CINXE.COM
Search results for: mineral wool
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mineral wool</title> <meta name="description" content="Search results for: mineral wool"> <meta name="keywords" content="mineral wool"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mineral wool" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mineral wool"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 902</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mineral wool</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">902</span> Microwave-Assisted Eradication of Wool </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Salama">M. Salama</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Haggag"> K. Haggag</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20El-Sayed"> H. El-Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An environmentally and ecologically acceptable method for eradication of wool fabrics based on microwave irradiation (MWI) was described. The process would be a suitable alternative for mothproofing of wool using toxic degradative chemical or biological methods. The effect of microwave irradiation and exposure time on the extent of eradication of wool fabrics from moth larvae was monitored. The inherent properties of the MW-irradiated wool fabrics; viz. tensile properties, alkali solubility, and yellowing index, were not adversely altered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave" title="microwave">microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=wool" title=" wool"> wool</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric" title=" fabric"> fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=moth" title=" moth"> moth</a>, <a href="https://publications.waset.org/abstracts/search?q=eradication" title=" eradication"> eradication</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/8504/microwave-assisted-eradication-of-wool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">901</span> Laboratory Evaluation of the Airborne Sound Insulation of Plasterboard Sandwich Panels Filled with Recycled Textile Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Trifonova%20Djambova">Svetlana Trifonova Djambova</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Bobeva%20Ivanova"> Natalia Bobeva Ivanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Roumiana%20Asenova%20Zaharieva"> Roumiana Asenova Zaharieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small size acoustic chamber test method has been applied to experimentally evaluate and compare the airborne sound insulation provided by plasterboard sandwich panels filled with mineral wool and with its alternative from recycled textile material (produced by two different technologies). A sound source room is used as an original small-size acoustic chamber, specially built in a real-size room, utilized as a sound receiving room. The experimental results of one of the recycled textile material specimens have demonstrated sound insulation properties similar to those of the mineral wool specimen and even superior in the 1600-3150 Hz frequency range. This study contributes to the improvement of recycled textile material production, as well as to the synergy of heat insulation and sound insulation performances of building materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20sound%20insulation" title="airborne sound insulation">airborne sound insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20insulation%20products" title=" heat insulation products"> heat insulation products</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20wool" title=" mineral wool"> mineral wool</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20textile%20material" title=" recycled textile material"> recycled textile material</a> </p> <a href="https://publications.waset.org/abstracts/165689/laboratory-evaluation-of-the-airborne-sound-insulation-of-plasterboard-sandwich-panels-filled-with-recycled-textile-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">900</span> An Easy-Applicable Method for In situ Silver Nanoparticles Preparation into Wool Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salwa%20Mowafi">Salwa Mowafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Rehan"> Mohamed Rehan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany%20Kafafy"> Hany Kafafy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, three different systems including room temperature, conventional water bath heating and microwave irradiation technique will be employed in the fabrication of silver nanoparticle-wool fibers. The silver nanoparticles will be synthesized in-situ incorporated into wool fibers under redox active bio-template of wool protein which facilitates the reduction of Ag+ to nanoparticulate Ag0. Silver NPs incorporated wool fiber will be characterized by scanning electron microscopy, energy dispersive X-ray, FTIR, TGA, silver content and X-ray photoelectron spectroscopy. The mechanism of binding Ag NPs in-situ incorporated wool fibers matrix will be discussed. The effect of silver nanoparticles on the coloration, antimicrobial, UV-protection and catalytic properties of the wool fibers will be evaluated. The overall results of this study indicate that the Ag NPs in-situ incorporated wool fibers will be applied as colorants for wool fibers with improving in its multi-functionality properties. So, this study provides a simple approach for innovative protein fibers design by applying the optical properties of Plasmonic noble metal nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20irradiation%20technique" title="microwave irradiation technique">microwave irradiation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-functionality%20properties" title=" multi-functionality properties"> multi-functionality properties</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=wool%20fibers" title=" wool fibers"> wool fibers</a> </p> <a href="https://publications.waset.org/abstracts/52765/an-easy-applicable-method-for-in-situ-silver-nanoparticles-preparation-into-wool-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">899</span> Characterization of the Physical Properties of Sheep Wool Fiber in Amhara National Regional State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erkihun%20Zelalem">Erkihun Zelalem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethiopian’s sheep population, estimated to be 25.5 million heads, is found widely distributed across the diverse agro-ecological zones of the country. In the past, there were many projects that done to improve production of meat, milk and productivity of sheep breed. However, no significance research has been done so far on production of wool fiber in Ethiopia which could be taken as a potential fiber next to cotton. The measurement of the sheep wool fiber physical properties is critically important, technical, commercial and certification point of view. A total of 24 sheep from different breeds (Menz, Tikur, Farta and Washera) were used in this study. Samples of fiber were analyzed using standard measurements for wool fiber length (WFL), mean fiber diameter (MFD), coefficient of variation of wool fiber diameter (FDCV), breaking strength, elongation, crimp, cleanness and moisture content. Based on the result all parameters shows that there is a great potential of getting of wool fiber from the skin of sheep and according to the standards of its property and grading system based on wool fiber fineness is medium to course. These types of fibers can be making carpets, blankets, rugs, coverings and other products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fiber" title="Fiber">Fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=Fineness" title=" Fineness"> Fineness</a>, <a href="https://publications.waset.org/abstracts/search?q=Carpet" title=" Carpet"> Carpet</a>, <a href="https://publications.waset.org/abstracts/search?q=Fleece" title=" Fleece"> Fleece</a>, <a href="https://publications.waset.org/abstracts/search?q=Raw%20Wool" title=" Raw Wool"> Raw Wool</a> </p> <a href="https://publications.waset.org/abstracts/119161/characterization-of-the-physical-properties-of-sheep-wool-fiber-in-amhara-national-regional-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">898</span> Preparation of Wool Fiber/Keratin/PVA Film and Study on Their Structure and Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Wu">Min Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuming%20Shen"> Shuming Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuhong%20Yang"> Xuhong Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rencheng%20Tang"> Rencheng Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every year, numerous organic wastes from fiber byproducts of the wool textile industry, poor quality raw wools not fit for spinning, horns, nails and feathers from butchery are disposed. These wastes are abundant in keratin which is a renewable material. Wool fiber/keratin/PVA composites with different proportions were prepared in this study, and the influence of the proportions on their structure and properties were studied, aiming to understand the potential application of keratin in the field of biomedicine, degradable wrapper, and cosmetics film, and provide a new way to reuse keratin wastes. The urea / sodium sulfide / sodium dodecyl sulfate (SDS) method was used to dissolve the wool. After filtration and dialysis, the wool keratin solution was achieved. Then the keratin solution and polyvinal (PVA) solution were blended in different proportions, and the wool fibers cut into a certain length were cast into the blended solution. Thereby, various wool fiber/keratin/PVA composite films with different proportions were formed through pouring the solution into a flat box and drying at room temperature. The surface morphology, molecular structure, and mechanical property of the composite films were studied. The results showed that, there are α-helix structure, β-sheet and random coil conformations in the pure keratin film, as well as in the wool fiber. Compared with wool fiber, the crystallinity of keratin decreased. PVA can obviously improve the mechanical property of the blended film. When the blended ratio of keratin and PVA is 20:80, the mechanical property of the blended film is greatly improved. The composite films with 8%-16% of wool fibers have better flexibility than those without wool fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20film" title="composite film">composite film</a>, <a href="https://publications.waset.org/abstracts/search?q=keratin" title=" keratin"> keratin</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20property" title=" mechanical property"> mechanical property</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20structure" title=" morphological structure"> morphological structure</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA" title=" PVA"> PVA</a>, <a href="https://publications.waset.org/abstracts/search?q=wool%20fiber" title=" wool fiber"> wool fiber</a> </p> <a href="https://publications.waset.org/abstracts/63091/preparation-of-wool-fiberkeratinpva-film-and-study-on-their-structure-and-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">897</span> Fluorescent Analysis of Gold Nanoclusters-Wool Keratin Addition to Copper Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao%20Xing">Yao Xing</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Ling%20Liu"> Hong Ling Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Dong%20Yu"> Wei Dong Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increase of global population, it is of importance for the safe water supply, while, the water-monitoring method with the capability of rapidness, low-cost, green and robustness remains unsolved. In this paper, gold nanoclusters-wool keratin is added into copper ions measured by fluorescent method in order to probe copper ions in aqueous solution. The fluorescent results show that gold nanoclusters-wool keratin exhibits high stability of pHs, while it is sensitive to temperature and time. Based on Gauss fitting method, the results exhibit that the slope of gold nanoclusters-wool keratin with pH resolution under acidic condition is higher compared to it under alkaline solutions. Besides, gold nanoclusters-wool keratin added into copper ions shows a fluorescence turn-off response transferring from red to blue under UV light, leading to the dramatically decreased fluorescent intensity of gold nanoclusters-wool keratin solution located at 690 nm. Moreover, the limited concentration of copper ions tested by gold nanoclusters-wool keratin system is around 1 µmol/L, which meets the need of detection standards. The fitting slope of Stern-Volmer plot at low concentration of copper ions is larger than it at high concentrations, which indicates that aggregated gold nanoclusters are from small amounts to large numbers with the increasing concentration of copper ions. It is expected to provide novel method and materials for copper ions testing with low cost, high efficiency, and easy operability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoclusters" title="gold nanoclusters">gold nanoclusters</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20ions" title=" copper ions"> copper ions</a>, <a href="https://publications.waset.org/abstracts/search?q=wool%20keratin" title=" wool keratin"> wool keratin</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a> </p> <a href="https://publications.waset.org/abstracts/87828/fluorescent-analysis-of-gold-nanoclusters-wool-keratin-addition-to-copper-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">896</span> Natural Dyeing on Wool Fabrics Using Some Red Rose Petals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emrah%20%C3%87imen">Emrah Çimen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Demirelli"> Mustafa Demirelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Burcu%20Yilmaz%20%C5%9Eahinba%C5%9Fkan"> Burcu Yilmaz Şahinbaşkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmure%20%C3%9Cst%C3%BCn%20%C3%96zg%C3%BCr"> Mahmure Üstün Özgür</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural colours are used on a large area such as textile, food and pharmaceutical industries by many researchers. When tannic acid is used together with metal salts for dyeing with natural dyes, antibacterial and fastness properties of textile materials are increased. In addition, the allegens are removed on wool fabrics. In this experimental work, some red rose petals were applied as a natural dye with three different dyeing methods and eight different mordant salts. The effect of tannic acid and different metal salts on dyeing of wool fabric was studied. Colour differences ΔECMC (2:1) and fastness properties of dyed fabrics were investigated and compared with each other. Finally, dark colours and adequate colour fastness results (4+) were obtained after dyeing of wool fabrics with FeSO4.7H2O, FeCl3.6H2O and CuCl2.2H2O in the presence of the tannic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20dye" title="natural dye">natural dye</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20rose%20petals" title=" red rose petals"> red rose petals</a>, <a href="https://publications.waset.org/abstracts/search?q=tannic%20acid" title=" tannic acid"> tannic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=mordant%20salts" title=" mordant salts"> mordant salts</a>, <a href="https://publications.waset.org/abstracts/search?q=wool%20fabric" title=" wool fabric"> wool fabric</a> </p> <a href="https://publications.waset.org/abstracts/25586/natural-dyeing-on-wool-fabrics-using-some-red-rose-petals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">630</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">895</span> Hygrothermal Performance of Sheep Wool in Cold and Humid Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuchen%20Chen">Yuchen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehong%20Li"> Dehong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Li"> Bin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Rodrigue"> Denis Rodrigue</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20%28Alice%29%20Wang"> Xiaodong (Alice) Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When selecting insulation materials, not only should their thermal efficiency be considered, but also their impact on the environment. Compared to conventional insulation materials, bio-based materials not only have comparable thermal performance, but they also have a lower embodied energy. Sheep wool has the advantages of low negative health impact, high fire resistance, eco-friendliness, and high moisture resistance. However, studies on applying sheep wool insulation in cold and humid climates are still insufficient. The purpose of this study is to simulate the hygrothermal performance of sheep wool insulation for the Quebec City climate, as well as analyze the mold growth risks. The results show that a sheep wool wall has better thermal performance than a reference wall and that both meet the minimum requirements of the Quebec Code for the thermal performance of above-ground walls. The total water content indicates that the sheep wool wall can reach dynamic equilibrium in the Quebec climate and can dry out. At the same time, a delay of almost four months in the maximum total water content indicates that the sheep wool wall has high moisture absorption compared to the reference wall. The hygrothermal profiles show that the sheathing-insulation interface of both walls is at the highest risk for condensation. When the interior surface gypsum was replaced by stucco, the mold index significantly dropped. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sheep%20wool" title="sheep wool">sheep wool</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20content" title=" water content"> water content</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20performance" title=" hygrothermal performance"> hygrothermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=mould%20growth%20risk" title=" mould growth risk"> mould growth risk</a> </p> <a href="https://publications.waset.org/abstracts/164606/hygrothermal-performance-of-sheep-wool-in-cold-and-humid-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">894</span> Thermal Properties and Water Vapor Permeability for Cellulose-Based Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stanislavs%20Gendelis">Stanislavs Gendelis</a>, <a href="https://publications.waset.org/abstracts/search?q=Maris%20Sinka"> Maris Sinka</a>, <a href="https://publications.waset.org/abstracts/search?q=Andris%20Jakovics"> Andris Jakovics</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulation materials made from natural sources have become more popular for the ecologisation of buildings, meaning wide use of such renewable materials. Such natural materials replace synthetic products which consume a large quantity of energy. The most common and the cheapest natural materials in Latvia are cellulose-based (wood and agricultural plants). The ecological aspects of such materials are well known, but experimental data about physical properties remains lacking. In this study, six different samples of wood wool panels and a mixture of hemp shives and lime (hempcrete) are analysed. Thermal conductivity and heat capacity measurements were carried out for wood wool and cement panels using the calibrated hot plate device. Water vapor permeability was tested for hempcrete material by using the gravimetric dry cup method. Studied wood wool panels are eco-friendly and harmless material, which is widely used in the interior design of public and residential buildings, where noise absorption and sound insulation is of importance. They are also suitable for high humidity facilities (e.g., swimming pools). The difference in panels was the width of used wood wool, which is linked to their density. The results of measured thermal conductivity are in a wide range, showing the worsening of properties with the increasing of the wool width (for the least dense 0.066, for the densest 0.091 W/(m·K)). Comparison with mineral insulation materials shows that thermal conductivity for such materials are 2-3 times higher and are comparable to plywood and fibreboard. Measured heat capacity was in a narrower range; here, the dependence on the wool width was not so strong due to the fact that heat capacity value is related to mass, not volume. The resulting heat capacity is a combination of two main components. A comparison of results for different panels allows to select the most suitable sample for a specific application because the dependencies of the thermal insulation and heat capacity properties on the wool width are not the same. Hempcrete is a much denser material compared to conventional thermal insulating materials. Therefore, its use helps to reinforce the structural capacity of the constructional framework, at the same time, it is lightweight. By altering the proportions of the ingredients, hempcrete can be produced as a structural, thermal, or moisture absorbent component. The water absorption and water vapor permeability are the most important properties of these materials. Information about absorption can be found in the literature, but there are no data about water vapor transmission properties. Water vapor permeability was tested for a sample of locally made hempcrete using different air humidity values to evaluate the possible difference. The results show only the slight influence of the air humidity on the water vapor permeability value. The absolute ‘sd value’ measured is similar to mineral wool and wood fiberboard, meaning that due to very low resistance, water vapor passes easily through the material. At the same time, other properties – structural and thermal of the hempcrete is totally different. As a result, an experimentally-based knowledge of thermal and water vapor transmission properties for cellulose-based materials was significantly improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20capacity" title="heat capacity">heat capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp%20concrete" title=" hemp concrete"> hemp concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vapor%20transmission" title=" water vapor transmission"> water vapor transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20wool" title=" wood wool"> wood wool</a> </p> <a href="https://publications.waset.org/abstracts/122624/thermal-properties-and-water-vapor-permeability-for-cellulose-based-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">893</span> Antibacterial and Antioxidant Capacity of Fabric Treated with Purple-Fleshed Sweet Potato Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Hwa%20Hong">Kyung Hwa Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Eunmi%20Koh"> Eunmi Koh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wool and cotton fabrics are pretreated by a tannic acid aqueous solution to increase their dyeability and then dyed by Purple-Fleshed Sweet Potato (PSP) extract. The dyed fabrics are then investigated by various analysis techniques. The results revealed that wool and cotton fabrics can be dyed bluish red through the pretreatment and dyeing process. Both wool and cotton fabrics only pretreated with tannic acid display decreased L* value but no significant changes in a* and b* values as the concentration of tannic acid increases. And, as expected, the pretreated fabrics are even darker and show a richer purple color after the dyeing process with the PSP extract. With regard to the colorfastness of wool and cotton fabrics dyed by PSP extract in cleaning circumstances, such as dry-cleaning (for wool) and washing (for cotton), the wool and cotton fabrics had a 4.0 and 4.0 grade of colorfastness to dry-cleaning and washing, respectively. However, they both exhibited significantly inferior colorfastness to light (grade of 1.5). Thus, it was found that there is still a need for improvement with regard to color fastness, particularly against light. On the other hand, the wool and cotton fabrics also showed antibacterial and antioxidant characteristics. In addition, both the wool and cotton fabrics showed potential antibacterial ability (>99%) against Staphylococcus aureus; however, they showed somewhat insufficient antibacterial ability (60.8% for wool and 94.8% for cotton) against Klebsiella pneumoniae. Also, their antioxidant abilities increased up to ca. 90% with an increase in the tannic acid concentration (up to 0.5%). However, after the dyeing process, the antibacterial and antioxidant ability tended to decrease. This is assumed to have occurred because functional moieties such as phenolic acids were detached from the pretreated fabrics into the hot water (the dyeing solution) during the dyeing process. Therefore, further study would be necessary to derive the optimum treatment and dyeing conditions so as to maximize the coloring effect and functionalities of the fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=purple-fleshed%20sweet%20potato" title=" purple-fleshed sweet potato"> purple-fleshed sweet potato</a>, <a href="https://publications.waset.org/abstracts/search?q=fabrics" title=" fabrics"> fabrics</a> </p> <a href="https://publications.waset.org/abstracts/61404/antibacterial-and-antioxidant-capacity-of-fabric-treated-with-purple-fleshed-sweet-potato-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">892</span> Analysis of Lesotho Wool Production and Quality Trends 2008-2018</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Papali%20Maqalika">Papali Maqalika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lesotho farmers produce significant quantities of Merino wool of a quality competitive on the global market and make a substantial impact on the economy of Lesotho. However, even with the economic contribution, the production and quality information and trends of this fibre has been recognised nor documented. This is a sombre shortcoming as Lesotho wool is unknown on international markets. The situation is worsened by the fact that Lesotho wool is auction together with South African wool, trading and benchmarking Lesotho wool are difficult not to mention attempts to advance its production and quality. Based on the information above, available data on Lesotho wool for 10 years were collected and analysed for trends to used in benchmarking where applicable. The fibre properties analysed include fibre diameter (fineness), vegetable matter and yield, application and price. These were selected because they are fundamental in determining fibre quality and price. Production of wool in Lesotho has increased slightly over the ten years covered by this study. It also became apparent that production and quality trends of Lesotho wool are greatly influenced by the farming practices, breed of sheep and climatic conditions. Greater adoption of the merino sheep breed, sheds/barns and sheep coats are suggested as ways to reduce mortality rate (due to extremely cold temperatures), to reduce the vegetable matter on the fibre thus improving the quality and increase yield per sheep and production as a whole. Some farming practices such as the lack of barns, supplementary feeding and veterinary care present constraints in wool production. The districts in the Highlands region were found to have the highest production of mostly wool, this being ascribed to better pastures, climatic, social and other conditions conducive to wool production. The production of Lesotho wool and its quality can be improved further, possibly because of the interventions the Ministry of Agriculture introduced through the Small Agricultural and Development Project (SADP) and other appropriate initiatives by the National Wool and Mohair Growers Association (NWMGA). The challenge however, remains the lack of direct involvement of the wool growers (farmers) in decisions making and policy development, this potentially influences and may lead to the reluctance to adopt the strategies. In some cases, the wool growers do not receive the benefits associated with the interventions immediately. Based on these discoveries; it is recommended that the relevant educators and researchers in wool and textile science, as well as the local wool farmers in Lesotho, be represented in policy and other decision making forums relating to these interventions. In this way, educational campaigns and training workshops will be demand driven with a better chance of adoption and success. This is because the direct beneficiaries will have been involved at inception and they will have a sense of ownership as well as intent to see them through successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lesotho%20wool" title="lesotho wool">lesotho wool</a>, <a href="https://publications.waset.org/abstracts/search?q=wool%20quality" title=" wool quality"> wool quality</a>, <a href="https://publications.waset.org/abstracts/search?q=wool%20production" title=" wool production"> wool production</a>, <a href="https://publications.waset.org/abstracts/search?q=lesotho%20economy" title=" lesotho economy"> lesotho economy</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20market" title=" global market"> global market</a>, <a href="https://publications.waset.org/abstracts/search?q=apparel%20wool" title=" apparel wool"> apparel wool</a>, <a href="https://publications.waset.org/abstracts/search?q=database" title=" database"> database</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20science" title=" textile science"> textile science</a>, <a href="https://publications.waset.org/abstracts/search?q=exports" title=" exports"> exports</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20farming%20practices" title=" animal farming practices"> animal farming practices</a>, <a href="https://publications.waset.org/abstracts/search?q=intimate%20apparel" title=" intimate apparel"> intimate apparel</a>, <a href="https://publications.waset.org/abstracts/search?q=interventions" title=" interventions"> interventions</a> </p> <a href="https://publications.waset.org/abstracts/170853/analysis-of-lesotho-wool-production-and-quality-trends-2008-2018" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">891</span> The Affect of Water Quality on the Ultrasonic Attenuation of Bone Mimic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elsariti">A. Elsariti</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Evans"> T. Evans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The propagation mechanisms in the trabecular bone are poorly understood and have been the subject of extended debate; also, steel wool has been evaluated as a potential bone mimic, Its advantages are ready availability, low cost and a wide range of sizes. In this study, both distilled and tap water were used to estimate the ultrasonic attenuation in coarse steel wool. It is clear from the results that the attenuation of coarse steel wool increased as the distance between the transducers decreased, and it is higher in tap water than distilled water. At 9cm distance between the transducers the attenuation was approximately 0.97 and 4.7 dB in distilled and tap water respectively. While it is 6.97 and 12.2 dB in distilled and tap water respectively at distance 4cm. This change in the attenuation between both distilled and tap water is probably due to gas bubbles in the tap water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20mimic" title="bone mimic">bone mimic</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=tap%20water" title=" tap water"> tap water</a>, <a href="https://publications.waset.org/abstracts/search?q=distilled%20water" title=" distilled water"> distilled water</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20attenuation" title=" ultrasonic attenuation"> ultrasonic attenuation</a> </p> <a href="https://publications.waset.org/abstracts/21847/the-affect-of-water-quality-on-the-ultrasonic-attenuation-of-bone-mimic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">890</span> Innovative Textile Design Using in-situ Ag NPs incorporation into Natural Fabric Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rehan">M. Rehan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mashaly"> H. Mashaly</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Emam"> H. Emam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abou%20El-Kheir"> A. Abou El-Kheir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mowafi">S. Mowafi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we will study a simple highly efficient technique to impart multi functional properties to different fabric substrates by in situ Ag NPs incorporation into fabric matrix. Ag NPs as a coloration and antimicrobial agent were prepared in situ incorporation into fabric matrix (Cotton and Wool) by using trisodium citrate as reducing and stabilizing agent. The Ag NPs treated fabric (Cotton and Wool) showed different color because of localized surface Plasmon resonance (LSPR) property of Ag NPs. The formation of Ag NPs was confirmed by UV/Vis spectra for the supernatant solutions and The Ag NPs treated fabric (Cotton and Wool) were characterized by scanning electron microscopy (SEM) and X-ray photo electron spectroscopy (XPS). The dependence of color properties characterized by colorimetric, fastness and antibacterial properties evaluated by Escherichia coli using counting method and the reaction parameters were studied. The results indicate that, the in situ Ag NPs incorporation into fabric matrix approach can simultaneously impart colorant and antimicrobial properties into different fabric substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag%20NPs" title="Ag NPs">Ag NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=coloration" title=" coloration"> coloration</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=wool" title=" wool"> wool</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title=" cotton fabric"> cotton fabric</a> </p> <a href="https://publications.waset.org/abstracts/11113/innovative-textile-design-using-in-situ-ag-nps-incorporation-into-natural-fabric-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">889</span> Influence of Stacking Sequence on Properties of Sheep-Wool/Glass Reinforced Epoxy Hybrid Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20B.%20Manjunatha">G. B. Manjunatha </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibers have been considerable demand in recent years due to their ecofriendly and renewable nature. The advantages of low density, acceptable specific properties, better thermal and insulate properties with low cost.In the present study, hybrid composite associating Sheep wool fiber and glass fiber reinforced with epoxy were developed and investigated the effect of stacking sequence on physical and chemical properties. The hybrid composite was designed for engineering applications as an alternative material to glass fiber composites. The hybrid composite laminates were fabricated by using hand lay-up technique at total fiber volume fraction of 60% (Sheep wool fiber 30% and Glass fiber 30%) and 40% reinforcement. The specimen preparation and testing were conducted as per American Society for Testing and Materials (ASTM) standards. Three different stacking are used. The result shows that tensile and bending tests of sequence of glass fiber between sheep wool fiber have high strength and maximum bending compared to other sequence of composites. At the same time better moisture and chemical absorption were observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20composites" title="hybrid composites">hybrid composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composites" title=" polymer composites"> polymer composites</a>, <a href="https://publications.waset.org/abstracts/search?q=stacking%20sequence" title=" stacking sequence"> stacking sequence</a> </p> <a href="https://publications.waset.org/abstracts/111033/influence-of-stacking-sequence-on-properties-of-sheep-woolglass-reinforced-epoxy-hybrid-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">888</span> Improving the Liquid Insulation Performance with Antioxidants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helan%20Gethse%20J.">Helan Gethse J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhanya%20K."> Dhanya K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Muthuselvi%20G."> Muthuselvi G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Hyden%20N."> Diana Hyden N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Pakianathan%20P."> Samuel Pakianathan P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transformer oil is mostly used to keep the transformer cool. It functions as a cooling agent. Mineral oil has long been used in transformers. Mineral oil has a high dielectric strength, which allows it to withstand high temperatures. Mineral oil's main disadvantage is that it is not environmentally friendly and can be dangerous to the environment. The features of breakdown voltage (BDV), viscosity, flash point, and fire point are measured and reported in this study, and the characteristics of olive oil are compared to the characteristics of mineral oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20oil" title=" transformer oil"> transformer oil</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20oil" title=" mineral oil"> mineral oil</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title=" olive oil"> olive oil</a> </p> <a href="https://publications.waset.org/abstracts/147698/improving-the-liquid-insulation-performance-with-antioxidants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">887</span> Colorful Textiles with Antimicrobial Property Using Natural Dyes as Effective Green Finishing Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahid-ul-Islam">Shahid-ul-Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Faqeer%20Mohammad"> Faqeer Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was conducted to investigate the effect of annatto, teak and flame of the forest natural dyes on color, fastness, and antimicrobial property of protein based textile substrate. The color strength (K/S) of wool samples at various concentrations of dyes were analysed using a Reflective Spectrophotometer. The antimicrobial activity of natural dyes before and after application on wool was tested against common human pathogens Escherichia coli, Staphylococcus aureus, and Candida albicans, by using micro-broth dilution method, disc diffusion assay and growth curve studies. The structural morphology of natural protein fibre (wool) was investigated by Scanning Electron Microscopy (SEM). Annatto and teak natural dyes proved very effective in inhibiting the microbial growth in solution phase and after application on wool and resulted in a broad beautiful spectrum of colors with exceptional fastness properties. The results encourage the search and exploitation of new plant species as source of dyes to replace toxic synthetic antimicrobial agents currently used in textile industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annatto" title="annatto">annatto</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agents" title=" antimicrobial agents"> antimicrobial agents</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20textiles" title=" green textiles "> green textiles </a> </p> <a href="https://publications.waset.org/abstracts/42793/colorful-textiles-with-antimicrobial-property-using-natural-dyes-as-effective-green-finishing-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">886</span> Extraction of Dye from Coconut Husk and Its Application on Wool and Silk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepali%20Rastogi">Deepali Rastogi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural dyes are considered to be eco-friendly as they cause no pollution and are safe to use. With the growing interest in natural dyes, new sources of natural dyes are being explored. Coconut (Cocos nucifera) is native to tropical eastern region. It is abundantly available in Asia, Africa and South America. While coconut has tremendous commercial value in food, oil, pharmaceutical and cosmetic industry, the most important use of coconut husk has been as coir which is used for making mats, ropes, etc. In the present study an attempt has been made to extract dye from the coconut husk and study its application on wool and silk. Dye was extracted from coconut husk in an aqueous medium at three different pH. The coconut husk fibres were boiled in water at different pH of 4, 7 and 9 for one hour. On visual inspection of the extracted dye solution, maximum colour was found to be extracted at pH 9. The solution was obtained in neutral medium whereas, no dye was extracted in acidic medium. Therefore, alkaline medium at pH 9 was selected for the extraction of dye from coconut husk. The extracted dye was applied on wool and silk at three different pH, viz., 4, 7 and 9. The effect of pre- and post- mordanting with alum and ferrous sulphate on the colour value of coconut husk dye was also studied. The L*a*b*/L*c*h* values were measured to see the effect of the mordants on the colour values of all the dyed and mordanted samples. Bright golden brown to dark brown colours were obtained at pH 4 on both wool and silk. The colour yield was not very good at pH 7 and 9. Mordanting with alum resulted in darker and brighter shades of brown, whereas mordanting with ferrous sulphate resulted in darker and duller shades. All the samples were tested for colourfastness to light, rubbing, washing and perspiration. Both wool and silk dyed with dye extracted from coconut husk exhibited good to excellent wash, rub and perspiration fastness. Fastness to light was moderate to good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20husk" title="coconut husk">coconut husk</a>, <a href="https://publications.waset.org/abstracts/search?q=wool" title=" wool"> wool</a>, <a href="https://publications.waset.org/abstracts/search?q=silk" title=" silk"> silk</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dye" title=" natural dye"> natural dye</a>, <a href="https://publications.waset.org/abstracts/search?q=mordants" title=" mordants"> mordants</a> </p> <a href="https://publications.waset.org/abstracts/124938/extraction-of-dye-from-coconut-husk-and-its-application-on-wool-and-silk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">885</span> Removal of Deposits and Improvement of Shelf Life in CO₂-Rich Mineral Water by Ozone-Microbubbles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Un%20Hwa%20Choe">Un Hwa Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Hyon%20Choe"> Jong Hyon Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Jun%20Kim"> Yong Jun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to effectively remove Fe2+ by using ozone microbubbles in bottled mineral water to prevent sediment from occurring during storage and increase shelf life. By considering the characteristics of mineral water with low solubility of ozone and high CO2 content, a suitable ozone injection step was chosen and a new mineral water treatment method using microbubbles was proposed. As a result of the treatment of the bottled mineral water with ozone microbubbles, the iron ion concentration was reduced from 0.14 mg/L to 0.01 mg/L, and the shelf life increased to 360 days. During the treatment, the concentrations of K+ and Na+ were almost unchanged, and the deposition time was reduced to one-third compared to the natural oxidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82-rich%20mineral%20water" title="CO₂-rich mineral water">CO₂-rich mineral water</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone-micro%20bubble" title=" ozone-micro bubble"> ozone-micro bubble</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=bottled%20mineral%20water" title=" bottled mineral water"> bottled mineral water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/178817/removal-of-deposits-and-improvement-of-shelf-life-in-co2-rich-mineral-water-by-ozone-microbubbles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">884</span> Mesotrione and Tembotrione Applied Alone or in Tank-Mix with Atrazine on Weed Control in Elephant Grass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20M.%20Brighenti">Alexandre M. Brighenti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experiment was carried out in Valença, Rio de Janeiro State, Brazil, to evaluate the selectivity and weed control of carotenoid biosynthesis inhibiting herbicides applied alone or in combination with atrazine in elephant grass crop. The treatments were as follows: mesotrione (0.072 and 0.144 kg ha<sup>-1</sup> + 0.5% v/v mineral oil - Assist®), tembotrione (0.075 and 0.100 kg ha<sup>-1</sup> + 0.5% v/v mineral oil - Aureo®), atrazine + mesotrione (1.25 + 0.072 kg ha<sup>-1</sup> + 0.5% v/v mineral oil - Assist®), atrazine + tembotrione (1.25 + 0.100 kg ha<sup>-1</sup> + 0.5% v/v mineral oil - Aureo®), atrazine + mesotrione (1.25 + 0.072 kg ha<sup>-1</sup>), atrazine + tembotrione (1.25 + 0.100 kg ha<sup>-1</sup>) and two controls (hoed and unhoed check). Two application rates of mesotrione with the addition of mineral oil or the tank mixture of atrazine plus mesotrione, with or without the addition of mineral oil, did not provide injuries capable to reduce elephant grass forage yield. Tembotrione was phytotoxic to elephant grass when applied with mineral oil. Atrazine and tembotrione in a tank-mix, with or without mineral oil, were also phytotoxic to elephant grass. All treatments provided satisfactory weed control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forage" title="forage">forage</a>, <a href="https://publications.waset.org/abstracts/search?q=Napier%20grass" title=" Napier grass"> Napier grass</a>, <a href="https://publications.waset.org/abstracts/search?q=pasture" title=" pasture"> pasture</a>, <a href="https://publications.waset.org/abstracts/search?q=Pennisetum%20purpureum" title=" Pennisetum purpureum"> Pennisetum purpureum</a>, <a href="https://publications.waset.org/abstracts/search?q=weeds" title=" weeds"> weeds</a> </p> <a href="https://publications.waset.org/abstracts/79651/mesotrione-and-tembotrione-applied-alone-or-in-tank-mix-with-atrazine-on-weed-control-in-elephant-grass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">883</span> Genetic Analysis of Iron, Phosphorus, Potassium and Zinc Concentration in Peanut</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20B.%20C.">Ajay B. C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Meena%20H.%20N."> Meena H. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagla%20M.%20C."> Dagla M. C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Kumar"> Narendra Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Makwana%20%20A.%20D."> Makwana A. D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bera%20S.%20K."> Bera S. K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalariya%20K.%20A."> Kalariya K. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Singh%20A.%20L."> Singh A. L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high-energy value, protein content and minerals makes peanut a rich source of nutrition at comparatively low cost. Basic information on genetics and inheritance of these mineral elements is very scarce. Hence, in the present study inheritance (using additive-dominance model) and association of mineral elements was studied in two peanut crosses. Dominance variance (H) played an important role in the inheritance of P, K, Fe and Zn in peanut pods. Average degree of dominance for most of the traits was greater than unity indicating over dominance for these traits. Significant associations were also observed among mineral elements both in F2 and F3 generations but pod yield had no associations with mineral elements (with few exceptions). Di-allele/bi-parental mating could be followed to identify high yielding and mineral dense segregates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=dominance%20variance" title=" dominance variance"> dominance variance</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20elements" title=" mineral elements"> mineral elements</a>, <a href="https://publications.waset.org/abstracts/search?q=peanut" title=" peanut"> peanut</a> </p> <a href="https://publications.waset.org/abstracts/14731/genetic-analysis-of-iron-phosphorus-potassium-and-zinc-concentration-in-peanut" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">882</span> Effects of Water Content on Dielectric Properties of Mineral Transformer Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suwarno">Suwarno</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Helmi%20Prakoso"> M. Helmi Prakoso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mineral oil is commonly used for high voltage transformer insulation. The insulation quality of mineral oil is affecting the operation process of high voltage transformer. There are many contaminations which could decrease the insulation quality of mineral oil. One of them is water. This research talks about the effect of water content on dielectric properties, physic properties, and partial discharge pattern on mineral oil. Samples were varied with 10 varieties of water content value. And then all samples were tested to measure the dielectric properties, physic properties, and partial discharge pattern. The result of this research showed that an increment of water content value would decrease the insulation quality of mineral oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title="dielectric properties">dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20transformer" title=" high voltage transformer"> high voltage transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20oil" title=" mineral oil"> mineral oil</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20content" title=" water content"> water content</a> </p> <a href="https://publications.waset.org/abstracts/36856/effects-of-water-content-on-dielectric-properties-of-mineral-transformer-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">881</span> Optical Whitening of Textiles: Teaching and Learning Materials </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kan">C. W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the results of optical whitening process of different textiles such as cotton, wool and polyester. The optical whitening agents used are commercially available products, and the optical whitening agents were applied to the textiles with manufacturers’ suggested methods. The aim of this study is to illustrate the proper application methods of optical whitening agent to different textiles and hence to provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20materials" title="learning materials">learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20whitening%20agent" title=" optical whitening agent"> optical whitening agent</a>, <a href="https://publications.waset.org/abstracts/search?q=wool" title=" wool"> wool</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a> </p> <a href="https://publications.waset.org/abstracts/60216/optical-whitening-of-textiles-teaching-and-learning-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">880</span> Consumer Market for Mineral Water and Development Policy in Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulnaz%20Erkomaishvili">Gulnaz Erkomaishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discusses mineral water consumer market and development policy in Georgia, the tools and measures, which will contribute to the production of mineral waters and increase its export. The paper studies and analyses current situation in mineral water production sector as well as the factors affecting increase and reduction of its export. It’s noted that in order to gain and maintain competitive advantage, it’s necessary to provide continuous supply of high-quality goods with modern design, open new distribution channels to enter new markets, carry out broad promotional activities, organize e-commerce. Economic policy plays an important role in protecting markets from counterfeit goods. The state also plays an important role in attracting foreign direct investments. Stable business environment and export-oriented strategy is the basis for the country’s economic growth. Based on the research, the paper suggests the strategy for improving the competitiveness of Georgian mineral waters, relevant conclusions and recommendations are provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral%20waters" title="mineral waters">mineral waters</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20market%20for%20mineral%20waters" title=" consumer market for mineral waters"> consumer market for mineral waters</a>, <a href="https://publications.waset.org/abstracts/search?q=export%20of%20mineral%20waters" title=" export of mineral waters"> export of mineral waters</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20water%20development%20policy%20in%20Georgia" title=" mineral water development policy in Georgia"> mineral water development policy in Georgia</a> </p> <a href="https://publications.waset.org/abstracts/26537/consumer-market-for-mineral-water-and-development-policy-in-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">879</span> Electrical Analysis of Corn Oil as an Alternative to Mineral Oil in Power Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Taslak">E. Taslak</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20%20Kocatepe"> C. Kocatepe</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Ar%C4%B1kan"> O. Arıkan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20F.%20Kumru"> C. F. Kumru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In insulation and cooling of power transformers various liquids are used. Mineral oils have wide availability and low cost. However, they have a poor biodegradability potential and lower fire point in comparison with other insulating liquids. Use of a liquid having high biodegradability is important due to environmental consideration. This paper investigates edible corn oil as an alternative to mineral oil. Various properties of mineral and corn oil like breakdown voltage, dissipation factor, relative dielectric constant, power loss and resistivity were measured according to different standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakdown%20voltage" title="breakdown voltage">breakdown voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20oil" title=" corn oil"> corn oil</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation%20factor" title=" dissipation factor"> dissipation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20oil" title=" mineral oil"> mineral oil</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20loss" title=" power loss"> power loss</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20dielectric%20constant" title=" relative dielectric constant"> relative dielectric constant</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a> </p> <a href="https://publications.waset.org/abstracts/29825/electrical-analysis-of-corn-oil-as-an-alternative-to-mineral-oil-in-power-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">878</span> Weaving Social Development: An Exploratory Study of Adapting Traditional Textiles Using Indigenous Organic Wool for the Modern Interior Textiles Market </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seema%20Singh">Seema Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Puja%20Anand"> Puja Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=Alok%20Bhasin"> Alok Bhasin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interior design profession aims to create aesthetically pleasing design solutions for human habitats but of late, growing awareness about depleting environmental resources, both tangible and intangible, and damages to the eco-system led to the quest for creating healthy and sustainable interior environments. The paper proposes adapting traditionally produced organic wool textiles for the mainstream interior design industry. This can create sustainable livelihoods whereby eco-friendly bridges can be built between Interior designers and consumers and pastoral communities. This study focuses on traditional textiles produced by two pastoral communities from India that use organic wool from indigenous sheep varieties. The <em>Gaddi </em>communities of Himachal Pradesh use wool from the Gaddi sheep breed to create <em>Pattu </em>(a multi-purpose textile). The <em>Kurumas</em> of Telangana weave a blanket called the <em>Gongadi</em>, using wool from the <em>Black Deccani</em> variety of sheep. These communities have traditionally reared indigenous sheep breeds for their wool and produce hand-spun and hand-woven textiles for their own consumption, using traditional processes that are chemical free. Based on data collected personally from field visits and documentation of traditional crafts of these pastoral communities, and using traditionally produced indigenous organic wool, the authors have developed innovative textile samples by including design interventions and exploring dyeing and weaving techniques. As part of the secondary research, the role of pastoralism in sustaining the eco-systems of Himachal Pradesh and Telangana was studied, and also the role of organic wool in creating healthy interior environments. The authors found that natural wool from indigenous sheep breeds can be used to create interior textiles that have the potential to be marketed to an urban audience, and this will help create earnings for pastoral communities. Literature studies have shown that organic & sustainable wool can reduce indoor pollution & toxicity levels in interiors and further help in creating healthier interior environments. Revival of indigenous breeds of sheep can further help in rejuvenating dying crafts, and promotion of these indigenous textiles can help in sustaining traditional eco-systems and the pastoral communities whose way of life is endangered today. Based on research and findings, the authors propose that adapting traditional textiles can have potential for application in Interiors, creating eco-friendly spaces. Interior textiles produced through such sustainable processes can help reduce indoor pollution, give livelihood opportunities to traditional economies, and leave almost zero carbon foot-print while being in sync with available natural resources, hence ultimately benefiting the society. The win-win situation for all the stakeholders in this eco-friendly model makes it pertinent to re-think how we design lifestyle textiles for interiors. This study illustrates a specific example from the two pastoral communities and can be used as a model that can work equally well in any community, regardless of geography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20intervention" title="design intervention">design intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-%20friendly" title=" eco- friendly"> eco- friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=healthy%20interiors" title=" healthy interiors"> healthy interiors</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous" title=" indigenous"> indigenous</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20wool" title=" organic wool"> organic wool</a>, <a href="https://publications.waset.org/abstracts/search?q=pastoralism" title=" pastoralism"> pastoralism</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/97194/weaving-social-development-an-exploratory-study-of-adapting-traditional-textiles-using-indigenous-organic-wool-for-the-modern-interior-textiles-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">877</span> Mineral Nitrogen Retention, Nitrogen Availability and Plant Growth in the Soil Influenced by Addition of Organic and Mineral Fertilizers: Lysimetric Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luk%C3%A1%C5%A1%20Plo%C5%A1ek">Lukáš Plošek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Hyn%C5%A1t"> Jaroslav Hynšt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Z%C3%A1hora"> Jaroslav Záhora</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Elbl"> Jakub Elbl</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%C3%ADn%20Kintl"> Antonín Kintl</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Charousov%C3%A1"> Ivana Charousová</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Kov%C3%A1csov%C3%A1"> Silvia Kovácsová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compost can influence soil fertility and plant health. At the same time compost can play an important role in the nitrogen cycle and it can influence leaching of mineral nitrogen from soil to underground water. This paper deals with the influence of compost addition and mineral nitrogen fertilizer on leaching of mineral nitrogen, nitrogen availability in microbial biomass and plant biomass production in the lysimetric experiment. Twenty-one lysimeters were filed with topsoil and subsoil collected in the area of protection zone of underground source of drinking water - Březová nad Svitavou. The highest leaching of mineral nitrogen was detected in the variant fertilized only mineral nitrogen fertilizer (624.58 mg m-2), the lowest leaching was recorded in the variant with high addition of compost (315.51 mg m-2). On the other hand, losses of mineral nitrogen are not in connection with the losses of available form of nitrogen in microbial biomass. Because loss of mineral nitrogen was detected in variant with the least change in the availability of N in microbial biomass. The leaching of mineral nitrogen, yields as well as the results concerning nitrogen availability from the first year of long term experiment suggest that compost can positive influence the leaching of nitrogen into underground water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title="nitrogen">nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20production" title=" biomass production"> biomass production</a>, <a href="https://publications.waset.org/abstracts/search?q=lysimeter" title=" lysimeter "> lysimeter </a> </p> <a href="https://publications.waset.org/abstracts/7531/mineral-nitrogen-retention-nitrogen-availability-and-plant-growth-in-the-soil-influenced-by-addition-of-organic-and-mineral-fertilizers-lysimetric-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">876</span> Study of Ladle Furnace Slag as Mineral Filler in Asphalt Concrete with Electric Arc Furnace Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20J.%20Wang">W. J. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20F.%20Lin"> D. F. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Y.%20Chen"> L. Y. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Y.%20Liu"> K. Y. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the ladle furnace slag was used as a mineral filler in asphalt concrete with electric arc furnace slag (EAF asphalt concrete) to investigate the effect on the engineering and thermal properties of asphalt cement mastics and EAF asphalt concrete, the lime was used as a comparison for mineral filler, and the usage percentage of mineral filler was set at 2%, 4%, 6%, and 8%. First of all, the engineering properties of the ladle furnace slag and lime were compared, and then the mineral filler was mixed with bitumen to form the asphalt cement mastics in order to analyze the influence of the ladle furnace slag on the properties of asphalt cement mastics, and lastly, the mineral filler was used in the EAF asphalt concrete to analyze its feasibility of using ladle furnace slag as a mineral filler. The study result shows that the ladle furnace slag and the lime have no obvious difference in their physical properties, and from the energy dispersive spectrometer (EDS) test results, we know that the lime and the ladle furnace slag have similar elemental composition, but the Ca found in the ladle furnace slag belongs to CaO, and the lime belongs to CaCO3, therefore the ladle furnace slag has the property of expansion. According to the test results, the viscosity of asphalt cement mastics will increase with the increase in the use of mineral filler. Since the ladle furnace slag has more CaO content, the viscosity of the asphalt cement mastics with ladle furnace slag will increase more than using lime as mineral filler in the asphalt cement mastics, and the use of ladle furnace slag only needs to be 2% in order to achieve the effect of anti-peeling which is 6% for lime. From the related test results of EAF asphalt concrete, it is known that the maximum stability value can be obtained when the use of mineral filler is about 5%. When the ladle furnace slag is used as the mineral filler, it can improve the stiffness, indirect tension strength, spalling resistance, and thermal insulation of EAF asphalt concrete, which also indicates that using the ladle furnace slag as the mineral filler of bitumen can help to improve the durability of the asphalt pavement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ladle%20furnace%20slag" title="ladle furnace slag">ladle furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20filler" title=" mineral filler"> mineral filler</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20cement%20mastics" title=" asphalt cement mastics"> asphalt cement mastics</a>, <a href="https://publications.waset.org/abstracts/search?q=EAF%20asphalt%20concrete" title=" EAF asphalt concrete"> EAF asphalt concrete</a> </p> <a href="https://publications.waset.org/abstracts/170204/study-of-ladle-furnace-slag-as-mineral-filler-in-asphalt-concrete-with-electric-arc-furnace-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">875</span> Combined Machine That Fertilizes Evenly under Plowing on Slopes and Planning an Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qurbanov%20Huseyn%20Nuraddin">Qurbanov Huseyn Nuraddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The results of scientific research on a machine that pours an equal amount of mineral fertilizer under the soil to increase the productivity of grain in mountain farming and obtain quality grain are substantiated. The average yield of the crop depends on the nature of the distribution of fertilizers in the soil. Therefore, the study of effective energy-saving methods for the application of mineral fertilizers is the actual task of modern agriculture. Depending on the type and variety of plants in mountain farming, there is an optimal norm of mineral fertilizers. Applying an equal amount of fertilizer to the soil is one of the conditions that increase the efficiency of the field. One of the main agro-technical indicators of the work of mineral fertilizing machines is to ensure equal distribution of mineral fertilizers in the field. Taking into account the above-mentioned issues, a combined plough has been improved in our laboratory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20plough" title="combined plough">combined plough</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20fertilizers" title=" mineral fertilizers"> mineral fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=sprinkle%20fluently" title=" sprinkle fluently"> sprinkle fluently</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20rate" title=" fertilizer rate"> fertilizer rate</a>, <a href="https://publications.waset.org/abstracts/search?q=cereals" title=" cereals"> cereals</a> </p> <a href="https://publications.waset.org/abstracts/149826/combined-machine-that-fertilizes-evenly-under-plowing-on-slopes-and-planning-an-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">874</span> Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Ren">Zhijun Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lin"> Zhang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Ye"> Zhao Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuo%20Xiangyu"> Zuo Xiangyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei%20Dongxing"> Mei Dongxing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for <em>Escherichia coli</em> (<em>E. </em><em>coli</em>) and <em>Staphylococcus aureus</em> (<em>S. aureus</em>) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HGMS" title="HGMS">HGMS</a>, <a href="https://publications.waset.org/abstracts/search?q=particulates" title=" particulates"> particulates</a>, <a href="https://publications.waset.org/abstracts/search?q=superoxide%20dismutase%20%28SOD%29%20activity" title=" superoxide dismutase (SOD) activity"> superoxide dismutase (SOD) activity</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20wool%20magnetic%20medium" title=" steel wool magnetic medium"> steel wool magnetic medium</a> </p> <a href="https://publications.waset.org/abstracts/58997/effects-and-mechanization-of-a-high-gradient-magnetic-separation-process-for-particulate-and-microbe-removal-from-ballast-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> Characterization and Geochemical Modeling of Cu and Zn Sorption Using Mixed Mineral Systems Injected with Iron Sulfide under Sulfidic-Anoxic Conditions I: Case Study of Cwmheidol Mine Waste Water, Wales, United Kingdom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20E.%20Egirani">D. E. Egirani</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Andrews"> J. E. Andrews</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Baker"> A. R. Baker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates sorption of Cu and Zn contained in natural mine wastewater, using mixed mineral systems in sulfidic-anoxic condition. The mine wastewater was obtained from disused mine workings at Cwmheidol in Wales, United Kingdom. These contaminants flow into water courses. These water courses include River Rheidol. In this River fishing activities exist. In an attempt to reduce Cu-Zn levels of fish intake in the watercourses, single mineral systems and 1:1 mixed mineral systems of clay and goethite were tested with the mine waste water for copper and zinc removal at variable pH. Modelling of hydroxyl complexes was carried out using phreeqc method. Reactions using batch mode technique was conducted at room temperature. There was significant differences in the behaviour of copper and zinc removal using mixed mineral systems when compared to single mineral systems. All mixed mineral systems sorb more Cu than Zn when tested with mine wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-%20Zn" title="Cu- Zn">Cu- Zn</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyl%20complexes" title=" hydroxyl complexes"> hydroxyl complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20mineral%20systems" title=" mixed mineral systems"> mixed mineral systems</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity" title=" reactivity"> reactivity</a> </p> <a href="https://publications.waset.org/abstracts/16289/characterization-and-geochemical-modeling-of-cu-and-zn-sorption-using-mixed-mineral-systems-injected-with-iron-sulfide-under-sulfidic-anoxic-conditions-i-case-study-of-cwmheidol-mine-waste-water-wales-united-kingdom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20wool&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20wool&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20wool&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20wool&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20wool&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20wool&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20wool&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20wool&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20wool&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20wool&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20wool&page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20wool&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>