the initial phase of marine cold-air outbreaks as observed by airborne remote sensing</a> <div class="authors">Imke Schirmacher, Sabrina Schnitt, Marcus Klingebiel, Nina Maherndl, Benjamin Kirbus, André Ehrlich, Mario Mech, and Susanne Crewell</div> <div class="citation">Atmos. Chem. Phys., 24, 12823–12842, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12823-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12823-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118942" data-show=".short_summary_118942" data-hide=".short_summary_button_118942" >Short summary</span> <div class="j-widget__max short_summary short_summary_118942" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> During Arctic marine cold-air outbreaks, cold air flows from sea ice over open water. Roll circulations evolve, forming cloud streets. We investigate the initial circulation and cloud development using high-resolution airborne measurements. We compute the distance an air mass traveled over water (fetch) from back trajectories. Cloud streets form at 15 km fetch, cloud cover strongly increases at around 20 km, and precipitation forms at around 30 km. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118942" data-show=".short_summary_button_118942">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12823/2024/acp-24-12823-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12823/2024/acp-24-12823-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12823/2024/acp-24-12823-2024-avatar-web.png" data-width="511" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12775/2024/acp-24-12775-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12775/2024/acp-24-12775-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12775/2024/acp-24-12775-2024-avatar-web.png" data-width="600" data-height="367" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12775/2024/">Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere</a> <div class="authors">Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei</div> <div class="citation">Atmos. Chem. Phys., 24, 12775–12792, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12775-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12775-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118931" data-show=".short_summary_118931" data-hide=".short_summary_button_118931" >Short summary</span> <div class="j-widget__max short_summary short_summary_118931" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118931" data-show=".short_summary_button_118931">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12775/2024/acp-24-12775-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12775/2024/acp-24-12775-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12775/2024/acp-24-12775-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="367" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12807/2024/acp-24-12807-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12807/2024/acp-24-12807-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12807/2024/acp-24-12807-2024-avatar-web.png" data-width="600" data-height="569" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12807/2024/">Diurnal variation in an amplified canopy urban heat island during heat wave periods in the megacity of Beijing: roles of mountain–valley breeze and urban morphology</a> <div class="authors">Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli</div> <div class="citation">Atmos. Chem. Phys., 24, 12807–12822, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12807-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12807-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119582" data-show=".short_summary_119582" data-hide=".short_summary_button_119582" >Short summary</span> <div class="j-widget__max short_summary short_summary_119582" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This paper explored the formation mechanisms of the amplified canopy urban heat island intensity (ΔCUHII) during heat wave (HW) periods in the megacity of Beijing from the perspectives of mountain–valley breeze and urban morphology. During the mountain breeze phase, high-rise buildings with lower sky view factors (SVFs) had a pronounced effect on the ΔCUHII. During the valley breeze phase, high-rise buildings exerted a dual influence on the ΔCUHII. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119582" data-show=".short_summary_button_119582">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12807/2024/acp-24-12807-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12807/2024/acp-24-12807-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12807/2024/acp-24-12807-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="569" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 18 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3260/">Understanding Boreal Summer UTLS Water Vapor Variations in Monsoon Regions: A Lagrangian Perspective</a> <div class="authors">Hongyue Wang, Mijeong Park, Mengchu Tao, Cristina Peña-Ortiz, Nuria Pilar Plaza, Felix Ploeger, and Paul Konopka</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3260,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3260,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124148" data-show=".short_summary_124148" data-hide=".short_summary_button_124148" >Short summary</span> <div class="j-widget__max short_summary short_summary_124148" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We investigated how stratospheric water vapor behaves over the Asian and North American monsoons. Using a method that tracks air movement, we recreated the moisture patterns. Our results show that the moisture in monsoon regions is primarily controlled by largescale air temperatures, while the North American monsoon is influenced by distant transport. These findings enhance our understanding of summertime stratospheric water vapor changes and offer insights into climate feedback mechanisms. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124148" data-show=".short_summary_button_124148">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 18 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3399/">Dry and warm conditions in Australia exacerbated by aerosol reduction in China</a> <div class="authors">Jiyuan Gao, Yang Yang, Hailong Wang, Pinya Wang, and Hong Liao</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3399,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3399,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124542" data-show=".short_summary_124542" data-hide=".short_summary_button_124542" >Short summary</span> <div class="j-widget__max short_summary short_summary_124542" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The decline in aerosols in China altered temperature and pressure gradients between the two hemispheres, which intensified the Southern Trade Winds and caused a moisture divergence in Australia, resulting in less rainfall. Reduced surface moisture led to more energy being converted into sensible heat instead of evaporating as latent heat, which raised near-surface temperatures. Our findings offer insights for managing drought and wildfire risks in Australia. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124542" data-show=".short_summary_button_124542">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12749/2024/acp-24-12749-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12749/2024/acp-24-12749-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12749/2024/acp-24-12749-2024-avatar-web.png" data-width="600" data-height="428" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12749/2024/">A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires</a> <div class="authors">Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber</div> <div class="citation">Atmos. Chem. Phys., 24, 12749–12773, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12749-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12749-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120344" data-show=".short_summary_120344" data-hide=".short_summary_button_120344" >Short summary</span> <div class="j-widget__max short_summary short_summary_120344" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM<sub>2.5 </sub>mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120344" data-show=".short_summary_button_120344">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12749/2024/acp-24-12749-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12749/2024/acp-24-12749-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12749/2024/acp-24-12749-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="428" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12707/2024/acp-24-12707-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12707/2024/acp-24-12707-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12707/2024/acp-24-12707-2024-avatar-web.png" data-width="600" data-height="189" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12707/2024/">Improved calculation of single-scattering properties of frozen droplets and frozen-droplet aggregates observed in deep convective clouds</a> <div class="authors">Jeonggyu Kim, Sungmin Park, Greg M. McFarquhar, Anthony J. Baran, Joo Wan Cha, Kyoungmi Lee, Seoung Soo Lee, Chang Hoon Jung, Kyo-Sun Sunny Lim, and Junshik Um</div> <div class="citation">Atmos. Chem. Phys., 24, 12707–12726, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12707-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12707-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118466" data-show=".short_summary_118466" data-hide=".short_summary_button_118466" >Short summary</span> <div class="j-widget__max short_summary short_summary_118466" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We developed idealized models to represent the shapes of ice particles found in deep convective clouds and calculated their single-scattering properties. By comparing these results with in situ measurements, we discovered that a mixture of shape models matches in situ measurements more closely than single-form models or aggregate models. This finding has important implications for enhancing the simulation of single-scattering properties of ice crystals in deep convective clouds. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118466" data-show=".short_summary_button_118466">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12707/2024/acp-24-12707-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12707/2024/acp-24-12707-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12707/2024/acp-24-12707-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="189" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12727/2024/acp-24-12727-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12727/2024/acp-24-12727-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12727/2024/acp-24-12727-2024-avatar-web.png" data-width="600" data-height="294" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12727/2024/">Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations</a> <div class="authors">Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt</div> <div class="citation">Atmos. Chem. Phys., 24, 12727–12747, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12727-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12727-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119260" data-show=".short_summary_119260" data-hide=".short_summary_button_119260" >Short summary</span> <div class="j-widget__max short_summary short_summary_119260" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared<br />Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119260" data-show=".short_summary_button_119260">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12727/2024/acp-24-12727-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12727/2024/acp-24-12727-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12727/2024/acp-24-12727-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="294" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12687/2024/acp-24-12687-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12687/2024/acp-24-12687-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12687/2024/acp-24-12687-2024-avatar-web.png" data-width="600" data-height="263" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12687/2024/">Interpreting summertime hourly variation of NO<sub>2</sub> columns with implications for geostationary satellite applications</a> <div class="authors">Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede</div> <div class="citation">Atmos. Chem. Phys., 24, 12687–12706, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12687-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12687-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120156" data-show=".short_summary_120156" data-hide=".short_summary_button_120156" >Short summary</span> <div class="j-widget__max short_summary short_summary_120156" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We investigate the hourly variation of NO<sub>2</sub> columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO<sub>2</sub> columns to explain the weaker hourly variation in NO<sub>2</sub> columns than at the surface. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120156" data-show=".short_summary_button_120156">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12687/2024/acp-24-12687-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12687/2024/acp-24-12687-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12687/2024/acp-24-12687-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="263" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3441/">A Novel Method to Quantify the Uncertainty Contribution of Aerosol-Radiative Interaction Factors</a> <div class="authors">Bishuo He and Chunsheng Zhao</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3441,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3441,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124692" data-show=".short_summary_124692" data-hide=".short_summary_button_124692" >Short summary</span> <div class="j-widget__max short_summary short_summary_124692" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Factor-uncertainty analysis helps us understand their impacts on complex systems. Traditional methods have many limitations. This study introduces a new method to measure how each factor contributes to uncertainty. It gains insights into the role of each variable and works for all multi-factor systems. As an application, we analyzed how aerosols affect solar radiation and identified the key factors. These analyses can improve our understanding of the role of aerosols in climate change. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124692" data-show=".short_summary_button_124692">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3485/">Air quality trends and regimes in South Korea inferred from 2015–2023 surface and satellite observations</a> <div class="authors">Yujin J. Oak, Daniel J. Jacob, Drew C. Pendergrass, Ruijun Dang, Nadia K. Colombi, Heesung Chong, Seoyoung Lee, Su Keun Kuk, and Jhoon Kim</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3485,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3485,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124812" data-show=".short_summary_124812" data-hide=".short_summary_button_124812" >Short summary</span> <div class="j-widget__max short_summary short_summary_124812" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We analyze 2015–2023 air quality trends in South Korea using surface and satellite observations. Primary pollutants have decreased, consistent with emissions reductions. Surface O<sub>3</sub> continues to increase and PM<sub>2.5</sub>has decreased overall, but the nitrate component has not. O<sub>3</sub> and PM<sub>2.5</sub> nitrate depend on nonlinear responses from precursor emissions. Satellite data indicate a recent shift to NO<sub>x</sub>-sensitive O<sub>3</sub> and nitrate formation, where further NO<sub>x</sub> reductions will benefit both O<sub>3</sub> and PM<sub>2.5</sub> pollution. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124812" data-show=".short_summary_button_124812">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3152/">Estimation of diurnal emissions of CO<sub>2</sub> from thermal power plants using spaceborne IPDA lidar</a> <div class="authors">Xuanye Zhang, Hailong Yang, Lingbing Bu, Zengchang Fan, Wei Xiao, Binglong Chen, Lu Zhang, Sihan Liu, Zhongting Wang, Jiqiao Liu, Weibiao Chen, and Xuhui Lee</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3152,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3152,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123917" data-show=".short_summary_123917" data-hide=".short_summary_button_123917" >Short summary</span> <div class="j-widget__max short_summary short_summary_123917" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study utilized the IPDA lidar aboard the DQ-1 satellite to monitor emissions from localized strong point sources and, for the first time, observed the diurnal variation of CO<sub>2</sub> emissions from a high-latitude power plant, Overall, power plant CO<sub>2</sub> emissions were largely consistent with local electricity consumption patterns, with most plants emitting less at night than during the day, and with higher emissions in winter and summer compared to spring and autumn. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123917" data-show=".short_summary_button_123917">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3242/">Divergent changes in aerosol optical hygroscopicity and new particle formation induced by heatwaves</a> <div class="authors">Yuhang Hao, Peizhao Li, Yafeng Gou, Zhenshuai Wang, Mi Tian, Yang Chen, Ye Kuang, Hanbing Xu, Fenglian Wan, Yuqian Luo, Wei Huang, and Jing Chen</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3242,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3242,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124083" data-show=".short_summary_124083" data-hide=".short_summary_button_124083" >Short summary</span> <div class="j-widget__max short_summary short_summary_124083" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Intensified heatwaves with the global warming have influenced new particle formation (NPF) and related aerosol physicochemical properties. We show that aerosol optical hygroscopicity (<em>f</em>(RH)) was generally higher on NPF event days than non-event cases, likely due to enhanced secondary formation and subsequent growth of both pre-existing and newly formed particles with stronger photooxidation specifically under persistent heatwaves. This would further impact the aerosol direct radiative forcing. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124083" data-show=".short_summary_button_124083">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12595/2024/acp-24-12595-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12595/2024/acp-24-12595-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12595/2024/acp-24-12595-2024-avatar-web.png" data-width="422" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12595/2024/">The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition</a> <div class="authors">Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen</div> <div class="citation">Atmos. Chem. Phys., 24, 12595–12621, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12595-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12595-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_116631" data-show=".short_summary_116631" data-hide=".short_summary_button_116631" >Short summary</span> <div class="j-widget__max short_summary short_summary_116631" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_116631" data-show=".short_summary_button_116631">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12595/2024/acp-24-12595-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12595/2024/acp-24-12595-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12595/2024/acp-24-12595-2024-avatar-web.png" data-width="422" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12557/2024/acp-24-12557-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12557/2024/acp-24-12557-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12557/2024/acp-24-12557-2024-avatar-web.png" data-width="600" data-height="396" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12557/2024/">The impact of dehydration and extremely low HCl values in the Antarctic stratospheric vortex in mid-winter on ozone loss in spring</a> <div class="authors">Yiran Zhang-Liu, Rolf Müller, Jens-Uwe Grooß, Sabine Robrecht, Bärbel Vogel, Abdul Mannan Zafar, and Ralph Lehmann</div> <div class="citation">Atmos. Chem. Phys., 24, 12557–12574, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12557-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12557-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118579" data-show=".short_summary_118579" data-hide=".short_summary_button_118579" >Short summary</span> <div class="j-widget__max short_summary short_summary_118579" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> HCl null cycles in Antarctica are important for maintaining high values of ozone-destroying chlorine in Antarctic spring. These HCl null cycles are not affected by (1) using the most recent recommendations of chemical kinetics (compared to older recommendations), (2) accounting for dehydration in the Antarctic winter vortex, and (3) considering the observed (but unexplained) depletion of HCl in mid-winter in the Antarctic vortex throughout Antarctic winter. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118579" data-show=".short_summary_button_118579">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12557/2024/acp-24-12557-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12557/2024/acp-24-12557-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12557/2024/acp-24-12557-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="396" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12643/2024/acp-24-12643-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12643/2024/acp-24-12643-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12643/2024/acp-24-12643-2024-avatar-web.png" data-width="600" data-height="312" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12643/2024/">Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations</a> <div class="authors">Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi</div> <div class="citation">Atmos. Chem. Phys., 24, 12643–12659, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12643-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12643-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118930" data-show=".short_summary_118930" data-hide=".short_summary_button_118930" >Short summary</span> <div class="j-widget__max short_summary short_summary_118930" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118930" data-show=".short_summary_button_118930">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12643/2024/acp-24-12643-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12643/2024/acp-24-12643-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12643/2024/acp-24-12643-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="312" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12661/2024/acp-24-12661-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12661/2024/acp-24-12661-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12661/2024/acp-24-12661-2024-avatar-web.png" data-width="600" data-height="267" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12661/2024/">Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble</a> <div class="authors">Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold</div> <div class="citation">Atmos. Chem. Phys., 24, 12661–12685, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12661-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12661-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119276" data-show=".short_summary_119276" data-hide=".short_summary_button_119276" >Short summary</span> <div class="j-widget__max short_summary short_summary_119276" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Marine stratocumulus cloud is a type of shallow cloud that covers the vast areas of Earth's surface. It plays an important role in Earth's energy balance by reflecting solar radiation back to space. We used numerical models to simulate a large number of marine stratocumuli with different characteristics. We found that how the clouds develop throughout the day is affected by the level of humidity in the air above the clouds and how closely the clouds connect to the ocean surface. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119276" data-show=".short_summary_button_119276">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12661/2024/acp-24-12661-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12661/2024/acp-24-12661-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12661/2024/acp-24-12661-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="267" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12575/2024/acp-24-12575-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12575/2024/acp-24-12575-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12575/2024/acp-24-12575-2024-avatar-web.png" data-width="578" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12575/2024/">An investigation into atmospheric nitrous acid (HONO) processes in South Korea</a> <div class="authors">Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho</div> <div class="citation">Atmos. Chem. Phys., 24, 12575–12593, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12575-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12575-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119006" data-show=".short_summary_119006" data-hide=".short_summary_button_119006" >Short summary</span> <div class="j-widget__max short_summary short_summary_119006" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We incorporated each HONO process into the current CMAQ modeling framework to enhance the accuracy of HONO mixing ratio predictions. These results expand our understanding of HONO photochemistry and identify crucial sources of HONO that impact the total HONO budget in Seoul, South Korea. Through this investigation, we contribute to resolving discrepancies in understanding chemical transport models, with implications for better air quality management and environmental protection in the region. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119006" data-show=".short_summary_button_119006">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12575/2024/acp-24-12575-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12575/2024/acp-24-12575-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12575/2024/acp-24-12575-2024-avatar-web.png" data-width="578" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12623/2024/acp-24-12623-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12623/2024/acp-24-12623-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12623/2024/acp-24-12623-2024-avatar-web.png" data-width="600" data-height="510" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12623/2024/">Tracing the origins of stratospheric ozone intrusions: direct vs. indirect pathways and their impacts on Central and Eastern China in spring–summer 2019</a> <div class="authors">Kai Meng, Tianliang Zhao, Yongqing Bai, Ming Wu, Le Cao, Xuewei Hou, Yuehan Luo, and Yongcheng Jiang</div> <div class="citation">Atmos. Chem. Phys., 24, 12623–12642, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12623-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12623-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119089" data-show=".short_summary_119089" data-hide=".short_summary_button_119089" >Short summary</span> <div class="j-widget__max short_summary short_summary_119089" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We studied the impact of stratospheric intrusions (SIs) on tropospheric and near-surface ozone in Central and Eastern China from a stratospheric source tracing perspective. SIs contribute the most in the eastern plains, with a contribution exceeding 15 %, and have a small contribution to the west and south. Western Siberia and Mongolia are the most critical source areas for indirect and direct SIs, with the Rossby wave and northeast cold vortex being important driving circulation systems. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119089" data-show=".short_summary_button_119089">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12623/2024/acp-24-12623-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12623/2024/acp-24-12623-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12623/2024/acp-24-12623-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="510" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3236/">Lightning declines over shipping lanes following regulation of fuel sulfur emissions</a> <div class="authors">Chris J. Wright, Joel A. Thornton, Lyatt Jaeglé, Yang Cao, Yannian Zhu, Jihu Liu, Randall Jones II, Robert H. Holzworth, Daniel Rosenfeld, Robert Wood, Peter Blossey, and Daehyun Kim</div> <div class="citation">External preprint server, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.48550/arXiv.2408.07207,</nobr><span class="hide-on-desktop">https://doi.org/10.48550/arXiv.2408.07207,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124073" data-show=".short_summary_124073" data-hide=".short_summary_button_124073" >Short summary</span> <div class="j-widget__max short_summary short_summary_124073" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Aerosol particles influence clouds, which exert a large forcing on solar radiation and fresh water. To better understand the mechanisms by which aerosol influences thunderstorms, we look at the two busiest shipping lanes in the world, where recent regulations have reduced sulfur emissions by nearly an order of magnitude. We find that the reduction in emissions has been accompanied by a dramatic decrease in both lightning and the number of droplets in clouds over the shipping lanes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124073" data-show=".short_summary_button_124073">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3247/">Soil Deposition of Atmospheric Hydrogen Constrained using Planetary Scale Observations</a> <div class="authors">Alexander Karim Tardito Chaudhri and David S. Stevenson</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3247,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3247,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124103" data-show=".short_summary_124103" data-hide=".short_summary_button_124103" >Short summary</span> <div class="j-widget__max short_summary short_summary_124103" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> There remains a large uncertainty in the global warming potential of atmospheric hydrogen due to poor constraints on its soil deposition, and therefore its lifetime. A new analysis of the latitudinal variation in the observed seasonality of hydrogen is used to constrain its surface fluxes. This is complemented with a simple latitude-height model where surface fluxes are adjusted from a prototype deposition scheme. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124103" data-show=".short_summary_button_124103">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3420/">Understanding the Long-term Trend of Organic Aerosol and the Influences from Anthropogenic Emission and Regional Climate Change in China</a> <div class="authors">Wenxin Zhang, Yaman Liu, Man Yue, Xinyi Dong, and Minghuai Wang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3420,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3420,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124617" data-show=".short_summary_124617" data-hide=".short_summary_button_124617" >Short summary</span> <div class="j-widget__max short_summary short_summary_124617" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Understanding long-term organic aerosols (OA) trends and their driving factors is important for air quality management. Our modeling revealed that OA in China increased by 5.6% from 1990 to 2019, primarily due to a 32.3% increase in secondary organic aerosols (SOA) and an 8.1% decrease in primary organic aerosols (POA), both largely driven by changes in anthropogenic emissions. Biogenic SOA increased due to warming but showed little response to changes in anthropogenic nitrogen oxide emissions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124617" data-show=".short_summary_button_124617">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3434/">Relationship between latent and radiative heating fields of Tropical cloud systems using synergistic satellite observations</a> <div class="authors">Xiaoting Chen, Claudia J. Stubenrauch, and Giulio Mandorli</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3434,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3434,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124669" data-show=".short_summary_124669" data-hide=".short_summary_button_124669" >Short summary</span> <div class="j-widget__max short_summary short_summary_124669" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Strongly precipitating mesoscale convective systems produce large diabatic heating of the atmosphere, influencing atmospheric circulation. Their complete 3D description, attained by machine learning techniques in combination with satellite observations, has enabled a detailed study of the relationship between latent and radiative heating in these cloud systems. Convective organization increases both the average and vertical gradient of radiative effects of the mesoscale convective systems. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124669" data-show=".short_summary_button_124669">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3379/">Data-driven modeling of environmental factors influencing Arctic methanesulfonic acid aerosol concentrations</a> <div class="authors">Jakob Pernov, William Aeberhard, Michele Volpi, Eliza Harris, Benjamin Hohermuth, Sakiko Ishino, Ragnhild Bieltvedt Skeie, Stephan Henne, Ulas Im, Patricia Quinn, Lucia Upchurch, and Julia Schmale</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3379,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3379,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124504" data-show=".short_summary_124504" data-hide=".short_summary_button_124504" >Short summary</span> <div class="j-widget__max short_summary short_summary_124504" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> MSA<sub>p</sub> is a vital part of the Arctic climate system. Numerical models struggle to reproduce the seasonal cycle of MSA<sub>p</sub>. We evaluate three numerical models and one reanalysis product’s ability to simulate MSA<sub>p</sub>. We develop data-driven models for MSA<sub>p</sub> at four High Arctic stations. The data-driven models outperform the numerical models and reanalysis product and identified precursor source, chemical processing, and removal-related features as being important for modeling MSA<sub>p</sub>. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124504" data-show=".short_summary_button_124504">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3398/">Investigating the limiting aircraft design-dependent and environmental factors of persistent contrail formation</a> <div class="authors">Liam Megill and Volker Grewe</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3398,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3398,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124539" data-show=".short_summary_124539" data-hide=".short_summary_button_124539" >Short summary</span> <div class="j-widget__max short_summary short_summary_124539" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study uses ERA5 data to better understand the relative importance of the factors limiting persistent contrail formation. We develop climatological relationships to estimate potential persistent contrail formation for existing as well as future aircraft and propulsion system designs. We identify latitudes and pressure levels where the introduction of novel aircraft designs would result in significant changes in potential persistent contrail formation compared to conventional aircraft. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124539" data-show=".short_summary_button_124539">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3470/">Effects of 2010–2045 climate change on ozone levels in China under carbon neutrality scenario: Key meteorological parameters and processes</a> <div class="authors">Ling Kang, Hong Liao, Ke Li, Xu Yue, Yang Yang, and Ye Wang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3470,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3470,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124771" data-show=".short_summary_124771" data-hide=".short_summary_button_124771" >Short summary</span> <div class="j-widget__max short_summary short_summary_124771" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Climate change over 2010–2045 under carbon neutrality scenario is simulated to increase ozone levels in China in the model of Global Change and Air Pollution version 2.0. Future climate change increases summertime MDA8 O<sub>3</sub> levels by 2.3, 4.7, and 3.0 ppbv in eastern China, North China Plain, and Yangtze River Delta, respectively. Temperature, radiation, and RH are the key meteorological parameters and net chemical production is the key process for climate-driven ozone increases in eastern China. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124771" data-show=".short_summary_button_124771">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3433/">Enhanced emission of intermediate/semi-volatile organic matters in both gas and particle phases from ship exhausts with low-sulfur fuels</a> <div class="authors">Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3433,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3433,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124668" data-show=".short_summary_124668" data-hide=".short_summary_button_124668" >Short summary</span> <div class="j-widget__max short_summary short_summary_124668" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Intermediate/semi-volatile organic compounds in both gas and particle phases from ship exhausts are enhanced due to the switch of fuels from low-sulfur to ultra-low-sulfur. The findings indicate that optimization is necessary for the forthcoming global implementation of an ultra-low-sulfur oil policy. Besides, we find that organic diagnostic markers of hopanes, in conjunction with the ratio of octadecanoic to tetradecanoic could be considered as potential tracers for HFO exhausts. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124668" data-show=".short_summary_button_124668">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12537/2024/acp-24-12537-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12537/2024/acp-24-12537-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12537/2024/acp-24-12537-2024-avatar-web.png" data-width="600" data-height="392" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12537/2024/">Performance evaluation of UKESM1 for surface ozone across the pan-tropics</a> <div class="authors">Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano</div> <div class="citation">Atmos. Chem. Phys., 24, 12537–12555, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12537-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12537-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_116590" data-show=".short_summary_116590" data-hide=".short_summary_button_116590" >Short summary</span> <div class="j-widget__max short_summary short_summary_116590" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_116590" data-show=".short_summary_button_116590">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12537/2024/acp-24-12537-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12537/2024/acp-24-12537-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12537/2024/acp-24-12537-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="392" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3368/">Multi-year precipitation characteristics based on in-situ and remote sensing observations at Ny-Ålesund, Svalbard</a> <div class="authors">Kerstin Ebell, Christian Buhren, Rosa Gierens, Giovanni Chellini, Melanie Lauer, Andreas Walbröl, Sandro Dahlke, Pavel Krobot, and Mario Mech</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3368,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3368,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124485" data-show=".short_summary_124485" data-hide=".short_summary_button_124485" >Short summary</span> <div class="j-widget__max short_summary short_summary_124485" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Ground-based observations of precipitation are rare in the Arctic. In 2017, additional precipitation measurements by a precipitation gauge, a laser disdrometer, and a micro rain radar were established at the Arctic station AWIPEV in Ny-Ålesund, Svalbard. We present statistics on precipitation amount, frequency, and type for the first years of data. Large-scale systems like atmospheric rivers and cyclones strongly contribute to precipitation and, in particular, to extreme precipitation events. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124485" data-show=".short_summary_button_124485">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12509/2024/acp-24-12509-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12509/2024/acp-24-12509-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12509/2024/acp-24-12509-2024-avatar-web.png" data-width="593" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12509/2024/">Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model</a> <div class="authors">Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig</div> <div class="citation">Atmos. Chem. Phys., 24, 12509–12535, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12509-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12509-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118288" data-show=".short_summary_118288" data-hide=".short_summary_button_118288" >Short summary</span> <div class="j-widget__max short_summary short_summary_118288" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118288" data-show=".short_summary_button_118288">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12509/2024/acp-24-12509-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12509/2024/acp-24-12509-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12509/2024/acp-24-12509-2024-avatar-web.png" data-width="593" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12495/2024/acp-24-12495-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12495/2024/acp-24-12495-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12495/2024/acp-24-12495-2024-avatar-web.png" data-width="600" data-height="449" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12495/2024/">Constraining light dependency in modeled emissions through comparison to observed biogenic volatile organic compound (BVOC) concentrations in a southeastern US forest</a> <div class="authors">Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz</div> <div class="citation">Atmos. Chem. Phys., 24, 12495–12507, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12495-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12495-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120874" data-show=".short_summary_120874" data-hide=".short_summary_button_120874" >Short summary</span> <div class="j-widget__max short_summary short_summary_120874" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Climate change will bring about changes in parameters that are currently used in global-scale models to calculate biogenic emissions. This study seeks to understand the factors driving these models by comparing long-term datasets of biogenic compounds to modeled emissions. We note that the light-dependent fractions currently used in models do not accurately represent regional observations. We provide evidence for the time-dependent variation in this parameter for future modifications to models. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120874" data-show=".short_summary_button_120874">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12495/2024/acp-24-12495-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12495/2024/acp-24-12495-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12495/2024/acp-24-12495-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="449" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3437/">Short lifetimes of organic nitrates in a sub-urban temperate forest indicate efficient assimilation of reactive nitrogen by the biosphere</a> <div class="authors">Simone T. Andersen, Rolf Sander, Patrick Dewald, Laura Wüst, Tobias Seubert, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, Alexandre Kukui, Vincent Michoud, Manuela Cirtog, Mathieu Cazaunau, Astrid Bauville, Hichem Bouzidi, Paola Formenti, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Christopher Cantrell, Jos Lelieveld, and John N. Crowley</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3437,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3437,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 5 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124677" data-show=".short_summary_124677" data-hide=".short_summary_button_124677" >Short summary</span> <div class="j-widget__max short_summary short_summary_124677" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Measurements and modelling of reactive nitrogen gases observed in a suburban temperate forest in Rambouillet, France circa 50 km southwest of Paris in 2022 indicate that the biosphere rapidly scavenges organic nitrates of mixed biogenic and anthropogenic origin, resulting in short lifetimes for e.g. alkyl nitrates and peroxy nitrates. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124677" data-show=".short_summary_button_124677">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2792/">Impact of atmospheric turbulence on the accuracy of point source emission estimates using satellite imagery</a> <div class="authors">Michał Gałkowski, Julia Marshall, Blanca Fuentes Andrade, and Christoph Gerbig</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2792,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2792,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123214" data-show=".short_summary_123214" data-hide=".short_summary_button_123214" >Short summary</span> <div class="j-widget__max short_summary short_summary_123214" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Observations of GHG emissions are needed to monitor the progress towards Paris Agreement goals. Remote sensing instruments have been used to estimate emissions from the strongest anthropogenic sources. Here, we study the impact of atmospheric turbulence on the estimation of CO<sub>2</sub> with a realistic atmospheric model, and we show that the formation of persistent plume structures causes uncertainty on the order of 10 % of total emission that cannot be avoided. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123214" data-show=".short_summary_button_123214">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12409/2024/acp-24-12409-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12409/2024/acp-24-12409-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12409/2024/acp-24-12409-2024-avatar-web.png" data-width="600" data-height="576" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12409/2024/">Rapid oxidation of phenolic compounds by O<sub>3</sub> and HO<sup>●</sup>: effects of the air–water interface and mineral dust in tropospheric chemical processes</a> <div class="authors">Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He</div> <div class="citation">Atmos. Chem. Phys., 24, 12409–12423, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12409-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12409-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_116340" data-show=".short_summary_116340" data-hide=".short_summary_button_116340" >Short summary</span> <div class="j-widget__max short_summary short_summary_116340" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This work found that the air–water (A–W) interface and TiO<sub>2</sub> clusters promote the oxidation of phenolic compounds (PhCs) to varying degrees compared with the gas phase and bulk water. Some byproducts are more harmful than their parent compounds. This work provides important evidence for the rapid oxidation observed in O<sub>3</sub>/HO<sup>•</sup> + PhC experiments at the A–W interface and in mineral dust. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_116340" data-show=".short_summary_button_116340">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12409/2024/acp-24-12409-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12409/2024/acp-24-12409-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12409/2024/acp-24-12409-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="576" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12465/2024/acp-24-12465-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12465/2024/acp-24-12465-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12465/2024/acp-24-12465-2024-avatar-web.png" data-width="600" data-height="400" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12465/2024/">A global re-analysis of regionally resolved emissions and atmospheric mole fractions of SF<sub>6</sub> for the period 2005–2021</a> <div class="authors">Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl</div> <div class="citation">Atmos. Chem. Phys., 24, 12465–12493, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12465-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12465-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118879" data-show=".short_summary_118879" data-hide=".short_summary_button_118879" >Short summary</span> <div class="j-widget__max short_summary short_summary_118879" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF<sub>6</sub>) between 2005 and 2021. We show that SF<sub>6</sub> emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF<sub>6</sub> emissions. However, stringent mitigation measures can successfully reduce SF<sub>6</sub> emissions, as can be seen in the EU emission trend. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118879" data-show=".short_summary_button_118879">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12465/2024/acp-24-12465-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12465/2024/acp-24-12465-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12465/2024/acp-24-12465-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="400" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12375/2024/acp-24-12375-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12375/2024/acp-24-12375-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12375/2024/acp-24-12375-2024-avatar-web.png" data-width="600" data-height="445" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12375/2024/">Influence of cloudy and clear-sky partitions, aerosols, and geometry on the recent variability in surface solar irradiance components in northern France</a> <div class="authors">Gabriel Chesnoiu, Nicolas Ferlay, Isabelle Chiapello, Frédérique Auriol, Diane Catalfamo, Mathieu Compiègne, Thierry Elias, and Isabelle Jankowiak</div> <div class="citation">Atmos. Chem. Phys., 24, 12375–12407, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12375-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12375-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118811" data-show=".short_summary_118811" data-hide=".short_summary_button_118811" >Short summary</span> <div class="j-widget__max short_summary short_summary_118811" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The measured ground-based surface solar irradiance variability and its sensitivity to scene parameters are analysed with a filtering of sky conditions at a given site. Its multivariate analysis is applied to observed trends over 2010–2022. The recorded values show, in addition to the dominant effects of cloud occurrence, the variable effects of aerosol and geometry. Clear-sun-with-cloud situations are highlighted by SSI levels close to those of aerosol- and cloud-free situations. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118811" data-show=".short_summary_button_118811">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12375/2024/acp-24-12375-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12375/2024/acp-24-12375-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12375/2024/acp-24-12375-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="445" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12447/2024/acp-24-12447-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12447/2024/acp-24-12447-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12447/2024/acp-24-12447-2024-avatar-web.png" data-width="600" data-height="410" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12447/2024/">Flow-dependent observation errors for greenhouse gas inversions in an ensemble Kalman smoother</a> <div class="authors">Michael Steiner, Luca Cantarello, Stephan Henne, and Dominik Brunner</div> <div class="citation">Atmos. Chem. Phys., 24, 12447–12463, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12447-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12447-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120249" data-show=".short_summary_120249" data-hide=".short_summary_button_120249" >Short summary</span> <div class="j-widget__max short_summary short_summary_120249" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Atmospheric greenhouse gas inversions have great potential to independently check reported bottom-up emissions; however they are subject to large uncertainties. It is paramount to address and reduce the largest source of uncertainty, which stems from the representation of atmospheric transport in the models. In this study, we show that the use of a temporally varying flow-dependent atmospheric transport uncertainty can enhance the accuracy of emission estimation in an idealized experiment. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120249" data-show=".short_summary_button_120249">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12447/2024/acp-24-12447-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12447/2024/acp-24-12447-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12447/2024/acp-24-12447-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="410" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12425/2024/acp-24-12425-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12425/2024/acp-24-12425-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12425/2024/acp-24-12425-2024-avatar-web.png" data-width="600" data-height="383" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12425/2024/">Age of air from in situ trace gas measurements: insights from a new technique</a> <div class="authors">Eric A. Ray, Fred L. Moore, Hella Garny, Eric J. Hintsa, Bradley D. Hall, Geoff S. Dutton, David Nance, James W. Elkins, Steven C. Wofsy, Jasna Pittman, Bruce Daube, Bianca C. Baier, Jianghanyang Li, and Colm Sweeney</div> <div class="citation">Atmos. Chem. Phys., 24, 12425–12445, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12425-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12425-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121257" data-show=".short_summary_121257" data-hide=".short_summary_button_121257" >Short summary</span> <div class="j-widget__max short_summary short_summary_121257" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> In this study we describe new techniques to derive age of air from multiple simultaneous measurements of long-lived trace gases in order to improve the fidelity of the age-of-air estimates and to be able to compare age of air from measurements taken from different instruments, platforms and decades. This technique also allows new transport information to be obtained from the measurements such as the primary source latitude that can also be compared to models. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121257" data-show=".short_summary_button_121257">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12425/2024/acp-24-12425-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12425/2024/acp-24-12425-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12425/2024/acp-24-12425-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="383" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3215/">Physical-chemical properties of particles in hailstones from Central Argentina</a> <div class="authors">Anthony C. Bernal Ayala, Angela K. Rowe, Lucia E. Arena, and William O. Nachlas</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3215,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3215,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124035" data-show=".short_summary_124035" data-hide=".short_summary_button_124035" >Short summary</span> <div class="j-widget__max short_summary short_summary_124035" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study analyzed particles in hailstones from Argentina to better understand hail formation and growth. A unique method was used that revealed the particles’ size, composition, and location within the hail, including a variety of particle sizes and compositions linked to local land uses, such as mountainous, agricultural, and urban. The findings highlight the potential impacts of natural and human-related factors on hail formation and provide a new method for studying hail globally. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124035" data-show=".short_summary_button_124035">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3240/">Advances in characterization of black carbon particles and their associated coatings using the soot particle aerosol mass spectrometer in Singapore, a complex city environment</a> <div class="authors">Mutian Ma, Laura-Hélèna Rivellini, Yichen Zong, Markus Kraft, Liya E. Yu, and Alex King Yin Lee</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3240,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3240,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124079" data-show=".short_summary_124079" data-hide=".short_summary_button_124079" >Short summary</span> <div class="j-widget__max short_summary short_summary_124079" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This work advances our understanding of emission and atmospheric evolution of black carbon (BC) particles in Singapore, a complex urban environment impacted by multiple local and regional combustion sources, based on the improved source apportionment analysis of real-time aerosol mass spectrometry measurement. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124079" data-show=".short_summary_button_124079">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3218/">Snow Particle Fragmentation Enhances Snow Sublimation</a> <div class="authors">Ning Huang, Jiacheng Bao, Hongxiang Yu, and Guang Li</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3218,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3218,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124040" data-show=".short_summary_124040" data-hide=".short_summary_button_124040" >Short summary</span> <div class="j-widget__max short_summary short_summary_124040" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Particle fragmentation makes snowflakes spherical during wind-drifting snow. However, no drifting snow model has presented this process so far. We established a drifting snow model considering particle fragmentation and investigated the effects of snow particle fragmentation on drifting and blowing snow. Our results show that fragmentation intensifies the sublimation of blowing snow and changes the airborne particle size distribution, which should not be ignored in current blowing snow models. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124040" data-show=".short_summary_button_124040">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3464/">Monoterpene oxidation pathways initiated by acyl peroxy radical addition</a> <div class="authors">Dominika Pasik, Thomas Golin Almeida, Emelda Ahongshangbam, Siddharth Iyer, and Nanna Myllys</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3464,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3464,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124749" data-show=".short_summary_124749" data-hide=".short_summary_button_124749" >Short summary</span> <div class="j-widget__max short_summary short_summary_124749" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We used quantum chemistry methods to investigate the oxidation mechanisms of acyl peroxy radicals (APRs) with various monoterpenes. Our findings reveal unique oxidation pathways for different monoterpenes, leading to either chain-terminating products or highly reactive intermediates that can contribute to particle formation in the atmosphere. This research highlights APRs as potentially significant but underexplored atmospheric oxidants, which may influence future approaches to modeling climate. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124749" data-show=".short_summary_button_124749">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3095/">Measurement report: Insight into Greenhouse Gas Emission Characteristics of Light-Duty Vehicles in China Driven by Technological Innovation</a> <div class="authors">Xinping Yang, Jia Ke, Zhihui Huang, Yi Wen, Dailin Yin, Zhen Jiang, Zhigang Yue, Yunjing Wang, Songdi Liao, Hang Yin, and Yan Ding</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3095,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3095,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123786" data-show=".short_summary_123786" data-hide=".short_summary_button_123786" >Short summary</span> <div class="j-widget__max short_summary short_summary_123786" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Given the limitation of insufficient research on greenhouse gas emission characteristics of light-duty vehicles in China against the dual-carbon background, we conducted chassis dynamometer tests on over ten vehicles and elaborated in detail on the characteristics of greenhouse gas emissions from vehicles driven by technological updates. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123786" data-show=".short_summary_button_123786">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3423/">Ambient and Intrinsic Dependencies of Evolving Ice-Phase Particles within a Decaying Winter Storm During IMPACTS</a> <div class="authors">Andrew DeLaFrance, Lynn McMurdie, Angela Rowe, and Andrew Heymsfield</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3423,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3423,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124631" data-show=".short_summary_124631" data-hide=".short_summary_button_124631" >Short summary</span> <div class="j-widget__max short_summary short_summary_124631" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Numerical modeling simulations are used to investigate ice crystal growth and decay processes within a banded region of enhanced precipitation rates during a prominent winter storm. We identify robust primary ice growth in the upper portion of the cloud but decay exceeding 70 % during fallout through a subsaturated layer. The ice fall characteristics and decay rate are sensitive to the ambient cloud properties which has implications for radar-based measurements and precipitation accumulations. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124631" data-show=".short_summary_button_124631">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12355/2024/acp-24-12355-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12355/2024/acp-24-12355-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12355/2024/acp-24-12355-2024-avatar-web.png" data-width="600" data-height="158" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12355/2024/">Projected future changes in extreme precipitation over China under stratospheric aerosol intervention in the UKESM1 climate model</a> <div class="authors">Ou Wang, Ju Liang, Yuchen Gu, Jim M. Haywood, Ying Chen, Chenwei Fang, and Qin'geng Wang</div> <div class="citation">Atmos. Chem. Phys., 24, 12355–12373, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12355-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12355-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_116482" data-show=".short_summary_116482" data-hide=".short_summary_button_116482" >Short summary</span> <div class="j-widget__max short_summary short_summary_116482" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> As extreme precipitation events increase in China, this study explores the potential of stratospheric aerosol injection (SAI) to mitigate these effects by the end of the 21st century using the UKESM1 model. Results show that SAI reduces extreme precipitation in eastern China. However, caution is advised due to potential side effects in high-latitude regions, and further optimization is required for future SAI deployment. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_116482" data-show=".short_summary_button_116482">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12355/2024/acp-24-12355-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12355/2024/acp-24-12355-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12355/2024/acp-24-12355-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="158" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12341/2024/acp-24-12341-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12341/2024/acp-24-12341-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12341/2024/acp-24-12341-2024-avatar-web.png" data-width="600" data-height="173" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12341/2024/">Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis</a> <div class="authors">Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han</div> <div class="citation">Atmos. Chem. Phys., 24, 12341–12354, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12341-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12341-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119220" data-show=".short_summary_119220" data-hide=".short_summary_button_119220" >Short summary</span> <div class="j-widget__max short_summary short_summary_119220" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties. This method is verified from a theoretical perspective, and it performs well for thickly coated BC at high RHs. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119220" data-show=".short_summary_button_119220">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12341/2024/acp-24-12341-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12341/2024/acp-24-12341-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12341/2024/acp-24-12341-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="173" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3419/">HOMs and SOA formation from the oxidation of α- and β-phellandrenes by NO<sub>3</sub> radicals</a> <div class="authors">Sergio Harb, Manuela Cirtog, Stéphanie Alage, Christopher Cantrell, Mathieu Cazaunau, Vincent Michoud, Edouard Pangui, Antonin Bergé, Chiara Giorio, Francesco Battaglia, and Bénédicte Picquet-Varrault</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3419,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3419,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124616" data-show=".short_summary_124616" data-hide=".short_summary_button_124616" >Short summary</span> <div class="j-widget__max short_summary short_summary_124616" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We investigated the reactions of α- and β-phellandrenes (from vegetation emissions) with NO<sub>3</sub> radicals, a major nighttime oxidant from human activities. Using lab-based simulations, we examined these reactions and measured particle formation and by-products. Our findings reveal that α- and β-phellandrenes are efficient particle sources and enhance our understanding of biogenic-anthropogenic interactions and their contributions to atmospheric changes affecting climate and health. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124616" data-show=".short_summary_button_124616">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3121/">Influence of atmospheric variations in the polar stratosphere of the southern hemisphere during 2002–2022 on polar planetary wave activity</a> <div class="authors">Liang Tang, Sheng-Yang Gu, and Xiankang Dou</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3121,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3121,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123847" data-show=".short_summary_123847" data-hide=".short_summary_button_123847" >Short summary</span> <div class="j-widget__max short_summary short_summary_123847" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The temperature amplitude and wave periods of each polar planetary wave event were determined using 2-D least-squares fitting. An important result in this work is that the propagation and amplification characteristics of polar planetary waves during austral winter periods are influenced by background zonal winds and atmospheric instability, and that there is significant variability temperature amplitude, wave period, and temporal variations examined for a given zonal wavenumber. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123847" data-show=".short_summary_button_123847">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12323/2024/acp-24-12323-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12323/2024/acp-24-12323-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12323/2024/acp-24-12323-2024-avatar-web.png" data-width="429" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12323/2024/">Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity</a> <div class="authors">Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu</div> <div class="citation">Atmos. Chem. Phys., 24, 12323–12340, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12323-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12323-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118538" data-show=".short_summary_118538" data-hide=".short_summary_button_118538" >Short summary</span> <div class="j-widget__max short_summary short_summary_118538" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Ozone (O<sub>3</sub>) deposition is a key process that removes surface O<sub>3</sub>, affecting air quality, ecosystems and climate change. We conducted O<sub>3</sub> deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O<sub>3</sub> deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O<sub>3</sub> deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118538" data-show=".short_summary_button_118538">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12323/2024/acp-24-12323-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12323/2024/acp-24-12323-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12323/2024/acp-24-12323-2024-avatar-web.png" data-width="429" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3124/">Multi-year black carbon observations and modeling close to the largest gas flaring and wildfire regions (Western Siberian Arctic)</a> <div class="authors">Olga B. Popovicheva, Marina A. Chichaeva, Nikolaos Evangeliou, Sabine Eckhardt, Evangelia Diapouli, and Nikolay S. Kasimov</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3124,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3124,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123852" data-show=".short_summary_123852" data-hide=".short_summary_button_123852" >Short summary</span> <div class="j-widget__max short_summary short_summary_123852" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> High-quality measurements of light-absorbing carbon were performed at the polar aerosol station "Island Bely” (Western Siberian Arctic) from 2019 to 2022. The maximum light absorption coefficients were seen in summer due to gas flaring contribution, which is the most significant source in the region. However, the increasing Siberian wildfires had a special share in carbon contribution to this high Arctic station with a persistent smoke layer extending over the whole troposphere in summer. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123852" data-show=".short_summary_button_123852">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3339/">Strong influence of Black Carbon on aerosol optical properties in Central Amazonia during the fire season</a> <div class="authors">Rafael Stern, Joel F. de Brito, Samara Carbone, Luciana Varanda Rizzo, Jonathan Daniel Muller, and Paulo Artaxo</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3339,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3339,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124436" data-show=".short_summary_124436" data-hide=".short_summary_button_124436" >Short summary</span> <div class="j-widget__max short_summary short_summary_124436" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Our work reveals the impact of forest fires on climate. We found that particles related to direct emissions from fires, beyond the well-known effect of absorbing light and thus heating the atmosphere, are also very efficient in scattering light, which causes an atmospheric cooling effect. In our remote study site, most of the particles presented a different chemical composition then particles directly emitted by the fires, but those were the main responsible for total light extinction. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124436" data-show=".short_summary_button_124436">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3357/">Significant spatial and temporal variation of the concentrations and chemical composition of ultrafine particulate matter over Europe</a> <div class="authors">Konstantinos Mataras, Evangelia Siouti, David Patoulias, and Spyros Pandis</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3357,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3357,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124464" data-show=".short_summary_124464" data-hide=".short_summary_button_124464" >Short summary</span> <div class="j-widget__max short_summary short_summary_124464" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Predicted levels of ultrafine particle mass (PM<sub>0.1</sub>) vary substantially over Europe with higher values in the summer than in the winter. In summer, PM<sub>0.1</sub> was mostly comprised of sulfate (38 %) and secondary organics (32 %). During winter the sulfate fraction increased to 47 % and primary organics contributed 23 %. Correlations between PM<sub>0.1</sub> and the regulated PM<sub>2.5</sub> were low. This suggests that there are significant differences between the dominant sources and processes of PM<sub>0.1</sub> and PM<sub>2.5</sub>. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124464" data-show=".short_summary_button_124464">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12295/2024/acp-24-12295-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12295/2024/acp-24-12295-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12295/2024/acp-24-12295-2024-avatar-web.png" data-width="600" data-height="520" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12295/2024/">Particulate emissions from cooking: emission factors, emission dynamics, and mass spectrometric analysis for different cooking methods</a> <div class="authors">Julia Pikmann, Frank Drewnick, Friederike Fachinger, and Stephan Borrmann</div> <div class="citation">Atmos. Chem. Phys., 24, 12295–12321, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12295-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12295-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_114971" data-show=".short_summary_114971" data-hide=".short_summary_button_114971" >Short summary</span> <div class="j-widget__max short_summary short_summary_114971" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Cooking activities can contribute substantially to indoor and ambient aerosol. We performed a comprehensive study with laboratory measurements cooking 19 different dishes and ambient measurements at two Christmas markets measuring various particle properties and trace gases of emissions in real time. Similar emission characteristics were observed for dishes with the same preparation method, mainly due to similar cooking temperature and use of oil, with barbecuing as an especially strong source. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_114971" data-show=".short_summary_button_114971">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12295/2024/acp-24-12295-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12295/2024/acp-24-12295-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12295/2024/acp-24-12295-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="520" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12277/2024/acp-24-12277-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12277/2024/acp-24-12277-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12277/2024/acp-24-12277-2024-avatar-web.png" data-width="475" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12277/2024/">The role of refractive indices in measuring mineral dust with high-spectral-resolution infrared satellite sounders: application to the Gobi Desert</a> <div class="authors">Perla Alalam, Fabrice Ducos, and Hervé Herbin</div> <div class="citation">Atmos. Chem. Phys., 24, 12277–12294, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12277-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12277-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119009" data-show=".short_summary_119009" data-hide=".short_summary_button_119009" >Short summary</span> <div class="j-widget__max short_summary short_summary_119009" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study dives into the impact of mineral dust laboratory complex refractive indices (CRIs) on quantifying the dust microphysical properties using satellite infrared remote sensing. Results show that using CRIs obtained by advanced realistic techniques can improve the accuracy of these measurements, emphasizing the importance of choosing the suitable CRI in atmospheric models. This improvement is crucial for better predicting the dust radiative effect and impact on the climate. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119009" data-show=".short_summary_button_119009">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12277/2024/acp-24-12277-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12277/2024/acp-24-12277-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12277/2024/acp-24-12277-2024-avatar-web.png" data-width="475" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-web.png" data-width="531" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Nov 2024</div> <div class="highlightType" > | Highlight paper</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12259/2024/">Tropospheric links to uncertainty in stratospheric subseasonal predictions</a> <div class="authors">Rachel W.-Y. Wu, Gabriel Chiodo, Inna Polichtchouk, and Daniela I. V. Domeisen</div> <div class="citation">Atmos. Chem. Phys., 24, 12259–12275, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12259-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12259-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120744" data-show=".short_summary_120744" data-hide=".short_summary_button_120744" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_120744 ml-2" data-show=".ce_comment_120744" data-hide=".ce_comment_button_120744">Executive editor</span> <div class="j-widget__max short_summary short_summary_120744" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Strong variations in the strength of the stratospheric polar vortex can profoundly affect surface weather extremes; therefore, accurately predicting the stratosphere can improve surface weather forecasts. The research reveals how uncertainty in the stratosphere is linked to the troposphere. The findings suggest that refining models to better represent the identified sources and impact regions in the troposphere is likely to improve the prediction of the stratosphere and its surface impacts. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120744" data-show=".short_summary_button_120744">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_120744 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> There has been much emphasis on the increased predictability of the extratropical tropospheric circulation after stratospheric sudden warmings and the potential value of this to weather forecasting. But it remains the case that the sudden warmings themselves, which are significantly (but not exclusively) driven by variabiliity in the troposphere, have limited predictability. This paper uses ensemble forecasts to identify tropospheric circulation features that, if poorly predicted in the period prior to a sudden warming, lead to a poor prediction of the warming itself and hence provides a potentially useful focus for future improvements to forecast models. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_120744" data-show=".ce_comment_button_120744">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-web.png" data-width="531" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3089/">Measurement Report: Vertically resolved Atmospheric Properties Observed over the Southern Great Plains with Uncrewed Aerial System – ArcticShark</a> <div class="authors">Fan Mei, Qi Zhang, Damao Zhang, Jerome Fast, Gourihar Kulkarni, Mikhail Pekour, Christopher Niedek, Susanne Glienke, Isarel Silber, Beat Schmid, Jason Tomlinson, Hardeep Mehta, Xena Mansoura, Zezhen Cheng, Gregory Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3089,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3089,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123776" data-show=".short_summary_123776" data-hide=".short_summary_button_123776" >Short summary</span> <div class="j-widget__max short_summary short_summary_123776" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study highlights the unique capability of the ArcticShark UAS in measuring vertically resolved atmospheric properties over the Southern Great Plains. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123776" data-show=".short_summary_button_123776">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3046/">New insights into the nonlinear effects of NO<sub><em>x</em></sub> on SOA formation from isoprene photo-oxidation</a> <div class="authors">Xinbei Xu, Yining Gao, Si Zhang, Luyao Chen, Rongjie Li, Zheng Li, Rui Li, and Gehui Wang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3046,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3046,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123708" data-show=".short_summary_123708" data-hide=".short_summary_button_123708" >Short summary</span> <div class="j-widget__max short_summary short_summary_123708" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This work systematically explained the nonlinear effect of NO<em><sub>x</sub></em> level on isoprene-SOA mass yield through a series of chamber experiments. We found that the turning point under various oxidants was smaller than previous reported in the presence of OH precursors, which could be attributed to the RO<sub>2</sub> pathway competition in nucleation and condensation of low volatile products. The highest SOA yield was at a branching ratio β of 0.5, which can be used as a reference for field campaign and modeling. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123708" data-show=".short_summary_button_123708">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12225/2024/acp-24-12225-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12225/2024/acp-24-12225-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12225/2024/acp-24-12225-2024-avatar-web.png" data-width="504" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12225/2024/">Tropospheric ozone precursors: global and regional distributions, trends, and variability</a> <div class="authors">Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang</div> <div class="citation">Atmos. Chem. Phys., 24, 12225–12257, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12225-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12225-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118712" data-show=".short_summary_118712" data-hide=".short_summary_button_118712" >Short summary</span> <div class="j-widget__max short_summary short_summary_118712" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118712" data-show=".short_summary_button_118712">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12225/2024/acp-24-12225-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12225/2024/acp-24-12225-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12225/2024/acp-24-12225-2024-avatar-web.png" data-width="504" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3293/">Sensitivity experiments with ICON-LAM to test probable explanations for higher ice crystal number over Arctic sea ice vs. ocean</a> <div class="authors">Iris Papakonstantinou-Presvelou and Johannes Quaas</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3293,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3293,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124345" data-show=".short_summary_124345" data-hide=".short_summary_button_124345" >Short summary</span> <div class="j-widget__max short_summary short_summary_124345" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> As the Arctic warms and the sea ice retreats, more open ocean is exposed, changing how aerosols impact clouds. Our previous 10-year satellite analysis found higher ice crystal numbers over sea ice than over ocean. Using model simulations and aircraft observations we identify here two factors as potential causes at colder temperatures; ice nucleating particles over sea ice and blowing snow. With further sea ice loss, these processes may weaken, leading to fewer ice particles in the future. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124345" data-show=".short_summary_button_124345">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-1497/">Highly-resolved satellite remote sensing based land-use change inventory yields weaker surface albedo-induced global cooling</a> <div class="authors">Xiaohu Jian, Xiaodong Zhang, Xinrui Liu, Kaijie Chen, Tao Huang, Shu Tao, Junfeng Liu, Hong Gao, Yuan Zhao, Ruiyu Zhugu, and Jianmin Ma</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-1497,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-1497,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120373" data-show=".short_summary_120373" data-hide=".short_summary_button_120373" >Short summary</span> <div class="j-widget__max short_summary short_summary_120373" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We implemented a new global land use change (LUC) dataset on a 5 km×5 km resolution from 1982 to 2010 into a compact earth system model OSCAR and carried out extensive multiple model scenario simulations. Our result reveals that the global radiative forcing (RF) induced by LUC driving surface albedo change is -0.12 W m<sup>-2</sup>, 20 % lower than IPCC, and vegetation changes play a key role in RF evolution, which provides an important references for the assessment of earth energy balance. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120373" data-show=".short_summary_button_120373">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3087/">Representing improved tropospheric ozone distribution by including lightning NOx emissions in CHIMERE</a> <div class="authors">Sanhita Ghosh, Arineh Cholakian, Sylvain Mailler, and Laurent Menut</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3087,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3087,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123774" data-show=".short_summary_123774" data-hide=".short_summary_button_123774" >Short summary</span> <div class="j-widget__max short_summary short_summary_123774" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> In the study, we estimate the emissions of nitrogen oxides from lightning (LNOx) over the northern hemisphere and study its impact on tropospheric ozone (O<sub>3</sub>). We evaluate the present state of modelling the lightning, using a classical parametrization scheme and the model CHIMERE. The comparison of the simulated O<sub>3</sub> to measurements shows that the inclusion of LNOx emissions remarkably improves the tropospheric O<sub>3</sub> distribution, reducing the bias significantly, particularly in the free troposphere. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123774" data-show=".short_summary_button_123774">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2869/">Measurement report: Crustal materials play an increasing role in elevating particle pH: Insights from 12-year records in a typical inland city of China</a> <div class="authors">Hongyu Zhang, Shenbo Wang, Zhangsen Dong, Xiao Li, and Ruiqin Zhang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2869,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2869,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123361" data-show=".short_summary_123361" data-hide=".short_summary_button_123361" >Short summary</span> <div class="j-widget__max short_summary short_summary_123361" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> To address this, 12-year observational data in Zhengzhou were investigated and revealed that the resuspension of surrounding soil dust determined the rebound of crustal material concentrations after 2019, further elevating the particle pH. Therefore, the future ammonia reduction policies in North China may not lead to a rapid increase in particle acidity buffering by the crustal materials, but it is necessary to consider synergistic control with dust sources. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123361" data-show=".short_summary_button_123361">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3107/">Six years of greenhouse gas fluxes at Saclay, France, estimated with the Radon Tracer Method</a> <div class="authors">Camille Yver-Kwok, Michel Ramonet, Léonard Rivier, Jinghui Lian, Claudia Grossi, Roger Curcoll, Dafina Kikaj, Edward Chung, and Ute Karstens</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3107,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3107,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123813" data-show=".short_summary_123813" data-hide=".short_summary_button_123813" >Short summary</span> <div class="j-widget__max short_summary short_summary_123813" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Here, we use greenhouse gas and radon data from a tall tower in France to estimate their fluxes within the station footprint from January 2017 to December 2022 using the Radon Tracer Method. Using the latest radon exhalation maps and standardized radon measurements, we found the greenhouse gas fluxes to be in agreement with the literature. Compared to inventories, there is a general agreement except for carbon dioxide where we show that the biogenic fluxes are not well represented in the model. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123813" data-show=".short_summary_button_123813">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3114/">Seasonal trends in the wintertime photochemical regime of the Uinta Basin, Utah, USA</a> <div class="authors">Marc L. Mansfield and Seth N. Lyman</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3114,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3114,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123822" data-show=".short_summary_123822" data-hide=".short_summary_button_123822" >Short summary</span> <div class="j-widget__max short_summary short_summary_123822" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Precursor compounds must be present in the lower atmosphere for ozone to form. Ozone abatement strategies focus on reducing such precursors, but measuring and modeling are necessary to determine the most efficient way to do this. We show that the sensitivity of ozone to various precursors changes over the course of the winter. We also argue that similar seasonal changes probably occur in many regions of the Northern Hemisphere. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123822" data-show=".short_summary_button_123822">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12203/2024/acp-24-12203-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12203/2024/acp-24-12203-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12203/2024/acp-24-12203-2024-avatar-web.png" data-width="600" data-height="263" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12203/2024/">Precipitation in the mountains of Central Asia: isotopic composition and source regions</a> <div class="authors">Zarina Saidaliyeva, Maria Shahgedanova, Vadim Yapiyev, Andrew John Wade, Fakhriddin Akbarov, Mukhammed Esenaman uulu, Olga Kalashnikova, Vassiliy Kapitsa, Nikolay Kasatkin, Ilkhomiddin Rakhimov, Rysbek Satylkanov, Daniiar Sayakbaev, Eleonora Semakova, Igor Severskiy, Maxim Petrov, Gulomjon Umirzakov, and Ryskul Usubaliev</div> <div class="citation">Atmos. Chem. Phys., 24, 12203–12224, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12203-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12203-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_114613" data-show=".short_summary_114613" data-hide=".short_summary_button_114613" >Short summary</span> <div class="j-widget__max short_summary short_summary_114613" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Ratios of stable isotopes of oxygen and hydrogen in precipitation are used to trace source regions and pathways of atmospheric moisture. A database of these measurements was developed for the mountains of Central Asia and analysed in the context of atmospheric trajectories. Over 50 % of precipitation was formed from moisture re-evaporated from regional terrestrial sources including the irrigated land in the Aral Sea basin, highlighting its support of the water tower function of the mountains. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_114613" data-show=".short_summary_button_114613">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12203/2024/acp-24-12203-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12203/2024/acp-24-12203-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12203/2024/acp-24-12203-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="263" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2856/">Monitoring of total and off-road NO<em><sub>x</sub></em> emissions from Canadian oil sands surface mining using the Ozone Monitoring Instrument</a> <div class="authors">Chris McLinden, Debora Griffin, Vitali Fioletov, Junhua Zhang, Enrico Dammers, Cristen Adams, Mallory Loria, Nicolay Krotkov, and Lok Lamsal</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2856,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2856,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123330" data-show=".short_summary_123330" data-hide=".short_summary_button_123330" >Short summary</span> <div class="j-widget__max short_summary short_summary_123330" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The Ozone Monitoring Instrument (OMI) was used to understand the evolution of NO<em><sub>x</sub></em> emissions from the Canadian oil sands. OMI NO<sub>2</sub> combined with winds and reported stack emissions, found emissions from the heavy-hauler mine fleet increased by about 20 % since 2005, whereas the total oil sands mined nearly doubled. This difference is a result of emissions standards limiting NO<em><sub>x</sub></em> emissions becoming more stringent over this period confirming the efficacy of the policy enacting these standards. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123330" data-show=".short_summary_button_123330">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3079/">Sensitivity of climate effects of hydrogen to leakage size, location, and chemical background</a> <div class="authors">Ragnhild Bieltvedt Skeie, Marit Sandstad, Srinath Krishnan, Gunnar Myhre, and Maria Sand</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3079,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3079,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123766" data-show=".short_summary_123766" data-hide=".short_summary_button_123766" >Short summary</span> <div class="j-widget__max short_summary short_summary_123766" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Hydrogen leakages can alter the amount of climate gases in the atmosphere and hence have a climate impact. In this study we investigate, using an atmospheric chemistry model, how this indirect climate effect differs for different amounts of leakages, where the hydrogen leaks and if this effect changes in the future. The effect is largest for emissions far from areas where hydrogen is removed from the atmosphere by the soil, but these are not relevant locations for a future hydrogen economy. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123766" data-show=".short_summary_button_123766">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2680/">Measurement report: Can Zenith Wet Delay from GNSS "see" atmospheric turbulence? Insights from case studies across diverse climate zones</a> <div class="authors">Gael Kermarrec, Xavier Calbet, Zhiguo Deng, and Cintia Carbajal Henken</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2680,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2680,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122806" data-show=".short_summary_122806" data-hide=".short_summary_button_122806" >Short summary</span> <div class="j-widget__max short_summary short_summary_122806" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Microwave signals from Global Navigation Satellite Systems are delayed as they travel through the troposphere, Whereas the hydrostatic delay is predictable, the wet delay, tied to atmospheric moisture, is highly variable. This study introduces a method to analyze small-scale zenith wet delay variations, showing specific daily and seasonal turbulence-influenced patterns in various climate zones. These findings can improve weather forecasting and the accuracy of satellite positioning systems. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122806" data-show=".short_summary_button_122806">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3229/">Adjustments to an abrupt solar forcing in the CMIP6 abrupt-solm4p experiment</a> <div class="authors">Charlotte Lange and Johannes Quaas</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3229,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3229,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124055" data-show=".short_summary_124055" data-hide=".short_summary_button_124055" >Short summary</span> <div class="j-widget__max short_summary short_summary_124055" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We studied how the Earth’s climate system adjusts to sudden changes in the energy budget, by analyzing data of four climate models, which simulated a 4 % reduction of incoming solar energy. We found rapid cooling of the atmosphere and shifts in cloud cover and atmospheric circulation patterns like land-sea-circulation. Our research helps to better understand cloud adjustments, which are a main source of uncertainty in climate models. This can improve future climate predictions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124055" data-show=".short_summary_button_124055">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div> <script> $(function (){ $('.recent-selection-wrapper button').click((event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); let currentElement = event.currentTarget; $("html, body").animate({ scrollTop: $('.breadcrumb').offset().top }, "slow"); return false; }); }); </script> <!-- LOCKSS system has permission to collect, preserve, and serve this open access Archival Unit --> <a rel="license" style="display: none" href="https://creativecommons.org/licenses/by/4.0/">CC BY 4.0</a> </div> </div> <!-- CO c_contentmanager_services::callProjectTemplate::899 27.11.2024 01:12:46, memcached, 0.0018930435180664secs --> </div> </div> </main> <!--=== End Content ===--> <footer class="d-print-none version-2023"> <div class="footer"> <div class="container"> <div class="row align-items-center mb-3"> <div class="col-12 col-lg-auto text-center text-md-left title-wrapper"> <div id="j-header-footer" class="text-center text-md-left"> <div class="h1 text-center text-md-left"> Atmospheric Chemistry and Physics </div> <p>An interactive open-access journal of the European Geosciences Union</p> </div> </div> <div class="col-12 col-lg-auto text-center text-md-left pt-lg-2"> <div class="row align-items-center"> <div class="col-12 col-sm col-md-auto text-center text-md-left mb-3 mb-sm-0"> <span class="egu-logo"><a href="http://www.egu.eu/" target="_blank"><img src="https://contentmanager.copernicus.org/319373/10/ssl" alt="" style="width: 410px; height: 325px;" /></a></span> </div> <div class="col-12 col-sm text-center text-md-left"> <span class="copernicus-logo"><a href="https://publications.copernicus.org/" target="_blank"><img src="https://contentmanager.copernicus.org/319376/10/ssl" alt="" style="width: 1784px; height: 330px;" /></a></span> </div> </div> </div> </div> </div> </div> <div class="links pb-4 pt-4"> <div class="container"> <div class="row align-items-center"> <div class="col-12 col-xl-auto mt-3"> <div class="row align-items-start align-items-lg-center"> <div class="col-12 mb-3 mb-md-0 pl-md-0 text-center text-md-left"><a href="https://creativecommons.org/licenses/by/4.0/" target="_blank"><i class="fab fa-creative-commons fa-lg mr-1"></i><i class="fab fa-creative-commons-by fa-lg"></i></a> All site content, except where otherwise noted, is licensed under the <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">Creative Commons Attribution 4.0 License</a>.</div> </div> </div> <div class="col-12 text-center text-md-left col-lg-auto mt-3"> <div class="row align-items-center"> <div class="col d-md-none px-0"></div> <div class="col-auto pr-1"><a href="https://www.atmospheric-chemistry-and-physics.net/about/contact.html">Contact</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.atmospheric-chemistry-and-physics.net/imprint.html">Imprint</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.copernicus.org/data_protection.html" target="_blank">Data protection</a></div> <div class="col-auto pl-2"><a class="twitter-follow-button" target="_blank" href="https://twitter.com/EGU_ACP"><i class="fa-brands fa-square-x-twitter fa-2x"></i></a></div> <div class="col d-md-none px-0"></div> </div> </div> </div> </div> </div> </footer> <!-- --></body> <!--CMS get_project_template.php::126 27.11.2024 01:12:46, CMS generated: 2.784606218338sec --></html>