CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–10 of 10 results for author: <span class="mathjax">Fujisawa, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Fujisawa%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Fujisawa, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Fujisawa%2C+K&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Fujisawa, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08734">arXiv:2109.08734</a> <span> [<a href="https://arxiv.org/pdf/2109.08734">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Trends on 3d Transition Metal Coordination on Monolayer MoS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">He Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Silva%2C+W+C">Walner Costa Silva</a>, <a href="/search/cond-mat?searchtype=author&query=de+Souza%2C+L+S+G">Leonardo Santana Gon莽alves de Souza</a>, <a href="/search/cond-mat?searchtype=author&query=Veiga%2C+A+G">Amanda Garcez Veiga</a>, <a href="/search/cond-mat?searchtype=author&query=Seixas%2C+L">Leandro Seixas</a>, <a href="/search/cond-mat?searchtype=author&query=Fujisawa%2C+K">Kazunori Fujisawa</a>, <a href="/search/cond-mat?searchtype=author&query=Kahn%2C+E">Ethan Kahn</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+T">Tianyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Z">Zhuohang Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+K">Katherine Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+Y">Yu Lei</a>, <a href="/search/cond-mat?searchtype=author&query=de+Matos%2C+C+J+S">Christiano J. S. de Matos</a>, <a href="/search/cond-mat?searchtype=author&query=Rocco%2C+M+L+M">Maria Luiza M. Rocco</a>, <a href="/search/cond-mat?searchtype=author&query=Terrones%2C+M">Mauricio Terrones</a>, <a href="/search/cond-mat?searchtype=author&query=Grasseschi%2C+D">Daniel Grasseschi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08734v1-abstract-short" style="display: inline;"> Two-dimensional materials (2DM) have attracted much interest due to their distinct optical, electronic, and catalytic properties. These properties can be by tuned a range of methods including substitutional doping or, as recently demonstrated, by surface functionalization with single atoms, increasing even further 2DM portfolio. Here we theoretically and experimentally describe the coordination re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08734v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08734v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08734v1-abstract-full" style="display: none;"> Two-dimensional materials (2DM) have attracted much interest due to their distinct optical, electronic, and catalytic properties. These properties can be by tuned a range of methods including substitutional doping or, as recently demonstrated, by surface functionalization with single atoms, increasing even further 2DM portfolio. Here we theoretically and experimentally describe the coordination reaction between MoS$_2$ monolayers with 3d transition metals (TMs), exploring the nature and the trend of MoS$_2$-TMs interaction. Density Functional Theory calculations, X-Ray Photoelectron Spectroscopy (XPS), and Photoluminescence (PL) point to the formation of MoS$_2$-TM coordination complexes, where the adsorption energy trend for 3d TM resembles the crystal-field (CF) stabilization energy for weak-field complexes. Pearson's theory for hard-soft acid-base and Ligand-field theory were applied to discuss the periodic trends on 3d TM coordination on the MoS$_2$ surface. We found that softer acids with higher ligand field stabilization energy, such as Ni$^{2+}$, tend to form bonds with more covalent character with MoS$_2$, which can be considered a soft base. On the other hand, harder acids, such as Cr$^{3+}$, tend to form bonds with more ionic character. Additionally, we studied the trends in charge transfer and doping observed in the XPS and PL results, where metals such as Ni led to an n-type of doping, while Cu functionalization results in p-type doping. Therefore, the formation of coordination complexes on TMD's surface is demonstrated to be a promising and effective way to control and to understand the nature of the single-atom functionalization of TMD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08734v1-abstract-full').style.display = 'none'; document.getElementById('2109.08734v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 8 figures, Support Information after references section</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.11361">arXiv:2005.11361</a> <span> [<a href="https://arxiv.org/pdf/2005.11361">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Photo-degradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: the Role of Nano-Interface 2D Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fali%2C+A">Alireza Fali</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+T">Tianyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Terry%2C+J+P">Jason Patrick Terry</a>, <a href="/search/cond-mat?searchtype=author&query=Kahn%2C+E">Ethan Kahn</a>, <a href="/search/cond-mat?searchtype=author&query=Fujisawa%2C+K">Kazunori Fujisawa</a>, <a href="/search/cond-mat?searchtype=author&query=Koirala%2C+S">Sandhaya Koirala</a>, <a href="/search/cond-mat?searchtype=author&query=Ghafouri%2C+Y">Yassamin Ghafouri</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+W">Wenshen Song</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Li Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Terrones%2C+M">Mauricio Terrones</a>, <a href="/search/cond-mat?searchtype=author&query=Abate%2C+Y">Yohannes Abate</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.11361v1-abstract-short" style="display: inline;"> Single-layer heterostructures exhibit striking quasiparticle properties and many-body interaction effects that hold promise for a range of applications. However, their properties can be altered by intrinsic and extrinsic defects, thus diminishing their applicability. Therefore, it is of paramount importance to identify defects and understand 2D materials' degradation over time using advanced multi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11361v1-abstract-full').style.display = 'inline'; document.getElementById('2005.11361v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.11361v1-abstract-full" style="display: none;"> Single-layer heterostructures exhibit striking quasiparticle properties and many-body interaction effects that hold promise for a range of applications. However, their properties can be altered by intrinsic and extrinsic defects, thus diminishing their applicability. Therefore, it is of paramount importance to identify defects and understand 2D materials' degradation over time using advanced multimodal imaging techniques as well as stabilize degradation via built-in interface protection. Here we implemented a liquid-phase precursor approach to synthesize 2D in-plane MoS2-WS2 heterostructures exhibiting nanoscale alloyed interfaces and map exotic interface effects during photo-degradation using a novel combination of hyperspectral tip-enhanced photoluminescence, Raman and near-field nanoscopy. Surprisingly, 2D alloyed regions exhibit remarkable thermal and photo-degradation stability providing protection against oxidation. Coupled with surface and interface strain, 2D alloy regions create localized potential wells that concentrate excitonic species via a charge carrier funneling effect. These results provide a clear understanding of the importance of 2D alloys as systems able to withstand degradation effects over time, and could be now used to stabilize optoelectronic devices based on 2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11361v1-abstract-full').style.display = 'none'; document.getElementById('2005.11361v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.01965">arXiv:2005.01965</a> <span> [<a href="https://arxiv.org/pdf/2005.01965">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Monolayer Vanadium-doped Tungsten Disulfide: A Room-Temperature Dilute Magnetic Semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+B">Boyang Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Sebastian%2C+A">Amritanand Sebastian</a>, <a href="/search/cond-mat?searchtype=author&query=Olson%2C+H">Hans Olson</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+M">Mingzu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Fujisawa%2C+K">Kazunori Fujisawa</a>, <a href="/search/cond-mat?searchtype=author&query=Pham%2C+Y+T+H">Yen Thi Hai Pham</a>, <a href="/search/cond-mat?searchtype=author&query=Jimenez%2C+V+O">Valery Ortiz Jimenez</a>, <a href="/search/cond-mat?searchtype=author&query=Kalappattil%2C+V">Vijaysankar Kalappattil</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+L">Leixin Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+T">Tianyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Pendurthi%2C+R">Rahul Pendurthi</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+Y">Yu Lei</a>, <a href="/search/cond-mat?searchtype=author&query=El%C3%ADas%2C+A+L">Ana Laura El铆as</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuanxi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Alem%2C+N">Nasim Alem</a>, <a href="/search/cond-mat?searchtype=author&query=Hopkins%2C+P+E">Patrick E. Hopkins</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">Saptarshi Das</a>, <a href="/search/cond-mat?searchtype=author&query=Crespi%2C+V+H">Vincent H. Crespi</a>, <a href="/search/cond-mat?searchtype=author&query=Phan%2C+M">Manh-Huong Phan</a>, <a href="/search/cond-mat?searchtype=author&query=Terrones%2C+M">Mauricio Terrones</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.01965v1-abstract-short" style="display: inline;"> Dilute magnetic semiconductors, achieved through substitutional doping of spin-polarized transition metals into semiconducting systems, enable experimental modulation of spin dynamics in ways that hold great promise for novel magneto-electric or magneto-optical devices, especially for two-dimensional systems such as transition metal dichalcogenides that accentuate interactions and activate valley… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01965v1-abstract-full').style.display = 'inline'; document.getElementById('2005.01965v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.01965v1-abstract-full" style="display: none;"> Dilute magnetic semiconductors, achieved through substitutional doping of spin-polarized transition metals into semiconducting systems, enable experimental modulation of spin dynamics in ways that hold great promise for novel magneto-electric or magneto-optical devices, especially for two-dimensional systems such as transition metal dichalcogenides that accentuate interactions and activate valley degrees of freedom. Practical applications of 2D magnetism will likely require room-temperature operation, air stability, and (for magnetic semiconductors) the ability to achieve optimal doping levels without dopant aggregation. Here we describe room-temperature ferromagnetic order obtained in semiconducting vanadium-doped tungsten disulfide monolayers produced by a reliable single-step film sulfidation method across an exceptionally wide range of vanadium concentrations, up to 12 at% with minimal dopant aggregation. These monolayers develop p-type transport as a function of vanadium incorporation and rapidly reach ambipolarity. Ferromagnetism peaks at an intermediate vanadium concentration of a few atomic percent and decreases for higher concentrations, which is consistent with quenching due to orbital hybridization at closer vanadium-vanadium spacings, as supported by transmission electron microscopy, magnetometry and first-principles calculations. Room-temperature two-dimensional dilute magnetic semiconductors provide a new component to expand the functional scope of van der Waals heterostructures and bring semiconducting magnetic 2D heterostructures them into the realm of practical application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01965v1-abstract-full').style.display = 'none'; document.getElementById('2005.01965v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.06722">arXiv:1912.06722</a> <span> [<a href="https://arxiv.org/pdf/1912.06722">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0014945">10.1063/5.0014945 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric field induced metallic behavior in thin crystals of ferroelectric 伪-In2Se3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rodriguez%2C+J+R">Justin R. Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&query=Murray%2C+W">William Murray</a>, <a href="/search/cond-mat?searchtype=author&query=Fujisawa%2C+K">Kazunori Fujisawa</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+S+H">Seng Huat Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Kotrick%2C+A+L">Alexandra L. Kotrick</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yixuan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Mckee%2C+N">Nathan Mckee</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+S">Sora Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Terrones%2C+M">Mauricio Terrones</a>, <a href="/search/cond-mat?searchtype=author&query=Trolier-McKinstry%2C+S">Susan Trolier-McKinstry</a>, <a href="/search/cond-mat?searchtype=author&query=Jackson%2C+T+N">Thomas N. Jackson</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+Z">Zhiqiang Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhiwen Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Ying Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.06722v3-abstract-short" style="display: inline;"> Ferroelectric semiconductor field effect transistors (FeSmFETs), which employ ferroelectric semiconducting thin crystals of 伪-In2Se3 as the channel material as opposed to the gate dielectric in conventional ferroelectric FETs (FeFETs) were prepared and measured from room to the liquid-helium temperatures. These FeSmFETs were found to yield evidence for the reorientation of the electrical polarizat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06722v3-abstract-full').style.display = 'inline'; document.getElementById('1912.06722v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.06722v3-abstract-full" style="display: none;"> Ferroelectric semiconductor field effect transistors (FeSmFETs), which employ ferroelectric semiconducting thin crystals of 伪-In2Se3 as the channel material as opposed to the gate dielectric in conventional ferroelectric FETs (FeFETs) were prepared and measured from room to the liquid-helium temperatures. These FeSmFETs were found to yield evidence for the reorientation of the electrical polarization and an electric field induced metallic state in 伪-In2Se3. Our findings suggest that FeSmFETs can serve as a platform for the fundamental study of ferroelectric metals as well as the exploration of the integration of data storage and logic operations in the same device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06722v3-abstract-full').style.display = 'none'; document.getElementById('1912.06722v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.05139">arXiv:1903.05139</a> <span> [<a href="https://arxiv.org/pdf/1903.05139">pdf</a>, <a href="https://arxiv.org/format/1903.05139">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b03795">10.1021/acs.nanolett.9b03795 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear dark-field imaging of 1D defects in monolayer dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Carvalho%2C+B+R">Bruno R. Carvalho</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuanxi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Fujisawa%2C+K">Kazunori Fujisawa</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+T">Tianyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Kahn%2C+E">Ethan Kahn</a>, <a href="/search/cond-mat?searchtype=author&query=Bilgin%2C+I">Ismail Bilgin</a>, <a href="/search/cond-mat?searchtype=author&query=Ajayan%2C+P+M">Pulickel M. Ajayan</a>, <a href="/search/cond-mat?searchtype=author&query=de+Paula%2C+A+M">Ana M. de Paula</a>, <a href="/search/cond-mat?searchtype=author&query=Pimenta%2C+M+A">Marcos A. Pimenta</a>, <a href="/search/cond-mat?searchtype=author&query=Kar%2C+S">Swastik Kar</a>, <a href="/search/cond-mat?searchtype=author&query=Crespi%2C+V+H">Vincent H. Crespi</a>, <a href="/search/cond-mat?searchtype=author&query=Terrones%2C+M">Mauricio Terrones</a>, <a href="/search/cond-mat?searchtype=author&query=Malard%2C+L+M">Leandro M. Malard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.05139v1-abstract-short" style="display: inline;"> Extended defects with one dimensionality smaller than that of the host, such as 2D grain boundaries in 3D materials or 1D grain boundaries in 2D materials, can be particularly damaging since they directly impede the transport of charge, spin or heat, and can introduce a metallic character into otherwise semiconducting systems. Unfortunately, a technique to rapidly and non-destructively image 1D de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05139v1-abstract-full').style.display = 'inline'; document.getElementById('1903.05139v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.05139v1-abstract-full" style="display: none;"> Extended defects with one dimensionality smaller than that of the host, such as 2D grain boundaries in 3D materials or 1D grain boundaries in 2D materials, can be particularly damaging since they directly impede the transport of charge, spin or heat, and can introduce a metallic character into otherwise semiconducting systems. Unfortunately, a technique to rapidly and non-destructively image 1D defects in 2D materials is lacking. Scanning transmission electron microscopy (STEM), Raman, photoluminescence and nonlinear optical spectroscopies, are all extremely valuable, but current implementations suffer from low throughput and a destructive nature (STEM) or limitations in their unambiguous sensitivity at the nanoscale. Here we demonstrate that dark-field second harmonic generation (SHG) microscopy can rapidly, efficiently, and non-destructively probe grain boundaries and edges in monolayer dichalcogenides (i.e. MoSe2, MoS2 and WS2). Dark-field SHG efficiently separates the spatial components of the emitted light and exploits interference effects from crystal domains of different orientations to localize grain boundaries and edges as very bright 1D patterns through a Cerenkov-type SHG emission. The frequency dependence of this emission in MoSe2 monolayers is explained in terms of plasmon-enhanced SHG related to the defects metallic character. This new technique for nanometer-scale imaging of the grain structure, domain orientation and localized 1D plasmons in 2D different semiconductors, thus enables more rapid progress towards both applications and fundamental materials discoveries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05139v1-abstract-full').style.display = 'none'; document.getElementById('1903.05139v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 2020, 20, 1, 284-291 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.08597">arXiv:1703.08597</a> <span> [<a href="https://arxiv.org/pdf/1703.08597">pdf</a>, <a href="https://arxiv.org/format/1703.08597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Low temperature synthesis of heterostructures of transition metal dichalcogenide alloys (WxMo1-xS2) and graphene with superior catalytic performance for hydrogen evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lei%2C+Y">Yu Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Pakhira%2C+S">Srimanta Pakhira</a>, <a href="/search/cond-mat?searchtype=author&query=Fujisawa%2C+K">Kazunori Fujisawa</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xuyang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Iyiola%2C+O+O">Oluwagbenga Oare Iyiola</a>, <a href="/search/cond-mat?searchtype=author&query=Lopez%2C+N+P">Nestor Perea Lopez</a>, <a href="/search/cond-mat?searchtype=author&query=Elias%2C+A+L">Ana Laura Elias</a>, <a href="/search/cond-mat?searchtype=author&query=Rajukumar%2C+L+P">Lakshmy Pulickal Rajukumar</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+C">Chanjing Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Kabius%2C+B">Bernd Kabius</a>, <a href="/search/cond-mat?searchtype=author&query=Alem%2C+N">Nasim Alem</a>, <a href="/search/cond-mat?searchtype=author&query=Endo%2C+M">Morinobu Endo</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+R">Ruitao Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Mendoza-Cortes%2C+J+L">Jose L. Mendoza-Cortes</a>, <a href="/search/cond-mat?searchtype=author&query=Terrones%2C+M">Mauricio Terrones</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.08597v2-abstract-short" style="display: inline;"> Large-area ($\sim$cm$^2$) films of vertical heterostructures formed by alternating graphene and transition-metal dichalcogenide(TMD) alloys are obtained by wet chemical routes followed by a thermal treatment at low temperature (300 $^\circ$C). In particular, we synthesized stacked graphene and W$_x$Mo$_{1-x}$S$_2$ alloy phases that were used as hydrogen evolution catalysts. We observed a Tafel slo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08597v2-abstract-full').style.display = 'inline'; document.getElementById('1703.08597v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.08597v2-abstract-full" style="display: none;"> Large-area ($\sim$cm$^2$) films of vertical heterostructures formed by alternating graphene and transition-metal dichalcogenide(TMD) alloys are obtained by wet chemical routes followed by a thermal treatment at low temperature (300 $^\circ$C). In particular, we synthesized stacked graphene and W$_x$Mo$_{1-x}$S$_2$ alloy phases that were used as hydrogen evolution catalysts. We observed a Tafel slope of 38.7 mV dec$^{-1}$ and 96 mV onset potential (at current density of 10 mA cm$^{-2}$) when the heterostructure alloy is annealed at 300 $^o$C. These results indicate that heterostructure formed by graphene and W$_{0.4}$Mo$_{0.6}$S$_2$ alloys are far more efficient than WS$_2$ and MoS$_2$ by at least a factor of two, and it is superior than any other reported TMD system. This strategy offers a cheap and low temperature synthesis alternative able to replace Pt in the hydrogen evolution reaction (HER). Furthermore, the catalytic activity of the alloy is stable over time, i.e. the catalytic activity does not experience a significant change even after 1000 cycles. Using density functional theory calculations, we found that this enhanced hydrogen evolution in the W$_x$Mo$_{1-x}$S$_2$ alloys is mainly due to the lower energy barrier created by a favorable overlap of the d-orbitals from the transition metals and the s-orbitals of H$_2$, with the lowest energy barrier occurring for W$_{0.4}$Mo$_{0.6}$S$_2$ alloy. Thus, it is now possible to further improve the performance of the "inert" TMD basal plane via metal alloying, in addition to the previously reported strategies of creation of point defects, vacancies and edges. The synthesis of graphene/W$_{0.4}$Mo$_{0.6}$S$_2$ produced at relatively low temperatures is scalable and could be used as an effective low cost Pt-free catalyst. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08597v2-abstract-full').style.display = 'none'; document.getElementById('1703.08597v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.02926">arXiv:1508.02926</a> <span> [<a href="https://arxiv.org/pdf/1508.02926">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s12274-015-0930-8">10.1007/s12274-015-0930-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional quantum transport of multivalley (111) surface state in topological crystalline insulator SnTe thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Akiyama%2C+R">Ryota Akiyama</a>, <a href="/search/cond-mat?searchtype=author&query=Fujisawa%2C+K">Kazuki Fujisawa</a>, <a href="/search/cond-mat?searchtype=author&query=Yamaguchi%2C+T">Tomonari Yamaguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Kuroda%2C+S">Shinji Kuroda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.02926v1-abstract-short" style="display: inline;"> Magneto-transport properties of (111)-oriented single-crystal thin films of SnTe were investigated. SnTe (111) thin films were epitaxially grown on a BaF2 substrate by molecular beam epitaxy. By optimizing the growth conditions and the thickness of the films, the bulk carrier density could be reduced, making it possible to detect the surface transport. In the magneto-conductance (MC) measurement,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.02926v1-abstract-full').style.display = 'inline'; document.getElementById('1508.02926v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.02926v1-abstract-full" style="display: none;"> Magneto-transport properties of (111)-oriented single-crystal thin films of SnTe were investigated. SnTe (111) thin films were epitaxially grown on a BaF2 substrate by molecular beam epitaxy. By optimizing the growth conditions and the thickness of the films, the bulk carrier density could be reduced, making it possible to detect the surface transport. In the magneto-conductance (MC) measurement, a cusp-like feature around zero magnetic field was observed, which is attributed to the weak-antilocalization effect of the transport in the topological surface state. Detailed analysis of this negative MC reveals a reduced number of transport channels contributing to the surface transport, suggesting a strong coupling between Dirac valleys on the SnTe (111) surface, as a characteristic feature of the transport in the multivalley structure of TCI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.02926v1-abstract-full').style.display = 'none'; document.getElementById('1508.02926v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.4226">arXiv:1408.4226</a> <span> [<a href="https://arxiv.org/pdf/1408.4226">pdf</a>, <a href="https://arxiv.org/ps/1408.4226">ps</a>, <a href="https://arxiv.org/format/1408.4226">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/568/5/052001">10.1088/1742-6596/568/5/052001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak antilocalization in (111) thin films of a topological crystalline insulator SnTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Akiyama%2C+R">Ryota Akiyama</a>, <a href="/search/cond-mat?searchtype=author&query=Fujisawa%2C+K">Kazuki Fujisawa</a>, <a href="/search/cond-mat?searchtype=author&query=Sakurai%2C+R">Ryutaro Sakurai</a>, <a href="/search/cond-mat?searchtype=author&query=Kuroda%2C+S">Shinji Kuroda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.4226v1-abstract-short" style="display: inline;"> We grew single-crystal thin films of a topological crystalline insulator (TCI) SnTe with a smooth surface at the atomic scale by molecular beam epitaxy (MBE). In the magnetoresistance (MR) measurement, we observed both positive and negative components near zero magnetic field at lowest temperatures of 2 - 3 K, while we observed only a negative MR at elevated temperatures of 6 - 10 K. The positive… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.4226v1-abstract-full').style.display = 'inline'; document.getElementById('1408.4226v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.4226v1-abstract-full" style="display: none;"> We grew single-crystal thin films of a topological crystalline insulator (TCI) SnTe with a smooth surface at the atomic scale by molecular beam epitaxy (MBE). In the magnetoresistance (MR) measurement, we observed both positive and negative components near zero magnetic field at lowest temperatures of 2 - 3 K, while we observed only a negative MR at elevated temperatures of 6 - 10 K. The positive MR is attributed to the weak antilocalization (WAL) in the transport through the topological surface state (SS), demonstrating $蟺$ berry phase which is essential to the topological SS, while the negative MR to the weak localization (WL) in the transport through the bulk state (two-dimensional bulk subbbands). The absolute value of the prefactor $ 伪$ deduced from the fitting of the observed positive MR to the Hikami-Larkin-Nagaoka equation was much smaller than expected from the number of transport channel of the SS, suggesting the coupling of the SS to the bulk state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.4226v1-abstract-full').style.display = 'none'; document.getElementById('1408.4226v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Conf. Ser. 568 052001 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.4847">arXiv:1207.4847</a> <span> [<a href="https://arxiv.org/pdf/1207.4847">pdf</a>, <a href="https://arxiv.org/ps/1207.4847">ps</a>, <a href="https://arxiv.org/format/1207.4847">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> The second-order reduced density matrix method and the two-dimensional Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Anderson%2C+J+S+M">James S. M. Anderson</a>, <a href="/search/cond-mat?searchtype=author&query=Nakata%2C+M">Maho Nakata</a>, <a href="/search/cond-mat?searchtype=author&query=Igarashi%2C+R">Ryo Igarashi</a>, <a href="/search/cond-mat?searchtype=author&query=Fujisawa%2C+K">Katsuki Fujisawa</a>, <a href="/search/cond-mat?searchtype=author&query=Yamashita%2C+M">Makoto Yamashita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.4847v1-abstract-short" style="display: inline;"> The second-order reduced density matrix method (the RDM method) has performed well in determining energies and properties of atomic and molecular systems, achieving coupled-cluster singles and doubles with perturbative triples (CC SD(T)) accuracy without using the wave-function. One question that arises is how well does the RDM method perform with the same conditions that result in CCSD(T) accurac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.4847v1-abstract-full').style.display = 'inline'; document.getElementById('1207.4847v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.4847v1-abstract-full" style="display: none;"> The second-order reduced density matrix method (the RDM method) has performed well in determining energies and properties of atomic and molecular systems, achieving coupled-cluster singles and doubles with perturbative triples (CC SD(T)) accuracy without using the wave-function. One question that arises is how well does the RDM method perform with the same conditions that result in CCSD(T) accuracy in the strong correlation limit. The simplest and a theoretically important model for strongly correlated electronic systems is the Hubbard model. In this paper, we establish the utility of the RDM method when employing the $P$, $Q$, $G$, $T1$ and $T2^\prime$ conditions in the two-dimension al Hubbard model case and we conduct a thorough study applying the $4\times 4$ Hubbard model employing a coefficients. Within the Hubbard Hamilt onian we found that even in the intermediate setting, where $U/t$ is between 4 and 10, the $P$, $Q$, $G$, $T1$ and $T2^\prime$ conditions re produced good ground state energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.4847v1-abstract-full').style.display = 'none'; document.getElementById('1207.4847v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.4095">arXiv:1010.4095</a> <span> [<a href="https://arxiv.org/pdf/1010.4095">pdf</a>, <a href="https://arxiv.org/ps/1010.4095">ps</a>, <a href="https://arxiv.org/format/1010.4095">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Variational approach for the electronic structure calculation on the second-order reduced density matrices and the $N$-representability problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nakata%2C+M">Maho Nakata</a>, <a href="/search/cond-mat?searchtype=author&query=Fukuda%2C+M">Mituhiro Fukuda</a>, <a href="/search/cond-mat?searchtype=author&query=Fujisawa%2C+K">Katsuki Fujisawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.4095v2-abstract-short" style="display: inline;"> The reduced-density-matrix method is an promising candidate for the next generation electronic structure calculation method; it is equivalent to solve the Schr枚dinger equation for the ground state. The number of variables is the same as a four electron system and constant regardless of the electrons in the system. Thus many researchers have been dreaming of a much simpler method for quantum mechan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.4095v2-abstract-full').style.display = 'inline'; document.getElementById('1010.4095v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.4095v2-abstract-full" style="display: none;"> The reduced-density-matrix method is an promising candidate for the next generation electronic structure calculation method; it is equivalent to solve the Schr枚dinger equation for the ground state. The number of variables is the same as a four electron system and constant regardless of the electrons in the system. Thus many researchers have been dreaming of a much simpler method for quantum mechanics. In this chapter, we give a overview of the reduced-density matrix method; details of the theories, methods, history, and some new computational results. Typically, the results are comparable to the CCSD(T) which is a sophisticated traditional approach in quantum chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.4095v2-abstract-full').style.display = 'none'; document.getElementById('1010.4095v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 4 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>