CINXE.COM

Search results for: weakly relativistic

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: weakly relativistic</title> <meta name="description" content="Search results for: weakly relativistic"> <meta name="keywords" content="weakly relativistic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="weakly relativistic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="weakly relativistic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 175</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: weakly relativistic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Contribution of Exchange-correlation Effects on Weakly Relativistic Plasma Expansion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Fermous">Rachid Fermous</a>, <a href="https://publications.waset.org/abstracts/search?q=Rima%20Mebrek"> Rima Mebrek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamic multi-fluid equations, we investigated the expansion of dense plasma. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. It is shown that dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20expansion" title="plasma expansion">plasma expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20degeneracy" title=" quantum degeneracy"> quantum degeneracy</a>, <a href="https://publications.waset.org/abstracts/search?q=weakly%20relativistic" title=" weakly relativistic"> weakly relativistic</a>, <a href="https://publications.waset.org/abstracts/search?q=under-dense%20%20plasma" title=" under-dense plasma"> under-dense plasma</a> </p> <a href="https://publications.waset.org/abstracts/167933/contribution-of-exchange-correlation-effects-on-weakly-relativistic-plasma-expansion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> De Broglie Wavelength Defined by the Rest Energy E0 and Its Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Orozovi%C4%87">K. Orozović</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Balon"> B. Balon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we take a different approach to de Broglie wavelength, as we relate it to relativistic physics. The quantum energy of the photon radiated by a body with de Broglie wavelength, as it moves with velocity v, can be defined within relativistic physics by rest energy E₀. In this way, we can show the connection between the quantum of radiation energy of the body and the rest of energy E₀ and thus combine what has been incompatible so far, namely relativistic and quantum physics. So, here we discuss the unification of relativistic and quantum physics by introducing the factor k that is analog to the Lorentz factor in Einstein&#39;s theory of relativity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=de%20Brogli%20wavelength" title="de Brogli wavelength">de Brogli wavelength</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20physics" title=" relativistic physics"> relativistic physics</a>, <a href="https://publications.waset.org/abstracts/search?q=rest%20energy" title=" rest energy"> rest energy</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20physics" title=" quantum physics"> quantum physics</a> </p> <a href="https://publications.waset.org/abstracts/135170/de-broglie-wavelength-defined-by-the-rest-energy-e0-and-its-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> Relativistic Energy Analysis for Some q Deformed Shape Invariant Potentials in D Dimensions Using SUSYQM Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Suparmi">A. Suparmi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Cari"> C. Cari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yunianto"> M. Yunianto</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20N.%20Pratiwi"> B. N. Pratiwi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> D-dimensional Dirac equations of q-deformed shape invariant potentials were solved using supersymmetric quantum mechanics (SUSY QM) in the case of exact spin symmetry. The D dimensional radial Dirac equation for shape invariant potential reduces to one-dimensional Schrodinger type equation by an appropriate variable and parameter change. The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial D dimensional Dirac equation that have reduced to one dimensional Schrodinger type equation. The SUSY operator was used to generate the D dimensional relativistic radial wave functions, the relativistic energy equation reduced to the non-relativistic energy in the non-relativistic limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D-dimensional%20dirac%20equation" title="D-dimensional dirac equation">D-dimensional dirac equation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-central%20potential" title=" non-central potential"> non-central potential</a>, <a href="https://publications.waset.org/abstracts/search?q=SUSY%20QM" title=" SUSY QM"> SUSY QM</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20wave%20function" title=" radial wave function"> radial wave function</a> </p> <a href="https://publications.waset.org/abstracts/43601/relativistic-energy-analysis-for-some-q-deformed-shape-invariant-potentials-in-d-dimensions-using-susyqm-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> Spherical Nonlinear Wave Propagation in Relativistic Quantum Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Abdikian">Alireza Abdikian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By assuming a quantum relativistic degenerate electron-positron (e-p) plasma media, the nonlinear acoustic solitary propagation in the presence of the stationary ions for neutralizing the plasma background of bounded cylindrical geometry was investigated. By using the standard reductive perturbation technique with cooperation the quantum hydrodynamics model for the e-p fluid, the spherical Kadomtsev-Petviashvili equation was derived for small but finite amplitude waves and was given the solitary wave solution for the parameters relevant for dense astrophysical objects such as white dwarf stars. By using a suitable coordinate transformation and using improved F-expansion technique, the SKP equation can be solved analytically. The numerical results reveal that the relativistic effects lead to propagate the electrostatic bell shape structures and by increasing the relativistic effects, the amplitude and the width of the e-p acoustic solitary wave will decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Electron-positron%20plasma" title="Electron-positron plasma">Electron-positron plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=Acoustic%20solitary%20wave" title=" Acoustic solitary wave"> Acoustic solitary wave</a>, <a href="https://publications.waset.org/abstracts/search?q=Relativistic%20plasmas" title=" Relativistic plasmas"> Relativistic plasmas</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20spherical%20Kadomtsev-Petviashvili%20equation" title=" the spherical Kadomtsev-Petviashvili equation"> the spherical Kadomtsev-Petviashvili equation</a> </p> <a href="https://publications.waset.org/abstracts/125010/spherical-nonlinear-wave-propagation-in-relativistic-quantum-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> Modeling a Feedback Concept in a Spherical Thundercloud Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zemlianskaya%20Daria">Zemlianskaya Daria</a>, <a href="https://publications.waset.org/abstracts/search?q=Egor%20Stadnichuk"> Egor Stadnichuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20Svechnikova"> Ekaterina Svechnikova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relativistic runaway electron avalanches (RREAs) are generally accepted as a source of thunderstorms gamma-ray radiation. Avalanches' dynamics in the electric fields can lead to their multiplication via gamma-rays and positrons, which is called relativistic feedback. This report shows that a non-uniform electric field geometry leads to the new RREAs multiplication mechanism - “geometric feedback”, which occurs due to the exchange of high-energy particles between different accelerating regions within a thundercloud. This report will present the results of the simulation in GEANT4 of feedback in a spherical cell. Necessary conditions for the occurrence of geometric feedback were obtained from it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title="electric field">electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=GEANT4" title=" GEANT4"> GEANT4</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma-rays" title=" gamma-rays"> gamma-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20runaway%20electron%20avalanches%20%28RREAs%29" title=" relativistic runaway electron avalanches (RREAs)"> relativistic runaway electron avalanches (RREAs)</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20feedback" title=" relativistic feedback"> relativistic feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20thundercloud" title=" the thundercloud"> the thundercloud</a> </p> <a href="https://publications.waset.org/abstracts/142367/modeling-a-feedback-concept-in-a-spherical-thundercloud-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Feedback Matrix Approach for Relativistic Runaway Electron Avalanches Dynamics in Complex Electric Field Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Egor%20Stadnichuk">Egor Stadnichuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relativistic runaway electron avalanches (RREA) are a widely accepted source of thunderstorm gamma-radiation. In regions with huge electric field strength, RREA can multiply via relativistic feedback. The relativistic feedback is caused both by positron production and by runaway electron bremsstrahlung gamma-rays reversal. In complex multilayer thunderstorm electric field structures, an additional reactor feedback mechanism appears due to gamma-ray exchange between separate strong electric field regions with different electric field directions. The study of this reactor mechanism in conjunction with the relativistic feedback with Monte Carlo simulations or by direct solution of the kinetic Boltzmann equation requires a significant amount of computational time. In this work, a theoretical approach to study feedback mechanisms in RREA physics is developed. It is based on the matrix of feedback operators construction. With the feedback matrix, the problem of the dynamics of avalanches in complex electric structures is reduced to the problem of finding eigenvectors and eigenvalues. A method of matrix elements calculation is proposed. The proposed concept was used to study the dynamics of RREAs in multilayer thunderclouds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20Gamma-ray%20flashes" title="terrestrial Gamma-ray flashes">terrestrial Gamma-ray flashes</a>, <a href="https://publications.waset.org/abstracts/search?q=thunderstorm%20ground%20enhancement" title=" thunderstorm ground enhancement"> thunderstorm ground enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20runaway%20electron%20avalanches" title=" relativistic runaway electron avalanches"> relativistic runaway electron avalanches</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma-rays" title=" gamma-rays"> gamma-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=high-energy%20atmospheric%20physics" title=" high-energy atmospheric physics"> high-energy atmospheric physics</a>, <a href="https://publications.waset.org/abstracts/search?q=TGF" title=" TGF"> TGF</a>, <a href="https://publications.waset.org/abstracts/search?q=TGE" title=" TGE"> TGE</a>, <a href="https://publications.waset.org/abstracts/search?q=thunderstorm" title=" thunderstorm"> thunderstorm</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20feedback" title=" relativistic feedback"> relativistic feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor%20feedback" title=" reactor feedback"> reactor feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor%20model" title=" reactor model"> reactor model</a> </p> <a href="https://publications.waset.org/abstracts/142458/feedback-matrix-approach-for-relativistic-runaway-electron-avalanches-dynamics-in-complex-electric-field-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Generalized Dirac oscillators Associated to Non-Hermitian Quantum Mechanical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debjit%20Dutta">Debjit Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Roy"> P. Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Panella"> O. Panella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, non Hermitian interaction in non relativistic as well as relativistic quantum mechanics have been examined from various aspect. We can observe interesting fact that for such systems a class of potentials, namely the PT symmetric and η-pseudo Hermitian admit real eigenvalues despite being non Hermitian and analogues of those system have been experimentally verified. Point to be noted that relativistic non Hermitian (PT symmetric) interactions can be realized in optical structures and also there exists photonic realization of the (1 + 1) dimensional Dirac oscillator. We have thoroughly studied generalized Dirac oscillators with non Hermitian interactions in (1 + 1) dimensions. To be more specific, we have examined η pseudo Hermitian interactions within the framework of generalized Dirac oscillator in (1 + 1) dimensions. In particular, we have obtained a class of interactions which are η-pseudo Hermitian and the metric operator η could have been also found explicitly. It is possible to have exact solutions of the generalized Dirac oscillator for some choices of the interactions. Subsequently we have employed the mapping between the generalized Dirac oscillator and the Jaynes Cummings (JC) model by spin flip to obtain a class of exactly solvable non Hermitian JC as well as anti Jaynes Cummings (AJC) type models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dirac%20oscillator" title="Dirac oscillator">Dirac oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Hermitian%20quantum%20system" title=" non-Hermitian quantum system"> non-Hermitian quantum system</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermitian" title=" Hermitian"> Hermitian</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic" title=" relativistic "> relativistic </a> </p> <a href="https://publications.waset.org/abstracts/4071/generalized-dirac-oscillators-associated-to-non-hermitian-quantum-mechanical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> Gravitationally Confined Relativistic Neutrinos and Mathematical Modeling of the Structure of Pions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Constantinos%20Vayenas">Constantinos Vayenas</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasios%20Fokas"> Athanasios Fokas</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Grigoriou"> Dimitrios Grigoriou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We use special relativity to compute the inertial and thus gravitational mass of relativistic electron and muon neutrinos, and we find that, for neutrino kinetic energies above 150 MeV/c2, these masses are in the Planck mass range. Consequently, we develop a simple Bohr-type model using gravitational rather than electrostatic forces between the rotating neutrinos as the centripetal force in order to examine the bound rotational states formed by two or three such relativistic neutrinos. We find that the masses of the composite rotational structures formed, are in the meson and baryon mass ranges, respectively. These models contain no adjustable parameters and by comparing their predictions with the experimental values of the masses of protons and pions, we compute a mass of 0.0437 eV/c2 for the heaviest electron neutrino mass and of 1.1 x10-3 eV/c2 for the heaviest muon neutrino mass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geons" title="geons">geons</a>, <a href="https://publications.waset.org/abstracts/search?q=gravitational%20confinement" title=" gravitational confinement"> gravitational confinement</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrino%20masses" title=" neutrino masses"> neutrino masses</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20relativity" title=" special relativity"> special relativity</a> </p> <a href="https://publications.waset.org/abstracts/67291/gravitationally-confined-relativistic-neutrinos-and-mathematical-modeling-of-the-structure-of-pions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Loumi-Fergane">H. Loumi-Fergane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belaidi"> A. Belaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincar&eacute;-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used.&nbsp; In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in q<sup>i</sup>, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation%20laws" title="conservation laws">conservation laws</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20theories" title=" field theories"> field theories</a>, <a href="https://publications.waset.org/abstracts/search?q=multisymplectic%20geometry" title=" multisymplectic geometry"> multisymplectic geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20mechanics" title=" relativistic mechanics"> relativistic mechanics</a> </p> <a href="https://publications.waset.org/abstracts/74108/multisymplectic-geometry-and-noether-symmetries-for-the-field-theories-and-the-relativistic-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> Central Finite Volume Methods Applied in Relativistic Magnetohydrodynamics: Applications in Disks and Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raphael%20de%20Oliveira%20Garcia">Raphael de Oliveira Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Rocha%20de%20Oliveira"> Samuel Rocha de Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed a new computer program in Fortran 90, in order to obtain numerical solutions of a system of Relativistic Magnetohydrodynamics partial differential equations with predetermined gravitation (GRMHD), capable of simulating the formation of relativistic jets from the accretion disk of matter up to his ejection. Initially we carried out a study on numerical methods of unidimensional Finite Volume, namely Lax-Friedrichs, Lax-Wendroff, Nessyahu-Tadmor method and Godunov methods dependent on Riemann problems, applied to equations Euler in order to verify their main features and make comparisons among those methods. It was then implemented the method of Finite Volume Centered of Nessyahu-Tadmor, a numerical schemes that has a formulation free and without dimensional separation of Riemann problem solvers, even in two or more spatial dimensions, at this point, already applied in equations GRMHD. Finally, the Nessyahu-Tadmor method was possible to obtain stable numerical solutions - without spurious oscillations or excessive dissipation - from the magnetized accretion disk process in rotation with respect to a central black hole (BH) Schwarzschild and immersed in a magnetosphere, for the ejection of matter in the form of jet over a distance of fourteen times the radius of the BH, a record in terms of astrophysical simulation of this kind. Also in our simulations, we managed to get substructures jets. A great advantage obtained was that, with the our code, we got simulate GRMHD equations in a simple personal computer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods" title="finite volume methods">finite volume methods</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20schemes" title=" central schemes"> central schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=fortran%2090" title=" fortran 90"> fortran 90</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20astrophysics" title=" relativistic astrophysics"> relativistic astrophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=jet" title=" jet"> jet</a> </p> <a href="https://publications.waset.org/abstracts/19952/central-finite-volume-methods-applied-in-relativistic-magnetohydrodynamics-applications-in-disks-and-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> A Unification and Relativistic Correction for Boltzmann’s Law</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lloyd%20G.%20Allred">Lloyd G. Allred</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distribution of velocities of particles in plasma is a well understood discipline of plasma physics. Boltzmann&rsquo;s law and the Maxwell-Boltzmann distribution describe the distribution of velocity of a particle in plasma as a function of mass and temperature. Particles with the same mass tend to have the same velocity. By expressing the same law in terms of energy alone, the author obtains a distribution independent of mass. In summary, for particles in plasma, the energies tend to equalize, independent of the masses of the individual particles. For high-energy plasma, the original law predicts velocities greater than the speed of light. If one uses Einstein&rsquo;s formula for energy (<em>E=mc<sup>2</sup></em>), then a relativistic correction is not required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmology" title="cosmology">cosmology</a>, <a href="https://publications.waset.org/abstracts/search?q=EMP" title=" EMP"> EMP</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20physics" title=" plasma physics"> plasma physics</a>, <a href="https://publications.waset.org/abstracts/search?q=relativity" title=" relativity"> relativity</a> </p> <a href="https://publications.waset.org/abstracts/84272/a-unification-and-relativistic-correction-for-boltzmanns-law" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> Experiments on Weakly-Supervised Learning on Imperfect Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Cheng">Yan Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yijun%20Shao"> Yijun Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Rudolph"> James Rudolph</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlene%20R.%20Weir"> Charlene R. Weir</a>, <a href="https://publications.waset.org/abstracts/search?q=Beth%20Sahlmann"> Beth Sahlmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Zeng-Treitler"> Qing Zeng-Treitler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weakly-supervised%20learning" title="weakly-supervised learning">weakly-supervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=delirium" title=" delirium"> delirium</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/99362/experiments-on-weakly-supervised-learning-on-imperfect-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Radiation Emission from Ultra-Relativistic Plasma Electrons in Short-Pulse Laser Light Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ondarza-Rovira">R. Ondarza-Rovira</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20M.%20Boyd"> T. J. M. Boyd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intense femtosecond laser light incident on over-critical density plasmas has shown to emit a prolific number of high-order harmonics of the driver frequency, with spectra characterized by power-law decays Pm ~ m-p, where m denotes the harmonic order and p the spectral decay index. When the laser pulse is p-polarized, plasma effects do modify the harmonic spectrum, weakening the so-called universal decay with p=8/3 to p=5/3, or below. In this work, appeal is made to a single particle radiation model in support of the predictions from particle-in-cell (PIC) simulations. Using this numerical technique we further show that the emission radiated by electrons -that are relativistically accelerated by the laser field inside the plasma, after being expelled into vacuum, the so-called Brunel electrons is characterized not only by the plasma line but also by ultraviolet harmonic orders described by the 5/3 decay index. Results obtained from these simulations suggest that for ultra-relativistic light intensities, the spectral decay index is further reduced, with p now in the range 2/3 ≤ p ≤ 4/3. This reduction is indicative of a transition from the regime where Brunel-induced plasma radiation influences the spectrum to one dominated by bremsstrahlung emission from the Brunel electrons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra-relativistic" title="ultra-relativistic">ultra-relativistic</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-plasma%20interactions" title=" laser-plasma interactions"> laser-plasma interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=high-order%20harmonic%20emission" title=" high-order harmonic emission"> high-order harmonic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum" title=" spectrum "> spectrum </a> </p> <a href="https://publications.waset.org/abstracts/27628/radiation-emission-from-ultra-relativistic-plasma-electrons-in-short-pulse-laser-light-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> [Keynote Talk]: Existence of Random Fixed Point Theorem for Contractive Mappings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Palimkar">D. S. Palimkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Random fixed point theory has received much attention in recent years, and it is needed for the study of various classes of random equations. The study of random fixed point theorems was initiated by the Prague school of probabilistic in the 1950s. The existence and uniqueness of fixed points for the self-maps of a metric space by altering distances between the points with the use of a control function is an interesting aspect in the classical fixed point theory. In a new category of fixed point problems for a single self-map with the help of a control function that alters the distance between two points in a metric space which they called an altering distance function. In this paper, we prove the results of existence of random common fixed point and its uniqueness for a pair of random mappings under weakly contractive condition for generalizing alter distance function in polish spaces using Random Common Fixed Point Theorem for Generalized Weakly Contractions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Polish%20space" title="Polish space">Polish space</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20common%20fixed%20point%20theorem" title=" random common fixed point theorem"> random common fixed point theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=weakly%20contractive%20mapping" title=" weakly contractive mapping"> weakly contractive mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=altering%20function" title=" altering function"> altering function</a> </p> <a href="https://publications.waset.org/abstracts/79650/keynote-talk-existence-of-random-fixed-point-theorem-for-contractive-mappings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Zero Divisor Graph of a Poset with Respect to Primal Ideals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Pourali">Hossein Pourali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we extend the concepts of primal and weakly primal ideals for posets. Further, the diameter of the zero divisor graph of a poset with respect to a non-primal ideal is determined. The relation between primary and primal ideals in posets is also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8Eassociated%20prime%20ideal" title="‎associated prime ideal">‎associated prime ideal</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8E%E2%80%8Eideal" title=" ‎‎ideal"> ‎‎ideal</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8E%E2%80%8Eprimary%20ideal" title=" ‎‎primary ideal"> ‎‎primary ideal</a>, <a href="https://publications.waset.org/abstracts/search?q=primal%20ideal%E2%80%8E" title=" primal ideal‎"> primal ideal‎</a>, <a href="https://publications.waset.org/abstracts/search?q=prime%E2%80%8E%20%E2%80%8Eideal" title=" prime‎ ‎ideal"> prime‎ ‎ideal</a>, <a href="https://publications.waset.org/abstracts/search?q=semiprime%20ideal" title=" semiprime ideal"> semiprime ideal</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8Eweakly%20primal%20ideal" title=" ‎weakly primal ideal"> ‎weakly primal ideal</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20divisors%20graph" title=" zero divisors graph"> zero divisors graph</a> </p> <a href="https://publications.waset.org/abstracts/67163/zero-divisor-graph-of-a-poset-with-respect-to-primal-ideals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Yarkovsky Effect on the Orbital Dynamics of the Asteroid (101955) Bennu</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Narayan%20Deo">Sanjay Narayan Deo</a>, <a href="https://publications.waset.org/abstracts/search?q=Badam%20Singh%20Kushvah"> Badam Singh Kushvah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bennu(101955) is a half kilometer potentially hazardous near-Earth asteroid. We analyze the influence of Yarkovsky effect and relativistic effect of the Sun on the motion of the asteroid Bennu. The transverse model is used to compute Yarkovsky force on asteroid Bennu. Our dynamical model includes Newtonian perturbations of eight planets, the Moon, the Sun and three massive asteroid (1Ceres, 2Palas and 4Vesta). We showed the variation in orbital elements of nominal orbit of the asteroid. In the presence of Yarkovsky effect, the Semi-major axis of the orbit of the asteroid is decreases by 350 m over one period of orbital motion. The magnitude of Yarkovsky force is computed. We find that maximum magnitude of Yarkovsky force is 0.09 N at the perihelion . We also found that the magnitude of the Sun relativity effect is greater than the Yarkovsky effect on the motion the asteroid Bennu. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bennu" title="Bennu">Bennu</a>, <a href="https://publications.waset.org/abstracts/search?q=orbital%20elements" title=" orbital elements"> orbital elements</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20effect" title=" relativistic effect"> relativistic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Yarkovsky%20effect" title=" Yarkovsky effect"> Yarkovsky effect</a> </p> <a href="https://publications.waset.org/abstracts/88396/yarkovsky-effect-on-the-orbital-dynamics-of-the-asteroid-101955-bennu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Theoretical Study of Structural, Magnetic, and Magneto-Optical Properties of Ultrathin Films of Fe/Cu (001)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mebarek%20Boukelkoul">Mebarek Boukelkoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhalim%20Haroun"> Abdelhalim Haroun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By means of the first principle calculation, we have investigated the structural, magnetic and magneto-optical properties of the ultra-thin films of Fen/Cu(001) with (n=1, 2, 3). We adopted a relativistic approach using DFT theorem with local spin density approximation (LSDA). The electronic structure is performed within the framework of the Spin-Polarized Relativistic (SPR) Linear Muffin-Tin Orbitals (LMTO) with the Atomic Sphere Approximation (ASA) method. During the variational principle, the crystal wave function is expressed as a linear combination of the Bloch sums of the so-called relativistic muffin-tin orbitals centered on the atomic sites. The crystalline structure is calculated after an atomic relaxation process using the optimization of the total energy with respect to the atomic interplane distance. A body-centered tetragonal (BCT) pseudomorphic crystalline structure with a tetragonality ratio c/a larger than unity is found. The magnetic behaviour is characterized by an enhanced magnetic moment and a ferromagnetic interplane coupling. The polar magneto-optical Kerr effect spectra are given over a photon energy range extended to 15eV and the microscopic origin of the most interesting features are interpreted by interband transitions. Unlike thin layers, the anisotropy in the ultra-thin films is characterized by a perpendicular magnetization which is perpendicular to the film plane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrathin%20films" title="ultrathin films">ultrathin films</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetism" title=" magnetism"> magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-optics" title=" magneto-optics"> magneto-optics</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomorphic%20structure" title=" pseudomorphic structure"> pseudomorphic structure</a> </p> <a href="https://publications.waset.org/abstracts/25728/theoretical-study-of-structural-magnetic-and-magneto-optical-properties-of-ultrathin-films-of-fecu-001" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Ground State Properties of Neutron Magic Isotones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Saxena">G. Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kaushik"> M. Kaushik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation, we have employed RMF+BCS (relativistic mean-field plus BCS) approach to carry out a systematic study for the ground state properties of the entire chains of even-even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126. The main body of the results of our calculations includes the binding energy, deformation, two proton separation energies, rms radii of the proton and neutron distributions as well as the proton and neutron density profiles etc. Several of these results have been given in the form of a series of graphs for a ready reference. In addition, the possible locations of the proton and neutron drip-lines as well as the (Z,N) values for the shell closures as suggested by the detailed analyzes of the single particle spectra, and the two proton and two-neutron separation energies for the different isotonic chains are also discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relativistic%20mean%20field%20theory" title="relativistic mean field theory">relativistic mean field theory</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20magic%20nuclei" title=" neutron magic nuclei"> neutron magic nuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20closure" title=" shell closure"> shell closure</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20energy" title=" separation energy"> separation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a> </p> <a href="https://publications.waset.org/abstracts/13497/ground-state-properties-of-neutron-magic-isotones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> 3D Microbubble Dynamics in a Weakly Viscous Fluid Near a Rigid Boundary Subject to Ultrasound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Manmi">K. Manmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20X.%20Wang"> Q. X. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates microbubble dynamics subject to ultrasound in a weakly viscous fluid near a rigid boundary. The phenomenon is simulated using a boundary integral method. The weak viscous effects are incorporated into the model through the normal stress balance across the bubble surface. The model agrees well with the Rayleigh-Plesset equation for a spherical bubble for several cycles. The effects of the fluid viscosity in the bubble dynamics are analyzed, including jet development, centroid movement and bubble volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbubble%20dynamics" title="microbubble dynamics">microbubble dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20jetting" title=" bubble jetting"> bubble jetting</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20effect" title=" viscous effect"> viscous effect</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20integral%20method" title=" boundary integral method"> boundary integral method</a> </p> <a href="https://publications.waset.org/abstracts/12981/3d-microbubble-dynamics-in-a-weakly-viscous-fluid-near-a-rigid-boundary-subject-to-ultrasound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Weakly Solving Kalah Game Using Artificial Intelligence and Game Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiba%20El%20Assibi">Hiba El Assibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to weakly solve Kalah, a two-player board game, by developing a start-to-finish winning strategy using an optimized Minimax algorithm with Alpha-Beta Pruning. In weakly solving Kalah, our focus is on creating an optimal strategy from the game's beginning rather than analyzing every possible position. The project will explore additional enhancements like symmetry checking and code optimizations to speed up the decision-making process. This approach is expected to give insights into efficient strategy formulation in board games and potentially help create games with a fair distribution of outcomes. Furthermore, this research provides a unique perspective on human versus Artificial Intelligence decision-making in strategic games. By comparing the AI-generated optimal moves with human choices, we can explore how seemingly advantageous moves can, in the long run, be harmful, thereby offering a deeper understanding of strategic thinking and foresight in games. Moreover, this paper discusses the evaluation of our strategy against existing methods, providing insights on performance and computational efficiency. We also discuss the scalability of our approach to the game, considering different board sizes (number of pits and stones) and rules (different variations) and studying how that affects performance and complexity. The findings have potential implications for the development of AI applications in strategic game planning, enhancing our understanding of human cognitive processes in game settings, and offer insights into creating balanced and engaging game experiences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minimax" title="minimax">minimax</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20beta%20pruning" title=" alpha beta pruning"> alpha beta pruning</a>, <a href="https://publications.waset.org/abstracts/search?q=transposition%20tables" title=" transposition tables"> transposition tables</a>, <a href="https://publications.waset.org/abstracts/search?q=weakly%20solving" title=" weakly solving"> weakly solving</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title=" game theory"> game theory</a> </p> <a href="https://publications.waset.org/abstracts/183486/weakly-solving-kalah-game-using-artificial-intelligence-and-game-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Quantum Engine Proposal using Two-level Atom Like Manipulation and Relativistic Motoring Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Montree%20Bunruangses">Montree Bunruangses</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonath%20Bhattacharyya"> Sonath Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Somchat%20Sonasang"> Somchat Sonasang</a>, <a href="https://publications.waset.org/abstracts/search?q=Preecha%20Yupapin"> Preecha Yupapin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two-level system is manipulated by a microstrip add-drop circuit configured as an atom like system for wave-particle behavior investigation when its traveling speed along the circuit perimeter is the speed of light. The entangled pair formed by the upper and lower sideband peaks is bound by the angular displacement, which is given by 0≤θ≤π/2. The control signals associated with 3-peak signal frequencies are applied by the external inputs via the microstrip add-drop multiplexer ports, where they are time functions without the space term involved. When a system satisfies the speed of light conditions, the mass term has been changed to energy based on the relativistic limit described by the Lorentz factor and Einstein equation. The different applied frequencies can be utilized to form the 3-phase torques that can be applied for quantum engines. The experiment will use the two-level system circuit and be conducted in the laboratory. The 3-phase torques will be recorded and investigated for quantum engine driving purpose. The obtained results will be compared to the simulation. The optimum amplification of torque can be obtained by the resonant successive filtering operation. Torque will be vanished when the system is balanced at the stopped position, where |Time|=0, which is required to be a system stability condition. It will be discussed for future applications. A larger device may be tested in the future for realistic use. A synchronous and asynchronous driven motor is also discussed for the warp drive use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20engine" title="quantum engine">quantum engine</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20motor" title=" relativistic motor"> relativistic motor</a>, <a href="https://publications.waset.org/abstracts/search?q=3-phase%20torque" title=" 3-phase torque"> 3-phase torque</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20engine" title=" atomic engine"> atomic engine</a> </p> <a href="https://publications.waset.org/abstracts/176101/quantum-engine-proposal-using-two-level-atom-like-manipulation-and-relativistic-motoring-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Stimulated Raman Scattering of Ultra Intense Hollow Gaussian Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prerana%20Sharma">Prerana Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of relativistic nonlinearity on stimulated Raman scattering of the propagating laser beam carrying null intensity in center (hollow Gaussian beam) by excited plasma wave are studied in a collisionless plasma. The construction of the equations is done employing the fluid theory which is developed with partial differential equation and Maxwell’s equations. The analysis is done using eikonal method. The phenonmenon of Stimulated Raman scattering is shown along with the excitation of seed plasma wave. The power of plasma wave and back reflectivity is observed for higher order of hollow Gaussian beam. Back reflectivity is studied numerically for various orders of HGLB with different value of plasma density, laser power and beam radius. Numerical analysis shows that these parameters play vital role on reflectivity characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hollow%20Gaussian%20beam" title="Hollow Gaussian beam">Hollow Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20nonlinearity" title=" relativistic nonlinearity"> relativistic nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20physics" title=" plasma physics"> plasma physics</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20scattering" title=" Raman scattering"> Raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/15768/stimulated-raman-scattering-of-ultra-intense-hollow-gaussian-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">638</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Feasibility of Weakly Interacting Massive Particles as Dark Matter Candidates: Exploratory Study on The Possible Reasons for Lack of WIMP Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sloka%20Bhushan">Sloka Bhushan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dark matter constitutes a majority of matter in the universe, yet very little is known about it due to its extreme lack of interaction with regular matter and the fundamental forces. Weakly Interacting Massive Particles, or WIMPs, have been contested to be one of the strongest candidates for dark matter due to their promising theoretical properties. However, various endeavors to detect these elusive particles have failed. This paper explores the various particles which may be WIMPs and the detection techniques being employed to detect WIMPs (such as underground detectors, LHC experiments, and so on). There is a special focus on the reasons for the lack of detection of WIMPs so far, and the possibility of limits in detection being a reason for the lack of physical evidence of the existence of WIMPs. This paper also explores possible inconsistencies within the WIMP particle theory as a reason for the lack of physical detection. There is a brief review on the possible solutions and alternatives to these inconsistencies. Additionally, this paper also reviews the supersymmetry theory and the possibility of the supersymmetric neutralino (A possible WIMP particle) being detectable. Lastly, a review on alternate candidates for dark matter such as axions and MACHOs has been conducted. The explorative study in this paper is conducted through a series of literature reviews. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title="dark matter">dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20detection" title=" particle detection"> particle detection</a>, <a href="https://publications.waset.org/abstracts/search?q=supersymmetry" title=" supersymmetry"> supersymmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=weakly%20interacting%20massive%20particles" title=" weakly interacting massive particles"> weakly interacting massive particles</a> </p> <a href="https://publications.waset.org/abstracts/132079/feasibility-of-weakly-interacting-massive-particles-as-dark-matter-candidates-exploratory-study-on-the-possible-reasons-for-lack-of-wimp-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Causes for the Precession of the Perihelion in the Planetary Orbits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwan%20U.%20Kim">Kwan U. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sim"> Jin Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong%20Jin%20Jang"> Ryong Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Duk%20Kim"> Sung Duk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is Leverrier that discovered the precession of the perihelion in the planetary orbits for the first time in the world, while it is Einstein that explained the astronomical phenomenom for the first time in the world. The amount of the precession of the perihelion for Einstein’s theory of gravitation has been explained by means of the inverse fourth power force(inverse third power potential) introduced totheory of gravitation through Schwarzschild metric However, the methodology has a serious shortcoming that it is impossible to explain the cause for the precession of the perihelion in the planetary orbits. According to our study, without taking the cause for the precession of the perihelion, 6 methods can explain the amount of the precession of the perihelion discovered by Leverrier. Therefore, the problem of what caused the perihelion to precess in the planetary orbits must be solved for physics because it is a profound scientific and technological problem for a basic experiment in construction of relativistic theory of gravitation. The scientific solution to the problem proved that Einstein’s explanation for the planetary orbits is a magic made by the numerical expressions obtained from fictitious gravitation introduced to theory of gravitation and wrong definition of proper time The problem of the precession of the perihelion seems solved already by means of general theory of relativity, but, in essence, the cause for the astronomical phenomenon has not been successfully explained for astronomy yet. The right solution to the problem comes from generalized theory of gravitation. Therefore, in this paper, it has been shown that by means of Schwarzschild field and the physical quantities of relativistic Lagrangian redflected in it, fictitious gravitation is not the main factor which can cause the perihelion to precess in the planetary orbits. In addition to it, it has been shown that the main factor which can cause the perihelion to precess in the planetary orbits is the inverse third power force existing really in the relativistic region in the Solar system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20third%20power%20force" title="inverse third power force">inverse third power force</a>, <a href="https://publications.waset.org/abstracts/search?q=precession%20of%20the%20perihelion" title=" precession of the perihelion"> precession of the perihelion</a>, <a href="https://publications.waset.org/abstracts/search?q=fictitious%20gravitation" title=" fictitious gravitation"> fictitious gravitation</a>, <a href="https://publications.waset.org/abstracts/search?q=planetary%20orbits" title=" planetary orbits"> planetary orbits</a> </p> <a href="https://publications.waset.org/abstracts/192598/causes-for-the-precession-of-the-perihelion-in-the-planetary-orbits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Relativistic Effects of Rotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yin%20Rui">Yin Rui</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin%20Ming"> Yin Ming</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Yang"> Wang Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a rotational reference frame of the theory of special relativity, the critical radius is defined as the distance from the axis to the point where the tangential velocity is equal to the speed of light, and the critical cylinder as the set of all points separated from the axis by this critical radius. Based on these terms, two relativistic effects of rotation are discovered: (i) the tangential velocity in the region of Outside Critical Cylinder (OCC) is not superluminal due to the existence of space-time exchange; (ii) some of the physical quantities of the rotational body have an opposite mathematic sign at OCC versus those at Inside Critical Cylinder (ICC), which is termed as the Critical Cylindrical Effect (CCE). The laboratory experiments demonstrate that the repulsive force exerted on an anion by electrons will change to an attractive force by the electrons in precession while the anion is at OCC of the precession. Thirty-six screenshots from four experimental videos are provided. Theoretical proofs for both space-time exchange and CCE are then presented. The CCEs of field force are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20radius" title="critical radius">critical radius</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20cylindrical%20effect" title=" critical cylindrical effect"> critical cylindrical effect</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20relativity" title=" special relativity"> special relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=space-time%20exchange" title=" space-time exchange"> space-time exchange</a> </p> <a href="https://publications.waset.org/abstracts/182875/relativistic-effects-of-rotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Non-Coplanar Nuclei in Heavy-Ion Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahila%20Chopra">Sahila Chopra</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemdeep"> Hemdeep</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshdeep%20Kaur"> Arshdeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20K.%20Gupta"> Raj K. Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent times, we noticed an interesting and important role of non-coplanar degree-of-freedom (&Phi; = 00) in heavy ion reactions. Using the dynamical cluster-decay model (DCM) with &Phi; degree-of-freedom included, we have studied three compound systems 246Bk&lowast;, 164Yb&lowast; and 105Ag&lowast;. Here, within the DCM with pocket formula for nuclear proximity potential, we look for the effects of including compact, non-coplanar configurations (&Phi;c = 00) on the non-compound nucleus (nCN) contribution in total fusion cross section &sigma;fus. For 246Bk&lowast;, formed in 11B+235U and 14N+232Th reaction channels, the DCM with coplanar nuclei (&Phi;c = 00) shows an nCN contribution for 11B+235U channel, but none for 14N+232Th channel, which on including &Phi; gives both reaction channels as pure compound nucleus decays. In the case of 164Yb&lowast;, formed in 64Ni+100Mo, the small nCN effects for &Phi;=00 are reduced to almost zero for &Phi; = 00. Interestingly, however, 105Ag&lowast; for &Phi; = 00 shows a small nCN contribution, which gets strongly enhanced for &Phi; = 00, such that the characteristic property of PCN presents a change of behaviour, like that of a strongly fissioning superheavy element to a weakly fissioning nucleus; note that 105Ag&lowast; is a weakly fissioning nucleus and Psurv behaves like one for a weakly fissioning nucleus for both &Phi; = 00 and &Phi; = 00. Apparently, &Phi; is presenting itself like a good degree-of-freedom in the DCM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamical%20cluster-decay%20model" title="dynamical cluster-decay model">dynamical cluster-decay model</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion%20cross%20sections" title=" fusion cross sections"> fusion cross sections</a>, <a href="https://publications.waset.org/abstracts/search?q=non-compound%20nucleus%20effects" title=" non-compound nucleus effects"> non-compound nucleus effects</a>, <a href="https://publications.waset.org/abstracts/search?q=non-coplanarity" title=" non-coplanarity"> non-coplanarity</a> </p> <a href="https://publications.waset.org/abstracts/41851/non-coplanar-nuclei-in-heavy-ion-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Generation Transcritical Flow Influenced by Dissipation over a Hole</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Daher%20Albalwi">Mohammed Daher Albalwi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transcritical flow of a stratified fluid over an obstacle for negative forcing amplitude (hole) that generation upstream and downstream, connected by an unsteady solution, is examined. In the weakly nonlinear, weakly dispersive regime, the problem is formulated in the forced Korteweg-de Vries–Burgers framework. This is done by including the influence of the viscosity of the fluid beyond the Korteweg–de Vries approximation. The results show that the influence of viscosity is crucial in determining various wave properties, including the amplitudes of solitary waves in the upstream and downstream directions, as well as the widths of the bores. We focused here on weak damping, and the results are presented for transcritical, supercritical, and subcritical flows. In general, the outcomes are not qualitatively similar to those from the forced Korteweg-de–Vries equation when the value of the viscous is small, interesting differences emerge as the magnitude of the value of viscous increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Korteweg%E2%80%93de%20Vries%E2%80%93Burgers%20equation" title="Korteweg–de Vries–Burgers equation">Korteweg–de Vries–Burgers equation</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton" title=" soliton"> soliton</a>, <a href="https://publications.waset.org/abstracts/search?q=transcritical%20flow" title=" transcritical flow"> transcritical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20flow" title=" viscous flow"> viscous flow</a> </p> <a href="https://publications.waset.org/abstracts/182925/generation-transcritical-flow-influenced-by-dissipation-over-a-hole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> A Comparative Evaluation of Finite Difference Methods for the Extended Boussinesq Equations and Application to Tsunamis Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aurore%20Cauquis">Aurore Cauquis</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Heinrich"> Philippe Heinrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20Ricchiuto"> Mario Ricchiuto</a>, <a href="https://publications.waset.org/abstracts/search?q=Audrey%20Gailler"> Audrey Gailler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this talk, we look for an accurate time scheme to model the propagation of waves. Several numerical schemes have been developed to solve the extended weakly nonlinear weakly dispersive Boussinesq Equations. The temporal schemes used are two Lax-Wendroff schemes, second or third order accurate, two Runge-Kutta schemes of second and third order and a simplified third order accurate Lax-Wendroff scheme. Spatial derivatives are evaluated with fourth order accuracy. The numerical model is applied to two monodimensional benchmarks on a flat bottom. It is also applied to the simulation of the Algerian tsunami generated by a Mw=6 seism on the 18th March 2021. The tsunami propagation was highly dispersive and propagated across the Mediterranean Sea. We study here the effects of the order of temporal discretization on the accuracy of the results and on the time of computation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title="numerical analysis">numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunami%20propagation" title=" tsunami propagation"> tsunami propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20wave" title=" water wave"> water wave</a>, <a href="https://publications.waset.org/abstracts/search?q=boussinesq%20equations" title=" boussinesq equations"> boussinesq equations</a> </p> <a href="https://publications.waset.org/abstracts/141542/a-comparative-evaluation-of-finite-difference-methods-for-the-extended-boussinesq-equations-and-application-to-tsunamis-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Periodic Change in the Earth’s Rotation Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Duk%20Kim">Sung Duk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan%20U.%20Kim"> Kwan U. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sim"> Jin Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong%20Jin%20Jang"> Ryong Jin Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phenomenon of seasonal variations in the Earth’s rotation velocity was discovered in the 1930s when a crystal clock was developed and analyzed in a quantitative way for the first time between 1955 and 1968 when observation data of the seasonal variations was analyzed by an atomic clock. According to the previous investigation, atmospheric circulation is supposed to be a factor affecting the seasonal variations in the Earth’s rotation velocity in many cases, but the problem has not been solved yet. In order to solve the problem, it is necessary to apply dynamics to consider the Earth’s spatial motion, rotation, and change of shape of the Earth (movement of materials in and out of the Earth and change of the Earth’s figure) at the same time and in interrelation to the accuracy of post-Newtonian approximation regarding the Earth body as a system of mass points because the stability of the Earth’s rotation angular velocity is in the range of 10⁻⁸~10⁻⁹. For it, the equation was derived, which can consider the 3 kinds of motion above mentioned at the same time by taking the effect of the resultant external force on the Earth’s rotation into account in a relativistic way to the accuracy of post-Newtonian approximation. Therefore, the equation has been solved to obtain the theoretical values of periodic change in the Earth’s rotation velocity, and they have been compared with the astronomical observation data so to reveal the cause for the periodic change in the Earth’s rotation velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Earth%20rotation" title="Earth rotation">Earth rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20function" title=" moment function"> moment function</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20change" title=" periodic change"> periodic change</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20variation" title=" seasonal variation"> seasonal variation</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20change" title=" relativistic change"> relativistic change</a> </p> <a href="https://publications.waset.org/abstracts/182897/periodic-change-in-the-earths-rotation-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Ultrahigh Thermal Stability of Dielectric Permittivity in 0.6Bi(Mg₁/₂Ti₁/₂)O₃-0.4Ba₀.₈Ca₀.₂(Ti₀.₈₇₅Nb₀.₁₂₅)O₃</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaiyuan%20Chena">Kaiyuan Chena</a>, <a href="https://publications.waset.org/abstracts/search?q=Senentxu%20Lanceros-M%C3%A9ndeza"> Senentxu Lanceros-Méndeza</a>, <a href="https://publications.waset.org/abstracts/search?q=Laijun%20Liub"> Laijun Liub</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhanga"> Qi Zhanga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 0.6Bi(Mg1/2Ti1/2)O3-0.4Ba0.8Ca0.2(Nb0.125Ti0.875)O3 (0.6BMT-0.4BCNT) ceramics with a pseudo-cubic structure and re-entrant dipole glass behavior have been investigated via X-ray diffraction and dielectric permittivity-temperature spectra. It shows an excellent dielectric-temperature stability with small variations of dielectric permittivity (± 5%, 420 - 802 K) and dielectric loss tangent (tanδ < 2.5%, 441 - 647 K) in a wide temperature range. Three dielectric anomalies are observed from 290 K to 1050 K. The low-temperature weakly coupled re-entrant relaxor behavior was described using Vogel-Fulcher law and the new glass model. The mid- and high-temperature dielectric anomalies are characterized by isothermal impedance and electrical modulus. The activation energy of both dielectric relaxation and conductivity follows the Arrhenius law in the temperature ranges of 633 - 753 K and 833 - 973 K, respectively. The ultrahigh thermal stability of the dielectric permittivity is attributed to the weakly coupling of polar clusters, the formation of diffuse phase transition (DPT) and the local phase transition of calcium-containing perovskite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permittivity" title="permittivity">permittivity</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxor" title=" relaxor"> relaxor</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20ceramics" title=" electronic ceramics"> electronic ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title=" activation energy"> activation energy</a> </p> <a href="https://publications.waset.org/abstracts/171835/ultrahigh-thermal-stability-of-dielectric-permittivity-in-06bimg12ti12o3-04ba08ca02ti0875nb0125o3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weakly%20relativistic&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weakly%20relativistic&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weakly%20relativistic&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weakly%20relativistic&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weakly%20relativistic&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weakly%20relativistic&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10