CINXE.COM

Henrique Gomes | Perimeter Institute for Theoretical Physics - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Henrique Gomes | Perimeter Institute for Theoretical Physics - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="xdbd0huwbkAWV5BoMxnkgc4dZnsQhMQldQuQ-Ndu2tcqZODH2fU1OsJ6NXkzEeCnmI9i-aM-BWwao0KXNaqiKA" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="henrique gomes" /> <meta name="description" content="Henrique Gomes, Perimeter Institute for Theoretical Physics: 44 Followers, 43 Following, 76 Research papers. Research interests: Quantum Gravity, Applied…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '6126ad0e98c738cb7565ca303973296e3a0c1d18'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14023,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":283383823,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1740164761000); window.Aedu.timeDifference = new Date().getTime() - 1740164761000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-1eb081e01ca8bc0c1b1d866df79d9eb4dd2c484e4beecf76e79a7806c72fee08.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-b42d48e01e9cb3bf5ae55ea154ab7133fe47240c1d7c59b0249065c67d6f65ab.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f3fdf92d2e211a3fd7a717a75adb7bf4af30f5d7651964d9f223129f218112cd.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://perimeterinstitute.academia.edu/HenriqueGomes" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-fd736d66704990dee9f52cdbd5e7b1c7d1b031c0bb5a20dd676d1a6b7d5fea79.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes","photo":"https://0.academia-photos.com/25024933/6788511/7664900/s65_henrique.gomes.jpg","has_photo":true,"department":{"id":487759,"name":"Quantum Gravity","url":"https://perimeterinstitute.academia.edu/Departments/Quantum_Gravity/Documents","university":{"id":2116,"name":"Perimeter Institute for Theoretical Physics","url":"https://perimeterinstitute.academia.edu/"}},"position":"Post-Doc","position_id":2,"is_analytics_public":false,"interests":[{"id":1247,"name":"Quantum Gravity","url":"https://www.academia.edu/Documents/in/Quantum_Gravity"},{"id":811,"name":"Applied Philosophy","url":"https://www.academia.edu/Documents/in/Applied_Philosophy"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://perimeterinstitute.academia.edu/HenriqueGomes&quot;,&quot;location&quot;:&quot;/HenriqueGomes&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;perimeterinstitute.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/HenriqueGomes&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-fa92b91d-0880-4735-8256-22e452433fd6"></div> <div id="ProfileCheckPaperUpdate-react-component-fa92b91d-0880-4735-8256-22e452433fd6"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Henrique Gomes" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/25024933/6788511/7664900/s200_henrique.gomes.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Henrique Gomes</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://perimeterinstitute.academia.edu/">Perimeter Institute for Theoretical Physics</a>, <a class="u-tcGrayDarker" href="https://perimeterinstitute.academia.edu/Departments/Quantum_Gravity/Documents">Quantum Gravity</a>, <span class="u-tcGrayDarker">Post-Doc</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Henrique" data-follow-user-id="25024933" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="25024933"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">44</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">43</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/HenriqueGomes/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/AlbertoCattaneo3"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/AlbertoCattaneo3">Alberto Cattaneo</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/GianlucaFolesani"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/GianlucaFolesani">Gianluca Folesani</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/SpencerStirling"><img class="profile-avatar u-positionAbsolute" alt="Spencer Stirling" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/2278612/724641/899846/s200_spencer.stirling.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/SpencerStirling">Spencer Stirling</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://cornell.academia.edu/IbrahimShehzad"><img class="profile-avatar u-positionAbsolute" alt="Ibrahim Shehzad" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/45385476/12321330/13717609/s200_ibrahim.shehzad.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cornell.academia.edu/IbrahimShehzad">Ibrahim Shehzad</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Cornell University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uwa.academia.edu/IanMartins"><img class="profile-avatar u-positionAbsolute" alt="Ian J Martins" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/51092202/13532731/14710634/s200_ian.martins.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uwa.academia.edu/IanMartins">Ian J Martins</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">The University of Western Australia</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/DKarabali"><img class="profile-avatar u-positionAbsolute" alt="Dimitra Karabali" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/135698600/36914167/31429588/s200_dimitra.karabali.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/DKarabali">Dimitra Karabali</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/KartikPrabhu2"><img class="profile-avatar u-positionAbsolute" alt="Kartik Prabhu" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/154623235/43136166/34380302/s200_kartik.prabhu.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/KartikPrabhu2">Kartik Prabhu</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uaemex.academia.edu/JavierG%C3%B3mezMaturano"><img class="profile-avatar u-positionAbsolute" alt="Javier Gómez Maturano" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/110488948/31952916/138961590/s200_javier.g_mez_maturano.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uaemex.academia.edu/JavierG%C3%B3mezMaturano">Javier Gómez Maturano</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad Autónoma del Estado de México</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://nyu.academia.edu/GastonGiribet"><img class="profile-avatar u-positionAbsolute" alt="Gaston Giribet" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/135164713/35699254/122811360/s200_gaston.giribet.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://nyu.academia.edu/GastonGiribet">Gaston Giribet</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">New York University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://fudan.academia.edu/AntoninoMarciano"><img class="profile-avatar u-positionAbsolute" alt="Antonino Marciano" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/3095953/1132925/36939518/s200_antonino.marciano.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://fudan.academia.edu/AntoninoMarciano">Antonino Marciano</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Fudan University</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="25024933" href="https://www.academia.edu/Documents/in/Quantum_Gravity"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://perimeterinstitute.academia.edu/HenriqueGomes&quot;,&quot;location&quot;:&quot;/HenriqueGomes&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;perimeterinstitute.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/HenriqueGomes&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Quantum Gravity&quot;]}" data-trace="false" data-dom-id="Pill-react-component-99bc1c8f-9eb6-4f13-acdc-5b41b4e7db1c"></div> <div id="Pill-react-component-99bc1c8f-9eb6-4f13-acdc-5b41b4e7db1c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="25024933" href="https://www.academia.edu/Documents/in/Applied_Philosophy"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Applied Philosophy&quot;]}" data-trace="false" data-dom-id="Pill-react-component-d6a10d8d-731a-4141-8814-fea36b2f5d82"></div> <div id="Pill-react-component-d6a10d8d-731a-4141-8814-fea36b2f5d82"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="25024933" href="https://www.academia.edu/Documents/in/Mathematical_Physics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Mathematical Physics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-dcd29a4a-e769-4653-9163-e2c0466b8785"></div> <div id="Pill-react-component-dcd29a4a-e769-4653-9163-e2c0466b8785"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Henrique Gomes</h3></div><div class="js-work-strip profile--work_container" data-work-id="94043589"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043589/Notes_on_a_few_quasilocal_properties_of_Yang_Mills_theory"><img alt="Research paper thumbnail of Notes on a few quasilocal properties of Yang-Mills theory" class="work-thumbnail" src="https://attachments.academia-assets.com/96613179/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043589/Notes_on_a_few_quasilocal_properties_of_Yang_Mills_theory">Notes on a few quasilocal properties of Yang-Mills theory</a></div><div class="wp-workCard_item"><span>Cornell University - arXiv</span><span>, Jun 3, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gauge theories possess non-local features that, in the presence of boundaries, inevitably lead to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gauge theories possess non-local features that, in the presence of boundaries, inevitably lead to subtleties. In this article we continue our study of a unified solution based on a geometric tool operating on field-space: a connection form. We specialize to the D + 1 formulation of Yang-Mills theories on configuration space, and we precisely characterize the gluing of the Yang-Mills field across regions. In the D + 1 formalism, the connection-form splits the electric degrees of freedom into their pure-radiative and Coulombic components, rendering the latter as conjugate to the pure-gauge part of the gauge potential. Regarding gluing, we obtain a characterization for topologically simple regions through closed formulas. These formulas exploit the properties of a generalized Dirichlet-to-Neumann operator defined at the gluing surface; through them, we find only the radiative components and the local charges are relevant for gluing. Finally, we study the gluing into topologically non-trivial regions in 1+1 dimensions. We find that in this case the regional radiative modes do not fully determine the global radiative mode (Aharonov-Bohm phases). For the global mode takes a new contribution from the kernel of the gluing formula, a kernel which is associated to non-trivial cohomological cycles. In no circumnstances do we find a need for postulating new local degrees of freedom at boundaries. Comment: The partial results of these notes have been completed and substantially clarified in a more recent, comprehensive article from October 2019. (titled: &quot;The quasilocal degrees of freedom of Yang-Mills theory&quot;).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="61c1012b618b2b3dba3125574060930c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613179,&quot;asset_id&quot;:94043589,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613179/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043589"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043589"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043589; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043589]").text(description); $(".js-view-count[data-work-id=94043589]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043589; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043589']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "61c1012b618b2b3dba3125574060930c" } } $('.js-work-strip[data-work-id=94043589]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043589,"title":"Notes on a few quasilocal properties of Yang-Mills theory","internal_url":"https://www.academia.edu/94043589/Notes_on_a_few_quasilocal_properties_of_Yang_Mills_theory","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613179,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613179/thumbnails/1.jpg","file_name":"1906.00992.pdf","download_url":"https://www.academia.edu/attachments/96613179/download_file","bulk_download_file_name":"Notes_on_a_few_quasilocal_properties_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613179/1906.00992-libre.pdf?1672493929=\u0026response-content-disposition=attachment%3B+filename%3DNotes_on_a_few_quasilocal_properties_of.pdf\u0026Expires=1740168361\u0026Signature=FozHKJ~TmZCE8AKzDqpCYX1izgdNwhPtyuoITdv5EjZ3Z7y4dighKkDWJsnbOgcIABpKi6OWux1UMTq7bXNoQfQm0SzizBICS0b7HuxULITrNsCY2tj6brEMTY2qpud1-OT-uIhOSjr3s7DHJUDZo9CkmDCyYptX1pk0qi7MT326o-hgzCl9GyNt3LZcX4vNJWAeuR3josrRnXh6FX4iqnLGFq2sZzwkSgPPV71mVVOp7vP-WqsTbxqaVEtq0UcqKD~WYTkKCFOZIprflm9Fb7FPUkzIchejAES6deqD~j-VIxtMLJVHcMdg~Ah7HMebIE4P96VSSM2C9H0Jb7xrgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043588"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043588/The_role_of_representational_conventions_in_assessing_the_empirical_significance_of_symmetries"><img alt="Research paper thumbnail of The role of representational conventions in assessing the empirical significance of symmetries" class="work-thumbnail" src="https://attachments.academia-assets.com/96613175/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043588/The_role_of_representational_conventions_in_assessing_the_empirical_significance_of_symmetries">The role of representational conventions in assessing the empirical significance of symmetries</a></div><div class="wp-workCard_item"><span>Cornell University - arXiv</span><span>, Oct 27, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper explicates the direct empirical significance (DES) of symmetries in gauge theory, with...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper explicates the direct empirical significance (DES) of symmetries in gauge theory, with comparisons to classical mechanics. Given a physical system composed of subsystems, such significance is to be awarded to physical differences of the composite system that arise from symmetries acting solely on its subsystems. So my overarching main question is: can DES be associated to the local gauge symmetries, acting solely on subsystems? In local gauge theories, any quantity with physical significance must be a gaugeinvariant quantity. To attack the question of DES from this gauge-invariant angle, we require a split of the state into its physical and its representational content: a split that is relative to a representational convention, or a gauge-fixing. Using this method, we propose a rigorous definition of DES, valid for any state. This definition fills the gaps in influential previous construals of DES, (Greaves &amp; Wallace, 2014; Wallace, 2019a,b,c). In particular, Wallace&#39;s need to specialize to &#39;generic&#39; states is explained and dispensed with.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e3f2c61ee6e3679fda336f2539cf9bee" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613175,&quot;asset_id&quot;:94043588,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613175/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043588"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043588"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043588; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043588]").text(description); $(".js-view-count[data-work-id=94043588]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043588; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043588']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e3f2c61ee6e3679fda336f2539cf9bee" } } $('.js-work-strip[data-work-id=94043588]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043588,"title":"The role of representational conventions in assessing the empirical significance of symmetries","internal_url":"https://www.academia.edu/94043588/The_role_of_representational_conventions_in_assessing_the_empirical_significance_of_symmetries","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613175,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613175/thumbnails/1.jpg","file_name":"2110.14563.pdf","download_url":"https://www.academia.edu/attachments/96613175/download_file","bulk_download_file_name":"The_role_of_representational_conventions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613175/2110.14563-libre.pdf?1672493932=\u0026response-content-disposition=attachment%3B+filename%3DThe_role_of_representational_conventions.pdf\u0026Expires=1740168361\u0026Signature=S7VWOl0T1AZi5I9OQjA8Y0fEZtGk7Wj4bVDrw3Bseq7n-VJ9NQFNMi~M02vQ~EkYJ~J-0tqndlX7Z5~Bz3oQK~uLl4Uzyt4YkqHvnPkwYBAGetISt4y6uAtZIlazjTtJqeSo1ZJzFyup8uhklU6LRl2RzvTnOnA9YpxJxFAJo6~Pw0tOrTgHMMbyPDcXqLm7YK27ZKHa2k3aegO-pjwvAIT51GDDB~0T~-d1IxFS3y4GECoHwI2Mst2C-sz2xjftWSGFoKPkvY-iFSy2tqaF94xr1tNkDZ0hOoDIFfD3O7xFd6D12ZljWyoPkCk10nbrd6hFIumz8HpVEelKKgSqMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":96613176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613176/thumbnails/1.jpg","file_name":"2110.14563.pdf","download_url":"https://www.academia.edu/attachments/96613176/download_file","bulk_download_file_name":"The_role_of_representational_conventions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613176/2110.14563-libre.pdf?1672493922=\u0026response-content-disposition=attachment%3B+filename%3DThe_role_of_representational_conventions.pdf\u0026Expires=1740168361\u0026Signature=c8qP~ODgR0wzQhENw9oOQ3J-ptA8hMdRVOutLC4qiZRLU62N~lM6bO1iWwj8~yPbRnOC93crNJNeI6JX229uZ4lhnwMZmvaW4TPVuef9WrHAHhilllhBAbJax3N4u5BXNfHS1I6aEOTZ13r~dKwrGfxtHnVEoJZDccF4UtwNy2qSFptc4sSb1~LWdnFQ6TxiN-o3Mh1VqQPaKRMg1umytbMssleKzbLvOODUU56PiXzJue~TJHZxkuUruTHdYgT1Fp2B88G-iN0GfbsjHctbQPG94Uscuv-3a9JZu882ZALDEj0K8dQBRO8BY-HWMmKIngwnu4uUQLFdfS5CID3AEA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043587"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043587/How_to_Choose_a_Gauge_The_Case_of_Hamiltonian_Electromagnetism"><img alt="Research paper thumbnail of How to Choose a Gauge? The Case of Hamiltonian Electromagnetism" class="work-thumbnail" src="https://attachments.academia-assets.com/96613178/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043587/How_to_Choose_a_Gauge_The_Case_of_Hamiltonian_Electromagnetism">How to Choose a Gauge? The Case of Hamiltonian Electromagnetism</a></div><div class="wp-workCard_item"><span>Erkenntnis</span><span>, Oct 22, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We develop some ideas about gauge symmetry in the context of Maxwell&#39;s theory of electromagnetism...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We develop some ideas about gauge symmetry in the context of Maxwell&#39;s theory of electromagnetism in the Hamiltonian formalism. One great benefit of this formalism is that it pairs momentum and configurational degrees of freedom, so that a decomposition of one side into subsets can be translated into a decomposition of the other. In the case of electromagnetism, this enables us to pair degrees of freedom of the electric field with degrees of freedom of the vector potential. Another benefit is that the formalism algorithmically identifies subsets of the equations of motion that represent time-dependent symmetries. For electromagnetism, these two benefits allow us to define gauge-fixing in parallel to special decompositions of the electric field. More specifically, we apply the Helmholtz decomposition theorem to split the electric field into its Coulombic and radiative parts, and show how this gives a special role to the Coulomb gauge (i.e. div() = 0). We relate this argument to Maudlin&#39;s (Entropy, 2018.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a96b1542e9a3c8eae22b9a4b98e9d17a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613178,&quot;asset_id&quot;:94043587,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613178/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043587"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043587"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043587; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043587]").text(description); $(".js-view-count[data-work-id=94043587]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043587; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043587']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a96b1542e9a3c8eae22b9a4b98e9d17a" } } $('.js-work-strip[data-work-id=94043587]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043587,"title":"How to Choose a Gauge? The Case of Hamiltonian Electromagnetism","internal_url":"https://www.academia.edu/94043587/How_to_Choose_a_Gauge_The_Case_of_Hamiltonian_Electromagnetism","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613178,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613178/thumbnails/1.jpg","file_name":"s10670-022-00597-9.pdf","download_url":"https://www.academia.edu/attachments/96613178/download_file","bulk_download_file_name":"How_to_Choose_a_Gauge_The_Case_of_Hamilt.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613178/s10670-022-00597-9-libre.pdf?1672493922=\u0026response-content-disposition=attachment%3B+filename%3DHow_to_Choose_a_Gauge_The_Case_of_Hamilt.pdf\u0026Expires=1740168361\u0026Signature=a~tJsU~l9dG-ED1S9AFxsTDtyE05D3nsxIIBoILcFDzGYje1-e6WL4KJHNnNLHWH5IzC0CU16Y4U0kITwttMpenIwBY5u6TT2MmKqOI84YJ-NLaoiAeCJSzAyGfv~97cDYnLmue5pl3fNwd2PAu5D0270eAXfhZvQQH3d0OVjocuzOtVHQd40s3MHofH0fVINQSl0PrH0mTKSXXKIMaiPBnZFVoRyi1BjIVgjLAzsiwmhoADwWgXWHaebxBlutIjYQFT~W0T6Fr1kr5lL2QyAfR8Ac8U6464sdz2TiZwbIefAeBrAHhTzyPNLK2jjL6ks~VCvgmKnZ1u0CuPwaaLDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043586"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043586/Geometrodynamics_as_Functionalism_About_Time"><img alt="Research paper thumbnail of Geometrodynamics as Functionalism About Time" class="work-thumbnail" src="https://attachments.academia-assets.com/96613221/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043586/Geometrodynamics_as_Functionalism_About_Time">Geometrodynamics as Functionalism About Time</a></div><div class="wp-workCard_item"><span>Fundamental Theories of Physics</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7f865db81cdbc02c4aa54daa9ad685e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613221,&quot;asset_id&quot;:94043586,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613221/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043586"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043586"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043586; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043586]").text(description); $(".js-view-count[data-work-id=94043586]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043586; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043586']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7f865db81cdbc02c4aa54daa9ad685e0" } } $('.js-work-strip[data-work-id=94043586]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043586,"title":"Geometrodynamics as Functionalism About Time","internal_url":"https://www.academia.edu/94043586/Geometrodynamics_as_Functionalism_About_Time","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613221,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613221/thumbnails/1.jpg","file_name":"2010.16199v1.pdf","download_url":"https://www.academia.edu/attachments/96613221/download_file","bulk_download_file_name":"Geometrodynamics_as_Functionalism_About.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613221/2010.16199v1-libre.pdf?1672488330=\u0026response-content-disposition=attachment%3B+filename%3DGeometrodynamics_as_Functionalism_About.pdf\u0026Expires=1740129231\u0026Signature=cmjm7tMgzqribNF98Hd-aQUf78CAEeZ~NLPsY2SL3JYYJZxHXACudY71tFbIAwowdbXJXUce-YCkA4J41yTFkd8NzkuHCe4rwoAsG~9kz0qHCV5vDxjWlsTqNDmmFqBhSQtItwXim1Ywe6e0kssLHEvPQ~ZM-1Fw3FgNFJ5ULLpuLaKscI1BfK796urNNewl0~8LAKP7W42QkPx4C7KnvhUAhUTeuXTyu-Xu60NQHyAbTC88oeW0878Lo8zwZ64DZz~1bBg9QADQrglKP8AsyIN9dwYx-B1Edzf7mOsXsTEGIoNbavB~tMZq~jtkXR4EKBs5jmqaZNmguneMV-ob3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043585"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043585/Functionalism_as_a_Species_of_Reduction"><img alt="Research paper thumbnail of Functionalism as a Species of Reduction" class="work-thumbnail" src="https://attachments.academia-assets.com/96613177/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043585/Functionalism_as_a_Species_of_Reduction">Functionalism as a Species of Reduction</a></div><div class="wp-workCard_item"><span>arXiv: History and Philosophy of Physics</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This is the first of four papers prompted by a recent literature about a doctrine dubbed spacetim...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This is the first of four papers prompted by a recent literature about a doctrine dubbed spacetime functionalism. This paper gives our general framework for discussing functionalism. Following Lewis, we take it as a species of reduction. We start by expounding reduction in a broadly Nagelian sense. Then we argue that Lewis’ functionalism is an improvement on Nagelian reduction. This paper thereby sets the scene for the other papers, which will apply our framework to theories of space and time. (So those papers address the space and time literature: both recent and older, and physical as well as philosophical literature. But the four papers can be read independently.) Overall, we come to praise spacetime functionalism, not to bury it. But we criticize the recent philosophical literature for failing to stress: (i) functionalism’s being a species of reduction (in particular: reduction of chrono- geometry to the physics of matter and radiation); (ii) functionalism’s idea, not just of sp...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="89c8254c469df6ae1ac2302fec192f91" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613177,&quot;asset_id&quot;:94043585,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613177/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043585"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043585"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043585; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043585]").text(description); $(".js-view-count[data-work-id=94043585]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043585; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043585']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "89c8254c469df6ae1ac2302fec192f91" } } $('.js-work-strip[data-work-id=94043585]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043585,"title":"Functionalism as a Species of Reduction","internal_url":"https://www.academia.edu/94043585/Functionalism_as_a_Species_of_Reduction","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613177,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613177/thumbnails/1.jpg","file_name":"FuncmRedn_submit.pdf","download_url":"https://www.academia.edu/attachments/96613177/download_file","bulk_download_file_name":"Functionalism_as_a_Species_of_Reduction.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613177/FuncmRedn_submit-libre.pdf?1672493917=\u0026response-content-disposition=attachment%3B+filename%3DFunctionalism_as_a_Species_of_Reduction.pdf\u0026Expires=1740168361\u0026Signature=bLDemVSyyCuRpkVkIkJ3NXj3pLlhBZopAgAFf8yqT4kM-77FzTVhGE-KyPt~WWwyjc1XWRFbglxNDSGo0YaYnjfHZOEgAQvE4xEvA3~UQK8SiJsBGNim6~E13~hsA9mY9ITxbw6n3oDBRC2Y9K0DwnJnpGKW91tfuzSbWEqYb1FkKxVlIcCPTuQoUUp00PtqVtXRmW1H8lo8OZp4yN3mAgW53rsHBJqPUxK-T5CeOoWEa4Px9ROKuMQF8Sn5hEBwdMVK~kLRLUA2cwnAOHA6XAU22yQusypSZYGW5Q7ANc8ySbkoZYDp4sUOavqqK8deTHz96dWS1~63u7BjIukF8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":96613174,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613174/thumbnails/1.jpg","file_name":"FuncmRedn_submit.pdf","download_url":"https://www.academia.edu/attachments/96613174/download_file","bulk_download_file_name":"Functionalism_as_a_Species_of_Reduction.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613174/FuncmRedn_submit-libre.pdf?1672493923=\u0026response-content-disposition=attachment%3B+filename%3DFunctionalism_as_a_Species_of_Reduction.pdf\u0026Expires=1740168361\u0026Signature=Z6LSj-uDSLyRJEJyu2o17UGMsyXu8KseM9brEQTCRWL8DjWi~N1fQPy5mux~vJMOJOuSZg1MOZIh8m4X1Vd9LWCS644N5oauK1pRMqPqYZxvlS0pEoYNlr~KphuqlrdVOrUDMg-5Xr-Meas21ln572XV0a3BwTrGG2G9SffiojROekizWEKMqjPGx1nzlIi5lBqQRl~SHnS-Z7z3ehGkBLxhQh42cT-kY9dXatlxj6p3SqJzWNrC7Cr00BcRIdRutW9dwkERm7tn3PTstsfdNIBYKJhIl3i4zWTMmGj0J7zu5StSta-8~MyQZxhGDOyPBZmDjsA2o3XkJzRREMsdYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043584"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043584/Large_gauge_transformations_gauge_invariance_and_the_QCD_theta_term"><img alt="Research paper thumbnail of Large gauge transformations, gauge invariance, and the QCD theta-term" class="work-thumbnail" src="https://attachments.academia-assets.com/96613223/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043584/Large_gauge_transformations_gauge_invariance_and_the_QCD_theta_term">Large gauge transformations, gauge invariance, and the QCD theta-term</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The eliminative view of gauge degrees of freedom---the view that they arise solely from descripti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The eliminative view of gauge degrees of freedom---the view that they arise solely from descriptive redundancy and are therefore eliminable from the theory---is a lively topic of debate in the philosophy of physics. Recent work attempts to leverage properties of the QCD theta-term to provide a novel argument against the eliminative view. The argument is based on the claim that the QCD theta-term changes under ``large&amp;#39;&amp;#39; gauge transformations. Here we review geometrical propositions about fiber bundles that unequivocally falsify these claims: the theta-term encodes topological features of the fiber bundle used to represent gauge degrees of freedom, but it is fully gauge-invariant. Nonetheless, within the essentially classical viewpoint pursued here, the physical role of the theta-term shows the physical importance of bundle topology (or superpositions thereof) and thus weighs against (a naive) eliminativism.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dbe522c6c9c1440986e792104b4c46aa" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613223,&quot;asset_id&quot;:94043584,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613223/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043584"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043584"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043584; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043584]").text(description); $(".js-view-count[data-work-id=94043584]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043584; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043584']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dbe522c6c9c1440986e792104b4c46aa" } } $('.js-work-strip[data-work-id=94043584]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043584,"title":"Large gauge transformations, gauge invariance, and the QCD theta-term","internal_url":"https://www.academia.edu/94043584/Large_gauge_transformations_gauge_invariance_and_the_QCD_theta_term","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613223,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613223/thumbnails/1.jpg","file_name":"2007.04013v1.pdf","download_url":"https://www.academia.edu/attachments/96613223/download_file","bulk_download_file_name":"Large_gauge_transformations_gauge_invari.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613223/2007.04013v1-libre.pdf?1672488324=\u0026response-content-disposition=attachment%3B+filename%3DLarge_gauge_transformations_gauge_invari.pdf\u0026Expires=1740168361\u0026Signature=V-3bQCZHhnDURB43XQjff3SB-tG21dvQYtGBGSX9vsf5YxJSTFQo0oLHgeMNXvGKilriKiQM~GaDDwhA6lcLRMvYJxSatEOvYt52~PMeoqB0N~JUGdjCfkbe-gpeLbVtkRuto~qxFERMhvWPGBK95e47SvordhfTTNH~lhmVkQguzR4nbuqKlfPeUZxI0Snhp0hdMQOeoeuESPXUl2PuhYMf5Y1-8elt1agqE0OjGxAZFnQr87SvwkoGcF8sixDRvyJLnc5gK5VdcchKqNa8t-Y8Il6ZBSJWGF8~2mwlmBQsXc7xdf601VU4dV0oQzdcyxJ5oKaJMCSDCCexW2kF6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043583/Gauging_the_boundary_in_field_space"><img alt="Research paper thumbnail of Gauging the boundary in field-space" class="work-thumbnail" src="https://attachments.academia-assets.com/96613231/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043583/Gauging_the_boundary_in_field_space">Gauging the boundary in field-space</a></div><div class="wp-workCard_item"><span>Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Local gauge theories are in a complicated relationship with boundaries. Whereas fixing the gauge ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Local gauge theories are in a complicated relationship with boundaries. Whereas fixing the gauge can often shave off unwanted redundancies, the coupling of different bounded regions requires the use of gauge-variant elements. Therefore, coupling is inimical to gauge-fixing, as usually understood. This resistance to gauge-fixing has led some to declare the coupling of subsystems to be the raison d&#39;être of gauge [Rov14]. Indeed, while gauge-fixing is entirely unproblematic for a single region without boundary, it introduces arbitrary boundary conditions on the gauge degrees of freedom themselves-these conditions lack a physical interpretation when they are not functionals of the original fields. Such arbitrary boundary choices creep into the calculation of charges through Noether&#39;s second theorem, muddling the assignment of physical charges to local gauge symmetries. The confusion brewn by gauge at boundaries is well-known, and must be contended with both conceptually and technically. It may seem natural to replace the arbitrary boundary choice with new degrees of freedom, for using such a device we resolve some of these confusions while leaving no gauge-dependence on the computation of Noether charges [DF16]. But, concretely, such boundary degrees of freedom are rather arbitrary-they have no relation to the original field-content of the field theory. How should we conceive of them? Here I will explicate the problems mentioned above and illustrate a possible resolution: in a recent series of papers [GR17,GR18,GHR18] the notion of a connectionform was put forward and implemented in the field-space of gauge theories. Using this tool, a modified version of symplectic geometry-here called &#39;horizontal&#39;-is possible. Independently of boundary conditions, this formalism bestows to each region a physically salient, relational notion of charge: the horizontal Noether charge. Meanwhile, as required, the connection-form mediates an irenic composition of regions, one compatible with the attribution of horizontal Noether charges to each region. Thes aims of this paper are to highlight the boundary issues in the treatment of gauge, and to discuss how gauge theory may be conceptually clarified in light of a resolution to these issues.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b5332e1a854e087c7c462c71ff2c66de" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613231,&quot;asset_id&quot;:94043583,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613231/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043583]").text(description); $(".js-view-count[data-work-id=94043583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b5332e1a854e087c7c462c71ff2c66de" } } $('.js-work-strip[data-work-id=94043583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043583,"title":"Gauging the boundary in field-space","internal_url":"https://www.academia.edu/94043583/Gauging_the_boundary_in_field_space","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613231,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613231/thumbnails/1.jpg","file_name":"Relationalism_20in_20field-space_final5.pdf","download_url":"https://www.academia.edu/attachments/96613231/download_file","bulk_download_file_name":"Gauging_the_boundary_in_field_space.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613231/Relationalism_20in_20field-space_final5-libre.pdf?1672488330=\u0026response-content-disposition=attachment%3B+filename%3DGauging_the_boundary_in_field_space.pdf\u0026Expires=1740129231\u0026Signature=aIF0LhaQeiFW-PfTx02ZMY3yXBDxGsqo6NL6cyDCDh0gabJV5HB0ZISRgeq5H686r2xH4H3XPdunFFYtCjrL7SO-LNL-zWHN6h9j4EuEx6cE45Homz1h0~pg28dwAEPLinZhlF76asxdwq9fMbdxtWkYlZZqMR19yrbHddyxFaHE1MhE1qQ2dYOZTE9dqTs5YNoyc~Xq0TrUkGFwE1dvloLytKc7ubtX0prV7b1PIDUT6FkaGHxNwxI026vIc1mHfZufxINN9WnjxGmyU5vaYleCEX-o6omW3oieR6DXDMRcUIjxlP7VaA-9R0cQgCbGtt8LZLDTc1a4qUYK6M43pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043582"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043582/Gravitational_collapse_of_thin_shells_of_dust_in_asymptotically_flat_shape_dynamics"><img alt="Research paper thumbnail of Gravitational collapse of thin shells of dust in asymptotically flat shape dynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/96613217/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043582/Gravitational_collapse_of_thin_shells_of_dust_in_asymptotically_flat_shape_dynamics">Gravitational collapse of thin shells of dust in asymptotically flat shape dynamics</a></div><div class="wp-workCard_item"><span>Physical Review D</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In a recent paper, one of us studied spherically symmetric, asymptotically flat solutions of Shap...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In a recent paper, one of us studied spherically symmetric, asymptotically flat solutions of Shape Dynamics, finding that the spatial metric has characteristics of a wormholetwo asymptotically flat ends and a minimal-area sphere, or &#39;throat&#39;, in between. In this paper we investigate whether that solution can emerge as a result of gravitational collapse of matter. With this goal, we study the simplest kind of spherically-symmetric matter: an infinitely-thin shell of dust. Our system can be understood as a model of a star accreting a thin layer of matter. We solve the dynamics of the shell exactly and find that, indeed, as it collapses, the shell leaves in its wake the wormhole metric. In the maximal-slicing time we use for asymptotically flat solutions, the shell only approaches the throat asymptotically and does not cross it in a finite amount of time (as measured by a clock &#39;at infinity&#39;). This leaves open the possibility that a more realistic cosmological solution of Shape Dynamics might see this crossing happening in a finite amount of time (as measured by the change of relational/shape degrees of freedom).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ae2c4bed2124bf4c519384b6fcc5f608" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613217,&quot;asset_id&quot;:94043582,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613217/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043582"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043582"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043582; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043582]").text(description); $(".js-view-count[data-work-id=94043582]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043582; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043582']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ae2c4bed2124bf4c519384b6fcc5f608" } } $('.js-work-strip[data-work-id=94043582]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043582,"title":"Gravitational collapse of thin shells of dust in asymptotically flat shape dynamics","internal_url":"https://www.academia.edu/94043582/Gravitational_collapse_of_thin_shells_of_dust_in_asymptotically_flat_shape_dynamics","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613217,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613217/thumbnails/1.jpg","file_name":"1509.pdf","download_url":"https://www.academia.edu/attachments/96613217/download_file","bulk_download_file_name":"Gravitational_collapse_of_thin_shells_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613217/1509-libre.pdf?1672492583=\u0026response-content-disposition=attachment%3B+filename%3DGravitational_collapse_of_thin_shells_of.pdf\u0026Expires=1740168361\u0026Signature=NIgFVlKou6n5C9FD4VDvoexs1i4HxkK7IEOXSwlbiSJbrtG6SeyOAkEq45sliDND3S3FUxvu9r0nPuSzkEv6PI8DOmBuOWPySMveq-TLYi57-NYi-OboW-9rvAFtxPejTezbcd94MGpqNqXeQbFBS-iuG55BQGdM3gAul~uFX4ZDvW66JPPHc~MsFpbXpG6svfw~3uimutcmS2pV1i2MjCgxhYvjuXumenlA7juxxLITCfa62kttan82S-pNZJN9n1tOg~SBlq~UsLjt2A73pDV1XRC8twK--7qKUo-uKH4~bgj~UTzskY1K7IWccN6XavuqK1XHkXhGf0QGkQvlHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043581"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043581/Time_asymmetric_extensions_of_general_relativity"><img alt="Research paper thumbnail of Time asymmetric extensions of general relativity" class="work-thumbnail" src="https://attachments.academia-assets.com/96613226/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043581/Time_asymmetric_extensions_of_general_relativity">Time asymmetric extensions of general relativity</a></div><div class="wp-workCard_item"><span>Physical Review D</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We describe a class of modified gravity theories that deform general relativity in a way that bre...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We describe a class of modified gravity theories that deform general relativity in a way that breaks time reversal invariance and, very mildly, locality. The algebra of constraints, local physical degrees of freedom, and their linearized equations of motion, are unchanged, yet observable effects may be present on cosmological scales, which have implications for the early history of the universe. This is achieved in the Hamiltonian framework, in a way that requires the constant mean curvature gauge conditions and is, hence, inspired by shape dynamics.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d6569a7eb7c463ac81f67a8c4fdf7b9c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613226,&quot;asset_id&quot;:94043581,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613226/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043581"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043581"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043581; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043581]").text(description); $(".js-view-count[data-work-id=94043581]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043581; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043581']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d6569a7eb7c463ac81f67a8c4fdf7b9c" } } $('.js-work-strip[data-work-id=94043581]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043581,"title":"Time asymmetric extensions of general relativity","internal_url":"https://www.academia.edu/94043581/Time_asymmetric_extensions_of_general_relativity","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613226,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613226/thumbnails/1.jpg","file_name":"1503.06085v1.pdf","download_url":"https://www.academia.edu/attachments/96613226/download_file","bulk_download_file_name":"Time_asymmetric_extensions_of_general_re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613226/1503.06085v1-libre.pdf?1672488322=\u0026response-content-disposition=attachment%3B+filename%3DTime_asymmetric_extensions_of_general_re.pdf\u0026Expires=1740168361\u0026Signature=ey1zBfSYhLMKaBUsdM2zbv1EkKmPaaE5VHxa~iteeem7hYEpDL3QOwUzeHRLLwB7332~9PL1J09RtZs09FQDae4Af-kBgsKrkGd-IarMfuAsqdnSpFWJUsr1qSQDhhCWWVbSHsHruNttMPIx7KoXWhiuREKk2j1FT~7JYn6UDlnGFHg5Pd13c~BsmuRhnHbRirw2yWLqMDCMAj9KVL9MfqmvDI4XneWyv3scdP1AW-7XxMzoMyNXb~6q8fN1yAGWyYZl-iicQV0t4dDRBMZLVD5hvzlHksXnxqdf2uaRTTibqR05xV06D-DiK6rY-Bcwc8-UwgYBR-2nw9t7q5bA-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043580"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043580/Differences_and_Similarities_Between_Shape_Dynamics_and_General_Relativity"><img alt="Research paper thumbnail of Differences and Similarities Between Shape Dynamics and General Relativity" class="work-thumbnail" src="https://attachments.academia-assets.com/96613220/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043580/Differences_and_Similarities_Between_Shape_Dynamics_and_General_Relativity">Differences and Similarities Between Shape Dynamics and General Relativity</a></div><div class="wp-workCard_item"><span>The Thirteenth Marcel Grossmann Meeting</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The purpose of this contribution is to elucidate some of the properties of Shape Dynamics (SD) an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The purpose of this contribution is to elucidate some of the properties of Shape Dynamics (SD) and is largely based on the longer article. 1 We shall point out some of the key differences between SD and related theoretical constructions, illustrate the central mechanism of symmetry trading in electromagnetism and finally point out some new quantization strategies inspired by SD. We refrain from describing mathematical detail and from citing literature. For both we refer to. 1</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c4d97de12115fe30081b6d95712f6a7d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613220,&quot;asset_id&quot;:94043580,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613220/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043580"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043580"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043580; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043580]").text(description); $(".js-view-count[data-work-id=94043580]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043580; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043580']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c4d97de12115fe30081b6d95712f6a7d" } } $('.js-work-strip[data-work-id=94043580]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043580,"title":"Differences and Similarities Between Shape Dynamics and General Relativity","internal_url":"https://www.academia.edu/94043580/Differences_and_Similarities_Between_Shape_Dynamics_and_General_Relativity","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613220,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613220/thumbnails/1.jpg","file_name":"1303.pdf","download_url":"https://www.academia.edu/attachments/96613220/download_file","bulk_download_file_name":"Differences_and_Similarities_Between_Sha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613220/1303-libre.pdf?1672492571=\u0026response-content-disposition=attachment%3B+filename%3DDifferences_and_Similarities_Between_Sha.pdf\u0026Expires=1740168361\u0026Signature=XO3Z4kG6VwC1j8ijcuMQZnGuHYWzR7n3OVPDmCkHnJTXyK~5IxsNLVFhCrfaPogSKFNlCOxitqeXUOZEz76acrH-lKnaQ3u8MJEmOKx0QRypr5lFkZ3iq355IEPgLPaQeWxI48p82bksubJ6Iuljnz2dawq9VYL8sD03wY5r2Zd0vQ50I7mR-1GUN-mlMlRSDZoqnnkGb-scjp6NiNYHCgkbTAA3G9Q2zWsaZ4mN8WmlG4dwKFdA0nxIdfxSC6ddF706RFhEwp8TuVL2qmpv6IYven2qwgH1zUMs~uGcRZHHbPDD98cviuzDZXDmugPsD5ygsVRko47B~R7lFEsCdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043579"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043579/Shape_Dynamics_and_Gauge_Gravity_Duality"><img alt="Research paper thumbnail of Shape Dynamics and Gauge-Gravity Duality" class="work-thumbnail" src="https://attachments.academia-assets.com/96613230/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043579/Shape_Dynamics_and_Gauge_Gravity_Duality">Shape Dynamics and Gauge-Gravity Duality</a></div><div class="wp-workCard_item"><span>The Thirteenth Marcel Grossmann Meeting</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The dynamics of gravity can be described by two different systems. The first is the familiar spac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The dynamics of gravity can be described by two different systems. The first is the familiar spacetime picture of General Relativity, the other is the conformal picture of Shape Dynamics. We argue that the bulk equivalence of General Relativity and Shape Dynamics is a natural setting to discuss familiar bulk/boundary dualities. We discuss consequences of the Shape Dynamics description of gravity as well as the issue why the bulk equivalence is not explicitly seen in the General Relativity description of gravity.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9e362fac499ee7db84e16f79245f6bc3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613230,&quot;asset_id&quot;:94043579,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613230/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043579"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043579"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043579; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043579]").text(description); $(".js-view-count[data-work-id=94043579]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043579; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043579']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9e362fac499ee7db84e16f79245f6bc3" } } $('.js-work-strip[data-work-id=94043579]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043579,"title":"Shape Dynamics and Gauge-Gravity Duality","internal_url":"https://www.academia.edu/94043579/Shape_Dynamics_and_Gauge_Gravity_Duality","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613230,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613230/thumbnails/1.jpg","file_name":"1301.pdf","download_url":"https://www.academia.edu/attachments/96613230/download_file","bulk_download_file_name":"Shape_Dynamics_and_Gauge_Gravity_Duality.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613230/1301-libre.pdf?1672488316=\u0026response-content-disposition=attachment%3B+filename%3DShape_Dynamics_and_Gauge_Gravity_Duality.pdf\u0026Expires=1740168361\u0026Signature=LDiZYBpYdDNrQ6rnEKyM~L1qbA4u49CiLXKaBwMxHwx57ZeWurSk-lqE27SyfWkZc16GAAeCOqjUr4cQxHWjCdtv0ZKU36rmhBYoDdtF7CawDmNXJdrS~d-QBaT~flzXxcl6b26gh3T~uWlOIgHpWfSK4xiFHmfjZZCXtYWmaLlJCmz5Tb5j1cjmln0mVcZHs~yBZUlqIlpWQD~iuSDam-l~oz9~a~AYX-qit~ybdatMGGcSUiU1ZPmI~1BB2ysJtxcX8WTKCG~SUaWi6YQSRiQSQoomvAMB5sDqmBHCVELl4NvVp-5MOyVrDZVk3zc16jSiZqr9Rvz01aVmxGfxcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043578"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043578/Why_gravity_codes_the_renormalization_of_conformal_field_theories"><img alt="Research paper thumbnail of Why gravity codes the renormalization of conformal field theories" class="work-thumbnail" src="https://attachments.academia-assets.com/96613211/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043578/Why_gravity_codes_the_renormalization_of_conformal_field_theories">Why gravity codes the renormalization of conformal field theories</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We provide a bottom-up argument to derive some known results from holographic renormalization usi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: 1) to advertise the simple classical mechanism: trading of gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/CFT; and 2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with usual the semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible why the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a conformal field theory. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps towards understanding what this new perspective may be able to teach us about holographic dualities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="025472bf241f718bb55a76a5bea495b8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613211,&quot;asset_id&quot;:94043578,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613211/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043578"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043578"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043578; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043578]").text(description); $(".js-view-count[data-work-id=94043578]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043578; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043578']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "025472bf241f718bb55a76a5bea495b8" } } $('.js-work-strip[data-work-id=94043578]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043578,"title":"Why gravity codes the renormalization of conformal field theories","internal_url":"https://www.academia.edu/94043578/Why_gravity_codes_the_renormalization_of_conformal_field_theories","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613211,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613211/thumbnails/1.jpg","file_name":"1305.pdf","download_url":"https://www.academia.edu/attachments/96613211/download_file","bulk_download_file_name":"Why_gravity_codes_the_renormalization_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613211/1305-libre.pdf?1672492578=\u0026response-content-disposition=attachment%3B+filename%3DWhy_gravity_codes_the_renormalization_of.pdf\u0026Expires=1740168361\u0026Signature=UGNAIHor4vDN2nue6PpaJAr-4zYjpyO1B8tMBIE3o5yJuyPElMkSUdhUgW-Ks9BjoqY8IK00ixG~9via2p3i0Zm1QQOw9Y4XrkTqkMY3NyctMw69khRPogPsj2Qmo580oiq5vprytSpuu8~6LXf9WQY4HPOG3DKF49fPPmjvBJeOpexxDRqdxLfpLix0Sjx-B-YWfD7gaFxbWplyKAPA~eFgBj4w5ypbsLc5iMVJvhh65yO5B9rhRUgShb~2G104z-ei9huKiMQXNOjyAiWSRKCQvvZseBA6uDIAQMP4JufZQX~i2ampu8AoMe3CHSwT1koyYoko33sy8ggyXXOsFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043577"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043577/Coupling_shape_dynamics_to_matter_gives_spacetime"><img alt="Research paper thumbnail of Coupling shape dynamics to matter gives spacetime" class="work-thumbnail" src="https://attachments.academia-assets.com/96613216/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043577/Coupling_shape_dynamics_to_matter_gives_spacetime">Coupling shape dynamics to matter gives spacetime</a></div><div class="wp-workCard_item"><span>General Relativity and Gravitation</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Shape Dynamics is a metric theory of pure gravity, equivalent to General Relativity, but formulat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Shape Dynamics is a metric theory of pure gravity, equivalent to General Relativity, but formulated as a gauge theory of spatial diffeomporphisms and local spatial conformal transformations. In this paper we extend the construction of Shape Dynamics form pure gravity to gravity-matter systems and find that there is no fundamental obstruction for the coupling of gravity to standard matter. We use the matter gravity system to construct a clock and rod model for Shape Dynamics which allows us to recover a spacetime interpretation of Shape Dynamics trajectories. &quot;Spacetime is the fairy tale of a classical manifold. It is irreconcilable with quantum effects in gravity and most likely, in a strict sense, it does not exist. But to dismiss a mythical being that has inspired generations just because it does not really exist is foolish. Rather it should be understood together with the storytellers through whom and in whom the being exist. &quot; T. Kopf and M. Paschke in [1].</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0257f99cc99ca43ef53b65844003527a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613216,&quot;asset_id&quot;:94043577,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613216/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043577"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043577"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043577; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043577]").text(description); $(".js-view-count[data-work-id=94043577]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043577; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043577']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0257f99cc99ca43ef53b65844003527a" } } $('.js-work-strip[data-work-id=94043577]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043577,"title":"Coupling shape dynamics to matter gives spacetime","internal_url":"https://www.academia.edu/94043577/Coupling_shape_dynamics_to_matter_gives_spacetime","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613216,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613216/thumbnails/1.jpg","file_name":"1110.pdf","download_url":"https://www.academia.edu/attachments/96613216/download_file","bulk_download_file_name":"Coupling_shape_dynamics_to_matter_gives.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613216/1110-libre.pdf?1672492577=\u0026response-content-disposition=attachment%3B+filename%3DCoupling_shape_dynamics_to_matter_gives.pdf\u0026Expires=1740168361\u0026Signature=NMt6fIuIpqqayu5yS4NtLTpLttgTvp6E1Kx5CGx2v7p7CwAodVsnVDSMNxdH5H-5bsr0XzD9hPjiQO0iqWtPwwP9bR6c1JXTbRLAN5Ug5JBO-xNChEbqwHbVg6C-ObY1GUcjVhawqiFbKn9GGICDRwP~jQwwnT0w58bJYVMdkHgsOJqBwXniCuUXzYSOdwj~VO8fllWqFpd8Nl-dyEuvh-tmhNccvzxprIo0-S81lhNwd6TFjLRRMVAkFiLkDhaJxTd3Uf47hm8AaOnaQFg9~JktObMfGpOcIz2Jf-oil-3~jPI9L7pzdSY9EXHGkoHI6lkaRt10bd72d~aJ93NP7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043576"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043576/The_gravity_CFT_correspondence"><img alt="Research paper thumbnail of The gravity/CFT correspondence" class="work-thumbnail" src="https://attachments.academia-assets.com/96613222/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043576/The_gravity_CFT_correspondence">The gravity/CFT correspondence</a></div><div class="wp-workCard_item"><span>The European Physical Journal C</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">General Relativity can be formulated in terms of a spatially Weyl invariant gauge theory called S...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">General Relativity can be formulated in terms of a spatially Weyl invariant gauge theory called Shape Dynamics. Using this formulation, we establish a &quot;bulk/bulk&quot; duality between gravity and a Weyl invariant theory on spacelike Cauchy hypersurfaces. This duality has two immediate consequences: i) it leads trivially to a corresponding &quot;bulk/boundary&quot; duality between General Relativity and a boundary CFT, and ii) the boundary can be defined in a gauge-invariant way. Moreover, the corresponding bulk/boundary duality is sufficient to explain a large portion of the evidence in favor of gauge/gravity duality and provides independent evidence for the AdS/CFT correspondence.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="92f8bc82403434b2b09eba92a14ddef8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613222,&quot;asset_id&quot;:94043576,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613222/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043576"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043576"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043576; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043576]").text(description); $(".js-view-count[data-work-id=94043576]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043576; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043576']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "92f8bc82403434b2b09eba92a14ddef8" } } $('.js-work-strip[data-work-id=94043576]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043576,"title":"The gravity/CFT correspondence","internal_url":"https://www.academia.edu/94043576/The_gravity_CFT_correspondence","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613222,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613222/thumbnails/1.jpg","file_name":"1105.pdf","download_url":"https://www.academia.edu/attachments/96613222/download_file","bulk_download_file_name":"The_gravity_CFT_correspondence.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613222/1105-libre.pdf?1672488316=\u0026response-content-disposition=attachment%3B+filename%3DThe_gravity_CFT_correspondence.pdf\u0026Expires=1740168361\u0026Signature=V7kZYbUTMGXroT8zlGoq5f~QUbbLKLH0goYcjKfVGlEOUuXvTZNYu21nXWDxh8CpAT-cd1HVVXsCvRQzDZAKqjeIGsrIBTm-GKwbJAQ9WQUojFG-6nWj3VfHSYO39bcS4sV4LdsODbCDEKRab77bV~fCur8xl1yZ366klTbXRuStf-58694TOkLmzpoJmOplha1BGtrM4aRVpO9XxXrhUoPvsluEW9zRmr6oN1IwlJzl0pscdf3-lHnJ6uu3Tw-wOYGa~PPpeSy81jNoYNUc8FXOXgVBB3cyMZ0hPrkqqQ0VDrMGrj5AAnYaWXi2FDy-gwzz0iKLiCVV5F-f66oSfg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043575"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043575/The_link_between_general_relativity_and_shape_dynamics"><img alt="Research paper thumbnail of The link between general relativity and shape dynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/96613210/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043575/The_link_between_general_relativity_and_shape_dynamics">The link between general relativity and shape dynamics</a></div><div class="wp-workCard_item"><span>Classical and Quantum Gravity</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We define the concept of a linking theory and show how two equivalent gauge theories possessing d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We define the concept of a linking theory and show how two equivalent gauge theories possessing different gauge symmetries generically arise from a linking theory. We show that under special circumstances a linking theory can be constructed from a given gauge theory through &quot;Kretchmannization&quot; of a given gauge theory, which becomes one of the two theories related by the linking theory. The other, so-called &quot;dual&quot; gauge theory, is then a gauge theory of the symmetry underlying the &quot;Kretschmannization&quot;. We then prove the equivalence of General Relativity and Shape Dynamics, a theory with fixed foliation but spatial conformal invariance. This streamlines the rather complicated construction of this equivalence performed in [1]. We use this streamlined argument to extend the result to General Relativity with asymptotically flat boundary conditions. The improved understanding of linking theories naturally leads to the Lagrangian formulation of Shape Dynamics, which allows us to partially relate the degrees of freedom.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8a9b15a6e705a467a3bf3934e43da9a4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613210,&quot;asset_id&quot;:94043575,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613210/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043575"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043575"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043575; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043575]").text(description); $(".js-view-count[data-work-id=94043575]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043575; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043575']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8a9b15a6e705a467a3bf3934e43da9a4" } } $('.js-work-strip[data-work-id=94043575]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043575,"title":"The link between general relativity and shape dynamics","internal_url":"https://www.academia.edu/94043575/The_link_between_general_relativity_and_shape_dynamics","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613210,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613210/thumbnails/1.jpg","file_name":"1101.pdf","download_url":"https://www.academia.edu/attachments/96613210/download_file","bulk_download_file_name":"The_link_between_general_relativity_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613210/1101-libre.pdf?1672492574=\u0026response-content-disposition=attachment%3B+filename%3DThe_link_between_general_relativity_and.pdf\u0026Expires=1740168361\u0026Signature=LKXG1O1gxVcCAUQ0iE9s7hAlMaxy752Z2QKqRcaXcWQOyasTDdj5w2Sh8OOBBByKOBspwpQPbM9MbAmz3MMQkB2m5lQ3z6GBj-ZCtqK6m93pelWN5lol-7bZ7fNz3J2K5--JnjZRAOK5yyzSbX4-ZcSJMS8QWQ~OtZml53bq5L5Cpy0nTWjT865RbvzqbfRN9ayoTl4smCcpkNpD9tqmI7DtLpIvu6BbyxzVTAkc1OtrjWW7XH~7~Thdf3tA6u-i2ofgj0KW83WhqIb5sM1wTFzHJM4Fi5GM8GPmD~jfHamnR87vbxqGW4ySaCc9mCWzI8AtANY0L0DQPaxea38TQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043558"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043558/The_Gauge_Argument_A_Noether_Reason"><img alt="Research paper thumbnail of The Gauge Argument: A Noether Reason" class="work-thumbnail" src="https://attachments.academia-assets.com/96613185/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043558/The_Gauge_Argument_A_Noether_Reason">The Gauge Argument: A Noether Reason</a></div><div class="wp-workCard_item"><span>The Philosophy and Physics of Noether&#39;s Theorems</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Why is gauge symmetry so important in modern physics, given that one must eliminate it when inter...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Why is gauge symmetry so important in modern physics, given that one must eliminate it when interpreting what the theory represents? In this paper we discuss the sense in which gauge symmetry can be fruitfully applied to constrain the space of possible dynamical models in such a way that forces and charges are appropriately coupled. We review the most well-known application of this kind, known as the &#39;gauge argument&#39; or &#39;gauge principle&#39;, discuss its difficulties, and then reconstruct the gauge argument as a valid theorem in quantum theory. We then present what we take to be a better and more general gauge argument, based on Noether&#39;s second theorem in classical Lagrangian field theory, and argue that this provides a more appropriate framework for understanding how gauge symmetry helps to constrain the dynamics of physical theories.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="860980372426e0bfb7601164a5e6d8a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613185,&quot;asset_id&quot;:94043558,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613185/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043558"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043558"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043558; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043558]").text(description); $(".js-view-count[data-work-id=94043558]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043558; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043558']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "860980372426e0bfb7601164a5e6d8a8" } } $('.js-work-strip[data-work-id=94043558]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043558,"title":"The Gauge Argument: A Noether Reason","internal_url":"https://www.academia.edu/94043558/The_Gauge_Argument_A_Noether_Reason","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613185,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613185/thumbnails/1.jpg","file_name":"2105.pdf","download_url":"https://www.academia.edu/attachments/96613185/download_file","bulk_download_file_name":"The_Gauge_Argument_A_Noether_Reason.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613185/2105-libre.pdf?1672493917=\u0026response-content-disposition=attachment%3B+filename%3DThe_Gauge_Argument_A_Noether_Reason.pdf\u0026Expires=1740168361\u0026Signature=cQnFUJEAdnbj0j~e5Qtj5z4cdHlKL~ojWz9cVf8pKR5NGDk-gILPC9LJuXmpq1jjCgAprmkcGmg116z7K7PNxSSGOgtUcjXcfoDPU74M2k59OkbQe-x7-7XJ8FYbGNRwiwjvudq~PgOXcwBjE4drA6uIsMfvuHWJr-bGVRYPIsLULD4cUvgx7DSwQnzlH~MCZjKbpfq6-LEWqmbXsWkJm0uexnmW82DvRIuMHav405FQ3xTHs~M84wtiWaePimLsi6ToxqrJVaT4zipDZUvMCyc7hS-XeQk2WwnxCRKlpKGexSNiBfPa-GR4FWTbcAssuS1aa-TEWlPHF2binm-F0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79309048"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79309048/The_quasilocal_degrees_of_freedom_of_Yang_Mills_theory"><img alt="Research paper thumbnail of The quasilocal degrees of freedom of Yang-Mills theory" class="work-thumbnail" src="https://attachments.academia-assets.com/86067555/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79309048/The_quasilocal_degrees_of_freedom_of_Yang_Mills_theory">The quasilocal degrees of freedom of Yang-Mills theory</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gauge theories possess nonlocal features that, in the presence of boundaries, inevitably lead to ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gauge theories possess nonlocal features that, in the presence of boundaries, inevitably lead to subtleties. In the D+1 formulation of Yang-Mills theories, we employ a generalized Helmholtz decomposition to (i) identify the quasilocal radiative and pure-gauge/Coulombic components of the gauge and electric fields, and to (ii) fully characterize the properties of these components upon gluing of regions. The analysis is carried out at the level of the symplectic structure of the theory, i.e. for linear perturbations over arbitrary backgrounds. Our mathematical results translate into a quasilocal derivation of the superselection of the electric flux through the boundary of a region, and into a novel gluing formula which constructively proves that no ambiguity exists in the gluing of regional gauge-fixed configurations. Key to our results is the canonical field-dependent boundary condition that characterizes the generalized Helmoholtz decomposition. The condition ensures complete covaria...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5cf099cd0d0036b1037c53f582c50258" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86067555,&quot;asset_id&quot;:79309048,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86067555/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79309048"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79309048"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79309048; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79309048]").text(description); $(".js-view-count[data-work-id=79309048]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79309048; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79309048']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5cf099cd0d0036b1037c53f582c50258" } } $('.js-work-strip[data-work-id=79309048]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79309048,"title":"The quasilocal degrees of freedom of Yang-Mills theory","internal_url":"https://www.academia.edu/79309048/The_quasilocal_degrees_of_freedom_of_Yang_Mills_theory","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":86067555,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86067555/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/86067555/download_file","bulk_download_file_name":"The_quasilocal_degrees_of_freedom_of_Yan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86067555/pdf-libre.pdf?1652797081=\u0026response-content-disposition=attachment%3B+filename%3DThe_quasilocal_degrees_of_freedom_of_Yan.pdf\u0026Expires=1740168361\u0026Signature=AtS7LfjQJL94qW6A5v5DgDLLqte7TjEB2O0iYNHRtMVkhbMHQmjizsA7l07sZjIui6CHy~9evKkogjXp8IdUVII~77Eb~L0CBUV2RiDnnfS-JgUBSLpUqIVuSp6HSaMuWmDLjO2Boc-x~9QgQ5rlf2JDxmLrZUQHLMdcWkuITYZ6pB6I6z58LftnhF~18TRK7xKYGhpf7m2SL5tT8IfbqlEwxSuBTUGutUL15a3qQDtrdIKu5HIglAQ4I1foS9Eoutk4PQLd9zgq5HuEEftgdyYwsFEwEFdycr~-4V70vXI80UmBagaxkYq9JFsMCDjIgpAIei82BjmWiwbl~urfpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79309046"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79309046/Semi_classical_locality_for_the_non_relativistic_path_integral_in_configuration_space"><img alt="Research paper thumbnail of Semi-classical locality for the non-relativistic path integral in configuration space" class="work-thumbnail" src="https://attachments.academia-assets.com/86067561/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79309046/Semi_classical_locality_for_the_non_relativistic_path_integral_in_configuration_space">Semi-classical locality for the non-relativistic path integral in configuration space</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In a previous paper, we have put forward an interpretation of quantum mechanics based on a non-re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In a previous paper, we have put forward an interpretation of quantum mechanics based on a non-relativistic, Lagrangian 3+1 formalism of a closed Universe M, existing on timeless configuration space M. However, not much was said there about the role of locality, which was not assumed. This paper is an attempt to fill that gap. To deal with the challenges gauge symmetries may pose to a good definition of locality, I start by demanding symmetries to have an action on M so that the quotient wrt the symmetries respects certain factorizations of M. These factorizations are algebraic splits of M into sub-spaces M=⊕_i M_O_i-- each factor corresponding to a physical sub-region O_i. This deals with kinematic locality, but locality in full can only emerge dynamically, and is not postulated. I describe conditions under which it can be said to have emerged. The dynamics of O is independent of its complement, M-O, if the projection of extremal curves on M onto the space of extremal curves intrin...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0b9f525fe7af3362a8830eceaacb36f4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86067561,&quot;asset_id&quot;:79309046,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86067561/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79309046"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79309046"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79309046; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79309046]").text(description); $(".js-view-count[data-work-id=79309046]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79309046; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79309046']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0b9f525fe7af3362a8830eceaacb36f4" } } $('.js-work-strip[data-work-id=79309046]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79309046,"title":"Semi-classical locality for the non-relativistic path integral in configuration space","internal_url":"https://www.academia.edu/79309046/Semi_classical_locality_for_the_non_relativistic_path_integral_in_configuration_space","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":86067561,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86067561/thumbnails/1.jpg","file_name":"1509.05258v4.pdf","download_url":"https://www.academia.edu/attachments/86067561/download_file","bulk_download_file_name":"Semi_classical_locality_for_the_non_rela.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86067561/1509.05258v4-libre.pdf?1652797048=\u0026response-content-disposition=attachment%3B+filename%3DSemi_classical_locality_for_the_non_rela.pdf\u0026Expires=1740168361\u0026Signature=f3LaZf9HPDDL882ylGau62vxqbYg33Q6kQ2Gs9evjvd59Jc9IvQk1mWimUorPP3LpxOrTF5cOH5Iylpq5boKcDWy4TiB~BVz3S3nb5GGyLCOLVUQ71RWAx-W1b4L2jMvKKX3X1VduhfI1qLF2RBdnSeQmqNrWFwwkepnhtCkl60-ihkTT28Fm0roeJAujFgiIZ8jxWnsBKj2GouFgN5-vpT0eFYqtiegpuLLOgXx3vXeopGj2LR549VOJP6D1MwhrjkenpPU8dz5~wcEvoNKaFA-OlMw09djJ0dkgsSdWKAHXaQTN1lMdHr0XswmEzQZ9hYY-hd9sbE8DZrLtNySXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79309044"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79309044/A_Summary_of_the_asymptotic_analysis_for_the_EPRL_amplitude"><img alt="Research paper thumbnail of A Summary of the asymptotic analysis for the EPRL amplitude" class="work-thumbnail" src="https://attachments.academia-assets.com/86067502/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79309044/A_Summary_of_the_asymptotic_analysis_for_the_EPRL_amplitude">A Summary of the asymptotic analysis for the EPRL amplitude</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We review the basic steps in building the asymptotic analysis of the Euclidean sector of new spin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We review the basic steps in building the asymptotic analysis of the Euclidean sector of new spin foam models using coherent states, for Immirzi parameter less than one. We focus on conceptual issues and by so doing omit peripheral proofs and the original discussion on spin structures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0910bb6ef78d28a7f69e369ca2489b61" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86067502,&quot;asset_id&quot;:79309044,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86067502/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79309044"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79309044"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79309044; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79309044]").text(description); $(".js-view-count[data-work-id=79309044]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79309044; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79309044']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0910bb6ef78d28a7f69e369ca2489b61" } } $('.js-work-strip[data-work-id=79309044]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79309044,"title":"A Summary of the asymptotic analysis for the EPRL amplitude","internal_url":"https://www.academia.edu/79309044/A_Summary_of_the_asymptotic_analysis_for_the_EPRL_amplitude","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":86067502,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86067502/thumbnails/1.jpg","file_name":"0909.1882.pdf","download_url":"https://www.academia.edu/attachments/86067502/download_file","bulk_download_file_name":"A_Summary_of_the_asymptotic_analysis_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86067502/0909.1882-libre.pdf?1652797052=\u0026response-content-disposition=attachment%3B+filename%3DA_Summary_of_the_asymptotic_analysis_for.pdf\u0026Expires=1740168361\u0026Signature=U6ApCepKvHKahATuyg9tcPf9sckU4bAI3p9YLBUlNLcbqS6QQadvHYScO2PBK1aqPByh0zCaZjuTUUb9BhBRdPY6ZVJEddV5euWvkaVAPQ-SLyhtfOlaPvq3eaz6c5EiXpSbQrxB4YK5M7vzftJcEXGS0kYvtJ0ktTJfY259DhmHZu12JFy~nC8dh0hwR5cU-MoLM4HmnxwnlSgp1g6NJTzbOE6GFQ4RcZNv1KOR7zOqj2d7GDrKHqmerC7qMOg2IWxGxX9JbyWQLAdcUn1LOSzEWvyxeqNYxs47BD2DAfKeTa89BQE8SK5bb3OD9fAPKSs2FOu9SGte6mbatUmv-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79309042"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79309042/Timeless_configuration_space_and_the_emergence_of_classical_behavior"><img alt="Research paper thumbnail of Timeless configuration space and the emergence of classical behavior" class="work-thumbnail" src="https://attachments.academia-assets.com/86067503/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79309042/Timeless_configuration_space_and_the_emergence_of_classical_behavior">Timeless configuration space and the emergence of classical behavior</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The inherent difficulty in talking about quantum decoherence in the context of quantum cosmology ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The inherent difficulty in talking about quantum decoherence in the context of quantum cosmology is that decoherence requires subsystems, and cosmology is the study of the whole Universe. Consistent histories gave a possible answer to this conundrum, by phrasing decoherence as loss of interference between alternative histories of closed systems. When one can apply Boolean logic to a set of histories, it is deemed &amp;#39;consistent&amp;#39;. However, the vast majority of the sets of histories that are merely consistent are blatantly nonclassical in other respects, and further constraints than just consistency need to be invoked. In this paper, I attempt to give an alternative answer to the issues faced by consistent histories, by exploring a timeless interpretation of quantum mechanics of closed systems. This is done solely in terms of path integrals in non-relativistic, timeless, configuration space. What prompts a fresh look at such foundational problems in this context is the advent of ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5e3a7e2e7ef9ad42597c3192ce906286" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86067503,&quot;asset_id&quot;:79309042,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86067503/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79309042"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79309042"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79309042; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79309042]").text(description); $(".js-view-count[data-work-id=79309042]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79309042; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79309042']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5e3a7e2e7ef9ad42597c3192ce906286" } } $('.js-work-strip[data-work-id=79309042]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79309042,"title":"Timeless configuration space and the emergence of classical behavior","internal_url":"https://www.academia.edu/79309042/Timeless_configuration_space_and_the_emergence_of_classical_behavior","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":86067503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86067503/thumbnails/1.jpg","file_name":"1504.02818v7.pdf","download_url":"https://www.academia.edu/attachments/86067503/download_file","bulk_download_file_name":"Timeless_configuration_space_and_the_eme.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86067503/1504.02818v7-libre.pdf?1652797058=\u0026response-content-disposition=attachment%3B+filename%3DTimeless_configuration_space_and_the_eme.pdf\u0026Expires=1740168361\u0026Signature=bqwq-ekOmd5wG2UnBGyaUqh4kjW2ksjataFj3TeS-7T8wUbOH9dicd471nS2ImFMO-npEmJbqS8gn4YvbricVQxqALKsxLpV5Ky8gPkLLdFJ0231Ror5VsOoJKGW4nySFbHqs3tF35p8zQxPT-QlUQTRFKBBZLjLRmXGlNRlyE4Qn1XyfG5zjJJUaLgziqPtMf8OOLR~1Dys2BIC40x8P0LUyZSlhCuKW7oJaBFeWc-GrzX2CcIsc9ISvN~XgSElAyYaiHH7Zu8gEb58Tn2I8tCS0W2BeA65SJaaRHhQCWRetcejrmaD8P3ef~ibH9gEdf0HCqyZbgzbS8HVO4nxXA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":86067504,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86067504/thumbnails/1.jpg","file_name":"1504.02818v7.pdf","download_url":"https://www.academia.edu/attachments/86067504/download_file","bulk_download_file_name":"Timeless_configuration_space_and_the_eme.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86067504/1504.02818v7-libre.pdf?1652797067=\u0026response-content-disposition=attachment%3B+filename%3DTimeless_configuration_space_and_the_eme.pdf\u0026Expires=1740168361\u0026Signature=UTjQjb8rb1W7~jpQJKFQghp6uD5u~2IQyS8b53KzfC6ZYdf-XA691OkuIBpnyIBSHjjLzECRFNXBEPbLXE3DNigImL-jnfCdndTQdylufBNgxOLFSoG58HI6GRHNx71J~EjjzfjcP1RE7Wo59uAAu3KF7vZ9eEUmDs2zRFSdYPSXvzSb-gT92FGBW7tw9eeQsVHCAdSFO6bH5olniGI30ZBUIfCmDOd-bQ-uXwh1XnpJYrza0x9LRctNFZDmu~JBYf8Xo~Ge8e6VJ6sG0m8ASNJod-ORfUXp-lb1ehz87lwu7ZC6W-djxP04lzmXWKCki4tYGwlRh7lFvOgkOssEyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="2433783" id="papers"><div class="js-work-strip profile--work_container" data-work-id="94043589"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043589/Notes_on_a_few_quasilocal_properties_of_Yang_Mills_theory"><img alt="Research paper thumbnail of Notes on a few quasilocal properties of Yang-Mills theory" class="work-thumbnail" src="https://attachments.academia-assets.com/96613179/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043589/Notes_on_a_few_quasilocal_properties_of_Yang_Mills_theory">Notes on a few quasilocal properties of Yang-Mills theory</a></div><div class="wp-workCard_item"><span>Cornell University - arXiv</span><span>, Jun 3, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gauge theories possess non-local features that, in the presence of boundaries, inevitably lead to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gauge theories possess non-local features that, in the presence of boundaries, inevitably lead to subtleties. In this article we continue our study of a unified solution based on a geometric tool operating on field-space: a connection form. We specialize to the D + 1 formulation of Yang-Mills theories on configuration space, and we precisely characterize the gluing of the Yang-Mills field across regions. In the D + 1 formalism, the connection-form splits the electric degrees of freedom into their pure-radiative and Coulombic components, rendering the latter as conjugate to the pure-gauge part of the gauge potential. Regarding gluing, we obtain a characterization for topologically simple regions through closed formulas. These formulas exploit the properties of a generalized Dirichlet-to-Neumann operator defined at the gluing surface; through them, we find only the radiative components and the local charges are relevant for gluing. Finally, we study the gluing into topologically non-trivial regions in 1+1 dimensions. We find that in this case the regional radiative modes do not fully determine the global radiative mode (Aharonov-Bohm phases). For the global mode takes a new contribution from the kernel of the gluing formula, a kernel which is associated to non-trivial cohomological cycles. In no circumnstances do we find a need for postulating new local degrees of freedom at boundaries. Comment: The partial results of these notes have been completed and substantially clarified in a more recent, comprehensive article from October 2019. (titled: &quot;The quasilocal degrees of freedom of Yang-Mills theory&quot;).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="61c1012b618b2b3dba3125574060930c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613179,&quot;asset_id&quot;:94043589,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613179/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043589"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043589"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043589; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043589]").text(description); $(".js-view-count[data-work-id=94043589]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043589; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043589']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "61c1012b618b2b3dba3125574060930c" } } $('.js-work-strip[data-work-id=94043589]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043589,"title":"Notes on a few quasilocal properties of Yang-Mills theory","internal_url":"https://www.academia.edu/94043589/Notes_on_a_few_quasilocal_properties_of_Yang_Mills_theory","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613179,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613179/thumbnails/1.jpg","file_name":"1906.00992.pdf","download_url":"https://www.academia.edu/attachments/96613179/download_file","bulk_download_file_name":"Notes_on_a_few_quasilocal_properties_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613179/1906.00992-libre.pdf?1672493929=\u0026response-content-disposition=attachment%3B+filename%3DNotes_on_a_few_quasilocal_properties_of.pdf\u0026Expires=1740168361\u0026Signature=FozHKJ~TmZCE8AKzDqpCYX1izgdNwhPtyuoITdv5EjZ3Z7y4dighKkDWJsnbOgcIABpKi6OWux1UMTq7bXNoQfQm0SzizBICS0b7HuxULITrNsCY2tj6brEMTY2qpud1-OT-uIhOSjr3s7DHJUDZo9CkmDCyYptX1pk0qi7MT326o-hgzCl9GyNt3LZcX4vNJWAeuR3josrRnXh6FX4iqnLGFq2sZzwkSgPPV71mVVOp7vP-WqsTbxqaVEtq0UcqKD~WYTkKCFOZIprflm9Fb7FPUkzIchejAES6deqD~j-VIxtMLJVHcMdg~Ah7HMebIE4P96VSSM2C9H0Jb7xrgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043588"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043588/The_role_of_representational_conventions_in_assessing_the_empirical_significance_of_symmetries"><img alt="Research paper thumbnail of The role of representational conventions in assessing the empirical significance of symmetries" class="work-thumbnail" src="https://attachments.academia-assets.com/96613175/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043588/The_role_of_representational_conventions_in_assessing_the_empirical_significance_of_symmetries">The role of representational conventions in assessing the empirical significance of symmetries</a></div><div class="wp-workCard_item"><span>Cornell University - arXiv</span><span>, Oct 27, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper explicates the direct empirical significance (DES) of symmetries in gauge theory, with...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper explicates the direct empirical significance (DES) of symmetries in gauge theory, with comparisons to classical mechanics. Given a physical system composed of subsystems, such significance is to be awarded to physical differences of the composite system that arise from symmetries acting solely on its subsystems. So my overarching main question is: can DES be associated to the local gauge symmetries, acting solely on subsystems? In local gauge theories, any quantity with physical significance must be a gaugeinvariant quantity. To attack the question of DES from this gauge-invariant angle, we require a split of the state into its physical and its representational content: a split that is relative to a representational convention, or a gauge-fixing. Using this method, we propose a rigorous definition of DES, valid for any state. This definition fills the gaps in influential previous construals of DES, (Greaves &amp; Wallace, 2014; Wallace, 2019a,b,c). In particular, Wallace&#39;s need to specialize to &#39;generic&#39; states is explained and dispensed with.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e3f2c61ee6e3679fda336f2539cf9bee" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613175,&quot;asset_id&quot;:94043588,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613175/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043588"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043588"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043588; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043588]").text(description); $(".js-view-count[data-work-id=94043588]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043588; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043588']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e3f2c61ee6e3679fda336f2539cf9bee" } } $('.js-work-strip[data-work-id=94043588]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043588,"title":"The role of representational conventions in assessing the empirical significance of symmetries","internal_url":"https://www.academia.edu/94043588/The_role_of_representational_conventions_in_assessing_the_empirical_significance_of_symmetries","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613175,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613175/thumbnails/1.jpg","file_name":"2110.14563.pdf","download_url":"https://www.academia.edu/attachments/96613175/download_file","bulk_download_file_name":"The_role_of_representational_conventions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613175/2110.14563-libre.pdf?1672493932=\u0026response-content-disposition=attachment%3B+filename%3DThe_role_of_representational_conventions.pdf\u0026Expires=1740168361\u0026Signature=S7VWOl0T1AZi5I9OQjA8Y0fEZtGk7Wj4bVDrw3Bseq7n-VJ9NQFNMi~M02vQ~EkYJ~J-0tqndlX7Z5~Bz3oQK~uLl4Uzyt4YkqHvnPkwYBAGetISt4y6uAtZIlazjTtJqeSo1ZJzFyup8uhklU6LRl2RzvTnOnA9YpxJxFAJo6~Pw0tOrTgHMMbyPDcXqLm7YK27ZKHa2k3aegO-pjwvAIT51GDDB~0T~-d1IxFS3y4GECoHwI2Mst2C-sz2xjftWSGFoKPkvY-iFSy2tqaF94xr1tNkDZ0hOoDIFfD3O7xFd6D12ZljWyoPkCk10nbrd6hFIumz8HpVEelKKgSqMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":96613176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613176/thumbnails/1.jpg","file_name":"2110.14563.pdf","download_url":"https://www.academia.edu/attachments/96613176/download_file","bulk_download_file_name":"The_role_of_representational_conventions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613176/2110.14563-libre.pdf?1672493922=\u0026response-content-disposition=attachment%3B+filename%3DThe_role_of_representational_conventions.pdf\u0026Expires=1740168361\u0026Signature=c8qP~ODgR0wzQhENw9oOQ3J-ptA8hMdRVOutLC4qiZRLU62N~lM6bO1iWwj8~yPbRnOC93crNJNeI6JX229uZ4lhnwMZmvaW4TPVuef9WrHAHhilllhBAbJax3N4u5BXNfHS1I6aEOTZ13r~dKwrGfxtHnVEoJZDccF4UtwNy2qSFptc4sSb1~LWdnFQ6TxiN-o3Mh1VqQPaKRMg1umytbMssleKzbLvOODUU56PiXzJue~TJHZxkuUruTHdYgT1Fp2B88G-iN0GfbsjHctbQPG94Uscuv-3a9JZu882ZALDEj0K8dQBRO8BY-HWMmKIngwnu4uUQLFdfS5CID3AEA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043587"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043587/How_to_Choose_a_Gauge_The_Case_of_Hamiltonian_Electromagnetism"><img alt="Research paper thumbnail of How to Choose a Gauge? The Case of Hamiltonian Electromagnetism" class="work-thumbnail" src="https://attachments.academia-assets.com/96613178/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043587/How_to_Choose_a_Gauge_The_Case_of_Hamiltonian_Electromagnetism">How to Choose a Gauge? The Case of Hamiltonian Electromagnetism</a></div><div class="wp-workCard_item"><span>Erkenntnis</span><span>, Oct 22, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We develop some ideas about gauge symmetry in the context of Maxwell&#39;s theory of electromagnetism...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We develop some ideas about gauge symmetry in the context of Maxwell&#39;s theory of electromagnetism in the Hamiltonian formalism. One great benefit of this formalism is that it pairs momentum and configurational degrees of freedom, so that a decomposition of one side into subsets can be translated into a decomposition of the other. In the case of electromagnetism, this enables us to pair degrees of freedom of the electric field with degrees of freedom of the vector potential. Another benefit is that the formalism algorithmically identifies subsets of the equations of motion that represent time-dependent symmetries. For electromagnetism, these two benefits allow us to define gauge-fixing in parallel to special decompositions of the electric field. More specifically, we apply the Helmholtz decomposition theorem to split the electric field into its Coulombic and radiative parts, and show how this gives a special role to the Coulomb gauge (i.e. div() = 0). We relate this argument to Maudlin&#39;s (Entropy, 2018.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a96b1542e9a3c8eae22b9a4b98e9d17a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613178,&quot;asset_id&quot;:94043587,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613178/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043587"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043587"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043587; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043587]").text(description); $(".js-view-count[data-work-id=94043587]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043587; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043587']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a96b1542e9a3c8eae22b9a4b98e9d17a" } } $('.js-work-strip[data-work-id=94043587]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043587,"title":"How to Choose a Gauge? The Case of Hamiltonian Electromagnetism","internal_url":"https://www.academia.edu/94043587/How_to_Choose_a_Gauge_The_Case_of_Hamiltonian_Electromagnetism","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613178,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613178/thumbnails/1.jpg","file_name":"s10670-022-00597-9.pdf","download_url":"https://www.academia.edu/attachments/96613178/download_file","bulk_download_file_name":"How_to_Choose_a_Gauge_The_Case_of_Hamilt.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613178/s10670-022-00597-9-libre.pdf?1672493922=\u0026response-content-disposition=attachment%3B+filename%3DHow_to_Choose_a_Gauge_The_Case_of_Hamilt.pdf\u0026Expires=1740168361\u0026Signature=a~tJsU~l9dG-ED1S9AFxsTDtyE05D3nsxIIBoILcFDzGYje1-e6WL4KJHNnNLHWH5IzC0CU16Y4U0kITwttMpenIwBY5u6TT2MmKqOI84YJ-NLaoiAeCJSzAyGfv~97cDYnLmue5pl3fNwd2PAu5D0270eAXfhZvQQH3d0OVjocuzOtVHQd40s3MHofH0fVINQSl0PrH0mTKSXXKIMaiPBnZFVoRyi1BjIVgjLAzsiwmhoADwWgXWHaebxBlutIjYQFT~W0T6Fr1kr5lL2QyAfR8Ac8U6464sdz2TiZwbIefAeBrAHhTzyPNLK2jjL6ks~VCvgmKnZ1u0CuPwaaLDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043586"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043586/Geometrodynamics_as_Functionalism_About_Time"><img alt="Research paper thumbnail of Geometrodynamics as Functionalism About Time" class="work-thumbnail" src="https://attachments.academia-assets.com/96613221/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043586/Geometrodynamics_as_Functionalism_About_Time">Geometrodynamics as Functionalism About Time</a></div><div class="wp-workCard_item"><span>Fundamental Theories of Physics</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7f865db81cdbc02c4aa54daa9ad685e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613221,&quot;asset_id&quot;:94043586,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613221/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043586"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043586"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043586; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043586]").text(description); $(".js-view-count[data-work-id=94043586]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043586; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043586']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7f865db81cdbc02c4aa54daa9ad685e0" } } $('.js-work-strip[data-work-id=94043586]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043586,"title":"Geometrodynamics as Functionalism About Time","internal_url":"https://www.academia.edu/94043586/Geometrodynamics_as_Functionalism_About_Time","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613221,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613221/thumbnails/1.jpg","file_name":"2010.16199v1.pdf","download_url":"https://www.academia.edu/attachments/96613221/download_file","bulk_download_file_name":"Geometrodynamics_as_Functionalism_About.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613221/2010.16199v1-libre.pdf?1672488330=\u0026response-content-disposition=attachment%3B+filename%3DGeometrodynamics_as_Functionalism_About.pdf\u0026Expires=1740129231\u0026Signature=cmjm7tMgzqribNF98Hd-aQUf78CAEeZ~NLPsY2SL3JYYJZxHXACudY71tFbIAwowdbXJXUce-YCkA4J41yTFkd8NzkuHCe4rwoAsG~9kz0qHCV5vDxjWlsTqNDmmFqBhSQtItwXim1Ywe6e0kssLHEvPQ~ZM-1Fw3FgNFJ5ULLpuLaKscI1BfK796urNNewl0~8LAKP7W42QkPx4C7KnvhUAhUTeuXTyu-Xu60NQHyAbTC88oeW0878Lo8zwZ64DZz~1bBg9QADQrglKP8AsyIN9dwYx-B1Edzf7mOsXsTEGIoNbavB~tMZq~jtkXR4EKBs5jmqaZNmguneMV-ob3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043585"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043585/Functionalism_as_a_Species_of_Reduction"><img alt="Research paper thumbnail of Functionalism as a Species of Reduction" class="work-thumbnail" src="https://attachments.academia-assets.com/96613177/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043585/Functionalism_as_a_Species_of_Reduction">Functionalism as a Species of Reduction</a></div><div class="wp-workCard_item"><span>arXiv: History and Philosophy of Physics</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This is the first of four papers prompted by a recent literature about a doctrine dubbed spacetim...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This is the first of four papers prompted by a recent literature about a doctrine dubbed spacetime functionalism. This paper gives our general framework for discussing functionalism. Following Lewis, we take it as a species of reduction. We start by expounding reduction in a broadly Nagelian sense. Then we argue that Lewis’ functionalism is an improvement on Nagelian reduction. This paper thereby sets the scene for the other papers, which will apply our framework to theories of space and time. (So those papers address the space and time literature: both recent and older, and physical as well as philosophical literature. But the four papers can be read independently.) Overall, we come to praise spacetime functionalism, not to bury it. But we criticize the recent philosophical literature for failing to stress: (i) functionalism’s being a species of reduction (in particular: reduction of chrono- geometry to the physics of matter and radiation); (ii) functionalism’s idea, not just of sp...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="89c8254c469df6ae1ac2302fec192f91" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613177,&quot;asset_id&quot;:94043585,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613177/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043585"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043585"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043585; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043585]").text(description); $(".js-view-count[data-work-id=94043585]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043585; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043585']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "89c8254c469df6ae1ac2302fec192f91" } } $('.js-work-strip[data-work-id=94043585]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043585,"title":"Functionalism as a Species of Reduction","internal_url":"https://www.academia.edu/94043585/Functionalism_as_a_Species_of_Reduction","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613177,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613177/thumbnails/1.jpg","file_name":"FuncmRedn_submit.pdf","download_url":"https://www.academia.edu/attachments/96613177/download_file","bulk_download_file_name":"Functionalism_as_a_Species_of_Reduction.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613177/FuncmRedn_submit-libre.pdf?1672493917=\u0026response-content-disposition=attachment%3B+filename%3DFunctionalism_as_a_Species_of_Reduction.pdf\u0026Expires=1740168361\u0026Signature=bLDemVSyyCuRpkVkIkJ3NXj3pLlhBZopAgAFf8yqT4kM-77FzTVhGE-KyPt~WWwyjc1XWRFbglxNDSGo0YaYnjfHZOEgAQvE4xEvA3~UQK8SiJsBGNim6~E13~hsA9mY9ITxbw6n3oDBRC2Y9K0DwnJnpGKW91tfuzSbWEqYb1FkKxVlIcCPTuQoUUp00PtqVtXRmW1H8lo8OZp4yN3mAgW53rsHBJqPUxK-T5CeOoWEa4Px9ROKuMQF8Sn5hEBwdMVK~kLRLUA2cwnAOHA6XAU22yQusypSZYGW5Q7ANc8ySbkoZYDp4sUOavqqK8deTHz96dWS1~63u7BjIukF8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":96613174,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613174/thumbnails/1.jpg","file_name":"FuncmRedn_submit.pdf","download_url":"https://www.academia.edu/attachments/96613174/download_file","bulk_download_file_name":"Functionalism_as_a_Species_of_Reduction.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613174/FuncmRedn_submit-libre.pdf?1672493923=\u0026response-content-disposition=attachment%3B+filename%3DFunctionalism_as_a_Species_of_Reduction.pdf\u0026Expires=1740168361\u0026Signature=Z6LSj-uDSLyRJEJyu2o17UGMsyXu8KseM9brEQTCRWL8DjWi~N1fQPy5mux~vJMOJOuSZg1MOZIh8m4X1Vd9LWCS644N5oauK1pRMqPqYZxvlS0pEoYNlr~KphuqlrdVOrUDMg-5Xr-Meas21ln572XV0a3BwTrGG2G9SffiojROekizWEKMqjPGx1nzlIi5lBqQRl~SHnS-Z7z3ehGkBLxhQh42cT-kY9dXatlxj6p3SqJzWNrC7Cr00BcRIdRutW9dwkERm7tn3PTstsfdNIBYKJhIl3i4zWTMmGj0J7zu5StSta-8~MyQZxhGDOyPBZmDjsA2o3XkJzRREMsdYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043584"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043584/Large_gauge_transformations_gauge_invariance_and_the_QCD_theta_term"><img alt="Research paper thumbnail of Large gauge transformations, gauge invariance, and the QCD theta-term" class="work-thumbnail" src="https://attachments.academia-assets.com/96613223/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043584/Large_gauge_transformations_gauge_invariance_and_the_QCD_theta_term">Large gauge transformations, gauge invariance, and the QCD theta-term</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The eliminative view of gauge degrees of freedom---the view that they arise solely from descripti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The eliminative view of gauge degrees of freedom---the view that they arise solely from descriptive redundancy and are therefore eliminable from the theory---is a lively topic of debate in the philosophy of physics. Recent work attempts to leverage properties of the QCD theta-term to provide a novel argument against the eliminative view. The argument is based on the claim that the QCD theta-term changes under ``large&amp;#39;&amp;#39; gauge transformations. Here we review geometrical propositions about fiber bundles that unequivocally falsify these claims: the theta-term encodes topological features of the fiber bundle used to represent gauge degrees of freedom, but it is fully gauge-invariant. Nonetheless, within the essentially classical viewpoint pursued here, the physical role of the theta-term shows the physical importance of bundle topology (or superpositions thereof) and thus weighs against (a naive) eliminativism.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dbe522c6c9c1440986e792104b4c46aa" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613223,&quot;asset_id&quot;:94043584,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613223/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043584"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043584"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043584; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043584]").text(description); $(".js-view-count[data-work-id=94043584]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043584; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043584']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dbe522c6c9c1440986e792104b4c46aa" } } $('.js-work-strip[data-work-id=94043584]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043584,"title":"Large gauge transformations, gauge invariance, and the QCD theta-term","internal_url":"https://www.academia.edu/94043584/Large_gauge_transformations_gauge_invariance_and_the_QCD_theta_term","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613223,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613223/thumbnails/1.jpg","file_name":"2007.04013v1.pdf","download_url":"https://www.academia.edu/attachments/96613223/download_file","bulk_download_file_name":"Large_gauge_transformations_gauge_invari.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613223/2007.04013v1-libre.pdf?1672488324=\u0026response-content-disposition=attachment%3B+filename%3DLarge_gauge_transformations_gauge_invari.pdf\u0026Expires=1740168361\u0026Signature=V-3bQCZHhnDURB43XQjff3SB-tG21dvQYtGBGSX9vsf5YxJSTFQo0oLHgeMNXvGKilriKiQM~GaDDwhA6lcLRMvYJxSatEOvYt52~PMeoqB0N~JUGdjCfkbe-gpeLbVtkRuto~qxFERMhvWPGBK95e47SvordhfTTNH~lhmVkQguzR4nbuqKlfPeUZxI0Snhp0hdMQOeoeuESPXUl2PuhYMf5Y1-8elt1agqE0OjGxAZFnQr87SvwkoGcF8sixDRvyJLnc5gK5VdcchKqNa8t-Y8Il6ZBSJWGF8~2mwlmBQsXc7xdf601VU4dV0oQzdcyxJ5oKaJMCSDCCexW2kF6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043583/Gauging_the_boundary_in_field_space"><img alt="Research paper thumbnail of Gauging the boundary in field-space" class="work-thumbnail" src="https://attachments.academia-assets.com/96613231/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043583/Gauging_the_boundary_in_field_space">Gauging the boundary in field-space</a></div><div class="wp-workCard_item"><span>Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Local gauge theories are in a complicated relationship with boundaries. Whereas fixing the gauge ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Local gauge theories are in a complicated relationship with boundaries. Whereas fixing the gauge can often shave off unwanted redundancies, the coupling of different bounded regions requires the use of gauge-variant elements. Therefore, coupling is inimical to gauge-fixing, as usually understood. This resistance to gauge-fixing has led some to declare the coupling of subsystems to be the raison d&#39;être of gauge [Rov14]. Indeed, while gauge-fixing is entirely unproblematic for a single region without boundary, it introduces arbitrary boundary conditions on the gauge degrees of freedom themselves-these conditions lack a physical interpretation when they are not functionals of the original fields. Such arbitrary boundary choices creep into the calculation of charges through Noether&#39;s second theorem, muddling the assignment of physical charges to local gauge symmetries. The confusion brewn by gauge at boundaries is well-known, and must be contended with both conceptually and technically. It may seem natural to replace the arbitrary boundary choice with new degrees of freedom, for using such a device we resolve some of these confusions while leaving no gauge-dependence on the computation of Noether charges [DF16]. But, concretely, such boundary degrees of freedom are rather arbitrary-they have no relation to the original field-content of the field theory. How should we conceive of them? Here I will explicate the problems mentioned above and illustrate a possible resolution: in a recent series of papers [GR17,GR18,GHR18] the notion of a connectionform was put forward and implemented in the field-space of gauge theories. Using this tool, a modified version of symplectic geometry-here called &#39;horizontal&#39;-is possible. Independently of boundary conditions, this formalism bestows to each region a physically salient, relational notion of charge: the horizontal Noether charge. Meanwhile, as required, the connection-form mediates an irenic composition of regions, one compatible with the attribution of horizontal Noether charges to each region. Thes aims of this paper are to highlight the boundary issues in the treatment of gauge, and to discuss how gauge theory may be conceptually clarified in light of a resolution to these issues.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b5332e1a854e087c7c462c71ff2c66de" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613231,&quot;asset_id&quot;:94043583,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613231/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043583]").text(description); $(".js-view-count[data-work-id=94043583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b5332e1a854e087c7c462c71ff2c66de" } } $('.js-work-strip[data-work-id=94043583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043583,"title":"Gauging the boundary in field-space","internal_url":"https://www.academia.edu/94043583/Gauging_the_boundary_in_field_space","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613231,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613231/thumbnails/1.jpg","file_name":"Relationalism_20in_20field-space_final5.pdf","download_url":"https://www.academia.edu/attachments/96613231/download_file","bulk_download_file_name":"Gauging_the_boundary_in_field_space.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613231/Relationalism_20in_20field-space_final5-libre.pdf?1672488330=\u0026response-content-disposition=attachment%3B+filename%3DGauging_the_boundary_in_field_space.pdf\u0026Expires=1740129231\u0026Signature=aIF0LhaQeiFW-PfTx02ZMY3yXBDxGsqo6NL6cyDCDh0gabJV5HB0ZISRgeq5H686r2xH4H3XPdunFFYtCjrL7SO-LNL-zWHN6h9j4EuEx6cE45Homz1h0~pg28dwAEPLinZhlF76asxdwq9fMbdxtWkYlZZqMR19yrbHddyxFaHE1MhE1qQ2dYOZTE9dqTs5YNoyc~Xq0TrUkGFwE1dvloLytKc7ubtX0prV7b1PIDUT6FkaGHxNwxI026vIc1mHfZufxINN9WnjxGmyU5vaYleCEX-o6omW3oieR6DXDMRcUIjxlP7VaA-9R0cQgCbGtt8LZLDTc1a4qUYK6M43pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043582"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043582/Gravitational_collapse_of_thin_shells_of_dust_in_asymptotically_flat_shape_dynamics"><img alt="Research paper thumbnail of Gravitational collapse of thin shells of dust in asymptotically flat shape dynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/96613217/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043582/Gravitational_collapse_of_thin_shells_of_dust_in_asymptotically_flat_shape_dynamics">Gravitational collapse of thin shells of dust in asymptotically flat shape dynamics</a></div><div class="wp-workCard_item"><span>Physical Review D</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In a recent paper, one of us studied spherically symmetric, asymptotically flat solutions of Shap...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In a recent paper, one of us studied spherically symmetric, asymptotically flat solutions of Shape Dynamics, finding that the spatial metric has characteristics of a wormholetwo asymptotically flat ends and a minimal-area sphere, or &#39;throat&#39;, in between. In this paper we investigate whether that solution can emerge as a result of gravitational collapse of matter. With this goal, we study the simplest kind of spherically-symmetric matter: an infinitely-thin shell of dust. Our system can be understood as a model of a star accreting a thin layer of matter. We solve the dynamics of the shell exactly and find that, indeed, as it collapses, the shell leaves in its wake the wormhole metric. In the maximal-slicing time we use for asymptotically flat solutions, the shell only approaches the throat asymptotically and does not cross it in a finite amount of time (as measured by a clock &#39;at infinity&#39;). This leaves open the possibility that a more realistic cosmological solution of Shape Dynamics might see this crossing happening in a finite amount of time (as measured by the change of relational/shape degrees of freedom).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ae2c4bed2124bf4c519384b6fcc5f608" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613217,&quot;asset_id&quot;:94043582,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613217/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043582"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043582"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043582; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043582]").text(description); $(".js-view-count[data-work-id=94043582]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043582; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043582']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ae2c4bed2124bf4c519384b6fcc5f608" } } $('.js-work-strip[data-work-id=94043582]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043582,"title":"Gravitational collapse of thin shells of dust in asymptotically flat shape dynamics","internal_url":"https://www.academia.edu/94043582/Gravitational_collapse_of_thin_shells_of_dust_in_asymptotically_flat_shape_dynamics","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613217,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613217/thumbnails/1.jpg","file_name":"1509.pdf","download_url":"https://www.academia.edu/attachments/96613217/download_file","bulk_download_file_name":"Gravitational_collapse_of_thin_shells_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613217/1509-libre.pdf?1672492583=\u0026response-content-disposition=attachment%3B+filename%3DGravitational_collapse_of_thin_shells_of.pdf\u0026Expires=1740168361\u0026Signature=NIgFVlKou6n5C9FD4VDvoexs1i4HxkK7IEOXSwlbiSJbrtG6SeyOAkEq45sliDND3S3FUxvu9r0nPuSzkEv6PI8DOmBuOWPySMveq-TLYi57-NYi-OboW-9rvAFtxPejTezbcd94MGpqNqXeQbFBS-iuG55BQGdM3gAul~uFX4ZDvW66JPPHc~MsFpbXpG6svfw~3uimutcmS2pV1i2MjCgxhYvjuXumenlA7juxxLITCfa62kttan82S-pNZJN9n1tOg~SBlq~UsLjt2A73pDV1XRC8twK--7qKUo-uKH4~bgj~UTzskY1K7IWccN6XavuqK1XHkXhGf0QGkQvlHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043581"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043581/Time_asymmetric_extensions_of_general_relativity"><img alt="Research paper thumbnail of Time asymmetric extensions of general relativity" class="work-thumbnail" src="https://attachments.academia-assets.com/96613226/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043581/Time_asymmetric_extensions_of_general_relativity">Time asymmetric extensions of general relativity</a></div><div class="wp-workCard_item"><span>Physical Review D</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We describe a class of modified gravity theories that deform general relativity in a way that bre...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We describe a class of modified gravity theories that deform general relativity in a way that breaks time reversal invariance and, very mildly, locality. The algebra of constraints, local physical degrees of freedom, and their linearized equations of motion, are unchanged, yet observable effects may be present on cosmological scales, which have implications for the early history of the universe. This is achieved in the Hamiltonian framework, in a way that requires the constant mean curvature gauge conditions and is, hence, inspired by shape dynamics.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d6569a7eb7c463ac81f67a8c4fdf7b9c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613226,&quot;asset_id&quot;:94043581,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613226/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043581"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043581"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043581; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043581]").text(description); $(".js-view-count[data-work-id=94043581]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043581; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043581']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d6569a7eb7c463ac81f67a8c4fdf7b9c" } } $('.js-work-strip[data-work-id=94043581]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043581,"title":"Time asymmetric extensions of general relativity","internal_url":"https://www.academia.edu/94043581/Time_asymmetric_extensions_of_general_relativity","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613226,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613226/thumbnails/1.jpg","file_name":"1503.06085v1.pdf","download_url":"https://www.academia.edu/attachments/96613226/download_file","bulk_download_file_name":"Time_asymmetric_extensions_of_general_re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613226/1503.06085v1-libre.pdf?1672488322=\u0026response-content-disposition=attachment%3B+filename%3DTime_asymmetric_extensions_of_general_re.pdf\u0026Expires=1740168361\u0026Signature=ey1zBfSYhLMKaBUsdM2zbv1EkKmPaaE5VHxa~iteeem7hYEpDL3QOwUzeHRLLwB7332~9PL1J09RtZs09FQDae4Af-kBgsKrkGd-IarMfuAsqdnSpFWJUsr1qSQDhhCWWVbSHsHruNttMPIx7KoXWhiuREKk2j1FT~7JYn6UDlnGFHg5Pd13c~BsmuRhnHbRirw2yWLqMDCMAj9KVL9MfqmvDI4XneWyv3scdP1AW-7XxMzoMyNXb~6q8fN1yAGWyYZl-iicQV0t4dDRBMZLVD5hvzlHksXnxqdf2uaRTTibqR05xV06D-DiK6rY-Bcwc8-UwgYBR-2nw9t7q5bA-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043580"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043580/Differences_and_Similarities_Between_Shape_Dynamics_and_General_Relativity"><img alt="Research paper thumbnail of Differences and Similarities Between Shape Dynamics and General Relativity" class="work-thumbnail" src="https://attachments.academia-assets.com/96613220/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043580/Differences_and_Similarities_Between_Shape_Dynamics_and_General_Relativity">Differences and Similarities Between Shape Dynamics and General Relativity</a></div><div class="wp-workCard_item"><span>The Thirteenth Marcel Grossmann Meeting</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The purpose of this contribution is to elucidate some of the properties of Shape Dynamics (SD) an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The purpose of this contribution is to elucidate some of the properties of Shape Dynamics (SD) and is largely based on the longer article. 1 We shall point out some of the key differences between SD and related theoretical constructions, illustrate the central mechanism of symmetry trading in electromagnetism and finally point out some new quantization strategies inspired by SD. We refrain from describing mathematical detail and from citing literature. For both we refer to. 1</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c4d97de12115fe30081b6d95712f6a7d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613220,&quot;asset_id&quot;:94043580,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613220/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043580"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043580"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043580; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043580]").text(description); $(".js-view-count[data-work-id=94043580]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043580; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043580']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c4d97de12115fe30081b6d95712f6a7d" } } $('.js-work-strip[data-work-id=94043580]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043580,"title":"Differences and Similarities Between Shape Dynamics and General Relativity","internal_url":"https://www.academia.edu/94043580/Differences_and_Similarities_Between_Shape_Dynamics_and_General_Relativity","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613220,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613220/thumbnails/1.jpg","file_name":"1303.pdf","download_url":"https://www.academia.edu/attachments/96613220/download_file","bulk_download_file_name":"Differences_and_Similarities_Between_Sha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613220/1303-libre.pdf?1672492571=\u0026response-content-disposition=attachment%3B+filename%3DDifferences_and_Similarities_Between_Sha.pdf\u0026Expires=1740168361\u0026Signature=XO3Z4kG6VwC1j8ijcuMQZnGuHYWzR7n3OVPDmCkHnJTXyK~5IxsNLVFhCrfaPogSKFNlCOxitqeXUOZEz76acrH-lKnaQ3u8MJEmOKx0QRypr5lFkZ3iq355IEPgLPaQeWxI48p82bksubJ6Iuljnz2dawq9VYL8sD03wY5r2Zd0vQ50I7mR-1GUN-mlMlRSDZoqnnkGb-scjp6NiNYHCgkbTAA3G9Q2zWsaZ4mN8WmlG4dwKFdA0nxIdfxSC6ddF706RFhEwp8TuVL2qmpv6IYven2qwgH1zUMs~uGcRZHHbPDD98cviuzDZXDmugPsD5ygsVRko47B~R7lFEsCdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043579"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043579/Shape_Dynamics_and_Gauge_Gravity_Duality"><img alt="Research paper thumbnail of Shape Dynamics and Gauge-Gravity Duality" class="work-thumbnail" src="https://attachments.academia-assets.com/96613230/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043579/Shape_Dynamics_and_Gauge_Gravity_Duality">Shape Dynamics and Gauge-Gravity Duality</a></div><div class="wp-workCard_item"><span>The Thirteenth Marcel Grossmann Meeting</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The dynamics of gravity can be described by two different systems. The first is the familiar spac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The dynamics of gravity can be described by two different systems. The first is the familiar spacetime picture of General Relativity, the other is the conformal picture of Shape Dynamics. We argue that the bulk equivalence of General Relativity and Shape Dynamics is a natural setting to discuss familiar bulk/boundary dualities. We discuss consequences of the Shape Dynamics description of gravity as well as the issue why the bulk equivalence is not explicitly seen in the General Relativity description of gravity.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9e362fac499ee7db84e16f79245f6bc3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613230,&quot;asset_id&quot;:94043579,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613230/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043579"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043579"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043579; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043579]").text(description); $(".js-view-count[data-work-id=94043579]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043579; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043579']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9e362fac499ee7db84e16f79245f6bc3" } } $('.js-work-strip[data-work-id=94043579]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043579,"title":"Shape Dynamics and Gauge-Gravity Duality","internal_url":"https://www.academia.edu/94043579/Shape_Dynamics_and_Gauge_Gravity_Duality","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613230,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613230/thumbnails/1.jpg","file_name":"1301.pdf","download_url":"https://www.academia.edu/attachments/96613230/download_file","bulk_download_file_name":"Shape_Dynamics_and_Gauge_Gravity_Duality.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613230/1301-libre.pdf?1672488316=\u0026response-content-disposition=attachment%3B+filename%3DShape_Dynamics_and_Gauge_Gravity_Duality.pdf\u0026Expires=1740168361\u0026Signature=LDiZYBpYdDNrQ6rnEKyM~L1qbA4u49CiLXKaBwMxHwx57ZeWurSk-lqE27SyfWkZc16GAAeCOqjUr4cQxHWjCdtv0ZKU36rmhBYoDdtF7CawDmNXJdrS~d-QBaT~flzXxcl6b26gh3T~uWlOIgHpWfSK4xiFHmfjZZCXtYWmaLlJCmz5Tb5j1cjmln0mVcZHs~yBZUlqIlpWQD~iuSDam-l~oz9~a~AYX-qit~ybdatMGGcSUiU1ZPmI~1BB2ysJtxcX8WTKCG~SUaWi6YQSRiQSQoomvAMB5sDqmBHCVELl4NvVp-5MOyVrDZVk3zc16jSiZqr9Rvz01aVmxGfxcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043578"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043578/Why_gravity_codes_the_renormalization_of_conformal_field_theories"><img alt="Research paper thumbnail of Why gravity codes the renormalization of conformal field theories" class="work-thumbnail" src="https://attachments.academia-assets.com/96613211/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043578/Why_gravity_codes_the_renormalization_of_conformal_field_theories">Why gravity codes the renormalization of conformal field theories</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We provide a bottom-up argument to derive some known results from holographic renormalization usi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: 1) to advertise the simple classical mechanism: trading of gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/CFT; and 2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with usual the semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible why the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a conformal field theory. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps towards understanding what this new perspective may be able to teach us about holographic dualities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="025472bf241f718bb55a76a5bea495b8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613211,&quot;asset_id&quot;:94043578,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613211/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043578"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043578"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043578; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043578]").text(description); $(".js-view-count[data-work-id=94043578]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043578; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043578']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "025472bf241f718bb55a76a5bea495b8" } } $('.js-work-strip[data-work-id=94043578]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043578,"title":"Why gravity codes the renormalization of conformal field theories","internal_url":"https://www.academia.edu/94043578/Why_gravity_codes_the_renormalization_of_conformal_field_theories","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613211,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613211/thumbnails/1.jpg","file_name":"1305.pdf","download_url":"https://www.academia.edu/attachments/96613211/download_file","bulk_download_file_name":"Why_gravity_codes_the_renormalization_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613211/1305-libre.pdf?1672492578=\u0026response-content-disposition=attachment%3B+filename%3DWhy_gravity_codes_the_renormalization_of.pdf\u0026Expires=1740168361\u0026Signature=UGNAIHor4vDN2nue6PpaJAr-4zYjpyO1B8tMBIE3o5yJuyPElMkSUdhUgW-Ks9BjoqY8IK00ixG~9via2p3i0Zm1QQOw9Y4XrkTqkMY3NyctMw69khRPogPsj2Qmo580oiq5vprytSpuu8~6LXf9WQY4HPOG3DKF49fPPmjvBJeOpexxDRqdxLfpLix0Sjx-B-YWfD7gaFxbWplyKAPA~eFgBj4w5ypbsLc5iMVJvhh65yO5B9rhRUgShb~2G104z-ei9huKiMQXNOjyAiWSRKCQvvZseBA6uDIAQMP4JufZQX~i2ampu8AoMe3CHSwT1koyYoko33sy8ggyXXOsFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043577"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043577/Coupling_shape_dynamics_to_matter_gives_spacetime"><img alt="Research paper thumbnail of Coupling shape dynamics to matter gives spacetime" class="work-thumbnail" src="https://attachments.academia-assets.com/96613216/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043577/Coupling_shape_dynamics_to_matter_gives_spacetime">Coupling shape dynamics to matter gives spacetime</a></div><div class="wp-workCard_item"><span>General Relativity and Gravitation</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Shape Dynamics is a metric theory of pure gravity, equivalent to General Relativity, but formulat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Shape Dynamics is a metric theory of pure gravity, equivalent to General Relativity, but formulated as a gauge theory of spatial diffeomporphisms and local spatial conformal transformations. In this paper we extend the construction of Shape Dynamics form pure gravity to gravity-matter systems and find that there is no fundamental obstruction for the coupling of gravity to standard matter. We use the matter gravity system to construct a clock and rod model for Shape Dynamics which allows us to recover a spacetime interpretation of Shape Dynamics trajectories. &quot;Spacetime is the fairy tale of a classical manifold. It is irreconcilable with quantum effects in gravity and most likely, in a strict sense, it does not exist. But to dismiss a mythical being that has inspired generations just because it does not really exist is foolish. Rather it should be understood together with the storytellers through whom and in whom the being exist. &quot; T. Kopf and M. Paschke in [1].</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0257f99cc99ca43ef53b65844003527a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613216,&quot;asset_id&quot;:94043577,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613216/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043577"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043577"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043577; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043577]").text(description); $(".js-view-count[data-work-id=94043577]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043577; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043577']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0257f99cc99ca43ef53b65844003527a" } } $('.js-work-strip[data-work-id=94043577]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043577,"title":"Coupling shape dynamics to matter gives spacetime","internal_url":"https://www.academia.edu/94043577/Coupling_shape_dynamics_to_matter_gives_spacetime","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613216,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613216/thumbnails/1.jpg","file_name":"1110.pdf","download_url":"https://www.academia.edu/attachments/96613216/download_file","bulk_download_file_name":"Coupling_shape_dynamics_to_matter_gives.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613216/1110-libre.pdf?1672492577=\u0026response-content-disposition=attachment%3B+filename%3DCoupling_shape_dynamics_to_matter_gives.pdf\u0026Expires=1740168361\u0026Signature=NMt6fIuIpqqayu5yS4NtLTpLttgTvp6E1Kx5CGx2v7p7CwAodVsnVDSMNxdH5H-5bsr0XzD9hPjiQO0iqWtPwwP9bR6c1JXTbRLAN5Ug5JBO-xNChEbqwHbVg6C-ObY1GUcjVhawqiFbKn9GGICDRwP~jQwwnT0w58bJYVMdkHgsOJqBwXniCuUXzYSOdwj~VO8fllWqFpd8Nl-dyEuvh-tmhNccvzxprIo0-S81lhNwd6TFjLRRMVAkFiLkDhaJxTd3Uf47hm8AaOnaQFg9~JktObMfGpOcIz2Jf-oil-3~jPI9L7pzdSY9EXHGkoHI6lkaRt10bd72d~aJ93NP7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043576"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043576/The_gravity_CFT_correspondence"><img alt="Research paper thumbnail of The gravity/CFT correspondence" class="work-thumbnail" src="https://attachments.academia-assets.com/96613222/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043576/The_gravity_CFT_correspondence">The gravity/CFT correspondence</a></div><div class="wp-workCard_item"><span>The European Physical Journal C</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">General Relativity can be formulated in terms of a spatially Weyl invariant gauge theory called S...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">General Relativity can be formulated in terms of a spatially Weyl invariant gauge theory called Shape Dynamics. Using this formulation, we establish a &quot;bulk/bulk&quot; duality between gravity and a Weyl invariant theory on spacelike Cauchy hypersurfaces. This duality has two immediate consequences: i) it leads trivially to a corresponding &quot;bulk/boundary&quot; duality between General Relativity and a boundary CFT, and ii) the boundary can be defined in a gauge-invariant way. Moreover, the corresponding bulk/boundary duality is sufficient to explain a large portion of the evidence in favor of gauge/gravity duality and provides independent evidence for the AdS/CFT correspondence.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="92f8bc82403434b2b09eba92a14ddef8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613222,&quot;asset_id&quot;:94043576,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613222/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043576"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043576"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043576; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043576]").text(description); $(".js-view-count[data-work-id=94043576]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043576; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043576']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "92f8bc82403434b2b09eba92a14ddef8" } } $('.js-work-strip[data-work-id=94043576]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043576,"title":"The gravity/CFT correspondence","internal_url":"https://www.academia.edu/94043576/The_gravity_CFT_correspondence","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613222,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613222/thumbnails/1.jpg","file_name":"1105.pdf","download_url":"https://www.academia.edu/attachments/96613222/download_file","bulk_download_file_name":"The_gravity_CFT_correspondence.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613222/1105-libre.pdf?1672488316=\u0026response-content-disposition=attachment%3B+filename%3DThe_gravity_CFT_correspondence.pdf\u0026Expires=1740168361\u0026Signature=V7kZYbUTMGXroT8zlGoq5f~QUbbLKLH0goYcjKfVGlEOUuXvTZNYu21nXWDxh8CpAT-cd1HVVXsCvRQzDZAKqjeIGsrIBTm-GKwbJAQ9WQUojFG-6nWj3VfHSYO39bcS4sV4LdsODbCDEKRab77bV~fCur8xl1yZ366klTbXRuStf-58694TOkLmzpoJmOplha1BGtrM4aRVpO9XxXrhUoPvsluEW9zRmr6oN1IwlJzl0pscdf3-lHnJ6uu3Tw-wOYGa~PPpeSy81jNoYNUc8FXOXgVBB3cyMZ0hPrkqqQ0VDrMGrj5AAnYaWXi2FDy-gwzz0iKLiCVV5F-f66oSfg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043575"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043575/The_link_between_general_relativity_and_shape_dynamics"><img alt="Research paper thumbnail of The link between general relativity and shape dynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/96613210/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043575/The_link_between_general_relativity_and_shape_dynamics">The link between general relativity and shape dynamics</a></div><div class="wp-workCard_item"><span>Classical and Quantum Gravity</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We define the concept of a linking theory and show how two equivalent gauge theories possessing d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We define the concept of a linking theory and show how two equivalent gauge theories possessing different gauge symmetries generically arise from a linking theory. We show that under special circumstances a linking theory can be constructed from a given gauge theory through &quot;Kretchmannization&quot; of a given gauge theory, which becomes one of the two theories related by the linking theory. The other, so-called &quot;dual&quot; gauge theory, is then a gauge theory of the symmetry underlying the &quot;Kretschmannization&quot;. We then prove the equivalence of General Relativity and Shape Dynamics, a theory with fixed foliation but spatial conformal invariance. This streamlines the rather complicated construction of this equivalence performed in [1]. We use this streamlined argument to extend the result to General Relativity with asymptotically flat boundary conditions. The improved understanding of linking theories naturally leads to the Lagrangian formulation of Shape Dynamics, which allows us to partially relate the degrees of freedom.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8a9b15a6e705a467a3bf3934e43da9a4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613210,&quot;asset_id&quot;:94043575,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613210/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043575"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043575"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043575; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043575]").text(description); $(".js-view-count[data-work-id=94043575]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043575; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043575']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8a9b15a6e705a467a3bf3934e43da9a4" } } $('.js-work-strip[data-work-id=94043575]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043575,"title":"The link between general relativity and shape dynamics","internal_url":"https://www.academia.edu/94043575/The_link_between_general_relativity_and_shape_dynamics","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613210,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613210/thumbnails/1.jpg","file_name":"1101.pdf","download_url":"https://www.academia.edu/attachments/96613210/download_file","bulk_download_file_name":"The_link_between_general_relativity_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613210/1101-libre.pdf?1672492574=\u0026response-content-disposition=attachment%3B+filename%3DThe_link_between_general_relativity_and.pdf\u0026Expires=1740168361\u0026Signature=LKXG1O1gxVcCAUQ0iE9s7hAlMaxy752Z2QKqRcaXcWQOyasTDdj5w2Sh8OOBBByKOBspwpQPbM9MbAmz3MMQkB2m5lQ3z6GBj-ZCtqK6m93pelWN5lol-7bZ7fNz3J2K5--JnjZRAOK5yyzSbX4-ZcSJMS8QWQ~OtZml53bq5L5Cpy0nTWjT865RbvzqbfRN9ayoTl4smCcpkNpD9tqmI7DtLpIvu6BbyxzVTAkc1OtrjWW7XH~7~Thdf3tA6u-i2ofgj0KW83WhqIb5sM1wTFzHJM4Fi5GM8GPmD~jfHamnR87vbxqGW4ySaCc9mCWzI8AtANY0L0DQPaxea38TQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94043558"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94043558/The_Gauge_Argument_A_Noether_Reason"><img alt="Research paper thumbnail of The Gauge Argument: A Noether Reason" class="work-thumbnail" src="https://attachments.academia-assets.com/96613185/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94043558/The_Gauge_Argument_A_Noether_Reason">The Gauge Argument: A Noether Reason</a></div><div class="wp-workCard_item"><span>The Philosophy and Physics of Noether&#39;s Theorems</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Why is gauge symmetry so important in modern physics, given that one must eliminate it when inter...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Why is gauge symmetry so important in modern physics, given that one must eliminate it when interpreting what the theory represents? In this paper we discuss the sense in which gauge symmetry can be fruitfully applied to constrain the space of possible dynamical models in such a way that forces and charges are appropriately coupled. We review the most well-known application of this kind, known as the &#39;gauge argument&#39; or &#39;gauge principle&#39;, discuss its difficulties, and then reconstruct the gauge argument as a valid theorem in quantum theory. We then present what we take to be a better and more general gauge argument, based on Noether&#39;s second theorem in classical Lagrangian field theory, and argue that this provides a more appropriate framework for understanding how gauge symmetry helps to constrain the dynamics of physical theories.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="860980372426e0bfb7601164a5e6d8a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96613185,&quot;asset_id&quot;:94043558,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96613185/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94043558"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94043558"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94043558; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94043558]").text(description); $(".js-view-count[data-work-id=94043558]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94043558; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94043558']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "860980372426e0bfb7601164a5e6d8a8" } } $('.js-work-strip[data-work-id=94043558]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94043558,"title":"The Gauge Argument: A Noether Reason","internal_url":"https://www.academia.edu/94043558/The_Gauge_Argument_A_Noether_Reason","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":96613185,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96613185/thumbnails/1.jpg","file_name":"2105.pdf","download_url":"https://www.academia.edu/attachments/96613185/download_file","bulk_download_file_name":"The_Gauge_Argument_A_Noether_Reason.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96613185/2105-libre.pdf?1672493917=\u0026response-content-disposition=attachment%3B+filename%3DThe_Gauge_Argument_A_Noether_Reason.pdf\u0026Expires=1740168361\u0026Signature=cQnFUJEAdnbj0j~e5Qtj5z4cdHlKL~ojWz9cVf8pKR5NGDk-gILPC9LJuXmpq1jjCgAprmkcGmg116z7K7PNxSSGOgtUcjXcfoDPU74M2k59OkbQe-x7-7XJ8FYbGNRwiwjvudq~PgOXcwBjE4drA6uIsMfvuHWJr-bGVRYPIsLULD4cUvgx7DSwQnzlH~MCZjKbpfq6-LEWqmbXsWkJm0uexnmW82DvRIuMHav405FQ3xTHs~M84wtiWaePimLsi6ToxqrJVaT4zipDZUvMCyc7hS-XeQk2WwnxCRKlpKGexSNiBfPa-GR4FWTbcAssuS1aa-TEWlPHF2binm-F0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79309048"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79309048/The_quasilocal_degrees_of_freedom_of_Yang_Mills_theory"><img alt="Research paper thumbnail of The quasilocal degrees of freedom of Yang-Mills theory" class="work-thumbnail" src="https://attachments.academia-assets.com/86067555/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79309048/The_quasilocal_degrees_of_freedom_of_Yang_Mills_theory">The quasilocal degrees of freedom of Yang-Mills theory</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gauge theories possess nonlocal features that, in the presence of boundaries, inevitably lead to ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gauge theories possess nonlocal features that, in the presence of boundaries, inevitably lead to subtleties. In the D+1 formulation of Yang-Mills theories, we employ a generalized Helmholtz decomposition to (i) identify the quasilocal radiative and pure-gauge/Coulombic components of the gauge and electric fields, and to (ii) fully characterize the properties of these components upon gluing of regions. The analysis is carried out at the level of the symplectic structure of the theory, i.e. for linear perturbations over arbitrary backgrounds. Our mathematical results translate into a quasilocal derivation of the superselection of the electric flux through the boundary of a region, and into a novel gluing formula which constructively proves that no ambiguity exists in the gluing of regional gauge-fixed configurations. Key to our results is the canonical field-dependent boundary condition that characterizes the generalized Helmoholtz decomposition. The condition ensures complete covaria...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5cf099cd0d0036b1037c53f582c50258" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86067555,&quot;asset_id&quot;:79309048,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86067555/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79309048"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79309048"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79309048; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79309048]").text(description); $(".js-view-count[data-work-id=79309048]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79309048; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79309048']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5cf099cd0d0036b1037c53f582c50258" } } $('.js-work-strip[data-work-id=79309048]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79309048,"title":"The quasilocal degrees of freedom of Yang-Mills theory","internal_url":"https://www.academia.edu/79309048/The_quasilocal_degrees_of_freedom_of_Yang_Mills_theory","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":86067555,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86067555/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/86067555/download_file","bulk_download_file_name":"The_quasilocal_degrees_of_freedom_of_Yan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86067555/pdf-libre.pdf?1652797081=\u0026response-content-disposition=attachment%3B+filename%3DThe_quasilocal_degrees_of_freedom_of_Yan.pdf\u0026Expires=1740168361\u0026Signature=AtS7LfjQJL94qW6A5v5DgDLLqte7TjEB2O0iYNHRtMVkhbMHQmjizsA7l07sZjIui6CHy~9evKkogjXp8IdUVII~77Eb~L0CBUV2RiDnnfS-JgUBSLpUqIVuSp6HSaMuWmDLjO2Boc-x~9QgQ5rlf2JDxmLrZUQHLMdcWkuITYZ6pB6I6z58LftnhF~18TRK7xKYGhpf7m2SL5tT8IfbqlEwxSuBTUGutUL15a3qQDtrdIKu5HIglAQ4I1foS9Eoutk4PQLd9zgq5HuEEftgdyYwsFEwEFdycr~-4V70vXI80UmBagaxkYq9JFsMCDjIgpAIei82BjmWiwbl~urfpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79309046"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79309046/Semi_classical_locality_for_the_non_relativistic_path_integral_in_configuration_space"><img alt="Research paper thumbnail of Semi-classical locality for the non-relativistic path integral in configuration space" class="work-thumbnail" src="https://attachments.academia-assets.com/86067561/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79309046/Semi_classical_locality_for_the_non_relativistic_path_integral_in_configuration_space">Semi-classical locality for the non-relativistic path integral in configuration space</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In a previous paper, we have put forward an interpretation of quantum mechanics based on a non-re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In a previous paper, we have put forward an interpretation of quantum mechanics based on a non-relativistic, Lagrangian 3+1 formalism of a closed Universe M, existing on timeless configuration space M. However, not much was said there about the role of locality, which was not assumed. This paper is an attempt to fill that gap. To deal with the challenges gauge symmetries may pose to a good definition of locality, I start by demanding symmetries to have an action on M so that the quotient wrt the symmetries respects certain factorizations of M. These factorizations are algebraic splits of M into sub-spaces M=⊕_i M_O_i-- each factor corresponding to a physical sub-region O_i. This deals with kinematic locality, but locality in full can only emerge dynamically, and is not postulated. I describe conditions under which it can be said to have emerged. The dynamics of O is independent of its complement, M-O, if the projection of extremal curves on M onto the space of extremal curves intrin...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0b9f525fe7af3362a8830eceaacb36f4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86067561,&quot;asset_id&quot;:79309046,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86067561/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79309046"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79309046"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79309046; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79309046]").text(description); $(".js-view-count[data-work-id=79309046]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79309046; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79309046']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0b9f525fe7af3362a8830eceaacb36f4" } } $('.js-work-strip[data-work-id=79309046]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79309046,"title":"Semi-classical locality for the non-relativistic path integral in configuration space","internal_url":"https://www.academia.edu/79309046/Semi_classical_locality_for_the_non_relativistic_path_integral_in_configuration_space","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":86067561,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86067561/thumbnails/1.jpg","file_name":"1509.05258v4.pdf","download_url":"https://www.academia.edu/attachments/86067561/download_file","bulk_download_file_name":"Semi_classical_locality_for_the_non_rela.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86067561/1509.05258v4-libre.pdf?1652797048=\u0026response-content-disposition=attachment%3B+filename%3DSemi_classical_locality_for_the_non_rela.pdf\u0026Expires=1740168361\u0026Signature=f3LaZf9HPDDL882ylGau62vxqbYg33Q6kQ2Gs9evjvd59Jc9IvQk1mWimUorPP3LpxOrTF5cOH5Iylpq5boKcDWy4TiB~BVz3S3nb5GGyLCOLVUQ71RWAx-W1b4L2jMvKKX3X1VduhfI1qLF2RBdnSeQmqNrWFwwkepnhtCkl60-ihkTT28Fm0roeJAujFgiIZ8jxWnsBKj2GouFgN5-vpT0eFYqtiegpuLLOgXx3vXeopGj2LR549VOJP6D1MwhrjkenpPU8dz5~wcEvoNKaFA-OlMw09djJ0dkgsSdWKAHXaQTN1lMdHr0XswmEzQZ9hYY-hd9sbE8DZrLtNySXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79309044"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79309044/A_Summary_of_the_asymptotic_analysis_for_the_EPRL_amplitude"><img alt="Research paper thumbnail of A Summary of the asymptotic analysis for the EPRL amplitude" class="work-thumbnail" src="https://attachments.academia-assets.com/86067502/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79309044/A_Summary_of_the_asymptotic_analysis_for_the_EPRL_amplitude">A Summary of the asymptotic analysis for the EPRL amplitude</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We review the basic steps in building the asymptotic analysis of the Euclidean sector of new spin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We review the basic steps in building the asymptotic analysis of the Euclidean sector of new spin foam models using coherent states, for Immirzi parameter less than one. We focus on conceptual issues and by so doing omit peripheral proofs and the original discussion on spin structures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0910bb6ef78d28a7f69e369ca2489b61" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86067502,&quot;asset_id&quot;:79309044,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86067502/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79309044"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79309044"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79309044; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79309044]").text(description); $(".js-view-count[data-work-id=79309044]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79309044; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79309044']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0910bb6ef78d28a7f69e369ca2489b61" } } $('.js-work-strip[data-work-id=79309044]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79309044,"title":"A Summary of the asymptotic analysis for the EPRL amplitude","internal_url":"https://www.academia.edu/79309044/A_Summary_of_the_asymptotic_analysis_for_the_EPRL_amplitude","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":86067502,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86067502/thumbnails/1.jpg","file_name":"0909.1882.pdf","download_url":"https://www.academia.edu/attachments/86067502/download_file","bulk_download_file_name":"A_Summary_of_the_asymptotic_analysis_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86067502/0909.1882-libre.pdf?1652797052=\u0026response-content-disposition=attachment%3B+filename%3DA_Summary_of_the_asymptotic_analysis_for.pdf\u0026Expires=1740168361\u0026Signature=U6ApCepKvHKahATuyg9tcPf9sckU4bAI3p9YLBUlNLcbqS6QQadvHYScO2PBK1aqPByh0zCaZjuTUUb9BhBRdPY6ZVJEddV5euWvkaVAPQ-SLyhtfOlaPvq3eaz6c5EiXpSbQrxB4YK5M7vzftJcEXGS0kYvtJ0ktTJfY259DhmHZu12JFy~nC8dh0hwR5cU-MoLM4HmnxwnlSgp1g6NJTzbOE6GFQ4RcZNv1KOR7zOqj2d7GDrKHqmerC7qMOg2IWxGxX9JbyWQLAdcUn1LOSzEWvyxeqNYxs47BD2DAfKeTa89BQE8SK5bb3OD9fAPKSs2FOu9SGte6mbatUmv-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79309042"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79309042/Timeless_configuration_space_and_the_emergence_of_classical_behavior"><img alt="Research paper thumbnail of Timeless configuration space and the emergence of classical behavior" class="work-thumbnail" src="https://attachments.academia-assets.com/86067503/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79309042/Timeless_configuration_space_and_the_emergence_of_classical_behavior">Timeless configuration space and the emergence of classical behavior</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The inherent difficulty in talking about quantum decoherence in the context of quantum cosmology ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The inherent difficulty in talking about quantum decoherence in the context of quantum cosmology is that decoherence requires subsystems, and cosmology is the study of the whole Universe. Consistent histories gave a possible answer to this conundrum, by phrasing decoherence as loss of interference between alternative histories of closed systems. When one can apply Boolean logic to a set of histories, it is deemed &amp;#39;consistent&amp;#39;. However, the vast majority of the sets of histories that are merely consistent are blatantly nonclassical in other respects, and further constraints than just consistency need to be invoked. In this paper, I attempt to give an alternative answer to the issues faced by consistent histories, by exploring a timeless interpretation of quantum mechanics of closed systems. This is done solely in terms of path integrals in non-relativistic, timeless, configuration space. What prompts a fresh look at such foundational problems in this context is the advent of ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5e3a7e2e7ef9ad42597c3192ce906286" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86067503,&quot;asset_id&quot;:79309042,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86067503/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79309042"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79309042"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79309042; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79309042]").text(description); $(".js-view-count[data-work-id=79309042]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79309042; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79309042']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5e3a7e2e7ef9ad42597c3192ce906286" } } $('.js-work-strip[data-work-id=79309042]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79309042,"title":"Timeless configuration space and the emergence of classical behavior","internal_url":"https://www.academia.edu/79309042/Timeless_configuration_space_and_the_emergence_of_classical_behavior","owner_id":25024933,"coauthors_can_edit":true,"owner":{"id":25024933,"first_name":"Henrique","middle_initials":null,"last_name":"Gomes","page_name":"HenriqueGomes","domain_name":"perimeterinstitute","created_at":"2015-01-19T06:02:17.849-08:00","display_name":"Henrique Gomes","url":"https://perimeterinstitute.academia.edu/HenriqueGomes"},"attachments":[{"id":86067503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86067503/thumbnails/1.jpg","file_name":"1504.02818v7.pdf","download_url":"https://www.academia.edu/attachments/86067503/download_file","bulk_download_file_name":"Timeless_configuration_space_and_the_eme.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86067503/1504.02818v7-libre.pdf?1652797058=\u0026response-content-disposition=attachment%3B+filename%3DTimeless_configuration_space_and_the_eme.pdf\u0026Expires=1740168361\u0026Signature=bqwq-ekOmd5wG2UnBGyaUqh4kjW2ksjataFj3TeS-7T8wUbOH9dicd471nS2ImFMO-npEmJbqS8gn4YvbricVQxqALKsxLpV5Ky8gPkLLdFJ0231Ror5VsOoJKGW4nySFbHqs3tF35p8zQxPT-QlUQTRFKBBZLjLRmXGlNRlyE4Qn1XyfG5zjJJUaLgziqPtMf8OOLR~1Dys2BIC40x8P0LUyZSlhCuKW7oJaBFeWc-GrzX2CcIsc9ISvN~XgSElAyYaiHH7Zu8gEb58Tn2I8tCS0W2BeA65SJaaRHhQCWRetcejrmaD8P3ef~ibH9gEdf0HCqyZbgzbS8HVO4nxXA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":86067504,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86067504/thumbnails/1.jpg","file_name":"1504.02818v7.pdf","download_url":"https://www.academia.edu/attachments/86067504/download_file","bulk_download_file_name":"Timeless_configuration_space_and_the_eme.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86067504/1504.02818v7-libre.pdf?1652797067=\u0026response-content-disposition=attachment%3B+filename%3DTimeless_configuration_space_and_the_eme.pdf\u0026Expires=1740168361\u0026Signature=UTjQjb8rb1W7~jpQJKFQghp6uD5u~2IQyS8b53KzfC6ZYdf-XA691OkuIBpnyIBSHjjLzECRFNXBEPbLXE3DNigImL-jnfCdndTQdylufBNgxOLFSoG58HI6GRHNx71J~EjjzfjcP1RE7Wo59uAAu3KF7vZ9eEUmDs2zRFSdYPSXvzSb-gT92FGBW7tw9eeQsVHCAdSFO6bH5olniGI30ZBUIfCmDOd-bQ-uXwh1XnpJYrza0x9LRctNFZDmu~JBYf8Xo~Ge8e6VJ6sG0m8ASNJod-ORfUXp-lb1ehz87lwu7ZC6W-djxP04lzmXWKCki4tYGwlRh7lFvOgkOssEyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "d35052bc993eff479ca4eaf39390042a78a908a1f88760614d9c212a3617cdcb", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="uwZr1DxC8zDbVer_seW1ZTmkS6Xgd705InjcZwV75rJUtFbB_geoSg94T-6x7bFDbzZPJ1PNfHBN0A4I57-eTQ" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://perimeterinstitute.academia.edu/HenriqueGomes" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="mOBDWFw8Swe0kBQww3fne2z07LY_FIf4GCRcwtwCVIR3Un5NnnkQfWC9sSHDf-NdOmboNIyuRrF3jI6tPsYsew" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10