CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;43 of 43 results for author: <span class="mathjax">Taylor, P N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/q-bio" aria-role="search"> Searching in archive <strong>q-bio</strong>. <a href="/search/?searchtype=author&amp;query=Taylor%2C+P+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Taylor, P N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Taylor%2C+P+N&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Taylor, P N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04634">arXiv:2411.04634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04634">pdf</a>, <a href="https://arxiv.org/format/2411.04634">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> More variable circadian rhythms in epilepsy: a retrospective cross-sectional study using long-term heart rate recordings from wearable sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Smith%2C+B+C">Billy C. Smith</a>, <a href="/search/q-bio?searchtype=author&amp;query=Thornton%2C+C">Christopher Thornton</a>, <a href="/search/q-bio?searchtype=author&amp;query=Stirling%2C+R+E">Rachel E. Stirling</a>, <a href="/search/q-bio?searchtype=author&amp;query=Besne%2C+G+M">Guillermo M. Besne</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Karoly%2C+P+J">Philippa J. Karoly</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04634v2-abstract-short" style="display: inline;"> Background: The circadian rhythm aligns physiology and behaviour with the 24-hour light-dark cycle, and its disruption is linked to neurological disorders such as epilepsy. However, how to best quantify circadian disruption remains unclear, as it can manifest across various properties and timescales. A promising but under-explored approach is to assess the intra-individual variability in circadian&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04634v2-abstract-full').style.display = 'inline'; document.getElementById('2411.04634v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04634v2-abstract-full" style="display: none;"> Background: The circadian rhythm aligns physiology and behaviour with the 24-hour light-dark cycle, and its disruption is linked to neurological disorders such as epilepsy. However, how to best quantify circadian disruption remains unclear, as it can manifest across various properties and timescales. A promising but under-explored approach is to assess the intra-individual variability in circadian rhythms over timescales of weeks to years. This is yet to be studied in epilepsy. Methods: We retrospectively used wearable smartwatch data (Fitbit) from 143 people with epilepsy (PWE) and 31 controls. For each participant, we extracted the circadian oscillation underlying their heart rate time series and analysed the intra-individual variability of three circadian properties: period, acrophase, and amplitude. Findings: We found increased intra-individual variability in period (77 min vs. 62 min, z=3.32, p&lt;0.001) and acrophase (68 min vs. 54 min, z=2.97, p=0.003) for PWE compared to controls, but not in amplitude (1.98 bpm vs. 2.05 bpm, z=-0.66, p=0.51). For PWE, we did not find any correlations between seizure frequency and intra-individual variability in circadian properties, or any difference between weeks with and without seizures. Interpretation: This finding indicates that the circadian rhythm of heart rate is more variable for people with epilepsy and that this can be detected using a wearable device. However, we were unable to find any associations with seizure frequency or occurrence, suggesting intra-individual variability could be another manifestation of epilepsy aetiology. Future work should investigate the combined role of anti-seizure medications, demographics, co-morbidities, and health behaviours in driving the increased intra-individual variability of circadian properties in epilepsy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04634v2-abstract-full').style.display = 'none'; document.getElementById('2411.04634v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13466">arXiv:2410.13466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13466">pdf</a>, <a href="https://arxiv.org/format/2410.13466">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Seizure Onset Zone Localisation Algorithms with Intracranial EEG: Evaluating Methodological Variations and Targeted Features </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Gascoigne%2C+S+J">Sarah J. Gascoigne</a>, <a href="/search/q-bio?searchtype=author&amp;query=Vila-Vidal%2C+M">Manel Vila-Vidal</a>, <a href="/search/q-bio?searchtype=author&amp;query=Evans%2C+N">Nathan Evans</a>, <a href="/search/q-bio?searchtype=author&amp;query=Da+Silva%2C+A+B">Anderson Brito Da Silva</a>, <a href="/search/q-bio?searchtype=author&amp;query=Thomas%2C+R+H">Rhys H. Thomas</a>, <a href="/search/q-bio?searchtype=author&amp;query=Thornton%2C+C">Christopher Thornton</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wilson%2C+K">Kevin Wilson</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Tauste%2C+A">Adri脿 Tauste</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13466v1-abstract-short" style="display: inline;"> During clinical treatment for epilepsy, the area of the brain thought to be responsible for pathological activity - known as the Seizure Onset Zone (SOZ) - is identified. This is typically performed through visual assessment of EEG recordings; however, this is time consuming and prone to subjective inconsistency. Automated SOZ localisation algorithms provide objective identification of the SOZ by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13466v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13466v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13466v1-abstract-full" style="display: none;"> During clinical treatment for epilepsy, the area of the brain thought to be responsible for pathological activity - known as the Seizure Onset Zone (SOZ) - is identified. This is typically performed through visual assessment of EEG recordings; however, this is time consuming and prone to subjective inconsistency. Automated SOZ localisation algorithms provide objective identification of the SOZ by highlighting changes in signal features associated with seizure onset. In this work we investigate how methodological differences in such algorithms can result in different SOZ localisations. We analysed ictal intracranial EEG (icEEG) recordings in 16 subjects (100 seizures) with drug-resistant epilepsy from the SWEZ-ETHZ public database. Through our analysis, we identified a series of key methodological differences that must be considered when designing or selecting a SOZ localisation algorithm. These differences were demonstrated using three distinct algorithms that capture different, but complementary, seizure onset features: Imprint, Epileptogenicity Index (EI), and Low Entropy Map (LEM). We assessed methodological differences at each Decision Point, comparing the resultant SOZ localisations. Our independent application of all three algorithms to the same ictal icEEG dataset revealed low agreement between algorithms: 27-60% of seizure onsets were as minimally or non-overlapping (&lt;25% overlap). Therefore, we investigated the effect of three key methodological differences (or Decision Points). Changes at each Decision Point were found to result in significantly different SOZ localisations (p&lt;0.05). Our results demonstrate how seemingly small methodological changes can result in large differences in SOZ localisations. We propose that key Decision Points must be considered when using or designing a SOZ localisation algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13466v1-abstract-full').style.display = 'none'; document.getElementById('2410.13466v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01767">arXiv:2409.01767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01767">pdf</a>, <a href="https://arxiv.org/format/2409.01767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Anti-seizure medication load is not correlated with early termination of seizure spread </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Evans%2C+N">Nathan Evans</a>, <a href="/search/q-bio?searchtype=author&amp;query=Gascoigne%2C+S+J">Sarah J. Gascoigne</a>, <a href="/search/q-bio?searchtype=author&amp;query=Besne%2C+G+M">Guillermo M. Besne</a>, <a href="/search/q-bio?searchtype=author&amp;query=Thornton%2C+C">Chris Thornton</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M. Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chowdhury%2C+F+A">Fahmida A Chowdhury</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A+W">Andrew W McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01767v1-abstract-short" style="display: inline;"> Anti-seizure medications (ASMs) are the mainstay of treatment for epilepsy, yet their effect on seizure spread is not fully understood. Higher ASM doses have been associated with shorter and less severe seizures. Our objective was to test if this effect was due to limiting seizure spread through early termination of otherwise unchanged seizures. We retrospectively examined intracranial EEG (iEEG&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01767v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01767v1-abstract-full" style="display: none;"> Anti-seizure medications (ASMs) are the mainstay of treatment for epilepsy, yet their effect on seizure spread is not fully understood. Higher ASM doses have been associated with shorter and less severe seizures. Our objective was to test if this effect was due to limiting seizure spread through early termination of otherwise unchanged seizures. We retrospectively examined intracranial EEG (iEEG) recordings in 15 subjects that underwent ASM tapering during pre-surgical monitoring. We estimated ASM plasma concentrations based on pharmaco-kinetic modelling. In each subject, we identified seizures that followed the same onset and initial spread patterns, but some seizures terminated early (truncated seizures), and other seizures continued to spread (continuing seizures). We compared ASM concentrations at the times of truncated seizures and continuing seizures. We found no substantial difference between ASM concentrations when truncated vs. continuing seizures occurred (Mean difference = 4%, sd = 29%, p=0.6). Our results indicate that ASM did not appear to halt established seizures in this cohort. Further research is needed to understand how ASM may modulate seizure duration and severity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01767v1-abstract-full').style.display = 'none'; document.getElementById('2409.01767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05789">arXiv:2408.05789</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05789">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Status epilepticus and thinning of the entorhinal cortex </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Horsley%2C+J">Jonathan Horsley</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Simpson%2C+C">Callum Simpson</a>, <a href="/search/q-bio?searchtype=author&amp;query=Janiukstyte%2C+V">Vyte Janiukstyte</a>, <a href="/search/q-bio?searchtype=author&amp;query=Leiberg%2C+K">Karoline Leiberg</a>, <a href="/search/q-bio?searchtype=author&amp;query=Little%2C+B">Beth Little</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J">John Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05789v1-abstract-short" style="display: inline;"> Status epilepticus (SE) carries risks of morbidity and mortality. Experimental studies have implicated the entorhinal cortex in prolonged seizures; however, studies in large human cohorts are limited. We hypothesised that individuals with temporal lobe epilepsy (TLE) and a history of SE would have more severe entorhinal atrophy compared to others with TLE and no history of SE. 357 individuals wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05789v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05789v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05789v1-abstract-full" style="display: none;"> Status epilepticus (SE) carries risks of morbidity and mortality. Experimental studies have implicated the entorhinal cortex in prolonged seizures; however, studies in large human cohorts are limited. We hypothesised that individuals with temporal lobe epilepsy (TLE) and a history of SE would have more severe entorhinal atrophy compared to others with TLE and no history of SE. 357 individuals with drug resistant temporal lobe epilepsy (TLE) and 100 healthy controls were scanned on a 3T MRI. For all subjects the cortex was segmented, parcellated, and the thickness calculated from the T1-weighted anatomical scan. Subcortical volumes were derived similarly. Cohen&#39;s d and Wilcoxon rank-sum tests respectively were used to capture effect sizes and significance. Individuals with TLE and SE had reduced entorhinal thickness compared to those with TLE and no history of SE. The entorhinal cortex was more atrophic ipsilaterally (d=0.51, p&lt;0.001) than contralaterally (d=0.37, p=0.01). Reductions in ipsilateral entorhinal thickness were present in both left TLE (n=22:176, d=0.78, p&lt;0.001), and right TLE (n=19:140, d=0.31, p=0.04), albeit with a smaller effect size in right TLE. Several other regions exhibited atrophy in individuals with TLE, but these did not relate to a history of SE. These findings suggest potential involvement or susceptibility of the entorhinal cortex in prolonged seizures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05789v1-abstract-full').style.display = 'none'; document.getElementById('2408.05789v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06731">arXiv:2406.06731</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.06731">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> The Imaging Database for Epilepsy And Surgery (IDEAS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Simpson%2C+C">Callum Simpson</a>, <a href="/search/q-bio?searchtype=author&amp;query=Janiukstyte%2C+V">Vytene Janiukstyte</a>, <a href="/search/q-bio?searchtype=author&amp;query=Horsley%2C+J">Jonathan Horsley</a>, <a href="/search/q-bio?searchtype=author&amp;query=Leiberg%2C+K">Karoline Leiberg</a>, <a href="/search/q-bio?searchtype=author&amp;query=Little%2C+B">Beth Little</a>, <a href="/search/q-bio?searchtype=author&amp;query=Clifford%2C+H">Harry Clifford</a>, <a href="/search/q-bio?searchtype=author&amp;query=Adler%2C+S">Sophie Adler</a>, <a href="/search/q-bio?searchtype=author&amp;query=Vos%2C+S+B">Sjoerd B. Vos</a>, <a href="/search/q-bio?searchtype=author&amp;query=Winston%2C+G+P">Gavin P Winston</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A+W">Andrew W McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S Duncan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06731v1-abstract-short" style="display: inline;"> Magnetic resonance imaging (MRI) is a crucial tool to identify brain abnormalities in a wide range of neurological disorders. In focal epilepsy MRI is used to identify structural cerebral abnormalities. For covert lesions, machine learning and artificial intelligence algorithms may improve lesion detection if abnormalities are not evident on visual inspection. The success of this approach depends&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06731v1-abstract-full').style.display = 'inline'; document.getElementById('2406.06731v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06731v1-abstract-full" style="display: none;"> Magnetic resonance imaging (MRI) is a crucial tool to identify brain abnormalities in a wide range of neurological disorders. In focal epilepsy MRI is used to identify structural cerebral abnormalities. For covert lesions, machine learning and artificial intelligence algorithms may improve lesion detection if abnormalities are not evident on visual inspection. The success of this approach depends on the volume and quality of training data. Herein, we release an open-source dataset of preprocessed MRI scans from 442 individuals with drug-refractory focal epilepsy who had neurosurgical resections, and detailed demographic information. The MRI scan data includes the preoperative 3D T1 and where available 3D FLAIR, as well as a manually inspected complete surface reconstruction and volumetric parcellations. Demographic information includes age, sex, age of onset of epilepsy, location of surgery, histopathology of resected specimen, occurrence and frequency of focal seizures with and without impairment of awareness, focal to bilateral tonic-clonic seizures, number of anti-seizure medications (ASMs) at time of surgery, and a total of 1764 patient years of post-surgical follow up. Crucially, we also include resection masks delineated from post-surgical imaging. To demonstrate the veracity of our data, we successfully replicated previous studies showing long-term outcomes of seizure freedom in the range of around 50%. Our imaging data replicates findings of group level atrophy in patients compared to controls. Resection locations in the cohort were predominantly in the temporal and frontal lobes. We envisage our dataset, shared openly with the community, will catalyse the development and application of computational methods in clinical neurology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06731v1-abstract-full').style.display = 'none'; document.getElementById('2406.06731v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02729">arXiv:2406.02729</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02729">pdf</a>, <a href="https://arxiv.org/format/2406.02729">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Vagus nerve stimulation: Laying the groundwork for predictive network-based computer models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Ingham%2C+J+F">John F. Ingham</a>, <a href="/search/q-bio?searchtype=author&amp;query=Hutchings%2C+F">Frances Hutchings</a>, <a href="/search/q-bio?searchtype=author&amp;query=Zuliani%2C+P">Paolo Zuliani</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Soudjani%2C+S">Sadegh Soudjani</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02729v1-abstract-short" style="display: inline;"> Vagus Nerve Stimulation (VNS) is an established palliative treatment for drug resistant epilepsy. While effective for many patients, its mechanism of action is incompletely understood. Predicting individuals&#39; response, or optimum stimulation parameters, is challenging. Computational modelling has informed other problems in epilepsy but, to our knowledge, has not been applied to VNS. We started w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02729v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02729v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02729v1-abstract-full" style="display: none;"> Vagus Nerve Stimulation (VNS) is an established palliative treatment for drug resistant epilepsy. While effective for many patients, its mechanism of action is incompletely understood. Predicting individuals&#39; response, or optimum stimulation parameters, is challenging. Computational modelling has informed other problems in epilepsy but, to our knowledge, has not been applied to VNS. We started with an established, four-population neural mass model (NMM), capable of reproducing the seizure-like dynamics of a thalamocortical circuit. We extended this to include 18 further neural populations, representing nine other brain regions relevant to VNS, with connectivity based on existing literature. We modelled stimulated afferent vagal fibres as projecting to the nucleus tractus solitarius (NTS), which receives input from the vagus nerve in vivo. Bifurcation analysis of a deterministic version of the model showed higher background NTS input made the model monostable at a fixed point (FP), representing normal activity, while lower inputs produce bistability between the FP and a limit cycle (LC), representing the seizure state. Adding noise produced transitions between seizure and normal states. This stochastic model spent decreasing time in the seizure state with increasing background NTS input, until seizures were abolished, consistent with the deterministic model. Simulated VNS stimulation, modelled as a 30 Hz square wave, was summed with the background input to the NTS and was found to reduce total seizure duration in a dose-dependent manner, similar to expectations in vivo. We have successfully produced an in silico model of VNS in epilepsy, capturing behaviour seen in vivo. This may aid understanding therapeutic mechanisms of VNS in epilepsy and provides a starting point to (i) determine which patients might respond best to VNS, and (ii) optimise individuals&#39; treatments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02729v1-abstract-full').style.display = 'none'; document.getElementById('2406.02729v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01385">arXiv:2405.01385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01385">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Anti-seizure medication tapering correlates with daytime delta band power reduction in the cortex </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Besne%2C+G+M">Guillermo M. Besne</a>, <a href="/search/q-bio?searchtype=author&amp;query=Evans%2C+N">Nathan Evans</a>, <a href="/search/q-bio?searchtype=author&amp;query=Panagiotopoulou%2C+M">Mariella Panagiotopoulou</a>, <a href="/search/q-bio?searchtype=author&amp;query=Smith%2C+B">Billy Smith</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chowdhury%2C+F+A">Fahmida A Chowdhury</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A+W">Andrew W McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Walker%2C+M">Mathew Walker</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Thornton%2C+C">Chris Thornton</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01385v2-abstract-short" style="display: inline;"> Anti-seizure medications (ASMs) are the primary treatment for epilepsy, yet medication tapering effects have not been investigated in a dose, region, and time-dependent manner, despite their potential impact on research and clinical practice. We examined over 3000 hours of intracranial EEG recordings in 32 subjects during long-term monitoring, of which 22 underwent concurrent ASM tapering. We es&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01385v2-abstract-full').style.display = 'inline'; document.getElementById('2405.01385v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01385v2-abstract-full" style="display: none;"> Anti-seizure medications (ASMs) are the primary treatment for epilepsy, yet medication tapering effects have not been investigated in a dose, region, and time-dependent manner, despite their potential impact on research and clinical practice. We examined over 3000 hours of intracranial EEG recordings in 32 subjects during long-term monitoring, of which 22 underwent concurrent ASM tapering. We estimated ASM plasma levels based on known pharmaco-kinetics of all the major ASM types. We found an overall decrease in the power of delta band ($未$) activity around the period of maximum medication withdrawal in most (80%) subjects, independent of their epilepsy type or medication combination. The degree of withdrawal correlated positively with the magnitude of $未$ power decrease. This dose-dependent effect was evident across all recorded cortical regions during daytime; but not in sub-cortical regions, or during night time. We found no evidence of a differential effect in seizure onset, spiking, or pathological brain regions. The finding of decreased $未$ band power during ASM tapering agrees with previous literature. Our observed dose-dependent effect indicates that monitoring ASM levels in cortical regions may be feasible for applications such as medication reminder systems, or closed-loop ASM delivery systems. ASMs are also used in other neurological and psychiatric conditions, making our findings relevant to a general neuroscience and neurology audience. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01385v2-abstract-full').style.display = 'none'; document.getElementById('2405.01385v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17952">arXiv:2404.17952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.17952">pdf</a>, <a href="https://arxiv.org/format/2404.17952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Multi-centre normative brain mapping of intracranial EEG lifespan patterns in the human brain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Woodhouse%2C+H">Heather Woodhouse</a>, <a href="/search/q-bio?searchtype=author&amp;query=Hall%2C+G">Gerard Hall</a>, <a href="/search/q-bio?searchtype=author&amp;query=Simpson%2C+C">Callum Simpson</a>, <a href="/search/q-bio?searchtype=author&amp;query=Kozma%2C+C">Csaba Kozma</a>, <a href="/search/q-bio?searchtype=author&amp;query=Turner%2C+F">Frances Turner</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M. Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S. Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Mo%2C+J">Jiajie Mo</a>, <a href="/search/q-bio?searchtype=author&amp;query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chari%2C+A">Aswin Chari</a>, <a href="/search/q-bio?searchtype=author&amp;query=Tisdall%2C+M">Martin Tisdall</a>, <a href="/search/q-bio?searchtype=author&amp;query=Moeller%2C+F">Friederike Moeller</a>, <a href="/search/q-bio?searchtype=author&amp;query=Petkov%2C+C">Chris Petkov</a>, <a href="/search/q-bio?searchtype=author&amp;query=Howard%2C+M+A">Matthew A. Howard</a>, <a href="/search/q-bio?searchtype=author&amp;query=Ibrahim%2C+G+M">George M. Ibrahim</a>, <a href="/search/q-bio?searchtype=author&amp;query=Donner%2C+E">Elizabeth Donner</a>, <a href="/search/q-bio?searchtype=author&amp;query=Warsi%2C+N+M">Nebras M. Warsi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Ahmed%2C+R">Raheel Ahmed</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17952v2-abstract-short" style="display: inline;"> Background: Understanding healthy human brain function is crucial to identify and map pathological tissue within it. Whilst previous studies have mapped intracranial EEG (icEEG) from non-epileptogenic brain regions, these maps do not consider the effects of age and sex. Further, most existing work on icEEG has often suffered from a small sample size due to the modality&#39;s invasive nature. Here, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17952v2-abstract-full').style.display = 'inline'; document.getElementById('2404.17952v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17952v2-abstract-full" style="display: none;"> Background: Understanding healthy human brain function is crucial to identify and map pathological tissue within it. Whilst previous studies have mapped intracranial EEG (icEEG) from non-epileptogenic brain regions, these maps do not consider the effects of age and sex. Further, most existing work on icEEG has often suffered from a small sample size due to the modality&#39;s invasive nature. Here, we substantially increase the subject sample size compared to existing literature, to create a multi-centre, normative map of brain activity which additionally considers the effects of age, sex and recording hospital. Methods: Using interictal icEEG recordings from n = 502 subjects originating from 15 centres, we constructed a normative map of non-pathological brain activity by regressing age and sex on relative band power in five frequency bands, whilst accounting for the hospital effect. Results: Recording hospital significantly impacted normative icEEG maps in all frequency bands, and age was a more influential predictor of band power than sex. The age effect varied by frequency band, but no spatial patterns were observed at the region-specific level. Certainty about regression coefficients was also frequency band specific and moderately impacted by sample size. Conclusion: The concept of a normative map is well-established in neuroscience research and particularly relevant to the icEEG modality, which does not allow healthy control baselines. Our key results regarding the hospital site and age effect guide future work utilising normative maps in icEEG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17952v2-abstract-full').style.display = 'none'; document.getElementById('2404.17952v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10869">arXiv:2404.10869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10869">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Alpha rhythm slowing in temporal epilepsy across Scalp EEG and MEG </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Janiukstyte%2C+V">Vytene Janiukstyte</a>, <a href="/search/q-bio?searchtype=author&amp;query=Kozma%2C+C">Csaba Kozma</a>, <a href="/search/q-bio?searchtype=author&amp;query=Owen%2C+T+W">Thomas W. Owen</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chaudhury%2C+U+J">Umair J Chaudhury</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lemieux%2C+L">Louis Lemieux</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Rugg-Gunn%2C+F">Fergus Rugg-Gunn</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10869v1-abstract-short" style="display: inline;"> EEG slowing is reported in various neurological disorders including Alzheimer&#39;s, Parkinson&#39;s and Epilepsy. Here, we investigate alpha rhythm slowing in individuals with refractory temporal lobe epilepsy (TLE), compared to healthy controls, using scalp electroencephalography (EEG) and magnetoencephalography (MEG). We retrospectively analysed data from 17,(46) healthy controls and 22,(24) individu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10869v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10869v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10869v1-abstract-full" style="display: none;"> EEG slowing is reported in various neurological disorders including Alzheimer&#39;s, Parkinson&#39;s and Epilepsy. Here, we investigate alpha rhythm slowing in individuals with refractory temporal lobe epilepsy (TLE), compared to healthy controls, using scalp electroencephalography (EEG) and magnetoencephalography (MEG). We retrospectively analysed data from 17,(46) healthy controls and 22,(24) individuals with TLE who underwent scalp EEG and (MEG) recordings as part of presurgical evaluation. Resting-state, eyes-closed recordings were source reconstructed using the standardized low-resolution brain electrographic tomography (sLORETA) method. We extracted low (slow) 6-9 Hz and high (fast) 10-11 Hz alpha relative band power and calculated the alpha power ratio by dividing low (slow) alpha by high (fast) alpha. This ratio was computed for all brain regions in all individuals. Alpha oscillations were slower in individuals with TLE than controls (p&lt;0.05). This effect was present in both the ipsilateral and contralateral hemispheres, and across widespread brain regions. Alpha slowing in TLE was found in both EEG and MEG recordings. We interpret greater low (slow)-alpha as greater deviation from health. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10869v1-abstract-full').style.display = 'none'; document.getElementById('2404.10869v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14434">arXiv:2311.14434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14434">pdf</a>, <a href="https://arxiv.org/format/2311.14434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Incomplete resection of the icEEG seizure onset zone is not associated with post-surgical outcomes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Gascoigne%2C+S+J">Sarah J. Gascoigne</a>, <a href="/search/q-bio?searchtype=author&amp;query=Evans%2C+N">Nathan Evans</a>, <a href="/search/q-bio?searchtype=author&amp;query=Hall%2C+G">Gerard Hall</a>, <a href="/search/q-bio?searchtype=author&amp;query=Kozma%2C+C">Csaba Kozma</a>, <a href="/search/q-bio?searchtype=author&amp;query=Panagiotopoulou%2C+M">Mariella Panagiotopoulou</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M. Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Simpson%2C+C">Callum Simpson</a>, <a href="/search/q-bio?searchtype=author&amp;query=Thornton%2C+C">Christopher Thornton</a>, <a href="/search/q-bio?searchtype=author&amp;query=Turner%2C+F">Frances Turner</a>, <a href="/search/q-bio?searchtype=author&amp;query=Woodhouse%2C+H">Heather Woodhouse</a>, <a href="/search/q-bio?searchtype=author&amp;query=Blickwedel%2C+J">Jess Blickwedel</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chowdhury%2C+F">Fahmida Chowdhury</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S. Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Faulder%2C+R">Ryan Faulder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Thomas%2C+R+H">Rhys H. Thomas</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wilson%2C+K">Kevin Wilson</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14434v1-abstract-short" style="display: inline;"> Delineation of seizure onset regions from EEG is important for effective surgical workup. However, it is unknown if their complete resection is required for seizure freedom, or in other words, if post-surgical seizure recurrence is due to incomplete removal of the seizure onset regions. Retrospective analysis of icEEG recordings from 63 subjects (735 seizures) identified seizure onset regions th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14434v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14434v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14434v1-abstract-full" style="display: none;"> Delineation of seizure onset regions from EEG is important for effective surgical workup. However, it is unknown if their complete resection is required for seizure freedom, or in other words, if post-surgical seizure recurrence is due to incomplete removal of the seizure onset regions. Retrospective analysis of icEEG recordings from 63 subjects (735 seizures) identified seizure onset regions through visual inspection and algorithmic delineation. We analysed resection of onset regions and correlated this with post-surgical seizure control. Most subjects had over half of onset regions resected (70.7% and 60.5% of subjects for visual and algorithmic methods, respectively). In investigating spatial extent of onset or resection, and presence of diffuse onsets, we found no substantial evidence of association with post-surgical seizure control (all AUC&lt;0.7, p&gt;0.05). Seizure onset regions tends to be at least partially resected, however a less complete resection is not associated with worse post-surgical outcome. We conclude that seizure recurrence after epilepsy surgery is not necessarily a result of failing to completely resect the seizure onset zone, as defined by icEEG. Other network mechanisms must be involved, which are not limited to seizure onset regions alone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14434v1-abstract-full').style.display = 'none'; document.getElementById('2311.14434v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13501">arXiv:2311.13501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.13501">pdf</a>, <a href="https://arxiv.org/format/2311.13501">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Multiscale cortical morphometry reveals pronounced regional and scale-dependent variations across the lifespan </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Leiberg%2C+K">Karoline Leiberg</a>, <a href="/search/q-bio?searchtype=author&amp;query=Blattner%2C+T">Timo Blattner</a>, <a href="/search/q-bio?searchtype=author&amp;query=Little%2C+B">Bethany Little</a>, <a href="/search/q-bio?searchtype=author&amp;query=Mello%2C+V+B+B">Victor B. B. Mello</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Moraes%2C+F+H+P">Fernanda H. P. de Moraes</a>, <a href="/search/q-bio?searchtype=author&amp;query=Rummel%2C+C">Christian Rummel</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Mota%2C+B">Bruno Mota</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13501v4-abstract-short" style="display: inline;"> Motivation: Characterising the changes in cortical morphology across the lifespan is fundamental for a range of research and clinical applications. Most studies to date have found a monotonic decrease in commonly used morphometrics, such as cortical thickness and volume, across the entire brain with increasing age. Any regional variations reported are subtle changes in the rate of decrease. Howeve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13501v4-abstract-full').style.display = 'inline'; document.getElementById('2311.13501v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13501v4-abstract-full" style="display: none;"> Motivation: Characterising the changes in cortical morphology across the lifespan is fundamental for a range of research and clinical applications. Most studies to date have found a monotonic decrease in commonly used morphometrics, such as cortical thickness and volume, across the entire brain with increasing age. Any regional variations reported are subtle changes in the rate of decrease. However, these descriptions of morphological changes have been limited to a single length scale. Here, we delineate the morphological changes associated with the healthy lifespan in multiscale morphometrics. Methods: We applied multiscale morphometric analysis to structural MRI from subjects aged 6-88 years from NKI (n=833) and CamCAN (n=641). These multiscale morphometrics were obtained at both the cortical hemisphere and lobe level. Results: On the level of whole cortical hemispheres, lifespan trajectories show diverging and even opposing trends at different spatial scales, in contrast to the monotonic decreases of volume and thickness described so far. Importantly, larger scales displayed most dramatic changes across the lifespan (up to 60%). More pronounced lobal differences in lifespan trajectories also became apparent in scales over 0.7mm. In a proof-of-principle application in brain age prediction, we also demonstrate added information contributed by multiscale morphometrics. Conclusion: Our study provides a comprehensive multiscale description of lifespan effects on cortical morphology in an age range from 6-88~years. In future, this can form the foundations for a normative model to compare individuals or cohorts, hence identifying multiscale morphological abnormalities. Our results reveal the complementary information contained in different spatial scales, suggesting that morphometrics should not be considered on a single scale, but as functions of length scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13501v4-abstract-full').style.display = 'none'; document.getElementById('2311.13501v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12080">arXiv:2310.12080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12080">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Aperiodic MEG abnormality in patients with focal to bilateral tonic-clonic seizures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Kaur%2C+K">Kirandeep Kaur</a>, <a href="/search/q-bio?searchtype=author&amp;query=Horsley%2C+J+J">Jonathan J Horsley</a>, <a href="/search/q-bio?searchtype=author&amp;query=Kozma%2C+C">Csaba Kozma</a>, <a href="/search/q-bio?searchtype=author&amp;query=Hall%2C+G+R">Gerard R Hall</a>, <a href="/search/q-bio?searchtype=author&amp;query=Owen%2C+T+W">Thomas W Owen</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Singh%2C+G">Guarav Singh</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chandra%2C+S+P">Sarat P Chandra</a>, <a href="/search/q-bio?searchtype=author&amp;query=Tripathi%2C+M">Manjari Tripathi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12080v1-abstract-short" style="display: inline;"> Aperiodic activity is a physiologically distinct component of the electrophysiological power spectrum. It is suggested to reflect the balance of excitation and inhibition in the brain, within selected frequency bands. However, the impact of recurrent seizures on aperiodic activity remains unknown, particularly in patients with severe bilateral seizures. Here, we hypothesised greater aperiodic abno&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12080v1-abstract-full').style.display = 'inline'; document.getElementById('2310.12080v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12080v1-abstract-full" style="display: none;"> Aperiodic activity is a physiologically distinct component of the electrophysiological power spectrum. It is suggested to reflect the balance of excitation and inhibition in the brain, within selected frequency bands. However, the impact of recurrent seizures on aperiodic activity remains unknown, particularly in patients with severe bilateral seizures. Here, we hypothesised greater aperiodic abnormality in the epileptogenic zone, in patients with focal to bilateral tonic clonic (FBTC) seizures, and earlier age of seizure onset. Pre-operative magnetoencephalography (MEG) recordings were acquired from 36 patients who achieved complete seizure freedom (Engel I outcome) post-surgical resection. A normative whole brain map of the aperiodic exponent was computed by averaging across subjects for each region in the hemisphere contralateral to the side of resection. Selected regions of interest were then tested for abnormality using deviations from the normative map in terms of z-scores. Resection masks drawn from postoperative structural imaging were used as an approximation of the epileptogenic zone. Patients with FBTC seizures had greater abnormality compared to patients with focal onset seizures alone in the resection volume (p=0.003, area under the ROC curve = 0.78 ). Earlier age of seizure onset was correlated with greater abnormality of the aperiodic exponent in the resection volume (correlation coefficient = -0.3, p= 0.04)) as well as the whole cortex (rho = -0.33, p=0.03). The abnormality of the aperiodic exponent did not significantly differ between the resected and non-resected regions of the brain. Abnormalities in aperiodic components relate to important clinical characteristics such as severity and age of seizure onset. This suggests the potential use of the aperiodic band power component as a marker for severity of epilepsy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12080v1-abstract-full').style.display = 'none'; document.getElementById('2310.12080v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.06515">arXiv:2310.06515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.06515">pdf</a>, <a href="https://arxiv.org/format/2310.06515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Identifying epileptogenic abnormality by decomposing intracranial EEG and MEG power spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Kozma%2C+C">Csaba Kozma</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G">Gabrielle Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Owen%2C+T">Tom Owen</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A+W">Andrew W. McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J">John Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.06515v1-abstract-short" style="display: inline;"> Identifying abnormal electroencephalographic activity is crucial in diagnosis and treatment of epilepsy. Recent studies showed that decomposing brain activity into periodic (oscillatory) and aperiodic (trend across all frequencies) components may illuminate drivers of changes in spectral activity. Using iEEG data from 234 subjects, we constructed a normative map and compared this with a separate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06515v1-abstract-full').style.display = 'inline'; document.getElementById('2310.06515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.06515v1-abstract-full" style="display: none;"> Identifying abnormal electroencephalographic activity is crucial in diagnosis and treatment of epilepsy. Recent studies showed that decomposing brain activity into periodic (oscillatory) and aperiodic (trend across all frequencies) components may illuminate drivers of changes in spectral activity. Using iEEG data from 234 subjects, we constructed a normative map and compared this with a separate cohort of 63 patients with refractory focal epilepsy being considered for neurosurgery. The normative map was computed using three approaches: (i) relative complete band power, (ii) relative band power with the aperiodic component removed (iii) the aperiodic exponent. Corresponding abnormalities were also calculated for each approach in the separate patient cohort. We investigated the spatial profiles of the three approaches, assessed their localizing ability, and replicated our findings in a separate modality using MEG. The normative maps of relative complete band power and relative periodic band power had similar spatial profiles. In the aperiodic normative map, exponent values were highest in the temporal lobe. Abnormality estimated through the complete band power robustly distinguished between good and bad outcome patients. Neither periodic band power nor aperiodic exponent abnormalities distinguished seizure outcome groups. Combining periodic and aperiodic abnormalities improved performance, similar to the complete band power approach. Our findings suggest that sparing cerebral tissue that generates abnormalities in either periodic or aperiodic activity may lead to a poor surgical outcome. Both periodic and aperiodic abnormalities are necessary to distinguish patient outcomes, with neither sufficient in isolation. Future studies could investigate whether periodic or aperiodic abnormalities are affected by the cerebral location or pathology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06515v1-abstract-full').style.display = 'none'; document.getElementById('2310.06515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07271">arXiv:2309.07271</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.07271">pdf</a>, <a href="https://arxiv.org/format/2309.07271">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Diminished circadian and ultradian rhythms of human brain activity in pathological tissue in vivo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Thornton%2C+C">Christopher Thornton</a>, <a href="/search/q-bio?searchtype=author&amp;query=Panagiotopoulou%2C+M">Mariella Panagiotopoulou</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chowdhury%2C+F+A">Fahmida A Chowdhury</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Gascoigne%2C+S+J">Sarah J Gascoigne</a>, <a href="/search/q-bio?searchtype=author&amp;query=Besne%2C+G">Guillermo Besne</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A+W">Andrew W McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Smith%2C+B+C">Billy C Smith</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07271v2-abstract-short" style="display: inline;"> Chronobiological rhythms, such as the circadian rhythm, have long been linked to neurological disorders, but it is currently unknown how pathological processes affect the expression of biological rhythms in the brain. Here, we use the unique opportunity of long-term, continuous intracranially recorded EEG from 38 patients (totalling 6338 hours) to delineate circadian (daily) and ultradian (minut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07271v2-abstract-full').style.display = 'inline'; document.getElementById('2309.07271v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07271v2-abstract-full" style="display: none;"> Chronobiological rhythms, such as the circadian rhythm, have long been linked to neurological disorders, but it is currently unknown how pathological processes affect the expression of biological rhythms in the brain. Here, we use the unique opportunity of long-term, continuous intracranially recorded EEG from 38 patients (totalling 6338 hours) to delineate circadian (daily) and ultradian (minute to hourly) rhythms in different brain regions. We show that functional circadian and ultradian rhythms are diminished in pathological tissue, independent of regional variations. We further demonstrate that these diminished rhythms are persistent in time, regardless of load or occurrence of pathological events. These findings provide evidence that brain pathology is functionally associated with persistently diminished chronobiological rhythms in vivo in humans, independent of regional variations or pathological events. Future work interacting with, and restoring, these modulatory chronobiological rhythms may allow for novel therapies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07271v2-abstract-full').style.display = 'none'; document.getElementById('2309.07271v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05199">arXiv:2304.05199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05199">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Interictal MEG abnormalities to guide intracranial electrode implantation and predict surgical outcome </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Owen%2C+T+W">Thomas W. Owen</a>, <a href="/search/q-bio?searchtype=author&amp;query=Janiukstyte%2C+V">Vytene Janiukstyte</a>, <a href="/search/q-bio?searchtype=author&amp;query=Hall%2C+G+R">Gerard R. Hall</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chowdhury%2C+F+A">Fahmida A. Chowdhury</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A">Andrew McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S. Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Rugg-Gunn%2C+F">Fergus Rugg-Gunn</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05199v1-abstract-short" style="display: inline;"> Intracranial EEG (iEEG) is the gold standard technique for epileptogenic zone (EZ) localisation, but requires a hypothesis of which tissue is epileptogenic, guided by qualitative analysis of seizure semiology and other imaging modalities such as magnetoencephalography (MEG). We hypothesised that if quantifiable MEG band power abnormalities were sampled by iEEG, then patients&#39; post-resection seizur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05199v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05199v1-abstract-full" style="display: none;"> Intracranial EEG (iEEG) is the gold standard technique for epileptogenic zone (EZ) localisation, but requires a hypothesis of which tissue is epileptogenic, guided by qualitative analysis of seizure semiology and other imaging modalities such as magnetoencephalography (MEG). We hypothesised that if quantifiable MEG band power abnormalities were sampled by iEEG, then patients&#39; post-resection seizure outcome were better. Thirty-two individuals with neocortical epilepsy underwent MEG and iEEG recordings as part of pre-surgical evaluation. Interictal MEG band power abnormalities were derived using 70 healthy controls as a normative baseline. MEG abnormality maps were compared to electrode implantation, with the spatial overlap of iEEG electrodes and MEG abnormalities recorded. Finally, we assessed if the implantation of electrodes in abnormal tissue, and resection of the strongest abnormalities determined by MEG and iEEG explained surgical outcome. Intracranial electrodes were implanted in brain tissue with the most abnormal MEG findings in individuals that were seizure-free post-resection (T=3.9, p=0.003). The overlap between MEG abnormalities and iEEG electrodes distinguished outcome groups moderately well (AUC=0.68). In isolation, the resection of the strongest MEG and iEEG abnormalities separated surgical outcome groups well (AUC=0.71, AUC=0.74 respectively). A model incorporating all three features separated outcome groups best (AUC=0.80). Intracranial EEG is a key tool to delineate the EZ and help render patients seizure-free after resection. We showed that data-driven abnormalities derived from interictal MEG recordings have clinical value and may help guide electrode placement in individuals with neocortical epilepsy. Finally, our predictive model of post-operative seizure-freedom, which leverages both MEG and iEEG recordings, may aid patient counselling of expected outcome. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05199v1-abstract-full').style.display = 'none'; document.getElementById('2304.05199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05192">arXiv:2304.05192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05192">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Identifying epileptogenic abnormalities through spatial clustering of MEG interictal band power </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Owen%2C+T+W">Thomas W. Owen</a>, <a href="/search/q-bio?searchtype=author&amp;query=Janiukstyte%2C+V">Vytene Janiukstyte</a>, <a href="/search/q-bio?searchtype=author&amp;query=Hall%2C+G+R">Gerard R. Hall</a>, <a href="/search/q-bio?searchtype=author&amp;query=Horsley%2C+J+J">Jonathan J. Horsley</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A">Andrew McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S. Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Rugg-Gunn%2C+F">Fergus Rugg-Gunn</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05192v1-abstract-short" style="display: inline;"> Successful epilepsy surgery depends on localising and resecting cerebral abnormalities and networks that generate seizures. Abnormalities, however, may be widely distributed across multiple discontiguous areas. We propose spatially constrained clusters as candidate areas for further investigation, and potential resection. We quantified the spatial overlap between the abnormality cluster and subseq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05192v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05192v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05192v1-abstract-full" style="display: none;"> Successful epilepsy surgery depends on localising and resecting cerebral abnormalities and networks that generate seizures. Abnormalities, however, may be widely distributed across multiple discontiguous areas. We propose spatially constrained clusters as candidate areas for further investigation, and potential resection. We quantified the spatial overlap between the abnormality cluster and subsequent resection, hypothesising a greater overlap in seizure-free patients. Thirty-four individuals with refractory focal epilepsy underwent pre-surgical resting-state interictal MEG recording. Fourteen individuals were totally seizure free (ILAE 1) after surgery and 20 continued to have some seizures post-operatively (ILAE 2+). Band power abnormality maps were derived using controls as a baseline. Patient abnormalities were spatially clustered using the k-means algorithm. The tissue within the cluster containing the most abnormal region was compared with the resection volume using the dice score. The proposed abnormality cluster overlapped with the resection in 71% of ILAE 1 patients. Conversely, an overlap only occurred in 15% of ILAE 2+ patients. This effect discriminated outcome groups well (AUC=0.82). Our novel approach identifies clusters of spatially similar tissue with high abnormality. This is clinically valuable, providing (i) a data-driven framework to validate current hypotheses of the epileptogenic zone localisation or (ii) to guide further investigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05192v1-abstract-full').style.display = 'none'; document.getElementById('2304.05192v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03204">arXiv:2304.03204</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.03204">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Normative brain mapping using scalp EEG and potential clinical application </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Janiukstyte%2C+V">Vytene Janiukstyte</a>, <a href="/search/q-bio?searchtype=author&amp;query=Owen%2C+T+W">Thomas W Owen</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chaudhary%2C+U+J">Umair J Chaudhary</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lemieux%2C+L">Louis Lemieux</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03204v1-abstract-short" style="display: inline;"> A normative electrographic activity map could be a powerful resource to understand normal brain function and identify abnormal activity. Here, we present a normative brain map using scalp EEG in terms of relative band power. In this exploratory study we investigate its temporal stability, its similarity to other imaging modalities, and explore a potential clinical application. We constructed sca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03204v1-abstract-full').style.display = 'inline'; document.getElementById('2304.03204v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03204v1-abstract-full" style="display: none;"> A normative electrographic activity map could be a powerful resource to understand normal brain function and identify abnormal activity. Here, we present a normative brain map using scalp EEG in terms of relative band power. In this exploratory study we investigate its temporal stability, its similarity to other imaging modalities, and explore a potential clinical application. We constructed scalp EEG normative maps of brain dynamics from 17 healthy controls using source-localised resting-state scalp recordings. We then correlated these maps with those acquired from MEG and intracranial EEG to investigate their similarity. Lastly, we use the normative maps to lateralise abnormal regions in epilepsy. Spatial patterns of band powers were broadly consistent with previous literature and stable across recordings. Scalp EEG normative maps were most similar to other modalities in the alpha band, and relatively similar across most bands. Towards a clinical application in epilepsy, we found abnormal temporal regions ipsilateral to the epileptogenic hemisphere. Scalp EEG relative band power normative maps are spatially stable across time, in keeping with MEG and intracranial EEG results. Normative mapping is feasible and may be potentially clinically useful in epilepsy. Future studies with larger sample sizes and high-density EEG are now required for validation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03204v1-abstract-full').style.display = 'none'; document.getElementById('2304.03204v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03192">arXiv:2304.03192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.03192">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Complementary structural and functional abnormalities to localise epileptogenic tissue </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Horsley%2C+J+J">Jonathan J Horsley</a>, <a href="/search/q-bio?searchtype=author&amp;query=Thomas%2C+R+H">Rhys H Thomas</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chowdhury%2C+F+A">Fahmida A Chowdhury</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A+W">Andrew W McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Vos%2C+S+B">Sjoerd B Vos</a>, <a href="/search/q-bio?searchtype=author&amp;query=Walker%2C+M+C">Matthew C Walker</a>, <a href="/search/q-bio?searchtype=author&amp;query=Winston%2C+G+P">Gavin P Winston</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03192v3-abstract-short" style="display: inline;"> When investigating suitability for surgery, people with drug-refractory focal epilepsy may have intracranial EEG (iEEG) electrodes implanted to localise seizure onset. Diffusion-weighted magnetic resonance imaging (dMRI) may be acquired to identify key white matter tracts for surgical avoidance. Here, we investigate whether structural connectivity abnormalities, inferred from dMRI, may be used in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03192v3-abstract-full').style.display = 'inline'; document.getElementById('2304.03192v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03192v3-abstract-full" style="display: none;"> When investigating suitability for surgery, people with drug-refractory focal epilepsy may have intracranial EEG (iEEG) electrodes implanted to localise seizure onset. Diffusion-weighted magnetic resonance imaging (dMRI) may be acquired to identify key white matter tracts for surgical avoidance. Here, we investigate whether structural connectivity abnormalities, inferred from dMRI, may be used in conjunction with functional iEEG abnormalities to aid localisation and resection of the epileptogenic zone (EZ), and improve surgical outcomes in epilepsy. We retrospectively investigated data from 43 patients with epilepsy who had surgery following iEEG. Twenty five patients (58%) were free from disabling seizures (ILAE 1 or 2) at one year. For all patients, T1-weighted and diffusion-weighted MRIs were acquired prior to iEEG implantation. Interictal iEEG functional, and dMRI structural connectivity abnormalities were quantified by comparison to a normative map and healthy controls respectively. First, we explored whether the resection of maximal (dMRI and iEEG) abnormalities related to improved surgical outcomes. Second, we investigated whether the modalities provided complementary information for improved prediction of surgical outcome. Third, we suggest how dMRI abnormalities may be useful to inform the placement of iEEG electrodes as part of the pre-surgical evaluation using a patient case study. Seizure freedom was 15 times more likely in those patients with resection of maximal dMRI and iEEG abnormalities (p=0.008). Both modalities were separately able to distinguish patient outcome groups and when combined, a decision tree correctly separated 36 out of 43 (84%) patients based on surgical outcome. Structural dMRI could be used in pre-surgical evaluations, particularly when localisation of the EZ is uncertain, to inform personalised iEEG implantation and resection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03192v3-abstract-full').style.display = 'none'; document.getElementById('2304.03192v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.05734">arXiv:2302.05734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.05734">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Temporal stability of intracranial EEG abnormality maps for localising epileptogenic tissue </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Horsley%2C+J+J">Jonathan J Horsley</a>, <a href="/search/q-bio?searchtype=author&amp;query=Panagiotopoulou%2C+M">Mariella Panagiotopoulou</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chowdhury%2C+F+A">Fahmida A Chowdhury</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A+W">Andrew W McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.05734v1-abstract-short" style="display: inline;"> Objective: Identifying abnormalities in interictal intracranial EEG, by comparing patient data to a normative map, has shown promise for the localisation of epileptogenic tissue and prediction of outcome. The approach typically uses short interictal segments of around one minute. However, the temporal stability of findings has not been established. Methods: Here, we generated a normative map of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05734v1-abstract-full').style.display = 'inline'; document.getElementById('2302.05734v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.05734v1-abstract-full" style="display: none;"> Objective: Identifying abnormalities in interictal intracranial EEG, by comparing patient data to a normative map, has shown promise for the localisation of epileptogenic tissue and prediction of outcome. The approach typically uses short interictal segments of around one minute. However, the temporal stability of findings has not been established. Methods: Here, we generated a normative map of iEEG in non-pathological brain tissue from 249 patients. We computed regional band power abnormalities in a separate cohort of 39 patients for the duration of their monitoring period (0.92-8.62 days of iEEG data, mean 4.58 days per patient, over 4,800 hours recording). To assess the localising value of band power abnormality, we computed DRS - a measure of how different the surgically resected and spared tissue were in terms of band power abnormalities - over time. Results: In each patient, band power abnormality was relatively consistent over time. The median DRS of the entire recording period separated seizure free (ILAE = 1) and not seizure free (ILAE &gt; 1) patients well (AUC = 0.69). This effect was similar interictally (AUC = 0.69) and peri-ictally (AUC = 0.71). Significance: Our results suggest that band power abnormality DRS, as a predictor of outcomes from epilepsy surgery, is a relatively robust metric over time. These findings add further support for abnormality mapping of neurophysiology data during presurgical evaluation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05734v1-abstract-full').style.display = 'none'; document.getElementById('2302.05734v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06529">arXiv:2212.06529</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06529">pdf</a>, <a href="https://arxiv.org/format/2212.06529">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Effects of anterior temporal lobe resection on cortical morphology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Leiberg%2C+K">Karoline Leiberg</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Little%2C+B">Bethany Little</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Vos%2C+S+B">Sjoerd B Vos</a>, <a href="/search/q-bio?searchtype=author&amp;query=Winston%2C+G+P">Gavin P Winston</a>, <a href="/search/q-bio?searchtype=author&amp;query=Mota%2C+B">Bruno Mota</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06529v1-abstract-short" style="display: inline;"> Anterior temporal lobe resection (ATLR) is a surgical procedure to treat drug-resistant temporal lobe epilepsy (TLE). Resection may involve large amounts of cortical tissue. Here, we examine the effects of this surgery on cortical morphology measured in independent variables both near the resection and remotely. We studied 101 individuals with TLE (55 left, 46 right onset) who underwent ATLR. Fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06529v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06529v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06529v1-abstract-full" style="display: none;"> Anterior temporal lobe resection (ATLR) is a surgical procedure to treat drug-resistant temporal lobe epilepsy (TLE). Resection may involve large amounts of cortical tissue. Here, we examine the effects of this surgery on cortical morphology measured in independent variables both near the resection and remotely. We studied 101 individuals with TLE (55 left, 46 right onset) who underwent ATLR. For each individual we considered one pre-surgical MRI and one follow-up MRI 2 to 13 months after surgery. We used our newly developed surface-based method to locally compute traditional morphological variables (average cortical thickness, exposed surface area, and total surface area), and the independent measures $K$, $I$, and $S$, where $K$ measures white matter tension, $I$ captures isometric scaling, and $S$ contains the remaining information about cortical shape. Data from 924 healthy controls was included to account for healthy ageing effects occurring during scans. A SurfStat random field theory clustering approach assessed changes across the cortex caused by ATLR. Compared to preoperative data, surgery had marked effects on all morphological measures. Ipsilateral effects were located in the orbitofrontal and inferior frontal gyri, the pre- and postcentral gyri and supramarginal gyrus, and the lateral occipital gyrus and lingual cortex. Contralateral effects were in the lateral occipital gyrus, and inferior frontal gyrus and frontal pole. The restructuring following ATLR is reflected in widespread morphological changes, mainly in regions near the resection, but also remotely in regions that are structurally connected to the anterior temporal lobe. The causes could include mechanical effects, Wallerian degeneration, or compensatory plasticity. The study of independent measures revealed additional effects compared to traditional measures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06529v1-abstract-full').style.display = 'none'; document.getElementById('2212.06529v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08066">arXiv:2209.08066</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.08066">pdf</a>, <a href="https://arxiv.org/format/2209.08066">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Neuro-evolutionary evidence for a universal fractal primate brain shape </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Leiberg%2C+K">Karoline Leiberg</a>, <a href="/search/q-bio?searchtype=author&amp;query=Kindred%2C+N">Nathan Kindred</a>, <a href="/search/q-bio?searchtype=author&amp;query=Madan%2C+C+R">Christopher R. Madan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Poirier%2C+C">Colline Poirier</a>, <a href="/search/q-bio?searchtype=author&amp;query=Petkov%2C+C+I">Christopher I. Petkov</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Mota%2C+B+C+C">Bruno C. C. Mota</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08066v6-abstract-short" style="display: inline;"> The cerebral cortex displays a bewildering diversity of shapes and sizes across and within species. Despite this diversity, we present a universal multi-scale description of primate cortices. We show that all cortical shapes can be described as a set of nested folds of different sizes. As neighbouring folds are gradually merged, the cortices of 11 primate species follow a common scale-free morphom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08066v6-abstract-full').style.display = 'inline'; document.getElementById('2209.08066v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08066v6-abstract-full" style="display: none;"> The cerebral cortex displays a bewildering diversity of shapes and sizes across and within species. Despite this diversity, we present a universal multi-scale description of primate cortices. We show that all cortical shapes can be described as a set of nested folds of different sizes. As neighbouring folds are gradually merged, the cortices of 11 primate species follow a common scale-free morphometric trajectory, that also overlaps with over 70 other mammalian species. Our results indicate that all cerebral cortices are approximations of the same archetypal fractal shape with a fractal dimension of $d_f=2.5$. Importantly, this new understanding enables a more precise quantification of brain morphology as a function of scale. To demonstrate the importance of this new understanding, we show a scale-dependent effect of ageing on brain morphology. We observe a more than four-fold increase in effect size (from 2 standard deviations to 8 standard deviations) at a spatial scale of approximately 2 mm compared to standard morphological analyses. Our new understanding may therefore generate superior biomarkers for a range of conditions in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08066v6-abstract-full').style.display = 'none'; document.getElementById('2209.08066v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.06518">arXiv:2207.06518</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.06518">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> MEG abnormalities and mechanisms of surgical failure in neocortical epilepsy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Owen%2C+T+W">Thomas W. Owen</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M. Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Janiukstyte%2C+V">Vytene Janiukstyte</a>, <a href="/search/q-bio?searchtype=author&amp;query=Hall%2C+G+R">Gerard R. Hall</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A">Andrew McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S. Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Rugg-Gunn%2C+F">Fergus Rugg-Gunn</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.06518v2-abstract-short" style="display: inline;"> Neocortical epilepsy surgery fails to achieve post-operative seizure freedom in 30-40% of cases. It is not fully understood why surgery in some patients is unsuccessful. Comparing interictal MEG bandpower from patients to normative maps, which describe healthy spatial and population variability, we identify patient specific abnormalities relating to surgical failure. We propose three mechanisms co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06518v2-abstract-full').style.display = 'inline'; document.getElementById('2207.06518v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.06518v2-abstract-full" style="display: none;"> Neocortical epilepsy surgery fails to achieve post-operative seizure freedom in 30-40% of cases. It is not fully understood why surgery in some patients is unsuccessful. Comparing interictal MEG bandpower from patients to normative maps, which describe healthy spatial and population variability, we identify patient specific abnormalities relating to surgical failure. We propose three mechanisms contributing to poor surgical outcome; 1) failure to resect abnormalities, 2) failing to remove all epileptogenic abnormalities, and 3) insufficiently impacting the overall cortical abnormality. We develop markers of these mechanisms, validating them against patient outcomes. Resting-state MEG data were acquired for 70 healthy controls and 32 patients with refractory neocortical epilepsy. Relative bandpower maps were computed using source localised recordings from healthy controls. Patient and region-specific bandpower abnormalities were estimated as the maximum absolute z-score, using healthy data as a baseline. Resected regions were identified from post-operative MRI. We hypothesised our mechanism markers would discriminate patient&#39;s post-surgery seizure outcomes. Mechanisms of surgical failure discriminate surgical outcome groups (Abnormalities not targeted: AUC=0.80, Partial resection of the epileptogenic zone: AUC=0.68, Insufficient cortical abnormality impact: AUC=0.64). Leveraging all markers together found that 95% of those who were not seizure free had markers of surgical failure in at least one of the three proposed mechanisms. In contrast, of those patients markers for any mechanism, 80% were seizure-free. Abnormality mapping across the brain is important for a wide range of neurological conditions. Here we demonstrated that interictal MEG bandpower mapping has merit for localising pathology and improving our mechanistic understanding of epilepsy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06518v2-abstract-full').style.display = 'none'; document.getElementById('2207.06518v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.15283">arXiv:2206.15283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.15283">pdf</a>, <a href="https://arxiv.org/format/2206.15283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> A library of quantitative markers of seizure severity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Gascoigne%2C+S+J">Sarah J. Gascoigne</a>, <a href="/search/q-bio?searchtype=author&amp;query=Waldmann%2C+L">Leonard Waldmann</a>, <a href="/search/q-bio?searchtype=author&amp;query=Panagiotopoulou%2C+M">Mariella Panagiotopoulou</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chowdhury%2C+F">Fahmida Chowdhury</a>, <a href="/search/q-bio?searchtype=author&amp;query=Cronie%2C+A">Alison Cronie</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S. Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Falconer%2C+J">Jennifer Falconer</a>, <a href="/search/q-bio?searchtype=author&amp;query=Guan%2C+Y">Yu Guan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Leach%2C+V">Veronica Leach</a>, <a href="/search/q-bio?searchtype=author&amp;query=Livingstone%2C+S">Shona Livingstone</a>, <a href="/search/q-bio?searchtype=author&amp;query=Papasavvas%2C+C">Christoforos Papasavvas</a>, <a href="/search/q-bio?searchtype=author&amp;query=Faulder%2C+R">Ryan Faulder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Blickwedel%2C+J">Jess Blickwedel</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M. Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Thomas%2C+R+H">Rhys H. Thomas</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wilson%2C+K">Kevin Wilson</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.15283v2-abstract-short" style="display: inline;"> Purpose: Understanding fluctuations of seizure severity within individuals is important for defining treatment outcomes and response to therapy, as well as developing novel treatments for epilepsy. Current methods for grading seizure severity rely on qualitative interpretations from patients and clinicians. Quantitative measures of seizure severity would complement existing approaches, for EEG mon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15283v2-abstract-full').style.display = 'inline'; document.getElementById('2206.15283v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.15283v2-abstract-full" style="display: none;"> Purpose: Understanding fluctuations of seizure severity within individuals is important for defining treatment outcomes and response to therapy, as well as developing novel treatments for epilepsy. Current methods for grading seizure severity rely on qualitative interpretations from patients and clinicians. Quantitative measures of seizure severity would complement existing approaches, for EEG monitoring, outcome monitoring, and seizure prediction. Therefore, we developed a library of quantitative electroencephalographic (EEG) markers that assess the spread and intensity of abnormal electrical activity during and after seizures. Methods: We analysed intracranial EEG (iEEG) recordings of 1056 seizures from 63 patients. For each seizure, we computed 16 markers of seizure severity that capture the signal magnitude, spread, duration, and post-ictal suppression of seizures. Results: Quantitative EEG markers of seizure severity distinguished focal vs. subclinical and focal vs. FTBTC seizures across patients. In individual patients, 71% had a moderate to large difference (ranksum r &gt; 0.3) between focal and subclinical seizures in three or more markers. Circadian and longer-term changes in severity were found for 67% and 53% of patients, respectively. Conclusion: We demonstrate the feasibility of using quantitative iEEG markers to measure seizure severity. Our quantitative markers distinguish between seizure types and are therefore sensitive to established qualitative differences in seizure severity. Our results also suggest that seizure severity is modulated over different timescales. We envisage that our proposed seizure severity library will be expanded and updated in collaboration with the epilepsy research community to include more measures and modalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15283v2-abstract-full').style.display = 'none'; document.getElementById('2206.15283v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages main text, 18 pages supplementary. Six main figures, two supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.08086">arXiv:2204.08086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.08086">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Intracranial EEG structure-function coupling predicts surgical outcomes in focal epilepsy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Sinha%2C+N">Nishant Sinha</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S. Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chowdhury%2C+F+A">Fahmida A. Chowdhury</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A+W">Andrew W. McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Davis%2C+K+A">Kathryn A. Davis</a>, <a href="/search/q-bio?searchtype=author&amp;query=Vos%2C+S+B">Sjoerd B. Vos</a>, <a href="/search/q-bio?searchtype=author&amp;query=Winston%2C+G+P">Gavin P. Winston</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.08086v1-abstract-short" style="display: inline;"> Alterations to structural and functional brain networks have been reported across many neurological conditions. However, the relationship between structure and function -- their coupling -- is relatively unexplored, particularly in the context of an intervention. Epilepsy surgery alters the brain structure and networks to control the functional abnormality of seizures. Given that surgery is a stru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08086v1-abstract-full').style.display = 'inline'; document.getElementById('2204.08086v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.08086v1-abstract-full" style="display: none;"> Alterations to structural and functional brain networks have been reported across many neurological conditions. However, the relationship between structure and function -- their coupling -- is relatively unexplored, particularly in the context of an intervention. Epilepsy surgery alters the brain structure and networks to control the functional abnormality of seizures. Given that surgery is a structural modification aiming to alter the function, we hypothesized that stronger structure-function coupling preoperatively is associated with a greater chance of post-operative seizure control. We constructed structural and functional brain networks in 39 subjects with medication-resistant focal epilepsy using data from intracranial EEG (pre-surgery), structural MRI (pre-and post-surgery), and diffusion MRI (pre-surgery). We investigated pre-operative structure-function coupling at two spatial scales a) at the global iEEG network level and b) at the resolution of individual iEEG electrode contacts using virtual surgeries. At global network level, seizure-free individuals had stronger structure-function coupling pre-operatively than those that were not seizure-free regardless of the choice of interictal segment or frequency band. At the resolution of individual iEEG contacts, the virtual surgery approach provided complementary information to localize epileptogenic tissues. In predicting seizure outcomes, structure-function coupling measures were more important than clinical attributes, and together they predicted seizure outcomes with an accuracy of 85% and sensitivity of 87%. The underlying assumption that the structural changes induced by surgery translate to the functional level to control seizures is valid when the structure-functional coupling is strong. Mapping the regions that contribute to structure-functional coupling using virtual surgeries may help aid surgical planning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08086v1-abstract-full').style.display = 'none'; document.getElementById('2204.08086v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.02590">arXiv:2202.02590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.02590">pdf</a>, <a href="https://arxiv.org/format/2202.02590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Volumetric and structural connectivity abnormalities co-localise in TLE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Horsley%2C+J+J">Jonathan J. Horsley</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M. Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Thomas%2C+R+H">Rhys H. Thomas</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Vos%2C+S+B">Sjoerd B. Vos</a>, <a href="/search/q-bio?searchtype=author&amp;query=Winston%2C+G+P">Gavin P. Winston</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S. Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.02590v1-abstract-short" style="display: inline;"> Patients with temporal lobe epilepsy (TLE) exhibit both volumetric and structural connectivity abnormalities relative to healthy controls. How these abnormalities inter-relate and their mechanisms are unclear. We computed grey matter volumetric changes and white matter structural connectivity abnormalities in 144 patients with unilateral TLE and 96 healthy controls. Regional volumes were calculate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02590v1-abstract-full').style.display = 'inline'; document.getElementById('2202.02590v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.02590v1-abstract-full" style="display: none;"> Patients with temporal lobe epilepsy (TLE) exhibit both volumetric and structural connectivity abnormalities relative to healthy controls. How these abnormalities inter-relate and their mechanisms are unclear. We computed grey matter volumetric changes and white matter structural connectivity abnormalities in 144 patients with unilateral TLE and 96 healthy controls. Regional volumes were calculated using T1-weighted MRI, while structural connectivity was derived using white matter fibre tractography from diffusion-weighted MRI. For each regional volume and each connection strength, we calculated the effect size between patient and control groups in a group-level analysis. We then applied hierarchical regression to investigate the relationship between volumetric and structural connectivity abnormalities in individuals. Additionally, we quantified whether abnormalities co-localised within individual patients by computing Dice similarity scores. In TLE, white matter connectivity abnormalities were greater when joining two grey matter regions with abnormal volumes. Similarly, grey matter volumetric abnormalities were greater when joined by abnormal white matter connections. The extent of volumetric and connectivity abnormalities related to epilepsy duration, but co-localisation did not. Co-localisation was primarily driven by neighbouring abnormalities in the ipsilateral hemisphere. Overall, volumetric and structural connectivity abnormalities were related in TLE. Our results suggest that shared mechanisms may underlie changes in both volume and connectivity alterations in patients with TLE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02590v1-abstract-full').style.display = 'none'; document.getElementById('2202.02590v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.11600">arXiv:2201.11600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.11600">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Chronic iEEG recordings and interictal spike rate reveal multiscale temporal modulations in seizure states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M. Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Karoly%2C+P+J">Philippa J. Karoly</a>, <a href="/search/q-bio?searchtype=author&amp;query=Maturana%2C+M">Matias Maturana</a>, <a href="/search/q-bio?searchtype=author&amp;query=Panagiotopoulou%2C+M">Mariella Panagiotopoulou</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Cook%2C+M+J">Mark J. Cook</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.11600v2-abstract-short" style="display: inline;"> Background and Objectives: Many biological processes are modulated by rhythms on circadian and multidien timescales. In focal epilepsy, various seizure features, such as spread and duration, can change from one seizure to the next within the same patient. However, the specific timescales of this variability, as well as the specific seizure characteristics that change over time, are unclear. Meth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11600v2-abstract-full').style.display = 'inline'; document.getElementById('2201.11600v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.11600v2-abstract-full" style="display: none;"> Background and Objectives: Many biological processes are modulated by rhythms on circadian and multidien timescales. In focal epilepsy, various seizure features, such as spread and duration, can change from one seizure to the next within the same patient. However, the specific timescales of this variability, as well as the specific seizure characteristics that change over time, are unclear. Methods: Here, in a cross-sectional observational study, we analysed within-patient seizure variability in 10 patients with chronic intracranial EEG recordings (185-767 days of recording time, 57-452 analysed seizures/patient). We characterised the seizure evolutions as sequences of a finite number of patient-specific functional seizure network states (SNSs). We then compared SNS occurrence and duration to (1) time since implantation and (2) patient-specific circadian and multidien cycles in interictal spike rate. Results: In most patients, the occurrence or duration of at least one SNS was associated with the time since implantation. Some patients had one or more SNSs that were associated with phases of circadian and/or multidien spike rate cycles. A given SNS&#39;s occurrence and duration were usually not associated with the same timescale. Discussion: Our results suggest that different time-varying factors modulate within-patient seizure evolutions over multiple timescales, with separate processes modulating a SNS&#39;s occurrence and duration. These findings imply that the development of time-adaptive treatments in epilepsy must account for several separate properties of epileptic seizures, and similar principles likely apply to other neurological conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11600v2-abstract-full').style.display = 'none'; document.getElementById('2201.11600v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06672">arXiv:2109.06672</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06672">pdf</a>, <a href="https://arxiv.org/format/2109.06672">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Seizure pathways and seizure durations can vary independently within individual patients with focal epilepsy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M. Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chowdhury%2C+F+A">Fahmida A. Chowdhury</a>, <a href="/search/q-bio?searchtype=author&amp;query=Cook%2C+M+J">Mark J. Cook</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S. Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Karoly%2C+P+J">Philippa J. Karoly</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06672v1-abstract-short" style="display: inline;"> A seizure&#39;s electrographic dynamics are characterised by its spatiotemporal evolution, also termed dynamical &#34;pathway&#34; and the time it takes to complete that pathway, which results in the seizure&#39;s duration. Both seizure pathways and durations can vary within the same patient, producing seizures with different dynamics, severity, and clinical implications. However, it is unclear whether seizures f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06672v1-abstract-full').style.display = 'inline'; document.getElementById('2109.06672v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06672v1-abstract-full" style="display: none;"> A seizure&#39;s electrographic dynamics are characterised by its spatiotemporal evolution, also termed dynamical &#34;pathway&#34; and the time it takes to complete that pathway, which results in the seizure&#39;s duration. Both seizure pathways and durations can vary within the same patient, producing seizures with different dynamics, severity, and clinical implications. However, it is unclear whether seizures following the same pathway will have the same duration or if these features can vary independently. We compared within-subject variability in these seizure features using 1) epilepsy monitoring unit intracranial EEG (iEEG) recordings of 31 patients (mean 6.7 days, 16.5 seizures/subject), 2) NeuroVista chronic iEEG recordings of 10 patients (mean 521.2 days, 252.6 seizures/subject), and 3) chronic iEEG recordings of 3 dogs with focal-onset seizures (mean 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure durations. The relationship between seizure pathways and durations was weakened by seizures that 1) had a common pathway, but different durations (&#34;elastic pathways&#34;), or 2) had similar durations, but followed different pathways (&#34;duplicate durations&#34;). Even in subjects with distinct populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings suggest that seizure pathways and durations are modulated by different processes. Uncovering such modulators may reveal novel therapeutic targets for reducing seizure duration and severity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06672v1-abstract-full').style.display = 'none'; document.getElementById('2109.06672v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.04643">arXiv:2105.04643</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.04643">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Normative brain mapping of interictal intracranial EEG to localise epileptogenic tissue </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Papasavvas%2C+C+A">Christoforos A Papasavvas</a>, <a href="/search/q-bio?searchtype=author&amp;query=Owen%2C+T+W">Thomas W Owen</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Hutchings%2C+F+E">Frances E Hutchings</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chowdhury%2C+F+A">Fahmida A Chowdhury</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A+W">Andrew W McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Vos%2C+S+B">Sjoerd B Vos</a>, <a href="/search/q-bio?searchtype=author&amp;query=Walker%2C+M+C">Matthew C Walker</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.04643v2-abstract-short" style="display: inline;"> The identification of abnormal electrographic activity is important in a wide range of neurological disorders, including epilepsy for localising epileptogenic tissue. However, this identification may be challenging during non-seizure (interictal) periods, especially if abnormalities are subtle compared to the repertoire of possible healthy brain dynamics. Here, we investigate if such interictal ab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04643v2-abstract-full').style.display = 'inline'; document.getElementById('2105.04643v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.04643v2-abstract-full" style="display: none;"> The identification of abnormal electrographic activity is important in a wide range of neurological disorders, including epilepsy for localising epileptogenic tissue. However, this identification may be challenging during non-seizure (interictal) periods, especially if abnormalities are subtle compared to the repertoire of possible healthy brain dynamics. Here, we investigate if such interictal abnormalities become more salient by quantitatively accounting for the range of healthy brain dynamics in a location-specific manner. To this end, we constructed a normative map of brain dynamics, in terms of relative band power, from interictal intracranial recordings from 234 subjects (21,598 electrode contacts). We then compared interictal recordings from 62 patients with epilepsy to the normative map to identify abnormal regions. We hypothesised that if the most abnormal regions were spared by surgery, then patients would be more likely to experience continued seizures post-operatively. We first confirmed that the spatial variations of band power in the normative map across brain regions were consistent with healthy variations reported in the literature. Second, when accounting for the normative variations, regions which were spared by surgery were more abnormal than those resected only in patients with persistent post-operative seizures (t=-3.6, p=0.0003), confirming our hypothesis. Third, we found that this effect discriminated patient outcomes (AUC=0.75 p=0.0003). Normative mapping is a well-established practice in neuroscientific research. Our study suggests that this approach is feasible to detect interictal abnormalities in intracranial EEG, and of potential clinical value to identify pathological tissue in epilepsy. Finally, we make our normative intracranial map publicly available to facilitate future investigations in epilepsy and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04643v2-abstract-full').style.display = 'none'; document.getElementById('2105.04643v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.02805">arXiv:2105.02805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.02805">pdf</a>, <a href="https://arxiv.org/format/2105.02805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Long-term changes in functional connectivity predict responses to intracranial stimulation of the human brain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Papasavvas%2C+C">Christoforos Papasavvas</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter Neal Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.02805v2-abstract-short" style="display: inline;"> Targeted electrical stimulation of the brain perturbs neural networks and modulates their rhythmic activity both at the site of stimulation and at remote brain regions. Understanding, or even predicting, this neuromodulatory effect is crucial for any therapeutic use of brain stimulation. To this end, we analyzed the stimulation responses in 131 stimulation sessions across 66 patients with focal ep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02805v2-abstract-full').style.display = 'inline'; document.getElementById('2105.02805v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.02805v2-abstract-full" style="display: none;"> Targeted electrical stimulation of the brain perturbs neural networks and modulates their rhythmic activity both at the site of stimulation and at remote brain regions. Understanding, or even predicting, this neuromodulatory effect is crucial for any therapeutic use of brain stimulation. To this end, we analyzed the stimulation responses in 131 stimulation sessions across 66 patients with focal epilepsy recorded through intracranial EEG (iEEG). We considered functional and structural connectivity features as predictors of the response at every iEEG contact. Taking advantage of multiple recordings over days, we also investigated how slow changes in interictal functional connectivity (FC) ahead of the stimulation relate to stimulation responses. The results reveal that, indeed, this long-term variability of FC exhibits strong association with the stimulation-induced increases in delta and theta band power. Furthermore, we show through cross-validation that long-term variability of FC improves prediction of responses above the performance of spatial predictors alone. These findings can enhance the patient-specific design of effective neuromodulatory protocols for therapeutic interventions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02805v2-abstract-full').style.display = 'none'; document.getElementById('2105.02805v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Article, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.07105">arXiv:2012.07105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.07105">pdf</a>, <a href="https://arxiv.org/format/2012.07105">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Fluctuations in EEG band power at subject-specific timescales over minutes to days explain changes in seizure evolutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Panagiotopoulou%2C+M">Mariella Panagiotopoulou</a>, <a href="/search/q-bio?searchtype=author&amp;query=Papasavvas%2C+C+A">Christoforos A Papasavvas</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Thomas%2C+R+H">Rhys H Thomas</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.07105v3-abstract-short" style="display: inline;"> Epilepsy is recognised as a dynamic disease, where both seizure susceptibility and seizure characteristics themselves change over time. Specifically, we recently quantified the variable electrographic spatio-temporal seizure evolutions that exist within individual patients. This variability appears to follow subject-specific circadian, or longer, timescale modulations. It is therefore important to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07105v3-abstract-full').style.display = 'inline'; document.getElementById('2012.07105v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.07105v3-abstract-full" style="display: none;"> Epilepsy is recognised as a dynamic disease, where both seizure susceptibility and seizure characteristics themselves change over time. Specifically, we recently quantified the variable electrographic spatio-temporal seizure evolutions that exist within individual patients. This variability appears to follow subject-specific circadian, or longer, timescale modulations. It is therefore important to know whether continuously-recorded interictal iEEG features can capture signatures of these modulations over different timescales. In this work, we analyse continuous intracranial electroencephalographic (iEEG) recordings from video-telemetry units and find fluctuations in iEEG band power over timescales ranging from minutes up to twelve days. As expected and in agreement with previous studies, we find that all subjects show a circadian fluctuation in their iEEG band power. We additionally find other fluctuations of similar magnitude on subject-specific timescales. Importantly, we find that a combination of these fluctuations on different timescales can explain changes in seizure evolutions in most subjects above chance level. These results suggest that subject-specific fluctuations in iEEG band power over timescales of minutes to days may serve as markers of seizure modulating processes. We hope that future work can link these detected fluctuations to their biological driver(s). There is a critical need to better understand seizure modulating processes, as this will enable the development of novel treatment strategies that could minimise the seizure spread, duration, or severity and therefore the clinical impact of seizures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07105v3-abstract-full').style.display = 'none'; document.getElementById('2012.07105v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13567">arXiv:2009.13567</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13567">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1111/epi.16819">10.1111/epi.16819 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Focal to bilateral tonic-clonic seizures are associated with widespread network abnormality in temporal lobe epilepsy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Sinha%2C+N">Nishant Sinha</a>, <a href="/search/q-bio?searchtype=author&amp;query=Peternell%2C+N">Natalie Peternell</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M. Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Vos%2C+S+B">Sjoerd B. Vos</a>, <a href="/search/q-bio?searchtype=author&amp;query=Winston%2C+G+P">Gavin P. Winston</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S. Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13567v1-abstract-short" style="display: inline;"> Objective: To identify if whole-brain structural network alterations in patients with temporal lobe epilepsy (TLE) and focal to bilateral tonic-clonic seizures (FBTCS) differ from alterations in patients without FBTCS. Methods: We dichotomized a cohort of 83 drug-resistant patients with TLE into those with and without FBTCS and compared each group to 29 healthy controls. For each subject, we use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13567v1-abstract-full').style.display = 'inline'; document.getElementById('2009.13567v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13567v1-abstract-full" style="display: none;"> Objective: To identify if whole-brain structural network alterations in patients with temporal lobe epilepsy (TLE) and focal to bilateral tonic-clonic seizures (FBTCS) differ from alterations in patients without FBTCS. Methods: We dichotomized a cohort of 83 drug-resistant patients with TLE into those with and without FBTCS and compared each group to 29 healthy controls. For each subject, we used diffusion MRI to construct whole-brain structural networks. First, we measured the extent of alterations by performing FBTCS-negative (FBTCS-) versus control and FBTCS-positive (FBTCS+) versus control comparisons, thereby delineating altered sub-networks of the whole-brain structural network. Second, by standardising networks of each patient using control networks, we measured the subject-specific abnormality at every brain region in the network, thereby quantifying the spatial localisation and the amount of abnormality in every patient. Results: Both FBTCS+ and FBTCS- patient groups had altered sub-networks with reduced fractional anisotropy (FA) and increased mean diffusivity (MD) compared to controls. The altered subnetwork in FBTCS+ patients was more widespread than in FBTCS- patients (441 connections altered at t&gt;3, p&lt;0.001 in FBTCS+ compared to 21 connections altered at t&gt;3, p=0.01 in FBTCS-). Significantly greater abnormalities-aggregated over the entire brain network as well as assessed at the resolution of individual brain areas-were present in FBTCS+ patients (p&lt;0.001, d=0.82). In contrast, the fewer abnormalities present in FBTCS- patients were mainly localised to the temporal and frontal areas. Significance: The whole-brain structural network is altered to a greater and more widespread extent in patients with TLE and FBTCS. We suggest that these abnormal networks may serve as an underlying structural basis or consequence of the greater seizure spread observed in FBTCS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13567v1-abstract-full').style.display = 'none'; document.getElementById('2009.13567v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Epilepsia. 2021 62(3):729-741 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07643">arXiv:2007.07643</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07643">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Multivariate white matter alterations are associated with epilepsy duration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Owen%2C+T+W">Tom W. Owen</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Vos%2C+S+B">Sjoerd B. Vos</a>, <a href="/search/q-bio?searchtype=author&amp;query=Winston%2C+G+P">Gavin P. Winston</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S. Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07643v1-abstract-short" style="display: inline;"> Previous studies investigating associations between white matter alterations and duration of temporal lobe epilepsy (TLE) have shown differing results, and were typically limited to univariate analyses of tracts in isolation. In this study we apply a multivariate measure (the Mahalanobis distance), to capture the distinct ways white matter may differ in individual patients, and relate this to epil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07643v1-abstract-full').style.display = 'inline'; document.getElementById('2007.07643v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07643v1-abstract-full" style="display: none;"> Previous studies investigating associations between white matter alterations and duration of temporal lobe epilepsy (TLE) have shown differing results, and were typically limited to univariate analyses of tracts in isolation. In this study we apply a multivariate measure (the Mahalanobis distance), to capture the distinct ways white matter may differ in individual patients, and relate this to epilepsy duration. Diffusion MRI, from a cohort of 94 subjects (28 healthy controls, 33 left-TLE and 33 right-TLE), was used to assess associations between tract fractional anisotropy (FA) and epilepsy duration. Using ten white matter tracts, we analysed associations using traditional univariate analyses (z-scores) and a complementary multivariate approach (Mahalanobis distance), incorporating multiple white matter tracts into a single unified analysis. In patients with right-TLE, FA was not significantly associated with epilepsy duration for any tract studied in isolation. In patients with left-TLE, the FA of two limbic tracts (ipsilateral fornix, contralateral cingulum gyrus) was significantly negatively associated with epilepsy duration (Bonferonni corrected p&lt;0.05). Using a multivariate approach we found significant ipsilateral positive associations with duration in both left, and right-TLE cohorts (left-TLE: Spearman&#39;s rho=0.487, right-TLE: Spearman&#39;s rho=0.422). Extrapolating our multivariate results to duration equals zero (i.e. at onset) we found no significant difference between patients and controls. Associations using the multivariate approach were more robust than univariate methods. The multivariate distance measure provides non-overlapping and more robust results than traditional univariate analyses. Future studies should consider adopting both frameworks into their analysis in order to ascertain a more complete understanding of epilepsy progression, regardless of laterality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07643v1-abstract-full').style.display = 'none'; document.getElementById('2007.07643v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 6 main figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.14258">arXiv:2005.14258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.14258">pdf</a>, <a href="https://arxiv.org/format/2005.14258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-2552/abbecf">10.1088/1741-2552/abbecf <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band power modulation through intracranial EEG stimulation and its cross-session consistency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Papasavvas%2C+C+A">Christoforos A Papasavvas</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Baier%2C+G">Gerold Baier</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.14258v1-abstract-short" style="display: inline;"> Background: Direct electrical stimulation of the brain through intracranial electrodes is currently used to probe the epileptic brain as part of pre-surgical evaluation, and it is also being considered for therapeutic treatments through neuromodulation. It is still unknown, however, how consistent intracranial direct electrical stimulation responses are across sessions, to allow effective neuromod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14258v1-abstract-full').style.display = 'inline'; document.getElementById('2005.14258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.14258v1-abstract-full" style="display: none;"> Background: Direct electrical stimulation of the brain through intracranial electrodes is currently used to probe the epileptic brain as part of pre-surgical evaluation, and it is also being considered for therapeutic treatments through neuromodulation. It is still unknown, however, how consistent intracranial direct electrical stimulation responses are across sessions, to allow effective neuromodulation design. Objective: To investigate the cross-session consistency of the electrophysiological effect of electrical stimulation delivered through intracranial EEG. Methods: We analysed data from 79 epilepsy patients implanted with intracranial EEG who underwent brain stimulation as part of a memory experiment. We quantified the effect of stimulation in terms of band power modulation and compared this effect from session to session. As a reference, we applied the same measures during baseline periods. Results: In most sessions, the effect of stimulation on band power could not be distinguished from baseline fluctuations of band power. Stimulation effect was also not consistent across sessions; only a third of the session pairs had a higher consistency than the baseline standards. Cross-session consistency is mainly associated with the strength of positive stimulation effects, and it also tends to be higher when the baseline conditions are more similar between sessions. Conclusion: These findings can inform our practices for designing neuromodulation with greater efficacy when using direct electrical brain stimulation as a therapeutic treatment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14258v1-abstract-full').style.display = 'none'; document.getElementById('2005.14258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Neural Engineering, 17-054001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.10514">arXiv:2003.10514</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.10514">pdf</a>, <a href="https://arxiv.org/format/2003.10514">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Independent components of human brain morphology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Ludwig%2C+T">Tobias Ludwig</a>, <a href="/search/q-bio?searchtype=author&amp;query=Little%2C+B">Bethany Little</a>, <a href="/search/q-bio?searchtype=author&amp;query=Necus%2C+J+H">Joe H Necus</a>, <a href="/search/q-bio?searchtype=author&amp;query=Winston%2C+G">Gavin Winston</a>, <a href="/search/q-bio?searchtype=author&amp;query=Vos%2C+S+B">Sjoerd B Vos</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Mota%2C+B">Bruno Mota</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.10514v1-abstract-short" style="display: inline;"> Quantification of brain morphology has become an important cornerstone in understanding brain structure. Measures of cortical morphology such as thickness and surface area are frequently used to compare groups of subjects or characterise longitudinal changes. However, such measures are often treated as independent from each other. A recently described scaling law, derived from a statistical phys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10514v1-abstract-full').style.display = 'inline'; document.getElementById('2003.10514v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.10514v1-abstract-full" style="display: none;"> Quantification of brain morphology has become an important cornerstone in understanding brain structure. Measures of cortical morphology such as thickness and surface area are frequently used to compare groups of subjects or characterise longitudinal changes. However, such measures are often treated as independent from each other. A recently described scaling law, derived from a statistical physics model of cortical folding, demonstrates that there is a tight covariance between three commonly used cortical morphology measures: cortical thickness, total surface area, and exposed surface area. We show that assuming the independence of cortical morphology measures can hide features and potentially lead to misinterpretations. Using the scaling law, we account for the covariance between cortical morphology measures and derive novel independent measures of cortical morphology. By applying these new measures, we show that new information can be gained; in our example we show that distinct morphological alterations underlie healthy ageing compared to temporal lobe epilepsy, even on the coarse level of a whole hemisphere. We thus provide a conceptual framework for characterising cortical morphology in a statistically valid and interpretable manner, based on theoretical reasoning about the shape of the cortex. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10514v1-abstract-full').style.display = 'none'; document.getElementById('2003.10514v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.12755">arXiv:1911.12755</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.12755">pdf</a>, <a href="https://arxiv.org/format/1911.12755">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Reliability and comparability of human brain structural covariance networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Carmon%2C+J">Jona Carmon</a>, <a href="/search/q-bio?searchtype=author&amp;query=Heege%2C+J">Jil Heege</a>, <a href="/search/q-bio?searchtype=author&amp;query=Necus%2C+J+H">Joe H Necus</a>, <a href="/search/q-bio?searchtype=author&amp;query=Owen%2C+T+W">Thomas W Owen</a>, <a href="/search/q-bio?searchtype=author&amp;query=Pipa%2C+G">Gordon Pipa</a>, <a href="/search/q-bio?searchtype=author&amp;query=Kaiser%2C+M">Marcus Kaiser</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.12755v2-abstract-short" style="display: inline;"> Structural covariance analysis is a widely used structural MRI analysis method which characterises the co-relations of morphology between brain regions over a group of subjects. To our knowledge, little has been investigated in terms of the comparability of results between different data sets or the reliability of results over the same subjects in different rescan sessions, image resolutions, or F&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12755v2-abstract-full').style.display = 'inline'; document.getElementById('1911.12755v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.12755v2-abstract-full" style="display: none;"> Structural covariance analysis is a widely used structural MRI analysis method which characterises the co-relations of morphology between brain regions over a group of subjects. To our knowledge, little has been investigated in terms of the comparability of results between different data sets or the reliability of results over the same subjects in different rescan sessions, image resolutions, or FreeSurfer versions. In terms of comparability, our results show substantial differences in the structural covariance matrix between data sets of age- and sex-matched healthy human adults. These differences persist after site correction, they are exacerbated by low sample sizes, and they are most pronounced when using average cortical thickness as a morphological measure. Down-stream graph theoretic analyses further show statistically significant differences. In terms of reliability, substantial differences were also found when comparing repeated scan sessions of the same subjects, and image resolutions and FreeSurfer versions of the same image. We could further estimate the relative measurement error and showed that it is largest when using thickness. With simulated data, we argue that cortical thickness is least reliable because of larger relative measurement errors. Practically, we make the following recommendations (1) pooling subjects across sites into one group should be avoided, particularly if sites differ in image resolutions, demographics, or preprocessing; (2) surface area and volume should be preferred as morphological measures over cortical thickness; (3) a large number of subjects should be used to estimate structural covariance; (4) measurement error should be assessed where repeated measurements are available; (5) if combining sites is critical, univariate site-correction is insufficient, but error covariance should be explicitly measured and modelled. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12755v2-abstract-full').style.display = 'none'; document.getElementById('1911.12755v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07932">arXiv:1909.07932</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.07932">pdf</a>, <a href="https://arxiv.org/format/1909.07932">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1111/epi.16580">10.1111/epi.16580 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interictal intracranial EEG for predicting surgical success: the importance of space and time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Sinha%2C+N">Nishant Sinha</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle M. Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Ramaraju%2C+S">Sriharsha Ramaraju</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A+W">Andrew W. McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chowdhury%2C+F+A">Fahmida A. Chowdhury</a>, <a href="/search/q-bio?searchtype=author&amp;query=Diehl%2C+B">Beate Diehl</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S. Duncan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07932v1-abstract-short" style="display: inline;"> Predicting post-operative seizure freedom using functional correlation networks derived from interictal intracranial EEG has shown some success. However, there are important challenges to consider. 1: electrodes physically closer to each other naturally tend to be more correlated causing a spatial bias. 2: implantation location and number of electrodes differ between patients, making cross-subject&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07932v1-abstract-full').style.display = 'inline'; document.getElementById('1909.07932v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07932v1-abstract-full" style="display: none;"> Predicting post-operative seizure freedom using functional correlation networks derived from interictal intracranial EEG has shown some success. However, there are important challenges to consider. 1: electrodes physically closer to each other naturally tend to be more correlated causing a spatial bias. 2: implantation location and number of electrodes differ between patients, making cross-subject comparisons difficult. 3: functional correlation networks can vary over time but are currently assumed as static. In this study we address these three substantial challenges using intracranial EEG data from 55 patients with intractable focal epilepsy. Patients additionally underwent preoperative MR imaging, intra-operative CT, and post-operative MRI allowing accurate localisation of electrodes and delineation of removed tissue. We show that normalising for spatial proximity between nearby electrodes improves prediction of post-surgery seizure outcomes. Moreover, patients with more extensive electrode coverage were more likely to have their outcome predicted correctly (ROC-AUC &gt;0.9, p&lt;&lt;0.05), but not necessarily more likely to have a better outcome. Finally, our predictions are robust regardless of the time segment. Future studies should account for the spatial proximity of electrodes in functional network construction to improve prediction of post-surgical seizure outcomes. Greater coverage of both removed and spared tissue allows for predictions with higher accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07932v1-abstract-full').style.display = 'none'; document.getElementById('1909.07932v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Epilepsia 61 (2020) 1417-1426 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.06683">arXiv:1909.06683</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.06683">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Carbogen inhalation during Non-Convulsive Status Epilepticus: A quantitative analysis of EEG recordings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Ramaraju%2C+S">Sriharsha Ramaraju</a>, <a href="/search/q-bio?searchtype=author&amp;query=Reichert%2C+S">Simon Reichert</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Forsyth%2C+R">Rob Forsyth</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.06683v1-abstract-short" style="display: inline;"> Objective: To quantify the effect of inhaled 5% carbon-dioxide/95% oxygen on EEG recordings from patients in non-convulsive status epilepticus (NCSE). Methods: Five children of mixed aetiology in NCSE were given high flow of inhaled carbogen (5% carbon dioxide/95% oxygen) using a face mask for maximum 120s. EEG was recorded concurrently in all patients. The effects of inhaled carbogen on patient E&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.06683v1-abstract-full').style.display = 'inline'; document.getElementById('1909.06683v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.06683v1-abstract-full" style="display: none;"> Objective: To quantify the effect of inhaled 5% carbon-dioxide/95% oxygen on EEG recordings from patients in non-convulsive status epilepticus (NCSE). Methods: Five children of mixed aetiology in NCSE were given high flow of inhaled carbogen (5% carbon dioxide/95% oxygen) using a face mask for maximum 120s. EEG was recorded concurrently in all patients. The effects of inhaled carbogen on patient EEG recordings were investigated using band-power, functional connectivity and graph theory measures. Carbogen effect was quantified by measuring effect size (Cohen&#39;s d) between &#34;before&#34;, &#34;during&#34; and &#34;after&#34; carbogen delivery states. Results: Carbogen&#39;s apparent effect on EEG band-power and network metrics across all patients for &#34;before-during&#34; and &#34;before-after&#34; inhalation comparisons was inconsistent across the five patients. Conclusion: The changes in different measures suggest a potentially non-homogeneous effect of carbogen on the patients&#39; EEG. Different aetiology and duration of the inhalation may underlie these non-homogeneous effects. Tuning the carbogen parameters (such as ratio between CO2 and O2, duration of inhalation) on a personalised basis may improve seizure suppression in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.06683v1-abstract-full').style.display = 'none'; document.getElementById('1909.06683v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.01024">arXiv:1901.01024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.01024">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Personalised network modelling in epilepsy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Schroeder%2C+G+M">Gabrielle Marie Schroeder</a>, <a href="/search/q-bio?searchtype=author&amp;query=Sinha%2C+N">Nishant Sinha</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter Neal Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.01024v1-abstract-short" style="display: inline;"> Epilepsy is a disorder characterised by spontaneous, recurrent seizures. Both local and network abnormalities have been associated with epilepsy, and the exact processes generating seizures are thought to be heterogeneous and patient-specific. Due to the heterogeneity, treatments such as surgery and medication are not always effective in achieving full seizure control and choosing the best treatme&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01024v1-abstract-full').style.display = 'inline'; document.getElementById('1901.01024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.01024v1-abstract-full" style="display: none;"> Epilepsy is a disorder characterised by spontaneous, recurrent seizures. Both local and network abnormalities have been associated with epilepsy, and the exact processes generating seizures are thought to be heterogeneous and patient-specific. Due to the heterogeneity, treatments such as surgery and medication are not always effective in achieving full seizure control and choosing the best treatment for the individual patient can be challenging. Predictive models constrained by the patient&#39;s own data therefore offer the potential to assist in clinical decision making. In this chapter, we describe how personalised patient-derived networks from structural or functional connectivity can be incorporated into predictive models. We focus specifically on dynamical systems models which are composed of differential equations capable of simulating brain activity over time. Here we review recent studies which have used these models, constrained by patient data, to make personalised patient-specific predictions about seizure features (such as propagation patterns) or treatment outcomes (such as the success of surgical resection). Finally, we suggest future research directions for patient-specific network models in epilepsy, including their application to integrate information from multiple modalities, to predict long-term disease evolution, and to account for within-subject variability for treatment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01024v1-abstract-full').style.display = 'none'; document.getElementById('1901.01024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 1 figure, book chapter</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.03696">arXiv:1807.03696</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.03696">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nicl.2019.101655">10.1016/j.nicl.2019.101655 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Computer modelling of connectivity change suggests epileptogenesis mechanisms in idiopathic generalised epilepsy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Sinha%2C+N">Nishant Sinha</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Dauwels%2C+J">Justin Dauwels</a>, <a href="/search/q-bio?searchtype=author&amp;query=Kaiser%2C+M">Marcus Kaiser</a>, <a href="/search/q-bio?searchtype=author&amp;query=Thesen%2C+T">Thomas Thesen</a>, <a href="/search/q-bio?searchtype=author&amp;query=Forsyth%2C+R">Rob Forsyth</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter Neal Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.03696v2-abstract-short" style="display: inline;"> Patients with idiopathic generalised epilepsy (IGE) typically have normal conventional magnetic resonance imaging (MRI), hence MRI based diagnosis is challenging. Anatomical abnormalities underlying brain dysfunctions in IGE are unclear and their relation to the pathomechanisms of epileptogenesis is poorly understood. In this study, we applied connectometry, an advanced quantitative neuroimaging t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03696v2-abstract-full').style.display = 'inline'; document.getElementById('1807.03696v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.03696v2-abstract-full" style="display: none;"> Patients with idiopathic generalised epilepsy (IGE) typically have normal conventional magnetic resonance imaging (MRI), hence MRI based diagnosis is challenging. Anatomical abnormalities underlying brain dysfunctions in IGE are unclear and their relation to the pathomechanisms of epileptogenesis is poorly understood. In this study, we applied connectometry, an advanced quantitative neuroimaging technique for investigating localised changes in white-matter tissue. Analysing white matter structures of 32 subjects we incorporated our findings in a computational model of seizure dynamics to suggest a plausible mechanism of epileptogenesis. Patients with IGE have significant bilateral alterations in major white-matter fascicles. In the cingulum, fornix, and superior longitudinal fasciculus, tract integrity is compromised, whereas in specific parts of tracts between thalamus and the precentral gyrus, tract integrity is enhanced in patients. Combining these alterations in a logistic regression model, we computed the decision boundary that discriminated patients and controls. The computational model, informed with the findings on the tract abnormalities, specifically highlighted the importance of enhanced cortico-reticular connections along with impaired cortico-cortical connections in inducing pathological seizure-like dynamics. We emphasise taking directionality of brain connectivity into consideration towards understanding the pathological mechanisms; this is possible by combining neuroimaging and computational modelling. Our imaging evidence of structural alterations suggest the loss of cortico-cortical and enhancement of cortico-thalamic fibre integrity in IGE. We further suggest that impaired connectivity from cortical regions to the thalamic reticular nucleus offers a therapeutic target for selectively modifying the brain circuit for reversing the mechanisms leading to epileptogenesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03696v2-abstract-full').style.display = 'none'; document.getElementById('1807.03696v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NeuroImage.Clinical 21 (2019) 101655 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.03504">arXiv:1806.03504</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.03504">pdf</a>, <a href="https://arxiv.org/format/1806.03504">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42003-019-0421-7">10.1038/s42003-019-0421-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universality in human cortical folding across lobes of individual brains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Necus%2C+J">Joe Necus</a>, <a href="/search/q-bio?searchtype=author&amp;query=Rodriguez%2C+L+P">Luis Peraza Rodriguez</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter Neal Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Mota%2C+B">Bruno Mota</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.03504v2-abstract-short" style="display: inline;"> Background: We have previously demonstrated that cortical folding across mammalian species follows a universal scaling law that can be derived from a simple theoretical model. The same scaling law has also been shown to hold across brains of our own species, irrespective of age or sex. These results, however, only relate measures of complete cortical hemispheres. There are known systematic variati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.03504v2-abstract-full').style.display = 'inline'; document.getElementById('1806.03504v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.03504v2-abstract-full" style="display: none;"> Background: We have previously demonstrated that cortical folding across mammalian species follows a universal scaling law that can be derived from a simple theoretical model. The same scaling law has also been shown to hold across brains of our own species, irrespective of age or sex. These results, however, only relate measures of complete cortical hemispheres. There are known systematic variations in morphology between different brain regions, and region-specific changes with age. It is therefore of interest to extend our analyses to different cortical regions, and analyze the scaling law within an individual brain. Methods: To directly compare the morphology of sub-divisions of the cortical surface in a size-independent manner, we base our method on a topological invariant of closed surfaces. We reconstruct variables of a complete hemisphere from each lobe of the brain so that it has the same gyrification index, average thickness and average Gaussian curvature. Results: We show that different lobes are morphologically diverse but obey the same scaling law that was observed across human subjects and across mammalian species. This is also the case for subjects with Alzheimer&#39;s disease. The age-dependent offset changes at similar rates for all lobes in healthy subjects, but differs most dramatically in the temporal lobe in Alzheimer&#39;s disease. Significance: Our results further support the idea that while morphological parameters can vary locally across the cortical surface/across subjects of the same species/across species, the processes that drive cortical gyrification are universal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.03504v2-abstract-full').style.display = 'none'; document.getElementById('1806.03504v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.08240">arXiv:1707.08240</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.08240">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nicl.2018.01.028">10.1016/j.nicl.2018.01.028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The impact of epilepsy surgery on the structural connectome and its relation to outcome </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Sinha%2C+N">Nishant Sinha</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Vos%2C+S+B">Sjoerd B Vos</a>, <a href="/search/q-bio?searchtype=author&amp;query=de+Tisi%2C+J">Jane de Tisi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Miserocchi%2C+A">Anna Miserocchi</a>, <a href="/search/q-bio?searchtype=author&amp;query=McEvoy%2C+A+W">Andrew W McEvoy</a>, <a href="/search/q-bio?searchtype=author&amp;query=Winston%2C+G+P">Gavin P Winston</a>, <a href="/search/q-bio?searchtype=author&amp;query=Duncan%2C+J+S">John S Duncan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.08240v2-abstract-short" style="display: inline;"> Temporal lobe surgical resection brings seizure remission in up to 80% of patients, with long-term complete seizure freedom in 41%. However, it is unclear how surgery impacts on the structural white matter network, and how the network changes relate to seizure outcome. We used white matter fibre tractography on preoperative diffusion MRI to generate a structural white matter network, and postopera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08240v2-abstract-full').style.display = 'inline'; document.getElementById('1707.08240v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.08240v2-abstract-full" style="display: none;"> Temporal lobe surgical resection brings seizure remission in up to 80% of patients, with long-term complete seizure freedom in 41%. However, it is unclear how surgery impacts on the structural white matter network, and how the network changes relate to seizure outcome. We used white matter fibre tractography on preoperative diffusion MRI to generate a structural white matter network, and postoperative T1-weighted MRI to retrospectively infer the impact of surgical resection on this network. We then applied graph theory and machine learning to investigate the properties of change between the preoperative and predicted postoperative networks. Temporal lobe surgery had a modest impact on global network efficiency, despite the disruption caused. This was due to alternative shortest paths in the network leading to widespread increases in betweenness centrality post-surgery. Measurements of network change could retrospectively predict seizure outcomes with 79% accuracy and 65% specificity, which is twice as high as the empirical distribution. Fifteen connections which changed due to surgery were identified as useful for prediction of outcome, eight of which connected to the ipsilateral temporal pole. Our results suggest that the use of network change metrics may have clinical value for predicting seizure outcome. This approach could be used to prospectively predict outcomes given a suggested resection mask using preoperative data only. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08240v2-abstract-full').style.display = 'none'; document.getElementById('1707.08240v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NeuroImage.Clinical 18 (2018) 202-214 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.00262">arXiv:1610.00262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.00262">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fncom.2017.00025">10.3389/fncom.2017.00025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Baier%2C+G">Gerold Baier</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.00262v2-abstract-short" style="display: inline;"> Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.00262v2-abstract-full').style.display = 'inline'; document.getElementById('1610.00262v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.00262v2-abstract-full" style="display: none;"> Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To understand the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.00262v2-abstract-full').style.display = 'none'; document.getElementById('1610.00262v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">http://journal.frontiersin.org/article/10.3389/fncom.2017.00025/full</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.07068">arXiv:1609.07068</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.07068">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1371/journal.pcbi.1005475">10.1371/journal.pcbi.1005475 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mechanisms underlying different onset patterns of focal seizures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yujiang Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Trevelyan%2C+A+J">Andrew J Trevelyan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Valentin%2C+A">Antonio Valentin</a>, <a href="/search/q-bio?searchtype=author&amp;query=Alarcon%2C+G">Gonzalo Alarcon</a>, <a href="/search/q-bio?searchtype=author&amp;query=Taylor%2C+P+N">Peter N Taylor</a>, <a href="/search/q-bio?searchtype=author&amp;query=Kaiser%2C+M">Marcus Kaiser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.07068v2-abstract-short" style="display: inline;"> Focal seizures are episodes of pathological brain activity that appear to arise from a localised area of the brain. The onset patterns of focal seizure activity have been studied intensively, and they have largely been distinguished into two types - low amplitude fast oscillations (LAF), or high amplitude spikes (HAS). Here we explore whether these two patterns arise from fundamentally different m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.07068v2-abstract-full').style.display = 'inline'; document.getElementById('1609.07068v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.07068v2-abstract-full" style="display: none;"> Focal seizures are episodes of pathological brain activity that appear to arise from a localised area of the brain. The onset patterns of focal seizure activity have been studied intensively, and they have largely been distinguished into two types - low amplitude fast oscillations (LAF), or high amplitude spikes (HAS). Here we explore whether these two patterns arise from fundamentally different mechanisms. Here, we use a previously established computational model of neocortical tissue, and validate it as an adequate model using clinical recordings of focal seizures. We then reproduce the two onset patterns in their most defining properties and investigate the possible mechanisms underlying the different focal seizure onset patterns in the model. We show that the two patterns are associated with different mechanisms at the spatial scale of a single ECoG electrode. The LAF onset is initiated by independent patches of localised activity, which slowly invade the surrounding tissue and coalesce over time. In contrast, the HAS onset is a global, systemic transition to a coexisting seizure state triggered by a local event. We find that such a global transition is enabled by an increase in the excitability of the &#34;healthy&#34; surrounding tissue, which by itself does not generate seizures, but can support seizure activity when incited. In our simulations, the difference in surrounding tissue excitability also offers a simple explanation of the clinically reported difference in surgical outcomes. Finally, we demonstrate in the model how changes in tissue excitability could be elucidated, in principle, using active stimulation. Taken together, our modelling results suggest that the excitability of the tissue surrounding the seizure core may play a determining role in the seizure onset pattern, as well as in the surgical outcome. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.07068v2-abstract-full').style.display = 'none'; document.getElementById('1609.07068v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PLOS Computational Biology 2017 13(5): e1005475 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10