CINXE.COM

ACP - Research article

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!--[if lt IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 lt-ie7 co-ui"> <![endif]--> <!--[if IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 co-ui"> <![endif]--> <!--[if IE 8]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 co-ui"> <![endif]--> <!--[if gt IE 8]><!--> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js co-ui"> <!--<![endif]--> <!-- remove class no-js if js is available --><head> <!-- BEGIN_HEAD --> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="theme-color" content="#000000" /> <meta name="application-name" content="1" /> <meta name="msapplication-TileColor" content="#FFFFFF" /> <link rel="preconnect" crossorigin="" href="https://contentmanager.copernicus.org/" /><link rel="icon" size="16x16" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_16x16_.ico" type="image/x-icon" /><link rel="icon" size="24x24" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_24x24_.ico" type="image/x-icon" /><link rel="icon" size="32x32" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_32x32_.ico" type="image/x-icon" /><link rel="icon" size="48x48" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_48x48_.ico" type="image/x-icon" /><link rel="icon" size="64x64" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_64x64_.ico" type="image/x-icon" /><link rel="icon" size="228x228" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_228x228_.png" type="image/png-icon" /><link rel="icon" size="195x195" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_195x195_.png" type="image/png-icon" /><link rel="icon" size="196x196" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_196x196_.png" type="image/png-icon" /><link rel="icon" size="128x128" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_128x128_.png" type="image/png-icon" /><link rel="icon" size="96x96" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_96x96_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="180x180" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_180x180_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="120x120" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_120x120_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="152x152" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_152x152_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="76x76" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_76x76_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="57x57" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_57x57_.ico" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="144x144" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_144x144_.png" type="image/png-icon" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/mustache/2.3.0/mustache.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/jquery.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/js/copernicus.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/htmlgenerator-v2.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.js"></script><link rel="stylesheet" type="text/css" media="all" id="hasBootstrap" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-media.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-grid.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-reboot.min.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/popper.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/bootstrap.min.js"></script><link rel="preconnect" crossorigin="" href="https://cdn.copernicus.org/" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/copernicus-min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/fontawesome.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/fonts/FontAwesome/5.11.2_and_4.7.0/css/all.font.css" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/237997/10/ssl" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/2154804/10/ssl" /><link rel="stylesheet" type="text/css" media="print" href="https://contentmanager.copernicus.org/2154805/10/ssl" /><script src="https://contentmanager.copernicus.org/1672/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/1468/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/402/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/2154808/10/ssl" type="text/javascript"> </script><!-- END_HEAD --><meta name="global_projectID" content="10" /><meta name="global_pageID" content="297" /><meta name="global_pageIdentifier" content="home" /><meta name="global_moBaseURL" content="https://meetingorganizer.copernicus.org/" /><meta name="global_projectShortcut" content="ACP" /><meta name="global_projectDomain" content="https://www.atmospheric-chemistry-and-physics.net/" /> <title>ACP - Research article</title> <meta name="data-non-mobile-optimized-message" content="" /><script id="networker"> window.isSafari = /^((?!chrome|android).)*safari/i.test(navigator.userAgent); /** * */ function createToastsFunctionality() { const toastsWrapper = $('<div>') .attr('aria-live', 'polite') .attr('aria-atomic', 'true') .addClass('toasts-notifications-wrapper'); $('body').append(toastsWrapper); } function isOS() { return [ 'iPad Simulator', 'iPhone Simulator', 'iPod Simulator', 'iPad', 'iPhone', 'iPod' ].includes(navigator.platform) || (navigator.userAgent.includes("Mac") && "ontouchend" in document) } /** * * @param notificationContent */ function addToast(notificationContent) { const toast = $('<div>').addClass('toast').attr('role', 'alert').attr('aria-live', 'assertive') .attr('aria-atomic', 'true').attr('data-autohide', 'false'); const toastHeader = $('<div>').addClass('toast-header'); const toastHeaderTitle = $('<strong>').addClass('mr-auto').html(notificationContent.title); const toastHeaderCloseButton = $('<button>').addClass('ml-2').addClass('mb-1').addClass('close').attr('type', 'button') .attr('data-dismiss', 'toast'); const toastHeaderCloseIcon = $('<span>').attr('aria-hidden', 'true').html('&times;'); let url = ''; if (notificationContent.hasOwnProperty('url')) { url = notificationContent.url; } else { url = 'https://networker.copernicus.org/my-network'; } const toastBody = $('<div>').addClass('toast-body').html('<a target="_blank" href="' + url + '">' + notificationContent.text + '</a>'); $(toastHeaderCloseButton).append(toastHeaderCloseIcon); $(toastHeader).append(toastHeaderTitle); $(toastHeader).append(toastHeaderCloseButton); $(toast).append(toastHeader); $(toast).append(toastBody); $('.toasts-notifications-wrapper').append(toast); $('.toast').toast('show'); } function coNetworker_sendUsersLocation(location, userHash, publicLabel, projectID, application) { if (templateHasBootstrap()) { createToastsFunctionality(); } userHash = userHash || 'null'; location = location || 'c_content_manager::getProjectTemplateMobileOpt'; publicLabel = publicLabel || ''; if (publicLabel === ''){ publicLabel = location; } if (userHash !== null && userHash.length > 5) { try { if(typeof window.ws === 'undefined' || window.ws === null || !window.ws) { window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } else { window.ws.close(1000); window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } const data = { 'type': 'status', 'action': 'start', 'data': { 'userIdentifier': userHash, 'projectID': projectID, 'coApp': application, 'location': location, 'publicLabel': publicLabel } }; if (window.ws === 1) { window.ws.send(JSON.stringify(data)); } else { window.ws.onopen = function (msg) { window.ws.send(JSON.stringify(data)); dispatchEvent(new CustomEvent('loadCommonNetworker')); }; window.ws.onmessage = function (event) { try { const data = JSON.parse(event.data); switch (data.type) { case 'notification': const pushNotificationData = data.data; if (pushNotificationData.hasOwnProperty('user') && pushNotificationData.user.length > 5 && pushNotificationData.user === userHash) { window.showPushNotification(pushNotificationData); } break; } } catch (e) { console.log(e); } } } } catch (e) { console.error(e); } } } window.showPushNotification = function (notificationContent) { showMessage(notificationContent); function showMessage(notificationContent){ if (templateHasBootstrap()) { showBootstrapModal(notificationContent); } } function showBootstrapModal(notificationContent) { const randomId = getRandomInt(100,999); let modal = $('<div>').addClass('modal').attr('id', 'modal-notification' + randomId); let modalDialog = $('<div>').addClass('modal-dialog'); let modalContent = $('<div>').addClass('modal-content'); let modalBody = $('<div>').addClass('modal-body'); let message = $('<div>').addClass('modal-push-message').html('<h3 class="mb-3">' + notificationContent.title + '</h3><p>' + notificationContent.text + '</p>'); let buttonsWrapper = $('<div>').addClass('row'); let buttonsWrapperCol = $('<div>').addClass('col-12').addClass('text-right'); let buttonCancel = $('<button>').addClass('btn').addClass('btn-danger').addClass('mr-2').html('Cancel') let buttonSuccess = $('<button>').addClass('btn').addClass('btn-success').html('OK') $(buttonsWrapper).append(buttonsWrapperCol); $(buttonsWrapperCol).append(buttonCancel); $(buttonsWrapperCol).append(buttonSuccess); $(modalBody).append(message).append(buttonsWrapper); $(modalContent).append(modalBody); $(modalDialog).append(modalContent); $(modal).append(modalDialog); $(buttonCancel).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); }); $(buttonSuccess).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); handleOnclickNotification(notificationContent); }); $(modal).modal('show'); setTimeout(() => { dispatchEvent(new CustomEvent('modalLoaded', {'detail': 'modal-notification' + randomId})); }, 1000); } window.addEventListener('modalLoaded', function (event) { setTimeout(() => { $('#' + event.detail).modal('hide'); }, 9000); }); function handleOnclickNotification(notificationContent) { if (notificationContent.hasOwnProperty('withConnect') && notificationContent.withConnect.length > 0) { acceptContactRequest(notificationContent); } if (notificationContent.hasOwnProperty('url')) { if (window.isSafari && isOS()) { window.location.href = notificationContent.url; } else { window.open(notificationContent.url, '_blank').focus(); } } else { if (window.isSafari && isOS()) { window.open('https://networker.copernicus.org/my-network', '_blank'); } else { window.open('https://networker.copernicus.org/my-network', '_blank').focus(); } } } /** * * @param notificationContent */ function acceptContactRequest(notificationContent) { const formData = new FormData(); formData.append('r', notificationContent.userFrom); formData.append('a', 'a'); $.ajax({ url: 'https://networker.copernicus.org/handle-request-job', type: 'POST', data: formData, processData: false, contentType: false, xhrFields: { withCredentials: true }, beforeSend: function () { $('.splash').fadeIn(); $('.lightbox').fadeIn(); } }) .done(function (dataResponse) { const data = JSON.parse(dataResponse); let text = 'Please consider joining the text chat now.'; window.sendPushNotification({ title: window.userDataCommonNetworker.name + ' aims to chat with you.', text: text, user: data.message.userIdentifier, url: notificationContent.url }); $('.splash').fadeOut(); $('.lightbox').fadeOut(); }) .fail(function (error) { $('.splash').fadeOut(); $('.lightbox').fadeOut(); }); } } function templateHasBootstrap() { const bootstrap = document.getElementById('hasBootstrap'); return bootstrap !== null && typeof bootstrap !== 'undefined'; } coNetworker_sendUsersLocation(); dispatchEvent(new CustomEvent('loadCommonNetworker')); function getRandomInt(min, max) { min = Math.ceil(min); max = Math.floor(max); return Math.floor(Math.random() * (max - min + 1)) + min; } </script> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css"> <base href="/"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/apps/htmlgenerator/css/htmlgenerator.css?v=1"> <meta name="citation_fulltext_world_readable" content=""> <meta name="citation_publisher" content=""/> <meta name="citation_title" content=""/> <meta name="citation_abstract" content=""/> <meta name="citation_journal_title" content=""/> <meta name="citation_doi" content="https://doi.org/"/> <meta name="citation_firstpage" content=""/> <meta name="citation_lastpage" content=""/> <meta name="citation_xml_url" content=""/> <meta name="citation_language" content="English"/> <meta name="libraryUrl" content=""/> <link rel="icon" href="https://www.atmospheric-chemistry-and-physics.net/favicon.ico" type="image/x-icon"/> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/template_jquery-ui-touch.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/js/respond.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/highstock/2.0.4/highstock.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/CoPublisher.js"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { fonts: ["TeX"] ,linebreaks: { automatic: true, width: "90% container" } } }); </script> <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=MML_HTMLorMML-full"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script> <script type="text/javascript"> /* <![CDATA[ */ /* ]]> */ </script> <style type="text/css"> .top_menu { margin-right: 0!important; } </style> </head><body><header id="printheader" class="d-none d-print-block container"> <img src="https://contentmanager.copernicus.org/800952/10/ssl" alt="" style="width: 508px; height: 223px;" /> </header> <header class="d-print-none mb-n3 version-2023"> <div class="container"> <div class="row no-gutters mr-0 ml-0 align-items-center header-wrapper mb-lg-3"> <div class="col-auto pr-3"> <div class="layout__moodboard-logo-year-container"> <a class="layout__moodboard-logo-link" target="_blank" href="http://www.egu.eu"> <div class="layout__moodboard-logo"> <img src="https://contentmanager.copernicus.org/800952/10/ssl" alt="" style="width: 508px; height: 223px;" /> </div> </a> </div> </div> <div class="d-none d-lg-block col text-md-right layout__title-desktop"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> Atmospheric Chemistry and Physics </a> </div> </div> <div class="d-none d-md-block d-lg-none col text-md-right layout__title-tablet"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> Atmospheric Chemistry and Physics </a> </div> </div> <div class="col layout__m-location-and-time-mobile d-md-none text-center layout__title-mobile"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> ACP </a> </div> <!-- End Logo --> <div class="col-auto text-right"> <button class="navbar-toggler light mx-auto mr-sm-0" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbar_menu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon light"></span> </button> </div> <!-- Topbar --> <div class="topbar d-print-none"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </div> <!-- End Topbar --> </div> </div> <div class="banner-navigation-breadcrumbs-wrapper"> <div id="navigation"> <nav class="container navbar navbar-expand-lg navbar-light"><!-- Logo --> <div class="collapse navbar-collapse CMSCONTAINER" id="navbar_menu"> <div id="cmsbox_126167" class="cmsbox navbar-collapse"><button style="display: none;" class="navbar-toggler navigation-extended-toggle-button" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="navbar-collapse CMSCONTAINER collapse show" id="navbarSupportedContent"> <ul class="navbar-nav mr-auto no-styling"> <li class="nav-item "> <a target="_parent" class="nav-link active " href="https://www.atmospheric-chemistry-and-physics.net/home.html"><i class='fal fa-home fa-lg' title='Home'></i></a> </li> <li class="nav-item megamenu "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown10845" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Articles & preprints <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10845"> <div class="container"> <div class="row"> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Recent</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/">Recent papers</a> </div> <div class="dropdown-header">Highlights</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/acp_letters.html">ACP Letters</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/editors_choice.html">Editor's choice</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/opinion.html">Opinions</a> </div> <div class="dropdown-header">Regular articles</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/research_article.html">Research articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/review_article.html">Review articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/measurement_report.html">Measurement reports</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/technical_note.html">Technical notes</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Special issues</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/special_issue_overview.html">SI overview articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/special_issues.html">Published SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/scheduled_sis.html">Scheduled SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/how_to_apply_for_an_si.html">How to apply for an SI</a> </div> <div class="dropdown-header">EGU Compilations</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egu-letters.net/">EGU Letters</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://encyclopedia-of-geosciences.net/">Encyclopedia of Geosciences</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egusphere.net/">EGUsphere</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Alerts</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/subscribe_to_alerts.html">Subscribe to alerts</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/submission.html">Submission</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown10849" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Policies <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10849"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/licence_and_copyright.html">Licence & copyright</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/general_terms.html">General terms</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/guidelines_for_authors.html">Guidelines for authors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/guidelines_for_editors.html">Guidelines for editors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/publication_policy.html">Publication policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/data_policy.html">Data policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/publication_ethics.html">Publication ethics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/inclusivity_in_global_research.html">Inclusivity in global research</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/competing_interests_policy.html">Competing interests policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/appeals_and_complaints.html">Appeals & complaints</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/proofreading_guidelines.html">Proofreading guidelines</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_authors.html">Obligations for authors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_editors.html">Obligations for editors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_referees.html">Obligations for referees</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/author_name_change.html">Inclusive author name-change policy</a> </div> </div> </div> </div> </div> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown300" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Peer review <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown300"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/interactive_review_process.html">Interactive review process</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/finding_an_editor.html">Finding an editor</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/review_criteria.html">Review criteria</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://webforms.copernicus.org/ACP/referee-application">Become a referee</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a data-non-mobile-optimized="1" target="_parent" class="" href="https://editor.copernicus.org/ACP/my_manuscript_overview">Manuscript tracking</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/reviewer_recognition.html">Reviewer recognition</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/editorial_board.html">Editorial board</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown29677" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Awards <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown29677"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/outstanding-referee-awards.html">Outstanding referee awards</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/outstanding-editor-award.html">Outstanding editor award</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/paul-crutzen-publication-award.html">Paul Crutzen Publication award</a> </div> </div> </div> </div> </div> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown6086" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">About <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown6086"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/aims_and_scope.html">Aims & scope</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/subject_areas.html">Subject areas</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/manuscript_types.html">Manuscript types</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/article_processing_charges.html">Article processing charges</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/financial_support.html">Financial support</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/promote_your_work.html">Promote your work</a> </div> <div class="dropdown dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="dropdown-toggle dropdown-item " href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press.html" > News & press<span class="caret"></span> </a> <div class="dropdown-menu level-2 " aria-labelledby="navbarDropdown316"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2019-11-27_thanks-to-cristina-facchini-and-rolf-sander-and-welcome-to-barbara-ervens.html">Many thanks to Cristina Facchini and Rolf Sander and welcome to Barbara Ervens as executive editor of ACP</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2020-08-28_first-acp-letter-published.html">First ACP Letter: The value of remote marine aerosol measurements for constraining radiative forcing uncertainty</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-01-14_atmospheric-evolution-of-emissions-from-a-boreal-forest-fire-the-formation-of-highly-functionalized-oxygen-nitrogen-and-sulfur-containing-organic-compounds.html">Atmospheric evolution of emissions from a boreal forest fire: the formation of highly functionalized oxygen-, nitrogen-, and sulfur-containing organic compounds</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-04-25_observing-the-timescales-of-aerosol-cloud-interactions-in-snapshot-satellite-images.html">Observing the timescales of aerosol–cloud interactions in snapshot satellite images</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-10-15_new-acp-letter-how-alkaline-compounds-control-atmospheric-aerosol-particle-acidity.html">New ACP Letter: How alkaline compounds control atmospheric aerosol particle acidity</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-11-16_changes-in-biomass-burning-wetland-extent-or-agriculture-drive-atmospheric-nh3-trends-in-select-african-regions.html">Changes in biomass burning, wetland extent, or agriculture drive atmospheric NH3 trends in select African regions</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2022-07-18_two-of-acps-founding-executive-editors-step-down.html">Two of ACP's founding executive editors step down</a> </div> </div> </div> </div> </div> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/egu_resources.html">EGU resources</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/journal_statistics.html">Journal statistics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/journal_metrics.html">Journal metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/abstracted_and_indexed.html">Abstracted & indexed</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/article_level_metrics.html">Article level metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/faqs.html">FAQs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/contact.html">Contact</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/xml_harvesting_and_oai-pmh.html">XML harvesting & OAI-PMH</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/egu_publications.html">EGU publications</a> </li> <li class="nav-item "> <a target="_blank" class="nav-link " data-non-mobile-optimized="1" href="https://editor.copernicus.org/ACP/"><i class='fal fa-sign-in-alt fa-lg' title='Login'></i></a> </li> <!-- Topbar --> <li class="d-print-none d-lg-none pt-2 topbar-mobile"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </li> <!-- End Topbar --> </ul> </div> </div></div> </nav> </div> <section id="banner" class="banner dzsparallaxer use-loading auto-init height-is-based-on-content mode-scroll loaded dzsprx-readyall"> <div class="divimage dzsparallaxer--target layout__moodboard-banner" data-src="" style=""></div> <div id="headers-content-container" class="container CMSCONTAINER"> <div id="cmsbox_126230" class="cmsbox "> <span class="header-small text-uppercase">&nbsp;</span> <h1 class="display-4 header-get-function home-header hide-md-on-version2023"> Research article &nbsp; </h1> </div></div> </section> <div id="breadcrumbs" class="breadcrumbs"> <div class="container"> <div class="row align-items-center"> <div class="d-none d-sm-block text-nowrap pageactions"></div> <!-- START_SEARCH --> <!-- END_SEARCH --> <!-- The template part snippet fo breadcrubs is in source code--> <div class="justify-content-between col-auto col-md CMSCONTAINER" id="breadcrumbs_content_container"><div id="cmsbox_1088152" class="cmsbox "><!-- tpl: templates/get_functions/get_breadcrumbs/index --> <!-- START_BREADCRUMBS_CONTAINER --> <ol class="breadcrumb"> <li>&nbsp;</li> </ol> <!-- END_BREADCRUMBS_CONTAINER --> </div></div> <div class="col col-md-4 text-right page-search CMSCONTAINER" id="search_content_container"><div id="cmsbox_1088035" class="cmsbox "><!-- v1.31 --> <!-- 1.31: added placeholder for test system sanitizing--> <!-- 1.3: #855 --> <!-- 1.2: #166 --> <!-- CMS ressources/FinderBreadcrumbBox.html --> <!-- START_SITE_SEARCH --> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div> <div class="row align-items-center no-gutters py-1" id="search-wrapper"> <div class="col-auto pl-0 pr-1"> <a id="templateSearchInfoBtn" role="button" tabindex="99" data-container="body" data-toggle="popover" data-placement="bottom" data-trigger="click"><span class="fal fa-info-circle"></span></a> </div> <div class="col pl-0 pr-1"> <input type="search" placeholder="Search" name="q" class="form-control form-control-sm" id="search_query_solr"/> </div> <div class="col-auto pl-0"> <button title="Start site search" id="start_site_search_solr" class="btn btn-sm btn-success"><span class="co-search"></span></button> </div> </div> <div class="text-left"> <div id="templateSearchInfo" class="d-none"> <div> <p> Multiple terms: term1 term2<br /> <i>red apples</i><br /> returns results with all terms like:<br /> <i>Fructose levels in <strong>red</strong> and <strong>green</strong> apples</i><br /> </p> <p> Precise match in quotes: "term1 term2"<br /> <i>"red apples"</i><br /> returns results matching exactly like:<br /> <i>Anthocyanin biosynthesis in <strong>red apples</strong></i><br /> </p> <p> Exclude a term with -: term1 -term2<br /> <i>apples -red</i><br /> returns results containing <i><strong>apples</strong></i> but not <i><strong>red</strong></i>:<br /> <i>Malic acid in green <strong>apples</strong></i><br /> </p> </div> </div> <div class="modal " id="templateSearchResultModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content"> <div class="modal-header modal-header--sticky shadow one-column d-block"> <div class="row no-gutters mx-1"> <div class="col mr-3"> <h1 class="" id="resultsSearchHeader"><span id="templateSearchResultNr"></span> hit<span id="templateSearchResultNrPlural">s</span> for <span id="templateSearchResultTerm"></span></h1> </div> <div class="col-auto"> <a id="scrolltopmodal" href="javascript:void(0)" onclick="scrollModalTop();" style="display: none;"><i class="co-home"></i></a> </div> <div class="col-auto"> <button data-dismiss="modal" aria-label="Close" class="btn btn-danger mt-1">Close</button> </div> </div> </div> <div class="modal-body one-column"> <!-- $$co-sanitizing-slot1$$ --> <div class="grid-container mx-n3"><div class="grid-85 tablet-grid-85"> <button aria-label="Refine" id="refineSearchModal" class="btn btn-primary float-left mt-4">Refine your search</button> <button aria-label="Refine" id="refineSearchModalHide" class="btn btn-danger float-left d-none mt-4">Hide refinement</button> </div></div> <div class="grid-container mx-n3"><div class="grid-100 tablet-grid-100"><div id="templateRefineSearch" class="d-none"></div></div></div> <div id="templateSearchResultContainer" class="searchResultsModal mx-n3"></div> <div class="grid-container mb-0"><div class="grid-100 tablet-grid-100"><div id="templateSearchResultContainerEmpty" class="co-notification d-none">There are no results for your search term.</div></div></div> </div> </div> </div> </div> </div> <!-- feedback network problems --> <div class="modal " id="templateSearchErrorModal1" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Network problems</h1> <div class="co-error">We are sorry, but your search could not be completed due to network problems. Please try again later.</div> </div> </div> </div> </div> <!-- feedback server timeout --> <div class="modal " id="templateSearchErrorModal2" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Server timeout</h1> <div class="co-error">We are sorry, but your search could not be completed due to server timeouts. Please try again later.</div> </div> </div> </div> </div> <!-- feedback invalid search term --> <div class="modal " id="templateSearchErrorModal3" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Empty search term</h1> <div class="co-error">You have applied the search with an empty search term. Please revisit and try again.</div> </div> </div> </div> </div> <!-- feedback too many requests --> <div class="modal " id="templateSearchErrorModal4" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Too many requests</h1> <div class="co-error">We are sorry, but we have received too many parallel search requests. Please try again later.</div> </div> </div> </div> </div> <!-- loading --> <div class="modal " id="templateSearchLoadingModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-sm modal-dialog-centered"> <div class="modal-content p-3 co_LoadingDotsContainer"> <div class="modal-body"> <div class="text">Searching</div> <div class="dots d-flex justify-content-center"><div class="dot"></div><div class="dot"></div><div class="dot"></div></div></div> </div> </div> </div> </div> <style> /*.modal {*/ /* background: rgba(255, 255, 255, 0.8);*/ /*}*/ .modal-header--sticky { position: sticky; top: 0; background-color: inherit; z-index: 1055; } .grid-container { margin-bottom: 1em; /*padding-left: 0;*/ /*padding-right: 0;*/ } #templateSearchInfo{ display: none; background-color: var(--background-color-primary); margin-top: 1px; z-index: 5; border: 1px solid var(--color-primary); opacity: .8; font-size: .7rem; border-radius: .25rem; } #templateSearchLoadingModal .co_LoadingDotsContainer { z-index: 1000; } #templateSearchLoadingModal .co_LoadingDotsContainer .text { text-align: center; font-weight: bold; padding-bottom: 1rem; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot { background-color: #0072BC; border: 2px solid white; border-radius: 50%; float: left; height: 2rem; width: 2rem; margin: 0 5px; -webkit-transform: scale(0); transform: scale(0); -webkit-animation: animation_dots_breath 1000ms ease infinite 0ms; animation: animation_dots_breath 1000ms ease infinite 0ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(2) { -webkit-animation: animation_dots_breath 1000ms ease infinite 300ms; animation: animation_dots_breath 1000ms ease infinite 300ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(3) { -webkit-animation: animation_dots_breath 1000ms ease infinite 600ms; animation: animation_dots_breath 1000ms ease infinite 600ms; } #templateSearchResultModal [class*="grid-"] { padding-left: 10px !important; padding-right: 10px !important; } #templateSearchResultTerm { font-weight: bold; } #resultsSearchHeader { display: block !important; } #scrolltopmodal { font-size: 3.0em; margin-top: 0 !important; margin-right: 15px; } @-webkit-keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @media (min-width: 768px) and (max-width: 991px) { #templateSearchResultModal .modal-dialog { max-width: 90%; } } </style> <script> if(document.querySelector('meta[name="global_moBaseURL"]').content == "https://meetingorganizer.copernicus.org/") FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder-app')+"search/library.php"; else FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder')+"search/library.php"; SEARCH_INPUT = document.getElementById('search_query_solr'); SEARCH_INPUT_MODAL = document.getElementById('search_query_modal'); searchRunning = false; offset = 20; INITIAL_OFFSET = 20; var MutationObserver = window.MutationObserver || window.WebKitMutationObserver || window.MozMutationObserver; const targetNodeSearchModal = document.getElementById("templateSearchResultModal"); const configSearchModal = { attributes: true, childList: true, subtree: true }; // Callback function to execute when mutations are observed const callbackSearchModal = (mutationList, observer) => { for (const mutation of mutationList) { if (mutation.type === "childList") { // console.log("A child node has been added or removed."); picturesGallery(); } else if (mutation.type === "attributes") { // console.log(`The ${mutation.attributeName} attribute was modified.`); } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callbackSearchModal); // Start observing the target node for configured mutations observer.observe(targetNodeSearchModal, configSearchModal); function _addEventListener() { document.getElementById('search_query_solr').addEventListener('keypress', (e) => { if (e.key === 'Enter') _runSearch(); }); document.getElementById('start_site_search_solr').addEventListener('click', (e) => { _runSearch(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $('#templateSearchResultModal').scroll(function() { if ($(this).scrollTop()) { $('#scrolltopmodal:hidden').stop(true, true).fadeIn().css("display","inline-block"); } else { $('#scrolltopmodal').stop(true, true).fadeOut(); } }); } function scrollModalTop() { $('#templateSearchResultModal').animate({ scrollTop: 0 }, 'slow'); // $('#templateSearchResultModal').scrollTop(0); } function picturesGallery() { $('body').off('click', '.paperlist-avatar img'); $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; if (typeof search_gallery != "undefined") { search_gallery = null; } $('body').on('click', '#templateSearchResultContainer .paperlist-avatar img', function (e) { if(searchPaperListAvatarThumb.length === 0 && searchPaperListAvatar.length === 0) { $('#templateSearchResultContainer .paperlist-avatar img').each(function () { var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption = $(this).attr('data-caption'); var figure = { src: webversion, w: width, h: height, title: caption }; searchPaperListAvatarThumb.push($(this)[0]); searchPaperListAvatar.push(figure); }); } var target = $(this); var index = $('#templateSearchResultContainer .paperlist-avatar img').index(target); var options = { showHideOpacity:false, bgOpacity:0.8, index:index, spacing:0.15, history: false, focus:false, getThumbBoundsFn: function(index) { var thumbnail = searchPaperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; search_gallery = new PhotoSwipe( search_pswpElement, PhotoSwipeUI_Default,[searchPaperListAvatar[index]],options); search_gallery.init(); }); } function showError(code, msg) { console.error(code, msg); $("#templateSearchLoadingModal").modal("hide"); switch(code) { case -3: // http request fail case -2: // invalid MO response case 4: // CORS case 1: // project $("#templateSearchErrorModal1").modal({}); break; case -1: // timeout $("#templateSearchErrorModal2").modal({}); break; case 2: // empty term $("#templateSearchErrorModal3").modal({}); break; case 3: // DOS $("#templateSearchErrorModal4").modal({}); break; default: $("#templateSearchErrorModal1").modal({}); break; } } function clearForm() { var myFormElement = document.getElementById("library-filters") var elements = myFormElement.elements; $(".form-check-input").prop('checked', false).change().parent().removeClass('active'); for(i=0; i<elements.length; i++) { field_type = elements[i].type.toLowerCase(); switch(field_type) { case "text": case "password": case "textarea": case "hidden": elements[i].value = ""; break; case "radio": case "checkbox": if (elements[i].checked) { elements[i].checked = false; } break; case "select-one": case "select-multi": elements[i].selectedIndex = -1; break; default: break; } } } function generateShowMoreButton(offset, term) { var code = '<button aria-label="ShowMore" id="showMore" class="btn btn-success float-right mr-2" data-offset="' + offset + '">Show more</button>'; return code; } function hideModal(id) { $("#"+id).modal('hide'); } function showModal(id) { $("#"+id).modal({}); } function prepareForPhotoSwipe() { searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; } function _sendAjax(projectID, term) { let httpRequest = new XMLHttpRequest(); if(searchRunning) { console.log("Search running"); return; } if (!httpRequest) { console.error("Giving up :( Cannot create an XMLHTTP instance"); showError(-1); return false; } // httpRequest.timeout = 20000; // time in milliseconds httpRequest.withCredentials = false; httpRequest.ontimeout = (e) => { showError(-1, "result timeout"); searchRunning = false; }; httpRequest.onreadystatechange = function() { if (httpRequest.readyState === XMLHttpRequest.DONE) { searchRunning = false; if (httpRequest.status === 200) { let rs = JSON.parse(httpRequest.responseText); if(rs) { if(rs.isError) { showError(rs.errorCode, rs.errorMessage); } else { let html = rs.resultHTMLs; $("#modal_search_query").val(rs.term); $("#templateSearchResultTerm").html(rs.term); $("#templateSearchResultNr").html(rs.resultsNr); $("#templateRefineSearch").html(rs.filter); if(rs.filter == false) { console.log('filter empty'); $("#refineSearchModal").removeClass('d-block').addClass('d-none'); } if(rs.resultsNr==1) $("#templateSearchResultNrPlural").hide(); else $("#templateSearchResultNrPlural").show(); if(rs.resultsNr==0) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(""); $("#templateSearchResultContainerEmpty").removeClass("d-none"); showModal('templateSearchResultModal'); } else { if((rs.resultsNr - offset)>0) { html = html + generateShowMoreButton(offset, term); } $("#templateSearchResultContainerEmpty").addClass("d-none"); if( offset == INITIAL_OFFSET) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(html); showModal('templateSearchResultModal'); } else { $('#showMore').remove(); startHtml = $("#templateSearchResultContainer").html(); $("#templateSearchResultContainer").html(startHtml + html); } // prepareForPhotoSwipe(); } } } else { showError(-2, "invalid result"); } } else { showError(-3, "There was a problem with the request."); } } }; if(offset == INITIAL_OFFSET) { hideModal('templateSearchResultModal'); showModal('templateSearchLoadingModal'); } httpRequest.open("GET", FINDER_URL+"?project="+projectID+"&term="+encodeURI(term)+((offset>INITIAL_OFFSET)?("&offset="+(offset-INITIAL_OFFSET)) : "")); httpRequest.send(); searchRunning = true; } function _runSearch() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var term = _searchTrimInput(SEARCH_INPUT.value); if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } function _searchTrimInput(str) { return str.replace(/^\s+|\s+$/gm, ''); } function run() { _addEventListener(); $('#templateSearchInfoBtn, #modalSearchInfoBtn').popover({ sanitize: false, html: true, content: $("#templateSearchInfo").html(), placement: "bottom", template: '<div class="popover" role="tooltip"><div class="arrow"></div><button class="m-1 float-right btn btn-sm btn-danger" id="templateSearchInfoClose"><i class="fas fa-times-circle"></i></button><h3 class="popover-header"></h3><div class="popover-body"></div></div>', title: "Search tips", }); $(document).click(function (e) { let t = $(e.target); let a = t && t.attr("data-toggle")!=="popover" && t.parent().attr("data-toggle")!=="popover"; let b = t && $(".popover").has(t).length===0; if(a && b) { $('#templateSearchInfoBtn').popover('hide'); $('#modalSearchInfoBtn').popover('hide'); } }); $('#templateSearchInfoBtn').on('shown.bs.popover', function () { $("#templateSearchInfoClose").click(function(e){ $('#templateSearchInfoBtn').popover('hide'); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }) $('#templateSearchResultModal').on('hidden.bs.modal', function(e) { $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); var pswpElement = document.querySelectorAll('.pswp')[0]; var gallery = null; var paperListAvatar = []; var paperListAvatarThumb = []; $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); $('body').on('click', '.paperlist-avatar img', function (e) { if(paperListAvatarThumb.length === 0 && paperListAvatar.length === 0){ $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); } var target = $(this); var index = $('.paperlist-avatar img').index(target); var options = { showHideOpacity:true, bgOpacity:0.8, index:index, spacing:0.15, getThumbBoundsFn: function(index) { var thumbnail = paperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; gallery = new PhotoSwipe( pswpElement, PhotoSwipeUI_Default,[paperListAvatar[index]],options); gallery.init(); }); }); $('#templateSearchResultModal').on('hide.bs.modal', function(e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); offset = INITIAL_OFFSET; }) $(document).on("click", "#showMore", function(e){ offset+=INITIAL_OFFSET; runSearchModal() e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $(document).ready(function() { $(document).on("click", "#refineSearchModal", function (e) { $("#templateRefineSearch").removeClass('d-none').addClass('d-block'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#refineSearchModalHide", function (e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#modal_start_site_search", function (e) { runSearchModal(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }); } function runSearchModal() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var queryString = $('#library-filters').serialize(); var term = _searchTrimInput($('#modal_search_query').val()); term+='&'+queryString; if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } if(document.getElementById('search_query_solr')) { run(); } </script> <!-- END_SITE_SEARCH --></div></div> </div> </div> </div> </div> </header> <!--=== Content ===--> <main class="one-column version-2023"> <div id="content" class="container"> <div id="page_content_container" class="CMSCONTAINER row"> <div class="col"> <div class="level2Toc"> <div class="grid-container no-margin"> <div class="grid-100"> <h1>Research article</h1> </div> </div> <div class="row no-gutters auto-fixed-top-forced"> <div class="col-12 hide-on-fixed"> <div class="grid-container show-js paperList-filter" style="display: none;"> <div class="grid-100"> <form class="radio" autocomplete="off"> <div class="row no-gutters"> <div class="col-auto mr-2"> <label> <input type="radio" class="show-hide" name="paperListFilter" checked="checked" value="all" data-bubble="true" data-show=".paperList-final,.paperList-discussion"> All papers </label> </div> <div class="col-auto mr-2"> <label> <input type="radio" class="show-hide" name="paperListFilter" value="final" data-bubble="true" data-show=".paperList-final" data-hide=".paperList-discussion"> Final revised papers only </label> </div> <div class="col-auto mr-2"> <label> <input type="radio" class="show-hide" name="paperListFilter" value="discussion" data-bubble="true" data-show=".paperList-discussion" data-hide=".paperList-final"> Preprints only </label> </div> </div> </form> </div> </div> </div> <div class="col-12 pb-3 show-on-fixed recent-selection-wrapper" style="display:none;"> <button type="button" class="btn btn-primary">Filters</button> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1965/2025/acp-25-1965-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1965/2025/acp-25-1965-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1965/2025/acp-25-1965-2025-avatar-web.png" data-width="330" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1965/2025/">Diurnal, seasonal, and interannual variations in <i>δ</i>(<sup>18</sup>O) of atmospheric O<sub>2</sub> and its application to evaluate natural and anthropogenic changes in oxygen, carbon, and water cycles</a> <div class="authors">Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki</div> <div class="citation">Atmos. Chem. Phys., 25, 1965&ndash;1987, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1965-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1965-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118557" data-show=".short_summary_118557" data-hide=".short_summary_button_118557" >Short summary</span> <div class="j-widget__max short_summary short_summary_118557" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The <sup>18</sup>O/<sup>16</sup>O ratio of atmospheric oxygen, &delta;<sub>atm</sub>(<sup>18</sup>O), is higher than that of ocean water due to isotopic effects during biospheric activities. This is known as the Dole&ndash;Morita effect, and its millennial-scale variations are recorded in ice cores. However, small variations of &delta;<sub>atm</sub>(<sup>18</sup>O) in the present day have never been detected so far. This paper presents the first observations of diurnal, seasonal, and secular variations in &delta;<sub>atm</sub>(<sup>18</sup>O) and applies them to evaluate oxygen, carbon, and water cycles. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118557" data-show=".short_summary_button_118557">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1965/2025/acp-25-1965-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1965/2025/acp-25-1965-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1965/2025/acp-25-1965-2025-avatar-web.png" data-width="330" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1497/2025/acp-25-1497-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1497/2025/acp-25-1497-2025-avatar-thumb80.png" data-caption="© Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, OpenStreetMap contributors, and the GIS User Community. All rights reserved." data-web="https://acp.copernicus.org/articles/25/1497/2025/acp-25-1497-2025-avatar-web.png" data-width="600" data-height="250" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1497/2025/">Airborne in situ quantification of methane emissions from oil and gas production in Romania</a> <div class="authors">Hossein Maazallahi, Foteini Stavropoulou, Samuel Jonson Sutanto, Michael Steiner, Dominik Brunner, Mariano Mertens, Patrick Jöckel, Antoon Visschedijk, Hugo Denier van der Gon, Stijn Dellaert, Nataly Velandia Salinas, Stefan Schwietzke, Daniel Zavala-Araiza, Sorin Ghemulet, Alexandru Pana, Magdalena Ardelean, Marius Corbu, Andreea Calcan, Stephen A. Conley, Mackenzie L. Smith, and Thomas Röckmann</div> <div class="citation">Atmos. Chem. Phys., 25, 1497&ndash;1511, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1497-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1497-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121829" data-show=".short_summary_121829" data-hide=".short_summary_button_121829" >Short summary</span> <div class="j-widget__max short_summary short_summary_121829" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This article presents insights from airborne in situ measurements collected during the ROmanian Methane Emissions from Oil and gas (ROMEO) campaign supported by two models. Results reveal Romania's oil and gas methane emissions were significantly under-reported to the United Nations Framework Convention on Climate Change (UNFCCC) in 2019. A large underestimation was also found in the Emissions Database for Global Atmospheric Research (EDGAR) v7.0 for the study domain in the same year. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121829" data-show=".short_summary_button_121829">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1497/2025/acp-25-1497-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1497/2025/acp-25-1497-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1497/2025/acp-25-1497-2025-avatar-web.png" data-width="600" data-caption="© Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, OpenStreetMap contributors, and the GIS User Community. All rights reserved." data-height="250" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3370/">Differential characterization of air ions in boreal forest of Finland and megacity of eastern China</a> <div class="authors">Tinghan Zhang, Ximeng Qi, Janne Lampilahti, Liangduo Chen, Xuguang Chi, Wei Nie, Xin Huang, Zehao Zou, Wei Du, Tom Kokkonen, Tuukka Petäjä, Katrianne Lehtipalo, Veli-Matti Kerminen, Aijun Ding, and Markku Kulmala</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3370,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3370,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124489" data-show=".short_summary_124489" data-hide=".short_summary_button_124489" >Short summary</span> <div class="j-widget__max short_summary short_summary_124489" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> By comparing air ions at two &ldquo;flagship&rdquo; sites &mdash;the SMEAR II site in the boreal forest of Finland and the SORPES site in a megacity in eastern China&mdash;we characterized ion concentrations and their roles in new particle formation (NPF) across contrasting environments. The ion-induced fraction was much higher in clean areas. However, earlier activation of charged particles and high ion-induced fraction during quiet NPF at SORPES imply a non-negligible role for ion-induced NPF in polluted areas. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124489" data-show=".short_summary_button_124489">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-235/">Observationally Constrained Analysis on the Distribution of Fine and Coarse Mode Nitrate in Global Climate Models</a> <div class="authors">Mingxuan Wu, Hailong Wang, Zheng Lu, Xiaohong Liu, Huisheng Bian, David Cohen, Yan Feng, Mian Chin, Didier A. Hauglustaine, Vlassis A. Karydis, Marianne T. Lund, Gunnar Myhre, Andrea Pozzer, Michael Schulz, Ragnhild B. Skeie, Alexandra P. Tsimpidi, Svetlana G. Tsyro, and Shaocheng Xie</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-235,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-235,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126625" data-show=".short_summary_126625" data-hide=".short_summary_button_126625" >Short summary</span> <div class="j-widget__max short_summary short_summary_126625" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> A key challenge in simulating the lifecycle of nitrate aerosol in global climate models is to accurately represent mass size distribution of nitrate aerosol, which lacks sufficient observational constraints. We found that most climate models underestimate the mass fraction of fine-mode nitrate at surface in all regions. Our study highlights the importance of gas-aerosol partitioning parameterization and simulation of dust and sea salt in correctly simulating mass size distribution of nitrate. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126625" data-show=".short_summary_button_126625">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-43/">Anthropogenic aerosol influence on a mixed-phase cloud precipitation in early Meiyu season over Yangtze River Delta: simulated microphysical and thermodynamic effects</a> <div class="authors">Ruiyu Song, Bin Zhu, Lina Sha, Peng Qian, Fei Wang, Chunsong Lu, Yan Yin, and Yuying Wang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-43,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-43,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126349" data-show=".short_summary_126349" data-hide=".short_summary_button_126349" >Short summary</span> <div class="j-widget__max short_summary short_summary_126349" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study examines how anthropogenic aerosols affect rainfall during the early summer in China&rsquo;s Yangtze River Delta. Using the WRF-Chem model, we found that moderate emissions increase rainfall by boosting cloud formation. However, high emissions reduce rainfall due to smaller cloud droplets, which hinder their growth. These findings highlight the complex impact of aerosol concentrations on precipitation and provide valuable data for future research on aerosol-cloud-precipitation interactions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126349" data-show=".short_summary_button_126349">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-193/">Development and implementation of SOMA: A Secondary Organic Module for Aerosol integration in high-resolution air quality simulations</a> <div class="authors">Giannis Ioannidis, Nikoletta Bouloti, Paul Tremper, Chaofan Li, Christos Boikos, Nikolaos Rapkos, Till Riedel, Miikka Dal Maso, and Leonidas Ntziachristos</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-193,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-193,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126572" data-show=".short_summary_126572" data-hide=".short_summary_button_126572" >Short summary</span> <div class="j-widget__max short_summary short_summary_126572" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study introduces SOMA (Secondary Organic Module for Aerosol) to model SOA formation in urban environments, using VOC oxidation inputs from GECKO-A. Based on SOA formation experiments, SOMA incorporates correction factors for calibration purposes. A CFD model simulates toluene dispersion in Augsburg, and it&rsquo;s linked to SOMA to show that background SOA contributes 21&ndash;53 % of total mass, fading after 7 hours, providing better understanding of SOA formation dynamics. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126572" data-show=".short_summary_button_126572">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1931/2025/acp-25-1931-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1931/2025/acp-25-1931-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1931/2025/acp-25-1931-2025-avatar-web.png" data-width="600" data-height="592" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1931/2025/">Cloud processing of dimethyl sulfide (DMS) oxidation products limits sulfur dioxide (SO<sub>2</sub>) and carbonyl sulfide (OCS) production in the eastern North Atlantic marine boundary layer</a> <div class="authors">Delaney B. Kilgour, Christopher M. Jernigan, Olga Garmash, Sneha Aggarwal, Shengqian Zhou, Claudia Mohr, Matt E. Salter, Joel A. Thornton, Jian Wang, Paul Zieger, and Timothy H. Bertram</div> <div class="citation">Atmos. Chem. Phys., 25, 1931&ndash;1947, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1931-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1931-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121476" data-show=".short_summary_121476" data-hide=".short_summary_button_121476" >Short summary</span> <div class="j-widget__max short_summary short_summary_121476" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We report simultaneous measurements of dimethyl sulfide (DMS) and hydroperoxymethyl thioformate (HPMTF) in the eastern North Atlantic. We use an observationally constrained box model to show that cloud loss is the dominant sink of HPMTF in this region over 6 weeks, resulting in large reductions in DMS-derived products that contribute to aerosol formation and growth. Our findings indicate that fast cloud processing of HPMTF must be included in global models to accurately capture the sulfur cycle. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121476" data-show=".short_summary_button_121476">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1931/2025/acp-25-1931-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1931/2025/acp-25-1931-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1931/2025/acp-25-1931-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="592" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1949/2025/acp-25-1949-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1949/2025/acp-25-1949-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1949/2025/acp-25-1949-2025-avatar-web.png" data-width="600" data-height="482" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1949/2025/">Air-pollution-satellite-based CO<sub>2</sub> emission inversion: system evaluation, sensitivity analysis, and future research direction</a> <div class="authors">Hui Li, Jiaxin Qiu, and Bo Zheng</div> <div class="citation">Atmos. Chem. Phys., 25, 1949&ndash;1963, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1949-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1949-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121553" data-show=".short_summary_121553" data-hide=".short_summary_button_121553" >Short summary</span> <div class="j-widget__max short_summary short_summary_121553" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We conduct a sensitivity analysis with 31 tests on various factors including prior emissions, model resolution, satellite constraint, and other system configurations to assess the vulnerability of emission estimates across temporal, sectoral, and regional dimensions. This reveals the robustness of emissions estimated by this air-pollution-satellite-based CO<sub>2</sub> emission inversion system, with relative change between tests and base inversion below 4.0 % for national annual NO<em><sub>x </sub></em>and CO<sub>2</sub> emissions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121553" data-show=".short_summary_button_121553">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1949/2025/acp-25-1949-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1949/2025/acp-25-1949-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1949/2025/acp-25-1949-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="482" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-226/">Satellite Detection of NO<sub>2</sub> Distributions and Comparison with Ground-Based Concentrations</a> <div class="authors">Summer Joy Acker, Tracey Holloway, and Monica K. Harkey</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-226,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-226,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126613" data-show=".short_summary_126613" data-hide=".short_summary_button_126613" >Short summary</span> <div class="j-widget__max short_summary short_summary_126613" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Nitrogen dioxide (NO<sub>2</sub>) is a harmful air pollutant linked to heart and lung diseases, regulated in the U.S. through annual and 1-hour standards. Most areas lack ground monitors, so satellites can help fill this gap. While past studies showed satellites capture annual NO<sub>2</sub> patterns well, we assess their ability to reflect 1-hour pollution levels. We find satellites perform best farther from roads and in winter. TEMPO, a new satellite taking hourly measurements, improves the detection of higher NO<sub>2</sub>. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126613" data-show=".short_summary_button_126613">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-340/">Exploring Ozone-climate Interactions in Idealized CMIP6 DECK Experiments</a> <div class="authors">Jingyu Wang, Gabriel Chiodo, Timofei Sukhodolov, Blanca Ayarzagüena, William T. Ball, Mohamadou Diallo, Birgit Hassler, James Keeble, Peer Nowack, Clara Orbe, and Sandro Vattioni</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-340,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-340,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126759" data-show=".short_summary_126759" data-hide=".short_summary_button_126759" >Short summary</span> <div class="j-widget__max short_summary short_summary_126759" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We analyzed the ozone response under elevated CO<sub>2</sub> using the data from CMIP6 DECK experiments. We then looked at the relations between ozone response and temperature and circulation changes to identify drivers of the ozone change. The climate feedback of ozone is investigated by doing offline calculations and comparing models with and without interactive chemistry. We find that ozone-climate interactions are important for Earth System Models, thus should be considered in future model development. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126759" data-show=".short_summary_button_126759">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1883/2025/acp-25-1883-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1883/2025/acp-25-1883-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1883/2025/acp-25-1883-2025-avatar-web.png" data-width="600" data-height="451" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1883/2025/">Quantifying primary oxidation products in the OH-initiated reaction of benzyl alcohol</a> <div class="authors">Reina S. Buenconsejo, Sophia M. Charan, John H. Seinfeld, and Paul O. Wennberg</div> <div class="citation">Atmos. Chem. Phys., 25, 1883&ndash;1897, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1883-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1883-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_115632" data-show=".short_summary_115632" data-hide=".short_summary_button_115632" >Short summary</span> <div class="j-widget__max short_summary short_summary_115632" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We look at the atmospheric chemistry of a volatile chemical product (VCP), benzyl alcohol. Benzyl alcohol and other VCPs may play a significant role in the formation of urban smog. By better understanding the chemistry of VCPs like benzyl alcohol, we may better understand observed data and how VCPs affect air quality. We identify products formed from benzyl alcohol chemistry and use this chemistry to understand how benzyl alcohol forms a key component of smog, secondary organic aerosol. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_115632" data-show=".short_summary_button_115632">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1883/2025/acp-25-1883-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1883/2025/acp-25-1883-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1883/2025/acp-25-1883-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="451" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1899/2025/acp-25-1899-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1899/2025/acp-25-1899-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1899/2025/acp-25-1899-2025-avatar-web.png" data-width="600" data-height="389" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1899/2025/">Atmospheric carbonyl compounds are crucial in regional ozone heavy pollution: insights from the Chengdu Plain Urban Agglomeration, China</a> <div class="authors">Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li</div> <div class="citation">Atmos. Chem. Phys., 25, 1899&ndash;1916, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1899-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1899-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119590" data-show=".short_summary_119590" data-hide=".short_summary_button_119590" >Short summary</span> <div class="j-widget__max short_summary short_summary_119590" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We studied carbonyl compounds' role in ozone pollution in the Chengdu Plain Urban Agglomeration, China. During heavy pollution in August 2019, we measured carbonyls at nine sites and analyzed their impact. Areas with higher carbonyl levels, like Chengdu, had worse ozone pollution. While their abundance matters, chemical reactions with other pollutants are the main drivers. Our findings show regional cooperation is vital to reducing ozone pollution effectively. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119590" data-show=".short_summary_button_119590">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1899/2025/acp-25-1899-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1899/2025/acp-25-1899-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1899/2025/acp-25-1899-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="389" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-135/">Evaluating reanalysis representations of climatological trace gas distributions in the Asian monsoon tropopause layer</a> <div class="authors">Jonathon S. Wright, Shenglong Zhang, Jiao Chen, Sean M. Davis, Paul Konopka, Mengqian Lu, Xiaolu Yan, and Guang J. Zhang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-135,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-135,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126488" data-show=".short_summary_126488" data-hide=".short_summary_button_126488" >Short summary</span> <div class="j-widget__max short_summary short_summary_126488" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Atmospheric reanalysis products reconstruct the past states of the atmosphere. These products are often used to study winds and temperatures in the upper-level monsoon circulation, but their ability to reproduce composition fields like water vapor and ozone has been questionable at best. Here we report clear signs of improvement in both consistency across reanalyses and agreement with satellite observations, outline limitations and suggest steps to further enhance the usefulness of these fields. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126488" data-show=".short_summary_button_126488">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-231/">Dust pollution substantially weakens the impact of ammonia emission reduction on particulate nitrate formation</a> <div class="authors">Hanrui Lang, Yunjiang Zhang, Sheng Zhong, Yongcai Rao, Minfeng Zhou, Jian Qiu, Jingyi Li, Diwen Liu, Florian Couvidat, Olivier Favez, Didier Hauglustaine, and Xinlei Ge</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-231,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-231,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126619" data-show=".short_summary_126619" data-hide=".short_summary_button_126619" >Short summary</span> <div class="j-widget__max short_summary short_summary_126619" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates how dust pollution influences particulate nitrate formation. We found that dust pollution could reduce the effectiveness of ammonia emission controls by altering aerosol chemistry. Using field observations and modeling, we showed that dust particles affect nitrate distribution between gas and particle phases. Our findings highlight the need for pollution control strategies that consider both human emissions and dust sources for better urban air quality management. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126619" data-show=".short_summary_button_126619">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-360/">Relation between total-column and near-surface NO<sub>2</sub> based on in-situ and PANDORA ground-based remote sensing observations</a> <div class="authors">Ying Zhang, Yuanyuan Wei, Gerrit de Leeuw, Ouyang Liu, Yu Chen, Yang Lv, Yuanxun Zhang, and Zhengqiang Li</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-360,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-360,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126785" data-show=".short_summary_126785" data-hide=".short_summary_button_126785" >Short summary</span> <div class="j-widget__max short_summary short_summary_126785" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Nitrogen dioxide (NO<sub>2</sub>) is a major pollutant which at high concentrations may affect human health. We evaluated the remote sensing column NO<sub>2</sub> in relation to near-surface concentrations throughout the day and found that the prohibition of vertical transport in the morning and the mixing in the afternoon resulted in different relations between the NS and TC NO<sub>2</sub> concentrations. These different relationships have consequences for the use of satellite remote sensing to estimate NS NO<sub>2</sub> concentrations. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126785" data-show=".short_summary_button_126785">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-313/">Global Perspectives on Nitrate Aerosol Dynamics: A Comprehensive Sensitivity Analysis</a> <div class="authors">Alexandros Milousis, Susanne M. C. Scholz, Hendrik Fuchs, Alexandra P. Tsimpidi, and Vlassis A. Karydis</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-313,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-313,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126722" data-show=".short_summary_126722" data-hide=".short_summary_button_126722" >Short summary</span> <div class="j-widget__max short_summary short_summary_126722" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Nitrate aerosol has become a dominant atmospheric component, surpassing sulfate in aerosol composition. However, its simulation remains challenging due to complex formation processes and regional variability. We use the EMAC model to assess key factors in nitrate aerosol predictions. Increasing grid resolution, reducing N<sub>2</sub>O<sub>5</sub> hydrolysis uptake, and refined emissions improve PM<sub>2.5</sub> predictions, but PM<sub>1</sub> remains underestimated. Seasonal &amp; diurnal discrepancies persist, requiring further refinements. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126722" data-show=".short_summary_button_126722">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1851/2025/acp-25-1851-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1851/2025/acp-25-1851-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1851/2025/acp-25-1851-2025-avatar-web.png" data-width="600" data-height="354" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1851/2025/">SO<sub>2</sub> emissions derived from TROPOMI observations over India using a flux-divergence method with variable lifetimes</a> <div class="authors">Yutao Chen, Ronald J. van der A, Jieying Ding, Henk Eskes, Jason E. Williams, Nicolas Theys, Athanasios Tsikerdekis, and Pieternel F. Levelt</div> <div class="citation">Atmos. Chem. Phys., 25, 1851&ndash;1868, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1851-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1851-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119383" data-show=".short_summary_119383" data-hide=".short_summary_button_119383" >Short summary</span> <div class="j-widget__max short_summary short_summary_119383" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> There is a lack of local SO<sub>2</sub> top-down emission inventories in India. With the improvement in the divergence method and the derivation of SO<sub>2</sub> local lifetime, gridded SO<sub>2</sub> emissions over a large area can be estimated efficiently. This method can be applied to any region in the world to derive SO<sub>2</sub> emissions. Especially for regions with high latitudes, our methodology has the potential to significantly improve the top-down derivation of SO<sub>2</sub> emissions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119383" data-show=".short_summary_button_119383">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1851/2025/acp-25-1851-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1851/2025/acp-25-1851-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1851/2025/acp-25-1851-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="354" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1831/2025/acp-25-1831-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1831/2025/acp-25-1831-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1831/2025/acp-25-1831-2025-avatar-web.png" data-width="600" data-height="340" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1831/2025/">Impact of secondary ice production on thunderstorm electrification under different aerosol conditions</a> <div class="authors">Shiye Huang, Jing Yang, Jiaojiao Li, Qian Chen, Qilin Zhang, and Fengxia Guo</div> <div class="citation">Atmos. Chem. Phys., 25, 1831&ndash;1850, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1831-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1831-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121608" data-show=".short_summary_121608" data-hide=".short_summary_button_121608" >Short summary</span> <div class="j-widget__max short_summary short_summary_121608" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Aerosol and secondary ice production are both vital to charge separation in thunderstorms, but the relative importance of different SIP processes to cloud electrification under different aerosol conditions is not well understood. In this study, we show in a clean environment, the shattering of freezing drops has the greatest effect on the charging rate, while in a polluted environment, both rime splintering and the shattering of freezing drops have a significant effect on cloud electrification. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121608" data-show=".short_summary_button_121608">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1831/2025/acp-25-1831-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1831/2025/acp-25-1831-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1831/2025/acp-25-1831-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="340" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1869/2025/acp-25-1869-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1869/2025/acp-25-1869-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1869/2025/acp-25-1869-2025-avatar-web.png" data-width="425" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1869/2025/">Steady-state mixing state of black carbon aerosols from a particle-resolved model</a> <div class="authors">Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding</div> <div class="citation">Atmos. Chem. Phys., 25, 1869&ndash;1881, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1869-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1869-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121342" data-show=".short_summary_121342" data-hide=".short_summary_button_121342" >Short summary</span> <div class="j-widget__max short_summary short_summary_121342" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Black carbon (BC) exerts notable warming effects. We use a particle-resolved model to investigate the long-term behavior of the BC mixing state, revealing its compositions, coating thickness distribution, and optical properties all stabilize with a characteristic time of less than 1 d. This study can effectively simplify the description of the BC mixing state, which facilitates the precise assessment of the optical properties of BC aerosols in global and chemical transport models. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121342" data-show=".short_summary_button_121342">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1869/2025/acp-25-1869-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1869/2025/acp-25-1869-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1869/2025/acp-25-1869-2025-avatar-web.png" data-width="425" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4132/">The impact of sea spray aerosol on photochemical ozone formation over eastern China: heterogeneous reaction of chlorine particles and radiative effect</a> <div class="authors">Yingying Hong, Yuqi Zhu, Yuxuan Huang, Yiming Liu, Chuqi Xiong, and Qi Fan</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4132,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4132,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126178" data-show=".short_summary_126178" data-hide=".short_summary_button_126178" >Short summary</span> <div class="j-widget__max short_summary short_summary_126178" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates the impact of sea spray aerosol on ozone formation across Eastern China, highlighting its complex influence through both chemical reactions and radiative effects, which vary seasonally and geographically. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126178" data-show=".short_summary_button_126178">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-463/">Source-Dependent Optical Properties and Molecular Characteristics of Atmospheric Brown Carbon</a> <div class="authors">Jinghao Zhai, Yin Zhang, Pengfei Liu, Yujie Zhang, Antai Zhang, Yaling Zeng, Baohua Cai, Jingyi Zhang, Chunbo Xing, Honglong Yang, Xiaofei Wang, Jianhuai Ye, Chen Wang, Tzung-May Fu, Lei Zhu, Huizhong Shen, Shu Tao, and Xin Yang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-463,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-463,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126914" data-show=".short_summary_126914" data-hide=".short_summary_button_126914" >Short summary</span> <div class="j-widget__max short_summary short_summary_126914" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Our findings show that BrC's optical properties vary by source. Secondary BrC from ozone pollution had the lowest absorption but highest wavelength dependence, while BrC from biomass combustion had the highest absorption with the lowest wavelength dependence. Molecular analysis indicated that CHON species from biomass burning had the strongest light absorption. These insights enhance the accuracy of climate models by highlighting source-specific optical properties of BrC. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126914" data-show=".short_summary_button_126914">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-402/">Influence of Fire-Induced Heat and Moisture Release on Pyro-Convective Cloud Dynamics During the Australian New Year's Event: A Study Using Convection-Resolving Simulations and Satellite Data</a> <div class="authors">Lisa Janina Muth, Sascha Bierbauer, Corinna Hoose, Bernhard Vogel, Heike Vogel, and Gholam Ali Hoshyaripour</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-402,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-402,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126840" data-show=".short_summary_126840" data-hide=".short_summary_button_126840" >Short summary</span> <div class="j-widget__max short_summary short_summary_126840" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Our study explores how intense wildfires created thunderstorm-like clouds that can affect weather and climate globally. Using simulations with high resolution, we found that fire heat and moisture help form these clouds, lifting particles high into the atmosphere. This process is crucial for understanding how fires impact the environment. Despite some differences with observational data, our findings align well over time, showing the importance of fire-induced heat in cloud formation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126840" data-show=".short_summary_button_126840">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-82/">Shift in cold-point tropopause trends derived from radiosonde, satellite, and reanalysis data</a> <div class="authors">Mona Zolghadrshojaee, Susann Tegtmeier, Sean M. Davis, Robin Pilch Kedzierski, and Leopold Haimberger</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-82,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-82,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126409" data-show=".short_summary_126409" data-hide=".short_summary_button_126409" >Short summary</span> <div class="j-widget__max short_summary short_summary_126409" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The tropical tropopause layer (TTL) is a crucial region where the troposphere transitions into the stratosphere, influencing air mass transport. This study examines temperature trends in the TTL and lower stratosphere using data from weather balloons, satellites, and reanalysis datasets. We found cooling trends in the TTL from 1980&ndash;2001, followed by warming from 2002&ndash;2023. These shifts are linked to changes in atmospheric circulation and impact water vapor transport into the stratosphere. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126409" data-show=".short_summary_button_126409">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-449/">Discussion of the spectral slope of the lidar ratio between 355 nm and 1064 nm from multiwavelength Raman lidar observations</a> <div class="authors">Moritz Haarig, Ronny Engelmann, Holger Baars, Benedikt Gast, Dietrich Althausen, and Albert Ansmann</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-449,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-449,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126895" data-show=".short_summary_126895" data-hide=".short_summary_button_126895" >Short summary</span> <div class="j-widget__max short_summary short_summary_126895" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The lidar ratio is an important quantity in aerosol typing. Its spectral slope contains further information about source region or transport paths of the observed aerosol. The extension until 1064 nm is a recent development led by our institute. We gathered previous observations and add new ones to provide the spectral slope for the most important aerosol types such as marine and continental aerosol, dust, smoke and sulfate and compared it the assumptions used for spaceborne backscatter lidars. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126895" data-show=".short_summary_button_126895">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1805/2025/acp-25-1805-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1805/2025/acp-25-1805-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1805/2025/acp-25-1805-2025-avatar-web.png" data-width="600" data-height="467" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1805/2025/">Exometabolomic exploration of culturable airborne microorganisms from an urban atmosphere</a> <div class="authors">Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, and Pingqing Fu</div> <div class="citation">Atmos. Chem. Phys., 25, 1805&ndash;1829, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1805-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1805-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121242" data-show=".short_summary_121242" data-hide=".short_summary_button_121242" >Short summary</span> <div class="j-widget__max short_summary short_summary_121242" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The metabolic capacity of atmospheric microorganisms after settling into habitats is poorly understood. We studied the molecular composition of exometabolites for cultured typical airborne microbes and traced their metabolic processes. Bacteria and fungi produce highly oxidized exometabolites and have significant variations in metabolism among different strains. These insights are pivotal for assessing the biogeochemical impacts of atmospheric microorganisms following their deposition. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121242" data-show=".short_summary_button_121242">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1805/2025/acp-25-1805-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1805/2025/acp-25-1805-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1805/2025/acp-25-1805-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="467" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1791/2025/acp-25-1791-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1791/2025/acp-25-1791-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1791/2025/acp-25-1791-2025-avatar-web.png" data-width="600" data-height="551" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1791/2025/">Post-return stroke VHF electromagnetic activity in north-western Mediterranean cloud-to-ground lightning flashes</a> <div class="authors">Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy</div> <div class="citation">Atmos. Chem. Phys., 25, 1791&ndash;1803, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1791-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1791-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122439" data-show=".short_summary_122439" data-hide=".short_summary_button_122439" >Short summary</span> <div class="j-widget__max short_summary short_summary_122439" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We contribute to understanding differences in lightning flashes of opposite polarity by explaining distinct in-cloud processes after return strokes. Using data from multiple sensors, including individual Lightning Mapping Array stations, we reveal that positive flashes sustain strong high-frequency radiation due to the recharging of their in-cloud leader; this is in contrast to negative flashes, for which this activity declines rapidly. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122439" data-show=".short_summary_button_122439">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1791/2025/acp-25-1791-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1791/2025/acp-25-1791-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1791/2025/acp-25-1791-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="551" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-2684/">Identification and characterization of foehn events in Beijing and their impact on air-pollution episodes</a> <div class="authors">Ju Li, Jingjiang Zhang, Mengxin Bai, Jie Su, Qingchun Li, and Xingcan Jia</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2684,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2684,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122813" data-show=".short_summary_122813" data-hide=".short_summary_button_122813" >Short summary</span> <div class="j-widget__max short_summary short_summary_122813" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This research examines foehn events in Beijing using weather station data from 2015 to 2020. We found an average of 56.5 foehn days annually, primarily in winter. These winds can raise temperatures significantly and are associated with air-pollution levels. Strong foehn winds tend to reduce pollution, while weaker winds may increase it. Our study highlights the impact of foehn events on air quality, providing valuable insights for urban planning and environmental management. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122813" data-show=".short_summary_button_122813">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-388/">Impact of urban canopy parameters on urbanization induced modifications of climate</a> <div class="authors">Jan Karlický, Jáchym Bareš, and Peter Huszár</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-388,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-388,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126823" data-show=".short_summary_126823" data-hide=".short_summary_button_126823" >Short summary</span> <div class="j-widget__max short_summary short_summary_126823" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Our study includes results of WRF model simulations focused to evaluate sensitivity of local climate in cities on urban surface characteristics. Summer urban heat island is mostly impacted by changes in vegetation cover in city, albedo of roofs and irrigated green roofs. Results are usable also to reveal suitable mitigation strategies for reduction of negative aspects of local climate in cities. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126823" data-show=".short_summary_button_126823">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-141/">Comprehensive Non-targeted Molecular Characterization of Organic Aerosols in the Amazon Rainforest</a> <div class="authors">Denis Leppla, Stefanie Hildmann, Nora Zannoni, Leslie Kremper, Bruna Hollanda, Jonathan Williams, Christopher Pöhlker, Stefan Wolff, Marta Sà, Maria Cristina Solci, Ulrich Pöschl, and Thorsten Hoffmann</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-141,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-141,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126495" data-show=".short_summary_126495" data-hide=".short_summary_button_126495" >Short summary</span> <div class="j-widget__max short_summary short_summary_126495" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The chemical composition of organic particles in the Amazon rainforest was investigated to understand how biogenic and human emissions influence the atmosphere in this unique ecosystem. Seasonal patterns were found where wet seasons were dominated by biogenic compounds from natural sources while dry seasons showed increased fire-related pollutants. These findings reveal how emissions, fires and long-range transport affect atmospheric chemistry, with implications for climate models. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126495" data-show=".short_summary_button_126495">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3553/">On-road vehicle emission measurements show a significant reduction of black carbon and nitrogen oxides emissions in Euro6c and 6d diesel-powered cars</a> <div class="authors">Irena Ježek Brecelj, Asta Gregorič, Lucijan Zgonik, Tjaša Rutar, Matic Ivančič, Balint Alfoldy, Griša Močnik, and Martin Rigler</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3553,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3553,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125070" data-show=".short_summary_125070" data-hide=".short_summary_button_125070" >Short summary</span> <div class="j-widget__max short_summary short_summary_125070" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Following a major car industry scandal involving diesel emissions tests, Europe introduced new testing procedures. However, concerns remained about their effectiveness. Our independent study examined real-world vehicle emissions and revealed encouraging findings: modern diesel cars perform as well as, or even better than, gasoline cars in terms of nitrogen oxides emissions. We found the same pattern for soot particles, challenging common perceptions about diesel's environmental impact. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125070" data-show=".short_summary_button_125070">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-56/">Evolution of tropospheric aerosols over central China during 2010&ndash;2024 as observed by lidar</a> <div class="authors">Dongzhe Jing, Yun He, Zhenping Yin, Kaiming Huang, Fuchao Liu, and Fan Yi</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-56,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-56,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126369" data-show=".short_summary_126369" data-hide=".short_summary_button_126369" >Short summary</span> <div class="j-widget__max short_summary short_summary_126369" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We present the evolution of tropospheric aerosols over Wuhan, central China, from 2010 to 2024. The analysis highlights the long-term aerosol characteristics and separates natural (dust) and anthropogenic (non-dust) contributions. Emission control policies were highly effective during 2010&ndash;2017. However, after 2018, lidar-derived aerosol optical depth (AOD) ceased decreasing and fluctuated, and the decline in PM<sub>2.5</sub> concentration also became slower, possibly due to atmospheric chemistry factors. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126369" data-show=".short_summary_button_126369">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-183/">Particle flux-gradient relationships in the high Arctic: Emission and deposition patterns across three surface types</a> <div class="authors">Theresa Mathes, Heather Guy, John Prytherch, Julia Kojoj, Ian Brooks, Sonja Murto, Paul Zieger, Birgit Wehner, Michael Tjernström, and Andreas Held</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-183,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-183,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126554" data-show=".short_summary_126554" data-hide=".short_summary_button_126554" >Short summary</span> <div class="j-widget__max short_summary short_summary_126554" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The Arctic is warming faster than the global average and aerosol-cloud-sea-ice interactions are crucial for studying its climate system. During the ARTofMELT Expedition 2023, particle and sensible heat fluxes were measured over multiple surfaces. Wide lead surfaces acted as particle sources with the strongest sensible heat fluxes, while closed ice surfaces acted as a particle sink. This study improves methods to measure these interactions, enhancing our understanding of Arctic climate processes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126554" data-show=".short_summary_button_126554">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3743/">Urban Ozone Trends in Europe and the USA (2000&ndash;2021)</a> <div class="authors">Beth Nelson and Will Drysdale</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3743,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3743,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125444" data-show=".short_summary_125444" data-hide=".short_summary_button_125444" >Short summary</span> <div class="j-widget__max short_summary short_summary_125444" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Trends in urban O<sub>3 </sub>and NO<sub>2</sub> across Europe and the USA were explored between 2000&ndash;2021. Many sites in Europe and revealed a slowing in the increase of high O<sub>3</sub> levels though more trends were found to having an increasing O<sub>3</sub> trend in 2015&ndash;2021. The reverse was true in the USA. The change points revealed several sites in Europe, were the second change point in NO<sub>2</sub> switched to a negative trend, occurred in 2020 due to the COVID-19 pandemic, and in some cases this has continued until 2023. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125444" data-show=".short_summary_button_125444">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-457/">Climatology of aerosol pH and its controlling factors at the Melpitz continental background site in central Europe</a> <div class="authors">Vikram Pratap, Christopher J. Hennigan, Bastian Stieger, Andreas Tilgner, Laurent Poulain, Dominik van Pinxteren, Gerald Spindler, and Hartmut Herrmann</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-457,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-457,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126905" data-show=".short_summary_126905" data-hide=".short_summary_button_126905" >Short summary</span> <div class="j-widget__max short_summary short_summary_126905" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> In this work, we characterize trends in aerosol pH and its controlling factors over the period of 2010 &ndash; 2019 at the Melpitz research station in eastern Germany. We find strong trends in aerosol pH and major inorganic species in response to changing emissions. We conduct a detailed thermodynamic analysis of the aerosol system and discuss implications for controlling PM<sub>2.5</sub> in the region. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126905" data-show=".short_summary_button_126905">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-161/">Atmospheric chemistry in East Asia determines the iron solubility of aerosol particles supplied to the North Pacific Ocean</a> <div class="authors">Kohei Sakata, Shotaro Takano, Atsushi Matsuki, Yasuo Takeichi, Hiroshi Tanimoto, Aya Sakaguchi, Minako Kurisu, and Yoshio Takahashi</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-161,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-161,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126527" data-show=".short_summary_126527" data-hide=".short_summary_button_126527" >Short summary</span> <div class="j-widget__max short_summary short_summary_126527" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Deposition of aerosol iron (Fe) into the ocean stimulates primary production and influences the global carbon cycle, although the factors governing the aerosol Fe solubility remain uncertain. Our observations in Japan revealed that both mineral dust and anthropogenic aerosols are significant sources of dissolved Fe, and that atmospheric chemical weathering enhances their solubility. This finding is expected to play a crucial role in estimating the supply of dissolved iron to the ocean. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126527" data-show=".short_summary_button_126527">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4198/">The dilemma in identifying WMO-defined tropopause height using high-resolution radiosondes</a> <div class="authors">Yu Gou, Jian Zhang, Wuke Wang, Kaiming Huang, and Shaodong Zhang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4198,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4198,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126275" data-show=".short_summary_126275" data-hide=".short_summary_button_126275" >Short summary</span> <div class="j-widget__max short_summary short_summary_126275" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The most commonly used tropopause height detection algorithm is based on the World Meteorological Organization (WMO) definition from 1957. However, with the increasing vertical resolution of atmospheric data, this definition has been found to fail in high-resolution radiosonde data. Thus, we propose an improved method to address this issue. This method can effectively bypassing thin inversions while preserving the fine&ndash;scale structure of the tropopause. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126275" data-show=".short_summary_button_126275">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1749/2025/acp-25-1749-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1749/2025/acp-25-1749-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1749/2025/acp-25-1749-2025-avatar-web.png" data-width="600" data-height="455" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1749/2025/">Insights into ozone pollution control in urban areas by decoupling meteorological factors based on machine learning</a> <div class="authors">Yuqing Qiu, Xin Li, Wenxuan Chai, Yi Liu, Mengdi Song, Xudong Tian, Qiaoli Zou, Wenjun Lou, Wangyao Zhang, Juan Li, and Yuanhang Zhang</div> <div class="citation">Atmos. Chem. Phys., 25, 1749&ndash;1763, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1749-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1749-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120508" data-show=".short_summary_120508" data-hide=".short_summary_button_120508" >Short summary</span> <div class="j-widget__max short_summary short_summary_120508" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The chemical reactions of ozone (O<sub>3</sub>) formation are related to meteorology and local emissions.&nbsp;Here, a random forest approach was used to eliminate the effects of meteorological factors (dispersion or transport) on O<sub>3</sub>&nbsp;and its precursors. Variations in the sensitivity of O<sub>3</sub>&nbsp;formation and the apportionment of emission sources were revealed after meteorological normalization. Our results suggest that meteorological variations should be considered when diagnosing O<sub>3</sub>&nbsp;formation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120508" data-show=".short_summary_button_120508">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1749/2025/acp-25-1749-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1749/2025/acp-25-1749-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1749/2025/acp-25-1749-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="455" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1765/2025/acp-25-1765-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1765/2025/acp-25-1765-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1765/2025/acp-25-1765-2025-avatar-web.png" data-width="600" data-height="491" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1765/2025/">Hunting for gravity waves in non-orographic winter storms using 3+ years of regional surface air pressure network and radar observations</a> <div class="authors">Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins</div> <div class="citation">Atmos. Chem. Phys., 25, 1765&ndash;1790, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1765-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1765-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121873" data-show=".short_summary_121873" data-hide=".short_summary_button_121873" >Short summary</span> <div class="j-widget__max short_summary short_summary_121873" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Atmospheric gravity waves (GWs) are air oscillations in which buoyancy is the restoring force, and they may enhance precipitation under certain conditions. We used 3+ seasons of pressure data to identify GWs with wavelengths &le;&thinsp;170&thinsp;km in the Toronto and New York metropolitan areas in the context of snow storms. We found only six GW events during snow storms, suggesting that GWs on those scales are uncommon at the two locations during snow storms and, thus, do not often enhance snowfall. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121873" data-show=".short_summary_button_121873">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1765/2025/acp-25-1765-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1765/2025/acp-25-1765-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1765/2025/acp-25-1765-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="491" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-128/">Bioaerosols as indicators of central Arctic ice nucleating particle sources</a> <div class="authors">Kevin R. Barry, Thomas C. J. Hill, Sonia M. Kreidenweis, Paul J. DeMott, Yutaka Tobo, and Jessie M. Creamean</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-128,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-128,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126473" data-show=".short_summary_126473" data-hide=".short_summary_button_126473" >Short summary</span> <div class="j-widget__max short_summary short_summary_126473" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The Arctic is changing rapidly, and we sought to better understand how their clouds may change in the future through quantifying the natural cloud seeding particles over a year and uncover what they are made of. We wanted to determine their likely sources through concurrent DNA sequencing of airborne bacteria and fungi and found a persistent mixture of local and longer-range sources at all times. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126473" data-show=".short_summary_button_126473">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3705/">Direct radiative forcing of light-absorbing carbonaceous aerosol and the influencing factors over China</a> <div class="authors">Shuangqin Yang, Yusi Liu, Li Chen, Nan Cao, Jing Wang, and Shuang Gao</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3705,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3705,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125364" data-show=".short_summary_125364" data-hide=".short_summary_button_125364" >Short summary</span> <div class="j-widget__max short_summary short_summary_125364" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Black carbon, primary brown carbon, and secondary brown carbon are the leading light-absorbing carbonaceous aerosols (LACs) that contribute significantly to climate change. We modified the GEOS-Chem model to simulate the climate change by LACs based on local emission inventory, and explored the impacts of LACs properties and atmospheric variables on the corresponding DRFs in seven regions of China. The study confirms the warming effect of LACs and deepens our knowledge of their climatic effects. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125364" data-show=".short_summary_button_125364">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-44/">Improving the computation efficiency of a source-oriented chemical mechanism for the simultaneous source apportionment of ozone and secondary particulate pollutants</a> <div class="authors">Qixiang Xu, Fangcheng Su, Ke Wang, Ruiqin Zhang, Qi Ying, and Michael J. Kleeman</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-44,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-44,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126354" data-show=".short_summary_126354" data-hide=".short_summary_button_126354" >Short summary</span> <div class="j-widget__max short_summary short_summary_126354" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This manuscript introduces a novel approach for improving the computational efficiency and scalability of source-oriented chemical mechanisms by simplifying the representation of reactions involving source-tagged species and implementing a source-oriented Euler Backward Iterative (EBI) solver. These advancements reduce simulation times by up to 74 % while maintaining accuracy, offering significant practical benefits for long-term source apportionment studies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126354" data-show=".short_summary_button_126354">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-210/">Observed relationship between drop size distribution and environmental properties in eastern Japan</a> <div class="authors">Takashi Unuma</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-210,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-210,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126595" data-show=".short_summary_126595" data-hide=".short_summary_button_126595" >Short summary</span> <div class="j-widget__max short_summary short_summary_126595" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The relationship between the cloud microphysical processes within convective clouds and their environmental conditions is not fully understood. The conversion process of cloud droplets to raindrops is dominant near the ground, whilst the collisional coalescence of cloud droplets and raindrops dominates above the layer within convective clouds. These processes depend strongly on static stability and are more likely to occur in humid environments. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126595" data-show=".short_summary_button_126595">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1725/2025/acp-25-1725-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1725/2025/acp-25-1725-2025-avatar-thumb80.png" data-caption="© Jet Propulsion Laboratory, California Institute of Technology. Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1725/2025/acp-25-1725-2025-avatar-web.png" data-width="600" data-height="233" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1725/2025/">Quantification of regional net CO<sub>2</sub> flux errors in the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (MIP) ensemble using airborne measurements</a> <div class="authors">Jeongmin Yun, Junjie Liu, Brendan Byrne, Brad Weir, Lesley E. Ott, Kathryn McKain, Bianca C. Baier, Luciana V. Gatti, and Sebastien C. Biraud</div> <div class="citation">Atmos. Chem. Phys., 25, 1725&ndash;1748, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1725-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1725-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_115185" data-show=".short_summary_115185" data-hide=".short_summary_button_115185" >Short summary</span> <div class="j-widget__max short_summary short_summary_115185" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study quantifies errors in regional net surface&ndash;atmosphere CO<sub>2</sub> flux estimates from an inverse model ensemble using airborne CO<sub>2</sub> measurements. Our results show that flux error estimates based on observations significantly exceed those computed from the ensemble spread of flux estimates in regions with high fossil fuel emissions. This finding suggests the presence of systematic biases in the inversion estimates, associated with errors in the fossil fuel emissions common to all models.</p> <!--a=1--> </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_115185" data-show=".short_summary_button_115185">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1725/2025/acp-25-1725-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1725/2025/acp-25-1725-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1725/2025/acp-25-1725-2025-avatar-web.png" data-width="600" data-caption="© Jet Propulsion Laboratory, California Institute of Technology. Distributed under the Creative Commons Attribution 4.0 License." data-height="233" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1685/2025/acp-25-1685-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1685/2025/acp-25-1685-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1685/2025/acp-25-1685-2025-avatar-web.png" data-width="501" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1685/2025/">Evaluation of the WRF-Chem performance for the air pollutants over the United Arab Emirates</a> <div class="authors">Yesobu Yarragunta, Diana Francis, Ricardo Fonseca, and Narendra Nelli</div> <div class="citation">Atmos. Chem. Phys., 25, 1685&ndash;1709, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1685-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1685-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119148" data-show=".short_summary_119148" data-hide=".short_summary_button_119148" >Short summary</span> <div class="j-widget__max short_summary short_summary_119148" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study evaluates the Weather Research and Forecasting model with chemistry (WRF-Chem) in simulating air pollutants over the United Arab Emirates using satellite observations. The model accurately captured ozone and carbon monoxide but showed discrepancies for nitrogen dioxide. WRF-Chem was moderately correlated with aerosol optical depth observations and performed well in simulating meteorological parameters, demonstrating its suitability for atmospheric modelling. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119148" data-show=".short_summary_button_119148">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1685/2025/acp-25-1685-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1685/2025/acp-25-1685-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1685/2025/acp-25-1685-2025-avatar-web.png" data-width="501" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1711/2025/acp-25-1711-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1711/2025/acp-25-1711-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1711/2025/acp-25-1711-2025-avatar-web.png" data-width="600" data-height="307" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1711/2025/">Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies</a> <div class="authors">Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang</div> <div class="citation">Atmos. Chem. Phys., 25, 1711&ndash;1724, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1711-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1711-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121339" data-show=".short_summary_121339" data-hide=".short_summary_button_121339" >Short summary</span> <div class="j-widget__max short_summary short_summary_121339" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Dust days during the spring seasons of 2015&ndash;2023 in North China were classified into Mongolian cyclone and cold high types depending on the presence of the Mongolian cyclone. The Mongolian cyclone type led to more frequent and severe dust weather, indicated by PM<sub>10</sub> concentrations. To comprehensively forecast the two types of dust weather, a common predictor was established based on 500 hPa anomalous circulation systems, offering insights for dust weather forecasting and climate prediction. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121339" data-show=".short_summary_button_121339">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1711/2025/acp-25-1711-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1711/2025/acp-25-1711-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1711/2025/acp-25-1711-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="307" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-47/">Accelerated impact of airborne glaciogenic seeding of stratiform clouds by turbulence</a> <div class="authors">Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-47,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-47,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126357" data-show=".short_summary_126357" data-hide=".short_summary_button_126357" >Short summary</span> <div class="j-widget__max short_summary short_summary_126357" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Several recent studies have reported complete cloud glaciation induced by airborne-based glaciogenic cloud seeding over plains. Since turbulence is an important factor to maintain clouds in mixed-phase, it is hypothesized that turbulence may have an impact on the seeding effect. This hypothesis is evident in the present study, which shows turbulence can accelerate the impact of airborne glaciogenic seeding of stratiform clouds. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126357" data-show=".short_summary_button_126357">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-225/">A Diagnostic Intercomparison of Modeled Ozone Dry Deposition Over North America and Europe Using AQMEII4 Regional-Scale Simulations</a> <div class="authors">Christian Hogrefe, Stefano Galmarini, Paul A. Makar, Ioannis Kioutsioukis, Olivia E. Clifton, Ummugulsum Alyuz, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Butler, Philip Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camanyo, Jonathan E. Pleim, Young-Hee Ryu, Roberto San Jose, Martijn Schaap, Donna B. Schwede, and Ranjeet Sokhi</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-225,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-225,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126612" data-show=".short_summary_126612" data-hide=".short_summary_button_126612" >Short summary</span> <div class="j-widget__max short_summary short_summary_126612" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Performed under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in regional-scale models. The results also strongly suggest that improvement and harmonization of the representation of land use in these models would serve the community in their future development efforts. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126612" data-show=".short_summary_button_126612">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4178/">Diagnosing O<sub>3</sub> formation and O<sub>3</sub>-NO<sub>X</sub>-VOC sensitivity in a heavily polluted megacity of central China: A multi-method systematic evaluation over the warm seasons from 2019 to 2021</a> <div class="authors">Shijie Yu, Hongyu Liu, Hui Wang, Fangcheng Su, Beibei Wang, Minghao Yuan, Kunao Song, Zixian Wang, Daoqing Xu, and Ruiqin Zhang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4178,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4178,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126249" data-show=".short_summary_126249" data-hide=".short_summary_button_126249" >Short summary</span> <div class="j-widget__max short_summary short_summary_126249" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates O<sub>3</sub> pollution in Zhengzhou. The results show that traffic and industrial emissions are the main sources of O<sub>3</sub> and its precursors. The study highlights the significant impact of local emissions and the role of atmospheric free radicals in ozone formation. Reducing emissions of aromatics and alkenes can effectively reduce ozone pollution. These findings stress the importance of controlling traffic and industrial sources to mitigate O<sub>3</sub> pollution. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126249" data-show=".short_summary_button_126249">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-243/">Fertilization-driven Pulses of Atmospheric Nitrogen Dioxide Complicate Air Pollution in Early Spring over North China</a> <div class="authors">Tian Feng, Guohui Li, Shuyu Zhao, Naifang Bei, Xin Long, Yuepeng Pan, Yu Song, Ruonan Wang, Xuexi Tie, and Luisa Molina</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-243,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-243,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126639" data-show=".short_summary_126639" data-hide=".short_summary_button_126639" >Short summary</span> <div class="j-widget__max short_summary short_summary_126639" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Impacts of agricultural fertilization on nitrogen oxide and air quality are becoming more pronounced with continuous reductions in fossil fuel sources in China. We report that atmospheric nitrogen dioxide pulses driven by agricultural fertilizations largely complicate air pollution in North China, highlighting the necessity of agricultural emission control. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126639" data-show=".short_summary_button_126639">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1659/2025/acp-25-1659-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1659/2025/acp-25-1659-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1659/2025/acp-25-1659-2025-avatar-web.png" data-width="600" data-height="238" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1659/2025/">Climate variability can outweigh the influence of climate mean changes for extreme precipitation under global warming</a> <div class="authors">Kalle Nordling, Nora L. S. Fahrenbach, and Bjørn H. Samset</div> <div class="citation">Atmos. Chem. Phys., 25, 1659&ndash;1684, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1659-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1659-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119343" data-show=".short_summary_119343" data-hide=".short_summary_button_119343" >Short summary</span> <div class="j-widget__max short_summary short_summary_119343" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> People experience daily weather, not changes in monthly averages. We investigate the likelihood of events, which occurred once every 10 years in the pre-industrial era. We analyze how summertime precipitation and daily maximum temperature events evolve. Our focus is on understanding the role of day-to-day variability in the change in the number of extreme weather days. We find that in most regions, a change in variability is the primary driver for change in summertime extreme precipitation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119343" data-show=".short_summary_button_119343">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1659/2025/acp-25-1659-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1659/2025/acp-25-1659-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1659/2025/acp-25-1659-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="238" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1617/2025/acp-25-1617-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1617/2025/acp-25-1617-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1617/2025/acp-25-1617-2025-avatar-web.png" data-width="600" data-height="507" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1617/2025/">Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model</a> <div class="authors">Astrid B. Gjelsvik, Robert O. David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo</div> <div class="citation">Atmos. Chem. Phys., 25, 1617&ndash;1637, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1617-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1617-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121241" data-show=".short_summary_121241" data-hide=".short_summary_button_121241" >Short summary</span> <div class="j-widget__max short_summary short_summary_121241" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Ice formation in clouds has a substantial impact on radiation and precipitation and must be realistically simulated in order to understand present and future Arctic climate. Rare aerosols known as ice-nucleating particles can play an important role in cloud ice formation, but their representation in global climate models is not well suited for the Arctic. In this study, the simulation of cloud phase is improved when the representation of these particles is constrained by Arctic observations.</p> <!--a=1--> </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121241" data-show=".short_summary_button_121241">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1617/2025/acp-25-1617-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1617/2025/acp-25-1617-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1617/2025/acp-25-1617-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="507" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1603/2025/acp-25-1603-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1603/2025/acp-25-1603-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1603/2025/acp-25-1603-2025-avatar-web.png" data-width="600" data-height="312" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1603/2025/">Fluorescence properties of long-range-transported smoke: insights from five-channel lidar observations over Moscow during the 2023 wildfire season</a> <div class="authors">Igor Veselovskii, Mikhail Korenskiy, Nikita Kasianik, Boris Barchunov, Qiaoyun Hu, Philippe Goloub, and Thierry Podvin</div> <div class="citation">Atmos. Chem. Phys., 25, 1603&ndash;1615, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1603-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1603-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123373" data-show=".short_summary_123373" data-hide=".short_summary_button_123373" >Short summary</span> <div class="j-widget__max short_summary short_summary_123373" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> A fluorescence lidar was used to study transported Canadian smoke in May&ndash;September 2023. The fluorescence measurements were taken at five wavelengths. The results revealed that fluorescence capacity increases with altitude, suggesting a higher concentration of organic compounds in the upper troposphere and lower stratosphere than in the lower troposphere. The fluorescence spectra peaked in the 513 and 560 nm channels in smoke layers but decreased with wavelength in urban aerosols. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123373" data-show=".short_summary_button_123373">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1603/2025/acp-25-1603-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1603/2025/acp-25-1603-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1603/2025/acp-25-1603-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="312" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1639/2025/acp-25-1639-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1639/2025/acp-25-1639-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1639/2025/acp-25-1639-2025-avatar-web.png" data-width="600" data-height="168" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1639/2025/">Lidar estimates of birch pollen number, mass, and CCN-related concentrations</a> <div class="authors">Maria Filioglou, Petri Tiitta, Xiaoxia Shang, Ari Leskinen, Pasi Ahola, Sanna Pätsi, Annika Saarto, Ville Vakkari, Uula Isopahkala, and Mika Komppula</div> <div class="citation">Atmos. Chem. Phys., 25, 1639&ndash;1657, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1639-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1639-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123671" data-show=".short_summary_123671" data-hide=".short_summary_button_123671" >Short summary</span> <div class="j-widget__max short_summary short_summary_123671" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Every year a vast number of people experience allergic reactions due to exposure to airborne pollen. These symptoms are concentration dependent; thus accurate information about the pollen load in the atmosphere is essential. Moreover, pollen grains and fragments of it are likely to contribute to cloud processes and suppress precipitation. Here, we estimate the concentration and cloud-relevant parameters of birch pollen in the atmosphere using observations from a PollyXT and a CL61 ceilometer. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123671" data-show=".short_summary_button_123671">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1639/2025/acp-25-1639-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1639/2025/acp-25-1639-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1639/2025/acp-25-1639-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="168" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-203/">Tropical cirrus evolution in a km-scale model with improved ice microphysics</a> <div class="authors">Blaž Gasparini, Rachel Atlas, Aiko Voigt, Martina Krämer, and Peter N. Blossey</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-203,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-203,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126587" data-show=".short_summary_126587" data-hide=".short_summary_button_126587" >Short summary</span> <div class="j-widget__max short_summary short_summary_126587" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Tropical cirrus clouds, especially their evolution, are poorly understood, contributing to uncertainty in climate projections. We address this by using novel tracers in a cloud-resolving model to track the life cycle of cirrus clouds, providing insights into cloud formation, ice crystal evolution, and radiative effects. We also improve the model's cloud microphysics with a simple, computationally efficient approach that can be applied to other models. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126587" data-show=".short_summary_button_126587">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-80/">An observational estimate of Arctic UV-absorbing aerosol direct radiative forcing on instantaneous and climatic scales</a> <div class="authors">Blake T. Sorenson, Jianglong Zhang, Jeffrey S. Reid, and Peng Xian</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-80,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-80,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126405" data-show=".short_summary_126405" data-hide=".short_summary_button_126405" >Short summary</span> <div class="j-widget__max short_summary short_summary_126405" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Plumes of wildfire smoke in the Arctic affect the Arctic radiative budget. Using a neural network and observations from satellite-based sensors, we analyzed the direct radiative forcing of smoke particles on the Arctic climate and estimated long-term forcing trends. Strong negative trends in aerosol direct radiative forcing were found in northern Russia and Canada, with positive trends found over parts of the Arctic Ocean. Overall, smoke plumes may act to counter future Arctic warming. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126405" data-show=".short_summary_button_126405">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-157/">Characteristics of Boundary Layer Turbulence Energy Budget in Shenzhen Area Based on Coherent Wind Lidar Observations</a> <div class="authors">Jinhong Xian, Zongxu Qiu, Huayan Rao, Zhigang Cheng, Xiaoling Lin, Chao Lu, Honglong Yang, and Ning Zhang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-157,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-157,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126520" data-show=".short_summary_126520" data-hide=".short_summary_button_126520" >Short summary</span> <div class="j-widget__max short_summary short_summary_126520" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We studied how turbulence kinetic energy (TKE) changes in the lower atmosphere over Shenzhen, focusing on its role in weather and climate. Using advanced wind lidar technology, we tracked how TKE varies with height and across seasons. We found that heat near the ground drives turbulence, while wind effects become stronger higher up. Our results help improve weather and climate models by providing better data on how turbulence behaves in the atmosphere, aiding understanding of climate change. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126520" data-show=".short_summary_button_126520">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-159/">Global CH<sub>4</sub> Fluxes Derived from JAXA/GOSAT Lower Tropospheric Partial Column Data and the CTE-CH<sub>4</sub> Atmospheric Inverse Model</a> <div class="authors">Aki Tsuruta, Akihiko Kuze, Kei Shiomi, Fumie Kataoka, Nobuhiro Kikuchi, Tuula Aalto, Leif Backman, Ella Kivimäki, Maria K. Tenkanen, Kathryn McKain, Omaira E. García, Frank Hase, Rigel Kivi, Isamu Morino, Hirofumi Ohyama, David F. Pollard, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, Minqiang Zhou, and Hiroshi Suto</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-159,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-159,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126524" data-show=".short_summary_126524" data-hide=".short_summary_button_126524" >Short summary</span> <div class="j-widget__max short_summary short_summary_126524" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Satellite data bring invaluable information about greenhouse gas emissions globally. We found that a new type of data from the Greenhouse Gas Observing Satellite (GOSAT), which contains information about methane in the lowest layer of Earth's atmosphere, could provide reliable estimates of recent methane emissions when combined with atmospheric modelling. Therefore, the use of such data is encouraged to improve emission quantification methods and advance our understanding of methane cycles. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126524" data-show=".short_summary_button_126524">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3825/">Impact of volcanic sulfate aerosols on the stratospheric heating: implications on the Quasi-Biennial Oscillation</a> <div class="authors">Prashant Chavan, Suvarna Fadnavis, Anton Laakso, Jean-Paul Vernier, Simone Tilmes, and Rolf Müller</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3825,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3825,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125570" data-show=".short_summary_125570" data-hide=".short_summary_button_125570" >Short summary</span> <div class="j-widget__max short_summary short_summary_125570" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Our simulations with volcanoes, when compared without volcanoes, show that volcanic aerosol precursors enter the tropical stratosphere, propagating upward and enhancing sulphate aerosol and heating. This stratospheric heating caused by the volcanoes reduces the amplitude of the QBO and disrupts its phases. Since QBO also modulates tropical convection and weather, we suggest including volcanic emissions and the QBO in the weather prediction model for a better forecast. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125570" data-show=".short_summary_button_125570">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-374/">A machine learning-based perspective on deep convective clouds and their organisation in 3D. Part I: Influence of deep convective cores on the cloud life-cycle</a> <div class="authors">Sarah Brüning and Holger Tost</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-374,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-374,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126808" data-show=".short_summary_126808" data-hide=".short_summary_button_126808" >Short summary</span> <div class="j-widget__max short_summary short_summary_126808" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study analyses the temporal variability and life-cycle of spatially organised convective clouds, frequently associated with severe weather. We derive the data from a machine learning-based 3D extrapolation of 2D satellite data. The results highlight the impact of convective organisation on horizontal and vertical cloud properties and a prolonged cloud life-cycle. Overall, our findings emphasise a more intense activity over land but enhanced seasonal changes over the ocean. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126808" data-show=".short_summary_button_126808">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-376/">A machine learning-based perspective on deep convective clouds and their organisation in 3D. Part II: Spatial-temporal patterns of convective organisation</a> <div class="authors">Sarah Brüning and Holger Tost</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-376,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-376,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126810" data-show=".short_summary_126810" data-hide=".short_summary_button_126810" >Short summary</span> <div class="j-widget__max short_summary short_summary_126810" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The connection between convective cloud organisation and severe weather demands a robust characterisation of hazardous clouds. This study sets on to investigate spatio-temporal patterns and regional hotspots of convective organisation using machine learning-based 3D data and combining different organisation indices. While limitations arise due to overlapping effects of isolated and clustered convection, we emphasise the impact of a surface-specific seasonality that depends on the hemisphere. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126810" data-show=".short_summary_button_126810">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-385/">Ozonolysis of primary biomass burning organic aerosol particles: Insights into reactivity and phase state</a> <div class="authors">Sophie Bogler, Jun Zhang, Rico K. Y. Cheung, Kun Li, Andre S. H. Prevot, Imad El Haddad, and David M. Bell</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-385,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-385,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126820" data-show=".short_summary_126820" data-hide=".short_summary_button_126820" >Short summary</span> <div class="j-widget__max short_summary short_summary_126820" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Authentic aerosols emitted from residential wood stoves and open burning processes are only slightly oxidized by ozone in the atmosphere. Under dry conditions the reaction does not proceed to completion, while under high humidity conditions the reactivity proceeds further. These results indicate the reactivity with ozone is likely impacted by aerosol phase state (e.g. aerosol viscosity). </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126820" data-show=".short_summary_button_126820">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-395/">Siberian wildfire smoke observations from space-based multi-angle imaging: A multi-year regional analysis of smoke particle properties, their evolution, and comparisons with North American boreal fire plumes</a> <div class="authors">Katherine T. Junghenn Noyes and Ralph A. Kahn</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-395,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-395,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126831" data-show=".short_summary_126831" data-hide=".short_summary_button_126831" >Short summary</span> <div class="j-widget__max short_summary short_summary_126831" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> With observations from NASA&rsquo;s Multi-Angle Imaging Spectroradiometer (MISR) satellite instrument, we can constrain wildfire plume heights, smoke age, and particle size, shape, and light-absorption properties. We study over 3,600 wildfire plumes across Siberia by statistically comparing the MISR results to observations of fire strength, land cover type, and meteorology. We then stratify plumes by land cover type and infer the dominant aerosol aging mechanisms among different plume types. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126831" data-show=".short_summary_button_126831">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1513/2025/acp-25-1513-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1513/2025/acp-25-1513-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1513/2025/acp-25-1513-2025-avatar-web.png" data-width="600" data-height="573" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1513/2025/">Small emission sources in aggregate disproportionately account for a large majority of total methane emissions from the US oil and gas sector</a> <div class="authors">James P. Williams, Mark Omara, Anthony Himmelberger, Daniel Zavala-Araiza, Katlyn MacKay, Joshua Benmergui, Maryann Sargent, Steven C. Wofsy, Steven P. Hamburg, and Ritesh Gautam</div> <div class="citation">Atmos. Chem. Phys., 25, 1513&ndash;1532, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1513-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1513-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120158" data-show=".short_summary_120158" data-hide=".short_summary_button_120158" >Short summary</span> <div class="j-widget__max short_summary short_summary_120158" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We utilize peer-reviewed facility-level oil and gas methane emission rate data gathered in prior work to estimate the relative contributions of methane sources emitting at different emission rates in the United States. We find that the majority of total methane emissions in the US oil and gas sector stem from a large number of small sources emitting in aggregate, corroborating findings from several other studies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120158" data-show=".short_summary_button_120158">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1513/2025/acp-25-1513-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1513/2025/acp-25-1513-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1513/2025/acp-25-1513-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="573" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1545/2025/acp-25-1545-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1545/2025/acp-25-1545-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1545/2025/acp-25-1545-2025-avatar-web.png" data-width="600" data-height="235" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1545/2025/">Biomass burning emission analysis based on MODIS aerosol optical depth and AeroCom multi-model simulations: implications for model constraints and emission inventories</a> <div class="authors">Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes W. Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang</div> <div class="citation">Atmos. Chem. Phys., 25, 1545&ndash;1567, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1545-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1545-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120350" data-show=".short_summary_120350" data-hide=".short_summary_button_120350" >Short summary</span> <div class="j-widget__max short_summary short_summary_120350" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We compared smoke plume simulations from 11 global models to each other and to satellite smoke amount observations aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss rate assumptions vary enormously among models, causing uncertainties that require systematic in situ measurements to resolve.</p> <!--a=1--><!--a=1--><!--a=1--> </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120350" data-show=".short_summary_button_120350">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1545/2025/acp-25-1545-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1545/2025/acp-25-1545-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1545/2025/acp-25-1545-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="235" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1533/2025/acp-25-1533-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1533/2025/acp-25-1533-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1533/2025/acp-25-1533-2025-avatar-web.png" data-width="600" data-height="566" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1533/2025/">Model analysis of biases in the satellite-diagnosed aerosol effect on the cloud liquid water path</a> <div class="authors">Harri Kokkola, Juha Tonttila, Silvia M. Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo Henrik Virtanen, Pekka Kolmonen, and Antti Arola</div> <div class="citation">Atmos. Chem. Phys., 25, 1533&ndash;1543, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1533-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1533-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121441" data-show=".short_summary_121441" data-hide=".short_summary_button_121441" >Short summary</span> <div class="j-widget__max short_summary short_summary_121441" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Understanding how atmospheric aerosols affect clouds is a scientific challenge. One question is how aerosols affects the amount of cloud water. We used a cloud-scale model to study these effects on marine clouds. The study showed that variations in cloud properties and instrument noise can cause bias in satellite-derived cloud water content. However, our results suggest that for similar weather conditions with well-defined aerosol concentrations, satellite data can reliably track these effects. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121441" data-show=".short_summary_button_121441">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1533/2025/acp-25-1533-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1533/2025/acp-25-1533-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1533/2025/acp-25-1533-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="566" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1587/2025/acp-25-1587-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1587/2025/acp-25-1587-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1587/2025/acp-25-1587-2025-avatar-web.png" data-width="600" data-height="467" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1587/2025/">Distinct effects of fine and coarse aerosols on microphysical processes of shallow-precipitation systems in summer over southern China</a> <div class="authors">Fengjiao Chen, Yuanjian Yang, Lu Yu, Yang Li, Weiguang Liu, Yan Liu, and Simone Lolli</div> <div class="citation">Atmos. Chem. Phys., 25, 1587&ndash;1601, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1587-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1587-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121944" data-show=".short_summary_121944" data-hide=".short_summary_button_121944" >Short summary</span> <div class="j-widget__max short_summary short_summary_121944" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The microphysical mechanisms of precipitation responsible for the varied impacts of aerosol particles on shallow precipitation remain unclear. This study reveals that coarse aerosol particles invigorate shallow rainfall through enhanced coalescence processes, whereas fine aerosol particles suppress shallow rainfall through intensified microphysical breaks. These impacts are independent of thermodynamic environments but are more significant in low-humidity conditions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121944" data-show=".short_summary_button_121944">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1587/2025/acp-25-1587-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1587/2025/acp-25-1587-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1587/2025/acp-25-1587-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="467" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1569/2025/acp-25-1569-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1569/2025/acp-25-1569-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1569/2025/acp-25-1569-2025-avatar-web.png" data-width="600" data-height="597" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1569/2025/">Impacts of meteorology and emission reductions on haze pollution during the lockdown in the North China Plain</a> <div class="authors">Lang Liu, Xin Long, Yi Li, Zengliang Zang, Fengwen Wang, Yan Han, Zhier Bao, Yang Chen, Tian Feng, and Jinxin Yang</div> <div class="citation">Atmos. Chem. Phys., 25, 1569&ndash;1585, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1569-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1569-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122871" data-show=".short_summary_122871" data-hide=".short_summary_button_122871" >Short summary</span> <div class="j-widget__max short_summary short_summary_122871" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study uses WRF-Chem to assess how meteorological conditions and emission reductions affected fine particulate matter (PM<sub>2.5</sub>) in the North China Plain (NCP). It highlights regional disparities: in the northern NCP, adverse weather negated emission reduction effects. In contrast, the southern NCP featured a PM<sub>2.5</sub> decrease due to favorable weather and emission reductions. The research highlighted the interaction between emissions, meteorology, and PM<sub>2.5</sub>. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122871" data-show=".short_summary_button_122871">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1569/2025/acp-25-1569-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1569/2025/acp-25-1569-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1569/2025/acp-25-1569-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="597" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3558/">Impacts of aerosol-radiation and aerosol-cloud interactions on a short-term heavy rainfall event &ndash; A case study in the Guanzhong Basin, China</a> <div class="authors">Naifang Bei, Bo Xiao, Ruonan Wang, Yuning Yang, Lang Liu, Yongming Han, and Guohui Li</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3558,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3558,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125087" data-show=".short_summary_125087" data-hide=".short_summary_button_125087" >Short summary</span> <div class="j-widget__max short_summary short_summary_125087" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study uses a cloud-resolving model to examine how aerosols influence a mesoscale convective system (MCS) in central China via aerosol-radiation (ARIs) and aerosol-cloud interactions (ACIs). Without ARIs, added aerosols don&rsquo;t significantly affect precipitation due to cloud competition for moisture. ARIs can stabilize or enhance convection. High aerosol levels lead to a combined ARI and ACI effect that greatly reduces precipitation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125087" data-show=".short_summary_button_125087">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-163/">Prior heterogeneous ice nucleation events increase likelihood of homogeneous freezing during the evolution of synoptic cirrus</a> <div class="authors">Kasper Juurikkala, Christina J. Williamson, Karl D. Froyd, Jonathan Dean-Day, and Ari Laaksonen</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-163,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-163,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126529" data-show=".short_summary_126529" data-hide=".short_summary_button_126529" >Short summary</span> <div class="j-widget__max short_summary short_summary_126529" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study uses UCLALES-SALSA simulations to investigate synoptic cirrus clouds from NASA&rsquo;s MACPEX campaign. Results show that prior heterogeneous ice nucleation depletes ice nuclei, creating conditions for subsequent homogeneous freezing. The findings highlight limitations of ice residual analysis in capturing cirrus evolution and provide insights into aerosol-cloud interactions critical to atmospheric and climate processes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126529" data-show=".short_summary_button_126529">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-368/">Global Patterns and Trends in Ground-Level Ozone Chemical Formation Regimes from 1996 to 2022</a> <div class="authors">Yu Tian, Siyi Wang, and Xiaomeng Jin</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-368,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-368,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126799" data-show=".short_summary_126799" data-hide=".short_summary_button_126799" >Short summary</span> <div class="j-widget__max short_summary short_summary_126799" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We leverage over two-decade ground-based ozone observations alongside space-based observations of ozone precursors (NO<sub>2 </sub>and formaldehyde) to study the long-term evolution in ozone chemical regimes across global source regions. We find a global trend towards NO<sub>x</sub>-limited regimes, supported by increasing satellite-based HCHO/NO<sub>2</sub> and a diminishing ozone weekend effect. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126799" data-show=".short_summary_button_126799">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1449/2025/acp-25-1449-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1449/2025/acp-25-1449-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1449/2025/acp-25-1449-2025-avatar-web.png" data-width="600" data-height="588" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Feb 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1449/2025/">Reactive nitrogen in and around the northeastern and mid-Atlantic US: sources, sinks, and connections with ozone</a> <div class="authors">Min Huang, Gregory R. Carmichael, Kevin W. Bowman, Isabelle De Smedt, Andreas Colliander, Michael H. Cosh, Sujay V. Kumar, Alex B. Guenther, Scott J. Janz, Ryan M. Stauffer, Anne M. Thompson, Niko M. Fedkin, Robert J. Swap, John D. Bolten, and Alicia T. Joseph</div> <div class="citation">Atmos. Chem. Phys., 25, 1449&ndash;1476, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1449-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1449-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118267" data-show=".short_summary_118267" data-hide=".short_summary_button_118267" >Short summary</span> <div class="j-widget__max short_summary short_summary_118267" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We use model simulations along with multiplatform, multidisciplinary observations and a range of analysis methods to estimate and understand the distributions, temporal changes, and impacts of reactive nitrogen and ozone over the most populous US region that has undergone significant environmental changes. Deposition, biogenic emissions, and extra-regional sources have been playing increasingly important roles in controlling pollutant budgets in this area as local anthropogenic emissions drop. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118267" data-show=".short_summary_button_118267">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1449/2025/acp-25-1449-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1449/2025/acp-25-1449-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1449/2025/acp-25-1449-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="588" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-221/">The importance of stratocumulus clouds for projected warming patterns and circulation changes</a> <div class="authors">Philipp Breul, Paulo Ceppi, and Peer Nowack</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-221,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-221,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126608" data-show=".short_summary_126608" data-hide=".short_summary_button_126608" >Short summary</span> <div class="j-widget__max short_summary short_summary_126608" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We explore how Pacific low-level clouds influence projections of regional climate change by adjusting a climate model to enhance low cloud response to surface temperatures. We find significant changes in projected warming patterns and circulation changes, under increased CO<sub>2</sub> conditions. Our findings are supported by similar relationships across state-of-the-art climate models. These results highlight the importance of accurately representing clouds for predicting regional climate change impacts. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126608" data-show=".short_summary_button_126608">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3926/">Evaluating urban methane emissions and their attributes in a megacity, Osaka, Japan, via mobile and eddy covariance measurements</a> <div class="authors">Masahito Ueyama, Taku Umezawa, Yukio Terao, Mark Lunt, and James Lawrence France</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3926,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3926,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125746" data-show=".short_summary_125746" data-hide=".short_summary_button_125746" >Short summary</span> <div class="j-widget__max short_summary short_summary_125746" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Methane (CH<sub>4</sub>) emissions were measured in Megacity Osaka, Japan, using mobile and eddy covariance methods. The CH<sub>4</sub> emissions were much higher than those reported in local inventories, with natural gas contributing up to 74 % of the emissions. Several CH<sub>4</sub> sources not accounted for in current inventories were identified. These results emphasize the need for more comprehensive emissions tracking in urban areas to enhance climate change mitigation efforts. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125746" data-show=".short_summary_button_125746">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-349/">Current-use and organochlorine pesticides' multi-annual trends in air in Central Europe: primary and unidentified secondary sources</a> <div class="authors">Ludovic Mayer, Lisa Melymuk, Adela Holubová Šmejkalová, Jiři Kalina, Petr Kukučka, Jakub Martiník, Petra Přibylová, Petr Šenk, Pourya Shahpoury, and Gerhard Lammel</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-349,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-349,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126771" data-show=".short_summary_126771" data-hide=".short_summary_button_126771" >Short summary</span> <div class="j-widget__max short_summary short_summary_126771" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study explored pesticides in the air at a rural site in the Czech Republic. Older pesticides, banned decades ago, are still found due to their release from soils, especially in summer. While levels of many have declined over time, some show new emissions from local or distant sources. Newer pesticides peaked during application seasons but declined after bans, though traces lingered. These findings highlight the lasting impacts of pesticide use and the importance of regulations. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126771" data-show=".short_summary_button_126771">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Feb 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4135/">The effect of organic nucleation on the indirect radiative forcing with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)</a> <div class="authors">Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Stephen R. Arnold, Leighton A. Regayre, Duseong S. Jo, Wenxiang Shen, Hao Wang, Man Yue, Jingyi Wang, Wenxin Zhang, and Ken S. Carslaw</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4135,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4135,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126183" data-show=".short_summary_126183" data-hide=".short_summary_button_126183" >Short summary</span> <div class="j-widget__max short_summary short_summary_126183" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study uses a global chemistry-climate model to investigate how new particle formation (NPF) from highly oxygenated organic molecules (HOMs) contributes to cloud condensation nuclei (CCN) in both preindustrial (PI) and present-day (PD) environments, and its impact on aerosol indirect radiative forcing. The findings highlight the crucial role of biogenic emissions in climate change, providing new insights for carbon-neutral scenarios and enhancing understanding of aerosol-cloud interactions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126183" data-show=".short_summary_button_126183">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1353/2025/acp-25-1353-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1353/2025/acp-25-1353-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1353/2025/acp-25-1353-2025-avatar-web.png" data-width="600" data-height="446" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 31 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1353/2025/">Evaluation of biases in mid-to-high-latitude surface snowfall and cloud phase in ERA5 and CMIP6 using satellite observations</a> <div class="authors">Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, Haochi Che, and Trude Storelvmo</div> <div class="citation">Atmos. Chem. Phys., 25, 1353&ndash;1383, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1353-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1353-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118791" data-show=".short_summary_118791" data-hide=".short_summary_button_118791" >Short summary</span> <div class="j-widget__max short_summary short_summary_118791" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This article compares the occurrence of supercooled liquid-containing clouds (sLCCs) and their link to surface snowfall in CloudSat&ndash;CALIPSO, ERA5, and the CMIP6 models. Significant discrepancies were found, with ERA5 and CMIP6 consistently overestimating sLCC and snowfall frequency. This bias is likely due to cloud microphysics parameterization. This conclusion has implications for accurately representing cloud phase and snowfall in future climate projections.</p> <!--a=1--><!--a=1--><!--a=1--> </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118791" data-show=".short_summary_button_118791">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1353/2025/acp-25-1353-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1353/2025/acp-25-1353-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1353/2025/acp-25-1353-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="446" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1333/2025/acp-25-1333-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1333/2025/acp-25-1333-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1333/2025/acp-25-1333-2025-avatar-web.png" data-width="600" data-height="352" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 31 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1333/2025/">Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect</a> <div class="authors">Alexandros Milousis, Klaus Klingmüller, Alexandra P. Tsimpidi, Jasper F. Kok, Maria Kanakidou, Athanasios Nenes, and Vlassis A. Karydis</div> <div class="citation">Atmos. Chem. Phys., 25, 1333&ndash;1351, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1333-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1333-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120512" data-show=".short_summary_120512" data-hide=".short_summary_button_120512" >Short summary</span> <div class="j-widget__max short_summary short_summary_120512" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates the impact of dust on the global radiative effect of nitrate aerosols. The results indicate both positive and negative regional shortwave and longwave radiative effects due to aerosol&ndash;radiation interactions and cloud adjustments. The global average net RE<sub>ari</sub> and RE<sub>aci</sub> of nitrate aerosols are &minus;0.11 and +0.17 W m<sup>&minus;2</sup>, respectively, mainly affecting the shortwave spectrum. Sensitivity simulations evaluated the influence of mineral dust composition and emissions on the results. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120512" data-show=".short_summary_button_120512">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1333/2025/acp-25-1333-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1333/2025/acp-25-1333-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1333/2025/acp-25-1333-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="352" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1401/2025/acp-25-1401-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1401/2025/acp-25-1401-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1401/2025/acp-25-1401-2025-avatar-web.png" data-width="600" data-height="301" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 31 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1401/2025/">Atmospheric oxidation of 1,3-butadiene: influence of seed aerosol acidity and relative humidity on SOA composition and the production of air toxic compounds</a> <div class="authors">Mohammed Jaoui, Klara Nestorowicz, Krzysztof J. Rudzinski, Michael Lewandowski, Tadeusz E. Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, and Rafal Szmigielski</div> <div class="citation">Atmos. Chem. Phys., 25, 1401&ndash;1432, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1401-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1401-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121646" data-show=".short_summary_121646" data-hide=".short_summary_button_121646" >Short summary</span> <div class="j-widget__max short_summary short_summary_121646" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Recent research has established the contribution of 1,3-butadiene (13BD) to organic aerosol formation with negative implications for urban air quality. Health effect studies have focused on whole particulate matter, but compounds responsible for adverse health effects remain uncertain. This study provides the effect of relative humidity and seed aerosol acidity on the chemical composition of aerosol formed from 13BD photooxidation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121646" data-show=".short_summary_button_121646">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1401/2025/acp-25-1401-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1401/2025/acp-25-1401-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1401/2025/acp-25-1401-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="301" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1433/2025/acp-25-1433-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1433/2025/acp-25-1433-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1433/2025/acp-25-1433-2025-avatar-web.png" data-width="600" data-height="310" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 31 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1433/2025/">Hemispheric asymmetry in recent stratospheric age of air changes</a> <div class="authors">Kimberlee Dubé, Susann Tegtmeier, Felix Ploeger, and Kaley A. Walker</div> <div class="citation">Atmos. Chem. Phys., 25, 1433&ndash;1447, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1433-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1433-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120907" data-show=".short_summary_120907" data-hide=".short_summary_button_120907" >Short summary</span> <div class="j-widget__max short_summary short_summary_120907" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The transport rate of air in the stratosphere has changed in response to human emissions of greenhouse gases and ozone-depleting substances. This transport rate can be approximated using measurements of long-lived trace gases. We use observations and model results to derive anomalies and trends in the mean rate of stratospheric air transport. We find that air in the Northern Hemisphere aged by up to 0.3 years per decade relative to air in the Southern Hemisphere over 2004&ndash;2017. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120907" data-show=".short_summary_button_120907">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1433/2025/acp-25-1433-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1433/2025/acp-25-1433-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1433/2025/acp-25-1433-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="310" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 31 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-116/">Bromine and Iodine in Atmospheric Mercury Oxidation</a> <div class="authors">Svend L. Bager, Luna Zamok, Stephan P. A. Sauer, and Matthew S. Johnson</div> <div class="citation">External preprint server, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.48550/arXiv.2401.10053,</nobr><span class="hide-on-desktop">https://doi.org/10.48550/arXiv.2401.10053,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126457" data-show=".short_summary_126457" data-hide=".short_summary_button_126457" >Short summary</span> <div class="j-widget__max short_summary short_summary_126457" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> In this work we have studied by means of quantum chemical calculations at the CCSD(T) or CASPT2 level the kinetics of reactions of both bromine and iodine compounds with Hg, which are discussed to lead to the atmospheric oxidation of Hg. The particular interest is in the question whether the reactions with iodine compounds are as fast as the corresponding reactions with bromine compounds and therefore could also contribute to mercury depletion events. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126457" data-show=".short_summary_button_126457">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 31 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-105/">Failed cyclogenesis of a mesoscale convective system near Cape Verde: The role of the Saharan trade wind layer among other inhibiting factors observed during the CADDIWA field campaign</a> <div class="authors">Guillaume Feger, Jean-Pierre Chaboureau, Thibaut Dauhut, Julien Delanoë, and Pierre Coutris</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-105,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-105,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126442" data-show=".short_summary_126442" data-hide=".short_summary_button_126442" >Short summary</span> <div class="j-widget__max short_summary short_summary_126442" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The Saharan air at trade wind layer, cold pools, and upper tropospheric dry air are identified as the three main factors inhibiting the cyclogenesis of the Pierre Henri mesoscale convective system. The findings were obtained trough observations made during two flights of the CADDIWA campaign and a convection-permitting simulation run with the Meso-NH model. They provide new insights into the complex dynamics of cyclogenesis in the Cape Verde region and challenge the existing model of the SAL. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126442" data-show=".short_summary_button_126442">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 31 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4083/">Influence of modes of climate variability on stratospheric gravity waves in the tropics using Radio Occultation and Reanalysis Data</a> <div class="authors">Toyese Tunde Ayorinde, Cristiano Max Wrasse, Hisao Takahashi, Luiz Fernando Sapucci, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Ligia Alves da Silva, Patrick Essien, and Anderson Vestena Bilibio</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4083,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4083,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126113" data-show=".short_summary_126113" data-hide=".short_summary_button_126113" >Short summary</span> <div class="j-widget__max short_summary short_summary_126113" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We studied how the Intertropical Convergence Zone (ITCZ) interacts with atmospheric gravity waves high in the sky and how global climate patterns like El Ni&ntilde;o affect them. Using RO, ERA5, and NCEP reanalysis data, we found that the ITCZ shifts with seasons but stays strong year-round, influencing weather and energy flow. Our findings show how climate patterns shape weather systems and help predict changes, improving understanding of the atmosphere and its effects on global climate. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126113" data-show=".short_summary_button_126113">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 31 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4147/">Characteristics, main sources, health risks of PM<sub>2.5</sub>-bound perfluoroalkyl acids in Zhengzhou, central China: From seasonal variation perspective</a> <div class="authors">Jingshen Zhang, Xibin Ma, Minzhen Li, Zichen Wang, Nan Jiang, and Fengchang Wu</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4147,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4147,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126201" data-show=".short_summary_126201" data-hide=".short_summary_button_126201" >Short summary</span> <div class="j-widget__max short_summary short_summary_126201" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Currently, few studies have begun to focus on the source and health risks of perfluoroalkyl acids (PFAAs), however no systematic studies have been conducted of PFAAs in PM<sub>2.5</sub>. This study aimed to characterize the pollution levels, identify the primary sources, and assess the health risks linked to PFAAs in PM<sub>2.5</sub>. The study indicated that seasonal regulation manufacturing related to perfluorooctanoic acid and joint pollution control with neighboring cities could reduce PFAAs levels in PM<sub>2.5</sub>. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126201" data-show=".short_summary_button_126201">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 30 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3761/">Tropical Ozone Trends (1998 to 2023): A Synthesis from SHADOZ, IAGOS and OMI/MLS Observations</a> <div class="authors">Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Jerald R. Ziemke, Maria Cazorla, Pawel Wolff, and Bastien Sauvage</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3761,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3761,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125473" data-show=".short_summary_125473" data-hide=".short_summary_button_125473" >Short summary</span> <div class="j-widget__max short_summary short_summary_125473" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This paper uses tropical ozone profiles from balloon borne instruments and aircraft to show that ozone in the free troposphere is not growing fast except over equatorial SE Asia. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125473" data-show=".short_summary_button_125473">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 30 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3931/">Carbon reduction requires attention to the contribution of natural gas use: Combustion and leakage</a> <div class="authors">Haoyuan Chen, Tao Song, Xiaodong Chen, Yinghong Wang, Mengtian Cheng, Kai Wang, Fuxin Liu, Baoxian Liu, Guiqian Tang, and Yuesi Wang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3931,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3931,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125753" data-show=".short_summary_125753" data-hide=".short_summary_button_125753" >Short summary</span> <div class="j-widget__max short_summary short_summary_125753" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The methane leakage from natural gas may offset the reduced CO<sub>2</sub> emissions from its combustion, To quantify its effect, we established the flux observation platform in the urban area of Beijing, the results showed that natural gas has become a common source of both after the transformation of energy structure, the natural gas could escape during storage and use. Although the natural gas leakage rate is not high (1.12 %), the greenhouse effect caused by natural gas leakage can not be ignored. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125753" data-show=".short_summary_button_125753">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 30 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4037/">Aerosol impacts on regional climate: chaotic or physical effect?</a> <div class="authors">Jiawang Feng, Chun Zhao, Jun Gu, Gudongze Li, Mingyue Xu, Shengfu Lin, and Jie Feng</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4037,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4037,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126058" data-show=".short_summary_126058" data-hide=".short_summary_button_126058" >Short summary</span> <div class="j-widget__max short_summary short_summary_126058" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Climate models help study aerosol impacts on regional climate. However, the atmosphere's chaotic nature makes it hard to separate true aerosol impacts from chaotic effects. Our ensemble experiments show that while large-scale aerosol effects are consistent, regional aerosol impacts vary significantly among experiments. We give a formula showing the relationship between chaotic effects and ensemble sizes, emphasizing the necessity of adequate ensemble members to capture reliable aerosol impacts. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126058" data-show=".short_summary_button_126058">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1289/2025/acp-25-1289-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1289/2025/acp-25-1289-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1289/2025/acp-25-1289-2025-avatar-web.png" data-width="504" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1289/2025/">Transport into the polar stratosphere from the Asian monsoon region</a> <div class="authors">Xiaolu Yan, Paul Konopka, Felix Ploeger, and Aurélien Podglajen</div> <div class="citation">Atmos. Chem. Phys., 25, 1289&ndash;1305, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1289-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1289-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118832" data-show=".short_summary_118832" data-hide=".short_summary_button_118832" >Short summary</span> <div class="j-widget__max short_summary short_summary_118832" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Our study finds that the air mass fractions (AMFs) from the Asian boundary layer (ABL) to the polar regions are about 1.5 times larger than those from the same latitude band in the Southern Hemisphere. The transport of AMFs from the ABL to the polar vortex primarily occurs above 20 km and over timescales exceeding 2 years. Our analysis reveals a strong correlation between the polar pollutants and the AMFs from the ABL. About 20 % of SF<sub>6</sub> in the polar stratosphere originates from the ABL. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118832" data-show=".short_summary_button_118832">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1289/2025/acp-25-1289-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1289/2025/acp-25-1289-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1289/2025/acp-25-1289-2025-avatar-web.png" data-width="504" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1307/2025/acp-25-1307-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1307/2025/acp-25-1307-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1307/2025/acp-25-1307-2025-avatar-web.png" data-width="600" data-height="383" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1307/2025/">Regional modeling of surface solar radiation, aerosol, and cloud cover spatial variability and projections over northern France and Benelux</a> <div class="authors">Gabriel Chesnoiu, Isabelle Chiapello, Nicolas Ferlay, Pierre Nabat, Marc Mallet, and Véronique Riffault</div> <div class="citation">Atmos. Chem. Phys., 25, 1307&ndash;1331, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1307-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1307-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119529" data-show=".short_summary_119529" data-hide=".short_summary_button_119529" >Short summary</span> <div class="j-widget__max short_summary short_summary_119529" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The ALADIN regional climate model at 12.5 km resolution allows us to study the evolution of surface solar radiation (SSR) and key associated atmospheric parameters. Over northern France and Benelux, influenced by anthropogenic aerosols and cloudy conditions, regional evaluation of recent hindcast simulations shows satisfying results and high spatial variability. Future SSR evolution by the end of the century for two contrasting CMIP6 scenarios highlights large decreases in SSR for SSP3-7.0. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119529" data-show=".short_summary_button_119529">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1307/2025/acp-25-1307-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1307/2025/acp-25-1307-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1307/2025/acp-25-1307-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="383" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1253/2025/acp-25-1253-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1253/2025/acp-25-1253-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1253/2025/acp-25-1253-2025-avatar-web.png" data-width="600" data-height="344" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1253/2025/">Analysis of the long-range transport of the volcanic plume from the 2021 Tajogaite/Cumbre Vieja eruption to Europe using TROPOMI and ground-based measurements</a> <div class="authors">Pascal Hedelt, Jens Reichardt, Felix Lauermann, Benjamin Weiß, Nicolas Theys, Alberto Redondas, Africa Barreto, Omaira Garcia, and Diego Loyola</div> <div class="citation">Atmos. Chem. Phys., 25, 1253&ndash;1272, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1253-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1253-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120868" data-show=".short_summary_120868" data-hide=".short_summary_button_120868" >Short summary</span> <div class="j-widget__max short_summary short_summary_120868" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The 2021 volcanic eruption of Tajogaite on La Palma is investigated using ground-based and satellite measurements. In addition, the atmospheric transport of the volcanic cloud towards Europe is studied in detail. The amount of SO<sub>2</sub> released during the eruption and the height of the volcanic plume are in excellent agreement among the different measurements. Furthermore, volcanic aerosol microphysical properties could be retrieved using a new retrieval approach based on lidar measurements. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120868" data-show=".short_summary_button_120868">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1253/2025/acp-25-1253-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1253/2025/acp-25-1253-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1253/2025/acp-25-1253-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="344" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1227/2025/acp-25-1227-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1227/2025/acp-25-1227-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1227/2025/acp-25-1227-2025-avatar-web.png" data-width="600" data-height="420" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1227/2025/">Long-term changes in the thermodynamic structure of the lowermost stratosphere inferred from reanalysis data</a> <div class="authors">Franziska Weyland, Peter Hoor, Daniel Kunkel, Thomas Birner, Felix Plöger, and Katharina Turhal</div> <div class="citation">Atmos. Chem. Phys., 25, 1227&ndash;1252, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1227-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1227-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120858" data-show=".short_summary_120858" data-hide=".short_summary_button_120858" >Short summary</span> <div class="j-widget__max short_summary short_summary_120858" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The lowermost stratosphere (LMS) plays an important role in the Earth's climate, containing strong gradients of ozone and water vapor. Our results indicate that the thermodynamic structure of the LMS was changing between 1979&ndash;2019 in response to anthropogenic climate change and the recovery of stratospheric ozone, also indicating large-scale circulation changes. We find that both the upper and the lower LMS boundaries show an (upward) trend, which has implications for the LMS mass. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120858" data-show=".short_summary_button_120858">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1227/2025/acp-25-1227-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1227/2025/acp-25-1227-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1227/2025/acp-25-1227-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="420" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1175/2025/acp-25-1175-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1175/2025/acp-25-1175-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1175/2025/acp-25-1175-2025-avatar-web.png" data-width="600" data-height="535" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1175/2025/">Upper-tropospheric pollutants observed by MIPAS: geographic and seasonal variations</a> <div class="authors">Norbert Glatthor, Gabriele P. Stiller, Thomas von Clarmann, Bernd Funke, Sylvia Kellmann, and Andrea Linden</div> <div class="citation">Atmos. Chem. Phys., 25, 1175&ndash;1208, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1175-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1175-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121090" data-show=".short_summary_121090" data-hide=".short_summary_button_121090" >Short summary</span> <div class="j-widget__max short_summary short_summary_121090" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We present global upper-tropospheric distributions of the pollutants HCN, CO, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>6</sub>, PAN, and HCOOH, observed between 2002 and 2012 by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the Environmental Satellite (Envisat). By comparing the spatial distributions of their volume mixing ratios and by global correlation and regression analyses, we draw conclusions on their sources, such as biomass burning, anthropogenic sources, and biogenic release. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121090" data-show=".short_summary_button_121090">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1175/2025/acp-25-1175-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1175/2025/acp-25-1175-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1175/2025/acp-25-1175-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="535" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1209/2025/acp-25-1209-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1209/2025/acp-25-1209-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1209/2025/acp-25-1209-2025-avatar-web.png" data-width="391" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1209/2025/">Dynamical imprints on precipitation cluster statistics across a hierarchy of high-resolution simulations</a> <div class="authors">Claudia Christine Stephan and Bjorn Stevens</div> <div class="citation">Atmos. Chem. Phys., 25, 1209&ndash;1226, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1209-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1209-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121624" data-show=".short_summary_121624" data-hide=".short_summary_button_121624" >Short summary</span> <div class="j-widget__max short_summary short_summary_121624" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Tropical precipitation cluster area and intensity distributions follow power laws, but the physical processes responsible for this behavior remain unknown. We analyze global simulations that realistically represent precipitation processes. We consider Earth-like planets as well as virtual planets to realize different types of large-scale dynamics. Our finding is that power laws in Earth&rsquo;s precipitation cluster statistics stem from the robust power laws in Earth&rsquo;s atmospheric wind field. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121624" data-show=".short_summary_button_121624">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1209/2025/acp-25-1209-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1209/2025/acp-25-1209-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1209/2025/acp-25-1209-2025-avatar-web.png" data-width="391" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1163/2025/acp-25-1163-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1163/2025/acp-25-1163-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1163/2025/acp-25-1163-2025-avatar-web.png" data-width="600" data-height="475" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1163/2025/">Theoretical framework for measuring cloud effective supersaturation fluctuations with an advanced optical system</a> <div class="authors">Ye Kuang, Jiangchuan Tao, Hanbing Xu, Li Liu, Pengfei Liu, Wanyun Xu, Weiqi Xu, Yele Sun, and Chunsheng Zhao</div> <div class="citation">Atmos. Chem. Phys., 25, 1163&ndash;1174, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1163-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1163-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122864" data-show=".short_summary_122864" data-hide=".short_summary_button_122864" >Short summary</span> <div class="j-widget__max short_summary short_summary_122864" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study presents a novel optical framework to measure supersaturation, a fundamental parameter in cloud physics, by observing the scattering properties of particles that have or have not grown into cloud droplets. The technique offers high-resolution measurements, capturing essential fluctuations in supersaturation necessary for understanding cloud physics. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122864" data-show=".short_summary_button_122864">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1163/2025/acp-25-1163-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1163/2025/acp-25-1163-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1163/2025/acp-25-1163-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="475" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1273/2025/acp-25-1273-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1273/2025/acp-25-1273-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1273/2025/acp-25-1273-2025-avatar-web.png" data-width="600" data-height="350" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1273/2025/">Quasi-weekly oscillation of regional PM<sub>2.5</sub> transport over China driven by the synoptic-scale disturbance of the East Asian winter monsoon circulation</a> <div class="authors">Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao</div> <div class="citation">Atmos. Chem. Phys., 25, 1273&ndash;1287, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1273-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1273-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122449" data-show=".short_summary_122449" data-hide=".short_summary_button_122449" >Short summary</span> <div class="j-widget__max short_summary short_summary_122449" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We proposed a composite statistical method to identify the quasi-weekly oscillation (QWO) of regional PM<sub>2.5</sub> transport over China in winter from 2015 to 2019. The QWO of regional PM<sub>2.5</sub> transport is constrained by synoptic-scale disturbances of the East Asian winter monsoon circulation with the periodic activities of the Siberian high, providing a new insight into the understanding of regional pollutant transport with meteorological drivers in atmospheric environment changes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122449" data-show=".short_summary_button_122449">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1273/2025/acp-25-1273-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1273/2025/acp-25-1273-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1273/2025/acp-25-1273-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="350" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3616/">Modeling on the drought stress impact on the summertime biogenic isoprene emissions in South Korea</a> <div class="authors">Yong-Cheol Jeong, Yuxuan Wang, Wei Li, Hyeonmin Kim, Rokjin J. Park, and Mahmoudreza Momeni</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3616,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3616,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125199" data-show=".short_summary_125199" data-hide=".short_summary_button_125199" >Short summary</span> <div class="j-widget__max short_summary short_summary_125199" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Isoprene, which is emitted from the vegetation, is important to regional air quality. Drought is one of the most important meteorological events that can modulate isoprene emissions by high temperature and low soil moisture. The drought stress impact on isoprene emissions is still uncertain, and we aimed to constrain it in South Korea using observation and model simulation. The results presented in this study may give useful information for future studies on drought stress on isoprene emissions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125199" data-show=".short_summary_button_125199">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-269/">Aerosol type classification with machine learning techniques applied to multiwavelength lidar data from EARLINET</a> <div class="authors">Ana del Águila, Pablo Ortiz-Amezcua, Siham Tabik, Juan Antonio Bravo-Aranda, Sol Fernández-Carvelo, and Lucas Alados-Arboledas</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-269,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-269,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126668" data-show=".short_summary_126668" data-hide=".short_summary_button_126668" >Short summary</span> <div class="j-widget__max short_summary short_summary_126668" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study applies machine learning (ML) techniques to classify aerosols using high-resolution multiwavelength lidar data from EARLINET network. We developed a reference dataset and evaluated six ML models, with LightGBM achieving over 90 % accuracy. Depolarization data proved critical for improving dust classification. Validated against a Saharan dust event, our approach improves aerosol classification and may help refine lidar-based processing strategies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126668" data-show=".short_summary_button_126668">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1105/2025/acp-25-1105-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1105/2025/acp-25-1105-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1105/2025/acp-25-1105-2025-avatar-web.png" data-width="600" data-height="383" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 28 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1105/2025/">Preindustrial-to-present-day changes in atmospheric carbon monoxide: agreement and gaps between ice archives and global model reconstructions</a> <div class="authors">Xavier Faïn, Sophie Szopa, Vaishali Naïk, Patricia Martinerie, David M. Etheridge, Rachael H. Rhodes, Cathy M. Trudinger, Vasilii V. Petrenko, Kévin Fourteau, and Philip Place</div> <div class="citation">Atmos. Chem. Phys., 25, 1105&ndash;1119, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1105-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1105-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118555" data-show=".short_summary_118555" data-hide=".short_summary_button_118555" >Short summary</span> <div class="j-widget__max short_summary short_summary_118555" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Carbon monoxide (CO) plays a crucial role in the atmosphere's oxidizing capacity. In this study, we analyse how historical (1850&ndash;2014) [CO] outputs from state-of-the-art global chemistry&ndash;climate models over Greenland and Antarctica are able to capture both absolute values and trends recorded in multi-site ice archives. A disparity in [CO] growth rates emerges in the Northern Hemisphere between models and observations from 1920&ndash;1975 CE, possibly linked to uncertainties in CO emission factors. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118555" data-show=".short_summary_button_118555">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1105/2025/acp-25-1105-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1105/2025/acp-25-1105-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1105/2025/acp-25-1105-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="383" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1145/2025/acp-25-1145-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1145/2025/acp-25-1145-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1145/2025/acp-25-1145-2025-avatar-web.png" data-width="600" data-height="350" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 28 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1145/2025/">Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions</a> <div class="authors">James Brean, David C. S. Beddows, Eija Asmi, Aki Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Rolf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall'Osto</div> <div class="citation">Atmos. Chem. Phys., 25, 1145&ndash;1162, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1145-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1145-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119197" data-show=".short_summary_119197" data-hide=".short_summary_button_119197" >Short summary</span> <div class="j-widget__max short_summary short_summary_119197" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Our results emphasise how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119197" data-show=".short_summary_button_119197">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1145/2025/acp-25-1145-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1145/2025/acp-25-1145-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1145/2025/acp-25-1145-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="350" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1063/2025/acp-25-1063-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1063/2025/acp-25-1063-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1063/2025/acp-25-1063-2025-avatar-web.png" data-width="600" data-height="451" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 28 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1063/2025/">Investigating processes influencing simulation of local Arctic wintertime anthropogenic pollution in Fairbanks, Alaska, during ALPACA-2022</a> <div class="authors">Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson</div> <div class="citation">Atmos. Chem. Phys., 25, 1063&ndash;1104, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1063-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1063-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120279" data-show=".short_summary_120279" data-hide=".short_summary_button_120279" >Short summary</span> <div class="j-widget__max short_summary short_summary_120279" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Processes influencing dispersion of local anthropogenic pollution in Arctic wintertime are investigated with Lagrangian dispersion modelling. Simulated power plant plume rise that considers temperature inversion layers improves results compared to observations (interior Alaska). Modelled surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching &minus;35&deg;C are required to reproduce observed NO<em><sub>x</sub></em>. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120279" data-show=".short_summary_button_120279">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1063/2025/acp-25-1063-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1063/2025/acp-25-1063-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1063/2025/acp-25-1063-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="451" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1121/2025/acp-25-1121-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1121/2025/acp-25-1121-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1121/2025/acp-25-1121-2025-avatar-web.png" data-width="600" data-height="498" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 28 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1121/2025/">Urban ozone formation and sensitivities to volatile chemical products, cooking emissions, and NO<sub><i>x</i></sub> upwind of and within two Los Angeles Basin cities</a> <div class="authors">Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke</div> <div class="citation">Atmos. Chem. Phys., 25, 1121&ndash;1143, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1121-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1121-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121296" data-show=".short_summary_121296" data-hide=".short_summary_button_121296" >Short summary</span> <div class="j-widget__max short_summary short_summary_121296" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> In urban areas, emissions from everyday products like paints, cleaners, and personal care products, along with non-traditional sources such as cooking, are increasingly important and impact air quality. This study uses a box model to evaluate how these emissions impact ozone in the Los Angeles Basin and quantifies the impact of gaseous cooking emissions. Accurate representation of these and other anthropogenic sources in inventories is crucial for informing effective air quality policies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121296" data-show=".short_summary_button_121296">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1121/2025/acp-25-1121-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1121/2025/acp-25-1121-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1121/2025/acp-25-1121-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="498" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 28 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3919/">Impact of cirrus on extratropical tropopause structure</a> <div class="authors">Nicolas Emig, Annette K. Miltenberger, Peter M. Hoor, and Andreas Petzold</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3919,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3919,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125731" data-show=".short_summary_125731" data-hide=".short_summary_button_125731" >Short summary</span> <div class="j-widget__max short_summary short_summary_125731" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study presents in situ observations of cirrus occurrence from aircraft measurements in the extra-tropical transition layer (ExTL) using simultaneous measurements from two platforms. Lagrangian diagnostics based on high-resolution ICON simulations show long residence times of the cirrus in stratospheric air allowing to separate different diabatic processes during transit. The findings suggest that radiative diabatic cloud processes significantly impact the tropopause thermodynamic structure. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125731" data-show=".short_summary_button_125731">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 28 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-185/">Ice formation processes key in determining WCB outflow cirrus properties</a> <div class="authors">Tim Lüttmer, Annette Miltenberger, and Peter Spichtinger</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-185,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-185,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126557" data-show=".short_summary_126557" data-hide=".short_summary_button_126557" >Short summary</span> <div class="j-widget__max short_summary short_summary_126557" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We investigate ice formation pathways in a warm conveyor belt case study. We employ a multi-phase microphysics scheme that distinguishes between ice from different nucleation processes. Ice crystals in the cirrus outflow mostly stem from in-situ formation. Hence they were formed directly from the vapor phase. Sedimentational redistribution modulates cirrus properties and leads to a disagreement between cirrus origin classifications based on thermodynamic history and nucleation processes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126557" data-show=".short_summary_button_126557">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 28 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-201/">Airborne observations of cloud properties during their evolution from organized streets to isotropic cloud structures along an Arctic cold air outbreak</a> <div class="authors">Marcus Klingebiel, André Ehrlich, Micha Gryschka, Nils Risse, Nina Maherndl, Imke Schirmacher, Sophie Rosenburg, Sabine Hörnig, Manuel Moser, Evelyn Jäkel, Michael Schäfer, Hartwig Deneke, Mario Mech, Christiane Voigt, and Manfred Wendisch</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-201,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-201,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126583" data-show=".short_summary_126583" data-hide=".short_summary_button_126583" >Short summary</span> <div class="j-widget__max short_summary short_summary_126583" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Our study is using aircraft measurements from the HALO-(𝒜𝒞)&sup3; campaign to investigate the transition from organized Arctic cloud street structures to more scattered cloud shapes. We show that lower wind speeds cause this transition. In addition we look at the changes of the cloud coverage, the height of the clouds, the cloud particles and the radiative properties. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126583" data-show=".short_summary_button_126583">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/943/2025/acp-25-943-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/943/2025/acp-25-943-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/943/2025/acp-25-943-2025-avatar-web.png" data-width="600" data-height="428" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 27 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/943/2025/">Causes of growing middle-to-upper tropospheric ozone over the northwest Pacific region</a> <div class="authors">Xiaodan Ma, Jianping Huang, Michaela I. Hegglin, Patrick Jöckel, and Tianliang Zhao</div> <div class="citation">Atmos. Chem. Phys., 25, 943&ndash;958, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-943-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-943-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_115463" data-show=".short_summary_115463" data-hide=".short_summary_button_115463" >Short summary</span> <div class="j-widget__max short_summary short_summary_115463" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> <p class="p1">Our research explored changes in ozone levels in the northwest Pacific region over 30 years, revealing a significant increase in the middle-to-upper troposphere, especially during spring and summer. This rise is influenced by both stratospheric and tropospheric sources, which affect climate and air quality in East Asia. This work underscores the need for continued study to understand underlying mechanisms. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_115463" data-show=".short_summary_button_115463">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/943/2025/acp-25-943-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/943/2025/acp-25-943-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/943/2025/acp-25-943-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="428" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/997/2025/acp-25-997-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/997/2025/acp-25-997-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/997/2025/acp-25-997-2025-avatar-web.png" data-width="600" data-height="319" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 27 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/997/2025/">Solar radiation estimation in West Africa: impact of dust conditions during the 2021 dry season</a> <div class="authors">Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas</div> <div class="citation">Atmos. Chem. Phys., 25, 997&ndash;1021, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-997-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-997-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120582" data-show=".short_summary_120582" data-hide=".short_summary_button_120582" >Short summary</span> <div class="j-widget__max short_summary short_summary_120582" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Solar energy production in West Africa is set to rise and needs accurate solar radiation estimates which are affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cuts errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.</p> <!--a=1--><!--a=1--><!--a=1--> </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120582" data-show=".short_summary_button_120582">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/997/2025/acp-25-997-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/997/2025/acp-25-997-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/997/2025/acp-25-997-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="319" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/959/2025/acp-25-959-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/959/2025/acp-25-959-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/959/2025/acp-25-959-2025-avatar-web.png" data-width="600" data-height="476" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 27 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/959/2025/">Seasonal investigation of ultrafine-particle organic composition in an eastern Amazonian rainforest</a> <div class="authors">Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith</div> <div class="citation">Atmos. Chem. Phys., 25, 959&ndash;977, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-959-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-959-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121981" data-show=".short_summary_121981" data-hide=".short_summary_button_121981" >Short summary</span> <div class="j-widget__max short_summary short_summary_121981" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We present measurements of the organic composition of ultrafine particles collected from the eastern Amazon, an understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant for ultrafine-particle growth throughout the year, compounds related to other sources, such as biological-spore emissions and biomass burning, exhibit striking seasonal differences, implying extensive variation in regional ultrafine-particle sources. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121981" data-show=".short_summary_button_121981">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/959/2025/acp-25-959-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/959/2025/acp-25-959-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/959/2025/acp-25-959-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="476" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1023/2025/acp-25-1023-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1023/2025/acp-25-1023-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1023/2025/acp-25-1023-2025-avatar-web.png" data-width="600" data-height="547" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 27 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1023/2025/">Increased number concentrations of small particles explain perceived stagnation in air quality over Korea</a> <div class="authors">Sohee Joo, Juseon Shin, Matthias Tesche, Naghmeh Dehkhoda, Taegyeong Kim, and Youngmin Noh</div> <div class="citation">Atmos. Chem. Phys., 25, 1023&ndash;1036, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1023-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1023-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119596" data-show=".short_summary_119596" data-hide=".short_summary_button_119596" >Short summary</span> <div class="j-widget__max short_summary short_summary_119596" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> In our study, we investigated why, in northeast Asia, visibility has not improved even though air pollution levels have decreased. By examining trends in Seoul and Ulsan, we found that the particles in the air are getting smaller, which scatters light more effectively and reduces how far we can see. Our findings suggest that changes in particle properties adversely affected public perception of air quality improvement even though the PM<sub>2.5</sub> mass concentration is continuously decreasing. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119596" data-show=".short_summary_button_119596">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1023/2025/acp-25-1023-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1023/2025/acp-25-1023-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1023/2025/acp-25-1023-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="547" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1037/2025/acp-25-1037-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1037/2025/acp-25-1037-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1037/2025/acp-25-1037-2025-avatar-web.png" data-width="600" data-height="452" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 27 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1037/2025/">Impact of introducing electric vehicles on ground-level O<sub>3</sub> and PM<sub>2.5</sub> in the Greater Tokyo Area: yearly trends and the importance of changes in the urban heat island effect</a> <div class="authors">Hiroo Hata, Norifumi Mizushima, and Tomohiko Ihara</div> <div class="citation">Atmos. Chem. Phys., 25, 1037&ndash;1061, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1037-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1037-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121433" data-show=".short_summary_121433" data-hide=".short_summary_button_121433" >Short summary</span> <div class="j-widget__max short_summary short_summary_121433" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The introduction of battery electric vehicles (BEVs) is expected to reduce the primary air pollutants from vehicular exhaust and evaporative emissions while reducing the anthropogenic heat produced by vehicles, ultimately mitigating the urban heat island (UHI) effect. This study revealed the impact of introducing BEVs on the decrease in the UHI effect and the impact of BEVs on the formation of tropospheric ozone and fine particulate matter in the Greater Tokyo Area of Japan. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121433" data-show=".short_summary_button_121433">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1037/2025/acp-25-1037-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1037/2025/acp-25-1037-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1037/2025/acp-25-1037-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="452" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 27 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4073/">Formation and composition of organic aerosols from the uptake of glyoxal on natural mineral dust aerosols: a laboratory study</a> <div class="authors">Francesco Battaglia, Paola Formenti, Chiara Giorio, Mathieu Cazaunau, Edouard Pangui, Antonin Bergé, Aline Gratien, Thomas Bertin, Joël F. de Brito, Manolis N. Romanias, Vincent Michoud, Clarissa Baldo, Servanne Chevaillier, Gaël Noyalet, Philippe Decorse, Bénédicte Picquet-Varrault, and Jean-François Doussin</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4073,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4073,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126103" data-show=".short_summary_126103" data-hide=".short_summary_button_126103" >Short summary</span> <div class="j-widget__max short_summary short_summary_126103" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This paper presents an experimental investigation of the interactions between glyoxal, an important volatile organic compound, and mineral dust particles of size and composition typical of natural conditions. We show that their interactions modifies in a definitive way the concentrations of the gas phase and the properties of the dust, which could have important implications of the atmospheric composition and the Earth's climate. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126103" data-show=".short_summary_button_126103">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 27 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3469/">Characterizing lead-rich particles in Beijing's atmosphere following coal-to-gas conversion: Insights from single particle aerosol mass spectrometry</a> <div class="authors">Xiufeng Lian, Yongjiang Xu, Fengxian Liu, Long Peng, Xiaodong Hu, Guigang Tang, Xu Dao, Hui Guo, Liwei Wang, Bo Huang, Chunlei Cheng, Lei Li, Guohua Zhang, Xinhui Bi, Xiaofei Wang, Zhen Zhou, and Mei Li</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3469,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3469,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124770" data-show=".short_summary_124770" data-hide=".short_summary_button_124770" >Short summary</span> <div class="j-widget__max short_summary short_summary_124770" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> In this study, we analyzed the mixing state and atmospheric chemical processes of Pb-rich single particles in Beijing. Then, we focused on analyzing the differences in Pb-rich particles between the heating period and non-heating period, as well as the formation mechanism of lead nitrate after coal-to-gas conversion. Our results highlighted the improvement of coal-to-gas conversion on Pb in the particulate. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124770" data-show=".short_summary_button_124770">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 24 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4202/">Ozone (O<sub>3</sub>) observations in Saxony, Germany for 1997&ndash;2020: Trends, modelling and implications for O<sub>3</sub> control</a> <div class="authors">Yaru Wang, Dominik van Pinxteren, Andreas Tilgner, Erik Hans Hoffmann, Max Hell, Susanne Bastian, and Hartmut Herrmann</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4202,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4202,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126279" data-show=".short_summary_126279" data-hide=".short_summary_button_126279" >Short summary</span> <div class="j-widget__max short_summary short_summary_126279" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Tropospheric ground-level ozone (O<sub>3</sub>) is a global air-quality pollutant and greenhouse gas. Long-term O<sub>3</sub> trends from 16 stations in Saxony, Germany, were compared over three periods, revealing worsened O<sub>3</sub> pollution over the last decade. O<sub>3</sub> formation has been volatile organic compound (VOC)-limited at traffic and urban sites for the past 20 years. To mitigate O<sub>3</sub> pollution, moderate nitrogen oxides and additional VOC controls, particularly in solvent use, should be prioritized in the coming years. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126279" data-show=".short_summary_button_126279">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 24 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-48/">Anvil-radiation diurnal interaction: Shortwave radiative-heating destabilization driving the diurnal variation of convective anvil outflow and its modulation on the radiative cancellation</a> <div class="authors">Zhenquan Wang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-48,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-48,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126358" data-show=".short_summary_126358" data-hide=".short_summary_button_126358" >Short summary</span> <div class="j-widget__max short_summary short_summary_126358" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The diurnal variation of convective anvil outflow results from the radiative heating. Daytime shortwave radiative heating destabilizes the anvil top and invigorates the top-heavy circulation, to enhance the convective anvil outflow. Nighttime longwave radiative cooling stabilizes the anvil top and hinders the circulation, to reduce the convective anvil outflow. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126358" data-show=".short_summary_button_126358">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/905/2025/acp-25-905-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/905/2025/acp-25-905-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/905/2025/acp-25-905-2025-avatar-web.png" data-width="600" data-height="307" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 23 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/905/2025/">Understanding summertime peroxyacetyl nitrate (PAN) formation and its relation to aerosol pollution: insights from high-resolution measurements and modeling</a> <div class="authors">Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang</div> <div class="citation">Atmos. Chem. Phys., 25, 905&ndash;921, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-905-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-905-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122703" data-show=".short_summary_122703" data-hide=".short_summary_button_122703" >Short summary</span> <div class="j-widget__max short_summary short_summary_122703" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Box modeling with the Master Chemical Mechanism (MCM) was used to explore summertime peroxyacetyl nitrate (PAN) formation and its link to aerosol pollution under high-ozone conditions. The MCM model is effective in the study of PAN photochemical formation and performed better during the clean period than the haze period. Machine learning analysis identified ammonia, nitrate, and fine particulate matter as the top three factors contributing to simulation bias. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122703" data-show=".short_summary_button_122703">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/905/2025/acp-25-905-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/905/2025/acp-25-905-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/905/2025/acp-25-905-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="307" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 23 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3981/">Evidence of Tropospheric Uplift into the Stratosphere via the Tropical Western Pacific Cold Trap</a> <div class="authors">Xiaoyu Sun, Katrin Müller, Mathias Palm, Christoph Ritter, Denghui Ji, Tim Balthasar Röpke, and Justus Notholt</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3981,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3981,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125958" data-show=".short_summary_125958" data-hide=".short_summary_button_125958" >Short summary</span> <div class="j-widget__max short_summary short_summary_125958" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We studied how air moves from the lower atmosphere to the stratosphere over the Tropical Western Pacific, a region with very cold temperatures high up. By using ground-based observations and tracking air movement, we found that during winter, the formation of thin cloud allow air to rise, while in summer, most of the air sinks down. This process changes the water vapor amount in the stratosphere, which influences the greenhouse effect and plays an important role in climate change. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125958" data-show=".short_summary_button_125958">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 23 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4140/">Contrasting solubility and speciation of metal ions in total suspended particulate matter and fog from the coast of Namibia</a> <div class="authors">Chiara Giorio, Anne Monod, Valerio Di Marco, Pierre Herckes, Denise Napolitano, Amy Sullivan, Gautier Landrot, Daniel Warnes, Marika Nasti, Sara D'Aronco, Agathe Gérardin, Nicolas Brun, Karine Desboeufs, Sylvain Triquet, Servanne Chevaillier, Claudia Di Biagio, Francesco Battaglia, Frédéric Burnet, Stuart J. Piketh, Andreas Namwoonde, Jean-François Doussin, and Paola Formenti</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4140,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4140,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126189" data-show=".short_summary_126189" data-hide=".short_summary_button_126189" >Short summary</span> <div class="j-widget__max short_summary short_summary_126189" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> A comparison between the solubility of trace metals in pairs of total suspended particulate (TSP) and fog water samples collected in Henties Bay, Namibia, during the AEROCLO-sA field campaign is presented. We found enhanced solubility of metals in fog samples which we attributed to metal-ligand complexes formation in the early stages of particle activation into droplets which can then remain in a kinetically stable form in fog or lead to the formation of colloidal nanoparticles. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126189" data-show=".short_summary_button_126189">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 23 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3748/">Decadal tropospheric ozone radiative forcing estimations with offline radiative modelling and IAGOS aircraft observations</a> <div class="authors">Pasquale Sellitto, Audrey Gaudel, and Bastien Sauvage</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3748,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3748,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125451" data-show=".short_summary_125451" data-hide=".short_summary_button_125451" >Short summary</span> <div class="j-widget__max short_summary short_summary_125451" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Tropospheric ozone is a potent greenhouse gas; its anthropogenic levels rise contributes to climate change. We evaluate tropospheric ozone trends and climate impacts with aircraft data and a radiative model, comparing the baseline period (1994&ndash;2004) to 2011&ndash;2016 and 2019. Tropospheric ozone levels increased significantly but with a smaller trend in 2019 than in 2011&ndash;2016. However, ozone radiative forcing did not decrease between these periods because of different vertical distribution evolutions </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125451" data-show=".short_summary_button_125451">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 23 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4144/">Exploring Sources of Ice Crystals in Cirrus Clouds: Comparative Analysis of Two Ice Nucleation Schemes in CAM6</a> <div class="authors">Kai Lyu, Xiaohong Liu, and Bernd Kärcher</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4144,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4144,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126196" data-show=".short_summary_126196" data-hide=".short_summary_button_126196" >Short summary</span> <div class="j-widget__max short_summary short_summary_126196" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Two nucleation schemes are used to study ice nucleation, focusing on three ice sources: mountains, turbulence and anvils. Ice from mountains is concentrated in mid- and high-latitudes, while ice from turbulence and anvils is more common in low and mid-latitudes. Both schemes simulate orographic cirrus clouds, with mountain ice as the dominant source. The schemes differ in how they handle ice source competition, causing turbulence and anvils to influence clouds differently. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126196" data-show=".short_summary_button_126196">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/867/2025/acp-25-867-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/867/2025/acp-25-867-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/867/2025/acp-25-867-2025-avatar-web.png" data-width="600" data-height="400" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 22 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/867/2025/">The role of OCO-3 XCO<sub>2</sub> retrievals in estimating global terrestrial net ecosystem exchanges</a> <div class="authors">Xingyu Wang, Fei Jiang, Hengmao Wang, Zhengqi Zhang, Mousong Wu, Jun Wang, Wei He, Weimin Ju, and Jing M. Chen</div> <div class="citation">Atmos. Chem. Phys., 25, 867&ndash;880, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-867-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-867-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120490" data-show=".short_summary_120490" data-hide=".short_summary_button_120490" >Short summary</span> <div class="j-widget__max short_summary short_summary_120490" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> <div class="flex-shrink-0 flex flex-col relative items-end"> <div class="pt-0"> <div class="gizmo-bot-avatar flex h-8 w-8 items-center justify-center overflow-hidden rounded-full"> <div class="relative p-1 rounded-sm flex items-center justify-center bg-token-main-surface-primary text-token-text-primary h-8 w-8">The role of OCO-3 XCO<sub>2</sub> retrievals in estimating global terrestrial carbon fluxes is unclear. We investigate this by assimilating OCO-3 XCO<sub>2</sub> retrievals alone and in combination with OCO-2 XCO<sub>2</sub>. The assimilation of OCO-3 XCO<sub>2</sub> alone underestimates global land sinks, mainly at high latitudes, due to the lack of observations beyond 52&deg;&thinsp;S and 52&deg;&thinsp;N, large variations in the number of data, and varying observation times, while the joint assimilation of OCO-2 and OCO-3 XCO<sub>2</sub> has the best performance.</div> </div> </div> </div> </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120490" data-show=".short_summary_button_120490">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/867/2025/acp-25-867-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/867/2025/acp-25-867-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/867/2025/acp-25-867-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="400" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/881/2025/acp-25-881-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/881/2025/acp-25-881-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/881/2025/acp-25-881-2025-avatar-web.png" data-width="600" data-height="302" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 22 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/881/2025/">The surface tension and cloud condensation nuclei (CCN) activation of sea spray aerosol particles</a> <div class="authors">Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli</div> <div class="citation">Atmos. Chem. Phys., 25, 881&ndash;903, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-881-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-881-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123299" data-show=".short_summary_123299" data-hide=".short_summary_button_123299" >Short summary</span> <div class="j-widget__max short_summary short_summary_123299" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We model the cloud condensation nuclei (CCN) activation of sea spray aerosol particles with classical K&ouml;hler theory and with a new model approach that takes surface tension lowering into account. We categorize organic compounds into weak, intermediate, and strong surfactants, and we outline for which composition surface tension lowering is important. The results suggest that surface tension lowering allows sea spray aerosol particles in the Aitken mode to be a source of CCN in marine updraughts. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123299" data-show=".short_summary_button_123299">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/881/2025/acp-25-881-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/881/2025/acp-25-881-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/881/2025/acp-25-881-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="302" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/819/2025/acp-25-819-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/819/2025/acp-25-819-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/819/2025/acp-25-819-2025-avatar-web.png" data-width="600" data-height="456" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 22 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/819/2025/">Does total column ozone change during a solar eclipse?</a> <div class="authors">Germar H. Bernhard, George T. Janson, Scott Simpson, Raúl R. Cordero, Edgardo I. Sepúlveda Araya, Jose Jorquera, Juan A. Rayas, and Randall N. Lind</div> <div class="citation">Atmos. Chem. Phys., 25, 819&ndash;841, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-819-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-819-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122771" data-show=".short_summary_122771" data-hide=".short_summary_button_122771" >Short summary</span> <div class="j-widget__max short_summary short_summary_122771" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Several publications have reported that total column ozone (TCO) may oscillate during solar eclipses, whereas other researchers have not seen evidence of such fluctuations. Here, we try to resolve these contradictions by measuring variations in TCO during three solar eclipses. In all instances, the variability in TCO was within natural variability. We conclude that solar eclipses do not lead to measurable variations in TCO, drawing into question reports of much larger changes found in the past. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122771" data-show=".short_summary_button_122771">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/819/2025/acp-25-819-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/819/2025/acp-25-819-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/819/2025/acp-25-819-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="456" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 22 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3666/">Machine Learning Assisted Inference of the Particle Charge Fraction and the Ion-induced Nucleation Rates during New Particle Formation Events</a> <div class="authors">Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3666,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3666,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125281" data-show=".short_summary_125281" data-hide=".short_summary_button_125281" >Short summary</span> <div class="j-widget__max short_summary short_summary_125281" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We developed a numerical model to explore how the charge state of newly formed atmospheric particles evolves during growth and how this relates to ion-induced nucleation rates. We identify the governing factors of particle charging and further apply neural networks to predict particle charge states and estimate ion induced nucleation rates. This study offers insights into particle charging dynamics and introduces new methods for assessing ion induced nucleation in atmospheric research. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125281" data-show=".short_summary_button_125281">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 22 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4103/">Significant secondary formation of nitrogenous organic aerosols in an urban atmosphere revealed by bihourly measurements of bulk organic nitrogen and comprehensive molecular markers</a> <div class="authors">Xu Yu, Min Zhou, Shuhui Zhu, Liping Qiao, Jinjian Li, Yingge Ma, Zijing Zhang, Kezheng Liao, Hongli Wang, and Jian Zhen Yu</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4103,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4103,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126139" data-show=".short_summary_126139" data-hide=".short_summary_button_126139" >Short summary</span> <div class="j-widget__max short_summary short_summary_126139" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Online measurements of bulk aerosol organic nitrogen (ON), in conjunction with a comprehensive array of source markers, have revealed five emission sources and five potentially significant formation processes of nitrogenous organic aerosols. This study provides first quantitative source analysis of ON aerosol and valuable observational evidence on secondary ON aerosol formation through NH<sub>3</sub> and NO<sub>x</sub> chemistries. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126139" data-show=".short_summary_button_126139">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/555/2025/acp-25-555-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/555/2025/acp-25-555-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/555/2025/acp-25-555-2025-avatar-web.png" data-width="600" data-height="400" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/555/2025/">Comparing space-based to reported carbon monoxide emission estimates for Europe's iron and steel plants</a> <div class="authors">Gijs Leguijt, Joannes D. Maasakkers, Hugo A. C. Denier van der Gon, Arjo J. Segers, Tobias Borsdorff, Ivar R. van der Velde, and Ilse Aben</div> <div class="citation">Atmos. Chem. Phys., 25, 555&ndash;574, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-555-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-555-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120480" data-show=".short_summary_120480" data-hide=".short_summary_button_120480" >Short summary</span> <div class="j-widget__max short_summary short_summary_120480" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The production of steel coincides with large emissions of greenhouse gases and air pollutants including carbon monoxide. European facilities are required to report their emissions, which are estimated using a variety of methods. We evaluate these estimates using carbon monoxide concentrations measured via satellite. We find generally good agreement between our values and those reported but also identify some uncertainties, showing that satellites can provide insights into these emissions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120480" data-show=".short_summary_button_120480">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/555/2025/acp-25-555-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/555/2025/acp-25-555-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/555/2025/acp-25-555-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="400" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/797/2025/acp-25-797-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/797/2025/acp-25-797-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/797/2025/acp-25-797-2025-avatar-web.png" data-width="600" data-height="415" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/797/2025/">Satellite quantification of methane emissions from South American countries: a high-resolution inversion of TROPOMI and GOSAT observations</a> <div class="authors">Sarah E. Hancock, Daniel J. Jacob, Zichong Chen, Hannah Nesser, Aaron Davitt, Daniel J. Varon, Melissa P. Sulprizio, Nicholas Balasus, Lucas A. Estrada, María Cazorla, Laura Dawidowski, Sebastián Diez, James D. East, Elise Penn, Cynthia A. Randles, John Worden, Ilse Aben, Robert J. Parker, and Joannes D. Maasakkers</div> <div class="citation">Atmos. Chem. Phys., 25, 797&ndash;817, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-797-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-797-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121002" data-show=".short_summary_121002" data-hide=".short_summary_button_121002" >Short summary</span> <div class="j-widget__max short_summary short_summary_121002" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We quantify 2021 methane emissions in South America at up to 25&thinsp;km&thinsp;&times;&thinsp;25&thinsp;km resolution using satellite methane observations. We find a 55 % upward adjustment to anthropogenic emission inventories, including those reported to the UN Framework Convention on Climate Change under the Paris Agreement. Our estimates match inventories for Brazil, Bolivia, and Paraguay but are much higher for other countries. Livestock emissions (65 % of anthropogenic emissions) show the largest discrepancies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121002" data-show=".short_summary_button_121002">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/797/2025/acp-25-797-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/797/2025/acp-25-797-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/797/2025/acp-25-797-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="415" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/771/2025/acp-25-771-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/771/2025/acp-25-771-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/771/2025/acp-25-771-2025-avatar-web.png" data-width="600" data-height="316" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/771/2025/">Exploring the processes controlling secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns</a> <div class="authors">Olivia G. Norman, Colette L. Heald, Solomon Bililign, Pedro Campuzano-Jost, Hugh Coe, Marc N. Fiddler, Jaime R. Green, Jose L. Jimenez, Katharina Kaiser, Jin Liao, Ann M. Middlebrook, Benjamin A. Nault, John B. Nowak, Johannes Schneider, and André Welti</div> <div class="citation">Atmos. Chem. Phys., 25, 771&ndash;795, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-771-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-771-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122095" data-show=".short_summary_122095" data-hide=".short_summary_button_122095" >Short summary</span> <div class="j-widget__max short_summary short_summary_122095" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study finds that one component of secondary inorganic aerosols, nitrate, is greatly overestimated by a global atmospheric chemistry model compared to observations from 11 flight campaigns. None of the loss and production pathways explored can explain the nitrate bias alone. The model&rsquo;s inability to capture the variability in the observations remains and requires future investigation to avoid biases in policy-related studies (i.e., air quality, health, climate impacts of these aerosols). </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122095" data-show=".short_summary_button_122095">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/771/2025/acp-25-771-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/771/2025/acp-25-771-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/771/2025/acp-25-771-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="316" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/759/2025/acp-25-759-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/759/2025/acp-25-759-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/759/2025/acp-25-759-2025-avatar-web.png" data-width="484" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/759/2025/">Unleashing the potential of geostationary satellite observations in air quality forecasting through artificial intelligence techniques</a> <div class="authors">Chengxin Zhang, Xinhan Niu, Hongyu Wu, Zhipeng Ding, Ka Lok Chan, Jhoon Kim, Thomas Wagner, and Cheng Liu</div> <div class="citation">Atmos. Chem. Phys., 25, 759&ndash;770, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-759-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-759-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122680" data-show=".short_summary_122680" data-hide=".short_summary_button_122680" >Short summary</span> <div class="j-widget__max short_summary short_summary_122680" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This research utilizes hourly air pollution observations from the world&rsquo;s first geostationary satellite to develop a spatiotemporal neural network model for full-coverage surface NO<sub>2</sub> pollution prediction over the next 24 hours, achieving outstanding forecasting performance and efficacy. These results highlight the profound impact of geostationary satellite observations in advancing air quality forecasting models, thereby contributing to future models for health exposure to air pollution. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122680" data-show=".short_summary_button_122680">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/759/2025/acp-25-759-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/759/2025/acp-25-759-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/759/2025/acp-25-759-2025-avatar-web.png" data-width="484" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/741/2025/acp-25-741-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/741/2025/acp-25-741-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/741/2025/acp-25-741-2025-avatar-web.png" data-width="600" data-height="333" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/741/2025/">External particle mixing influences hygroscopicity in a sub-urban area</a> <div class="authors">Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker</div> <div class="citation">Atmos. Chem. Phys., 25, 741&ndash;758, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-741-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-741-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123654" data-show=".short_summary_123654" data-hide=".short_summary_button_123654" >Short summary</span> <div class="j-widget__max short_summary short_summary_123654" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Aerosol hygroscopicity has been investigated at a sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123654" data-show=".short_summary_button_123654">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/741/2025/acp-25-741-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/741/2025/acp-25-741-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/741/2025/acp-25-741-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="333" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3756/">Surface and tropospheric ozone over East Asia and Southeast Asia from observations: distributions, trends, and variability</a> <div class="authors">Ke Li, Rong Tan, Wenhao Qiao, Taegyung Lee, Yufen Wang, Danyuting Zhang, Minglong Tang, Wenqing Zhao, Yixuan Gu, Shaojia Fan, Jinqiang Zhang, Xiaopu Lyu, Likun Xue, Jianming Xu, Zhiqiang Ma, Mohd Talib Latif, Teerachai Amnuaylojaroen, Junsu Gil, Mee-Hye Lee, Juseon Bak, Joowan Kim, Hong Liao, Yugo Kanaya, Xiao Lu, Tatsuya Nagashima, and Ja-Ho Koo</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3756,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3756,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125465" data-show=".short_summary_125465" data-hide=".short_summary_button_125465" >Short summary</span> <div class="j-widget__max short_summary short_summary_125465" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> East Asia and Southeast Asia has been identified as a global hot spot with the fastest ozone increase. This paper presents the most comprehensive observational view of ozone distributions and evolution over East Asia and Southeast Asia across different spatiotemporal scales in the past two decades, which will have important implications for assessing ozone impacts on public health and crop yields, and for developing future ozone control strategies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125465" data-show=".short_summary_button_125465">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3750/">Modelling Arctic Lower Tropospheric Ozone: processes controlling seasonal variations</a> <div class="authors">Wanmin Gong, Stephen R. Beagley, Kenjiro Toyota, Henrik Skov, Jesper Heile Christensen, Alexandru Lupu, Diane Pendlebury, Junhua Zhang, Ulas Im, Yugo Kanaya, Alfonso Saiz-Lopez, Roberto Sommariva, Peter Effertz, John W. Halfacre, Nis Jepsen, Rigel Kivi, Theodore K. Koenig, Katrin Müller, Claus Nordstrøm, Irina Petropavlovskikh, Paul B. Shepson, William R. Simpson, Sverre Solberg, Ralf M. Staebler, David W. Tarasick, Roeland Van Malderen, and Mika Vestenius</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3750,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3750,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125454" data-show=".short_summary_125454" data-hide=".short_summary_button_125454" >Short summary</span> <div class="j-widget__max short_summary short_summary_125454" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study showed that the springtime O<sub>3</sub> depletion plays a critical role in driving the surface O<sub>3</sub> seasonal cycle in Central Arctic. The O<sub>3</sub> depletion events, while occurring most notably within the lowest few hundred metres above the Arctic Ocean, can induce a 5&ndash;7 % of loss in the pan-Arctic tropospheric O<sub>3</sub> burden during springtime. The study also found an enhancement in O<sub>3</sub> and NO<sub>y</sub> (mostly PAN) concentrations in the Arctic due to northern boreal wildfires, particularly at altitudes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125454" data-show=".short_summary_button_125454">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3976/">Uncertainties in OCO-2 satellite retrievals of XCO<sub>2</sub> limit diagnosis of transport model simulation uncertainty</a> <div class="authors">Chiranjit Das, Ravi Kumar Kunchala, Prabir K. Patra, Naveen Chandra, Kentaro Ishijima, and Toshinobu Machida</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3976,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3976,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125950" data-show=".short_summary_125950" data-hide=".short_summary_button_125950" >Short summary</span> <div class="j-widget__max short_summary short_summary_125950" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Our study compares model CO<sub>2</sub> with aircraft and OCO-2 data to identify transport model errors to better policy-related flux estimation. The model align better with aircraft data than satellite data, especially over oceans, but struggles near the surface due to inaccurate CO<sub>2</sub> estimates. Over the Amazon and Asian megacities, differences arise from limited measurements and coarse model resolution, highlighting the need for improved monitoring and higher-resolution data to capture emissions better. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125950" data-show=".short_summary_button_125950">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-23/">Incorporation of multi-phase halogen chemistry into Community Multiscale Air Quality (CMAQ) model</a> <div class="authors">Kiyeon Kim, Chul Han Song, Kyung Man Han, Greg Yarwood, Ross Beardsley, and Saewung Kim</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-23,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-23,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126318" data-show=".short_summary_126318" data-hide=".short_summary_button_126318" >Short summary</span> <div class="j-widget__max short_summary short_summary_126318" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Despite the crucial role of halogen radicals in the atmosphere, the current CMAQ model does not account for multi-phase halogen processes. To address this issue, we incorporated 177 halogen reactions, together with anthropogenic and natural halogen emissions into the CMAQ model. Our findings reveal that incorporation of these halogen processes significantly improves model performances compared to ground observations. In addition, we emphasize the influence of halogen radicals on air quality. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126318" data-show=".short_summary_button_126318">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-29/">Atmospheric fate of organosulfates through gas-phase and aqueous-phase reaction with hydroxyl radicals: implications in inorganic sulfate formation</a> <div class="authors">Narcisse Tsona Tchinda, Xiaofan Lv, Stanley Numboniu Tasheh, Julius Numboniu Ghogomu, and Lin Du</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-29,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-29,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126327" data-show=".short_summary_126327" data-hide=".short_summary_button_126327" >Short summary</span> <div class="j-widget__max short_summary short_summary_126327" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study examines the chemical transformation of selected organosulfates by reactions with HO&bull; radicals both in the gas-phase and in the aqueous-phase. Results show that the nature of the substituents on the carbon chain can effectively alter the decomposition of organosulfates and ozone is highlighted as a key oxidant in the intermediate steps of this decomposition. The primary products from these reactions include inorganic sulfate and carbonyl compounds. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126327" data-show=".short_summary_button_126327">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4088/">A dynamical separation of deep and shallow branches in the stratospheric circulation</a> <div class="authors">Rasul Baikhadzhaev, Felix Ploeger, Peter Preusse, Manfred Ern, and Thomas Birner</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4088,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4088,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126118" data-show=".short_summary_126118" data-hide=".short_summary_button_126118" >Short summary</span> <div class="j-widget__max short_summary short_summary_126118" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Across four reanalyses, shallow branch of the stratospheric overturning circulation was found to be driven by the largest waves with wavenumbers 1 to 3, and deep branch of the circulation was found to be driven by smaller-scale waves. Yet, the height of the level separating the branches is depended on the reanalysis considered. Thus using the appropriate separation levels in model inter-comparisons could reduce the spread between models regarding climatology and trends in the circulation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126118" data-show=".short_summary_button_126118">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-49/">An improved Bayesian inversion to estimate daily NO<sub>x</sub> emissions of Paris from TROPOMI NO<sub>2</sub> observations between 2018&ndash;2023</a> <div class="authors">Alba Mols, Klaas Folkert Boersma, Hugo Denier van der Gon, and Maarten Krol</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-49,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-49,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126359" data-show=".short_summary_126359" data-hide=".short_summary_button_126359" >Short summary</span> <div class="j-widget__max short_summary short_summary_126359" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We created a new method to estimate city air pollution (NO<sub>x</sub> emissions) using satellite data. Testing showed our approach works well to track how pollution spreads in urban areas. By combining observations with prior knowledge, we improved the accuracy of emission estimates. Applying this method in Paris, we found emissions were 9 % lower than expected and dropped significantly during COVID-19 lockdowns. Our method offers a reliable way to monitor pollution and support environmental policies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126359" data-show=".short_summary_button_126359">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4062/">Aerosol dynamic processes in the Hunga plume in January 2022: Does water vapor accelerate aerosol aging?</a> <div class="authors">Julia Bruckert, Simran Chopra, Richard Siddans, Charlotte Wedler, and Gholam Ali Hoshyaripour</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4062,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4062,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126090" data-show=".short_summary_126090" data-hide=".short_summary_button_126090" >Short summary</span> <div class="j-widget__max short_summary short_summary_126090" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The 2022 Hunga eruption emitted about 150 Tg water vapor into the stratosphere. Here, we show that the water vapor injection not only accelerates SO<sub>2</sub> oxidation and sulfate production but also increases the aging of ash (coating of ash by sulfate). Our study shows that aerosol aging alone does not explain the rapid loss of ash after the Hunga eruption as observed by satellite instruments. However, some ash might be masked in the observation due to the strong coating. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126090" data-show=".short_summary_button_126090">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/705/2025/acp-25-705-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/705/2025/acp-25-705-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/705/2025/acp-25-705-2025-avatar-web.png" data-width="600" data-height="474" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/705/2025/">Role of a key microphysical factor in mixed-phase stratocumulus clouds and their interactions with aerosols</a> <div class="authors">Seoung Soo Lee, Chang Hoon Jung, Jinho Choi, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, and Sang-Keun Song</div> <div class="citation">Atmos. Chem. Phys., 25, 705&ndash;726, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-705-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-705-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_111200" data-show=".short_summary_111200" data-hide=".short_summary_button_111200" >Short summary</span> <div class="j-widget__max short_summary short_summary_111200" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study attempts to test a general factor that explains differences in the properties of different mixed-phase clouds using a modeling tool. Although this attempt is not to identify a factor that can perfectly explain and represent the properties of different mixed-phase clouds, we believe that this attempt acts as a valuable stepping stone towards a more complete, general way of using climate models to better predict climate change. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_111200" data-show=".short_summary_button_111200">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/705/2025/acp-25-705-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/705/2025/acp-25-705-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/705/2025/acp-25-705-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="474" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3179/">Influence of biogenic NO emissions from soil on Atmospheric chemistry over Africa: a regional modelling study</a> <div class="authors">Eric Martial Yao, Fabien Solmon, Marcellin Adon, Claire Delon, Corinne Galy-Lacaux, Graziano Giuliani, Bastien Sauvage, and Véronique Yoboue</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3179,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3179,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123971" data-show=".short_summary_123971" data-hide=".short_summary_button_123971" >Short summary</span> <div class="j-widget__max short_summary short_summary_123971" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> As climate change and human activities intensify in Africa, understanding how air pollution, climate, and natural cycles interact is crucial. This study explores how nitrogen oxide emissions from African soils, especially in dry regions, contribute to atmospheric pollution. By using a climate-chemistry model, we show that considering these emissions improves predictions of nitrogen dioxide, nitric acid and ozone, although some discrepancies remain compared to observations. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123971" data-show=".short_summary_button_123971">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3771/">Climate-driven biogenic emissions alleviate the impact of man-made emission reduction on O<sub>3</sub> control in Pearl River Delta region, southern China</a> <div class="authors">Nan Wang, Song Liu, Jiawei Xu, Yanyu Wang, Chun Li, Hua Lu, and Fumo Yang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3771,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3771,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125494" data-show=".short_summary_125494" data-hide=".short_summary_button_125494" >Short summary</span> <div class="j-widget__max short_summary short_summary_125494" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We found that climate warming and changes in vegetation have increased biogenic volatile organic compound emissions in the Pearl River Delta region. These increasing natural emissions, mainly due to climate warming, are weakening the benefits of reducing man-made emission control, leading to higher ozone levels. This work helps us understand how climate change influences air quality and provides important insights for improving pollution control strategies in the future. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125494" data-show=".short_summary_button_125494">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3938/">South Asia ammonia emission inversion through assimilating IASI observations</a> <div class="authors">Ji Xia, Yi Zhou, Li Fang, Yingfei Qi, Dehao Li, Hong Liao, and Jianbing Jin</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3938,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3938,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125791" data-show=".short_summary_125791" data-hide=".short_summary_button_125791" >Short summary</span> <div class="j-widget__max short_summary short_summary_125791" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study established an ammonia emission inventory in South Asia via assimilation-based inversion system. The posterior emissions, calculated by integrating the CEDS inventory and IASI satellite observations, showed significant improvement over the prior. Validation against various measurements all support our posterior emission. It offers valuable insights of ammonia emissions for policymakers and researchers aiming to develop air quality management and mitigation strategies there. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125791" data-show=".short_summary_button_125791">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="1"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/597/2025/acp-25-597-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/597/2025/acp-25-597-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/597/2025/acp-25-597-2025-avatar-web.png" data-width="435" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/597/2025/">Tropical upper-tropospheric trends in ozone and carbon monoxide (2005–2020): observational and model results</a> <div class="authors">Lucien Froidevaux, Douglas E. Kinnison, Benjamin Gaubert, Michael J. Schwartz, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, Jerry R. Ziemke, and Ryan A. Fuller</div> <div class="citation">Atmos. Chem. Phys., 25, 597&ndash;624, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-597-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-597-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118329" data-show=".short_summary_118329" data-hide=".short_summary_button_118329" >Short summary</span> <div class="j-widget__max short_summary short_summary_118329" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We compare observed changes in ozone (O<sub>3</sub>) and carbon monoxide (CO) in the tropical upper troposphere (10&ndash;15&thinsp;km altitude) for 2005&ndash;2020 to predictions from model simulations that track the evolution of natural and industrial emissions transported to this region. An increasing trend in measured upper-tropospheric O<sub>3</sub> is well matched by model trends. We find that changes in modeled industrial CO surface emissions lead to better model agreement with observed slight decreases in upper-tropospheric CO. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118329" data-show=".short_summary_button_118329">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/597/2025/acp-25-597-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/597/2025/acp-25-597-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/597/2025/acp-25-597-2025-avatar-web.png" data-width="435" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="1"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/639/2025/acp-25-639-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/639/2025/acp-25-639-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/639/2025/acp-25-639-2025-avatar-web.png" data-width="600" data-height="404" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/639/2025/">To what extent does the CO<sub>2</sub> diurnal cycle impact flux estimates derived from global and regional inversions?</a> <div class="authors">Saqr Munassar, Christian Rödenbeck, Michał Gałkowski, Frank-Thomas Koch, Kai U. Totsche, Santiago Botía, and Christoph Gerbig</div> <div class="citation">Atmos. Chem. Phys., 25, 639&ndash;656, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-639-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-639-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_117868" data-show=".short_summary_117868" data-hide=".short_summary_button_117868" >Short summary</span> <div class="j-widget__max short_summary short_summary_117868" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> CO<sub>2</sub> mole fractions simulated over a global set of stations showed an overestimation of CO<sub>2</sub> if the diurnal cycle is missing in biogenic fluxes. This leads to biases in the estimated fluxes derived from the regional-scale inversions. Interannual variability of estimated biogenic fluxes is also affected by the exclusion of the CO<sub>2</sub> diurnal cycle. The findings point to the importance of including the diurnal variations of CO<sub>2</sub> in the biogenic fluxes used as priors in global and regional inversions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_117868" data-show=".short_summary_button_117868">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/639/2025/acp-25-639-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/639/2025/acp-25-639-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/639/2025/acp-25-639-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="404" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="1"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/657/2025/acp-25-657-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/657/2025/acp-25-657-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/657/2025/acp-25-657-2025-avatar-web.png" data-width="600" data-height="369" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/657/2025/">High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 2: Seasonal and temporal trends in refractory black carbon originated from fossil fuel combustion and biomass burning</a> <div class="authors">Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki</div> <div class="citation">Atmos. Chem. Phys., 25, 657&ndash;683, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-657-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-657-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120374" data-show=".short_summary_120374" data-hide=".short_summary_button_120374" >Short summary</span> <div class="j-widget__max short_summary short_summary_120374" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120374" data-show=".short_summary_button_120374">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/657/2025/acp-25-657-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/657/2025/acp-25-657-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/657/2025/acp-25-657-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="369" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="1"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/575/2025/acp-25-575-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/575/2025/acp-25-575-2025-avatar-thumb80.png" data-caption="© Crown copyright 2024. Distributed under the Open Government Licence (OGL)." data-web="https://acp.copernicus.org/articles/25/575/2025/acp-25-575-2025-avatar-web.png" data-width="600" data-height="402" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/575/2025/">Global seasonal urban, industrial, and background NO<sub>2</sub> estimated from TROPOMI satellite observations</a> <div class="authors">Vitali Fioletov, Chris A. McLinden, Debora Griffin, Xiaoyi Zhao, and Henk Eskes</div> <div class="citation">Atmos. Chem. Phys., 25, 575&ndash;596, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-575-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-575-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121564" data-show=".short_summary_121564" data-hide=".short_summary_button_121564" >Short summary</span> <div class="j-widget__max short_summary short_summary_121564" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Satellite data were used to estimate urban per capita emissions for 261 major cities worldwide. Three components in tropospheric NO<sub>2</sub> data (background NO<sub>2</sub>, NO<sub>2</sub> from urban sources, and NO<sub>2</sub> from industrial point sources) were isolated, and then each of these components was analyzed separately. The largest per capita emissions were found in the Middle East and the smallest in India and southern Africa. Urban weekend emissions are 20 %&ndash;50 % less than workday emissions for all regions except China. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121564" data-show=".short_summary_button_121564">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/575/2025/acp-25-575-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/575/2025/acp-25-575-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/575/2025/acp-25-575-2025-avatar-web.png" data-width="600" data-caption="© Crown copyright 2024. Distributed under the Open Government Licence (OGL)." data-height="402" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="1"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3859/">High-resolution modelling of early contrail evolution from hydrogen-powered aircraft</a> <div class="authors">Annemarie Lottermoser and Simon Unterstraßer</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3859,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3859,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125628" data-show=".short_summary_125628" data-hide=".short_summary_button_125628" >Short summary</span> <div class="j-widget__max short_summary short_summary_125628" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Contrail-cirrus significantly contributes to aviation's overall climate impact. As hydrogen combustion and fuel cell use are emerging technologies for aircraft propulsion, we simulated individual contrails from hydrogen propulsion during the first six minutes after exhaust emission, termed the vortex phase. The ice crystal loss during that stage is crucial as the number of ice crystals has a large impact on the further evolution of contrails into contrail-cirrus and their radiative forcing. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125628" data-show=".short_summary_button_125628">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="1"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4014/">Biosphere-atmosphere related processes influence trace-gas and aerosol satellite-model biases</a> <div class="authors">Emma Sands, Ruth M. Doherty, Fiona M. O'Connor, Richard J. Pope, James Weber, and Daniel P. Grosvenor</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4014,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4014,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126025" data-show=".short_summary_126025" data-hide=".short_summary_button_126025" >Short summary</span> <div class="j-widget__max short_summary short_summary_126025" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We use satellite observations to quantify isoprene, formaldehyde and aerosol optical depth biases in UKESM1.1 and their sensitivity to process representation. The more detailed chemistry mechanism is particularly impactful by decreasing the isoprene and formaldehyde biases and reducing aerosol formation. Other processes have strong regional impacts. The new processes affect the present-day aerosol direct radiative effect (+0.17 W m<sup>-2</sup>), with implications for land use change forcing studies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126025" data-show=".short_summary_button_126025">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="1"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2025-6/">Synthesis of surface snowfall rates and radar-observed storm structures in 10+ years of Northeast US winter storms</a> <div class="authors">Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2025-6,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2025-6,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126295" data-show=".short_summary_126295" data-hide=".short_summary_button_126295" >Short summary</span> <div class="j-widget__max short_summary short_summary_126295" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates how radar-detected snow bands relate to snowfall rates during winter storms in the northeastern U.S. Using over a decade of data, we found that snow bands are not consistently linked to heavy snowfall at the surface, as snow particles are often dispersed by wind before reaching the ground. These findings highlight limitations of using radar reflectivity for predicting snow rates and suggest focusing on radar echo duration to better understand snowfall patterns. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126295" data-show=".short_summary_button_126295">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/511/2025/acp-25-511-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/511/2025/acp-25-511-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/511/2025/acp-25-511-2025-avatar-web.png" data-width="600" data-height="413" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/511/2025/">Valley floor inclination affecting valley winds and transport of passive tracers in idealised simulations</a> <div class="authors">Johannes Mikkola, Alexander Gohm, Victoria A. Sinclair, and Federico Bianchi</div> <div class="citation">Atmos. Chem. Phys., 25, 511&ndash;533, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-511-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-511-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121299" data-show=".short_summary_121299" data-hide=".short_summary_button_121299" >Short summary</span> <div class="j-widget__max short_summary short_summary_121299" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates the influence of valley floor inclination on diurnal winds and passive tracer transport within idealised mountain valleys using numerical simulations. The valley inclination strengthens the daytime up-valley winds but only up to a certain point. Beyond that critical angle, the winds weaken again. The inclined valleys transport the tracers higher up in the free troposphere, which would, for example, lead to higher potential for long-range transport. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121299" data-show=".short_summary_button_121299">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/511/2025/acp-25-511-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/511/2025/acp-25-511-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/511/2025/acp-25-511-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="413" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/535/2025/acp-25-535-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/535/2025/acp-25-535-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/535/2025/acp-25-535-2025-avatar-web.png" data-width="600" data-height="470" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/535/2025/">OMPS-LP aerosol extinction coefficients and their applicability in GloSSAC</a> <div class="authors">Mahesh Kovilakam, Larry W. Thomason, Magali Verkerk, Thomas Aubry, and Travis N. Knepp</div> <div class="citation">Atmos. Chem. Phys., 25, 535&ndash;553, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-535-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-535-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122295" data-show=".short_summary_122295" data-hide=".short_summary_button_122295" >Short summary</span> <div class="j-widget__max short_summary short_summary_122295" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The Global Space-based Stratospheric Aerosol Climatology (GloSSAC) is essential for understanding and modeling the climatic impacts of stratospheric aerosols, comprising data from various space-based measurements. Here, we examine the Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) against other data sets, particularly the Stratospheric Aerosol and Gas Experiment (SAGE) III/ISS, to discern differences and explore the applicability of OMPS data within the GloSSAC framework. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122295" data-show=".short_summary_button_122295">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/535/2025/acp-25-535-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/535/2025/acp-25-535-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/535/2025/acp-25-535-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="470" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3890/">Modeling urban pollutant transport at multi-resolutions: Impacts of turbulent mixing</a> <div class="authors">Zining Yang, Qiuyan Du, Qike Yang, Chun Zhao, Gudongze Li, Zihan Xia, Mingyue Xu, Renmin Yuan, Yubin Li, Kaihui Xia, Jun Gu, and Jiawang Feng</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3890,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3890,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125685" data-show=".short_summary_125685" data-hide=".short_summary_button_125685" >Short summary</span> <div class="j-widget__max short_summary short_summary_125685" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates the impact of turbulent mixing on black carbon (BC) concentrations in urban areas using WRF-Chem at 25, 5, and 1 km resolutions. Significant variations in BC and turbulent mixing occur mainly at night. Higher resolutions reduce BC overestimation due to enhanced PBL mixing coefficients and vertical wind fluxes. Small-scale eddies at higher resolutions increase BC lifetime and column concentrations. Land use and terrain variations across multi-resolutions affect PBL mixing. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125685" data-show=".short_summary_button_125685">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4069/">Bridging the polarimetric structure and lightning activity of an isolated thunderstorm during the cloud life cycle</a> <div class="authors">Chuanhong Zhao, Yijun Zhang, Huiyan Zhai, Zhe Li, Dong Zheng, Xueyan Peng, Wen Yao, Sai Du, and Yuanmou Du</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4069,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4069,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126099" data-show=".short_summary_126099" data-hide=".short_summary_button_126099" >Short summary</span> <div class="j-widget__max short_summary short_summary_126099" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Lightning activity is highly related to the signatures of polarimetric radar on the basis of cloud electrification physics. However, few studies have focused on bridging the polarimetric structure and lightning activity during the cloud life cycle. Here, we evaluated the sequence and interactions of polarimetric parameters for indicating lightning activity from the perspective of the cloud life cycle, and the cloud microphysics of the polarimetric structure was explored. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126099" data-show=".short_summary_button_126099">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3677/">Investigating the impact of subgrid-scale aerosol-cloud interaction on mesoscale meteorology prediction</a> <div class="authors">Wenjie Zhang, Hong Wang, Xiaoye Zhang, Yue Peng, Zhaodong Liu, Deying Wang, Da Zhang, Chen Han, Yang Zhao, Junting Zhong, Wenxing Jia, Huiqiong Ning, and Huizheng Che</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3677,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3677,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125310" data-show=".short_summary_125310" data-hide=".short_summary_button_125310" >Short summary</span> <div class="j-widget__max short_summary short_summary_125310" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We implement a real-time subgrid-scale aerosol-cloud interaction (ACI) mechanism in a mesoscale atmospheric chemistry system and find that subgrid-scale ACI can improve meteorological factors predictions. This study demonstrates the importance of real-time subgrid-scale ACI to weather forecast and the necessity of multiscale ACI studies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125310" data-show=".short_summary_button_125310">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4165/">On the presence of high nitrite (NO<sub>2</sub><sup>-</sup>) in coarse particles at Mt. Qomolangma</a> <div class="authors">Zhongyi Zhang, Chunxiang Ye, Yichao Wu, Tao Zhou, Pengfei Chen, Shichang Kang, Chong Zhang, Zhuang Jiang, and Lei Geng</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4165,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4165,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126227" data-show=".short_summary_126227" data-hide=".short_summary_button_126227" >Short summary</span> <div class="j-widget__max short_summary short_summary_126227" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study reveals unexpectedly high levels of particulate nitrite at the Base Camp of Mt. Qomolangma, which overwhelmingly exists in coarse mode, and demonstrates that lofted surface soil contributes to the high levels of nitrite. Once lofted into atmosphere, the soil-derived nitrite is likely to participate in atmospheric reactive nitrogen cycling through gas-particle partitioning or photolysis, leading to the production of HONO, OH and NO and thereby influencing oxidation chemistry. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126227" data-show=".short_summary_button_126227">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/473/2025/acp-25-473-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/473/2025/acp-25-473-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/473/2025/acp-25-473-2025-avatar-web.png" data-width="600" data-height="157" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/473/2025/">Impact of host climate model on contrail cirrus effective radiative forcing estimates</a> <div class="authors">Weiyu Zhang, Kwinten Van Weverberg, Cyril J. Morcrette, Wuhu Feng, Kalli Furtado, Paul R. Field, Chih-Chieh Chen, Andrew Gettelman, Piers M. Forster, Daniel R. Marsh, and Alexandru Rap</div> <div class="citation">Atmos. Chem. Phys., 25, 473&ndash;489, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-473-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-473-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120503" data-show=".short_summary_120503" data-hide=".short_summary_button_120503" >Short summary</span> <div class="j-widget__max short_summary short_summary_120503" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Contrail cirrus is the largest, but also most uncertain, contribution of aviation to global warming. We evaluate, for the first time, the impact of the host climate model on contrail cirrus properties. Substantial differences exist between contrail cirrus formation, persistence, and radiative effects in the host climate models. Reliable contrail cirrus simulations require advanced representation of cloud optical properties and microphysics, which should be better constrained by observations. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120503" data-show=".short_summary_button_120503">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/473/2025/acp-25-473-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/473/2025/acp-25-473-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/473/2025/acp-25-473-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="157" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/491/2025/acp-25-491-2025-avatar-web.jpg"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/491/2025/acp-25-491-2025-avatar-thumb80.jpg" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/491/2025/acp-25-491-2025-avatar-web.jpg" data-width="430" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/491/2025/">A satellite-based analysis of semi-direct effects of biomass burning aerosols on fog and low-cloud dissipation in the Namib Desert</a> <div class="authors">Alexandre Mass, Hendrik Andersen, Jan Cermak, Paola Formenti, Eva Pauli, and Julian Quinting</div> <div class="citation">Atmos. Chem. Phys., 25, 491&ndash;510, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-491-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-491-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120650" data-show=".short_summary_120650" data-hide=".short_summary_button_120650" >Short summary</span> <div class="j-widget__max short_summary short_summary_120650" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates the interaction between smoke aerosols and fog and low clouds (FLCs) in the Namib Desert between June and October. Here, a satellite-based dataset of FLCs, reanalysis data and machine learning are used to systematically analyze FLC persistence under different aerosol loadings. Aerosol plumes are shown to modify local thermodynamics, which increase FLC persistence. But fully disentangling aerosol effects from meteorological ones remains a challenge. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120650" data-show=".short_summary_button_120650">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/491/2025/acp-25-491-2025-avatar-web.jpg"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/491/2025/acp-25-491-2025-avatar-thumb80.jpg" data-web="https://acp.copernicus.org/articles/25/491/2025/acp-25-491-2025-avatar-web.jpg" data-width="430" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/459/2025/acp-25-459-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/459/2025/acp-25-459-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/459/2025/acp-25-459-2025-avatar-web.png" data-width="600" data-height="402" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/459/2025/">Seasonal air concentration variability, gas–particle partitioning, precipitation scavenging, and air–water equilibrium of organophosphate esters in southern Canada</a> <div class="authors">Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania</div> <div class="citation">Atmos. Chem. Phys., 25, 459&ndash;472, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-459-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-459-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121248" data-show=".short_summary_121248" data-hide=".short_summary_button_121248" >Short summary</span> <div class="j-widget__max short_summary short_summary_121248" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Organophosphate esters are important humanmade trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation, and surface water in Canada, we explore seasonal concentration variability, gas&ndash;particle partitioning, precipitation scavenging, and the air&ndash;water equilibrium. Whereas higher summer concentrations and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas&ndash;particle partitioning is puzzling. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121248" data-show=".short_summary_button_121248">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/459/2025/acp-25-459-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/459/2025/acp-25-459-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/459/2025/acp-25-459-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="402" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3527/">Insights into the real part of natural sea spray aerosol refractive index in the Pacific Ocean</a> <div class="authors">Chengyi Fan, Bishuo He, Shuqi Guo, Jie Qiu, and Chunsheng Zhao</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3527,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3527,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125008" data-show=".short_summary_125008" data-hide=".short_summary_button_125008" >Short summary</span> <div class="j-widget__max short_summary short_summary_125008" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Marine aerosols play a critical role in weather and climate and their real part of the refractive index (RRI) is a key factor in their radiative effects. We present a study of RRI measurements using optical tweezers technology and find the calculated results of RRI using traditional method disagree with the measurements. A parameterization of the RRI and relative humidity relationship is proposed and it will improve the radiation calculation in numerical models. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125008" data-show=".short_summary_button_125008">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3555/">Constraining the budget of NOx and VOCs at a remote Tropical island using multi-platform observations and WRF-Chem model simulations</a> <div class="authors">Catalina Poraicu, Jean-François Müller, Trissevgeni Stavrakou, Crist Amelynck, Bert W. D. Verreyken, Niels Schoon, Corinne Vigouroux, Nicolas Kumps, Jérôme Brioude, Pierre Tulet, and Camille Mouchel-Vallon</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3555,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3555,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125076" data-show=".short_summary_125076" data-hide=".short_summary_button_125076" >Short summary</span> <div class="j-widget__max short_summary short_summary_125076" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We investigated the sources and impacts of nitrogen oxides and organic compounds over a remote tropical island. High-resolution WRF-Chem simulations were evaluated using in situ, FTIR and satellite measurements. This work highlights gaps in current models, like missing sources of key organic compounds and inaccuracies in emission inventories, emphasizing the importance of improving chemical and dynamical processes in atmospheric modelling for budget estimates in tropical regions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125076" data-show=".short_summary_button_125076">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4057/">Source reconstruction via deposition measurements of an undeclared radiological atmospheric release</a> <div class="authors">Stijn Van Leuven, Pieter De Meutter, Johan Camps, Piet Termonia, and Andy Delcloo</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4057,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4057,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126083" data-show=".short_summary_126083" data-hide=".short_summary_button_126083" >Short summary</span> <div class="j-widget__max short_summary short_summary_126083" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We use deposition measurements to trace the source of the radioactive isotope Ru-106 released into the atmosphere in 2017, which led to detections in Europe and other parts of the northern hemisphere. Most frequently, measurements of air concentration are used for such purposes. Our research shows that while air concentration data can provide more precise results, deposition measurements can still effectively pinpoint the release location, offering a less costly and more versatile alternative. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126083" data-show=".short_summary_button_126083">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4070/">Different responses of cold-air outbreak clouds to aerosol and ice production depending on cloud temperature</a> <div class="authors">Xinyi Huang, Paul R. Field, Benjamin J. Murray, Daniel P. Grosvenor, Floortje van den Heuvel, and Kenneth S. Carslaw</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4070,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4070,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126100" data-show=".short_summary_126100" data-hide=".short_summary_button_126100" >Short summary</span> <div class="j-widget__max short_summary short_summary_126100" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Cold-air outbreak (CAO) clouds play a vital role in climate prediction. This study explores the responses of CAO clouds to aerosols and ice production under different environmental conditions. We found that CAO cloud responses vary with cloud temperature and are strongly controlled by the liquid-ice partitioning in these clouds, suggesting the importance of good representations of cloud microphysics properties to predict the behaviours of CAO clouds in a warming climate. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126100" data-show=".short_summary_button_126100">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4095/">Homogeneous ice nucleation in adsorbed water films: A theoretical approach</a> <div class="authors">Ari Laaksonen, Golnaz Roudsari, Ana A. Piedehierro, and André Welti</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4095,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4095,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126126" data-show=".short_summary_126126" data-hide=".short_summary_button_126126" >Short summary</span> <div class="j-widget__max short_summary short_summary_126126" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The mechanisms of ice nucleation at temperatures below 235 K have remained unclear for the past century. We suggest that ice nucleation is caused by the freezing of water adsorbed on aerosol surfaces. To test this hypothesis, we derived theoretical equations to predict the exact atmospheric conditions under which ice nucleation occurs. Our predictions agree well with experiments. The new theory thus provides a basis for an improved description of ice nucleation in the atmosphere. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126126" data-show=".short_summary_button_126126">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 15 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4108/">Signatures of aerosol-cloud interactions in GiOcean: A coupled global reanalysis with two-moment cloud microphysics</a> <div class="authors">Ci Song, Daniel McCoy, Andrea Molod, and Donifan Barahona</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4108,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4108,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126145" data-show=".short_summary_126145" data-hide=".short_summary_button_126145" >Short summary</span> <div class="j-widget__max short_summary short_summary_126145" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The uncertainty in how clouds respond to aerosols limits our ability to predict future warming. This study uses a global reanalysis data, GiOcean, which includes a detailed treatment of cloud microphysics to represent interactions between aerosols and clouds. We evaluate the response of warm clouds to aerosols in GiOcean by comparing variables important for cloud properties from GiOcean with available spaceborne remote sensing observations. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126145" data-show=".short_summary_button_126145">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-4041/">How COVID-19 related policies reshaped organic aerosol source contributions in central London</a> <div class="authors">Gang I. Chen, Anja H. Tremper, Max Priestman, Anna Font, and David C. Green</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-4041,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-4041,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_126064" data-show=".short_summary_126064" data-hide=".short_summary_button_126064" >Short summary</span> <div class="j-widget__max short_summary short_summary_126064" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study quantified the impact of the COVID lockdown and the Eat Out To Help Out (EOTHO) on the sources/compositions of aerosols. The lockdown significantly reduced the primary emission sources. This study confirmed the important presence of cooking emissions from commercial kitchens in central London by detecting the enhancement caused by the EOTHO policy after the lockdown. Biomass burning organic aerosol co-emitted with cooking activities from either the fuels or food ingredients used. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_126064" data-show=".short_summary_button_126064">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3759/">Assessment of regional and interannual variations in tropospheric ozone in chemical reanalyses</a> <div class="authors">Dylan Jones, Lucas Prates, Zhen Qu, William Cheng, Kazuyuki Miyazaki, Takashi Sekiya, Antje Inness, Rajesh Kumar, Xiao Tang, Helen Worden, Gerbrand Koren, and Vincent Huijen</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3759,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3759,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125470" data-show=".short_summary_125470" data-hide=".short_summary_button_125470" >Short summary</span> <div class="j-widget__max short_summary short_summary_125470" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We evaluate five chemical reanalysis products to assess their potential to provide useful information on tropospheric ozone variability. We find that the reanalyses produce consistent information on ozone variations in the free troposphere, but have large discrepancies at the surface. The results suggests that improvements in the reanalyses are needed to better exploit the assimilated observations to enhance the utility of the reanalysis products at the surface. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125470" data-show=".short_summary_button_125470">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3804/">Direct measurement of N<sub>2</sub>O<sub>5</sub> heterogeneous uptake coefficients on atmospheric aerosols in southwestern China and evaluation of current parameterizations</a> <div class="authors">Jiayin Li, Tianyu Zhai, Xiaorui Chen, Haichao Wang, Shuyang Xie, Shiyi Chen, Chunmeng Li, Huabin Dong, and Keding Lu</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3804,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3804,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125543" data-show=".short_summary_125543" data-hide=".short_summary_button_125543" >Short summary</span> <div class="j-widget__max short_summary short_summary_125543" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We directly measured the dinitrogen pentoxide (N<sub>2</sub>O<sub>5</sub>) uptake coefficient which critical impact the NO<sub>x</sub> fate and particulate nitrate formation in a typical highland city, Kunming, in China. We found the performance of current &gamma;(N<sub>2</sub>O<sub>5</sub>) parameterizations showed deviations with the varying aerosol liquid water content (ALWC). Such differences would lead to biased estimation on particulate nitrate production potential. Our findings suggest the directions for future studies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125543" data-show=".short_summary_button_125543">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/397/2025/acp-25-397-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/397/2025/acp-25-397-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/397/2025/acp-25-397-2025-avatar-web.png" data-width="600" data-height="319" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/397/2025/">A CO<sub>2</sub>–Δ<sup>14</sup>CO<sub>2</sub> inversion setup for estimating European fossil CO<sub>2</sub> emissions</a> <div class="authors">Carlos Gómez-Ortiz, Guillaume Monteil, Sourish Basu, and Marko Scholze</div> <div class="citation">Atmos. Chem. Phys., 25, 397&ndash;424, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-397-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-397-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_115084" data-show=".short_summary_115084" data-hide=".short_summary_button_115084" >Short summary</span> <div class="j-widget__max short_summary short_summary_115084" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> In this paper, we test new implementations of our inverse modeling tool to estimate the weekly and regional CO<sub>2</sub> emissions from fossil fuels in Europe. We use synthetic atmospheric observations of CO<sub>2</sub> and radiocarbon (<sup>14</sup>CO<sub>2</sub>) to trace emissions to their sources, while separating the natural and fossil CO<sub>2</sub>. Our tool accurately estimates fossil CO<sub>2</sub> emissions in densely monitored regions like western/central Europe. This approach aids in developing strategies for reducing CO<sub>2</sub> emissions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_115084" data-show=".short_summary_button_115084">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/397/2025/acp-25-397-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/397/2025/acp-25-397-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/397/2025/acp-25-397-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="319" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/367/2025/acp-25-367-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/367/2025/acp-25-367-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/367/2025/acp-25-367-2025-avatar-web.png" data-width="600" data-height="445" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/367/2025/">Radiative impact of the Hunga stratospheric volcanic plume: role of aerosols and water vapor over Réunion Island (21°&thinsp;S, 55°&thinsp;E)</a> <div class="authors">Michaël Sicard, Alexandre Baron, Marion Ranaivombola, Dominique Gantois, Tristan Millet, Pasquale Sellitto, Nelson Bègue, Hassan Bencherif, Guillaume Payen, Nicolas Marquestaut, and Valentin Duflot</div> <div class="citation">Atmos. Chem. Phys., 25, 367&ndash;381, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-367-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-367-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120838" data-show=".short_summary_120838" data-hide=".short_summary_button_120838" >Short summary</span> <div class="j-widget__max short_summary short_summary_120838" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study quantifies the radiative impact over R&eacute;union Island (21&deg; S, 55&deg; E) of the aerosols and water vapor injected into the stratosphere by the Hunga volcano in the South Pacific. The overall aerosol and water vapor impact on the Earth&rsquo;s radiation budget for the whole period is negative (cooling, -0.82 &plusmn; 0.35 W m<sup>-2</sup>) and dominated by the aerosols. At the Earth&rsquo;s surface, aerosols are the main drivers and produce a negative (cooling, -1.04 &plusmn; 0.36 W m<sup>-2</sup>) radiative impact. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120838" data-show=".short_summary_button_120838">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/367/2025/acp-25-367-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/367/2025/acp-25-367-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/367/2025/acp-25-367-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="445" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/441/2025/acp-25-441-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/441/2025/acp-25-441-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/441/2025/acp-25-441-2025-avatar-web.png" data-width="600" data-height="464" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/441/2025/">Turbulent energy budget analysis based on coherent wind lidar observations</a> <div class="authors">Jinhong Xian, Zongxu Qiu, Hongyan Luo, Yuanyuan Hu, Xiaoling Lin, Chao Lu, Yan Yang, Honglong Yang, and Ning Zhang</div> <div class="citation">Atmos. Chem. Phys., 25, 441&ndash;457, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-441-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-441-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121879" data-show=".short_summary_121879" data-hide=".short_summary_button_121879" >Short summary</span> <div class="j-widget__max short_summary short_summary_121879" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The existing methods for observing turbulent kinetic energy (TKE) budget terms can only rely on ground-based towers. We have developed a new detection method that can directly observe and analyze the generation and dissipation mechanisms of turbulent energy at different heights in the vertical direction of the boundary layer. This research result will extend our study of TKE budget terms from near the ground to high altitude, providing a higher and more detailed perspective. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121879" data-show=".short_summary_button_121879">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/441/2025/acp-25-441-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/441/2025/acp-25-441-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/441/2025/acp-25-441-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="464" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/425/2025/acp-25-425-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/425/2025/acp-25-425-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/425/2025/acp-25-425-2025-avatar-web.png" data-width="600" data-height="415" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/425/2025/">Enhanced sulfate formation in mixed biomass burning and sea-salt interactions mediated by photosensitization: effects of chloride, nitrogen-containing compounds, and atmospheric aging</a> <div class="authors">Rongzhi Tang, Jialiang Ma, Ruifeng Zhang, Weizhen Cui, Yuanyuan Qin, Yangxi Chu, Yiming Qin, Alexander L. Vogel, and Chak K. Chan</div> <div class="citation">Atmos. Chem. Phys., 25, 425&ndash;439, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-425-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-425-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122705" data-show=".short_summary_122705" data-hide=".short_summary_button_122705" >Short summary</span> <div class="j-widget__max short_summary short_summary_122705" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study provides laboratory evidence that the photosensitizers in biomass burning extracts can enhance sulfate formation in NaCl particles, primarily by triggering the formation of secondary oxidants under light and air conditions, with a lower contribution of direct photosensitization via triplets. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122705" data-show=".short_summary_button_122705">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/425/2025/acp-25-425-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/425/2025/acp-25-425-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/425/2025/acp-25-425-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="415" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3596/">The Solar Zenith Angle Impacts MODIS versus CALIPSO AOD Retrieval Biases, with Implications for Arctic Aerosol Seasonality</a> <div class="authors">Sarah Smith, Yutian Wu, Rob Levy, and Mingfang Ting</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3596,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3596,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125158" data-show=".short_summary_125158" data-hide=".short_summary_button_125158" >Short summary</span> <div class="j-widget__max short_summary short_summary_125158" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Satellite data from a laser-based instrument show Arctic particulate matter is highest in winter and spring, and lowest in summer. However, sunlight-based instruments show the highest values in summer and very low values in autumn/spring. We find that a sunlight-based instrument retrieves lower than expected values when the sun is low on the horizon, but only when clouds are also present, likely due to cloud shadows. This causes it to underestimate particulates in winter, even beyond the Arctic. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125158" data-show=".short_summary_button_125158">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3197/">Atmospheric processing and aerosol aging responsible for observed increase in absorptivity of long-range transported smoke over the southeast Atlantic</a> <div class="authors">Abdulamid A. Fakoya, Jens Redemann, Pablo E. Saide, Lan Gao, Logan T. Mitchell, Calvin Howes, Amie Dobracki, Ian Chang, Gonzalo A. Ferrada, Kristina Pistone, Samuel E. Leblanc, Michal Segal-Rozenhaimer, Arthur J. Sedlacek III, Thomas Eck, Brent Holben, Pawan Gupta, Elena Lind, Paquita Zuidema, Gregory Carmichael, and Connor J. Flynn</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3197,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3197,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124000" data-show=".short_summary_124000" data-hide=".short_summary_button_124000" >Short summary</span> <div class="j-widget__max short_summary short_summary_124000" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Tiny atmospheric particles from wildfire smoke impact climate by interacting with sunlight and clouds, the extent of which is uncertain due to gaps in understanding how smoke changes over time. We developed a new method using remote sensing instruments to track how these particles evolve during atmospheric transport. Our results show that the ability of these particles to absorb sunlight increased as they travel. This discovery could help improve predictions of future climate scenarios. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124000" data-show=".short_summary_button_124000">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3438/">Identifying Synoptic Controls on Boundary Layer Thermodynamic and Cloud Properties in a Regional Forecast Model</a> <div class="authors">Jordan Eissner, David Mechem, Yi Jin, Virendra Ghate, and James Booth</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3438,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3438,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124679" data-show=".short_summary_124679" data-hide=".short_summary_button_124679" >Short summary</span> <div class="j-widget__max short_summary short_summary_124679" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Low-level clouds have important radiative feedbacks and can occur in a range of meteorological conditions, yet our knowledge and prediction of them are insufficient. We evaluate model forecasts of low-level cloud properties across a cold front and the associated environments that they form in. The model represents the meteorological conditions well and produces broken clouds behind the cold front in areas of strong surface forcing, large stability, and large-scale subsiding motion. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124679" data-show=".short_summary_button_124679">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3709/">Lagrangian single-column modeling of Arctic airmass transformation during HALO-(𝒜𝒞)<sup>3</sup></a> <div class="authors">Michail Karalis, Gunilla Svensson, Manfred Wendisch, and Michael Tjernström</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3709,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3709,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125370" data-show=".short_summary_125370" data-hide=".short_summary_button_125370" >Short summary</span> <div class="j-widget__max short_summary short_summary_125370" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> During the spring Arctic warm-air intrusion captured by HALO-(𝒜𝒞)<sup>3</sup>, the airmass demonstrated a column-like structure. We built a Lagrangian modeling framework using a single-column model (AOSCM) to simulate the airmass transformation. Comparing to observations, reanalysis and forecast data, we found that the AOSCM can successfully reproduce the main features of the transformation. The framework can be used for future model development to improve Arctic weather and climate prediction. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125370" data-show=".short_summary_button_125370">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3656/">Carbonate content and stable isotopic composition of aerosol carbon in the Canadian High Arctic</a> <div class="authors">Petr Vodička, Kimitaka Kawamura, Bhagawati Kunwar, Lin Huang, Dhananjay K. Deshmukh, Md. Mozammel Haque, Sangeeta Sharma, and Leonard Barrie</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3656,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3656,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125264" data-show=".short_summary_125264" data-hide=".short_summary_button_125264" >Short summary</span> <div class="j-widget__max short_summary short_summary_125264" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Carbonate carbon (CC) is not negligible in Arctic total suspended particles (TSP). If not considered, CC biases the contribution of elemental and organic carbon. CC content in TSP was strongly reflected in the &delta;<sup>13</sup>C values of total carbon (TC). Carbon contribution from CaCO<sub>3</sub> supports strong dependence of CC and &delta;<sup>13</sup>C on Ca. Finally, two hypothetical CC sources were identified based on the analysis of air mass back trajectories &ndash; dust resuspension and marine microorganisms. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125264" data-show=".short_summary_button_125264">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3736/">Global Ground-based Tropospheric Ozone Measurements: Reference Data and Individual Site Trends (2000&ndash;2022) from the TOAR-II/HEGIFTOM Project</a> <div class="authors">Roeland Van Malderen, Anne M. Thompson, Debra E. Kollonige, Ryan M. Stauffer, Herman G. J. Smit, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, David W. Tarasick, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Stéphanie Evan, Victoria Flood, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Marco Iarlori, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Glen McConville, Katrin Müller, Tomoo Nagahama, Justus Notholt, Ankie Piters, Natalia Prats, Richard Querel, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3736,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3736,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125431" data-show=".short_summary_125431" data-hide=".short_summary_button_125431" >Short summary</span> <div class="j-widget__max short_summary short_summary_125431" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Tropospheric ozone is an important greenhouse gas and is an air pollutant. The time variability of tropospheric ozone is mainly driven by anthropogenic emissions. In this paper, we study the distribution and time variability of ozone from harmonized ground-based observations from five different measurement techniques. Our findings will provide clear standard references for atmospheric models and evolving tropospheric ozone satellite data for the 2000&ndash;2022 period. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125431" data-show=".short_summary_button_125431">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3745/">Ground-based Tropospheric Ozone Measurements: Regional tropospheric ozone column trends from the TOAR-II/ HEGIFTOM homogenized datasets</a> <div class="authors">Roeland Van Malderen, Zhou Zang, Kai-Lan Chang, Robin Björklund, Owen R. Cooper, Jane Liu, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, Audrey Gaudel, David W. Tarasick, Herman G. J. Smit, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Isamu Morino, Glen McConville, Katrin Müller, Isao Murata, Justus Notholt, Ankie Piters, Maxime Prignon, Richard Querel, Vincenzo Rizi, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3745,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3745,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125448" data-show=".short_summary_125448" data-hide=".short_summary_button_125448" >Short summary</span> <div class="j-widget__max short_summary short_summary_125448" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Tropospheric ozone is an important greenhouse gas and an air pollutant, whose distribution and time variability is mainly governed by anthropogenic emissions and dynamics. In this paper, we assess regional trends of tropospheric ozone column amounts, based on two different approaches of merging or synthesizing ground-based observations and their trends within specific regions. Our findings clearly demonstrate regional trend differences, but also consistently higher pre- than post-COVID trends. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125448" data-show=".short_summary_button_125448">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3993/">Partitioning of ionic surfactants in aerosol droplets containing glutaric acid, sodium chloride, or sea salts</a> <div class="authors">Alison Bain, Kunal Ghosh, Konstantin Tumashevich, Nonne L. Prisle, and Bryan R. Bzdek</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3993,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3993,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125977" data-show=".short_summary_125977" data-hide=".short_summary_button_125977" >Short summary</span> <div class="j-widget__max short_summary short_summary_125977" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> In this work, we measure the surface tension of picolitre volume droplets containing strong ionic surfactants and cosolutes. These measurements are compared to surface tension predictions using two independent surfactant partitioning models. We find that when salting out occurs, one model outperforms the other. These results highlight the importance of validating surfactant partitioning models against experimental data before applying them to predict the surface tension of ambient aerosol. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125977" data-show=".short_summary_button_125977">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/263/2025/acp-25-263-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/263/2025/acp-25-263-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/263/2025/acp-25-263-2025-avatar-web.png" data-width="600" data-height="592" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/263/2025/">Maximum ozone concentrations in the southwestern US and Texas: implications of the growing predominance of the background contribution</a> <div class="authors">David D. Parrish, Ian C. Faloona, and Richard G. Derwent</div> <div class="citation">Atmos. Chem. Phys., 25, 263&ndash;289, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-263-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-263-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_117956" data-show=".short_summary_117956" data-hide=".short_summary_button_117956" >Short summary</span> <div class="j-widget__max short_summary short_summary_117956" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Observation-based estimates of contributions to maximum ozone (O<sub>3</sub>) concentrations show that background O<sub>3 </sub>can exceed the air quality standard of 70&thinsp;ppb in the southwestern US, precluding standard attainment. Over the past 4 decades, US anthropogenic O<sub>3 </sub>has decreased by a factor of ~&thinsp;6.3, while wildfire contributions have increased, so that the background now dominates maximum concentrations, even in Los Angeles, and the occurrence of maximum O<sub>3 </sub>has shifted from the eastern to the western US. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_117956" data-show=".short_summary_button_117956">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/263/2025/acp-25-263-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/263/2025/acp-25-263-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/263/2025/acp-25-263-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="592" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/347/2025/acp-25-347-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/347/2025/acp-25-347-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/347/2025/acp-25-347-2025-avatar-web.png" data-width="600" data-height="539" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/347/2025/">Opposing trends in the peak and low ozone concentrations in eastern China: anthropogenic and meteorological influences</a> <div class="authors">Zhuang Wang, Chune Shi, Hao Zhang, Xianguang Ji, Yizhi Zhu, Congzi Xia, Xiaoyun Sun, Xinfeng Lin, Shaowei Yan, Suyao Wang, Yuan Zhou, Chengzhi Xing, Yujia Chen, and Cheng Liu</div> <div class="citation">Atmos. Chem. Phys., 25, 347&ndash;366, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-347-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-347-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_117955" data-show=".short_summary_117955" data-hide=".short_summary_button_117955" >Short summary</span> <div class="j-widget__max short_summary short_summary_117955" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study attempts to explain the surface ozone background and typical and peak trends in eastern China by combining a large number of ground-based and satellite observations. We found diametrically opposed trends in peak (decreasing) and low (increasing) ozone concentrations. Anthropogenic emissions primarily drive trends in low and peak ozone concentrations in eastern China, though meteorological effects also play a role. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_117955" data-show=".short_summary_button_117955">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/347/2025/acp-25-347-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/347/2025/acp-25-347-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/347/2025/acp-25-347-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="539" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/291/2025/acp-25-291-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/291/2025/acp-25-291-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/291/2025/acp-25-291-2025-avatar-web.png" data-width="600" data-height="588" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/291/2025/">Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK Earth System Model</a> <div class="authors">Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw</div> <div class="citation">Atmos. Chem. Phys., 25, 291&ndash;325, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-291-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-291-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120441" data-show=".short_summary_120441" data-hide=".short_summary_button_120441" >Short summary</span> <div class="j-widget__max short_summary short_summary_120441" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosols that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust, we also need to represent ice nucleation by the organic components of soils. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120441" data-show=".short_summary_button_120441">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/291/2025/acp-25-291-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/291/2025/acp-25-291-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/291/2025/acp-25-291-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="588" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/327/2025/acp-25-327-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/327/2025/acp-25-327-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/327/2025/acp-25-327-2025-avatar-web.png" data-width="600" data-height="553" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/327/2025/">The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles</a> <div class="authors">Ryan Schmedding and Andreas Zuend</div> <div class="citation">Atmos. Chem. Phys., 25, 327&ndash;346, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-327-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-327-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120842" data-show=".short_summary_120842" data-hide=".short_summary_button_120842" >Short summary</span> <div class="j-widget__max short_summary short_summary_120842" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 &mu;m. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid&ndash;liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120842" data-show=".short_summary_button_120842">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/327/2025/acp-25-327-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/327/2025/acp-25-327-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/327/2025/acp-25-327-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="553" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3800/">Improved Formulation of Fragmentation of Snow during Collision with Graupel/Hail based on Observations at Jungfraujoch: Cold Non-Dendritic Regime of Temperature</a> <div class="authors">Freddy P. Paul, Martanda Gautam, Deepak Waman, Sachin Patade, Ushnanshu Dutta, Christoffer Pichler, Marcin Jackowicz-Korczynski, and Vaughan Phillips</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3800,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3800,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125539" data-show=".short_summary_125539" data-hide=".short_summary_button_125539" >Short summary</span> <div class="j-widget__max short_summary short_summary_125539" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study shows observations of a key mechanism for initiation of ice particles in clouds with a chamber deployed on the top of a mountain during snowfall in winter. The mechanism involves the fragmentation of snow particles in collisions with denser rimed ice precipitation, namely "graupel" or "hail". The study shows how the fragmentation can be represented in atmospheric models. An improved formulation of the mechanism is proposed in light of our observations with the chamber. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125539" data-show=".short_summary_button_125539">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3892/">Changes in the impacts of ship emissions on PM<sub>2.5</sub> and its components in China under the staged fuel oil policies</a> <div class="authors">Guangyuan Yu, Yan Zhang, Qian Wang, Zimin Han, Shenglan Jiang, Fan Yang, Xin Yang, and Cheng Huang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3892,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3892,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125687" data-show=".short_summary_125687" data-hide=".short_summary_button_125687" >Short summary</span> <div class="j-widget__max short_summary short_summary_125687" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> China has carried out staged low-sulfur fuel policies since 2017. This study simulated the changing spatiotemporal patterns of the impacts of ship emissions on PM<sub>2.5</sub> from 2017 to 2021 based on the updated emission inventories and mapping of chemical species in the CMAQ. Fuel policies caused evident relative changes in inorganic and organic components of the shipping-related PM<sub>2.5</sub> over China&rsquo;s port cities. The driving factors of the interannual, seasonal, and diurnal patterns were discussed. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125687" data-show=".short_summary_button_125687">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3898/">Characterization of Free Tropospheric Layers With Polar Radio Occultation Data</a> <div class="authors">Terence L. Kubar, Manuel de la Torre Juarez, Jonas Katona, and F. Joseph Turk</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3898,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3898,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125699" data-show=".short_summary_125699" data-hide=".short_summary_button_125699" >Short summary</span> <div class="j-widget__max short_summary short_summary_125699" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We analyze space-borne observations of simultaneous vertical profiles of precipitation, cloud layers, and temperatures, and find that about 80&ndash;90 % of cloud tops globally reach or are below the level of least stability. Since water vapor is limited at these low temperatures, this height may be a more important constraint on cloud top heights than the tropopause height below the level of maximum stability. Only the heaviest precipitating clouds vertically extend above this most unstable level. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125699" data-show=".short_summary_button_125699">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3606/">Impact of Convectively Coupled Tropical Waves on the composition and vertical structure of the atmosphere above Cabo Verde in September 2021 during the CADDIWA campaign</a> <div class="authors">Tanguy Jonville, Maurus Borne, Cyrille Flamant, Juan Cuesta, Olivier Bock, Pierre Bosser, Christophe Lavaysse, Andreas Fink, and Peter Knippertz</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3606,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3606,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125175" data-show=".short_summary_125175" data-hide=".short_summary_button_125175" >Short summary</span> <div class="j-widget__max short_summary short_summary_125175" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Tropical waves structure the atmosphere. Four types of tropical waves (ER, Kelvin, MRG-TD1, and MRG-TD2) are studied using filters, satellite measurements, and in situ data from the Clouds-Atmosphere Dynamics-Dust Interaction in West Africa (CADDIWA) campaign held in September 2021 in Cabo Verde. ER waves impact temperature and humidity above 2500 m, MRG-TD1 around 3500 m, and MRG-TD2 around 2000 m. Interactions between these waves favor tropical cyclone formation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125175" data-show=".short_summary_button_125175">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/199/2025/acp-25-199-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/199/2025/acp-25-199-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/199/2025/acp-25-199-2025-avatar-web.png" data-width="600" data-height="264" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/199/2025/">Derivation of atmospheric reaction mechanisms for volatile organic compounds by the SAPRC mechanism generation system (MechGen)</a> <div class="authors">William P. L. Carter, Jia Jiang, John J. Orlando, and Kelley C. Barsanti</div> <div class="citation">Atmos. Chem. Phys., 25, 199&ndash;242, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-199-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-199-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_115346" data-show=".short_summary_115346" data-hide=".short_summary_button_115346" >Short summary</span> <div class="j-widget__max short_summary short_summary_115346" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This paper describes the scientific basis for gas-phase atmospheric chemical mechanisms derived using the SAPRC mechanism generation system, MechGen. It can derive mechanisms for most organic compounds with C, H, O, or N atoms, including initial reactions of organics with OH, O<sub>3</sub>, NO<sub>3</sub>, and O<sup>3</sup>P or by photolysis, as well as the reactions of the various types of intermediates that are formed. The paper includes a description of areas of uncertainty where additional research and updates are needed. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_115346" data-show=".short_summary_button_115346">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/199/2025/acp-25-199-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/199/2025/acp-25-199-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/199/2025/acp-25-199-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="264" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/157/2025/acp-25-157-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/157/2025/acp-25-157-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/157/2025/acp-25-157-2025-avatar-web.png" data-width="600" data-height="257" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/157/2025/">Correction of ERA5 temperature and relative humidity biases by bivariate quantile mapping for contrail formation analysis</a> <div class="authors">Kevin Wolf, Nicolas Bellouin, Olivier Boucher, Susanne Rohs, and Yun Li</div> <div class="citation">Atmos. Chem. Phys., 25, 157&ndash;181, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-157-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-157-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_115368" data-show=".short_summary_115368" data-hide=".short_summary_button_115368" >Short summary</span> <div class="j-widget__max short_summary short_summary_115368" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> ERA5 atmospheric reanalysis and airborne in situ observations from IAGOS are compared in terms of the representation of the contrail formation potential and the presence of supersaturation. Differences are traced back to biases in ERA5 relative humidity fields. Those biases are addressed by applying a quantile mapping technique that significantly improved contrail estimation based on post-processed ERA5 data. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_115368" data-show=".short_summary_button_115368">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/157/2025/acp-25-157-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/157/2025/acp-25-157-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/157/2025/acp-25-157-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="257" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/143/2025/acp-25-143-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/143/2025/acp-25-143-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/143/2025/acp-25-143-2025-avatar-web.png" data-width="595" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/143/2025/">Long-term observations of black carbon and carbon monoxide in the Poker Flat Research Range, central Alaska, with a focus on forest wildfire emissions</a> <div class="authors">Takeshi Kinase, Fumikazu Taketani, Masayuki Takigawa, Chunmao Zhu, Yongwon Kim, Petr Mordovskoi, and Yugo Kanaya</div> <div class="citation">Atmos. Chem. Phys., 25, 143&ndash;156, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-143-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-143-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_116122" data-show=".short_summary_116122" data-hide=".short_summary_button_116122" >Short summary</span> <div class="j-widget__max short_summary short_summary_116122" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Boreal forest wildfires in interior Alaska represent an important black carbon (BC) source for the Arctic and surrounding regions. We observed BC and carbon monoxide (CO) concentrations in the Poker Flat Research Range since 2016 and found a positive correlation between the observed BC / ∆CO ratio and fire radiative power (FRP) observed in Alaska and Canada. Our finding suggests the BC emission factor and/or inventory could be potentially improved by using FRP. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_116122" data-show=".short_summary_button_116122">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/143/2025/acp-25-143-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/143/2025/acp-25-143-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/143/2025/acp-25-143-2025-avatar-web.png" data-width="595" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/183/2025/acp-25-183-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/183/2025/acp-25-183-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/183/2025/acp-25-183-2025-avatar-web.png" data-width="600" data-height="207" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/183/2025/">Can pollen affect precipitation?</a> <div class="authors">Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen</div> <div class="citation">Atmos. Chem. Phys., 25, 183&ndash;197, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-183-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-183-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118990" data-show=".short_summary_118990" data-hide=".short_summary_button_118990" >Short summary</span> <div class="j-widget__max short_summary short_summary_118990" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Large primary bioparticles such as pollen can be abundant in the atmosphere. In humid conditions pollen can rupture and release a large number of fine sub-pollen particles (SPPs). The paper investigates what kind of birch pollen concentrations are needed for the pollen and SPPs to start playing a noticeable role in cloud processes and alter precipitation formation. In the studied cases only the largest observed pollen concentrations were able to noticeably alter the precipitation formation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118990" data-show=".short_summary_button_118990">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/183/2025/acp-25-183-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/183/2025/acp-25-183-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/183/2025/acp-25-183-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="207" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/243/2025/acp-25-243-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/243/2025/acp-25-243-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/243/2025/acp-25-243-2025-avatar-web.png" data-width="600" data-height="307" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/243/2025/">Influence of land cover change on atmospheric organic gases, aerosols, and radiative effects</a> <div class="authors">Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost</div> <div class="citation">Atmos. Chem. Phys., 25, 243&ndash;262, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-243-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-243-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121613" data-show=".short_summary_121613" data-hide=".short_summary_button_121613" >Short summary</span> <div class="j-widget__max short_summary short_summary_121613" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study examines how land cover changes influence biogenic volatile organic compound (BVOC) emissions and atmospheric states. Using a coupled chemistry&ndash;climate&ndash;vegetation model, we compare present-day land cover (deforested for crops and grazing) with natural vegetation and an extreme reforestation scenario. We find that vegetation changes significantly impact global BVOC emissions and organic aerosols but have a relatively small effect on total aerosols, clouds, and radiative effects. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121613" data-show=".short_summary_button_121613">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/243/2025/acp-25-243-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/243/2025/acp-25-243-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/243/2025/acp-25-243-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="307" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3747/">Origin, size distribution and hygroscopic properties of marine aerosols in the south-western Indian Ocean: report of 6 campaigns of shipborne observations</a> <div class="authors">Meredith Dournaux, Pierre Tulet, Joris Pianezze, Jérome Brioude, Jean-Marc Metzger, and Melilotus Thyssen</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3747,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3747,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125450" data-show=".short_summary_125450" data-hide=".short_summary_button_125450" >Short summary</span> <div class="j-widget__max short_summary short_summary_125450" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Aerosol measurements collected during six oceanographic campaigns carried out in 2021 and 2023 in the southwest Indian Ocean are presented and analyzed in this paper. The results highlight a large variability in the aerosol concentration, size and water vapor affinity depending on in-situ conditions and air mass transport over the ocean. Marine aerosol chemical composition is highly variable over this region, and should be considered to better study their impacts on regional weather and climate. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125450" data-show=".short_summary_button_125450">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3946/">Tracing elevated abundance of CH<sub>2</sub>Cl<sub>2</sub> in the subarctic upper troposphere to the Asian Summer Monsoon</a> <div class="authors">Markus Jesswein, Valentin Lauther, Nicolas Emig, Peter Hoor, Timo Keber, Hans-Christoph Lachnitt, Linda Ort, Tanja Schuck, Johannes Strobel, Ronja Van Luijt, C. Michael Volk, Franziska Weyland, and Andreas Engel</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3946,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3946,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125805" data-show=".short_summary_125805" data-hide=".short_summary_button_125805" >Short summary</span> <div class="j-widget__max short_summary short_summary_125805" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The study investigates transport within the Asian Summer Monsoon, focussing on how CH<sub>2</sub>Cl<sub>2</sub> reaches the subarctic tropopause region. Using data from the PHILEAS campaign in 2023, events with increased mixing ratios were detected. Their origin, the transport paths to the tropopause region and the potential entry into the stratosphere were analysed. The East Asian Summer Monsoon was identified as the main transport pathway, with only a small contribution to the stratosphere in the following days. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125805" data-show=".short_summary_button_125805">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3828/">Satellite-based evidence of dust emission over Northern Canada</a> <div class="authors">Ian Ashpole and Aldona Wiacek</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3828,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3828,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125578" data-show=".short_summary_125578" data-hide=".short_summary_button_125578" >Short summary</span> <div class="j-widget__max short_summary short_summary_125578" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Using 20 years of high-resolution satellite data, we present quantitative evidence that High-Latitude Dust (HLD) sources to the atmosphere are widespread across the "Canadian Arctic Dust Belt". Our results motivate atmospheric model development to include HLD sources, while our data provides an observational basis for evaluating such improved models. The Arctic is a fragile region experiencing 3&ndash;4 greater warming than global average and HLD is of significance to that warming. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125578" data-show=".short_summary_button_125578">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3975/">The transport history of African biomass burning aerosols arriving in the remote Southeast Atlantic marine boundary layer and their impacts on cloud properties</a> <div class="authors">Huihui Wu, Fanny Peers, Jonathan W. Taylor, Chenjie Yu, Steven J. Abel, Paul A. Barrett, Jamie Trembath, Keith Bower, Jim M. Haywood, and Hugh Coe</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3975,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3975,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125928" data-show=".short_summary_125928" data-hide=".short_summary_button_125928" >Short summary</span> <div class="j-widget__max short_summary short_summary_125928" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates the transport history of African Biomass-Burning aerosols (BBAs) over the southeast Atlantic (SEA), and the relationship between transported BBAs and clouds around Ascension Island using in-situ airborne measurements. The work provides critical simplified parameterizations of aerosol-cloud interaction for improving the evaluation of radiative forcing over the SEA. It also identifies key entrainment regions for understanding the vertical transport process of African BBAs. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125928" data-show=".short_summary_button_125928">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/93/2025/acp-25-93-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/93/2025/acp-25-93-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/93/2025/acp-25-93-2025-avatar-web.png" data-width="600" data-height="486" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/93/2025/">To what extent is the description of streets important in estimating local air quality: a case study over Paris</a> <div class="authors">Alexis Squarcioni, Yelva Roustan, Myrto Valari, Youngseob Kim, Karine Sartelet, Lya Lugon, Fabrice Dugay, and Robin Voitot</div> <div class="citation">Atmos. Chem. Phys., 25, 93&ndash;117, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-93-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-93-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119290" data-show=".short_summary_119290" data-hide=".short_summary_button_119290" >Short summary</span> <div class="j-widget__max short_summary short_summary_119290" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study highlights the interest of using a street-network model to estimate pollutant concentrations of NO<em><sub>x</sub></em>, NO<sub>2</sub>, and PM<sub>2.5</sub> in heterogeneous urban areas, particularly those adjacent to highways, compared with the subgrid-scale approach embedded in the 3D Eulerian model CHIMERE. However, the study also reveals comparable performances between the two approaches for the aforementioned pollutants in areas near the city center, where urban characteristics are more uniform. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119290" data-show=".short_summary_button_119290">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/93/2025/acp-25-93-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/93/2025/acp-25-93-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/93/2025/acp-25-93-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="486" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/119/2025/acp-25-119-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/119/2025/acp-25-119-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/119/2025/acp-25-119-2025-avatar-web.png" data-width="539" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/119/2025/">Potential impacts of marine fuel regulations on an Arctic stratocumulus case and its radiative response</a> <div class="authors">Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson</div> <div class="citation">Atmos. Chem. Phys., 25, 119&ndash;142, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-119-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-119-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121264" data-show=".short_summary_121264" data-hide=".short_summary_button_121264" >Short summary</span> <div class="j-widget__max short_summary short_summary_121264" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The Arctic is experiencing enhanced surface warming. The observed decline in Arctic sea-ice extent is projected to lead to an increase in Arctic shipping activity, which may lead to further climatic feedbacks. Using an atmospheric model and results from marine engine experiments that focused on fuel sulfur content reduction and exhaust wet scrubbing, we investigate how ship exhaust particles influence the properties of Arctic clouds. Implications for radiative surface processes are discussed. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121264" data-show=".short_summary_button_121264">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/119/2025/acp-25-119-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/119/2025/acp-25-119-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/119/2025/acp-25-119-2025-avatar-web.png" data-width="539" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/73/2025/acp-25-73-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/73/2025/acp-25-73-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/73/2025/acp-25-73-2025-avatar-web.png" data-width="600" data-height="594" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/73/2025/">Significant role of biomass burning in heavy haze formation in Nanjing, a megacity in China: molecular-level insights from intensive PM<sub>2.5</sub> sampling on winter hazy days</a> <div class="authors">Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang</div> <div class="citation">Atmos. Chem. Phys., 25, 73&ndash;91, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-73-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-73-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121759" data-show=".short_summary_121759" data-hide=".short_summary_button_121759" >Short summary</span> <div class="j-widget__max short_summary short_summary_121759" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Reports on molecular-level knowledge of high-temporal-resolution particulate matter &le;2.5 &micro;m in diameter (PM<sub>2.5</sub>) on hazy days are limited. We investigated various PM<sub>2.5</sub> species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121759" data-show=".short_summary_button_121759">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/73/2025/acp-25-73-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/73/2025/acp-25-73-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/73/2025/acp-25-73-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="594" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3394/">Vertical and horizontal variability and representativeness of the water vapor isotope composition in the lower troposphere: insight from Ultralight Aircraft flights in southern France during summer 2021</a> <div class="authors">Daniele Zannoni, Hans Christian Steen-Larsen, Harald Sodemann, Iris Thurnherr, Cyrille Flamant, Patrick Chazette, Julien Totems, Martin Werner, and Myriam Raybaut</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3394,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3394,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124534" data-show=".short_summary_124534" data-hide=".short_summary_button_124534" >Short summary</span> <div class="j-widget__max short_summary short_summary_124534" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> High resolution airborne observations reveal that mixing between the free troposphere and surface evapotranspiration flux primarly modulates the water vapor isotopic composition in the lower troposphere. Water vapor isotopes structure variations occur on the scale of 100s of m, underlying the utility of stable isotopes for studying microscale atmospheric dynamics. This study also provides the basis for better validation of water vapor isotopes remote sensing retrievals with surface observations. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124534" data-show=".short_summary_button_124534">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3753/">Identifying Drivers of Surface Ozone Bias in Global Chemical Reanalysis with Explainable Machine Learning</a> <div class="authors">Kazuyuki Miyazaki, Yuliya Marchetti, James Montgomery, Steven Lu, and Kevin Bowman</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3753,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3753,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125460" data-show=".short_summary_125460" data-hide=".short_summary_button_125460" >Short summary</span> <div class="j-widget__max short_summary short_summary_125460" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study employs explainable machine learning to analyze the causes of significant biases in surface ozone estimates from chemical reanalysis. By analyzing global observations and chemical reanalysis outputs, key bias drivers such as meteorological conditions and precursor emissions were identified. This provides actionable insights to improve chemical transport models, observation systems, and emissions inventories, ultimately enhancing ozone reanalysis for better air pollution management. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125460" data-show=".short_summary_button_125460">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3801/">Moisture sources and dynamics over southeastern Tibetan Plateau reflected in dual water vapor isotopes</a> <div class="authors">Zhongyin Cai, Rong Li, Cheng Wang, Qiukai Mao, and Lide Tian</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3801,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3801,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125540" data-show=".short_summary_125540" data-hide=".short_summary_button_125540" >Short summary</span> <div class="j-widget__max short_summary short_summary_125540" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Local and upstream specific humidity is the main factor determining non-monsoon season <em>d</em>-excess variability over southeast Tibetan Plateau (TP) due to the intrusion of cold and dry air from upper levels. During the summer monsoon season, <em>d</em>-excess and &delta;<sup>18</sup>O mainly reflect the effect of raindrop evaporation on humidity which leads to lower vapor &delta;<sup>18</sup>O but higher <em>d</em>-excess values. These findings provide new insights into using water isotopes to track moisture sources and dynamics over the TP. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125540" data-show=".short_summary_button_125540">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3836/">Photochemical aging of aviation emissions: transformation of chemical and physical properties of exhaust emissions from a laboratory-scale jet engine combustion chamber</a> <div class="authors">Anni Hartikainen, Mika Ihalainen, Deeksha Shukla, Marius Rohkamp, Arya Mukherjee, Quanfu He, Sandra Piel, Aki Virkkula, Delun Li, Tuukka Kokkola, Seongho Jeong, Hanna Koponen, Uwe Etzien, Anusmita Das, Krista Luoma, Lukas Schwalb, Thomas Gröger, Alexandre Barth, Martin Sklorz, Thorsten Streibel, Hendryk Czech, Benedikt Gündling, Markus Kalberer, Bert Buchholz, Andreas Hupfer, Thomas Adam, Thorsten Hohaus, Johan Øvrevik, Ralf Zimmermann, and Olli Sippula</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3836,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3836,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125589" data-show=".short_summary_125589" data-hide=".short_summary_button_125589" >Short summary</span> <div class="j-widget__max short_summary short_summary_125589" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Photochemical reactions altered the properties of kerosene-operated jet engine burner exhaust emissions, which were studied in laboratory using an oxidation flow reactor. Particle mass increased 300-fold as particles and gases became more oxidized. Light absorption increased, but the total direct radiative forcing efficiency was estimated to shift from positive to negative. The results highlight the importance of considering secondary aerosol formation when assessing the impacts of aviation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125589" data-show=".short_summary_button_125589">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/27/2025/acp-25-27-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/27/2025/acp-25-27-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/27/2025/acp-25-27-2025-avatar-web.png" data-width="534" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/27/2025/">Remote-sensing detectability of airborne Arctic dust</a> <div class="authors">Norman T. O'Neill, Keyvan Ranjbar, Liviu Ivănescu, Yann Blanchard, Seyed Ali Sayedain, and Yasmin AboEl-Fetouh</div> <div class="citation">Atmos. Chem. Phys., 25, 27&ndash;44, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-27-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-27-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119326" data-show=".short_summary_119326" data-hide=".short_summary_button_119326" >Short summary</span> <div class="j-widget__max short_summary short_summary_119326" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Dust from mid-latitude deserts or from local drainage basins is a weak component of atmospheric aerosols in the Arctic. Satellite-based dust estimates are often overestimated because dust and cloud measurements can be confused. Illustrations are given with an emphasis on the flawed claim that a classic indicator of dust (negative brightness temperature differences) is proof of the presence of airborne Arctic dust. Low-altitude warm-water plumes are the likely source of such negative values. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119326" data-show=".short_summary_button_119326">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/27/2025/acp-25-27-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/27/2025/acp-25-27-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/27/2025/acp-25-27-2025-avatar-web.png" data-width="534" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/45/2025/acp-25-45-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/45/2025/acp-25-45-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/45/2025/acp-25-45-2025-avatar-web.png" data-width="600" data-height="341" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/45/2025/">Widespread trace bromine and iodine in remote tropospheric non-sea-salt aerosols</a> <div class="authors">Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin</div> <div class="citation">Atmos. Chem. Phys., 25, 45&ndash;71, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-45-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-45-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120139" data-show=".short_summary_120139" data-hide=".short_summary_button_120139" >Short summary</span> <div class="j-widget__max short_summary short_summary_120139" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120139" data-show=".short_summary_button_120139">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/45/2025/acp-25-45-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/45/2025/acp-25-45-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/45/2025/acp-25-45-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="341" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3793/">Contributions of primary anthropogenic sources and rapid secondary transformations to organic aerosol pollution in Nanchang, Central China</a> <div class="authors">Wei Guo, Zicong Li, Renguo Zhu, Zhongkui Zhou, Hongwei Xiao, and Huayun Xiao</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3793,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3793,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125530" data-show=".short_summary_125530" data-hide=".short_summary_button_125530" >Short summary</span> <div class="j-widget__max short_summary short_summary_125530" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Through a comprehensive year-long analysis of major polar organic compounds in PM<sub>2.5</sub>, we elucidate the complex composition and sources of organic aerosols (OAs) within the urban environment of Nanchang, China. Given the significant health and environmental impacts of PM<sub>2.5</sub>, our research provides critical insights into the contributions of primary emissions and secondary formation processes to urban OA, and confirm the sources and the influencing factors of OA during pollution episodes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125530" data-show=".short_summary_button_125530">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3866/">Inverse modelling of New Zealand's carbon dioxide balance estimates a larger than expected carbon sink</a> <div class="authors">Beata Bukosa, Sara Mikaloff-Fletcher, Gordon Brailsford, Dan Smale, Elizabeth D. Keller, W. Troy Baisden, Miko U. F. Kirschbaum, Donna L. Giltrap, Lìyı̌n Liáng, Stuart Moore, Rowena Moss, Sylvia Nichol, Jocelyn Turnbull, Alex Geddes, Daemon Kennett, Dora Hidy, Zoltán Barcza, Louis A. Schipper, Aaron M. Wall, Shin-Ichiro Nakaoka, Hitoshi Mukai, and Andrea Brandon</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3866,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3866,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125639" data-show=".short_summary_125639" data-hide=".short_summary_button_125639" >Short summary</span> <div class="j-widget__max short_summary short_summary_125639" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We used atmospheric measurements and inverse modeling to estimate New Zealand's carbon dioxide (CO₂) emissions and removals from 2011 to 2020. Our study reveals that New Zealand's land absorbs more CO₂ than previously estimated, particularly in areas dominated by indigenous forests. Our results highlight gaps in current national CO₂ estimates and methods, suggesting a need for further research to improve emissions reporting and refine approaches to track progress toward climate mitigation goals. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125639" data-show=".short_summary_button_125639">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1/2025/acp-25-1-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1/2025/acp-25-1-2025-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/25/1/2025/acp-25-1-2025-avatar-web.png" data-width="600" data-height="516" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Jan 2025</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/25/1/2025/">A numerical sensitivity study on the snow-darkening effect by black carbon deposition over the Arctic in spring</a> <div class="authors">Zilu Zhang, Libo Zhou, and Meigen Zhang</div> <div class="citation">Atmos. Chem. Phys., 25, 1&ndash;25, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-25-1-2025,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-25-1-2025,</span> 2025</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120876" data-show=".short_summary_120876" data-hide=".short_summary_button_120876" >Short summary</span> <div class="j-widget__max short_summary short_summary_120876" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> By integrating the SNICAR model with Polar-WRF, we find that 50 ng g<sup>&minus;1</sup> black carbon (BC) deposition decreases snow albedo, increasing radiative forcing (RF) by 1&ndash;4 W m<sup>&minus;2</sup>, especially in Greenland, Baffin Island, and eastern Siberia. The impact is strongly linked to BC mass, with deep snowpacks showing greater sensitivity. Snowmelt and land&ndash;atmosphere interactions are crucial. High-resolution modelling is necessary to better understand these effects on Arctic climate change. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120876" data-show=".short_summary_button_120876">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/25/1/2025/acp-25-1-2025-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/25/1/2025/acp-25-1-2025-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/25/1/2025/acp-25-1-2025-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="516" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3181/">Volcanic emission estimates from the inversion of ACTRIS lidar observations and their use for quantitative dispersion modelling</a> <div class="authors">Anna Kampouri, Vassilis Amiridis, Thanasis Georgiou, Stavros Solomos, Anna Gialitaki, Maria Tsichla, Michael Rennie, Simona Scollo, and Prodromos Zanis</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3181,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3181,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123974" data-show=".short_summary_123974" data-hide=".short_summary_button_123974" >Short summary</span> <div class="j-widget__max short_summary short_summary_123974" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study proposes a novel inverse modeling framework coupled with remote sensing data for improving volcanic ash dispersion forecasts, essential for aviation safety. By integrating FLEXPART dispersion model outputs with ground-based ACTRIS lidar observations, the approach estimates Etna's volcanic particle emissions and highlights significant enhancement of the forecast accuracy. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123974" data-show=".short_summary_button_123974">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3678/">Significant contributions of biomass burning to PM<sub>2.5</sub>-bound aromatic compounds: insights from field observations and quantum chemical calculations</a> <div class="authors">Yanqin Ren, Zhenhai Wu, Fang Bi, Hong Li, Haijie Zhang, Junling Li, Rui Gao, Fangyun Long, Zhengyang Liu, Yuanyuan Ji, and Gehui Wang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3678,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3678,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125312" data-show=".short_summary_125312" data-hide=".short_summary_button_125312" >Short summary</span> <div class="j-widget__max short_summary short_summary_125312" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The daily concentrations of Polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and nitrated phenols (NPs) in PM<sub>2.5</sub> were all increased during the heating season. Biomass burning was identified to be the primary source of these aromatic compounds, particularly for PAHs. Phenol and nitrobenzene are two main primary precursors for 4NP, with phenol showing lower reaction barriers. P-Cresol was identified as the primary precursor for the formation of 4-methyl-5-nitrocatechol. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125312" data-show=".short_summary_button_125312">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3723/">Intercomparison of global ground-level ozone datasets for health-relevant metrics</a> <div class="authors">Hantao Wang, Kazuyuki Miyazaki, Haitong Zhe Sun, Zhen Qu, Xiang Liu, Antje Inness, Martin Schultz, Sabine Schröder, Marc Serre, and J. Jason West</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3723,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3723,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125395" data-show=".short_summary_125395" data-hide=".short_summary_button_125395" >Short summary</span> <div class="j-widget__max short_summary short_summary_125395" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We compare six datasets of global ground-level ozone, developed using geostatistical, machine learning, or reanalysis methods. The datasets show important differences from one another in ozone magnitude, greater than 5 ppb, and trends, globally and regionally. Compared with measurements, performance varies among datasets, and most overestimate ozone, particularly at lower concentrations. These differences among datasets highlight uncertainties for applications to health and other impacts. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125395" data-show=".short_summary_button_125395">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3642/">The subtleties of three-dimensional radiative effects in contrails and cirrus clouds</a> <div class="authors">Julie Carles, Nicolas Bellouin, Najda Villefranque, and Jean-Louis Dufresne</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3642,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3642,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125241" data-show=".short_summary_125241" data-hide=".short_summary_button_125241" >Short summary</span> <div class="j-widget__max short_summary short_summary_125241" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Cirrus and contrails affect Earth&rsquo;s energy balance with a lot of remaining uncertainty. The balance between solar and terrestrial radiation is delicate to calculate, and factors as cloud optical depth, shape, Sun position are crucial to estimate the effect of those clouds on radiation. Also, often neglected three dimensional paths of radiation, or 3D effects, may be important to account for at climatic scale. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125241" data-show=".short_summary_button_125241">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 02 Jan 2025</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3013/">Preparing for an extensive ∆<sup>14</sup>CO<sub>2</sub> flask sample monitoring campaign over Europe to constrain fossil CO<sub>2</sub> emissions</a> <div class="authors">Carlos Gómez-Ortiz, Guillaume Monteil, Ute Karstens, and Marko Scholze</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3013,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3013,</span> 2025</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123630" data-show=".short_summary_123630" data-hide=".short_summary_button_123630" >Short summary</span> <div class="j-widget__max short_summary short_summary_123630" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> In 2024, an intensive sampling campaign is being conducted to improve fossil CO₂ emission estimates in Europe using <sup>14</sup>C measurements. By testing different strategies for selecting air samples, this study shows that increasing sample frequency and carefully choosing samples based on their fossil fuel and nuclear content leads to more accurate results, reducing the uncertainty and bias of the estimates. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123630" data-show=".short_summary_button_123630">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14209/2024/acp-24-14209-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14209/2024/acp-24-14209-2024-avatar-thumb80.png" data-caption="NASA" data-web="https://acp.copernicus.org/articles/24/14209/2024/acp-24-14209-2024-avatar-web.png" data-width="600" data-height="284" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/14209/2024/">Investigating the role of typhoon-induced waves and stratospheric hydration in the formation of tropopause cirrus clouds observed during the 2017 Asian monsoon</a> <div class="authors">Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman</div> <div class="citation">Atmos. Chem. Phys., 24, 14209&ndash;14238, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-14209-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-14209-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_115137" data-show=".short_summary_115137" data-hide=".short_summary_button_115137" >Short summary</span> <div class="j-widget__max short_summary short_summary_115137" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates the formation mechanism of a tropopause cirrus cloud layer observed at extremely cold temperatures over Hyderabad in India during the 2017 Asian summer monsoon using balloon-borne sensors. Ice crystals smaller than 50 &micro;m were found in this optically thin cirrus cloud layer. Combined analysis of back trajectories, satellite, and model data revealed that the formation of this layer was influenced by waves and stratospheric hydration induced by typhoon Hato. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_115137" data-show=".short_summary_button_115137">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14209/2024/acp-24-14209-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14209/2024/acp-24-14209-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/14209/2024/acp-24-14209-2024-avatar-web.png" data-width="600" data-caption="NASA" data-height="284" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3805/">Simulated mixing in the UTLS by small-scale turbulence using multi-scale chemistry-climate model MECO(n)</a> <div class="authors">Chun Hang Chau, Peter Hoor, and Holger Tost</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3805,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3805,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125544" data-show=".short_summary_125544" data-hide=".short_summary_button_125544" >Short summary</span> <div class="j-widget__max short_summary short_summary_125544" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study examines how the turbulence in the upper troposphere/lower stratosphere could modify the tracer distribution under different situations. Using a multi-scale chemistry model, we find that both the pre-existing tracer gradient and the dynamical and thermodynamically forcing play a role in modifying the tracer distribution. These results allow further research on the UTLS turbulent mixing and its implications for the climate system. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125544" data-show=".short_summary_button_125544">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3122/">CH<sub>4</sub> emissions from Northern Europe wetlands: compared data assimilation approaches</a> <div class="authors">Guillaume Monteil, Jalisha Theanutti Kallingal, and Marko Scholze</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3122,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3122,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123848" data-show=".short_summary_123848" data-hide=".short_summary_button_123848" >Short summary</span> <div class="j-widget__max short_summary short_summary_123848" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Methane is a potent greenhouse gas, emitted both from natural and anthropogenic processes. Large uncertainties remain on its emission budget. Our study compares and combines two approaches to estimate European methane emissions, with a focus on wetlands, based on observed atmospheric CH<sub>4</sub> concentrations and in-situ flux measurements. We find a good agreement and complementarity between the approaches, and identify obstacles towards a more integrated data-informed emission estimation system. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123848" data-show=".short_summary_button_123848">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3758/">Natural and anthropogenic influence on tropospheric ozone variability over the Tropical Atlantic unveiled by satellite and in situ observations</a> <div class="authors">Sachiko Okamoto, Juan Cuesta, Gaëlle Dufour, Maxmim Eremenko, Kazuyuki Miyazaki, Cathy Boonne, Hiroshi Tanimoto, Jeff Peischl, and Chelsea Thompson</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3758,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3758,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 6 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125469" data-show=".short_summary_125469" data-hide=".short_summary_button_125469" >Short summary</span> <div class="j-widget__max short_summary short_summary_125469" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We analyse the distribution of tropospheric ozone over the South and Tropical Atlantic during February 2017 using a multispectral satellite approach called IASI+GOME2, three chemistry reanalysis products and in situ airborne measurements. It reveals that a significant overestimation of three chemistry reanalysis products of lowermost troposphere ozone over the Atlantic in the Northern Hemisphere due to the overestimations of ozone precursors from anthropogenic sources from North America. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125469" data-show=".short_summary_button_125469">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3940/">Retention During Freezing of Raindrops, Part II: Investigation of Ambient Organics from Beijing Urban Aerosol Samples</a> <div class="authors">Jackson Seymore, Martanda Gautam, Miklós Szakáll, Alexander Theis, Thorsten Hoffmann, Jialiang Ma, Lingli Zhou, and Alexander Vogel</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3940,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3940,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125797" data-show=".short_summary_125797" data-hide=".short_summary_button_125797" >Short summary</span> <div class="j-widget__max short_summary short_summary_125797" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We investigated the chemical retention of water-soluble organic compounds in Beijing aerosols using an acoustic levitator and drop freezing experiments. Samples from PM2.5 filter extracts were frozen at -15 &deg;C without artificial nucleators and analyzed using ultra-high resolution mass spectrometry. Our findings reveal a nonnormal distribution of retention coefficients that differs from current literature on cloud droplets. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125797" data-show=".short_summary_button_125797">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3937/">A 60-year atmospheric nitrate isotope record from a Southeast Greenland ice core with minimal post-depositional alteration</a> <div class="authors">Zhao Wei, Shohei Hattori, Asuka Tsuruta, Zhuang Jiang, Sakiko Ishino, Koji Fujita, Sumito Matoba, Lei Geng, Alexis Lamothe, Ryu Uemura, Naohiro Yoshida, Joel Savarino, and Yoshinori Iizuka</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3937,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3937,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125790" data-show=".short_summary_125790" data-hide=".short_summary_button_125790" >Short summary</span> <div class="j-widget__max short_summary short_summary_125790" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Nitrate isotope records in ice cores reveal changes in NOₓ emissions, atmospheric acidity, and oxidation chemistry driven by human activity. However, nitrate in snow can be altered by UV-driven post-depositional processes, making snow accumulation rates critical for preserving these records. This study examines nitrate isotopes in an SE-Dome ice core, where high snow accumulation minimizes these effects, providing a reliable archive of atmospheric nitrogen cycling. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125790" data-show=".short_summary_button_125790">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14123/2024/acp-24-14123-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14123/2024/acp-24-14123-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/14123/2024/acp-24-14123-2024-avatar-web.png" data-width="600" data-height="491" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/14123/2024/">Quantifying the impacts of marine aerosols over the southeast Atlantic Ocean using a chemical transport model: implications for aerosol–cloud interactions</a> <div class="authors">Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz</div> <div class="citation">Atmos. Chem. Phys., 24, 14123&ndash;14143, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-14123-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-14123-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121400" data-show=".short_summary_121400" data-hide=".short_summary_button_121400" >Short summary</span> <div class="j-widget__max short_summary short_summary_121400" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Our research examines aerosol dynamics over the southeast Atlantic, a region with significant uncertainties in aerosol radiative forcings. Using the GEOS-Chem model, we find that at cloud altitudes, organic aerosols dominate during the biomass burning season, while sulfate aerosols, driven by marine emissions, prevail during peak primary production. These findings highlight the need for accurate representation of marine aerosols in models to improve climate predictions and reduce uncertainties. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121400" data-show=".short_summary_button_121400">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14123/2024/acp-24-14123-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14123/2024/acp-24-14123-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/14123/2024/acp-24-14123-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="491" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14177/2024/acp-24-14177-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14177/2024/acp-24-14177-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/14177/2024/acp-24-14177-2024-avatar-web.png" data-width="542" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/14177/2024/">Heterogeneous formation and light absorption of secondary organic aerosols from acetone photochemical reactions: remarkably enhancing effects of seeds and ammonia</a> <div class="authors">Si Zhang, Yining Gao, Xinbei Xu, Luyao Chen, Can Wu, Zheng Li, Rongjie Li, Binyu Xiao, Xiaodi Liu, Rui Li, Fan Zhang, and Gehui Wang</div> <div class="citation">Atmos. Chem. Phys., 24, 14177&ndash;14190, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-14177-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-14177-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121798" data-show=".short_summary_121798" data-hide=".short_summary_button_121798" >Short summary</span> <div class="j-widget__max short_summary short_summary_121798" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Secondary organic aerosols (SOAs) from acetone photooxidation in the presence of various seeds were studied to illustrate SOA formation kinetics under ammonia-rich conditions. The oxidation mechanism of acetone was investigated using an observation-based model incorporating a Master Chemical Mechanism model. A higher SOA yield of acetone was observed compared to methylglyoxal due to an enhanced uptake of the small photooxidation products of acetone. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121798" data-show=".short_summary_button_121798">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14177/2024/acp-24-14177-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14177/2024/acp-24-14177-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/14177/2024/acp-24-14177-2024-avatar-web.png" data-width="542" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14145/2024/acp-24-14145-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14145/2024/acp-24-14145-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/14145/2024/acp-24-14145-2024-avatar-web.png" data-width="436" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/14145/2024/">The impact of the mesh size and microphysics scheme on the representation of mid-level clouds in the ICON model in hilly and complex terrain</a> <div class="authors">Nadja Omanovic, Brigitta Goger, and Ulrike Lohmann</div> <div class="citation">Atmos. Chem. Phys., 24, 14145&ndash;14175, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-14145-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-14145-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121560" data-show=".short_summary_121560" data-hide=".short_summary_button_121560" >Short summary</span> <div class="j-widget__max short_summary short_summary_121560" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We evaluated the numerical weather model ICON in two horizontal resolutions with two bulk microphysics schemes over hilly and complex terrain in Switzerland and Austria, respectively. We focused on the model's ability to simulate mid-level clouds in summer and winter. By combining observational data from two different field campaigns, we show that an increase in the horizontal resolution and a more advanced cloud microphysics scheme is strongly beneficial for cloud representation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121560" data-show=".short_summary_button_121560">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14145/2024/acp-24-14145-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14145/2024/acp-24-14145-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/14145/2024/acp-24-14145-2024-avatar-web.png" data-width="436" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3878/">Relationships Between Surface Fluxes and Boundary Layer Dynamics: Statistics at the Land-Atmosphere Feedback Observatory (LAFO)</a> <div class="authors">Syed Saqlain Abbas, Andreas Behrendt, Oliver Branch, and Volker Wulfmeyer</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3878,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3878,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125664" data-show=".short_summary_125664" data-hide=".short_summary_button_125664" >Short summary</span> <div class="j-widget__max short_summary short_summary_125664" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates turbulence statistics convective boundary layer. For this, we used data of two Doppler lidars, and an eddy covariance station between May to July 2021. We believe that these statistics are important to improve the land-atmosphere characterization in numerical weather prediction models. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125664" data-show=".short_summary_button_125664">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3777/">Iron isotopes reveal significant aerosol dissolution over the Pacific Ocean</a> <div class="authors">Capucine Camin, François Lacan, Catherine Pradoux, Marie Labatut, Anne Johansen, and James W. Murray</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3777,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3777,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125500" data-show=".short_summary_125500" data-hide=".short_summary_button_125500" >Short summary</span> <div class="j-widget__max short_summary short_summary_125500" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This manuscript presents the chemical composition of aerosols (&gt; 1&micro;m) over the Equatorial and Tropical Pacific Ocean, presenting the first measurements of iron isotopes in aerosols from this region. Iron concentrations and isotopes were determined using a Neptune MC-ICPMS. Our data analysis reveals that a significant portion of the aerosols undergo dissolution and removal during atmospheric transport. These findings contribute to original conclusions about the chemistry and physics of aerosols. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125500" data-show=".short_summary_button_125500">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3701/">Quantifying biases in TROPESS AIRS, CrIS, and joint AIRS+OMI tropospheric ozone products using ozonesondes</a> <div class="authors">Elyse A. Pennington, Gregory B. Osterman, Vivienne H. Payne, Kazuyuki Miyazaki, Kevin W. Bowman, and Jessica L. Neu</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3701,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3701,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125354" data-show=".short_summary_125354" data-hide=".short_summary_button_125354" >Short summary</span> <div class="j-widget__max short_summary short_summary_125354" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Tropospheric ozone is a harmful pollutant &amp; powerful greenhouse gas. For satellite products to accurately quantify trends in tropospheric ozone, they must have low bias compared to a reliable source of data. This study compares 3 TROPESS satellite products &ndash; CrIS, AIRS, &amp; AIRSOMI &ndash; to ozonesonde data. They have low global measurement bias &amp; thus can be used to detect global tropospheric ozone trends, but the measurement bias should be considered in certain regions &amp; time periods. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125354" data-show=".short_summary_button_125354">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3720/">Comparative ozone production sensitivity to NO<sub>x</sub> and VOCs in Quito, Ecuador and Santiago, Chile: implications for control strategies in times of climate action</a> <div class="authors">María Cazorla, Melissa Trujillo, Rodrigo Seguel, and Laura Gallardo</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3720,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3720,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 7 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125391" data-show=".short_summary_125391" data-hide=".short_summary_button_125391" >Short summary</span> <div class="j-widget__max short_summary short_summary_125391" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The current climate emergency imposes the need to take actions in cities to curb ozone as a pollutant and a climate forcer. In this work we analyze how reducing the levels of ozone precursor would affect photochemical smog in Quito, Ecuador and Santiago, Chile. Results show that if environmental policy were implemented to reduce only nitrogen oxides, the production of ozone would increase substantially for which more integral solutions are needed. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125391" data-show=".short_summary_button_125391">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3917/">Retention During Freezing of Raindrops, Part I: Investigation of Single and Binary Mixtures</a> <div class="authors">Martanda Gautam, Alexander Theis, Jackson Seymore, Moritz Hey, Stephan Borrmann, Karoline Diehl, Subir K. Mitra, and Miklós Szakáll</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3917,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3917,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125727" data-show=".short_summary_125727" data-hide=".short_summary_button_125727" >Short summary</span> <div class="j-widget__max short_summary short_summary_125727" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We investigated the retention of chemical species and their binary mixtures during freezing of raindrops via acoustic levitation. Our results reveal high retention-nearly all substances being fully retained during freezing. This could be attributed to faster freezing time compared to slower mass expulsion time, along with ice-shell formation during freezing. This result helps improve our understanding of interaction between ice microphysical processes and chemistry in deep convective clouds. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125727" data-show=".short_summary_button_125727">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3928/">Fluorescence spectra of atmospheric aerosols</a> <div class="authors">Jens Reichardt, Felix Lauermann, and Oliver Behrendt</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3928,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3928,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125749" data-show=".short_summary_125749" data-hide=".short_summary_button_125749" >Short summary</span> <div class="j-widget__max short_summary short_summary_125749" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Optical remote sensing systems, so-called lidars, are used to learn more about aerosols, which play an important role in atmospheric processes. The present study demonstrates that lidars, which measure the backscattering behavior of aerosols over the entire visible wavelength range, can increase our knowledge of the spatial and temporal occurrence of aerosol layers, the type of aerosol and their interaction with clouds. The focus of the publication is on wildfire aerosol and Saharan dust. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125749" data-show=".short_summary_button_125749">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3935/">Ice Nucleating Properties of Glassy Organic and Organosulfate Aerosol</a> <div class="authors">Christopher Nathan Rapp, Sining Niu, N. Cazimir Armstrong, Xiaoli Shen, Thomas Berkemeier, Jason D. Surratt, Yue Zhang, and Daniel J. Cziczo</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3935,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3935,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125766" data-show=".short_summary_125766" data-hide=".short_summary_button_125766" >Short summary</span> <div class="j-widget__max short_summary short_summary_125766" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Atmospheric ice formation is initiated by particulate matter suspended in air and has profound impacts on Earth&rsquo;s climate. This study focuses on examining the effectiveness of ice formation by a subset of particles composed of organic and sulfate. We used experiments and computer modeling to obtain the result that these particles are not effective ice nuclei, suggesting molecular structure is important for ice formation on these types of particles. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125766" data-show=".short_summary_button_125766">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14101/2024/acp-24-14101-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14101/2024/acp-24-14101-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/14101/2024/acp-24-14101-2024-avatar-web.png" data-width="598" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 18 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/14101/2024/">Impact of boundary layer stability on urban park cooling effect intensity</a> <div class="authors">Martial Haeffelin, Jean-François Ribaud, Jonnathan Céspedes, Jean-Charles Dupont, Aude Lemonsu, Valéry Masson, Tim Nagel, and Simone Kotthaus</div> <div class="citation">Atmos. Chem. Phys., 24, 14101&ndash;14122, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-14101-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-14101-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121055" data-show=".short_summary_121055" data-hide=".short_summary_button_121055" >Short summary</span> <div class="j-widget__max short_summary short_summary_121055" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study highlights how the state of the urban atmospheric boundary layer impacts urban park cooling effect intensity at night. Under summertime heat wave conditions, the urban atmosphere becomes stable at night, which inhibits turbulent motions. Under those specific conditions, urban parks and woods cool much more efficiently than the surrounding built-up neighbourhoods in the evening and through the night, providing cooler air temperatures by 4 to 6&deg;&thinsp;C depending on park size. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121055" data-show=".short_summary_button_121055">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14101/2024/acp-24-14101-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14101/2024/acp-24-14101-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/14101/2024/acp-24-14101-2024-avatar-web.png" data-width="598" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14073/2024/acp-24-14073-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14073/2024/acp-24-14073-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/14073/2024/acp-24-14073-2024-avatar-web.png" data-width="600" data-height="394" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 18 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/14073/2024/">The role of ascent timescales for warm conveyor belt (WCB) moisture transport into the upper troposphere and lower stratosphere (UTLS)</a> <div class="authors">Cornelis Schwenk and Annette Miltenberger</div> <div class="citation">Atmos. Chem. Phys., 24, 14073&ndash;14099, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-14073-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-14073-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122283" data-show=".short_summary_122283" data-hide=".short_summary_button_122283" >Short summary</span> <div class="j-widget__max short_summary short_summary_122283" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Warm conveyor belts (WCBs) transport moisture into the upper atmosphere, where it acts as a greenhouse gas. This transport is not well understood, and the role of rapidly rising air is unclear. We simulate a WCB and look at fast- and slow-rising air to see how moisture is (differently) transported. We find that for fast-ascending air more ice particles reach higher into the atmosphere and that frozen cloud particles are removed differently than during slow ascent, which has more water vapour. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122283" data-show=".short_summary_button_122283">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14073/2024/acp-24-14073-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14073/2024/acp-24-14073-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/14073/2024/acp-24-14073-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="394" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 18 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3832/">Aircraft Observations of Continental Pollution In the Equatorial Lower Stratosphere over the Tropical Western Pacific During Boreal Winter</a> <div class="authors">Jasna V. Pittman, Bruce C. Daube, Steven C. Wofsy, Elliot L. Atlas, Maria A. Navarro, Eric J. Hintsa, Fred L. Moore, Geoff S. Dutton, James W. Elkins, Troy D. Thornberry, Andrew W. Rollins, Eric J. Jensen, Thaopaul Bui, Jonathan M. Dean-Day, and Leonhard Pfister</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3832,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3832,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125583" data-show=".short_summary_125583" data-hide=".short_summary_button_125583" >Short summary</span> <div class="j-widget__max short_summary short_summary_125583" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Wildfires emit aerosols and precursors that once in the stratosphere could initiate stratospheric ozone loss. The Airborne Tropical TRopopause EXperiment campaign sampled the western Pacific, the dominant longitudes where surface air lofted by convection enters the global stratosphere. Aircraft measurements provided evidence of persistent pollution layers of biomass burning character at these longitudes in the lower stratosphere, largely originating from distant fires over Africa and Indonesia. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125583" data-show=".short_summary_button_125583">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 18 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3891/">Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus</a> <div class="authors">Yao-Sheng Chen, Prasanth Prabhakaran, Fabian Hoffmann, Jan Kazil, Takanobu Yamaguchi, and Graham Feingold</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3891,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3891,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125686" data-show=".short_summary_125686" data-hide=".short_summary_button_125686" >Short summary</span> <div class="j-widget__max short_summary short_summary_125686" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Injecting sea salt aerosols into marine stratiform clouds can distribute the cloud water over more droplets in smaller sizes. This process is expected to make the clouds brighter, allowing them to reflect more sunlight back to space. However, it may also cause the clouds to lose water over time, reducing their ability to reflect sunlight. We use a computer model to show that the loss of cloud water occurs relatively quickly and does not completely offset the initial brightening. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125686" data-show=".short_summary_button_125686">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 18 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3893/">On the Processes Determining the Slope of Cloud-Water Adjustments in Non-Precipitating Stratocumulus</a> <div class="authors">Fabian Hoffmann, Yao-Sheng Chen, and Graham Feingold</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3893,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3893,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125690" data-show=".short_summary_125690" data-hide=".short_summary_button_125690" >Short summary</span> <div class="j-widget__max short_summary short_summary_125690" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Clouds reflect a substantial portion of the incoming solar radiation back into space. This capacity is determined by the number of cloud droplets, which in turn is influenced by the number of aerosol particles, forming the basis for aerosol-cloud-climate interactions. In this study, we use a simple mixed-layer approach to understand the effect of aerosol on cloud water in non-precipitating stratocumulus. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125690" data-show=".short_summary_button_125690">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 18 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3924/">Saharan dust linked to European hail events</a> <div class="authors">Killian P. Brennan and Lena Wilhelm</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3924,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3924,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125743" data-show=".short_summary_125743" data-hide=".short_summary_button_125743" >Short summary</span> <div class="j-widget__max short_summary short_summary_125743" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> In this study, we discovered that natural dust carried into Europe significantly increases the likelihood of hailstorms. By analyzing dust data, weather records, and hail reports, we found that moderate dust levels lead to more frequent hail, while very high or low dust amounts reduce it. Adding dust information into statistical models improved forecasting skills. We aimed to understand how dust affects hailstorms. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125743" data-show=".short_summary_button_125743">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13975/2024/acp-24-13975-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13975/2024/acp-24-13975-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13975/2024/acp-24-13975-2024-avatar-web.png" data-width="600" data-height="452" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13975/2024/">Seasonal, regional, and vertical characteristics of high-carbon-monoxide plumes along with their associated ozone anomalies, as seen by IAGOS between 2002 and 2019</a> <div class="authors">Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret</div> <div class="citation">Atmos. Chem. Phys., 24, 13975&ndash;14004, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13975-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13975-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_116627" data-show=".short_summary_116627" data-hide=".short_summary_button_116627" >Short summary</span> <div class="j-widget__max short_summary short_summary_116627" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Our study examines intense-carbon-monoxide (CO) pollution events measured by commercial aircraft from the In-service Aircraft for a Global Observing System (IAGOS) research infrastructure. We combine these measurements with the SOFT-IO model to trace the origin of the observed CO. A comprehensive analysis of the geographical origin, source type, seasonal variation, and ozone levels of these pollution events is provided. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_116627" data-show=".short_summary_button_116627">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13975/2024/acp-24-13975-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13975/2024/acp-24-13975-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13975/2024/acp-24-13975-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="452" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14045/2024/acp-24-14045-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14045/2024/acp-24-14045-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/14045/2024/acp-24-14045-2024-avatar-web.png" data-width="600" data-height="249" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/14045/2024/">High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks</a> <div class="authors">Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray</div> <div class="citation">Atmos. Chem. Phys., 24, 14045&ndash;14072, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-14045-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-14045-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120379" data-show=".short_summary_120379" data-hide=".short_summary_button_120379" >Short summary</span> <div class="j-widget__max short_summary short_summary_120379" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than &minus;35&deg;C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic. It is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120379" data-show=".short_summary_button_120379">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14045/2024/acp-24-14045-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14045/2024/acp-24-14045-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/14045/2024/acp-24-14045-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="249" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13961/2024/acp-24-13961-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13961/2024/acp-24-13961-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13961/2024/acp-24-13961-2024-avatar-web.png" data-width="600" data-height="333" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13961/2024/">Retention of <i>α</i>-pinene oxidation products and nitro-aromatic compounds during riming</a> <div class="authors">Christine Borchers, Jackson Seymore, Martanda Gautam, Konstantin Dörholt, Yannik Müller, Andreas Arndt, Laura Gömmer, Florian Ungeheuer, Miklós Szakáll, Stephan Borrmann, Alexander Theis, Alexander L. Vogel, and Thorsten Hoffmann</div> <div class="citation">Atmos. Chem. Phys., 24, 13961&ndash;13974, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13961-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13961-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120269" data-show=".short_summary_120269" data-hide=".short_summary_button_120269" >Short summary</span> <div class="j-widget__max short_summary short_summary_120269" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Riming, a crucial process in cloud dynamics, influences the vertical distribution of compounds in the atmosphere. Experiments in Mainz's wind tunnel investigated retention coefficients of organic compounds under varying conditions. Findings suggest a correlation between the Henry's law constant and retention, applicable even to complex organic molecules. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120269" data-show=".short_summary_button_120269">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13961/2024/acp-24-13961-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13961/2024/acp-24-13961-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13961/2024/acp-24-13961-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="333" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14005/2024/acp-24-14005-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14005/2024/acp-24-14005-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/14005/2024/acp-24-14005-2024-avatar-web.png" data-width="600" data-height="424" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/14005/2024/">Quantifying the impact of global nitrate aerosol on tropospheric composition fields and its production from lightning NO<sub><i>x</i></sub></a> <div class="authors">Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson</div> <div class="citation">Atmos. Chem. Phys., 24, 14005&ndash;14028, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-14005-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-14005-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119991" data-show=".short_summary_119991" data-hide=".short_summary_button_119991" >Short summary</span> <div class="j-widget__max short_summary short_summary_119991" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Nitrate aerosol is often omitted in global chemistry&ndash;climate models, partly due to the chemical complexity of its formation process. Using a global model, we show that including nitrate aerosol significantly impacts tropospheric composition fields, such as ozone, and radiation. Additionally, lightning-generated oxides of nitrogen influence both nitrate aerosol mass concentrations and aerosol size distribution, which has important implications for radiative fluxes and indirect aerosol effects. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119991" data-show=".short_summary_button_119991">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14005/2024/acp-24-14005-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14005/2024/acp-24-14005-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/14005/2024/acp-24-14005-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="424" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14029/2024/acp-24-14029-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14029/2024/acp-24-14029-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/14029/2024/acp-24-14029-2024-avatar-web.png" data-width="600" data-height="520" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Dec 2024</div> <div class="highlightType" > | Highlight paper</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/14029/2024/">Lidar measurements of noctilucent clouds at Río Grande, Tierra del Fuego, Argentina</a> <div class="authors">Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea</div> <div class="citation">Atmos. Chem. Phys., 24, 14029&ndash;14044, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-14029-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-14029-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122134" data-show=".short_summary_122134" data-hide=".short_summary_button_122134" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_122134 ml-2" data-show=".ce_comment_122134" data-hide=".ce_comment_button_122134">Executive editor</span> <div class="j-widget__max short_summary short_summary_122134" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Noctilucent clouds (NLCs) are silvery clouds that can be viewed during twilight and indicate atmospheric conditions like temperature and water vapor in the upper mesosphere. High-resolution measurements from a remote sensing laser instrument provide NLC height, brightness, and occurrence rate since 2017. Most observations occur in the morning hours, likely caused by strong tidal winds, and NLC ice particles are thus transported from elsewhere to the observing location in the Southern Hemisphere. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122134" data-show=".short_summary_button_122134">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_122134 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Noctilucent clouds form in the extremely cold temperatures in the high-latitude summer mesosphere (altitudes of 75-85km). Their formation requires the right combination of water vapour concentrations and temperatures. It has been speculated for example, that increasing frequency of occurrence of such clouds might result from increases in methane concentrations, with the methane being converted into water vapour in the upper stratosphere and mesosphere. This paper reports observations of noctilucent clouds, made using an automated lidar system in southern Argentina, at unexpectedly low latitudes compared to previous Southern Hemisphere observations. Possible explanations, including systematic moistening of the mesosphere by space traffic, are discussed. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_122134" data-show=".ce_comment_button_122134">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/14029/2024/acp-24-14029-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/14029/2024/acp-24-14029-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/14029/2024/acp-24-14029-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="520" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3702/">Tropospheric ozone trends and attributions over East and Southeast Asia in 1995&ndash;2019: An integrated assessment using statistical methods, machine learning models, and multiple chemical transport models</a> <div class="authors">Xiao Lu, Yiming Liu, Jiayin Su, Xiang Weng, Tabish Ansari, Yuqiang Zhang, Guowen He, Yuqi Zhu, Haolin Wang, Ganquan Zeng, Jingyu Li, Cheng He, Shuai Li, Teerachai Amnuaylojaroen, Tim Butler, Qi Fan, Shaojia Fan, Grant L. Forster, Meng Gao, Jianlin Hu, Yugo Kanaya, Mohd Talib Latif, Keding Lu, Philippe Nédélec, Peer Nowack, Bastien Sauvage, Xiaobin Xu, Lin Zhang, Ke Li, Ja-Ho Koo, and Tatsuya Nagashima</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3702,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3702,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125360" data-show=".short_summary_125360" data-hide=".short_summary_button_125360" >Short summary</span> <div class="j-widget__max short_summary short_summary_125360" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study analyzes summertime ozone trends in East and Southeast Asia derived from a comprehensive observational database spanning from 1995 to 2019, incorporating aircraft observations, ozonesonde data, and measurements from 2500 surface sites. Multiple models are applied to attribute to changes in anthropogenic emissions and climate. The results highlight increases in anthropogenic emission are the primary driver of ozone increases both in the free troposphere and at the surface. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125360" data-show=".short_summary_button_125360">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3076/">Impact of Topographic Wind Conditions on Dust Particle Size Distribution: Insights from a Regional Dust Reanalysis Dataset</a> <div class="authors">Xinyue Huang, Wenyu Gao, and Hosein Foroutan</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3076,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3076,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123759" data-show=".short_summary_123759" data-hide=".short_summary_button_123759" >Short summary</span> <div class="j-widget__max short_summary short_summary_123759" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates the relationship between wind-blown dust aerosols size distribution and wind conditions over topography at a regional scale, utilizing 10 years of dust reanalysis data. Linear regression models suggest that higher wind speeds and steeper land slopes, particularly under uphill winds, are associated with increased fractions of coarser dust particles. Moreover, these positive correlations weaken during summer and afternoon events, likely related to the haboob storms. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123759" data-show=".short_summary_button_123759">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3860/">Evaluating Nitrogen Oxide and <em>&alpha;</em>-pinene Oxidation Chemistry: Insights from Oxygen and Nitrogen Stable Isotopes</a> <div class="authors">Wendell W. Walters, Masayuki Takeuchi, Danielle E. Blum, Gamze Eris, David Tanner, Weiqi Xu, Jean Rivera-Rios, Fobang Liu, Tianchang Xu, Greg Huey, Justin B. Min, Rodney Weber, Nga L. Ng, and Meredith G. Hastings</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3860,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3860,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125629" data-show=".short_summary_125629" data-hide=".short_summary_button_125629" >Short summary</span> <div class="j-widget__max short_summary short_summary_125629" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We studied how chemicals released from plants and pollution interact in the atmosphere, affecting air quality and climate. By combining laboratory experiments and chemistry models, we tracked unique chemical fingerprints to understand how nitrogen compounds transform to form particles in the air. Our findings help explain the role of these reactions in pollution and provide tools to improve predictions for cleaner air and better climate policies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125629" data-show=".short_summary_button_125629">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3865/">Sectoral contributions of high-emitting methane point sources from major U.S. onshore oil and gas producing basins using airborne measurements from MethaneAIR</a> <div class="authors">Jack D. Warren, Maryann Sargent, James P. Williams, Mark Omara, Christopher C. Miller, Sebastien Roche, Katlyn MacKay, Ethan Manninen, Apisada Chulakadabba, Anthony Himmelberger, Joshua Benmergui, Zhan Zhang, Luis Guanter, Steve Wofsy, and Ritesh Gautam</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3865,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3865,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125638" data-show=".short_summary_125638" data-hide=".short_summary_button_125638" >Short summary</span> <div class="j-widget__max short_summary short_summary_125638" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Mitigating anthropogenic methane emissions requires a detailed understanding of emitting facilities. We use observations of methane point sources from the MethaneAIR instrument from 2021&ndash;2023 that covered ~80 % of U.S. onshore oil and gas production regions. We attribute these observations to facility types to explore how emissions vary by industrial sectors. Oil and gas facilities make up most point source emissions nationally, but in certain basins other sectors can make up the majority. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125638" data-show=".short_summary_button_125638">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3769/">Marine emissions and trade winds control the atmospheric nitrous oxide in the Galapagos Islands</a> <div class="authors">Timur Cinay, Dickon Young, Nazaret Narváez Jimenez, Cristina Vintimilla-Palacios, Ariel Pila Alonso, Paul B. Krummel, William Vizuete, and Andrew R. Babbin</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3769,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3769,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125485" data-show=".short_summary_125485" data-hide=".short_summary_button_125485" >Short summary</span> <div class="j-widget__max short_summary short_summary_125485" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We present the initial 15 months of nitrous oxide measurements from the Galapagos Emissions Monitoring Station. The observed variability in atmospheric mole fractions during this period can be linked to several factors: seasonal variations in trade wind speed and direction across the eastern Pacific, differences in the transport history of air masses sampled, and spatiotemporal heterogeneity in regional marine nitrous oxide emissions from coastal upwelling systems of Peru and Chile. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125485" data-show=".short_summary_button_125485">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13913/2024/acp-24-13913-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13913/2024/acp-24-13913-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13913/2024/acp-24-13913-2024-avatar-web.png" data-width="600" data-height="562" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13913/2024/">The potential of drone observations to improve air quality predictions by 4D-Var</a> <div class="authors">Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange</div> <div class="citation">Atmos. Chem. Phys., 24, 13913&ndash;13934, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13913-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13913-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118318" data-show=".short_summary_118318" data-hide=".short_summary_button_118318" >Short summary</span> <div class="j-widget__max short_summary short_summary_118318" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Four-dimensional variational data assimilation allows for the simultaneous optimisation of initial values and emission rates by using trace-gas profiles from drone observations in a regional air quality model. Assimilated profiles positively impact the representation of air pollutants in the model by improving their vertical distribution and ground-level concentrations. This case study highlights the potential of drone data to enhance air quality analyses including local emission evaluation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118318" data-show=".short_summary_button_118318">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13913/2024/acp-24-13913-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13913/2024/acp-24-13913-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13913/2024/acp-24-13913-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="562" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13889/2024/acp-24-13889-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13889/2024/acp-24-13889-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13889/2024/acp-24-13889-2024-avatar-web.png" data-width="600" data-height="338" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13889/2024/">The improved Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST): update, validation and applications</a> <div class="authors">Zhou Zang, Jane Liu, David Tarasick, Omid Moeini, Jianchun Bian, Jinqiang Zhang, Anne M. Thompson, Roeland Van Malderen, Herman G. J. Smit, Ryan M. Stauffer, Bryan J. Johnson, and Debra E. Kollonige</div> <div class="citation">Atmos. Chem. Phys., 24, 13889&ndash;13912, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13889-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13889-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118865" data-show=".short_summary_118865" data-hide=".short_summary_button_118865" >Short summary</span> <div class="j-widget__max short_summary short_summary_118865" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST) provides a global-scale, long-term ozone climatology that is horizontally and vertically resolved. In this study, we improved, updated and validated TOST from 1970 to 2021. Based on this TOST dataset, we characterized global ozone variations spatially in both the troposphere and stratosphere and temporally by season and decade. We also showed a stagnant lower stratospheric ozone variation since the late 1990s. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118865" data-show=".short_summary_button_118865">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13889/2024/acp-24-13889-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13889/2024/acp-24-13889-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13889/2024/acp-24-13889-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="338" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13935/2024/acp-24-13935-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13935/2024/acp-24-13935-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13935/2024/acp-24-13935-2024-avatar-web.png" data-width="600" data-height="417" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13935/2024/">How does riming influence the observed spatial variability of ice water in mixed-phase clouds?</a> <div class="authors">Nina Maherndl, Manuel Moser, Imke Schirmacher, Aaron Bansemer, Johannes Lucke, Christiane Voigt, and Maximilian Maahn</div> <div class="citation">Atmos. Chem. Phys., 24, 13935&ndash;13960, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13935-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13935-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119606" data-show=".short_summary_119606" data-hide=".short_summary_button_119606" >Short summary</span> <div class="j-widget__max short_summary short_summary_119606" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> It is not clear why ice crystals in clouds occur in clusters. Here, airborne measurements of clouds in mid-latitudes and high latitudes are used to study the spatial variability of ice. Further, we investigate the influence of riming, which occurs when liquid droplets freeze onto ice crystals. We find that riming enhances the occurrence of ice clusters. In the Arctic, riming leads to ice clustering at spatial scales of 3&ndash;5&thinsp;km. This is due to updrafts and not higher amounts of liquid water. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119606" data-show=".short_summary_button_119606">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13935/2024/acp-24-13935-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13935/2024/acp-24-13935-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13935/2024/acp-24-13935-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="417" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13865/2024/acp-24-13865-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13865/2024/acp-24-13865-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13865/2024/acp-24-13865-2024-avatar-web.png" data-width="600" data-height="295" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13865/2024/">CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity</a> <div class="authors">Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos</div> <div class="citation">Atmos. Chem. Phys., 24, 13865&ndash;13888, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13865-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13865-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119329" data-show=".short_summary_119329" data-hide=".short_summary_button_119329" >Short summary</span> <div class="j-widget__max short_summary short_summary_119329" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study provides valuable insights to improve cloud condensation nuclei (CCN) estimations at a high-altitude remote site which is influenced by nearby urban pollution. Understanding the factors that affect CCN estimations is essential to improve the CCN data coverage worldwide and assess aerosol&ndash;cloud interactions on a global scale. This is crucial for improving climate models, since aerosol&ndash;cloud interactions are the most important source of uncertainty in climate projections. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119329" data-show=".short_summary_button_119329">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13865/2024/acp-24-13865-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13865/2024/acp-24-13865-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13865/2024/acp-24-13865-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="295" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3304/">Aerosol hygroscopicity over the South-East Atlantic Ocean during the biomass burning season: Part II &ndash; Influence of burning conditions on CCN hygroscopicity</a> <div class="authors">Haochi Che, Lu Zhang, Michal Segal-Rozenhaimer, Caroline Dang, Paquita Zuidema, and Arthur J. Sedlacek III</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3304,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3304,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124363" data-show=".short_summary_124363" data-hide=".short_summary_button_124363" >Short summary</span> <div class="j-widget__max short_summary short_summary_124363" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We investigated how biomass burning (BB) affects cloud formation in the southeast Atlantic. We found that aerosol hygroscopicity, which influences cloud droplet formation, varied monthly and differed significantly between 2016 and 2017, due to changes in sulfate aerosols. These changes were driven by BB burning conditions, which were likely influenced by meteorological factors. This study highlights the important role of BB in shaping aerosol properties and clouds in the region. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124363" data-show=".short_summary_button_124363">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3538/">Analysis of raindrop size distribution from the double moment cloud microphysics scheme for monsoon over a tropical station</a> <div class="authors">Kadavathu Sreekumar Apsara, Jayakumar Aravindakshan, Anurose Theethai Jacob, Saji Mohandas, Paul Field, Hamish Gordan, Thara Prabhakaran, Mahen Konwar, and Vijapurap Srinivasa Prasad</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3538,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3538,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125024" data-show=".short_summary_125024" data-hide=".short_summary_button_125024" >Short summary</span> <div class="j-widget__max short_summary short_summary_125024" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Science has made significant strides in weather prediction, especially for intense tropical rainfall that can lead to floods and landslides. Our study aims to improve monsoon rainfall forecasts by analyzing raindrop sizes. Using a new approach to model raindrop growth, we achieved a more accurate depiction of large rainfall events. These improvements can be generalized to enhance early warning systems, offering reliable predictions that help reduce risks from severe tropical weather events. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125024" data-show=".short_summary_button_125024">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3350/">Uncovering the Impact of Urban Functional Zones on Air Quality in China</a> <div class="authors">Lulu Yuan, Wenchao Han, Jiachen Meng, Yang Wang, Haojie Yu, and Wenze Li</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3350,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3350,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124455" data-show=".short_summary_124455" data-hide=".short_summary_button_124455" >Short summary</span> <div class="j-widget__max short_summary short_summary_124455" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study utilizes multi-source data to reveal the impact of various urban functional zones in China on the spatial distribution of pollutants. The findings indicate that the residential and commercial zones see notable air quality gains, but the improvement of air quality in the transportation zone is the least considerable. Moreover, the industrial zone has the most seasonal air quality variation. Therefore, air pollution prevention policies should consider differences in functional zones. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124455" data-show=".short_summary_button_124455">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3376/">High sensitivity of simulated fog properties to parameterized aerosol activation in case studies from ParisFog</a> <div class="authors">Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Anthony Jones, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, Noah Asch, and Hamish Gordon</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3376,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3376,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124497" data-show=".short_summary_124497" data-hide=".short_summary_button_124497" >Short summary</span> <div class="j-widget__max short_summary short_summary_124497" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We study aerosol-fog interactions near Paris using a weather and climate model with high spatial resolution. We show that our model can simulate fog lifecycle effectively. We find that the fog droplet number concentrations, the amount of liquid water in the fog, and the vertical structure of the fog are highly sensitive to the parameterization that simulates droplet formation and growth. The changes we propose could improve fog forecasts significantly without increasing computational costs. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124497" data-show=".short_summary_button_124497">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3397/">Adiabatic and radiative cooling are both important causes of aerosol activation in simulated fog events in Europe</a> <div class="authors">Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, and Hamish Gordon</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3397,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3397,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124538" data-show=".short_summary_124538" data-hide=".short_summary_button_124538" >Short summary</span> <div class="j-widget__max short_summary short_summary_124538" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We study the lifecycle of fog events in Europe using a weather and climate model. By incorporating droplet formation and growth driven by radiative cooling, our model better simulates the total liquid water in foggy atmospheric columns. We show that both adiabatic and radiative cooling play significant, often equally important roles in driving droplet formation and growth. We discuss strategies to address droplet number overpredictions, by improving model physics and addressing model artifacts. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124538" data-show=".short_summary_button_124538">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3601/">Strong aerosol indirect radiative effect from dynamic-driven diurnal variations of cloud water adjustments</a> <div class="authors">Jiayi Li, Yang Wang, Jiming Li, Weiyuan Zhang, Lijie Zhang, and Yuan Wang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3601,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3601,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125166" data-show=".short_summary_125166" data-hide=".short_summary_button_125166" >Short summary</span> <div class="j-widget__max short_summary short_summary_125166" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> A key challenge in climate projections is the uncertainty in cloud water response to anthropogenic aerosols, especially its time-dependence on diurnal microphysical-dynamic boundary layer feedback. Geostationary satellite shows neglecting the variations induces a compensation up to 45% of the initial cooling effect from increased cloud droplet concentration. The results provide new insights in aerosol-cloud interactions, verifying this is a significant yet often overlooked source of uncertainty. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125166" data-show=".short_summary_button_125166">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 16 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3717/">Long-term satellite trends of European lower-tropospheric ozone from 1996&ndash;2017</a> <div class="authors">Matilda A. Pimlott, Richard J. Pope, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Wuhu Feng, and Martyn P. Chipperfield</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3717,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3717,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125386" data-show=".short_summary_125386" data-hide=".short_summary_button_125386" >Short summary</span> <div class="j-widget__max short_summary short_summary_125386" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Tropospheric ozone (O<sub>3</sub>) is a harmful secondary atmospheric pollutant and an important greenhouse gas. Here, we present an in-depth analysis of lower-tropospheric sub-column O<sub>3</sub> (LTCO<sub>3</sub>, surface &ndash; 6 km) records from three satellite products produced by the Rutherford Appleton Laboratory (RAL) over Europe between 1996 and 2017. Overall, we detect moderate negative trends in the satellite records, but corresponding model simulations and ozonesonde measurements show negligible trends. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125386" data-show=".short_summary_button_125386">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13849/2024/acp-24-13849-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13849/2024/acp-24-13849-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13849/2024/acp-24-13849-2024-avatar-web.png" data-width="600" data-height="344" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13849/2024/">Aerosol hygroscopicity over the southeast Atlantic Ocean during the biomass burning season – Part 1: From the perspective of scattering enhancement​​​​​​​</a> <div class="authors">Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven G. Howell</div> <div class="citation">Atmos. Chem. Phys., 24, 13849&ndash;13864, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13849-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13849-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_115052" data-show=".short_summary_115052" data-hide=".short_summary_button_115052" >Short summary</span> <div class="j-widget__max short_summary short_summary_115052" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Using airborne measurements over the southeast Atlantic Ocean, we examined how much moisture aerosols take up during Africa&rsquo;s biomass burning season. Our study revealed the important role of organic aerosols and introduced a predictive model for moisture uptake, accounting for organics, sulfate, and black carbon, summarizing results from various campaigns. These findings improve our understanding of aerosol&ndash;moisture interactions and their radiative effects in this climatically critical region. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_115052" data-show=".short_summary_button_115052">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13849/2024/acp-24-13849-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13849/2024/acp-24-13849-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13849/2024/acp-24-13849-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="344" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13833/2024/acp-24-13833-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13833/2024/acp-24-13833-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13833/2024/acp-24-13833-2024-avatar-web.png" data-width="600" data-height="450" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13833/2024/">Estimating the concentration of silver iodide needed to detect unambiguous signatures of glaciogenic cloud seeding</a> <div class="authors">Jing Yang, Jiaojiao Li, Meilian Chen, Xiaoqin Jing, Yan Yin, Bart Geerts, Zhien Wang, Yubao Liu, Baojun Chen, Shaofeng Hua, Hao Hu, Xiaobo Dong, Ping Tian, Qian Chen, and Yang Gao</div> <div class="citation">Atmos. Chem. Phys., 24, 13833&ndash;13848, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13833-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13833-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122108" data-show=".short_summary_122108" data-hide=".short_summary_button_122108" >Short summary</span> <div class="j-widget__max short_summary short_summary_122108" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Detecting unambiguous signatures is vital for examining cloud-seeding impacts, but often, seeding signatures are immersed in natural variability. In this study, reflectivity changes induced by glaciogenic seeding using different AgI concentrations are investigated under various conditions, and a method is developed to estimate the AgI concentration needed to detect unambiguous seeding signatures. The results aid in operational seeding-based decision-making regarding the amount of AgI dispersed. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122108" data-show=".short_summary_button_122108">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13833/2024/acp-24-13833-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13833/2024/acp-24-13833-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13833/2024/acp-24-13833-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="450" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3752/">Explaining trends and changing seasonal cycles of surface ozone in North America and Europe over the 2000&ndash;2018 period: A global modelling study with NO<sub>x</sub> and VOC tagging</a> <div class="authors">Tabish Ansari, Aditya Nalam, Aurelia Lupaşcu, Carsten Hinz, Simon Grasse, and Tim Butler</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3752,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3752,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125458" data-show=".short_summary_125458" data-hide=".short_summary_button_125458" >Short summary</span> <div class="j-widget__max short_summary short_summary_125458" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Surface ozone can travel far from its sources. In recent decades, emissions of ozone-forming gases have decreased in North America and Europe but risen in Asia, alongside rising global methane levels. Using advanced modeling, this study reveals that while local reductions in nitrogen oxides have lowered summer ozone, increases in natural and foreign sources offset these gains. Methane remains important, but its ozone impact has declined with reduced local emissions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125458" data-show=".short_summary_button_125458">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3719/">Hemispheric differences in ozone across the stratosphere-troposphere exchange region</a> <div class="authors">Rodrigo J. Seguel, Charlie Opazo, Yann Cohen, Owen R. Cooper, Laura Gallardo, Björn-Martin Sinnhuber, Florian Obersteiner, Andreas Zahn, Peter Hoor, and Susanne Rohs</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3719,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3719,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125390" data-show=".short_summary_125390" data-hide=".short_summary_button_125390" >Short summary</span> <div class="j-widget__max short_summary short_summary_125390" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We explored differences in ozone levels between the Northern and Southern Hemispheres in the Stratosphere-troposphere exchange region. Using unique data from a research aircraft, we found significantly lower ozone levels (with stratospheric character) in the Southern Hemisphere, especially during years of severe ozone depletion. A Sudden Stratospheric Warming event in 2019 increased Southern Hemisphere ozone levels, highlighting the relationship between atmospheric events and ozone distribution. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125390" data-show=".short_summary_button_125390">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3314/">On the impact of thunder on cloud ice crystals and droplets</a> <div class="authors">Konstantinos Kourtidis, Stavros Stathopoulos, and Vassilis Amiridis</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3314,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3314,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124378" data-show=".short_summary_124378" data-hide=".short_summary_button_124378" >Short summary</span> <div class="j-widget__max short_summary short_summary_124378" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The loud sound of thunder will induce mechanical effects on cloud droplets and ice particles, causing changes in their size distribution. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124378" data-show=".short_summary_button_124378">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3849/">Secondary Organic Aerosol Formation from Nitrate Radical Oxidation of Styrene: Aerosol Yields, Chemical Composition, and Hydrolysis of Organic Nitrates</a> <div class="authors">Yuchen Wang, Xiang Zhang, Yuanlong Huang, Yutong Liang, and Nga L. Ng</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3849,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3849,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125616" data-show=".short_summary_125616" data-hide=".short_summary_button_125616" >Short summary</span> <div class="j-widget__max short_summary short_summary_125616" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This work provides the first fundamental laboratory data to evaluate SOA production from styrene+NO<sub>3</sub> chemistry. Additionally, the formation mechanisms of aromatic ONs are reported for the first time, highlighting that previously identified nitroaromatics in ambient field campaigns can be aromatic ONs. Finally, the hydrolysis lifetime observed for ONs generated from styrene+NO<sub>3</sub> oxidation can serve as experimentally constrained parameter for modeling hydrolysis of aromatic ONs in general. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125616" data-show=".short_summary_button_125616">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13733/2024/acp-24-13733-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13733/2024/acp-24-13733-2024-avatar-thumb80.png" data-caption="© Authors for the graphs. Distributed under the Creative Commons Attribution 4.0 License. © Mary Robinson for the photo. Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13733/2024/acp-24-13733-2024-avatar-web.png" data-width="600" data-height="305" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13733/2024/">Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas</a> <div class="authors">Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer</div> <div class="citation">Atmos. Chem. Phys., 24, 13733&ndash;13750, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13733-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13733-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_117527" data-show=".short_summary_117527" data-hide=".short_summary_button_117527" >Short summary</span> <div class="j-widget__max short_summary short_summary_117527" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> On 26 February 2023, New Mexico and West Texas were impacted by a severe dust storm. To analyze this storm, 28 meteorological stations and 19 PM<sub>2.5 </sub>and PM<sub>10</sub> stations were used. Dust particles were in the air for 16&thinsp;h, and dust storm conditions lasted for up to 120&thinsp;min. Hourly PM<sub>2.5</sub> and PM<sub>10</sub> concentrations were up to 518 and 9983&thinsp;&micro;g&thinsp;m<sup>&minus;3</sup>, respectively. For Lubbock, Texas, the maximum PM<sub>2.5</sub> concentrations were the highest ever recorded. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_117527" data-show=".short_summary_button_117527">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13733/2024/acp-24-13733-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13733/2024/acp-24-13733-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13733/2024/acp-24-13733-2024-avatar-web.png" data-width="600" data-caption="© Authors for the graphs. Distributed under the Creative Commons Attribution 4.0 License. © Mary Robinson for the photo. Distributed under the Creative Commons Attribution 4.0 License." data-height="305" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13769/2024/acp-24-13769-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13769/2024/acp-24-13769-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13769/2024/acp-24-13769-2024-avatar-web.png" data-width="600" data-height="414" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13769/2024/">Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study</a> <div class="authors">Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis</div> <div class="citation">Atmos. Chem. Phys., 24, 13769&ndash;13791, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13769-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13769-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119856" data-show=".short_summary_119856" data-hide=".short_summary_button_119856" >Short summary</span> <div class="j-widget__max short_summary short_summary_119856" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119856" data-show=".short_summary_button_119856">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13769/2024/acp-24-13769-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13769/2024/acp-24-13769-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13769/2024/acp-24-13769-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="414" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13793/2024/acp-24-13793-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13793/2024/acp-24-13793-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13793/2024/acp-24-13793-2024-avatar-web.png" data-width="600" data-height="517" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13793/2024/">Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements</a> <div class="authors">Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang</div> <div class="citation">Atmos. Chem. Phys., 24, 13793&ndash;13810, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13793-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13793-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119874" data-show=".short_summary_119874" data-hide=".short_summary_button_119874" >Short summary</span> <div class="j-widget__max short_summary short_summary_119874" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Online Vocus-PTR measurements show the compositions and seasonal variations in organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various species at a level of sub-parts per trillion (ppt) and organics with multiple oxygens (&ge; 3) were observed. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens, while, in other seasons, the variations in them could be influenced by mixed sources. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119874" data-show=".short_summary_button_119874">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13793/2024/acp-24-13793-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13793/2024/acp-24-13793-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13793/2024/acp-24-13793-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="517" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13811/2024/acp-24-13811-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13811/2024/acp-24-13811-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13811/2024/acp-24-13811-2024-avatar-web.png" data-width="423" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13811/2024/">Observing convective activities in complex convective organizations and their contributions to precipitation and anvil cloud amounts</a> <div class="authors">Zhenquan Wang and Jian Yuan</div> <div class="citation">Atmos. Chem. Phys., 24, 13811&ndash;13831, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13811-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13811-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119857" data-show=".short_summary_119857" data-hide=".short_summary_button_119857" >Short summary</span> <div class="j-widget__max short_summary short_summary_119857" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Tropical convection organizations are normally connected complexes of many convective activities. In this work, a novel variable-brightness-temperature segment tracking algorithm is established to partition the complex convective organizations into structural components of single cold cores for tracking separately. The duration, precipitation and anvil amount of the tracked organization segments have strong loglinear relationships with brightness temperature structures. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119857" data-show=".short_summary_button_119857">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13811/2024/acp-24-13811-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13811/2024/acp-24-13811-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13811/2024/acp-24-13811-2024-avatar-web.png" data-width="423" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13751/2024/acp-24-13751-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13751/2024/acp-24-13751-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13751/2024/acp-24-13751-2024-avatar-web.png" data-width="600" data-height="264" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13751/2024/">Ice-nucleating particle concentration impacts cloud properties over Dronning Maud Land, East Antarctica, in COSMO-CLM<sup>2</sup></a> <div class="authors">Florian Sauerland, Niels Souverijns, Anna Possner, Heike Wex, Preben Van Overmeiren, Alexander Mangold, Kwinten Van Weverberg, and Nicole van Lipzig</div> <div class="citation">Atmos. Chem. Phys., 24, 13751&ndash;13768, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13751-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13751-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119908" data-show=".short_summary_119908" data-hide=".short_summary_button_119908" >Short summary</span> <div class="j-widget__max short_summary short_summary_119908" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We use a regional climate model, COSMO-CLM&sup2;, enhanced with a module resolving aerosol processes, to study Antarctic clouds. We prescribe different concentrations of ice-nucleating particles to our model to assess how these clouds respond to concentration changes, validating results with cloud and aerosol observations from the Princess Elisabeth Antarctica station. Our results show that aerosol&ndash;cloud interactions vary with temperature, providing valuable insights into Antarctic cloud dynamics. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119908" data-show=".short_summary_button_119908">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13751/2024/acp-24-13751-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13751/2024/acp-24-13751-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13751/2024/acp-24-13751-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="264" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13715/2024/acp-24-13715-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13715/2024/acp-24-13715-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13715/2024/acp-24-13715-2024-avatar-web.png" data-width="600" data-height="434" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13715/2024/">Temperature-dependent rate coefficients for the reactions of OH radicals with selected alkanes, aromatic compounds, and monoterpenes</a> <div class="authors">Florian Berg, Anna Novelli, René Dubus, Andreas Hofzumahaus, Frank Holland, Andreas Wahner, and Hendrik Fuchs</div> <div class="citation">Atmos. Chem. Phys., 24, 13715&ndash;13731, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13715-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13715-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122663" data-show=".short_summary_122663" data-hide=".short_summary_button_122663" >Short summary</span> <div class="j-widget__max short_summary short_summary_122663" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study reports temperature-dependent rate coefficients of the reaction of atmospherically relevant hydrocarbons from biogenic sources (methyl vinyl ketones and monoterpenes) and anthropogenic sources (alkanes and aromatics). Measurements were done at atmospheric conditions (ambient pressure and temperature range) in air. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122663" data-show=".short_summary_button_122663">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13715/2024/acp-24-13715-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13715/2024/acp-24-13715-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13715/2024/acp-24-13715-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="434" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3410/">BVOC and speciated monoterpene concentrations and fluxes at a Scandinavian boreal forest</a> <div class="authors">Ross Charles Petersen, Thomas Holst, Cheng Wu, Radovan Krejci, Jeremy Chan, Claudia Mohr, and Janne Rinne</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3410,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3410,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124566" data-show=".short_summary_124566" data-hide=".short_summary_button_124566" >Short summary</span> <div class="j-widget__max short_summary short_summary_124566" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Ecosystem-scale emissions of biogenic volatile organic compounds (BVOCs) are important for atmospheric chemistry. Here we investigate boreal BVOC fluxes from a forest in central Sweden. BVOC fluxes were measured above-canopy using proton-transfer-reaction mass spectrometry, while compound-specific monoterpene (MT) fluxes were assessed using a concentration gradient method. We also evaluate the impact of chemical degradation on observed sesquiterpene (SQT) and nighttime MT fluxes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124566" data-show=".short_summary_button_124566">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3790/">Advances in CALIPSO (IIR) cirrus cloud property retrievals &ndash; Part 1: Methods and testing</a> <div class="authors">David L. Mitchell, Anne Emilie Garnier, and Sarah Woods</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3790,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3790,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125523" data-show=".short_summary_125523" data-hide=".short_summary_button_125523" >Short summary</span> <div class="j-widget__max short_summary short_summary_125523" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Motivated by the need to better understand the physics of cirrus clouds, a satellite retrieval for cirrus cloud ice water content, ice particle number concentration and effective size was developed by exploiting relationships between cirrus cloud measurements made during field campaigns and cloud radiative properties measured by satellite. These retrievals tested favorably when compared against corresponding aircraft measurements and were found to depend on the visual opacity of the cloud. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125523" data-show=".short_summary_button_125523">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3814/">Advances in CALIPSO (IIR) cirrus cloud property retrievals &ndash; Part 2: Global estimates of the fraction of cirrus clouds affected by homogeneous ice nucleation</a> <div class="authors">David L. Mitchell and Anne Garnier</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3814,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3814,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125554" data-show=".short_summary_125554" data-hide=".short_summary_button_125554" >Short summary</span> <div class="j-widget__max short_summary short_summary_125554" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Arguably the greatest knowledge gap in cirrus cloud research is the relative roles of homogeneous and heterogeneous ice nucleation in cirrus cloud formation. Since this depends on temperature, latitude, season, and topography, a satellite remote sensing method was developed to measure cirrus cloud properties. It was found that cirrus clouds strongly affected by homogeneous ice nucleation may account for over half of the overall cirrus cloud radiative effect during winter outside the tropics. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125554" data-show=".short_summary_button_125554">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3626/">Seasonal differences in observed versus modeled new particle formation over boreal regions</a> <div class="authors">Carl Svenhag, Pontus Roldin, Tinja Olenius, Robin Wollesen de Jonge, Sara Blichner, Daniel Yazgi, and Moa Sporre</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3626,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3626,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125216" data-show=".short_summary_125216" data-hide=".short_summary_button_125216" >Short summary</span> <div class="j-widget__max short_summary short_summary_125216" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates the model representation of how particles are formed and grow in the atmosphere. Using modeled and observed data from two boreal forest stations in 2018, we identify key factors for NPF to improve particle-climate predictions in the global EC-Earth3 model. Comparisons with the detailed ADCHEM model show that adding ammonia improves particle growth predictions, though EC-Earth3 still highly underestimates the number of particles during warmer months. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125216" data-show=".short_summary_button_125216">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3789/">Complementary aerosol mass spectrometry elucidates sources of wintertime sub-micron particle pollution in Fairbanks, Alaska, during ALPACA 2022&nbsp;</a> <div class="authors">Amna Ijaz, Brice Temime-Roussel, Benjamin Chazeau, Sarah Albertin, Stephen R. Arnold, Brice Barrett, Slimane Bekki, Natalie Brett, Meeta Cesler-Maloney, Elsa Dieudonne, Kayane K. Dingilian, Javier G. Fochesatto, Jingqiu Mao, Allison Moon, Joel Savarino, William Simpson, Rodney J. Weber, Kathy S. Law, and Barbara D'Anna</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3789,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3789,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125521" data-show=".short_summary_125521" data-hide=".short_summary_button_125521" >Short summary</span> <div class="j-widget__max short_summary short_summary_125521" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Fairbanks is among the most polluted cities with the highest particulate matter (PM) levels in the US during winters. Highly time-resolved measurements of the sub-micron PM elucidated residential heating with wood and oil and hydrocarbon-like organics from traffic, as well as sulphur-containing organic aerosol, to be the key pollution sources. Remarkable differences existed between complementary instruments, warranting the deployment of multiple tools at sites with wide-ranging influences. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125521" data-show=".short_summary_button_125521">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13653/2024/acp-24-13653-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13653/2024/acp-24-13653-2024-avatar-thumb80.png" data-caption="© Kunz et al. 2011, recreated by Turhal" data-web="https://acp.copernicus.org/articles/24/13653/2024/acp-24-13653-2024-avatar-web.png" data-width="600" data-height="323" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13653/2024/">Variability and trends in the potential vorticity (PV)-gradient dynamical tropopause</a> <div class="authors">Katharina Turhal, Felix Plöger, Jan Clemens, Thomas Birner, Franziska Weyland, Paul Konopka, and Peter Hoor</div> <div class="citation">Atmos. Chem. Phys., 24, 13653&ndash;13679, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13653-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13653-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118241" data-show=".short_summary_118241" data-hide=".short_summary_button_118241" >Short summary</span> <div class="j-widget__max short_summary short_summary_118241" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The tropopause separates the troposphere, where many greenhouse gases originate, from the stratosphere. This study examines a tropopause defined by potential vorticity &ndash; an analogue for angular momentum that changes sharply in the subtropics, creating a transport barrier. Between 1980 and 2017, this tropopause shifted poleward at lower altitudes and equatorward above, suggesting height-dependent changes in atmospheric circulation that may affect greenhouse gas distribution and global warming. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118241" data-show=".short_summary_button_118241">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13653/2024/acp-24-13653-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13653/2024/acp-24-13653-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13653/2024/acp-24-13653-2024-avatar-web.png" data-width="600" data-caption="© Kunz et al. 2011, recreated by Turhal" data-height="323" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13693/2024/acp-24-13693-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13693/2024/acp-24-13693-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13693/2024/acp-24-13693-2024-avatar-web.png" data-width="600" data-height="391" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13693/2024/">Process analysis of elevated concentrations of organic acids at Whiteface Mountain, New York</a> <div class="authors">Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance</div> <div class="citation">Atmos. Chem. Phys., 24, 13693&ndash;13713, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13693-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13693-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118702" data-show=".short_summary_118702" data-hide=".short_summary_button_118702" >Short summary</span> <div class="j-widget__max short_summary short_summary_118702" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This work uses chemical transport and box modeling to study the gas- and aqueous-phase production of organic acid concentrations measured in cloud water at the summit of Whiteface Mountain on 1 July 2018. Isoprene was the major source of formic, acetic, and oxalic acid. Gas-phase chemistry greatly underestimated formic and acetic acid, indicating missing sources, while cloud chemistry was a key source of oxalic acid. More studies of organic acids are required to better constrain their sources. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118702" data-show=".short_summary_button_118702">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13693/2024/acp-24-13693-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13693/2024/acp-24-13693-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13693/2024/acp-24-13693-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="391" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13633/2024/acp-24-13633-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13633/2024/acp-24-13633-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13633/2024/acp-24-13633-2024-avatar-web.png" data-width="600" data-height="538" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13633/2024/">Can general circulation models (GCMs) represent cloud liquid water path adjustments to aerosol–cloud interactions?</a> <div class="authors">Johannes Mülmenstädt, Andrew S. Ackerman, Ann M. Fridlind, Meng Huang, Po-Lun Ma, Naser Mahfouz, Susanne E. Bauer, Susannah M. Burrows, Matthew W. Christensen, Sudhakar Dipu, Andrew Gettelman, L. Ruby Leung, Florian Tornow, Johannes Quaas, Adam C. Varble, Hailong Wang, Kai Zhang, and Youtong Zheng</div> <div class="citation">Atmos. Chem. Phys., 24, 13633&ndash;13652, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13633-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13633-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118826" data-show=".short_summary_118826" data-hide=".short_summary_button_118826" >Short summary</span> <div class="j-widget__max short_summary short_summary_118826" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Stratocumulus clouds play a large role in Earth's climate by reflecting incoming solar energy back to space. Turbulence at stratocumulus cloud top mixes in dry, warm air, which can lead to cloud dissipation. This process is challenging for coarse-resolution global models to represent. We show that global models nevertheless agree well with our process understanding. Global models also think the process is less important for the climate than other lines of evidence have led us to conclude. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118826" data-show=".short_summary_button_118826">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13633/2024/acp-24-13633-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13633/2024/acp-24-13633-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13633/2024/acp-24-13633-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="538" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13681/2024/acp-24-13681-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13681/2024/acp-24-13681-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13681/2024/acp-24-13681-2024-avatar-web.png" data-width="600" data-height="423" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Dec 2024</div> <div class="highlightType" > | Highlight paper</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13681/2024/">Warming effects of reduced sulfur emissions from shipping</a> <div class="authors">Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw</div> <div class="citation">Atmos. Chem. Phys., 24, 13681&ndash;13692, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13681-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13681-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120252" data-show=".short_summary_120252" data-hide=".short_summary_button_120252" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_120252 ml-2" data-show=".ce_comment_120252" data-hide=".ce_comment_button_120252">Executive editor</span> <div class="j-widget__max short_summary short_summary_120252" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> A 2020 regulation has reduced sulfur emissions from shipping by about 80 %, leading to a decrease in atmospheric aerosols that have a cooling effect primarily by affecting cloud properties and amounts. Our climate model simulations predict a global temperature increase of 0.04 K over the next 3 decades as a result, which could contribute to surpassing the Paris Agreement's 1.5 &deg;C target. Reduced aerosols may have also contributed to the recent temperature spikes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120252" data-show=".short_summary_button_120252">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_120252 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Strong reduction of sulfur emission from shipping since 2020 provides a rare opportunity to examine the response of climate system to anthropogenic forcing. Using a global climate model, this study estimates a global aerosol effective radiative forcing of 0.13 W m-2 from ship emission reduction. This emission reduction leads to a global mean warming of 0.04 K in 2020-2049 with larger warming at regional scales. The warming may not be evident at present day because of the climate variability, but can represent a significant fraction (17%) of the remaining warming to 1.5 K target. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_120252" data-show=".ce_comment_button_120252">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13681/2024/acp-24-13681-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13681/2024/acp-24-13681-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13681/2024/acp-24-13681-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="423" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3275/">Enhancing SO<sub>3</sub> Hydrolysis and Nucleation: The Role of Formic Sulfuric Anhydride</a> <div class="authors">Rui Wang, Rongrong Li, Shasha Chen, Ruxue Mu, Changming Zhang, Xiaohui Ma, Majid Khan, and Tianlei Zhang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3275,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3275,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124255" data-show=".short_summary_124255" data-hide=".short_summary_button_124255" >Short summary</span> <div class="j-widget__max short_summary short_summary_124255" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Gaseous results indicated that SO<sub>3</sub> hydrolysis with formic sulfuric anhydride (FSA) has a Gibbs free energy barrier as low as 1.5 kcal&middot;mol<sup>-1</sup> and can effectively compete with other SO<sub>3</sub> hydrolysis, Interfacial BOMD simulations illustrated that FSA-mediated SO<sub>3</sub> hydrolysis at the gas-liquid interface occurs through a stepwise mechanism and can be completed within a few picoseconds. ACDC kinetic simulations indicated that FSA significantly enhances cluster formation rates in the H<sub>2</sub>SO<sub>4</sub>-NH<sub>3</sub> system. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124255" data-show=".short_summary_button_124255">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3468/">Source-explicit estimation of brown carbon in the polluted atmosphere over North China Plain: implications for distribution, absorption and direct radiative effect</a> <div class="authors">Jiamao Zhou, Jiarui Wu, Xiaoli Su, Ruonan Wang, Xia Li, Qian Jiang, Ting Zhang, Wenting Dai, Junji Cao, Xuexi Tie, and Guohui Li</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3468,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3468,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124765" data-show=".short_summary_124765" data-hide=".short_summary_button_124765" >Short summary</span> <div class="j-widget__max short_summary short_summary_124765" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Brown carbon (BrC) is a type of airborne particle produced from various combustion sources which is light absorption. Historically, climate models have categorizing organic particles as either non-absorbing or purely reflective. Our study shows that BrC can reduce the usual cooling effect of organic particles. While BrC is often linked to biomass burning, however, BrC from fossil fuels contributes significantly to atmospheric heating. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124765" data-show=".short_summary_button_124765">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13587/2024/acp-24-13587-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13587/2024/acp-24-13587-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13587/2024/acp-24-13587-2024-avatar-web.png" data-width="600" data-height="400" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13587/2024/">The variations in volatile organic compounds based on the policy change for Omicron in the traffic hub of Zhengzhou</a> <div class="authors">Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li</div> <div class="citation">Atmos. Chem. Phys., 24, 13587&ndash;13601, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13587-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13587-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118416" data-show=".short_summary_118416" data-hide=".short_summary_button_118416" >Short summary</span> <div class="j-widget__max short_summary short_summary_118416" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> To gain insight into the impact of changes due to epidemic control policies, we undertook continuous online monitoring of volatile organic compounds (VOCs) at an urban site in Zhengzhou over a 2-month period. This study examines the characteristics of VOCs, their sources, and their temporal evolution. It also assesses the impact of the policy change on VOC pollution during the monitoring period, thus providing a basis for further research on VOC pollution and source control. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118416" data-show=".short_summary_button_118416">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13587/2024/acp-24-13587-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13587/2024/acp-24-13587-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13587/2024/acp-24-13587-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="400" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13571/2024/acp-24-13571-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13571/2024/acp-24-13571-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13571/2024/acp-24-13571-2024-avatar-web.png" data-width="600" data-height="284" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13571/2024/">Experimental observation of the impact of nanostructure on hygroscopicity and reactivity of fatty acid atmospheric aerosol proxies</a> <div class="authors">Adam Milsom, Adam M. Squires, Ben Laurence, Ben Wōden, Andrew J. Smith, Andrew D. Ward, and Christian Pfrang</div> <div class="citation">Atmos. Chem. Phys., 24, 13571&ndash;13586, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13571-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13571-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119040" data-show=".short_summary_119040" data-hide=".short_summary_button_119040" >Short summary</span> <div class="j-widget__max short_summary short_summary_119040" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We followed nano-structural changes in mixtures found in urban organic aerosol emissions (oleic acid, sodium oleate and fructose) during humidity change and ozone exposure. We demonstrate that self-assembly of fatty acid nanostructures can impact water uptake and chemical reactivity, affecting atmospheric lifetimes, urban air quality (preventing harmful emissions from degradation and enabling their long-range transport) and climate (affecting cloud formation), with implications for human health. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119040" data-show=".short_summary_button_119040">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13571/2024/acp-24-13571-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13571/2024/acp-24-13571-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13571/2024/acp-24-13571-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="284" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13603/2024/acp-24-13603-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13603/2024/acp-24-13603-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13603/2024/acp-24-13603-2024-avatar-web.png" data-width="600" data-height="390" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13603/2024/">On the dynamics of ozone depletion events at Villum Research Station in the High Arctic</a> <div class="authors">Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov</div> <div class="citation">Atmos. Chem. Phys., 24, 13603&ndash;13631, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13603-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13603-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120818" data-show=".short_summary_120818" data-hide=".short_summary_button_120818" >Short summary</span> <div class="j-widget__max short_summary short_summary_120818" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Arctic ozone depletion events (ODEs) occur every spring and have vast implications for the oxidizing capacity, radiative balance, and mercury oxidation. In this study, we analyze ozone, ODEs, and their connection to meteorological and air mass history variables through statistical analyses, back trajectories, and machine learning (ML) at Villum Research Station. ODEs are favorable under sunny, calm conditions with air masses arriving from northerly wind directions with sea ice contact. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120818" data-show=".short_summary_button_120818">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13603/2024/acp-24-13603-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13603/2024/acp-24-13603-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13603/2024/acp-24-13603-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="390" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13541/2024/acp-24-13541-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13541/2024/acp-24-13541-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13541/2024/acp-24-13541-2024-avatar-web.png" data-width="600" data-height="307" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13541/2024/">The long-term impact of biogenic volatile organic compound emissions on urban ozone patterns over central Europe: contributions from urban and rural vegetation</a> <div class="authors">Marina Liaskoni, Peter Huszár, Lukáš Bartík, Alvaro Patricio Prieto Perez, Jan Karlický, and Kateřina Šindelářová</div> <div class="citation">Atmos. Chem. Phys., 24, 13541&ndash;13569, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13541-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13541-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121637" data-show=".short_summary_121637" data-hide=".short_summary_button_121637" >Short summary</span> <div class="j-widget__max short_summary short_summary_121637" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The impact of biogenic emissions of hydrocarbons from vegetation on ozone, as well as on overall oxidative capacity of air, is analyzed for central European cities for a present-day period using a chemistry transport model. Moreover, the analysis evaluates the partial role of urban vegetation in impacting all biogenic emissions. We found substantial increases in ozone due to these emissions, and about 10% of this increase is attributable to vegetation within urban areas. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121637" data-show=".short_summary_button_121637">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13541/2024/acp-24-13541-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13541/2024/acp-24-13541-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13541/2024/acp-24-13541-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="307" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-2 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3348/">Sensitivity of climate-chemistry model simulated atmospheric composition to lightning-produced NO<sub><em>x</em></sub> parameterizations based on lightning frequency</a> <div class="authors">Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Heidi Huntrieser, Patrick Jöckel, and Eric J. Bucsela</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3348,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3348,</span> 2024</div> <div class="statusMessage"><span>Revised manuscript under review for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124453" data-show=".short_summary_124453" data-hide=".short_summary_button_124453" >Short summary</span> <div class="j-widget__max short_summary short_summary_124453" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Lightning plays a significant role in tropospheric chemistry by producing substantial amounts of nitrogen oxides. According to recent estimates, thunderstorms that produce a higher lightning frequency rate also produce less nitrogen oxide per flash. We implemented the dependency of nitrogen oxide production per flash on lightning flash frequency in a chemical atmospheric model. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124453" data-show=".short_summary_button_124453">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3576/">VOC sources and impacts at an urban Mediterranean area (Marseille &ndash; France)</a> <div class="authors">Marvin Dufresne, Thérèse Salameh, Thierry Léonardis, Grégory Gille, Alexandre Armengaud, and Stéphane Sauvage</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3576,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3576,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125124" data-show=".short_summary_125124" data-hide=".short_summary_button_125124" >Short summary</span> <div class="j-widget__max short_summary short_summary_125124" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This paper is about the eighteen-months measurement of Non-Methane Hydrocarbons (NMHC) at Marseille, were there was no measurement since early 2000 despite the impact of NMHC on air quality and climate. The traffic related sources are the first contributor to NMHC concentrations in Marseille and shipping strongly contribute to the formation of aerosols. Finally, the lockdown due to the Covid-19 had an impact on NMHC concentrations reaching a fifty percents decreasing for traffic-related sources. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125124" data-show=".short_summary_button_125124">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3829/">Quantifying cloud masking in a single column</a> <div class="authors">Lukas Kluft, Bjorn Stevens, Manfred Brath, and Stefan A. Buehler</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3829,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3829,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 5 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125579" data-show=".short_summary_125579" data-hide=".short_summary_button_125579" >Short summary</span> <div class="j-widget__max short_summary short_summary_125579" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Using a single column model, we investigate the effect of the vertical distribution of clouds on climate sensitivity. We show that, depending on their height, clouds can mask or unmask the radiative response of the clear-sky atmosphere. Our single column model yields an all-sky climate sensitivity of 2.2 K, slightly less than the clear-sky value. This value can be interpreted as a baseline to which changes in surface albedo and an assumed reduction in cloud albedo would add. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125579" data-show=".short_summary_button_125579">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13503/2024/acp-24-13503-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13503/2024/acp-24-13503-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13503/2024/acp-24-13503-2024-avatar-web.png" data-width="600" data-height="335" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13503/2024/">Ozone source attribution in polluted European areas during summer 2017 as simulated with MECO(n)</a> <div class="authors">Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis</div> <div class="citation">Atmos. Chem. Phys., 24, 13503&ndash;13523, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13503-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13503-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_110292" data-show=".short_summary_110292" data-hide=".short_summary_button_110292" >Short summary</span> <div class="j-widget__max short_summary short_summary_110292" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Anthropogenic emissions are a major source of precursors of tropospheric ozone. As ozone formation is highly non-linear, we apply a global&ndash;regional chemistry&ndash;climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. Our analysis shows that the contribution of European anthropogenic emissions largely increases during large ozone periods, indicating that emissions from these sectors drive ozone values. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_110292" data-show=".short_summary_button_110292">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13503/2024/acp-24-13503-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13503/2024/acp-24-13503-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13503/2024/acp-24-13503-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="335" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13525/2024/acp-24-13525-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13525/2024/acp-24-13525-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13525/2024/acp-24-13525-2024-avatar-web.png" data-width="600" data-height="423" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13525/2024/">Numerical simulation of aerosol concentration effects on cloud droplet size spectrum evolutions of warm stratiform clouds in Jiangxi, China</a> <div class="authors">Yi Li, Xiaoli Liu, and Hengjia Cai</div> <div class="citation">Atmos. Chem. Phys., 24, 13525&ndash;13540, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13525-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13525-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_115884" data-show=".short_summary_115884" data-hide=".short_summary_button_115884" >Short summary</span> <div class="j-widget__max short_summary short_summary_115884" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The influence of different aerosol modes on cloud processes remains controversial. We modified the aerosol spectra and concentrations to simulate a warm stratiform cloud process in Jiangxi, China, using the WRF-SBM scheme. Research shows that different aerosol spectra have diverse effects on cloud droplet spectra, cloud development, and the correlation between dispersion (&epsilon;) and cloud physics quantities. Compared to cloud droplet concentration, &epsilon; is more sensitive to the volume radius. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_115884" data-show=".short_summary_button_115884">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13525/2024/acp-24-13525-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13525/2024/acp-24-13525-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13525/2024/acp-24-13525-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="423" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13477/2024/acp-24-13477-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13477/2024/acp-24-13477-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13477/2024/acp-24-13477-2024-avatar-web.png" data-width="600" data-height="363" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13477/2024/">Large spatiotemporal variability in aerosol properties over central Argentina during the CACTI field campaign</a> <div class="authors">Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons</div> <div class="citation">Atmos. Chem. Phys., 24, 13477&ndash;13502, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13477-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13477-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119934" data-show=".short_summary_119934" data-hide=".short_summary_button_119934" >Short summary</span> <div class="j-widget__max short_summary short_summary_119934" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Aerosol property measurements recently collected on the ground and by a research aircraft in central Argentina during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable data set needed to evaluate and improve model predictions of aerosols in a traditionally data-sparse region of South America. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119934" data-show=".short_summary_button_119934">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13477/2024/acp-24-13477-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13477/2024/acp-24-13477-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13477/2024/acp-24-13477-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="363" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3632/">Moisture Budget Estimates Derived from Airborne Observations in an Arctic Atmospheric River During its Dissipation</a> <div class="authors">Henning Dorff, Florian Ewald, Heike Konow, Mario Mech, Davide Ori, Vera Schemann, Andreas Walbröl, Manfred Wendisch, and Felix Ament</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3632,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3632,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125227" data-show=".short_summary_125227" data-hide=".short_summary_button_125227" >Short summary</span> <div class="j-widget__max short_summary short_summary_125227" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Using observations of an Arctic Atmospheric River (AR) from a long-range research aircraft, we analyse how moisture transported into the Arctic by the AR is transformed and how it interacts with the Arctic environment. The moisture transport divergence is the main driver of local moisture change over time. Surface precipitation and evaporation are rather weak when averaged over extended AR sectors, although considerable heterogeneity of precipitation within the AR is observed. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125227" data-show=".short_summary_button_125227">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-2 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3674/">Surface ozone trend variability across the United States and the impact of heatwaves (1990&ndash;2023)</a> <div class="authors">Kai-Lan Chang, Brian C. McDonald, and Owen R. Cooper</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3674,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3674,</span> 2024</div> <div class="statusMessage"><span>Revised manuscript under review for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125298" data-show=".short_summary_125298" data-hide=".short_summary_button_125298" >Short summary</span> <div class="j-widget__max short_summary short_summary_125298" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Exposure to high levels of ozone can be harmful to human health. This study shows consistent and robust evidence of decreasing ozone extremes across much of the United States over 1990&ndash;2023, previously attributed to ozone precursor emission controls. Nevertheless, we also show that the increasing heatwave frequencies are likely to contribute to additional ozone exceedances, slowing the progress of decreasing the frequency of ozone exceedances. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125298" data-show=".short_summary_button_125298">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3662/">Aerosol-cloud interactions in liquid-phase clouds under different meteorological and aerosol backgrounds</a> <div class="authors">Jianqi Zhao, Xiaoyan Ma, and Johannes Quaas</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3662,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3662,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125273" data-show=".short_summary_125273" data-hide=".short_summary_button_125273" >Short summary</span> <div class="j-widget__max short_summary short_summary_125273" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We conduct a comparative analysis of aerosol-cloud responses in liquid-phase clouds under different aerosol and meteorological conditions based on simulations using the WRF-Chem-SBM model. Our findings highlight the different effects of aerosols on clouds and precipitation, as well as variations in the roles of aerosol and meteorological factors influencing aerosol-cloud interactions, in different environment. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125273" data-show=".short_summary_button_125273">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3722/">Constraining elemental mercury air&ndash;sea exchange using long-term ground-based observations</a> <div class="authors">Koketso Michelle Molepo, Johannes Bieser, Alkuin Maximilian Koenig, Ian Michael Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3722,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3722,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125393" data-show=".short_summary_125393" data-hide=".short_summary_button_125393" >Short summary</span> <div class="j-widget__max short_summary short_summary_125393" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Mercury exchange between the ocean and atmosphere is poorly understood due to limited in situ data. Here, using atmospheric mercury observations from ground-based monitoring stations along with air mass trajectories, we found that atmospheric Hg levels increase with air mass ocean exposure time, matching predictions for ocean mercury emissions. This finding indicates that ocean emissions directly influence atmospheric mercury levels and enables us to estimate these emissions on a global scale. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125393" data-show=".short_summary_button_125393">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3539/">Microphysical properties of refractory black carbon aerosols for different air masses at a central European background site</a> <div class="authors">Yifan Yang, Thomas Müller, Laurent Poulain, Samira Atabakhsh, Bruna A. Holanda, Jens Voigtländer, Shubhi Arora, and Mira L. Pöhlker</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3539,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3539,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125025" data-show=".short_summary_125025" data-hide=".short_summary_button_125025" >Short summary</span> <div class="j-widget__max short_summary short_summary_125025" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Black carbon (BC) is the major atmospheric aerosol that can absorb light and influence climate. We measured the physical properties of BC at a background site in Germany. In summer, BC particles were smaller and the mixture with other atmospheric components occurred during the daytime. In winter, emissions from residential heating significantly influenced BC's properties. Understanding these characteristics of BC can help improve aerosol optics simulation accuracy. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125025" data-show=".short_summary_button_125025">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3808/">In-cloud characteristics observed in US Northeast and Midwest non-orographic winter storms with implications for ice particle mass growth and residence time</a> <div class="authors">Luke R. Allen, Sandra E. Yuter, Declan M. Crowe, Matthew A. Miller, and K. Lee Thornhill</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3808,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3808,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125547" data-show=".short_summary_125547" data-hide=".short_summary_button_125547" >Short summary</span> <div class="j-widget__max short_summary short_summary_125547" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We analyzed in-cloud characteristics using in situ measurements from 42 research flights across two field campaigns into non-orographic, non-lake effect winter storms. Much of the storm volume contains weak vertical motions (a few cm s<sup>-1</sup>), and most updrafts &ge; 0.5 m s<sup>-1</sup> are small (&lt; 1 km). Within 2 km of cloud radar echo top, stronger vertical motions and conditions for ice particle growth are more common. This implies the importance of cloud-top generating cells for production of snow particles. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125547" data-show=".short_summary_button_125547">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3749/">New insights into the polar ozone and water vapor, radiative effects, and their connection to the tides in the mesosphere-lower thermosphere during major Sudden Stratospheric Warming events</a> <div class="authors">Guochun Shi, Hanli Liu, Masaki Tsutsumi, Njål Gulbrandsen, Alexander Kozlovsky, Dimitry Pokhotelov, Mark Lester, Kun Wu, and Gunter Stober</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3749,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3749,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125452" data-show=".short_summary_125452" data-hide=".short_summary_button_125452" >Short summary</span> <div class="j-widget__max short_summary short_summary_125452" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> People are increasingly concerned about climate change due to its widespread impacts, including rising temperatures, extreme weather events, and ecosystem disruptions. Addressing these challenges requires urgent global action to reduce greenhouse gas emissions and adapt to a rapidly changing environment. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125452" data-show=".short_summary_button_125452">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-3 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3823/">Non biogenic source is an important but overlooked contributor to aerosol isoprene-derived organosulfates during winter in northern China</a> <div class="authors">Ting Yang, Yu Xu, Yu-Chen Wang, Yi-Jia Ma, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3823,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3823,</span> 2024</div> <div class="statusMessage"><span>Revised manuscript accepted for ACP</span> <nobr>(discussion: final response, 6 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125567" data-show=".short_summary_125567" data-hide=".short_summary_button_125567" >Short summary</span> <div class="j-widget__max short_summary short_summary_125567" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Previous measurement-model comparisons of atmospheric isoprene levels showed a significant unidentified source of isoprene in some northern Chinese cities during winter. Here, the first combination of large-scale observations and field combustion experiments provides novel insights into biomass burning emissions as a significant source of isoprene-derived organosulfates during winter in northern cities, China. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125567" data-show=".short_summary_button_125567">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13457/2024/acp-24-13457-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13457/2024/acp-24-13457-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13457/2024/acp-24-13457-2024-avatar-web.png" data-width="600" data-height="262" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13457/2024/">On the atmospheric budget of 1,2-dichloroethane and its impact on stratospheric chlorine and ozone (2002–2020)</a> <div class="authors">Ryan Hossaini, David Sherry, Zihao Wang, Martyn P. Chipperfield, Wuhu Feng, David E. Oram, Karina E. Adcock, Stephen A. Montzka, Isobel J. Simpson, Andrea Mazzeo, Amber A. Leeson, Elliot Atlas, and Charles C.-K. Chou</div> <div class="citation">Atmos. Chem. Phys., 24, 13457&ndash;13475, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13457-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13457-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118394" data-show=".short_summary_118394" data-hide=".short_summary_button_118394" >Short summary</span> <div class="j-widget__max short_summary short_summary_118394" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> DCE (1,2-dichloroethane) is an industrial chemical used to produce PVC (polyvinyl chloride). We analysed DCE production data to estimate global DCE emissions (2002&ndash;2020). The emissions were included in an atmospheric model and evaluated by comparing simulated DCE to DCE measurements in the troposphere. We show that DCE contributes ozone-depleting Cl to the stratosphere and that this has increased with increasing DCE emissions. DCE&rsquo;s impact on stratospheric O<sub>3</sub> is currently small but non-zero. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118394" data-show=".short_summary_button_118394">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13457/2024/acp-24-13457-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13457/2024/acp-24-13457-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13457/2024/acp-24-13457-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="262" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3180/">What makes the less urbanized city a deeper ozone trap: implications from a case study in the Sichuan Basin, southwest China</a> <div class="authors">Chenxi Wang, Zheng Jin, Yang Liu, Mengxin Bai, Weijia Wang, Yingzhuo Yu, and Liantang Deng</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3180,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3180,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 0 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123973" data-show=".short_summary_123973" data-hide=".short_summary_button_123973" >Short summary</span> <div class="j-widget__max short_summary short_summary_123973" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Using near surface atmospheric pollutant reanalysis and remote sensing measurements, a dipole-like spatial pattern of near surface ozone trap across two megacities of the Sichuan Basin is demonstrated during 2013&ndash;2019. Unexpectedly, Chongqing has the deeper ozone trap compared to Chengdu despite its lower urbanization level. Results showed the ozone trap pattern aligns more closely with meteorological condition rather than chemical condition. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123973" data-show=".short_summary_button_123973">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3252/">Quantifying transboundary transport flux of CO over the Tibetan Plateau: variabilities and drivers</a> <div class="authors">Zhenda Sun, Hao Yin, Zhongfeng Pan, Chongyang Li, Xiao Lu, Youwen Sun, and Cheng Liu</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3252,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3252,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124130" data-show=".short_summary_124130" data-hide=".short_summary_button_124130" >Short summary</span> <div class="j-widget__max short_summary short_summary_124130" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates the variability and driving force of transboundary transport flux of carbon monoxide (CO) over the Tibetan Plateau from May 2018 to April 2024. We discovered that CO levels peak in late autumn and winter, driven mainly by external influx from South Asia, while internal emissions have decreased slightly. The findings reveal a growing trend in CO concentrations in the region, emphasizing the Tibetan Plateau's role as a significant receptor for transboundary pollutants. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124130" data-show=".short_summary_button_124130">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3520/">Kinematic properties of regions that can involve persistent contrails</a> <div class="authors">Sina Maria Hofer and Klaus Martin Gierens</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3520,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3520,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124962" data-show=".short_summary_124962" data-hide=".short_summary_button_124962" >Short summary</span> <div class="j-widget__max short_summary short_summary_124962" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Ice supersaturation is an immaterial feature, which does not generally move with the wind that carries contrails and cirrus clouds. Here we analyse the different motions and show that ice supersaturated regions (ISSRs) on average move slower than the wind, the direction of movement is usually quite similar and the distributions of both velocities follow Weibull distributions. The almost identical direction of the movements is beneficial for contrail lifetimes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124962" data-show=".short_summary_button_124962">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3629/">Enrichment of organic nitrogen in fog residuals observed in the Italian Po Valley</a> <div class="authors">Fredrik Mattsson, Almuth Neuberger, Liine Heikkinen, Yvette Gramlich, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Paul Zieger, Ilona Riipinen, and Claudia Mohr</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3629,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3629,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125220" data-show=".short_summary_125220" data-hide=".short_summary_button_125220" >Short summary</span> <div class="j-widget__max short_summary short_summary_125220" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigated aerosol-cloud interactions, focusing on organic nitrogen (ON) formation in the aqueous phase. Measurements were conducted in wintertime Italian Po Valley, using aerosol mass spectrometry. The fog was enriched in more hygroscopic inorganic compounds and ON, containing e.g. imidazoles. The formation of imidazole by aerosol-fog interactions could be confirmed for the first time in atmospheric observations. Findings highlight the role of fog in nitrogen aerosol formation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125220" data-show=".short_summary_button_125220">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3698/">Climate Forcing due to Future Ozone Changes: An intercomparison of metrics and methods</a> <div class="authors">William J. Collins, Fiona M. O'Connor, Connor R. Barker, Rachael E. Byrom, Sebastian D. Eastham, Øivind Hodnebrog, Patrick Jöckel, Eloise A. Marais, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3698,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3698,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125347" data-show=".short_summary_125347" data-hide=".short_summary_button_125347" >Short summary</span> <div class="j-widget__max short_summary short_summary_125347" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> If reductions aren&rsquo;t implemented to limit emissions of pollutants that produce ozone then we calculate that this will cause a warming of climate. We assess how the future warming from ozone is affected by changing meteorological variables such as clouds and atmospheric temperatures. We find that reductions in high cloud cover tend to slightly reduce the warming from ozone. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125347" data-show=".short_summary_button_125347">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-2 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3494/">Evidence of successful methane mitigation in one of Europe's most important oil production region</a> <div class="authors">Gerrit Kuhlmann, Foteini Stavropoulou, Stefan Schwietzke, Daniel Zavala-Araiza, Andrew Thorpe, Andreas Hueni, Lukas Emmenegger, Andreea Calcan, Thomas Röckmann, and Dominik Brunner</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3494,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3494,</span> 2024</div> <div class="statusMessage"><span>Revised manuscript under review for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124866" data-show=".short_summary_124866" data-hide=".short_summary_button_124866" >Short summary</span> <div class="j-widget__max short_summary short_summary_124866" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> A measurement campaign in 2019 found that methane emissions from oil and gas in Romania were significantly higher than reported. In 2021, our follow-up campaign using airborne remote sensing showed a marked decreases in emissions by 20&ndash;60 % due to improved infrastructure. The study highlights the importance of measurement-based emission monitoring and illustrates the value of a multi-scale assessment integrating ground-based observations with large-scale airborne remote sensing campaigns. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124866" data-show=".short_summary_button_124866">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13385/2024/acp-24-13385-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13385/2024/acp-24-13385-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13385/2024/acp-24-13385-2024-avatar-web.png" data-width="600" data-height="333" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13385/2024/">The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models</a> <div class="authors">Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder</div> <div class="citation">Atmos. Chem. Phys., 24, 13385&ndash;13402, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13385-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13385-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_117151" data-show=".short_summary_117151" data-hide=".short_summary_button_117151" >Short summary</span> <div class="j-widget__max short_summary short_summary_117151" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Climate models include desert dust aerosols, which cause atmospheric heating and can change circulation patterns. We assess the effect of dust on the Indian and east Asian summer monsoons through multi-model experiments isolating the effect of dust in current climate models for the first time. Dust atmospheric heating results in a southward shift of western Pacific equatorial rainfall and an enhanced Indian summer monsoon. This shows the importance of accurate dust representation in models. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_117151" data-show=".short_summary_button_117151">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13385/2024/acp-24-13385-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13385/2024/acp-24-13385-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13385/2024/acp-24-13385-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="333" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13429/2024/acp-24-13429-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13429/2024/acp-24-13429-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13429/2024/acp-24-13429-2024-avatar-web.png" data-width="600" data-height="259" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13429/2024/">Microphysical view of the development and ice production of mid-latitude stratiform clouds with embedded convection during an extratropical cyclone</a> <div class="authors">Yuanmou Du, Dantong Liu, Delong Zhao, Mengyu Huang, Ping Tian, Dian Wen, Wei Xiao, Wei Zhou, Hui He, Baiwan Pan, Dongfei Zuo, Xiange Liu, Yingying Jing, Rong Zhang, Jiujiang Sheng, Fei Wang, Yu Huang, Yunbo Chen, and Deping Ding</div> <div class="citation">Atmos. Chem. Phys., 24, 13429&ndash;13444, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13429-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13429-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_117908" data-show=".short_summary_117908" data-hide=".short_summary_button_117908" >Short summary</span> <div class="j-widget__max short_summary short_summary_117908" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> By conducting in situ measurements, we investigated ice production processes in stratiform clouds with embedded convection over the North China Plain. The results show that the ice number concentration is strongly related to the distance to the cloud top, and the level with a larger distance to the cloud top has more graupel falling from upper levels, which promotes collision and coalescence between graupel and droplets and enhances secondary ice production. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_117908" data-show=".short_summary_button_117908">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13429/2024/acp-24-13429-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13429/2024/acp-24-13429-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13429/2024/acp-24-13429-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="259" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13403/2024/acp-24-13403-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13403/2024/acp-24-13403-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13403/2024/acp-24-13403-2024-avatar-web.png" data-width="600" data-height="590" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13403/2024/">The impact of aerosol on cloud water: a heuristic perspective</a> <div class="authors">Fabian Hoffmann, Franziska Glassmeier, and Graham Feingold</div> <div class="citation">Atmos. Chem. Phys., 24, 13403&ndash;13412, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13403-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13403-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120887" data-show=".short_summary_120887" data-hide=".short_summary_button_120887" >Short summary</span> <div class="j-widget__max short_summary short_summary_120887" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Clouds constitute a major cooling influence on Earth's climate system by reflecting a large fraction of the incident solar radiation back to space. This ability is controlled by the number of cloud droplets, which is governed by the number of aerosol particles in the atmosphere, laying the foundation for so-called aerosol&ndash;cloud&ndash;climate interactions. In this study, a simple model to understand the effect of aerosol on cloud water is developed and applied. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120887" data-show=".short_summary_button_120887">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13403/2024/acp-24-13403-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13403/2024/acp-24-13403-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13403/2024/acp-24-13403-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="590" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13413/2024/acp-24-13413-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13413/2024/acp-24-13413-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13413/2024/acp-24-13413-2024-avatar-web.png" data-width="600" data-height="329" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13413/2024/">Quantification and characterization of primary biological aerosol particles and microbes aerosolized from Baltic seawater</a> <div class="authors">Julika Zinke, Gabriel Pereira Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, and Matthew Edward Salter</div> <div class="citation">Atmos. Chem. Phys., 24, 13413&ndash;13428, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13413-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13413-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121200" data-show=".short_summary_121200" data-hide=".short_summary_button_121200" >Short summary</span> <div class="j-widget__max short_summary short_summary_121200" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Bioaerosols, which can influence climate and human health, were studied in the Baltic Sea. In May and August 2021, we used a sea spray simulation chamber during two ship-based campaigns to collect and measure these aerosols. We found that microbes were enriched in air compared to seawater. Bacterial diversity was analysed using DNA sequencing. Our methods provided consistent estimates of microbial emission fluxes, aligning with previous studies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121200" data-show=".short_summary_button_121200">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13413/2024/acp-24-13413-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13413/2024/acp-24-13413-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13413/2024/acp-24-13413-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="329" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3139/">Intended and Unintended Consequences of Atmospheric Methane Oxidation Enhancement</a> <div class="authors">Hannah Marie Horowitz</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3139,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3139,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123882" data-show=".short_summary_123882" data-hide=".short_summary_button_123882" >Short summary</span> <div class="j-widget__max short_summary short_summary_123882" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Removing the greenhouse gas methane from the atmosphere is being considered as an interim climate change solution. This includes increasing its chemical removal via oxidation. I simulate proposed methods in a computer model of the atmosphere. Results show that some approaches are unable to decrease methane on a global scale, while all increase particulate matter air pollution. There are climate and health tradeoffs of atmospheric oxidation enhancement of methane. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123882" data-show=".short_summary_button_123882">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13361/2024/acp-24-13361-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13361/2024/acp-24-13361-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13361/2024/acp-24-13361-2024-avatar-web.png" data-width="600" data-height="272" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13361/2024/">Multi-model effective radiative forcing of the 2020 sulfur cap for shipping</a> <div class="authors">Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre</div> <div class="citation">Atmos. Chem. Phys., 24, 13361&ndash;13370, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13361-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13361-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120107" data-show=".short_summary_120107" data-hide=".short_summary_button_120107" >Short summary</span> <div class="j-widget__max short_summary short_summary_120107" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> In 2020, new regulations by the International Maritime Organization regarding sulfur emissions came into force, reducing emissions of SO<sub>2</sub> from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate how much the Earth energy balance changed due to the emission reduction or the so-called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO<sub>2</sub> over the last 2 to 3 years. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120107" data-show=".short_summary_button_120107">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13361/2024/acp-24-13361-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13361/2024/acp-24-13361-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13361/2024/acp-24-13361-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="272" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13371/2024/acp-24-13371-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13371/2024/acp-24-13371-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13371/2024/acp-24-13371-2024-avatar-web.png" data-width="600" data-height="424" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13371/2024/">Constraining net long-term climate feedback from satellite-observed internal variability possible by the mid-2030s</a> <div class="authors">Alejandro Uribe, Frida A.-M. Bender, and Thorsten Mauritsen</div> <div class="citation">Atmos. Chem. Phys., 24, 13371&ndash;13384, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13371-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13371-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120473" data-show=".short_summary_120473" data-hide=".short_summary_button_120473" >Short summary</span> <div class="j-widget__max short_summary short_summary_120473" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Our study explores climate feedbacks, vital for understanding global warming. It links them to shifts in Earth's energy balance at the atmosphere's top due to natural temperature variations. It takes roughly 50 years to establish this connection. Combined satellite observations and reanalysis suggest that Earth cools more than expected under carbon dioxide influence. However, continuous satellite data until at least the mid-2030s are crucial for refining our understanding of climate feedbacks. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120473" data-show=".short_summary_button_120473">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13371/2024/acp-24-13371-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13371/2024/acp-24-13371-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13371/2024/acp-24-13371-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="424" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3590/">Aerosol Composition Trends during 2000&ndash;2020: In depth insights from model predictions and multiple worldwide observation datasets</a> <div class="authors">Alexandra P. Tsimpidi, Susanne M. C. Scholz, Alexandros Milousis, Nikolaos Mihalopoulos, and Vlassis A. Karydis</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3590,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3590,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125148" data-show=".short_summary_125148" data-hide=".short_summary_button_125148" >Short summary</span> <div class="j-widget__max short_summary short_summary_125148" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study examines global changes in air pollution from 2000 to 2020, focusing on fine aerosols that impact climate and health. Using models and global data, it finds organic aerosols dominate in many regions, especially with wildfires or natural emissions. Pollution from sulfate and nitrate has decreased in Europe and North America due to regulations, while trends in Asia are more complex. The findings improve understanding and support policies for cleaner air and healthier environments. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125148" data-show=".short_summary_button_125148">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13341/2024/acp-24-13341-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13341/2024/acp-24-13341-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13341/2024/acp-24-13341-2024-avatar-web.png" data-width="600" data-height="533" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13341/2024/">Viscosity of aqueous ammonium nitrate–organic particles: equilibrium partitioning may be a reasonable assumption for most tropospheric conditions</a> <div class="authors">Liviana K. Klein, Allan K. Bertram, Andreas Zuend, Florence Gregson, and Ulrich K. Krieger</div> <div class="citation">Atmos. Chem. Phys., 24, 13341&ndash;13359, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13341-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13341-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120292" data-show=".short_summary_120292" data-hide=".short_summary_button_120292" >Short summary</span> <div class="j-widget__max short_summary short_summary_120292" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The viscosity of ammonium nitrate&ndash;sucrose&ndash;H<sub>2</sub>O was quantified with three methods ranging from liquid to solid state depending on the relative humidity. Moreover, the corresponding estimated internal aerosol mixing times remained below 1&thinsp;h for most tropospheric conditions, making equilibrium partitioning a reasonable assumption. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120292" data-show=".short_summary_button_120292">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13341/2024/acp-24-13341-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13341/2024/acp-24-13341-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13341/2024/acp-24-13341-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="533" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-2 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3525/">Quantifying the decay rate of volcanic sulfur dioxide in the stratosphere</a> <div class="authors">Paul A. Nicknish, Kane Stone, Susan Solomon, and Simon A. Carn</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3525,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3525,</span> 2024</div> <div class="statusMessage"><span>Revised manuscript under review for ACP</span> <nobr>(discussion: final response, 6 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124978" data-show=".short_summary_124978" data-hide=".short_summary_button_124978" >Short summary</span> <div class="j-widget__max short_summary short_summary_124978" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Large volcanic eruptions can inject teragrams of sulfur dioxide (SO<sub>2</sub>) into the stratosphere, influencing stratospheric chemistry and Earth's climate. This work calculates lifetime of volcanic, gas-phase SO<sub>2</sub> in the stratosphere using data from three satellite products. SO<sub>2</sub> lifetimes vary significantly between the different products, and this uncertainty limits our ability to attribute an observed SO<sub>2</sub> lifetime following an eruption to a specific chemical process. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124978" data-show=".short_summary_button_124978">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3388/">Characterization of reactive nitrogen in the global upper troposphere using recent and historical commercial and research aircraft campaigns and GEOS-Chem</a> <div class="authors">Nana Wei, Eloise A. Marais, Gongda Lu, Robert G. Ryan, and Bastien Sauvage</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3388,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3388,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124524" data-show=".short_summary_124524" data-hide=".short_summary_button_124524" >Short summary</span> <div class="j-widget__max short_summary short_summary_124524" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study uses reactive nitrogen observations from NASA DC-8 research aircraft and The In-service Aircraft for a Global Observing System (IAGOS) campaigns to characterise reactive nitrogen seasonality and composition in the global upper troposphere and to diagnose the greatest knowledge gaps from comparison to a state-of-science model GEOS-Chem that need to be resolved for climate, nitrogen cycle and air pollution assessments. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124524" data-show=".short_summary_button_124524">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13269/2024/acp-24-13269-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13269/2024/acp-24-13269-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13269/2024/acp-24-13269-2024-avatar-web.png" data-width="600" data-height="517" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 02 Dec 2024</div> <div class="highlightType" > | Highlight paper</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13269/2024/">Weak liquid water path response in ship tracks</a> <div class="authors">Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, and Tristan W. P. Smith</div> <div class="citation">Atmos. Chem. Phys., 24, 13269&ndash;13283, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13269-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13269-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120331" data-show=".short_summary_120331" data-hide=".short_summary_button_120331" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_120331 ml-2" data-show=".ce_comment_120331" data-hide=".ce_comment_button_120331">Executive editor</span> <div class="j-widget__max short_summary short_summary_120331" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Ship emissions can form artificially brightened clouds, known as ship tracks, and provide us with an opportunity to investigate how aerosols interact with clouds. Previous studies that used ship tracks suggest that clouds can experience large increases in the amount of water (LWP) from aerosols. Here, we show that there is a bias in previous research and that, when we account for this bias, the LWP response to aerosols is much weaker than previously reported. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120331" data-show=".short_summary_button_120331">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_120331 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Ship tracks are the phenomenon of lines of enhanced cloud reflectivity visible from space that are caused by the particulate emissions of shipping vessels. The emissions cause cloud droplets to become smaller, with a more contentious possibility that they increase cloud water by shutting down precipitation, both effects having a cooling effect on the local climate. This study applies a clever new methodology to show that past studies that measured an increase of cloud water were likely erroneous due to a sampling artifact: they assumed ship tracks were randomly oriented where in fact ship tracks align with the winds. This orientation bias was cleverly ascertained by "sailing" ships through the winds and clouds of a different year than the one in which the ship tracks were measured. A climate cooling effect from increased cloud water was still obtained, but one much smaller than described previously. The result implies that ships may not be as effective a geoengineering tool as has previously been assumed. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_120331" data-show=".ce_comment_button_120331">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13269/2024/acp-24-13269-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13269/2024/acp-24-13269-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13269/2024/acp-24-13269-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="517" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13285/2024/acp-24-13285-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13285/2024/acp-24-13285-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13285/2024/acp-24-13285-2024-avatar-web.png" data-width="600" data-height="311" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 02 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13285/2024/">Brownness of organics in anthropogenic biomass burning aerosols over South Asia</a> <div class="authors">Chimurkar Navinya, Taveen Singh Kapoor, Gupta Anurag, Chandra Venkataraman, Harish C. Phuleria, and Rajan K. Chakrabarty</div> <div class="citation">Atmos. Chem. Phys., 24, 13285&ndash;13297, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13285-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13285-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119848" data-show=".short_summary_119848" data-hide=".short_summary_button_119848" >Short summary</span> <div class="j-widget__max short_summary short_summary_119848" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Brown carbon (BrC) aerosols show an order-of-magnitude variation in their light absorption strength. Our understanding of BrC from real-world biomass burning remains limited, complicating the determination of its radiative impact. Our study reports absorption properties of BrC emitted from four major biomass burning sources using field measurements in India. It develops an absorption parameterization for BrC and examines the spatial variability in BrC's absorption strength across India. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119848" data-show=".short_summary_button_119848">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13285/2024/acp-24-13285-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13285/2024/acp-24-13285-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13285/2024/acp-24-13285-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="311" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13299/2024/acp-24-13299-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13299/2024/acp-24-13299-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13299/2024/acp-24-13299-2024-avatar-web.png" data-width="600" data-height="595" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 02 Dec 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13299/2024/">The impact of quasi-biennial oscillation (QBO) disruptions on diurnal tides over the low- and mid-latitude mesosphere and lower thermosphere (MLT) region observed by a meteor radar chain</a> <div class="authors">Jianyuan Wang, Na Li, Wen Yi, Xianghui Xue, Iain M. Reid, Jianfei Wu, Hailun Ye, Jian Li, Zonghua Ding, Jinsong Chen, Guozhu Li, Yaoyu Tian, Boyuan Chang, Jiajing Wu, and Lei Zhao</div> <div class="citation">Atmos. Chem. Phys., 24, 13299&ndash;13315, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13299-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13299-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120785" data-show=".short_summary_120785" data-hide=".short_summary_button_120785" >Short summary</span> <div class="j-widget__max short_summary short_summary_120785" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We present the impact of quasi-biennial oscillation (QBO) disruption events on diurnal tides over the low- and mid-latitude MLT region observed by a meteor radar chain. By using a global atmospheric model and reanalysis data, it is found that the stratospheric QBO winds can affect the mesospheric diurnal tides by modulating the subtropical ozone variability in the upper stratosphere and the interaction between tides and gravity waves in the mesosphere. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120785" data-show=".short_summary_button_120785">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13299/2024/acp-24-13299-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13299/2024/acp-24-13299-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13299/2024/acp-24-13299-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="595" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 02 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3458/">Polar winter climate change: strong local effects from sea ice loss, widespread consequences from warming seas</a> <div class="authors">Tuomas Naakka, Daniel Köhler, Kalle Nordling, Petri Räisänen, Marianne Tronstad Lund, Risto Makkonen, Joonas Merikanto, Bjørn H. Samset, Victoria A. Sinclair, Jennie L. Thomas, and Annica L. M. Ekman</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3458,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3458,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124728" data-show=".short_summary_124728" data-hide=".short_summary_button_124728" >Short summary</span> <div class="j-widget__max short_summary short_summary_124728" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The effects on polar climates of warmer sea surface temperatures and decreasing sea ice cover have been studied using four climate models with identical prescribed changes in sea surface temperatures and sea ice cover. The models predict similar changes in air temperature and precipitation in the polar regions in a warmer climate with less sea ice. However, the models disagree on how the atmospheric circulation, i.e. the large-scale winds, will change with warmer temperatures and less sea ice. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124728" data-show=".short_summary_button_124728">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 02 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3581/">Exploring the Aerosol Activation Properties in a Coastal Area Using Cloud and Particle-resolving Models</a> <div class="authors">Ge Yu, Yueya Wang, Zhe Wang, and Xiaoming Shi</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3581,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3581,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125131" data-show=".short_summary_125131" data-hide=".short_summary_button_125131" >Short summary</span> <div class="j-widget__max short_summary short_summary_125131" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Studying the cloud-forming capacity of aerosols is crucial in climate research. The PartMC model can provide detailed particle information and help these studies. This model is integrated with the ideal meteorological Cloud Model 1 (CM1) to simulate the aerosols at cloud-forming locations. Significant changes are revealed in the hygroscopicity distribution of aerosols within ascending air parcels. Additionally, different ascent times also affect aerosol aging processes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125131" data-show=".short_summary_button_125131">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-2 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 02 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3679/">Decrease of the European NO<sub><em>x</em></sub> anthropogenic emissions between 2005 and 2019 as seen from the OMI and TROPOMI NO<sub>2</sub> satellite observations</a> <div class="authors">Audrey Fortems-Cheiney, Grégoire Broquet, Robin Plauchu, Elise Potier, Antoine Berchet, Isabelle Pison, Adrien Martinez, Rimal Abeed, Gaelle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, Henk Eskes, Hugo A. C. Denier van der Gon, and Stijn N. C. Dellaert</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3679,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3679,</span> 2024</div> <div class="statusMessage"><span>Revised manuscript under review for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125315" data-show=".short_summary_125315" data-hide=".short_summary_button_125315" >Short summary</span> <div class="j-widget__max short_summary short_summary_125315" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study assesses the potential of the OMI and TROPOMI satellite observations to inform about the evolution of NO<sub><em>x</em></sub> anthropogenic emissions between year 2005 and year 2019 at the regional to national scales in Europe. Both the OMI and TROPOMI inversions show decreases in European NO<sub><em>x</em></sub> anthropogenic emission budgets between 2005 and 2019, but with different magnitudes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125315" data-show=".short_summary_button_125315">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 02 Dec 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3416/">Analysis of a saline dust storm from the Aralkum Desert &ndash; Part 1: Consistency of multisensor satellite aerosol products</a> <div class="authors">Xin Xi, Jun Wang, Zhendong Lu, Andrew Sayer, Jaehwa Lee, Robert Levy, Yujie Wang, Alexei Lyapustin, Hongqing Liu, Istvan Laszlo, Changwoo Ahn, Omar Torres, Sabur Abdullaev, and Ralph Kahn</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3416,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3416,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124595" data-show=".short_summary_124595" data-hide=".short_summary_button_124595" >Short summary</span> <div class="j-widget__max short_summary short_summary_124595" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Currently there are a number of satellite aerosol products available for dust research. The consistency between them is generally poor understood. This paper reveals significant inconsistency between different satellite sensors and techniques in observing the wind-blown saline dust from the Aralkum Desert, and demonstrates the potential of a multisensor approach for robust characterization of airborne dust over desert areas. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124595" data-show=".short_summary_button_124595">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13231/2024/acp-24-13231-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13231/2024/acp-24-13231-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13231/2024/acp-24-13231-2024-avatar-web.png" data-width="600" data-height="244" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13231/2024/">Investigation of non-equilibrium turbulence decay in the atmospheric boundary layer using Doppler lidar measurements</a> <div class="authors">Maciej Karasewicz, Marta Wacławczyk, Pablo Ortiz-Amezcua, Łucja Janicka, Patryk Poczta, Camilla Kassar Borges, and Iwona S. Stachlewska</div> <div class="citation">Atmos. Chem. Phys., 24, 13231&ndash;13251, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13231-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13231-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119597" data-show=".short_summary_119597" data-hide=".short_summary_button_119597" >Short summary</span> <div class="j-widget__max short_summary short_summary_119597" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This work concerns analysis of turbulence in the atmospheric boundary layer shortly before sunset. Based on a large set of measurements at a rural and an urban site, we analyze how turbulence properties change in time during rapid decay of convection. We explain the observations using recent theories of non-equilibrium turbulence. The presence of non-equilibrium suggests that classical parametrization schemes fail to predict turbulence statistics shortly before sunset. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119597" data-show=".short_summary_button_119597">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13231/2024/acp-24-13231-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13231/2024/acp-24-13231-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13231/2024/acp-24-13231-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="244" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13253/2024/acp-24-13253-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13253/2024/acp-24-13253-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13253/2024/acp-24-13253-2024-avatar-web.png" data-width="600" data-height="417" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13253/2024/">How does the latitude of stratospheric aerosol injection affect the climate in UKESM1?</a> <div class="authors">Matthew Henry, Ewa M. Bednarz, and Jim Haywood</div> <div class="citation">Atmos. Chem. Phys., 24, 13253&ndash;13268, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13253-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13253-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120484" data-show=".short_summary_120484" data-hide=".short_summary_button_120484" >Short summary</span> <div class="j-widget__max short_summary short_summary_120484" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Stratospheric aerosol injection (SAI) refers to a climate intervention by which aerosols are intentionally added to the high atmosphere to increase the amount of reflected sunlight and reduce Earth's temperature. The climate outcomes of SAI depend on the latitude of injection. While injecting aerosols at the Equator has undesirable side effects, injecting away from the Equator has different effects on temperature, rainfall, ozone, and atmospheric circulation, which are analysed in this work. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120484" data-show=".short_summary_button_120484">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13253/2024/acp-24-13253-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13253/2024/acp-24-13253-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13253/2024/acp-24-13253-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="417" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13199/2024/acp-24-13199-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13199/2024/acp-24-13199-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13199/2024/acp-24-13199-2024-avatar-web.png" data-width="600" data-height="449" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13199/2024/">Characterization of biogenic volatile organic compounds and their oxidation products in a stressed spruce-dominated forest close to a biogas power plant</a> <div class="authors">Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff</div> <div class="citation">Atmos. Chem. Phys., 24, 13199&ndash;13217, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13199-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13199-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121013" data-show=".short_summary_121013" data-hide=".short_summary_button_121013" >Short summary</span> <div class="j-widget__max short_summary short_summary_121013" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121013" data-show=".short_summary_button_121013">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13199/2024/acp-24-13199-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13199/2024/acp-24-13199-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13199/2024/acp-24-13199-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="449" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13183/2024/acp-24-13183-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13183/2024/acp-24-13183-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13183/2024/acp-24-13183-2024-avatar-web.png" data-width="503" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13183/2024/">Exploring HONO production from particulate nitrate photolysis in representative regions of China: characteristics, influencing factors, and environmental implications</a> <div class="authors">Bowen Li, Jian Gao, Chun Chen, Liang Wen, Yuechong Zhang, Junling Li, Yuzhe Zhang, Xiaohui Du, Kai Zhang, and Jiaqi Wang</div> <div class="citation">Atmos. Chem. Phys., 24, 13183&ndash;13198, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13183-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13183-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121838" data-show=".short_summary_121838" data-hide=".short_summary_button_121838" >Short summary</span> <div class="j-widget__max short_summary short_summary_121838" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The photolysis rate constant of particulate nitrate for HONO production (<em>J</em><sub>NO<sub>3</sub><sup>&minus;</sup>&ndash;HONO</sub>), derived from PM<sub>2.5</sub> samples collected at five representative sites in China, exhibited a wide range of variation. A parameterization equation relating <em>J</em><sub>NO<sub>3</sub><sup>&minus;</sup>&ndash;HONO</sub> to OC/NO<sub>3</sub><sup>&minus;</sup> has been established and can be used to estimate <em>J</em><sub>NO<sub>3</sub><sup>&minus;</sup>&ndash;HONO</sub> in different environments. Our work provides an important reference for research in other regions of the world where aerosol samples have a high proportion of organic components. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121838" data-show=".short_summary_button_121838">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13183/2024/acp-24-13183-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13183/2024/acp-24-13183-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13183/2024/acp-24-13183-2024-avatar-web.png" data-width="503" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-3 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3336/">A new aggregation and riming discrimination algorithm based on polarimetric weather radars</a> <div class="authors">Armin Blanke, Mathias Gergely, and Silke Trömel</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3336,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3336,</span> 2024</div> <div class="statusMessage"><span>Revised manuscript accepted for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124427" data-show=".short_summary_124427" data-hide=".short_summary_button_124427" >Short summary</span> <div class="j-widget__max short_summary short_summary_124427" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The area-wide radar-based distinction between riming and aggregation is crucial for model microphysics and data assimilation. This study introduces a discrimination algorithm based on polarimetric radar networks only. Exploiting the unique opportunity to link fall velocities from Doppler spectra to polarimetric variables in an operational setting enables us to set up and evaluate a well-performing machine learning algorithm. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124427" data-show=".short_summary_button_124427">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-3 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3584/">Driving factors of aerosol acidity: a new hierarchical quantitative analysis framework and its application in Changzhou, China</a> <div class="authors">Xiaolin Duan, Guangjie Zheng, Chuchu Chen, Qiang Zhang, and Kebin He</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3584,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3584,</span> 2024</div> <div class="statusMessage"><span>Revised manuscript accepted for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125135" data-show=".short_summary_125135" data-hide=".short_summary_button_125135" >Short summary</span> <div class="j-widget__max short_summary short_summary_125135" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Aerosol acidity is an important parameter in atmospheric chemistry, while its driving factors, especially chemical profiles versus meteorological conditions, are not yet fully understood. Here, we established a hierarchical quantitative analysis framework to understand the driving factors of aerosol acidity on different time scales. Its application in Changzhou, China revealed distinct driving factors and corresponding mechanisms of aerosol acidity from annual trends to random residues. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125135" data-show=".short_summary_button_125135">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13129/2024/acp-24-13129-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13129/2024/acp-24-13129-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13129/2024/acp-24-13129-2024-avatar-web.png" data-width="600" data-height="576" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 28 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13129/2024/">Reactive chlorine-, sulfur-, and nitrogen-containing volatile organic compounds impact atmospheric chemistry in the megacity of Delhi during both clean and extremely polluted seasons</a> <div class="authors">Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan</div> <div class="citation">Atmos. Chem. Phys., 24, 13129&ndash;13150, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13129-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13129-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118293" data-show=".short_summary_118293" data-hide=".short_summary_button_118293" >Short summary</span> <div class="j-widget__max short_summary short_summary_118293" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We quantified 111 gases using mass spectrometry to understand how seasonal and emission changes lead from clean air in the monsoon season to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 &micro;g m<sup>-3</sup>) were &gt; 4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine, and sulfur compounds hitherto unreported from such a polluted environment were discovered. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118293" data-show=".short_summary_button_118293">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13129/2024/acp-24-13129-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13129/2024/acp-24-13129-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13129/2024/acp-24-13129-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="576" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13115/2024/acp-24-13115-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13115/2024/acp-24-13115-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13115/2024/acp-24-13115-2024-avatar-web.png" data-width="600" data-height="445" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 28 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13115/2024/">Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean</a> <div class="authors">Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald</div> <div class="citation">Atmos. Chem. Phys., 24, 13115&ndash;13127, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13115-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13115-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120285" data-show=".short_summary_120285" data-hide=".short_summary_button_120285" >Short summary</span> <div class="j-widget__max short_summary short_summary_120285" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120285" data-show=".short_summary_button_120285">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13115/2024/acp-24-13115-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13115/2024/acp-24-13115-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13115/2024/acp-24-13115-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="445" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13101/2024/acp-24-13101-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13101/2024/acp-24-13101-2024-avatar-thumb80.png" data-caption="© Crown copyright 2024. Distributed under the Open Government Licence (OGL)." data-web="https://acp.copernicus.org/articles/24/13101/2024/acp-24-13101-2024-avatar-web.png" data-width="600" data-height="352" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 27 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13101/2024/">Development of a high-spatial-resolution annual emission inventory of greenhouse gases from open straw burning in Northeast China from 2001 to 2020</a> <div class="authors">Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui</div> <div class="citation">Atmos. Chem. Phys., 24, 13101&ndash;13113, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13101-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13101-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119187" data-show=".short_summary_119187" data-hide=".short_summary_button_119187" >Short summary</span> <div class="j-widget__max short_summary short_summary_119187" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> A novel concept integrating crop cycle information into fire spot extraction was proposed. Spatiotemporal variations of open straw burning in Northeast China are revealed. Open straw burning in Northeast China emitted a total of 218 Tg of CO<sub>2</sub>-eq during 2001&ndash;2020. The policy of banning straw burning effectively reduced greenhouse gas emissions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119187" data-show=".short_summary_button_119187">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13101/2024/acp-24-13101-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13101/2024/acp-24-13101-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13101/2024/acp-24-13101-2024-avatar-web.png" data-width="600" data-caption="© Crown copyright 2024. Distributed under the Open Government Licence (OGL)." data-height="352" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13065/2024/acp-24-13065-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13065/2024/acp-24-13065-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13065/2024/acp-24-13065-2024-avatar-web.png" data-width="600" data-height="447" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 27 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13065/2024/">Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes</a> <div class="authors">Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao</div> <div class="citation">Atmos. Chem. Phys., 24, 13065&ndash;13079, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13065-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13065-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119007" data-show=".short_summary_119007" data-hide=".short_summary_button_119007" >Short summary</span> <div class="j-widget__max short_summary short_summary_119007" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas&ndash;particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119007" data-show=".short_summary_button_119007">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13065/2024/acp-24-13065-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13065/2024/acp-24-13065-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13065/2024/acp-24-13065-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="447" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13081/2024/acp-24-13081-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13081/2024/acp-24-13081-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13081/2024/acp-24-13081-2024-avatar-web.png" data-width="600" data-height="293" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 27 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13081/2024/">The return to 1980 stratospheric halogen levels: a moving target in ozone assessments from 2006 to 2022</a> <div class="authors">Megan J. Lickley, John S. Daniel, Laura A. McBride, Ross J. Salawitch, and Guus J. M. Velders</div> <div class="citation">Atmos. Chem. Phys., 24, 13081&ndash;13099, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13081-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13081-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119803" data-show=".short_summary_119803" data-hide=".short_summary_button_119803" >Short summary</span> <div class="j-widget__max short_summary short_summary_119803" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The expected ozone recovery date was delayed by 17 years between the 2006 and 2022 international scientific assessments of ozone depletion. We quantify the primary drivers of this delay. Changes in the metric used to estimate ozone recovery explain ca. 5 years of this delay. Of the remaining 12 years, changes in estimated banks, atmospheric lifetimes, and emission projections explain 4, 3.5, and 3 years of this delay, respectively. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119803" data-show=".short_summary_button_119803">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13081/2024/acp-24-13081-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13081/2024/acp-24-13081-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13081/2024/acp-24-13081-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="293" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13047/2024/acp-24-13047-2024-avatar-web.jpg"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13047/2024/acp-24-13047-2024-avatar-thumb80.jpg" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13047/2024/acp-24-13047-2024-avatar-web.jpg" data-width="600" data-height="578" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 27 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13047/2024/">Vertical profiles of global tropospheric nitrogen dioxide (NO<sub>2</sub>) obtained by cloud slicing the TROPOspheric Monitoring Instrument (TROPOMI)</a> <div class="authors">Rebekah P. Horner, Eloise A. Marais, Nana Wei, Robert G. Ryan, and Viral Shah</div> <div class="citation">Atmos. Chem. Phys., 24, 13047&ndash;13064, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13047-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13047-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120444" data-show=".short_summary_120444" data-hide=".short_summary_button_120444" >Short summary</span> <div class="j-widget__max short_summary short_summary_120444" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Nitrogen oxides (NO<sub>x</sub> &equiv; NO + NO<sub>2</sub>) affect tropospheric ozone and the hydroxyl radical, influencing climate and atmospheric oxidation. To address the lack of routine observations of NO<sub>x</sub>, we cloud slice satellite observations of NO<sub>2</sub> to derive a new dataset of global vertical profiles of NO<sub>2</sub>. We evaluate our data against in situ aircraft observations and use these data to critique the contemporary understanding of tropospheric NO<sub>x</sub>, as simulated by the GEOS-Chem model. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120444" data-show=".short_summary_button_120444">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13047/2024/acp-24-13047-2024-avatar-web.jpg"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13047/2024/acp-24-13047-2024-avatar-thumb80.jpg" data-web="https://acp.copernicus.org/articles/24/13047/2024/acp-24-13047-2024-avatar-web.jpg" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="578" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 27 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3093/">Regional transport of aerosols from Northern India and its impact on boundary layer dynamics and air quality over Chennai, a coastal megacity in Southern India</a> <div class="authors">Saleem Ali, Chandan Sarangi, and Sanjay Kumar Mehta</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3093,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3093,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123782" data-show=".short_summary_123782" data-hide=".short_summary_button_123782" >Short summary</span> <div class="j-widget__max short_summary short_summary_123782" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The pollutants over Northern India are transported towards South India under the influence of the prevalent wind system, especially during winter. This long-range transport induces a widespread haziness over southern India, lasting for days. We evaluated the occurrence of such transport episodes over south India using observational methods and found that it suppresses the boundary layer height by ~38 % compared to the clear days while exacerbating the surface pollution by ~30&ndash;35 %. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123782" data-show=".short_summary_button_123782">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13025/2024/acp-24-13025-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13025/2024/acp-24-13025-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/13025/2024/acp-24-13025-2024-avatar-web.png" data-width="600" data-height="301" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 26 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/13025/2024/">Analysis of the cloud fraction adjustment to aerosols and its dependence on meteorological controls using explainable machine learning</a> <div class="authors">Yichen Jia, Hendrik Andersen, and Jan Cermak</div> <div class="citation">Atmos. Chem. Phys., 24, 13025&ndash;13045, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-13025-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-13025-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_113384" data-show=".short_summary_113384" data-hide=".short_summary_button_113384" >Short summary</span> <div class="j-widget__max short_summary short_summary_113384" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We present a near-global observation-based explainable machine learning framework to quantify the response of cloud fraction (CLF) of marine low clouds to cloud droplet number concentration (<em>N</em><sub>d</sub>), accounting for the covariations with meteorological factors. This approach provides a novel data-driven method to analyse the CLF adjustment by assessing the CLF sensitivity to <em>N</em><sub>d</sub> and numerous meteorological factors as well as the dependence of the <em>N</em><sub>d</sub>&ndash;CLF sensitivity on the meteorological conditions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_113384" data-show=".short_summary_button_113384">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/13025/2024/acp-24-13025-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/13025/2024/acp-24-13025-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/13025/2024/acp-24-13025-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="301" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-0 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 26 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2064/">Downward and upward revisions of Chinese emissions of black carbon and CO in bottom-up inventories are still required: an integrated analysis of WRF/CMAQ model and EMeRGe observations in East Asia in spring 2018</a> <div class="authors">Phuc Thi Minh Ha, Yugo Kanaya, Kazuyo Yamaji, Syuichi Itahashi, Satoru Chatani, Takashi Sekiya, Maria Dolores Andrés Hernández, John Philip Burrows, Hans Schlager, Michael Lichtenstern, Mira Poehlker, and Bruna Holanda</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2064,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2064,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: open, 1 comment)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_121694" data-show=".short_summary_121694" data-hide=".short_summary_button_121694" >Short summary</span> <div class="j-widget__max short_summary short_summary_121694" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Black carbon and CO are important to climate change. EMeRGe airborne observation can identify the suitability of emission inventories used in CMAQv5.0.2 model for Asian polluted regions. GFEDv4.1s is suitable for fire emissions. Anthropogenic BC and CO emissions from Philippines (REASv2.1) are insufficient. The estimated Chinese emissions in 2018 are 0.65&plusmn;0.25 TgBC, 166&plusmn;65 TgCO and 12.4&plusmn;4.8 PgCO<sub>2</sub>, suggesting a reduction and increment for China's BC and CO emissions in the HTAPv2.2z inventory. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_121694" data-show=".short_summary_button_121694">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-2 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 26 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3579/">Spatially separate production of hydrogen oxides and nitric oxide in lightning</a> <div class="authors">Jena M. Jenkins and William H. Brune</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3579,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3579,</span> 2024</div> <div class="statusMessage"><span>Revised manuscript under review for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125128" data-show=".short_summary_125128" data-hide=".short_summary_button_125128" >Short summary</span> <div class="j-widget__max short_summary short_summary_125128" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Both the atmosphere&rsquo;s primary cleaner, the hydroxyl radical, and nitric oxide are generated in extreme amounts by lightning, and laboratory and modelling experiments demonstrate that these molecules are generated in different places in lightning flashes. Thus the hydroxyl radical is not immediately consumed by the nitric oxide and instead is available to remove other pollutants in the atmosphere. Additionally, substantial nitrous acid is also likely generated by lightning. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125128" data-show=".short_summary_button_125128">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 26 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3586/">Stratospheric Aerosol Intervention Experiment for the Chemistry-Climate Model Intercomparison Project</a> <div class="authors">Simone Tilmes, Ewa M. Bednarz, Andrin Jörimann, Daniele Visioni, Douglas E. Kinnison, Gabriel Chiodo, and David Plummer</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3586,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3586,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125143" data-show=".short_summary_125143" data-hide=".short_summary_button_125143" >Short summary</span> <div class="j-widget__max short_summary short_summary_125143" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This paper describes the details of a new multi-model intercomparison experiment to assess the effects of Stratospheric Aerosol Injections on stratospheric chemistry and dynamics and, therefore, ozone. In this experiment, all models will use the same prescribed stratospheric aerosol distribution and fixed sea-surface temperatures and sea ice. We discuss the advantages and differences of this more constrained experiment compared to previous more interactive model experiments. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125143" data-show=".short_summary_button_125143">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 26 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3659/">Radiative and climate effects of aerosol scattering in long-wave radiation based on global climate modeling</a> <div class="authors">Thomas Drugé, Pierre Nabat, Martine Michou, and Marc Mallet</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3659,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3659,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125267" data-show=".short_summary_125267" data-hide=".short_summary_button_125267" >Short summary</span> <div class="j-widget__max short_summary short_summary_125267" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Aerosol scattering in long-wave radiation is often neglected in climate models. In this study, we analyze its impact through a physical modeling of this process in the CNRM ARPEGE-Climat model. It mainly leads to surface LW radiation increases across Sahara, Sahel and Arabian Peninsula, resulting in daily minimum near-surface temperature rises. Other changes in atmospheric fields are also simulated. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125267" data-show=".short_summary_button_125267">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12963/2024/acp-24-12963-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12963/2024/acp-24-12963-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12963/2024/acp-24-12963-2024-avatar-web.png" data-width="408" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12963/2024/">Analysis of the day-to-day variability of ozone vertical profiles in the lower troposphere during the 2022 Paris ACROSS campaign</a> <div class="authors">Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec</div> <div class="citation">Atmos. Chem. Phys., 24, 12963&ndash;12983, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12963-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12963-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119014" data-show=".short_summary_119014" data-hide=".short_summary_button_119014" >Short summary</span> <div class="j-widget__max short_summary short_summary_119014" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity&nbsp;of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119014" data-show=".short_summary_button_119014">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12963/2024/acp-24-12963-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12963/2024/acp-24-12963-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12963/2024/acp-24-12963-2024-avatar-web.png" data-width="408" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3075/">First Reported Detection of a Winter Continental Gamma-Ray Glow in Europe</a> <div class="authors">Jakub Šlegl, Zbyněk Sokol, Petr Pešice, Ronald Langer, Igor Strhárský, Jana Popová, Martin Kákona, Iva Ambrožová, and Ondřej Ploc</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3075,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3075,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 3 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123758" data-show=".short_summary_123758" data-hide=".short_summary_button_123758" >Short summary</span> <div class="j-widget__max short_summary short_summary_123758" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We observed the first-ever gamma-ray glow from a winter thunderstorm in Europe. Typically, these high-energy radiation events are linked to strong electric fields, but we found a surprisingly weak field at ground level. This suggests that the electric field higher up in the cloud plays a key role. Using advanced instruments, we gained new insights into how thunderstorms produce radiation, especially under rare winter conditions. This challenges existing theories. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123758" data-show=".short_summary_button_123758">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3201/">Significant influence of oxygenated volatile organic compounds on atmospheric chemistry analysis: A case study in a typical industrial city in China</a> <div class="authors">Jingwen Dai, Kun Zhang, Yanli Feng, Xin Yi, Rui Li, Jin Xue, Qing Li, Lishu Shi, Jiaqiang Liao, Yanan Yi, Fangting Wang, Liumei Yang, Hui Chen, Ling Huang, Jiani Tan, Yangjun Wang, and Li Li</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3201,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3201,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124006" data-show=".short_summary_124006" data-hide=".short_summary_button_124006" >Short summary</span> <div class="j-widget__max short_summary short_summary_124006" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Oxygenated volatile organic compounds (OVOCs) are important ozone (O<sub>3</sub>) precursors. However, most of O<sub>3</sub> formation analysis based on the box model (OBM) don't include OVOCs constraint To access the interference of OVOCs on O<sub>3</sub> simulation, this study conducted field campaign and OBM analysis. The results indicates that no OVOCs constraint in the OBM can lead to overestimate of OVOCs, free radicals, and O<sub>3</sub>. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124006" data-show=".short_summary_button_124006">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3471/">Rapid Increases of Ozone Concentrations over Tibetan Plateau Caused by Local and Non-Local Factors</a> <div class="authors">Chenghao Xu, Jintai Lin, Hao Kong, Junli Jin, Lulu Chen, and Xiaobin Xu</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3471,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3471,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124773" data-show=".short_summary_124773" data-hide=".short_summary_button_124773" >Short summary</span> <div class="j-widget__max short_summary short_summary_124773" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We observed a strong increase in deseasonalized ozone at urban stations on the Tibetan Plateau from 2015 to 2019, far exceeding the trend at the baseline station Waliguan and the Tibet Plateau average trend of four tropospheric ozone products. By combining multiple datasets and modeling approaches, we identified the main contributing factors as more frequent transport passing through the lower layers of high-emission regions and the rapid increase in anthropogenic nitrogen oxide emissions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124773" data-show=".short_summary_button_124773">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2996/">Tracking daily NO<sub><em>x</em></sub> emissions from an urban agglomeration based on TROPOMI NO<sub>2</sub> and a local ensemble transform Kalman filter</a> <div class="authors">Yawen Kong, Bo Zheng, and Yuxi Liu</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2996,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2996,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123597" data-show=".short_summary_123597" data-hide=".short_summary_button_123597" >Short summary</span> <div class="j-widget__max short_summary short_summary_123597" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Current high-resolution satellite remote sensing technologies provide a unique opportunity to derive timely, high-resolution emission data. We developed an emission inversion system to assimilate satellite NO<sub>2</sub> data to obtain daily, kilometer-scale NO<em><sub>x</sub></em> emission inventories. Our results enhance inventory accuracy, allowing us to capture the effects of pollution control policies on daily emissions (e.g., during COVID-19 lockdown) and improve fine-scale air quality modeling. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123597" data-show=".short_summary_button_123597">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-3 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 22 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3550/">Kinetics of the reactions of OH with CO, NO, NO<sub>2</sub> and of HO<sub>2</sub> with NO<sub>2</sub> in air at 1 atm pressure, room temperature and tropospheric water vapour concentrations</a> <div class="authors">Michael Rolletter, Andreas Hofzumahaus, Anna Novelli, Andreas Wahner, and Hendrik Fuchs</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3550,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3550,</span> 2024</div> <div class="statusMessage"><span>Revised manuscript accepted for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_125062" data-show=".short_summary_125062" data-hide=".short_summary_button_125062" >Short summary</span> <div class="j-widget__max short_summary short_summary_125062" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Highly accurate rate coefficients of termolecular reactions between OH and HO<sub>2</sub> radicals and reactive nitrogen oxides were measured for conditions in the lower troposphere, providing improved constraints on recommended values. No dependence on water vapour was found except for the HO<sub>2</sub>+NO<sub>2</sub> reaction, which can be explained by an enhanced rate coefficient of the NO<sub>2</sub> reaction with the water complex of the HO<sub>2</sub> radical. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_125062" data-show=".short_summary_button_125062">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 22 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2827/">The role of surface-active macromolecules in the ice nucleating ability of lignin, Snomax, and agricultural soil extracts</a> <div class="authors">Kathleen A. Thompson, Paul Bieber, Anna J. Miller, Nicole Link, Benjamin J. Murray, and Nadine Borduas-Dedekind</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2827,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2827,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123279" data-show=".short_summary_123279" data-hide=".short_summary_button_123279" >Short summary</span> <div class="j-widget__max short_summary short_summary_123279" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Lignin and Snomax are surface-active macromolecules that show a relationship between increasing concentrations, decreasing surface tension, and increasing ice-nucleating ability. However, this relationship did not hold for agricultural soil extracts collected in the UK and Canada. Hydrophobic interfaces play an important role in the ice-nucleating activity of organic matter; as the complexity of the sample increases, the hydrophobic interfaces in the bulk compete with the air-water interface. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123279" data-show=".short_summary_button_123279">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12881/2024/acp-24-12881-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12881/2024/acp-24-12881-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12881/2024/acp-24-12881-2024-avatar-web.png" data-width="578" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12881/2024/">Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign</a> <div class="authors">Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy</div> <div class="citation">Atmos. Chem. Phys., 24, 12881&ndash;12901, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12881-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12881-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_117223" data-show=".short_summary_117223" data-hide=".short_summary_button_117223" >Short summary</span> <div class="j-widget__max short_summary short_summary_117223" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_117223" data-show=".short_summary_button_117223">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12881/2024/acp-24-12881-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12881/2024/acp-24-12881-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12881/2024/acp-24-12881-2024-avatar-web.png" data-width="578" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12943/2024/acp-24-12943-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12943/2024/acp-24-12943-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12943/2024/acp-24-12943-2024-avatar-web.png" data-width="600" data-height="455" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12943/2024/">The atmospheric oxidizing capacity in China – Part 2: Sensitivity to emissions of primary pollutants</a> <div class="authors">Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang</div> <div class="citation">Atmos. Chem. Phys., 24, 12943&ndash;12962, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12943-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12943-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118617" data-show=".short_summary_118617" data-hide=".short_summary_button_118617" >Short summary</span> <div class="j-widget__max short_summary short_summary_118617" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This paper employs a regional chemical transport model to quantify the sensitivity of air pollutants and photochemical parameters to specified emission reductions in China for representative winter and summer conditions. The study provides insights into further air quality control in China with reduced primary emissions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118617" data-show=".short_summary_button_118617">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12943/2024/acp-24-12943-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12943/2024/acp-24-12943-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12943/2024/acp-24-12943-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="455" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-web.png" data-width="600" data-height="436" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12925/2024/">Upper-stratospheric temperature trends: new results from the Optical Spectrograph and InfraRed Imager System (OSIRIS)</a> <div class="authors">Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, William Randel, Sean Davis, Michael Schwartz, Nathaniel Livesey, and Anne Smith</div> <div class="citation">Atmos. Chem. Phys., 24, 12925&ndash;12941, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12925-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12925-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119738" data-show=".short_summary_119738" data-hide=".short_summary_button_119738" >Short summary</span> <div class="j-widget__max short_summary short_summary_119738" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Greenhouse gas emissions that warm the troposphere also result in stratospheric cooling. The cooling rate is difficult to quantify above 35 km due to a deficit of long-term observational data with high vertical resolution in this region. We use satellite observations from several instruments, including a new temperature product from OSIRIS, to show that the upper stratosphere, from 35&ndash;60 km, cooled by 0.5 to 1 K per decade over 2005&ndash;2021 and by 0.6 K per decade over 1979&ndash;2021. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119738" data-show=".short_summary_button_119738">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="436" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12903/2024/acp-24-12903-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12903/2024/acp-24-12903-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12903/2024/acp-24-12903-2024-avatar-web.png" data-width="471" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12903/2024/">Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)</a> <div class="authors">T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O.T. Pye</div> <div class="citation">Atmos. Chem. Phys., 24, 12903&ndash;12924, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12903-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12903-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120826" data-show=".short_summary_120826" data-hide=".short_summary_button_120826" >Short summary</span> <div class="j-widget__max short_summary short_summary_120826" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We develop the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 2 to improve predictions of formaldehyde in ambient air compared to satellite-, aircraft-, and ground-based observations. With the updated chemistry, we estimate the cancer risk from inhalation exposure to ambient formaldehyde across the contiguous USA and predict that 40&ensp;% of this risk is controllable through reductions in anthropogenic emissions of nitrogen oxides and reactive organic carbon. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120826" data-show=".short_summary_button_120826">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12903/2024/acp-24-12903-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12903/2024/acp-24-12903-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12903/2024/acp-24-12903-2024-avatar-web.png" data-width="471" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-2 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3051/">Variation in shortwave water vapour continuum and impact on clear-sky shortwave radiative feedback</a> <div class="authors">Kaah P. Menang, Stefan A. Buehler, Lukas Kluft, Robin J. Hogan, and Florian E. Roemer</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3051,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3051,</span> 2024</div> <div class="statusMessage"><span>Revised manuscript under review for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123717" data-show=".short_summary_123717" data-hide=".short_summary_button_123717" >Short summary</span> <div class="j-widget__max short_summary short_summary_123717" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We investigated how the uncertainty in representing water vapour continuum absorption in the shortwave affects clear-sky shortwave radiative feedback. For current surface temperature, the impact is modest (&lt;2 %). In a warmer world, continuum induced error in estimated shortwave feedback is up to ~5 %. Using the MT_CKD model in radiative transfer calculations may lead to an underestimation of the shortwave feedback. Constraining shortwave continuum will contribute to reducing these discrepancies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123717" data-show=".short_summary_button_123717">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-2 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3310/">Evaluating spatiotemporal variations and exposure risk of ground-level ozone concentrations across China from 2000 to 2020 using satellite-derived high-resolution data</a> <div class="authors">Qingqing He, Jingru Cao, Pablo E. Saide, Tong Ye, and Weihang Wang</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3310,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3310,</span> 2024</div> <div class="statusMessage"><span>Revised manuscript under review for ACP</span> <nobr>(discussion: final response, 4 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124373" data-show=".short_summary_124373" data-hide=".short_summary_button_124373" >Short summary</span> <div class="j-widget__max short_summary short_summary_124373" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We explored variations in ground ozone and exposure risk hotspots across China (2000&ndash;2020) at multiple spatiotemporal scales using a high-resolution dataset derived from satellite LST via a machine-learning hindcast framework. The dataset was validated using cross-validation and external measurements. A non-monotonous trend emerged, with turning points around 2007 and 2015, showing regional variation. Ozone levels &gt;100 &mu;g/m<sup>3</sup> shifted from June to May, while levels &gt;160 &mu;g/m<sup>3</sup> expanded in the NCP. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124373" data-show=".short_summary_button_124373">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2503/">Sources and trends of Black Carbon Aerosol in a Megacity of Nanjing, East China After the China Clean Action Plan and Three-Year Action Plan</a> <div class="authors">Abudurexiati Abulimiti, Yanlin Zhang, Mingyuan Yu, Yihang Hong, Yu-Chi Lin, Chaman Gul, and Fang Cao</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2503,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2503,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 5 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_122468" data-show=".short_summary_122468" data-hide=".short_summary_button_122468" >Short summary</span> <div class="j-widget__max short_summary short_summary_122468" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> To improve air quality, the Chinese government implemented strict clean air actions. We explored how black carbon (BC) responded to these actions and found that the reduction in liquid fuel use was the main factor driving the decrease in BC levels. Additionally, meteorological factors also played a significant role in the long-term trends of BC. These factors should be considered in future emission reduction policies to further enhance air quality improvements. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_122468" data-show=".short_summary_button_122468">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12843/2024/acp-24-12843-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12843/2024/acp-24-12843-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12843/2024/acp-24-12843-2024-avatar-web.png" data-width="600" data-height="160" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12843/2024/">Emissions of methane from coal fields, thermal power plants, and wetlands and their implications for atmospheric methane across the south Asian region</a> <div class="authors">Mahalakshmi Venkata Dangeti, Mahesh Pathakoti, Kanchana Lakshmi Asuri, Sujatha Peethani, Ibrahim Shaik, Rajan Krishnan Sundara, Vijay Kumar Sagar, Raja Pushpanathan, Yogesh Kumar Tiwari, and Prakash Chauhan</div> <div class="citation">Atmos. Chem. Phys., 24, 12843&ndash;12859, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12843-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12843-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118073" data-show=".short_summary_118073" data-hide=".short_summary_button_118073" >Short summary</span> <div class="j-widget__max short_summary short_summary_118073" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The present study investigated the space&ndash;time variability of <em>X</em>CH<sub>4</sub> over coal fields, power plants, and wetlands using long-term GOSAT and S5/TROPOMI data. &nbsp;The XCH4 variability associated with the heterogenous sources present in the south Asian (India) region and their implications for atmospheric XCH4 concentrations&nbsp;were&nbsp;evaluated. The CH<sub>4</sub> concentrations were mapped against the emissions in the agro-climatic zones, and a statistically high correlation was found in the Indo-Gangetic Plain region. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118073" data-show=".short_summary_button_118073">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12843/2024/acp-24-12843-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12843/2024/acp-24-12843-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12843/2024/acp-24-12843-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="160" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object type-2 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3159/">Investigating the link between mineral dust hematite content and intensive optical properties by means of lidar measurements and aerosol modelling</a> <div class="authors">Sofía Gómez Maqueo Anaya, Dietrich Althausen, Julian Hofer, Moritz Haarig, Ulla Wandinger, Bernd Heinold, Ina Tegen, Matthias Faust, Holger Baars, Albert Ansmann, Ronny Engelmann, Annett Skupin, Birgit Heese, and Kerstin Schepanski</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3159,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3159,</span> 2024</div> <div class="statusMessage"><span>Revised manuscript under review for ACP</span> <nobr>(discussion: final response, 6 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123929" data-show=".short_summary_123929" data-hide=".short_summary_button_123929" >Short summary</span> <div class="j-widget__max short_summary short_summary_123929" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study investigates how hematite (an iron oxide mineral) in the Saharan Desert dust affects how dust particles interact with radiation. Using lidar data from Cabo Verde (2021&ndash;2022) and hematite content from atmospheric model simulations, the results show that higher hematite fraction leads to stronger particle backscattering at specific wavelengths. These findings can improve the representaiton of mineral dust in climate models, particularly regarding their radiative effect. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123929" data-show=".short_summary_button_123929">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2930/">High-resolution air quality maps for Bucharest using Mixed-Effects Modeling Framework</a> <div class="authors">Camelia Talianu, Jeni Vasilescu, Doina Nicolae, Alexandru Ilie, Andrei Dandocsi, Anca Nemuc, and Livio Belegante</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-2930,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-2930,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 7 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_123481" data-show=".short_summary_123481" data-hide=".short_summary_button_123481" >Short summary</span> <div class="j-widget__max short_summary short_summary_123481" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Bucharest, Romania's capital, has successfully used mobile measurements and mixed-effects LUR models to derive seasonal maps of near-surface PM<sub>10</sub>, NO<sub>2</sub>, and UFP. The data was collected during two intensive campaigns, covering high-traffic streets, residential, industrial, and commercial districts. The model's performance was evaluated, demonstrating its potential for high-resolution mapping in other cities with well-characterized urban structures and diverse in situ monitoring stations. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_123481" data-show=".short_summary_button_123481">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object type-1 in-range paperList-discussion" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Nov 2024</div> <a class="article-title" target="_parent" href="https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3501/">Cold pools mediate mesoscale adjustments of trade-cumulus fields to changes in cloud-droplet number concentration</a> <div class="authors">Pouriya Alinaghi, Fredrik Jansson, Daniel A. Blázquez, and Franziska Glassmeier</div> <div class="citation">EGUsphere, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/egusphere-2024-3501,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/egusphere-2024-3501,</span> 2024</div> <div class="statusMessage"><span>Preprint under review for ACP</span> <nobr>(discussion: final response, 2 comments)</nobr></div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_124882" data-show=".short_summary_124882" data-hide=".short_summary_button_124882" >Short summary</span> <div class="j-widget__max short_summary short_summary_124882" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Shallow clouds in the trades are a major source of uncertainty in climate projections. These clouds organize into striking mesoscale patterns that are exactly what climate models lack. This study explores the origin of such patterns and investigates how variations in microscale properties control them. The importance of microscale effects is compared to that of large-scale forcing on the mesoscale organization of trade-cumulus fields. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_124882" data-show=".short_summary_button_124882">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12793/2024/acp-24-12793-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12793/2024/acp-24-12793-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12793/2024/acp-24-12793-2024-avatar-web.png" data-width="600" data-height="516" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12793/2024/">The presence of clouds lowers climate sensitivity in the MPI-ESM1.2 climate model</a> <div class="authors">Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen</div> <div class="citation">Atmos. Chem. Phys., 24, 12793&ndash;12806, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12793-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12793-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118490" data-show=".short_summary_118490" data-hide=".short_summary_button_118490" >Short summary</span> <div class="j-widget__max short_summary short_summary_118490" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Clouds play a crucial role in the Earth's energy balance, as they can either warm up or cool down the area they cover depending on their height and depth. They are expected to alter their behaviour under climate change, affecting the warming generated by greenhouse gases. This paper proposes a new method to estimate their overall effect on this warming by simulating a climate where clouds are transparent. Results show that with the model used, clouds have a stabilising effect on climate. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118490" data-show=".short_summary_button_118490">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12793/2024/acp-24-12793-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12793/2024/acp-24-12793-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12793/2024/acp-24-12793-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="516" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12823/2024/acp-24-12823-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12823/2024/acp-24-12823-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12823/2024/acp-24-12823-2024-avatar-web.png" data-width="511" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12823/2024/">Clouds and precipitation in the initial phase of marine cold-air outbreaks as observed by airborne remote sensing</a> <div class="authors">Imke Schirmacher, Sabrina Schnitt, Marcus Klingebiel, Nina Maherndl, Benjamin Kirbus, André Ehrlich, Mario Mech, and Susanne Crewell</div> <div class="citation">Atmos. Chem. Phys., 24, 12823&ndash;12842, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12823-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12823-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118942" data-show=".short_summary_118942" data-hide=".short_summary_button_118942" >Short summary</span> <div class="j-widget__max short_summary short_summary_118942" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> During Arctic marine cold-air outbreaks, cold air flows from sea ice over open water. Roll circulations evolve, forming cloud streets. We investigate the initial circulation and cloud development using high-resolution airborne measurements. We compute the distance an air mass traveled over water (fetch) from back trajectories. Cloud streets form at 15 km fetch, cloud cover strongly increases at around 20 km, and precipitation forms at around 30 km. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118942" data-show=".short_summary_button_118942">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12823/2024/acp-24-12823-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12823/2024/acp-24-12823-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12823/2024/acp-24-12823-2024-avatar-web.png" data-width="511" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12775/2024/acp-24-12775-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12775/2024/acp-24-12775-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12775/2024/acp-24-12775-2024-avatar-web.png" data-width="600" data-height="367" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12775/2024/">Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere</a> <div class="authors">Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei</div> <div class="citation">Atmos. Chem. Phys., 24, 12775&ndash;12792, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12775-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12775-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118931" data-show=".short_summary_118931" data-hide=".short_summary_button_118931" >Short summary</span> <div class="j-widget__max short_summary short_summary_118931" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118931" data-show=".short_summary_button_118931">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12775/2024/acp-24-12775-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12775/2024/acp-24-12775-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12775/2024/acp-24-12775-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="367" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12807/2024/acp-24-12807-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12807/2024/acp-24-12807-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12807/2024/acp-24-12807-2024-avatar-web.png" data-width="600" data-height="569" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12807/2024/">Diurnal variation in an amplified canopy urban heat island during heat wave periods in the megacity of Beijing: roles of mountain–valley breeze and urban morphology</a> <div class="authors">Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli</div> <div class="citation">Atmos. Chem. Phys., 24, 12807&ndash;12822, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12807-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12807-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_119582" data-show=".short_summary_119582" data-hide=".short_summary_button_119582" >Short summary</span> <div class="j-widget__max short_summary short_summary_119582" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This paper explored the formation mechanisms of the amplified canopy urban heat island intensity (&Delta;CUHII) during heat wave (HW) periods in the megacity of Beijing from the perspectives of mountain&ndash;valley breeze and urban morphology. During the mountain breeze phase, high-rise buildings with lower sky view factors (SVFs) had a pronounced effect on the &Delta;CUHII. During the valley breeze phase, high-rise buildings exerted a dual influence on the &Delta;CUHII. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_119582" data-show=".short_summary_button_119582">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12807/2024/acp-24-12807-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12807/2024/acp-24-12807-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12807/2024/acp-24-12807-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="569" width="80" height="80"> </a> </div> </div> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div> <script> $(function (){ $('.recent-selection-wrapper button').click((event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); let currentElement = event.currentTarget; $("html, body").animate({ scrollTop: $('.breadcrumb').offset().top }, "slow"); return false; }); }); </script> <!-- LOCKSS system has permission to collect, preserve, and serve this open access Archival Unit --> <a rel="license" style="display: none" href="https://creativecommons.org/licenses/by/4.0/">CC BY 4.0</a> <div> <a href="https://acp.copernicus.org/by_ms_types.html?ms-type-id=22&selection=none" class="btn btn-primary">Check for further papers</a> </div> </div> </div> <!-- CO c_contentmanager_services::callProjectTemplate::899 17.02.2025 01:12:16, memcached, 0.0011110305786133secs --> </div> </div> </main> <!--=== End Content ===--> <footer class="d-print-none version-2023"> <div class="footer"> <div class="container"> <div class="row align-items-center mb-3"> <div class="col-12 col-lg-auto text-center text-md-left title-wrapper"> <div id="j-header-footer" class="text-center text-md-left"> <div class="h1 text-center text-md-left"> Atmospheric Chemistry and Physics </div> <p>An interactive open-access journal of the European Geosciences Union</p> </div> </div> <div class="col-12 col-lg-auto text-center text-md-left pt-lg-2"> <div class="row align-items-center"> <div class="col-12 col-sm col-md-auto text-center text-md-left mb-3 mb-sm-0"> <span class="egu-logo"><a href="http://www.egu.eu/" target="_blank"><img src="https://contentmanager.copernicus.org/319373/10/ssl" alt="" style="width: 410px; height: 325px;" /></a></span> </div> <div class="col-12 col-sm text-center text-md-left"> <span class="copernicus-logo"><a href="https://publications.copernicus.org/" target="_blank"><img src="https://contentmanager.copernicus.org/319376/10/ssl" alt="" style="width: 1784px; height: 330px;" /></a></span> </div> </div> </div> </div> </div> </div> <div class="links pb-4 pt-4"> <div class="container"> <div class="row align-items-center"> <div class="col-12 col-xl-auto mt-3"> <div class="row align-items-start align-items-lg-center"> <div class="col-12 mb-3 mb-md-0 pl-md-0 text-center text-md-left"><a href="https://creativecommons.org/licenses/by/4.0/" target="_blank"><i class="fab fa-creative-commons fa-lg mr-1"></i><i class="fab fa-creative-commons-by fa-lg"></i></a> All site content, except where otherwise noted, is licensed under the <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">Creative Commons Attribution 4.0 License</a>.</div> </div> </div> <div class="col-12 text-center text-md-left col-lg-auto mt-3"> <div class="row align-items-center"> <div class="col d-md-none px-0"></div> <div class="col-auto pr-1"><a href="https://www.atmospheric-chemistry-and-physics.net/about/contact.html">Contact</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.atmospheric-chemistry-and-physics.net/imprint.html">Imprint</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.copernicus.org/data_protection.html" target="_blank">Data protection</a></div> <div class="col-auto pl-2"></div> <div class="col d-md-none px-0"></div> </div> </div> </div> </div> </div> </footer> <!-- --></body> <!--CMS get_project_template.php::126 17.02.2025 01:12:16, CMS generated: 3.049036026001sec --></html>

Pages: 1 2 3 4 5 6 7 8 9 10