CINXE.COM
Search results for: mineral elements
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mineral elements</title> <meta name="description" content="Search results for: mineral elements"> <meta name="keywords" content="mineral elements"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mineral elements" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mineral elements"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4353</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mineral elements</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4353</span> Genetic Analysis of Iron, Phosphorus, Potassium and Zinc Concentration in Peanut</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20B.%20C.">Ajay B. C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Meena%20H.%20N."> Meena H. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagla%20M.%20C."> Dagla M. C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Kumar"> Narendra Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Makwana%20%20A.%20D."> Makwana A. D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bera%20S.%20K."> Bera S. K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalariya%20K.%20A."> Kalariya K. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Singh%20A.%20L."> Singh A. L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high-energy value, protein content and minerals makes peanut a rich source of nutrition at comparatively low cost. Basic information on genetics and inheritance of these mineral elements is very scarce. Hence, in the present study inheritance (using additive-dominance model) and association of mineral elements was studied in two peanut crosses. Dominance variance (H) played an important role in the inheritance of P, K, Fe and Zn in peanut pods. Average degree of dominance for most of the traits was greater than unity indicating over dominance for these traits. Significant associations were also observed among mineral elements both in F2 and F3 generations but pod yield had no associations with mineral elements (with few exceptions). Di-allele/bi-parental mating could be followed to identify high yielding and mineral dense segregates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=dominance%20variance" title=" dominance variance"> dominance variance</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20elements" title=" mineral elements"> mineral elements</a>, <a href="https://publications.waset.org/abstracts/search?q=peanut" title=" peanut"> peanut</a> </p> <a href="https://publications.waset.org/abstracts/14731/genetic-analysis-of-iron-phosphorus-potassium-and-zinc-concentration-in-peanut" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4352</span> Determination of Mineral Elements in Some Coarse Grains Used as Staple Food in Kano, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Mohammed">M. I. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20M.%20Ahmad"> U. M. Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analyses of mineral elements were carried out on some coarse grains used as staple food in Kano. The levels of Magnesium, Calcium, Manganese, Iron, Copper and Zinc were determined using atomic absorption spectrophotometer (AAS), and that of Sodium and Potassium were obtained using flame photometer (FES). The result of the study shows that the mean results of the mineral elements ranged from 62.50±0.55 - 84.82±0.74mg/kg sodium, 73.33±0.35 - 317±0.10mg/kg magnesium, 89.22±0.26 - 193.33±0.19mg/kg potassium, 70.00±0.52 - 186.67±0.29mg/kg calcium, 1.00±0.11 - 20.50±1.30mg/kg manganese, 25.00±0.11 - 80.50±0.36mg/kg iron. 4.00±0.08 - 13.00±0.24mg/kg copper and 15.00±0.34 - 50.50±0.24 zinc. There was significant difference (p < 0.05) in levels of sodium, potassium and calcium whereas no significant difference (p > 0.05) occurs in levels of magnesium, manganese, copper and zinc. In comparison with Recommended Daily Allowances of essential and trace metals set by international standard organizations, the coarse grains analysed in this work contribute little to the provision of essential and trace elements requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral%20elements" title="mineral elements">mineral elements</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse%20grains" title=" coarse grains"> coarse grains</a>, <a href="https://publications.waset.org/abstracts/search?q=staple%20food" title=" staple food"> staple food</a>, <a href="https://publications.waset.org/abstracts/search?q=Kano" title=" Kano"> Kano</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/41203/determination-of-mineral-elements-in-some-coarse-grains-used-as-staple-food-in-kano-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4351</span> Potential of Mineral Composition Reconstruction for Monitoring the Performance of an Iron Ore Concentration Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Sadeghi">Maryam Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude%20Bazin"> Claude Bazin</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Hodouin"> Daniel Hodouin</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Perez%20Barnuevo"> Laura Perez Barnuevo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of a separation process is usually evaluated using performance indices calculated from elemental assays readily available from the chemical analysis laboratory. However, the separation process performance is essentially related to the properties of the minerals that carry the elements and not those of the elements. Since elements or metals can be carried by valuable and gangue minerals in the ore and that each mineral responds differently to a mineral processing method, the use of only elemental assays could lead to erroneous or uncertain conclusions on the process performance. This paper discusses the advantages of using performance indices calculated from minerals content, such as minerals recovery, for process performance assessments. A method is presented that uses elemental assays to estimate the minerals content of the solids in various process streams. The method combines the stoichiometric composition of the minerals and constraints of mass conservation for the minerals through the concentration process to estimate the minerals content from elemental assays. The advantage of assessing a concentration process using mineral based performance indices is illustrated for an iron ore concentration circuit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20reconciliation" title="data reconciliation">data reconciliation</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20ore%20concentration" title=" iron ore concentration"> iron ore concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20composition" title=" mineral composition"> mineral composition</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20performance%20assessment" title=" process performance assessment"> process performance assessment</a> </p> <a href="https://publications.waset.org/abstracts/93580/potential-of-mineral-composition-reconstruction-for-monitoring-the-performance-of-an-iron-ore-concentration-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4350</span> Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS) for the Elemental Analysis Medicinal Plants from India Used in the Treatment of Heart Diseases </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Pardeshi">B. M. Pardeshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Minerals and trace elements are chemical elements required by our bodies for numerous biological and physiological processes that are necessary for the maintenance of health. Medicinal plants are highly beneficial for the maintenance of good health and prevention of diseases. They are known as potential sources of minerals and vitamins. 30 to 40% of today’s conventional drugs used in the medicinal and curative properties of various plants are employed in herbal supplement botanicals, nutraceuticals and drug. Aim: The authors explored the mineral element content of some herbs, because mineral elements may have significant role in the development and treatment of gastrointestinal diseases, and a close connection between the presence or absence of mineral elements and inflammatory mediators was noted. Methods: Present study deals with the elemental analysis of medicinal plants by Instrumental Neutron activation Analysis and Atomic Absorption Spectroscopy. Medicinal herbals prescribed for skin diseases were purchased from markets and were analyzed by Instrumental Neutron Activation Analysis (INAA) using 252Cf Californium spontaneous fission neutron source (flux* 109 n s-1) and the induced activities were counted by γ-ray spectrometry and Atomic Absorption Spectroscopy (AAS) techniques (Perkin Elmer 3100 Model) available at Department of Chemistry University of Pune, India, was used for the measurement of major, minor and trace elements. Results: 15 elements viz. Al, K, Cl, Na, Mn by INAA and Cu, Co, Pb Ni, Cr, Ca, Fe, Zn, Hg and Cd by AAS were analyzed from different medicinal plants from India. A critical examination of the data shows that the elements Ca , K, Cl, Al, and Fe are found to be present at major levels in most of the samples while the other elements Na, Mn, Cu, Co, Pb, Ni, Cr, Ca, Zn, Hg and Cd are present in minor or trace levels. Conclusion: The beneficial therapeutic effect of the studied herbs may be related to their mineral element content. The elemental concentration in different medicinal plants is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=instrumental%20neutron%20activation%20analysis" title="instrumental neutron activation analysis">instrumental neutron activation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20absorption%20spectroscopy" title=" atomic absorption spectroscopy"> atomic absorption spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20elemental%20analysis" title=" trace elemental analysis"> trace elemental analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20contents" title=" mineral contents"> mineral contents</a> </p> <a href="https://publications.waset.org/abstracts/24660/instrumental-neutron-activation-analysis-inaa-and-atomic-absorption-spectroscopy-aas-for-the-elemental-analysis-medicinal-plants-from-india-used-in-the-treatment-of-heart-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4349</span> Use of Radiation Chemistry Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS) for the Elemental Analysis Medicinal Plants from India Used in the Treatment of Heart Diseases </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Pardeshi">B. M. Pardeshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Minerals and trace elements are chemical elements required by our bodies for numerous biological and physiological processes that are necessary for the maintenance of health. Medicinal plants are highly beneficial for the maintenance of good health and prevention of diseases. They are known as potential sources of minerals and vitamins. 30 to 40% of today’s conventional drugs used in the medicinal and curative properties of various plants are employed in herbal supplement botanicals, nutraceuticals and drug. Aim: The authors explored the mineral element content of some herbs, because mineral elements may have significant role in the development and treatment of gastrointestinal diseases, and a close connection between the presence or absence of mineral elements and inflammatory mediators was noted. Methods: Present study deals with the elemental analysis of medicinal plants by Instrumental Neutron activation Analysis and Atomic Absorption Spectroscopy. Medicinal herbals prescribed for skin diseases were purchased from markets and were analyzed by Instrumental Neutron Activation Analysis (INAA) using 252Cf Californium spontaneous fission neutron source (flux * 109 n s-1) and the induced activities were counted by γ-ray spectrometry and Atomic Absorption Spectroscopy (AAS) techniques (Perkin Elmer 3100 Model) available at Department of Chemistry University of Pune, INDIA, was used for the measurement of major, minor and trace elements. Results: 15 elements viz. Al, K, Cl, Na, Mn by INAA and Cu, Co, Pb, Ni, Cr, Ca, Fe, Zn, Hg and Cd by AAS were analyzed from different medicinal plants from India. A critical examination of the data shows that the elements Ca , K, Cl, Al, and Fe are found to be present at major levels in most of the samples while the other elements Na, Mn, Cu, Co, Pb, Ni, Cr, Ca, Zn, Hg and Cd are present in minor or trace levels. Conclusion: The beneficial therapeutic effect of the studied herbs may be related to their mineral element content. The elemental concentration in different medicinal plants is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=instrumental%20neutron%20activation%20analysis" title="instrumental neutron activation analysis">instrumental neutron activation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20absorption%20spectroscopy" title=" atomic absorption spectroscopy"> atomic absorption spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20elemental%20analysis" title=" trace elemental analysis"> trace elemental analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20contents" title=" mineral contents"> mineral contents</a> </p> <a href="https://publications.waset.org/abstracts/5723/use-of-radiation-chemistry-instrumental-neutron-activation-analysis-inaa-and-atomic-absorption-spectroscopy-aas-for-the-elemental-analysis-medicinal-plants-from-india-used-in-the-treatment-of-heart-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4348</span> Effect of Plant Nutrients on Anthocyanin Content and Yield Component of Black Glutinous Rice Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chonlada%20Bennett">Chonlada Bennett</a>, <a href="https://publications.waset.org/abstracts/search?q=Phumon%20Sookwong"> Phumon Sookwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakul%20Moolkam"> Sakul Moolkam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivapong%20Naruebal%20Sugunya%20Mahatheeranont"> Sivapong Naruebal Sugunya Mahatheeranont</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cultivation of black glutinous rice rich in anthocyanins can provide great benefits to both farmers and consumers. Total anthocyanins content and yield component data of black glutinous rice cultivar (KHHK) grown with the addition of mineral elements (Ca, Mg, Cu, Cr, Fe and Se) under soilless conditions were studied. Ca application increased seed anthocyanins content by three-folds compared to controls. Cu application to rice plants obtained the highest number of grains panicle, panicle length and subsequently high panicle weight. Se application had the largest effect on leaf anthocyanins content, the number of tillers, number of panicles and 100-grain weight. These findings showed that the addition of mineral elements had a positive effect on increasing anthocyanins content in black rice plants and seeds as well as the heightened development of black glutinous rice plant growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthocyanins" title="Anthocyanins">Anthocyanins</a>, <a href="https://publications.waset.org/abstracts/search?q=Black%20Glutinous%20Rice" title=" Black Glutinous Rice"> Black Glutinous Rice</a>, <a href="https://publications.waset.org/abstracts/search?q=Mineral%20Elements" title=" Mineral Elements"> Mineral Elements</a>, <a href="https://publications.waset.org/abstracts/search?q=Soilless%20Culture" title=" Soilless Culture"> Soilless Culture</a> </p> <a href="https://publications.waset.org/abstracts/123992/effect-of-plant-nutrients-on-anthocyanin-content-and-yield-component-of-black-glutinous-rice-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4347</span> Improving the Liquid Insulation Performance with Antioxidants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helan%20Gethse%20J.">Helan Gethse J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhanya%20K."> Dhanya K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Muthuselvi%20G."> Muthuselvi G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Hyden%20N."> Diana Hyden N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Pakianathan%20P."> Samuel Pakianathan P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transformer oil is mostly used to keep the transformer cool. It functions as a cooling agent. Mineral oil has long been used in transformers. Mineral oil has a high dielectric strength, which allows it to withstand high temperatures. Mineral oil's main disadvantage is that it is not environmentally friendly and can be dangerous to the environment. The features of breakdown voltage (BDV), viscosity, flash point, and fire point are measured and reported in this study, and the characteristics of olive oil are compared to the characteristics of mineral oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20oil" title=" transformer oil"> transformer oil</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20oil" title=" mineral oil"> mineral oil</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title=" olive oil"> olive oil</a> </p> <a href="https://publications.waset.org/abstracts/147698/improving-the-liquid-insulation-performance-with-antioxidants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4346</span> Anatomical Adaptations and Mineral Elements Allocation Associated with the Zn Phytostabilization Capability of Acanthus ilicifolius L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shackira%20Am">Shackira Am</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%20T.%20Puthur"> Jos T. Puthur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phytostabilization potential of a halophyte Acanthus ilicifolius L. has been evaluated with special attention to the nutritional as well as anatomical adaptations developed by the plant. Distribution of essential elements influenced by the excess Zn²⁺ ions in the root tissue was studied by FEG-SEM EDX microanalysis. Significant variations were observed in the uptake and allocation of mineral elements like Mg, P, K, S, Na, Si and Al in the root of A. ilicifolius. The increase in S is in correlation with the increased synthesis of glutathione which might be involved in the biosynthesis of phytochelatins. This in turn might be aiding the plant to tolerate the adverse environmental conditions by stabilizing the excess Zn in the root tissue itself. Moreover it is revealed that most of the Zn were accumulated towards the central region near the vascular tissue. Treatment with ZnSO₄ in A. ilicifolius caused significant increase in the number of glandular trichomes on the adaxial leaf surface as compared to the leaves of control plants. In addition to this, A. ilicifolius when treated with ZnSO₄, exhibited a deeply stained layer of cells immediate to the endodermis, forming more or less a ring like structure around the xylem vessels. Phloem cells in these plants were crushed/reduced in numbers. There were no such deeply stained cells forming a ring around the xylem vessels in the control plants. These adaptive responses make the plant a suitable candidate for the phytostabilization of Zn. In addition the nutritional adjustment of the plant equips them for a better survival under increased concentration of Zn²⁺. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acanthus%20ilicifolius" title="Acanthus ilicifolius">Acanthus ilicifolius</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20elements" title=" mineral elements"> mineral elements</a>, <a href="https://publications.waset.org/abstracts/search?q=phytostabilization" title=" phytostabilization"> phytostabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/103007/anatomical-adaptations-and-mineral-elements-allocation-associated-with-the-zn-phytostabilization-capability-of-acanthus-ilicifolius-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4345</span> Hormones and Mineral Elements Associated with Osteoporosis in Postmenopausal Women in Eastern Slovakia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mydl%C3%A1rov%C3%A1%20Bla%C5%A1%C4%8D%C3%A1kov%C3%A1">M. Mydlárová Blaščáková</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Por%C3%A1%C4%8Dov%C3%A1"> J. Poráčová</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Tomkov%C3%A1"> Z. Tomková</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%BD.%20Bla%C5%A1%C4%8D%C3%A1kov%C3%A1"> Ľ. Blaščáková</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nagy"> M. Nagy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kone%C4%8Dn%C3%A1"> M. Konečná</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Petrej%C4%8D%C3%ADkov%C3%A1"> E. Petrejčíková</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Goga%C4%BEov%C3%A1"> Z. Gogaľová</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sedl%C3%A1k"> V. Sedlák</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Mydl%C3%A1r"> J. Mydlár</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zahat%C5%88ansk%C3%A1"> M. Zahatňanská</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Hricov%C3%A1"> K. Hricová </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoporosis is a multifactorial disease that results in reduced quality of life, causes decreased bone strength, and changes in their microarchitecture. Mostly postmenopausal women are at risk. In our study, we measured anthropometric parameters of postmenopausal women (104 women of control group – CG and 105 women of osteoporotic group - OG) and determined TSH hormone levels and PTH as well as mineral elements - Ca, P, Mg and enzyme alkaline phosphatase. Through the correlation analysis in CG, we have found association based on age and BMI, P and Ca, as well as Mg and Ca; in OG we determined interdependence based on an association of age and BMI, age and Ca. Using the Student's t test, we found significantly important differences in biochemical parameters of Mg (p ˂ 0,001) and TSH (p ˂ 0,05) between CG and OG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factors" title="factors">factors</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20mass%20density" title=" bone mass density"> bone mass density</a>, <a href="https://publications.waset.org/abstracts/search?q=Central%20Europe" title=" Central Europe"> Central Europe</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/96332/hormones-and-mineral-elements-associated-with-osteoporosis-in-postmenopausal-women-in-eastern-slovakia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4344</span> Removal of Deposits and Improvement of Shelf Life in CO₂-Rich Mineral Water by Ozone-Microbubbles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Un%20Hwa%20Choe">Un Hwa Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Hyon%20Choe"> Jong Hyon Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Jun%20Kim"> Yong Jun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to effectively remove Fe2+ by using ozone microbubbles in bottled mineral water to prevent sediment from occurring during storage and increase shelf life. By considering the characteristics of mineral water with low solubility of ozone and high CO2 content, a suitable ozone injection step was chosen and a new mineral water treatment method using microbubbles was proposed. As a result of the treatment of the bottled mineral water with ozone microbubbles, the iron ion concentration was reduced from 0.14 mg/L to 0.01 mg/L, and the shelf life increased to 360 days. During the treatment, the concentrations of K+ and Na+ were almost unchanged, and the deposition time was reduced to one-third compared to the natural oxidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82-rich%20mineral%20water" title="CO₂-rich mineral water">CO₂-rich mineral water</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone-micro%20bubble" title=" ozone-micro bubble"> ozone-micro bubble</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=bottled%20mineral%20water" title=" bottled mineral water"> bottled mineral water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/178817/removal-of-deposits-and-improvement-of-shelf-life-in-co2-rich-mineral-water-by-ozone-microbubbles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4343</span> Effect of Mineral Admixture on Self-Healing Performance in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Cheol%20Choi">Young-Cheol Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Won%20Yoo"> Sung-Won Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong%20Chun%20Lee"> Bong Chun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoungsun%20Park"> Byoungsun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Hwa%20Jung"> Sang-Hwa Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cracks in concrete commonly provide the passages of ingresses of aggressive and harmful ions into concrete inside and thus reduce the durability of concrete members. In order to solve this problem, self-healing concrete based on mineral admixture has become a major issue. Self-healing materials are those which have the ability of autonomously repairing some damages or small cracks in concrete structures. Concrete has an inherent healing potential, called natural healing, which can take place in ordinary concrete elements but its power is limited and is not predictable. The main mechanism of self-healing in cracked concrete is the continued hydration of unreacted binder and the crystallization of calcium carbonate. Some mineral admixtures have been found to promote the self-healing of cementitious materials. The aim of this study is to investigate the effect of mineral admixture on the self-healing performances of high strength concrete. The potential capability of self-healing of cementitious materials was evaluated using isothermal conduction calorimeter. The self-healing efficiencies were studied by means of water flow tests on cracked concrete specimens. The results show a different healing behaviour depending on presence of the crystalline admixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral%20admixture" title="mineral admixture">mineral admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=self-healing" title=" self-healing"> self-healing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20flow%20test" title=" water flow test"> water flow test</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a> </p> <a href="https://publications.waset.org/abstracts/75654/effect-of-mineral-admixture-on-self-healing-performance-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4342</span> Effect of cold water immersion on bone mineral metabolism in aging rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irena%20Baranowska-Bosiacka">Irena Baranowska-Bosiacka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Bosiacki"> Mateusz Bosiacki</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrycja%20Kupnicka"> Patrycja Kupnicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Lubkowska"> Anna Lubkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Chlubek"> Dariusz Chlubek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical activity and a balanced diet are among the key factors of "healthy ageing". Physical effort, including swimming in cold water (including bathing in natural water reservoirs), is widely recognized as a hardening factor, with a positive effect on the mental and physical health. At the same time, there is little scientific evidence to verify this hypothesis. In the literature to date, it is possible to obtain data on the impact of these factors on selected physiological and biochemical parameters of the blood, at the same time there are no results of research on the effect of immersing in cold water on mineral metabolism, especially bones, hence it seems important to perform such an analysis in relation to the key elements such as calcium (Ca), magnesium (Mg) and phosphorus (P). Taking the above into account, a hypothesis was put forward about the possibility of a positive effect of exercise in cold water on mineral metabolism and bone density in aging rats. The aim of the study was to evaluate the effect of an 8-week swimming training on mineral metabolism and bone density in aging rats in response to exercise in cold water (5oC) in comparison to swimming in thermal comfort (36oC) and sedentary (control) rats of both sexes. The examination of the concentration of the examined elements in the bones was carried out using inductively coupled plasma atomic emission spectrometry (ICP-OES). The mineral density of the femurs of the rats was measured using the Hologic Horizon DEXA System® densitometer. The results of our study showed that swimming in cold water affects bone mineral metabolism in aging rats by changing the Ca, Mg, P concentration and at the same time increasing their bone density. In males, a decrease in Mg concentration and no changes in bone density were observed. In the light of the research results, it seems that swimming in cold water may be a factor that positively modifies the bone aging process by improving the mechanisms affecting their density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swimming%20in%20cold%20water" title="swimming in cold water">swimming in cold water</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation%20to%20cold%20water" title=" adaptation to cold water"> adaptation to cold water</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20metabolism" title=" bone mineral metabolism"> bone mineral metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a> </p> <a href="https://publications.waset.org/abstracts/163011/effect-of-cold-water-immersion-on-bone-mineral-metabolism-in-aging-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4341</span> Mesotrione and Tembotrione Applied Alone or in Tank-Mix with Atrazine on Weed Control in Elephant Grass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20M.%20Brighenti">Alexandre M. Brighenti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experiment was carried out in Valença, Rio de Janeiro State, Brazil, to evaluate the selectivity and weed control of carotenoid biosynthesis inhibiting herbicides applied alone or in combination with atrazine in elephant grass crop. The treatments were as follows: mesotrione (0.072 and 0.144 kg ha<sup>-1</sup> + 0.5% v/v mineral oil - Assist®), tembotrione (0.075 and 0.100 kg ha<sup>-1</sup> + 0.5% v/v mineral oil - Aureo®), atrazine + mesotrione (1.25 + 0.072 kg ha<sup>-1</sup> + 0.5% v/v mineral oil - Assist®), atrazine + tembotrione (1.25 + 0.100 kg ha<sup>-1</sup> + 0.5% v/v mineral oil - Aureo®), atrazine + mesotrione (1.25 + 0.072 kg ha<sup>-1</sup>), atrazine + tembotrione (1.25 + 0.100 kg ha<sup>-1</sup>) and two controls (hoed and unhoed check). Two application rates of mesotrione with the addition of mineral oil or the tank mixture of atrazine plus mesotrione, with or without the addition of mineral oil, did not provide injuries capable to reduce elephant grass forage yield. Tembotrione was phytotoxic to elephant grass when applied with mineral oil. Atrazine and tembotrione in a tank-mix, with or without mineral oil, were also phytotoxic to elephant grass. All treatments provided satisfactory weed control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forage" title="forage">forage</a>, <a href="https://publications.waset.org/abstracts/search?q=Napier%20grass" title=" Napier grass"> Napier grass</a>, <a href="https://publications.waset.org/abstracts/search?q=pasture" title=" pasture"> pasture</a>, <a href="https://publications.waset.org/abstracts/search?q=Pennisetum%20purpureum" title=" Pennisetum purpureum"> Pennisetum purpureum</a>, <a href="https://publications.waset.org/abstracts/search?q=weeds" title=" weeds"> weeds</a> </p> <a href="https://publications.waset.org/abstracts/79651/mesotrione-and-tembotrione-applied-alone-or-in-tank-mix-with-atrazine-on-weed-control-in-elephant-grass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4340</span> Nutritional Composition of Selected Wild Fruits from Minna Area of Niger State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20O.%20Jacob">John O. Jacob</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullahi%20Mann"> Abdullahi Mann</a>, <a href="https://publications.waset.org/abstracts/search?q=Olanrewaju%20I.%20Adeshina"> Olanrewaju I. Adeshina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20M.%20Ndamitso"> Mohammed M. Ndamitso </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Strychnos spinosa</em>, <em>Detarium microcarpum</em>, <em>Diospyros mespiliformis</em>, <em>Dialium guineese</em> and <em>Gardenia ternifolia</em> are some of the wild fruits consume in the villages around Minna, Niger State. This investigation was conducted to assess the nutritional potentials of these fruits both for human consumption and for possible application in animal feed formulations. Standard analytical methods were employed in the determination of the various nutritional parameters. The proximate analysis results showed that the moisture contents ranged between (6.17-10.70%); crude fat (2.04-8.85%); crude protein (5.16-6.80%); crude fibre (7.23-19.65%); Ash (3.46-5.56%); carbohydrate (57.77-69.79%); energy value (284.49-407 kcal/mg); Vitamin C (7.2-39.93 mg/100g). The mineral analysis shows that the selected wild fruits could contribute considerable amount of both micro and macro elements to human nutrition potassium, sodium and calcium range between; potassium (343.27-764.71%); sodium (155.04-348.44%); calcium (52.47-101%). The macro element for the fruits pulp were in the order K>Na>Mg>Ca, hence, they could be included in diet to supplement daily nutrient requirement and in animal feed formulations. The domestication of these fruits is also encouraged. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral" title="mineral">mineral</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-elements" title=" micro-elements"> micro-elements</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-elements" title=" macro-elements"> macro-elements</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20suppleme" title=" feed suppleme"> feed suppleme</a> </p> <a href="https://publications.waset.org/abstracts/36978/nutritional-composition-of-selected-wild-fruits-from-minna-area-of-niger-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4339</span> Effects of Water Content on Dielectric Properties of Mineral Transformer Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suwarno">Suwarno</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Helmi%20Prakoso"> M. Helmi Prakoso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mineral oil is commonly used for high voltage transformer insulation. The insulation quality of mineral oil is affecting the operation process of high voltage transformer. There are many contaminations which could decrease the insulation quality of mineral oil. One of them is water. This research talks about the effect of water content on dielectric properties, physic properties, and partial discharge pattern on mineral oil. Samples were varied with 10 varieties of water content value. And then all samples were tested to measure the dielectric properties, physic properties, and partial discharge pattern. The result of this research showed that an increment of water content value would decrease the insulation quality of mineral oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title="dielectric properties">dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20transformer" title=" high voltage transformer"> high voltage transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20oil" title=" mineral oil"> mineral oil</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20content" title=" water content"> water content</a> </p> <a href="https://publications.waset.org/abstracts/36856/effects-of-water-content-on-dielectric-properties-of-mineral-transformer-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4338</span> Consumer Market for Mineral Water and Development Policy in Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulnaz%20Erkomaishvili">Gulnaz Erkomaishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discusses mineral water consumer market and development policy in Georgia, the tools and measures, which will contribute to the production of mineral waters and increase its export. The paper studies and analyses current situation in mineral water production sector as well as the factors affecting increase and reduction of its export. It’s noted that in order to gain and maintain competitive advantage, it’s necessary to provide continuous supply of high-quality goods with modern design, open new distribution channels to enter new markets, carry out broad promotional activities, organize e-commerce. Economic policy plays an important role in protecting markets from counterfeit goods. The state also plays an important role in attracting foreign direct investments. Stable business environment and export-oriented strategy is the basis for the country’s economic growth. Based on the research, the paper suggests the strategy for improving the competitiveness of Georgian mineral waters, relevant conclusions and recommendations are provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral%20waters" title="mineral waters">mineral waters</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20market%20for%20mineral%20waters" title=" consumer market for mineral waters"> consumer market for mineral waters</a>, <a href="https://publications.waset.org/abstracts/search?q=export%20of%20mineral%20waters" title=" export of mineral waters"> export of mineral waters</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20water%20development%20policy%20in%20Georgia" title=" mineral water development policy in Georgia"> mineral water development policy in Georgia</a> </p> <a href="https://publications.waset.org/abstracts/26537/consumer-market-for-mineral-water-and-development-policy-in-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4337</span> Evaluation of Bone and Body Mineral Profile in Association with Protein Content, Fat, Fat-Free, Skeletal Muscle Tissues According to Obesity Classification among Adult Men</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orkide%20Donma">Orkide Donma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20M.%20Donma"> Mustafa M. Donma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obesity is associated with increased fat mass as well as fat percentage. Minerals are the elements, which are of vital importance. In this study, the relationships between body as well as bone mineral profile and the percentage as well as mass values of fat, fat-free portion, protein, skeletal muscle were evaluated in adult men with normal body mass index (N-BMI), and those classified according to different stages of obesity. A total of 103 adult men classified into five groups participated in this study. Ages were within 19-79 years range. Groups were N-BMI (Group 1), overweight (OW) (Group 2), first level of obesity (FLO) (Group 3), second level of obesity (SLO) (Group 4) and third level of obesity (TLO) (Group 5). Anthropometric measurements were performed. BMI values were calculated. Obesity degree, total body fat mass, fat percentage, basal metabolic rate (BMR), visceral adiposity, body mineral mass, body mineral percentage, bone mineral mass, bone mineral percentage, fat-free mass, fat-free percentage, protein mass, protein percentage, skeletal muscle mass and skeletal muscle percentage were determined by TANITA body composition monitor using bioelectrical impedance analysis technology. Statistical package (SPSS) for Windows Version 16.0 was used for statistical evaluations. The values below 0.05 were accepted as statistically significant. All the groups were matched based upon age (p > 0.05). BMI values were calculated as 22.6 ± 1.7 kg/m<sup>2</sup>, 27.1 ± 1.4 kg/m<sup>2</sup>, 32.0 ± 1.2 kg/m<sup>2</sup>, 37.2 ± 1.8 kg/m<sup>2</sup>, and 47.1 ± 6.1 kg/m<sup>2</sup> for groups 1, 2, 3, 4, and 5, respectively. Visceral adiposity and BMR values were also within an increasing trend. Percentage values of mineral, protein, fat-free portion and skeletal muscle masses were decreasing going from normal to TLO. Upon evaluation of the percentages of protein, fat-free portion and skeletal muscle, statistically significant differences were noted between NW and OW as well as OW and FLO (p < 0.05). However, such differences were not observed for body and bone mineral percentages. Correlation existed between visceral adiposity and BMI was stronger than that detected between visceral adiposity and obesity degree. Correlation between visceral adiposity and BMR was significant at the 0.05 level. Visceral adiposity was not correlated with body mineral mass but correlated with bone mineral mass whereas significant negative correlations were observed with percentages of these parameters (p < 0.001). BMR was not correlated with body mineral percentage whereas a negative correlation was found between BMR and bone mineral percentage (p < 0.01). It is interesting to note that mineral percentages of both body as well as bone are highly affected by the visceral adiposity. Bone mineral percentage was also associated with BMR. From these findings, it is plausible to state that minerals are highly associated with the critical stages of obesity as prominent parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone" title="bone">bone</a>, <a href="https://publications.waset.org/abstracts/search?q=men" title=" men"> men</a>, <a href="https://publications.waset.org/abstracts/search?q=minerals" title=" minerals"> minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a> </p> <a href="https://publications.waset.org/abstracts/106542/evaluation-of-bone-and-body-mineral-profile-in-association-with-protein-content-fat-fat-free-skeletal-muscle-tissues-according-to-obesity-classification-among-adult-men" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4336</span> Electrical Analysis of Corn Oil as an Alternative to Mineral Oil in Power Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Taslak">E. Taslak</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20%20Kocatepe"> C. Kocatepe</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Ar%C4%B1kan"> O. Arıkan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20F.%20Kumru"> C. F. Kumru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In insulation and cooling of power transformers various liquids are used. Mineral oils have wide availability and low cost. However, they have a poor biodegradability potential and lower fire point in comparison with other insulating liquids. Use of a liquid having high biodegradability is important due to environmental consideration. This paper investigates edible corn oil as an alternative to mineral oil. Various properties of mineral and corn oil like breakdown voltage, dissipation factor, relative dielectric constant, power loss and resistivity were measured according to different standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakdown%20voltage" title="breakdown voltage">breakdown voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20oil" title=" corn oil"> corn oil</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation%20factor" title=" dissipation factor"> dissipation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20oil" title=" mineral oil"> mineral oil</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20loss" title=" power loss"> power loss</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20dielectric%20constant" title=" relative dielectric constant"> relative dielectric constant</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a> </p> <a href="https://publications.waset.org/abstracts/29825/electrical-analysis-of-corn-oil-as-an-alternative-to-mineral-oil-in-power-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4335</span> Proximate and Mineral Composition of Chicken Giblets from Vojvodina, Northern Serbia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Jokanovi%C4%87">M. R. Jokanović</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20M.%20Tomovi%C4%87"> V. M. Tomović</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Jovi%C4%87"> M. T. Jović</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20%C5%A0kaljac"> S. B. Škaljac</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20%C5%A0oji%C4%87"> B. V. Šojić</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Ikoni%C4%87"> P. M. Ikonić</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Tasi%C4%87"> T. A. Tasić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proximate (moisture, protein, total fat, total ash) and mineral (K, P, Na, Mg, Ca, Zn, Fe, Cu and Mn) composition of chicken giblets (heart, liver and gizzard) were investigated. Phosphorous content, as well as proximate composition, were determined according to recommended ISO methods. The content of all elements, except phosphorus, of the giblets tissues were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES), after dry ashing mineralization. Regarding proximate composition heart was the highest in total fat content, and the lowest in protein content. Liver was the highest in protein and total ash content, while gizzard was the highest in moisture and the lowest in total fat content. Regarding mineral composition liver was the highest for K, P, Ca, Mg, Fe, Zn, Cu, and Mn, while heart was the highest for Na content. The contents of almost all investigated minerals in analysed giblets tissues of chickens from Vojvodina were similar to values reported in the literature, i.e. in national food composition databases of other countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken%20giblets" title="chicken giblets">chicken giblets</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20composition" title=" mineral composition"> mineral composition</a>, <a href="https://publications.waset.org/abstracts/search?q=inductively%20coupled%20plasma-optical%20emission%20spectrometry%20%28ICP-OES%29" title=" inductively coupled plasma-optical emission spectrometry (ICP-OES)"> inductively coupled plasma-optical emission spectrometry (ICP-OES)</a> </p> <a href="https://publications.waset.org/abstracts/14345/proximate-and-mineral-composition-of-chicken-giblets-from-vojvodina-northern-serbia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4334</span> Mineral Nitrogen Retention, Nitrogen Availability and Plant Growth in the Soil Influenced by Addition of Organic and Mineral Fertilizers: Lysimetric Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luk%C3%A1%C5%A1%20Plo%C5%A1ek">Lukáš Plošek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Hyn%C5%A1t"> Jaroslav Hynšt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Z%C3%A1hora"> Jaroslav Záhora</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Elbl"> Jakub Elbl</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%C3%ADn%20Kintl"> Antonín Kintl</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Charousov%C3%A1"> Ivana Charousová</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Kov%C3%A1csov%C3%A1"> Silvia Kovácsová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compost can influence soil fertility and plant health. At the same time compost can play an important role in the nitrogen cycle and it can influence leaching of mineral nitrogen from soil to underground water. This paper deals with the influence of compost addition and mineral nitrogen fertilizer on leaching of mineral nitrogen, nitrogen availability in microbial biomass and plant biomass production in the lysimetric experiment. Twenty-one lysimeters were filed with topsoil and subsoil collected in the area of protection zone of underground source of drinking water - Březová nad Svitavou. The highest leaching of mineral nitrogen was detected in the variant fertilized only mineral nitrogen fertilizer (624.58 mg m-2), the lowest leaching was recorded in the variant with high addition of compost (315.51 mg m-2). On the other hand, losses of mineral nitrogen are not in connection with the losses of available form of nitrogen in microbial biomass. Because loss of mineral nitrogen was detected in variant with the least change in the availability of N in microbial biomass. The leaching of mineral nitrogen, yields as well as the results concerning nitrogen availability from the first year of long term experiment suggest that compost can positive influence the leaching of nitrogen into underground water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title="nitrogen">nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20production" title=" biomass production"> biomass production</a>, <a href="https://publications.waset.org/abstracts/search?q=lysimeter" title=" lysimeter "> lysimeter </a> </p> <a href="https://publications.waset.org/abstracts/7531/mineral-nitrogen-retention-nitrogen-availability-and-plant-growth-in-the-soil-influenced-by-addition-of-organic-and-mineral-fertilizers-lysimetric-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4333</span> Study of Ladle Furnace Slag as Mineral Filler in Asphalt Concrete with Electric Arc Furnace Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20J.%20Wang">W. J. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20F.%20Lin"> D. F. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Y.%20Chen"> L. Y. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Y.%20Liu"> K. Y. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the ladle furnace slag was used as a mineral filler in asphalt concrete with electric arc furnace slag (EAF asphalt concrete) to investigate the effect on the engineering and thermal properties of asphalt cement mastics and EAF asphalt concrete, the lime was used as a comparison for mineral filler, and the usage percentage of mineral filler was set at 2%, 4%, 6%, and 8%. First of all, the engineering properties of the ladle furnace slag and lime were compared, and then the mineral filler was mixed with bitumen to form the asphalt cement mastics in order to analyze the influence of the ladle furnace slag on the properties of asphalt cement mastics, and lastly, the mineral filler was used in the EAF asphalt concrete to analyze its feasibility of using ladle furnace slag as a mineral filler. The study result shows that the ladle furnace slag and the lime have no obvious difference in their physical properties, and from the energy dispersive spectrometer (EDS) test results, we know that the lime and the ladle furnace slag have similar elemental composition, but the Ca found in the ladle furnace slag belongs to CaO, and the lime belongs to CaCO3, therefore the ladle furnace slag has the property of expansion. According to the test results, the viscosity of asphalt cement mastics will increase with the increase in the use of mineral filler. Since the ladle furnace slag has more CaO content, the viscosity of the asphalt cement mastics with ladle furnace slag will increase more than using lime as mineral filler in the asphalt cement mastics, and the use of ladle furnace slag only needs to be 2% in order to achieve the effect of anti-peeling which is 6% for lime. From the related test results of EAF asphalt concrete, it is known that the maximum stability value can be obtained when the use of mineral filler is about 5%. When the ladle furnace slag is used as the mineral filler, it can improve the stiffness, indirect tension strength, spalling resistance, and thermal insulation of EAF asphalt concrete, which also indicates that using the ladle furnace slag as the mineral filler of bitumen can help to improve the durability of the asphalt pavement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ladle%20furnace%20slag" title="ladle furnace slag">ladle furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20filler" title=" mineral filler"> mineral filler</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20cement%20mastics" title=" asphalt cement mastics"> asphalt cement mastics</a>, <a href="https://publications.waset.org/abstracts/search?q=EAF%20asphalt%20concrete" title=" EAF asphalt concrete"> EAF asphalt concrete</a> </p> <a href="https://publications.waset.org/abstracts/170204/study-of-ladle-furnace-slag-as-mineral-filler-in-asphalt-concrete-with-electric-arc-furnace-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4332</span> Combined Machine That Fertilizes Evenly under Plowing on Slopes and Planning an Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qurbanov%20Huseyn%20Nuraddin">Qurbanov Huseyn Nuraddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The results of scientific research on a machine that pours an equal amount of mineral fertilizer under the soil to increase the productivity of grain in mountain farming and obtain quality grain are substantiated. The average yield of the crop depends on the nature of the distribution of fertilizers in the soil. Therefore, the study of effective energy-saving methods for the application of mineral fertilizers is the actual task of modern agriculture. Depending on the type and variety of plants in mountain farming, there is an optimal norm of mineral fertilizers. Applying an equal amount of fertilizer to the soil is one of the conditions that increase the efficiency of the field. One of the main agro-technical indicators of the work of mineral fertilizing machines is to ensure equal distribution of mineral fertilizers in the field. Taking into account the above-mentioned issues, a combined plough has been improved in our laboratory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20plough" title="combined plough">combined plough</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20fertilizers" title=" mineral fertilizers"> mineral fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=sprinkle%20fluently" title=" sprinkle fluently"> sprinkle fluently</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20rate" title=" fertilizer rate"> fertilizer rate</a>, <a href="https://publications.waset.org/abstracts/search?q=cereals" title=" cereals"> cereals</a> </p> <a href="https://publications.waset.org/abstracts/149826/combined-machine-that-fertilizes-evenly-under-plowing-on-slopes-and-planning-an-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4331</span> Investigation the Polluting Effect of Heavy Elements on Underground Water in Behbahan Plain, South West Zagros</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zohreh%20Marbooti">Zohreh Marbooti</a>, <a href="https://publications.waset.org/abstracts/search?q=Rezvan%20Khavari"> Rezvan Khavari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater as an essential part of natural resources seems to be an important issue in environmental engineering, so preservation and purification of it can have a critical value for any community. This paper investigates the concentration of elements of Pb, Cd, As, Se. For ground water in Behbahan (a city on south west of Iran), to this purpose a group of 30 wells were studied to examine the concentration of the elements of Pb, Cd, As, Se, and also to determine PH, EC, TDS, temperature and the ions of HCO32-, SO42-, Cl-, Na+, Mg2+, Ca2+, K+ for the wells. Results of the analyses show that the concentration of the elements of Pb, As and, Cd in 33,13,56 percent of the wells respectively and Se in all the samples were greater than normal range of WHO. Since there is a low correlation between Pb and major ions of (HCO32-, SO42-, Cl-, Na+, Mg2+, Ca2+, K+) it can be revealed that Pb overconcentration caused by human contamination. Relative great correlation between Se and the ions showed that Se derived from Gypsum and Dolomit. The big correlation between As and major cations and onions, imply that As can originate from dissolution and liquidation of mineral evaporation in the zone. The high rate of Cadmium concentration in urban sewagewater is due to the small industries, workshops and, mills wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20elements" title="heavy elements">heavy elements</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20water" title=" underground water"> underground water</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/25333/investigation-the-polluting-effect-of-heavy-elements-on-underground-water-in-behbahan-plain-south-west-zagros" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4330</span> Characterization and Geochemical Modeling of Cu and Zn Sorption Using Mixed Mineral Systems Injected with Iron Sulfide under Sulfidic-Anoxic Conditions I: Case Study of Cwmheidol Mine Waste Water, Wales, United Kingdom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20E.%20Egirani">D. E. Egirani</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Andrews"> J. E. Andrews</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Baker"> A. R. Baker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates sorption of Cu and Zn contained in natural mine wastewater, using mixed mineral systems in sulfidic-anoxic condition. The mine wastewater was obtained from disused mine workings at Cwmheidol in Wales, United Kingdom. These contaminants flow into water courses. These water courses include River Rheidol. In this River fishing activities exist. In an attempt to reduce Cu-Zn levels of fish intake in the watercourses, single mineral systems and 1:1 mixed mineral systems of clay and goethite were tested with the mine waste water for copper and zinc removal at variable pH. Modelling of hydroxyl complexes was carried out using phreeqc method. Reactions using batch mode technique was conducted at room temperature. There was significant differences in the behaviour of copper and zinc removal using mixed mineral systems when compared to single mineral systems. All mixed mineral systems sorb more Cu than Zn when tested with mine wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-%20Zn" title="Cu- Zn">Cu- Zn</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyl%20complexes" title=" hydroxyl complexes"> hydroxyl complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20mineral%20systems" title=" mixed mineral systems"> mixed mineral systems</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity" title=" reactivity"> reactivity</a> </p> <a href="https://publications.waset.org/abstracts/16289/characterization-and-geochemical-modeling-of-cu-and-zn-sorption-using-mixed-mineral-systems-injected-with-iron-sulfide-under-sulfidic-anoxic-conditions-i-case-study-of-cwmheidol-mine-waste-water-wales-united-kingdom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4329</span> An Investigation of Vegetable Oils as Potential Insulating Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Celal%20Kocatepe">Celal Kocatepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Eyup%20Taslak"> Eyup Taslak</a>, <a href="https://publications.waset.org/abstracts/search?q=Celal%20Fadil%20Kumru"> Celal Fadil Kumru</a>, <a href="https://publications.waset.org/abstracts/search?q=Oktay%20Arikan"> Oktay Arikan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While choosing insulating oil, characteristic features such as thermal cooling, endurance, efficiency and being environment-friendly should be considered. Mineral oils are referred as petroleum-based oil. In this study, vegetable oils investigated as an alternative insulating liquid to mineral oil. Dissipation factor, breakdown voltage, relative dielectric constant and resistivity changes with the frequency and voltage of mineral, rapeseed and nut oils were measured. Experimental studies were performed according to ASTM D924 and IEC 60156 standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakdown%20voltage" title="breakdown voltage">breakdown voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20dissipation%20factor" title=" dielectric dissipation factor"> dielectric dissipation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20oil" title=" mineral oil"> mineral oil</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oils" title=" vegetable oils"> vegetable oils</a> </p> <a href="https://publications.waset.org/abstracts/35815/an-investigation-of-vegetable-oils-as-potential-insulating-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">693</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4328</span> Compost Enriched with Actinomyces and Bacillus Polymyxa Algae as a Partial Substitute for Mineral N in Ewaise Mango Orchards</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelaziz%20Sheba%20Abdelrahman">Abdelaziz Sheba Abdelrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compost enriched with actinomyces and Bacillus polymyxa algae as a Partial Substitute for Mineral N in Ewaise Mango Orchards Organic fertiliser, compost enriched with actinomyces, and the biofertilizer Bacillus polymyxa algae were used as a partial replacement for mineral N fertiliser in Ewaise mango orchards during the 2019 and 2020 seasons. When compared to using mineral N alone, the results showed that reducing the percentage of mineral N fertiliser from 100 to 50% and using compost enriched with actinomyces at 25 to 50% and Bacillus polymyxa had an announced promotion on leaf area, total chlorophylls, leaf N, P, and K, yield, and fruit quality. The use of compost enriched with actinomyces and Bacillus polymyxa, as well as mineral N, resulted in a significant decrease in nitrite in the pulp. Reducing mineral N to 25% of the suitable N had a negative impact on yield. The application of appropriate N via 50% inorganic N + compost enriched with actinomyces at 50% + Bacillus polymyxa algae increased yield quantitatively and qualitatively in Ewaise mango orchards. This promised treatment significantly reduced nitrite levels in the pulp fruit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacillus%20polymyxa%20algae" title="bacillus polymyxa algae">bacillus polymyxa algae</a>, <a href="https://publications.waset.org/abstracts/search?q=fertiliser" title=" fertiliser"> fertiliser</a>, <a href="https://publications.waset.org/abstracts/search?q=biofertilizer" title=" biofertilizer"> biofertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=ewaise%20mango" title=" ewaise mango"> ewaise mango</a> </p> <a href="https://publications.waset.org/abstracts/155019/compost-enriched-with-actinomyces-and-bacillus-polymyxa-algae-as-a-partial-substitute-for-mineral-n-in-ewaise-mango-orchards" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4327</span> Mineral Deposits in Spatial Planning Systems – Review of European Practices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alicja%20Kot-Niewiadomska">Alicja Kot-Niewiadomska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Securing sustainable access to raw materials is vital for the growth of the European economy and for the goals laid down in Strategy Europe 2020. One of the most important sources of mineral raw materials are primary deposits. The efficient management of them, including extraction, will ensure competitiveness of the European economy. A critical element of this approach is mineral deposits safeguarding and the most important tool - spatial planning. The safeguarding of deposits should be understood as safeguarding of land access, and safeguarding of area against development, which may (potential) prevent the use of the deposit and the necessary mining activities. Many European Union countries successfully integrated their mineral policy and spatial policy, which has ensured the proper place of mineral deposits in their spatial planning systems. These, in turn, are widely recognized as the most important mineral deposit safeguarding tool, the essence of which is to ensure long-term access to its resources. The examples of Austria, Portugal, Slovakia, Czech Republic, Sweden, and the United Kingdom, discussed in the paper, are often mentioned as examples of good practices in this area. Although none of these countries managed to avoid cases of social and environmental conflicts related to mining activities, the solutions they implement certainly deserve special attention. And for many countries, including Poland, they can be a potential source of solutions aimed at improving the protection of mineral deposits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral%20deposits" title="mineral deposits">mineral deposits</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20planning" title=" land use planning"> land use planning</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20deposit%20safeguarding" title=" mineral deposit safeguarding"> mineral deposit safeguarding</a>, <a href="https://publications.waset.org/abstracts/search?q=European%20practices" title=" European practices"> European practices</a> </p> <a href="https://publications.waset.org/abstracts/144213/mineral-deposits-in-spatial-planning-systems-review-of-european-practices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4326</span> Development of Mg-Containing Hydroxyapatite-Based Bioceramics From Phosphate Rock for Bone Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Mercedes%20Barroso%20Pinz%C3%B3n">Sara Mercedes Barroso Pinzón</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81lvaro%20Jes%C3%BAs%20Caicedo%20Castro"> Álvaro Jesús Caicedo Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Javer%20S%C3%A1nchez%20Herencia"> Antonio Javer Sánchez Herencia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years there has been increased academic and industrial research into the development of orthopaedic implants with structural properties and functionality similar to mechanical strength, osseointegration, thermal stability and antibacterial capacity similar to bone structure. Hydroxyapatite has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure confers very low mechanical and biological properties. Under this scenario, the objective of the research is the synthesis of hydroxyapatite with Mg from the francolite mineral present in phosphate rock from the central-eastern region of Colombia, taking advantage of the extraction of mineral species as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); the optimum conditions were established using the acid leaching mechanism in the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on morphometric parameters, mechanical and biological properties in the formed materials is evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate%20rock" title="phosphate rock">phosphate rock</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a> </p> <a href="https://publications.waset.org/abstracts/184860/development-of-mg-containing-hydroxyapatite-based-bioceramics-from-phosphate-rock-for-bone-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4325</span> Phytochemical Screening, Anti-Microbial and Mineral Determination of Stachtarpheta indica Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Isah%20Lakan">Ibrahim Isah Lakan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasiru%20Ibrahim"> Nasiru Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These Phytochemical screening, Antimicrobial activities and mineral Determination of aqueous extract of Stachtarpheta indica were assessed. The result reveals the presence of flavonoids, tannins, saponins, alkaloids, glycosides and anthraquinones. The disc diffusion of aqueous extract showed Escherichia coli, 13 and antibiotic, 19 mm; Bacillus subtilis, 10 and anti –biotic, 17 mm; Klebsiller pnemuoniae , 14 and antibiotic, 24mm and Pseudmonas aeruginosa, 24 and antibiotic, 36 mm which are all comparable with the standard antibiotic cyprotomycin. The mineral content determination by flame photometer revealed that 1.25 (Na+), 0.85 (K +), 1.75 (Ca 2+) % which is a clear indication of the safety of the extract for the hypertensive patients and could be used to lower blood pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbials" title="microbials">microbials</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral" title=" mineral"> mineral</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=stachtarpheta%20indica%20extracts" title=" stachtarpheta indica extracts"> stachtarpheta indica extracts</a> </p> <a href="https://publications.waset.org/abstracts/45759/phytochemical-screening-anti-microbial-and-mineral-determination-of-stachtarpheta-indica-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4324</span> Bone Mineral Density and Quality, Body Composition of Women in the Postmenopausal Period</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladyslav%20Povoroznyuk">Vladyslav Povoroznyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Oksana%20Ivanyk"> Oksana Ivanyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Nataliia%20Dzerovych"> Nataliia Dzerovych</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the diagnostics of osteoporosis, the gold standard is considered to be bone mineral density; however, X-ray densitometry is not an accurate indicator of osteoporotic fracture risk under all circumstances. In this regard, the search for new methods that could determine the indicators not only of the mineral density, but of the bone tissue quality, is a logical step for diagnostic optimization. One of these methods is the evaluation of trabecular bone quality. The aim of this study was to examine the quality and mineral density of spine bone tissue, femoral neck, and body composition of women depending on the duration of the postmenopausal period, to determine the correlation of body fat with indicators of bone mineral density and quality. The study examined 179 women in premenopausal and postmenopausal periods. The patients were divided into the following groups: Women in the premenopausal period and women in the postmenopausal period at various stages (early, middle, late postmenopause). A general examination and study of the above parameters were conducted with General Electric X-ray densitometer. The results show that bone quality and mineral density probably deteriorate with advancing of postmenopausal period. Total fat and lean mass ratio is not likely to change with age. In the middle and late postmenopausal periods, the bone tissue mineral density of the spine and femoral neck increases along with total fat mass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title="osteoporosis">osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density" title=" bone tissue mineral density"> bone tissue mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20quality" title=" bone quality"> bone quality</a>, <a href="https://publications.waset.org/abstracts/search?q=fat%20mass" title=" fat mass"> fat mass</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20mass" title=" lean mass"> lean mass</a>, <a href="https://publications.waset.org/abstracts/search?q=postmenopausal%20osteoporosis" title=" postmenopausal osteoporosis"> postmenopausal osteoporosis</a> </p> <a href="https://publications.waset.org/abstracts/66298/bone-mineral-density-and-quality-body-composition-of-women-in-the-postmenopausal-period" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20elements&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20elements&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20elements&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20elements&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20elements&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20elements&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20elements&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20elements&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20elements&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20elements&page=145">145</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20elements&page=146">146</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mineral%20elements&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>