CINXE.COM

Search results for: Jujuba seeds

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Jujuba seeds</title> <meta name="description" content="Search results for: Jujuba seeds"> <meta name="keywords" content="Jujuba seeds"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Jujuba seeds" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Jujuba seeds"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 571</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Jujuba seeds</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">451</span> Trigonella foenum-graecum Seeds Extract as Therapeutic Candidate for Treatment of Alzheimer&#039;s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mai%20M.%20Farid">Mai M. Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ximeng%20Yang"> Ximeng Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoharu%20Kuboyama"> Tomoharu Kuboyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuna%20Inada"> Yuna Inada</a>, <a href="https://publications.waset.org/abstracts/search?q=Chihiro%20Tohda"> Chihiro Tohda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intro: Trigonella foenum-graecum (Fenugreek), from Fabaceae family is a well-known plant traditionally used as food and medicine. Many pharmacological effects of Trigonella foenum- graecum seeds extract (TF extract) were evaluated such as anti-diabetic, anti-tumor and anti-dementia effects using in vivo models. Regarding the anti-dementia effects of TF extract, diabetic rats, aluminum chloride-induced amnesia rats and scopolamine-injected mice were used previously for evaluation, which are not well established as Alzheimer’s disease models. In addition, those previous studies, active constituents in TF extract for memory function were not identified. Method: This study aimed to clarify the effect of TF extract on Alzheimer’s disease model, 5XFAD mouse that overexpresses mutated APP and PS1 genes and determine the major active constituent in the brain after oral intake of TF extract. Results: Trigonelline was detected in the cerebral cortex of 5XFAD mice after 24 hours of oral administration of TF extract by LC-MS/MS. Oral administration of TF extract for 17 days improved object location memory in 5XFAD mice. Conclusion: These results suggest that TF extract and its active constituents could be an expected therapeutic candidate for Alzheimer’s disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer&#039;s disease">Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS%2FMS" title=" LC-MS/MS"> LC-MS/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20recovery" title=" memory recovery"> memory recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=Trigonella%20foenum-graecum%20Seeds" title=" Trigonella foenum-graecum Seeds"> Trigonella foenum-graecum Seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=5XFAD%20mice" title=" 5XFAD mice"> 5XFAD mice</a> </p> <a href="https://publications.waset.org/abstracts/131399/trigonella-foenum-graecum-seeds-extract-as-therapeutic-candidate-for-treatment-of-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">450</span> Elucidating the Genetic Determinism of Seed Protein Plasticity in Response to the Environment Using Medicago truncatula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Cartelier">K. Cartelier</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aime"> D. Aime</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Vernoud"> V. Vernoud</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Buitink"> J. Buitink</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Prosperi"> J. M. Prosperi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gallardo"> K. Gallardo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Le%20Signor"> C. Le Signor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legumes can produce protein-rich seeds without nitrogen fertilizer through root symbiosis with nitrogen-fixing rhizobia. Rich in lysine, these proteins are used for human nutrition and animal feed. However, the instability of seed protein yield and quality due to environmental fluctuations limits the wider use of legumes such as pea. Breeding efforts are needed to optimize and stabilize seed nutritional value, which requires to identify the genetic determinism of seed protein plasticity in response to the environment. Towards this goal, we have studied the plasticity of protein content and composition of seeds from a collection of 200 Medicago truncatula ecotypes grown under four controlled conditions (optimal, drought, and winter/spring sowing). A quantitative analysis of one-dimensional protein profiles of these mature seeds was performed and plasticity indices were calculated from each abundant protein band. Genome-Wide Association Studies (GWAS) from these data identified major GWAS hotspots, from which a list of candidate genes was obtained. A Gene Ontology Enrichment Analysis revealed an over-representation of genes involved in several amino acid metabolic pathways. This led us to propose that environmental variations are likely to modulate amino acid balance, thus impacting seed protein composition. The selection of candidate genes for controlling the plasticity of seed protein composition was refined using transcriptomics data from developing Medicago truncatula seeds. The pea orthologs of key genes were identified for functional studies by mean of TILLING (Targeting Induced Local Lesions in Genomes) lines in this crop. We will present how this study highlighted mechanisms that could govern seed protein plasticity, providing new cues towards the stabilization of legume seed quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GWAS" title="GWAS">GWAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicago%20truncatula" title=" Medicago truncatula"> Medicago truncatula</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=seed" title=" seed"> seed</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20proteins" title=" storage proteins"> storage proteins</a> </p> <a href="https://publications.waset.org/abstracts/114311/elucidating-the-genetic-determinism-of-seed-protein-plasticity-in-response-to-the-environment-using-medicago-truncatula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">449</span> Anatomy Study of Seeds of Calligonium comosum in Vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abobkar%20Saad">Abobkar Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Qasmia%20Abdalla"> Qasmia Abdalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Emhemed"> Fatma Emhemed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eighty-four of Calligonum comosum were cultured on Murashige and Skoog medium on every combination supplemented with different concentrations of IAA, BA, Zeatin, and GA3. When 84 seeds were inoculated on MS free hormones, different types of cells contain dense cytoplasm were observed ater 23 days and long thick wall cells arranged in layers. In case of using MS +BA(0.5mg/L), different types and shapes of parenchyma cells contain dense cytoplasm were detected after four weeks. In the case of using MS + BA(1mg/L) + GA3 (3mg/L), thick wall parenchyma cells contain dense cytoplasm after 19 days, but many layers of parenchyma cells contain dense cytoplasm after 28 days. When MS +kin(0.5mg/L) a thick cells wall as Sclereids were observed after 29 days. No any response were observed on Zeatin (0.5, 1 mg/L). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anatomy" title="anatomy">anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=Calligonum%20comosum" title=" Calligonum comosum"> Calligonum comosum</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=aeeds" title=" aeeds"> aeeds</a> </p> <a href="https://publications.waset.org/abstracts/54176/anatomy-study-of-seeds-of-calligonium-comosum-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">448</span> The Chemical Composition of the Pistachio (Pistacia vera) Harvested Bechloul (Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadjiba%20Meziou-Chebouti">Nadjiba Meziou-Chebouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Merabet"> Amel Merabet</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahia%20Chebouti"> Yahia Chebouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Behidj"> Nassima Behidj</a>, <a href="https://publications.waset.org/abstracts/search?q=Salahedine%20Doumandji"> Salahedine Doumandji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the Anacardiaceae, the fruit (Pistacia vera L.) is the only species that produces edible fruits. The introduction of real pistachio was made in the early sixties by an FAO program in Algeria in several regions in the northern part of Algeria: Tlemcen, Sidi Bel Abbes, Batna, Bouira M'sila. Chemical analyzes of seeds pistachios were made on seeds from an orchard that localizes to Bechloul (Bouira) located in bioclimatic sub-humid temperate winter floor. Analyzes reveal dry matter content of 3.60±0.45%, the water rate is 7.21±0.36%. However, the fat content is 46.00±0.90%, in average blood sugar, it is 4.02±0.47%, the protein reached 29.88±0.76%. Given the very interesting that high-fat food nutritional values, culture pistachio must be considered for its extension in Algeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pistachio" title="pistachio">pistachio</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20matter" title=" dry matter"> dry matter</a>, <a href="https://publications.waset.org/abstracts/search?q=fat" title=" fat"> fat</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar" title=" sugar"> sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a> </p> <a href="https://publications.waset.org/abstracts/22954/the-chemical-composition-of-the-pistachio-pistacia-vera-harvested-bechloul-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">447</span> Influence of Thermal Processing Methods on Antinutrient of Artocarpus heterophyllus Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Zulkifli">Marina Zulkifli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Faizal%20Mashhod"> Mohd Faizal Mashhod</a>, <a href="https://publications.waset.org/abstracts/search?q=Noriham%20Abdullah"> Noriham Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the antinutrient compounds of jackfruit (Artocarpus heterophyllus) seeds as affected by thermal processes. Two types of heat treatments were applied namely boiling and microwave cooking. Results of this study showed that boiling caused a significant decrease in phytate content (30.01%), oxalate content (33.22%), saponin content (35.69%) and tannin content (44.58%) as compared to microwave cooking and raw seed. The percentage loss of antinutrient compounds in microwaved seed was: phytate 24.58%, oxalate 27.28%, saponin 16.50% and tannin 32.21%. Hence, these findings suggested that boiling is an effective treatment to reduce the level of toxic compounds in foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jackfruit" title="jackfruit">jackfruit</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatments" title=" heat treatments"> heat treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=antinutrient%20compounds" title=" antinutrient compounds"> antinutrient compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20processing" title=" thermal processing"> thermal processing</a> </p> <a href="https://publications.waset.org/abstracts/14651/influence-of-thermal-processing-methods-on-antinutrient-of-artocarpus-heterophyllus-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">446</span> Development and Characterization of Biscuits Incorporated with Jackfruit (Artocarpus heterophyllus) Seeds and Cassava (Manihot esculenta)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elina%20Brahma%20Hazarika">Elina Brahma Hazarika</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeuti%20Basumatary"> Jeuti Basumatary</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepanka%20Saikia"> Deepanka Saikia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaydeep%20Das"> Jaydeep Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Micky%20Moni%20D%27mary"> Micky Moni D&#039;mary</a>, <a href="https://publications.waset.org/abstracts/search?q=Fungkha%20Basumatary"> Fungkha Basumatary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study includes development of two varieties of biscuits incorporated with: the seeds of Jack fruit (Artocarpus heterophyllus), which post-consumption of it’s pulp, is discarded as a waste, and Cassava (Manihot esculenta) tubers.The jack fruit seeds and cassava were first ground into flour and its proximate and physiochemical properties were studied. The biscuits that were developed incorporating them had 50% wheat flour and 50% jackfruit seed flour and 50% cassava flours as the major composition, apart from the other general ingredients use in making biscuits. Various trials of compositions were made for baking to get the overall desirable acceptability in biscuits through sensory evaluation. Finally, the best composition of ingredients was selected to make the biscuits, and hence studies were done accordingly to compare it with the properties of their respective raw flours. The results showed that the proximate composition of the biscuits fared better than that of their respective flours: There was a decrease in the Moisture content of both Jackfruit Seed Biscuits and Cassava Biscuits to 4.5% and 6.7% than that of their respective raw flours (8 and 12%). Post-baking, there is increase in the percentages of ash, protein, and fibre contents in both Jackfruit Seed Biscuits and Cassava Biscuits; the values being 3% and 3.8%, 13.2% and 3.3%, and 3.2 and 4.1% respectively. Also the total carbohydrate content in Jackfruit Seed Biscuits and Cassava Biscuits were 66.7% and 71.7% respectively. Their sensory evaluation and texture study also yielded a clear review that they have an overall good acceptability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baking" title="baking">baking</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate" title=" proximate"> proximate</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory" title=" sensory"> sensory</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a> </p> <a href="https://publications.waset.org/abstracts/41486/development-and-characterization-of-biscuits-incorporated-with-jackfruit-artocarpus-heterophyllus-seeds-and-cassava-manihot-esculenta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">445</span> Germination and Seed Vigor Response of Five Wheat Cultivars to Stress of Premature Aging Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Soltani%20Howyzeh">Mehdi Soltani Howyzeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Kardoni"> Neda Kardoni</a>, <a href="https://publications.waset.org/abstracts/search?q=Mani%20Mojadam"> Mani Mojadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To evaluate the vigor of wheat seeds and stress of premature aging effects on germination percentage, root length and shoot length of five wheat cultivars that include Vynak, Karkheh, Chamran, Star and Kavir which underwent a period of zero, two, three, four days in terms of premature aging with 41 °C temperature and 100% relative humidity. Seed germination percentage, root length and shoot length in these conditions were measured. This experiment was conducted as a factorial completely randomized design with four replications in laboratory conditions. The results showed that each of aging treatments used in this experiment can be used to detect differences in vigor of wheat varieties. Wheat cultivars illustrated significant differences in germination percentage, root length and shoot length in terms of premature aging. The wheat cultivars; Astar and Vynak had maximum germination percentage and Karkheh, respectively Kavir and Chamran had lowest percentage of seed germination. Reactions of root and shoot length of wheat cultivars was also different. The results showed that the seeds with a stronger vigor affected less in premature aging condition and the difference between the percentage of seed germination under normal conditions and stress was significant and the seeds with the weaker vigor were more sensitive to the premature aging stress and the premature aging had more severe negative impact on seed vigor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat%20cultivars" title="wheat cultivars">wheat cultivars</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20vigor" title=" seed vigor"> seed vigor</a>, <a href="https://publications.waset.org/abstracts/search?q=premature%20aging%20effects" title=" premature aging effects"> premature aging effects</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination "> germination </a> </p> <a href="https://publications.waset.org/abstracts/32327/germination-and-seed-vigor-response-of-five-wheat-cultivars-to-stress-of-premature-aging-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">444</span> Arboretum: Community Mixed Reality Nature Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radek%20Richtr">Radek Richtr</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Paus"> Petr Paus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The connection to the primal environment, living and growing nature is disappearing for most of the residents in urban core areas nowadays. Most of the residents perceive scattered green mass like more technical objects than sentient living organisms. The Arboretum is a type of application from the 'serious games' genre -it is a research experiment masked as a gaming environment. In used virtual and augmented reality environments, every city district is represented by central objects; Pillars created as a result of resident’s consensus. Every player can furthermore plant and grow virtual organic seeds everywhere he wants. Seeds sprout, and their form is determined by both players’ choice and nearest pillar. Every house, private rooms, and even workspace get their new living virtual avatar-connected 'residents' growing from player-planted seeds. Every room or workspace is transformed into (calming) nature scene, reflecting in some way both players and community spirit and together create a vicinity environment. The conceptual design phase of the project is crucial and allows for the identification of the fundamental problems through abstraction. The project that centers on wide community usage needs a clear and accessible interface. Simultaneously the conceptual design allows early sharing of project ideas and creating public concern. The paper discusses the current conceptual model of an Arboretum project (which is part of a whole widespread project) and its validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20design" title=" conceptual design"> conceptual design</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20reality" title=" mixed reality"> mixed reality</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20engineering" title=" social engineering "> social engineering </a> </p> <a href="https://publications.waset.org/abstracts/132098/arboretum-community-mixed-reality-nature-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">443</span> Comparative Germination Studies in Mature Seeds of Haloxylon Salicornicum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laila%20Almulla">Laila Almulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As native plants are better adapted to the local environment, can endure long spells of drought, withstand high soil salinity levels and provide a more natural effect to landscape projects, their use in landscape projects are gaining popularity. Standardization of seed germination methods and raising the hardened plants of selected native plants for their use in landscape projects will both conserve natural resources and produce sustainable greenery. In the present study, Haloxylon salicornicum, a perennial herb with a potential use for urban greenery was selected for seed germination tests as there is an urgent need to mass multiply them for their large-scale use. Among the nine treatments tried with different concentrations of gibberelic acid (GA3) and dry heat, the seeds responded with treatments when the wings were removed. The control as well as 250 GA3 treatments produced the maximum germination of 86%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dormancy" title="dormancy">dormancy</a>, <a href="https://publications.waset.org/abstracts/search?q=gibberelic%20acid" title=" gibberelic acid"> gibberelic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=germination%20trays" title=" germination trays "> germination trays </a>, <a href="https://publications.waset.org/abstracts/search?q=vigor%20index" title=" vigor index"> vigor index</a> </p> <a href="https://publications.waset.org/abstracts/1762/comparative-germination-studies-in-mature-seeds-of-haloxylon-salicornicum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">442</span> Impact of Organic Fertilizer, Inorganic Fertilizer and Soil Conditioner on Growth and Yield of Cowpea (Vigna unguiculata L. Walp) in Sudan Savannah, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Bello%20Sokoto">Mohammed Bello Sokoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Adewumi%20Babatunde%20Adebayo"> Adewumi Babatunde Adebayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajit%20Singh"> Ajit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field experiment was conducted at the dry land Teaching and Research Farm of Usmanu Danfodiyo University, Sokoto, during the 2023 rainy season to determine the effects of organic, inorganic, soil conditioner and integrated use of soil conditioners (Agzyme) with organic (super gro) and inorganic fertilizers on the growth and yield of cowpea varieties. The research consisted of two cowpea varieties (SAMPEA-20-T and ex-GidanYunfa) and six combinations of organic and inorganic fertilizers and soil conditioners factorially combined and laid out in a Randomized Complete Block Design (RCBD) replicated three times. Data were collected on plant height, leaf area index, number of pods per plant, number of seeds per pod, days to 50% flowering, grain yield, and 100 seed weight. Results indicated that the 100% inorganic fertilizer had a significantly increased growth parameter such as plant height and number of leaves, while combined application of the organic fertilizer and soil conditioner resulted in a significant increase in yield parameters such as number of pods per plant, number of seeds per pod, 100 seed weight and grain yield. The study observed that the use of soil conditioner in combination with fertilizers supports sustainable cowpea production. Application of 50% recommended inorganic + 50% soil conditioner or 50% liquid organic + 50% soil conditioner was better in increasing the number of pods/plant, seeds/pod, 100 seed weight and grain yield. The ex-Gidan Yunfa cowpea variety generally performed better in most parameters measured, such as plant height, days to 50% flowering, number of pods per plant, number of seeds per pod, 100 seed weight and grain yield. Therefore, the combined application of 50% recommended inorganic + 50% soil conditioner or 50% liquid organic + 50% soil conditioner is effective for the sustainable production of cowpeas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated" title="integrated">integrated</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizers" title=" fertilizers"> fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea" title=" cowpea"> cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudan%20Savannah" title=" Sudan Savannah"> Sudan Savannah</a> </p> <a href="https://publications.waset.org/abstracts/186529/impact-of-organic-fertilizer-inorganic-fertilizer-and-soil-conditioner-on-growth-and-yield-of-cowpea-vigna-unguiculata-l-walp-in-sudan-savannah-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">441</span> Genetic Variability Studies of Some Quantitative Traits in Cowpea (Vigna unguiculata L. [Walp.] ) under Water Stress </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auwal%20Ibrahim%20Magashi">Auwal Ibrahim Magashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Dan%20Larai%20Fagwalawa"> Lawan Dan Larai Fagwalawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Bello%20Ibrahim"> Muhammad Bello Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A research was conducted to study genetic variability of some quantitative traits in varieties of cowpea (Vigna unguiculata L. [Walp]) under water stressed from Zaria, Nigeria. Seeds of seven varieties of cowpea (Sampea 1, Sampea 2, IAR1074, Sampea 7, Sampea 8, Sampea 10 and Sampea 12) collected from Institute for Agricultural Research (IAR), Samaru, Zaria were screened for water stressed tolerance. The seeds were then sown in poly bags containing sandy-loam arranged in Completely Randomized Design with three replications for quantitative traits evaluation. The nutritional composition of the seeds obtained from the water stress tolerant varieties of cowpea were analyzed. The result obtained revealed highly significant difference (P ≤ 0.01) in the effects of water stress on the number of wilted and dead plants at 40 days after sowing (DAS) and significant (P ≤ 0.05) 34 DAS. However, sampea 10 has the highest mean performance in terms of number of wilted plants at 34 DAS while sampea 2 and IAR 1074 has the lowest mean performance. However, sampea 7 was found to have the highest mean performance for the number of wilted plants at 40 DAS and sampea 2 is lowest. The result for quantitative traits study indicated highly significant difference (P ≤ 0.01) in the plant height, number of days to 50% flowering, number of days to maturity, number of pods per plant, pod length, number of seeds per plant and 100 seed weight; and significant (P ≤ 0.05) at seedling height and number of branches per plant. Similarly, IAR1074 was found to have high performance in terms of most of the quantitative traits under study. However, sampea 8 has the highest mean performance at nutritional level. It was therefore concluded that, all the seven cowpea genotypes were water stress tolerant and produced considerable yield that contained significant nutrients. It was recommended that IAR1074 should be grown for yield while sampea 8 should be grown for protein supplements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cowpea" title="cowpea">cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20variability" title=" genetic variability"> genetic variability</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20traits" title=" quantitative traits"> quantitative traits</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a> </p> <a href="https://publications.waset.org/abstracts/88668/genetic-variability-studies-of-some-quantitative-traits-in-cowpea-vigna-unguiculata-l-walp-under-water-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">440</span> Comparative Study on the Thickening/Viscosity of Ogbono Seed Powder from Irvingia gabonenesis and Irvingia wombolu Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orlando%20Ketebu">Orlando Ketebu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ogbono seed is the seed obtained from African bush mango (Irvingia gabonenesis) and bitter bush mango (Irvingia wombolu). Irvingia gabonenesis is known for its sweet edible pulp while Irvingia wombolu has a bitter pulp. Their seed powder is used in cooking soup known as ogbono soup in Nigeria and in West Africa. The powder thickens when cooked and researches have shown that it has medicinal uses such as lowering cholesterol; aiding weight loss and helps in improving diabetes control. The nutritional composition of the seeds indicated that Irvingia gabonenesis contains 8.60% protein, 13.8% carbohydrate, 2.0% moisture, 1.5% crude fiber, 16.4% ash, and Irvingia wombolu contains 7.38% protein, 25.75% carbohydrate, 11.7% moisture, 0.84% crude fiber, 2.50% ash. Solvent extraction of these seeds has shown that the seed of the two species are oil seeds with approximately 70 % and 52 % for Irvingia gabonenesis and Irvingia wombolu respectively. One major setback using ogbono seed powder in cooking soup is identifying the specie of ogbono seed powder that thickens most within the same cooking condition and how temperature affects the thickness of ogbono seed powder which determines its viscosity and in turn affects the quality of the soup and its nutrients. This research work monitored how the viscosity of ogbono species after being sun dried for one week changes with temperature. The result showed that heating 20 grams of powdered Irvingia gabonenesis and Irvingia wombolu at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95OC respectively in 200 ml beaker mixed with 100 ml of water, the viscosity of both species decreases with increase temperature with Irvingia wombolu having higher average viscosity in Pascal seconds (Pa.s) of 1.059, 1.042, 0.961, 0.778, 0.684, 0.675, and 0.495 at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95 OC respectively compared to Irvingia gabonenesis with result 0.982, 0.920, 0.720, 0.646, 0.597 and 0.446 at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95 OC respectively. Also from the experiment carried out it was found out that the viscosity of both species decreases with ageing of the seeds and the quantity of ogbono seed powder used and amount of water added also affected the viscosity of both species. In conclusion, it was observed that under the same cooking conditions (temperature range, quantity of water added, time and quantity of ogbono seed powder used), Irvingia wombolu had higher viscosity which is a measure of its thickness and quality of nutrients compared to Irvingia gabonenesis and the viscosity of both species decreases with increasing temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ogbono%20seed%20powder" title="ogbono seed powder">ogbono seed powder</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity "> viscosity </a>, <a href="https://publications.waset.org/abstracts/search?q=soup" title=" soup"> soup</a> </p> <a href="https://publications.waset.org/abstracts/84017/comparative-study-on-the-thickeningviscosity-of-ogbono-seed-powder-from-irvingia-gabonenesis-and-irvingia-wombolu-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">439</span> Effect of Dust Rejected by Iron and Steel Complex on Roots of Bean Phaseolus vulgaris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Labiba%20Zerari%20Bourafa">Labiba Zerari Bourafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Djebar%20Mohamed%20Reda"> Djebar Mohamed Reda</a>, <a href="https://publications.waset.org/abstracts/search?q=Berrebah%20Houria"> Berrebah Houria</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadri%20Sihem"> Khadri Sihem</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiheb%20Linda"> Chiheb Linda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the effect of metal dust (pollutants) was performed on higher plant white beans Phaseolus vulgaris; the experience took place in cellular toxicology laboratory (in vitro culture). The seeds of the bean Phaseolus vulgaris are cultured in a metal contaminated dust medium (a single treatment by different increasing doses), at a rate of 10 seeds per box, for 10 days. The measurement of morpho-metric parameters is performed during the first 96 hours that follow the germination; while the dosage of the proline, the protein content and histological sections are formed on the tenth day (240 h). All morpho-metric and biochemical parameters measured were highly disturbed by metal dust; histological sections confirm this disurbance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20fabrics" title="conductive fabrics">conductive fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20dust" title=" metal dust"> metal dust</a>, <a href="https://publications.waset.org/abstracts/search?q=osmoticums" title=" osmoticums"> osmoticums</a>, <a href="https://publications.waset.org/abstracts/search?q=roots" title=" roots"> roots</a>, <a href="https://publications.waset.org/abstracts/search?q=Phaseolus%20vulgaris" title=" Phaseolus vulgaris"> Phaseolus vulgaris</a> </p> <a href="https://publications.waset.org/abstracts/17722/effect-of-dust-rejected-by-iron-and-steel-complex-on-roots-of-bean-phaseolus-vulgaris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">438</span> Collection and Phenotypic Characterization of Some Nigerian Bambara Groundnut (Vigna subterranea (L.) Verdc.) Germplasm Using Seed Morphology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abejide%20Dorcas%20Ropo">Abejide Dorcas Ropo</a>, <a href="https://publications.waset.org/abstracts/search?q=Falusi%20Olamide%20Ahmed"> Falusi Olamide Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Daudu%20Oladipupo%20Abdulazeez%20Yusuf"> Daudu Oladipupo Abdulazeez Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Liman%20Muhammad"> Muhammad Liman Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Gado%20Aishatu%20Adamu"> Gado Aishatu Adamu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bambara groundnut is an indigenous African legume with great potential to tackle the problem of food insecurity in Nigeria. A germplasm collection mission was carried out in collaboration with the Agricultural Developments Project (ADP) Extension officers of Nigeria between October and December 2014. Bambara groundnut seeds were collected from farmers in different States in Nigeria, such as Kaduna, Niger, Kogi, Benue, Plateau, Adamawa, Nasarawa, Jigawa, Enugu, and Federal Capital Territoy (FCT) Abuja. Some seeds were also collected from National Centre for Genetic Resources and Biotechnology (NACGRAB). The seeds were phenotyped using the descriptor list of Vigna subterranea produced by the International Plant Genetic Resource Institute. A total of 45 original seed lots were collected, which comprised of mixed seeds having different seed coat colours (15) and pure seeded accessions having the same seed coat and eye colour (30). After sorting, a total of 83 accessions were derived from the 45 original seed lots collected, and a total of 24 distinct seed morphotypes with varying seed coat colours and eye colours were identified from the collections. They include cream ( cream ash eye, cream plain eye, and cream black eye), cream purplish spots, cream brown spots/stripe, cream black stripe, cream dark brown patches, cream light grey spots, cream black patches, black, red, light red, dark red, brownish red, brown speckled with black, red speckled with black, brown, brown with brown pattern below hilum, brown with black pattern below hilum, cream black, grey brown, grey black and variegated red. The highest number of accessions were collected from NACGRAB (11), followed by Niger State (10), and the lowest from Benue, Jigawa, and Adamawa States (2). Niger State also had the highest number of mixed seeds. The different seed phenotypes observed in the study are important for the field production of true-to-type lines and can be exploited for the genetic improvement of the Bambara groundnut. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bambara%20groundnut" title="Bambara groundnut">Bambara groundnut</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=collection" title=" collection"> collection</a>, <a href="https://publications.waset.org/abstracts/search?q=germplasm" title=" germplasm"> germplasm</a>, <a href="https://publications.waset.org/abstracts/search?q=phenotypic" title=" phenotypic"> phenotypic</a> </p> <a href="https://publications.waset.org/abstracts/151562/collection-and-phenotypic-characterization-of-some-nigerian-bambara-groundnut-vigna-subterranea-l-verdc-germplasm-using-seed-morphology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">437</span> Development of Adhesive from Prosopis african Seed Endosperm (OKPEYI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florence%20%20Chinyere%20Nwangwu">Florence Chinyere Nwangwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosemary%20Ene"> Rosemary Ene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was carried out to develop an adhesive from Prosopis africana seed endosperm. The Prosopis seeds for this work were obtained from Enugu State in the South East part of Nigeria. The Prosopis seeds were prepared by separating the Prosopis endosperm from the seed coat and cotyledon. The dry adhesive gotten from the endosperm was later dissolved to get the adhesive solution. Confirmatory tests like viscosity, density, pH, and binding strength were carried out. The effect of time, temperature, concentration on the yield and properties of the adhesive were investigated. The results obtained showed that increase in concentration, time, temperature decreases the viscosity of the Prosopis adhesive and yield of Prosopis endosperm. It was also deduced that increase in viscosity increases the binding strength of the Prosopis adhesive. The percentage of the adhesive yield from Prosopis endosperm showed that the commercialization of the seed in Nigeria will be possible and profitable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive" title="adhesive">adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=Prosopis" title=" Prosopis"> Prosopis</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=endosperm" title=" endosperm"> endosperm</a> </p> <a href="https://publications.waset.org/abstracts/20735/development-of-adhesive-from-prosopis-african-seed-endosperm-okpeyi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> Evaluation of Phytochemical and Fatty Acids Content and Composition in Iranian Borage (Echium amoenum) in Different Habitate of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Babakhanzadeh%20Sajirani">Esmaeil Babakhanzadeh Sajirani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamadjavad%20Shakouri"> Mohamadjavad Shakouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iranian Gole GavZaban (Echium amoenum fich & mey), is one of the most important medicinal plant in north of iran . is dry petals used for tonic, tranquillizer, diaphoretic, cough suppressant and a remedy for sore throat in treditional Iranian medicine. This study is the report about the analysis of phytochemical and seeds oil of Echium amoenum's in different habitates and accessions of Iran. The results showed that the oil content of seeds was 36% and eleven fatty acids were identified and quantified by gas chromatography (GC). The major fatty acids wereα-Linolenicacid (39.99), Linoleic acid (20.86), linolenic acid (20%) and Oleic acid (15.36) respectively. The amount of phenols, tannins, flavonoids and anthocyanins with increasing height, increased amount of these compounds. So that the highest rates of these compounds were observed at an altitude of 2125 meters in ciposht accession. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accession" title="accession">accession</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical" title=" phytochemical"> phytochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20components" title=" oil components"> oil components</a>, <a href="https://publications.waset.org/abstracts/search?q=Iranian%20borage" title=" Iranian borage"> Iranian borage</a> </p> <a href="https://publications.waset.org/abstracts/59008/evaluation-of-phytochemical-and-fatty-acids-content-and-composition-in-iranian-borage-echium-amoenum-in-different-habitate-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">435</span> Potential of Water Purification of Turbid Surface Water Sources in Remote Arid and Semi-Arid Rural Areas of Rajasthan by Moringa Oleifera (Drumstick) Tree Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pomila%20Sharma">Pomila Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rajasthan is among regions with greatest climate sensitivity and lowest adaptive capabilities. In many parts of the Rajasthan surface water which can be highly turbid and contaminated with fecal coliform bacteria is used for drinking purposes. The majority rely almost exclusively upon traditional sources of highly turbid and untreated pathogenic surface water for their domestic water needs. In many parts of rural areas of Rajasthan, it is still difficult to obtain clean water, especially remote habitations with no groundwater due to quality issues or depletion and limited feasibility to connect with surface water schemes due to low density of population in these areas to justify large infrastructure investment. The most viable sources are rain water harvesting, community managed open wells, private wells, ponds and small-scale irrigation reservoirs have often been the main traditional sources of rural drinking water. Turbidity is conventionally removed by treating the water with expensive chemicals. This study has to investigate the use of crushed seeds from the tree Moringa oleifera (drumstick) as a natural alternative to conventional coagulant chemicals. The use of Moringa oleifera seed powder can produce potable water of higher quality than the original source. Moringa oleifera a native species of northern India, the tree is now grown extensively throughout the tropics and found in many countries of Africa, Asia & South America. The seeds of tree contains significant quantities of low molecular weight, water soluble proteins which carries the positive charge when the crushed seeds are added to water. This protein binds in raw water with negatively charged turbid water with bacteria, clay, algae, etc. Under proper mixing, these particles make flocks, which may be left to settle by gravity or be removed by filtration. Using Moringa oleifera as a replacement coagulation in such surface sources of arid and semi-arid areas can meet the need for water purification in remote places of Rajasthan state of India. The present study accesses to find out laboratory based investigation of the effect of seeds of Moringa tree on its coagulation effectiveness (purification) using turbid water samples of surface source of the Rajasthan state. In this study, moringa seed powder showed that filtering with seed powder may diminish water pollution and bacterial counts. Results showed Moringa oleifera seeds coagulate 90-95% of turbidity and color efficiently leading to an aesthetically clear supernatant & reduced about 85-90% of bacterial load reduction in samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20load" title="bacterial load">bacterial load</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulant" title=" coagulant"> coagulant</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidity" title=" turbidity"> turbidity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a> </p> <a href="https://publications.waset.org/abstracts/78012/potential-of-water-purification-of-turbid-surface-water-sources-in-remote-arid-and-semi-arid-rural-areas-of-rajasthan-by-moringa-oleifera-drumstick-tree-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">434</span> Impact of Zinc on Heavy Metals Content, Polyphenols and Antioxidant Capacity of Faba Bean in Milk Ripeness </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Timorack%C3%A1">M. Timoracká</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vollmannov%C3%A1."> A. Vollmannová.</a>, <a href="https://publications.waset.org/abstracts/search?q=D.S.%20Ismael"> D.S. Ismael</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Musilov%C3%A1"> J. Musilová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigated the effect of targeted contaminated soil by Zn model conditions. The soil used in the pot trial was uncontaminated. Faba beans (cvs Saturn, Zobor) were harvested in milk ripeness. With increased doses applied into the soil the strong statistical relationship between soil Zn content and Zn amount in seeds of both of faba bean cultivars was confirmed. Despite the high Zn doses applied into the soil in model conditions, in all variants the determined Zn amount in faba bean cv. Saturn was just below the maximal allowed content in foodstuffs given by the legislative. In cv. Zobor the determined Zn content was higher than maximal allowed amount (by 2% and 12%, respectively). Faba bean cvs. Saturn and Zobor accumulated (in all variants higher than hygienic limits) high amounts of Pb and Cd. The contents of all other heavy metals were lower than hygienic limits. With increased Zn doses applied into the soil the total polyphenols contents as well as the total antioxidant capacity determined in seeds of both cultivars Saturn and Zobor were increased. The strong statistical relationship between soil Zn content and the total polyphenols contents as well as the total antioxidant capacity in seeds of faba bean cultivars was confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20capacity" title="antioxidant capacity">antioxidant capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=faba%20bean" title=" faba bean"> faba bean</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/32395/impact-of-zinc-on-heavy-metals-content-polyphenols-and-antioxidant-capacity-of-faba-bean-in-milk-ripeness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">433</span> Assessment of Germination Loss Due to Dusky Cotton Bug (Oxycarenus laetus) in Relation to Cotton Boll Stage and Bug Intensity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hassan">Ali Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mian%20Muhammad%20Awais"> Mian Muhammad Awais</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rafique%20Shahid"> Muhammad Rafique Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Farazia%20Hassan"> Farazia Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shumaila%20%20Rasool"> Shumaila Rasool</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dusky cotton bug (Oxycarenus laetus) has attained the status of major insect pest of cotton. It is also known as seed bug due to its property of feeding on seeds. It causes floral abscission at flowering stage and reduction in seed germination. Present study was carried out to assess germination loss caused by dusky bug with respect to crop stage and insect intensity. Treatments consisted of three stages immature boll, mature boll and opened boll as well three levels of dusky bug i.e., 50 bugs per boll, 40 bugs per boll along with zero level kept as control. Results showed that the germination percentage was highest in control treatment where no insect was released followed by treatment where 40 insects released and minimum germination showed by treatment in which 50 insects were released. The germination percentage of seeds surpassed after control treatment in the treatment where dusky bugs exposure was given at boll opening stage than on mature boll stage. Minimum germination was observed in immature boll stage. Interaction between crop stages and dusky bug levels showed that germination percentage of seeds was maximum in control treatment then boll opening stage followed by mature boll stage. Minimum seed germination was recorded in dusky bug treatment at immature boll stage which was 34% where 50 insects were released. From the results it is clear that dusky bug should be managed properly at all reproductive stages but immature stage is most critical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gossypium%20hirsutum" title="Gossypium hirsutum">Gossypium hirsutum</a>, <a href="https://publications.waset.org/abstracts/search?q=Oxycarenus%20laetus" title=" Oxycarenus laetus"> Oxycarenus laetus</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20bug" title=" seed bug"> seed bug</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a> </p> <a href="https://publications.waset.org/abstracts/72297/assessment-of-germination-loss-due-to-dusky-cotton-bug-oxycarenus-laetus-in-relation-to-cotton-boll-stage-and-bug-intensity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Physicochemical Characterization of Peptides Isolated from Vigna unguiculata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonaal%20Ramsookmohan">Sonaal Ramsookmohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legume seeds are common foods in human diet and have been identied as a valuable source of human nutritonn Since they are useful sources of protein; legume proteins are used in many food applicatonsn Critcal functonal propertes are recognized to impact the quality of foodn Cowpea (Vigna unguiculata), has been well documented for its immense potental in contributng to food security forming part of daily staple diets in most developing countriesn. In this study, cowpea seeds were used to prepare cowpea four, protein isolates by the salt extractonndialysis method and peptdes by enzymatc hydrolysis using Alcalase and Flavourzymen Functonal analyses such as water absorpton capacity, oil absorpton capacity, emulsifying and foaming propertes were conducted on the cowpea peptdesn The physicochemical propertes determine their potental applicaton in food industries as functonal ingredientsn Cowpea peptdes could increase the value of cowpea by expanding its use, as well as contribute to the legume grain sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title="physicochemical">physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=peptides" title=" peptides"> peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=Cowpea" title=" Cowpea"> Cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=alcalase" title=" alcalase"> alcalase</a>, <a href="https://publications.waset.org/abstracts/search?q=flavourzyme" title=" flavourzyme"> flavourzyme</a> </p> <a href="https://publications.waset.org/abstracts/173925/physicochemical-characterization-of-peptides-isolated-from-vigna-unguiculata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Phytochemistry and Alpha-Amylase Inhibitory Activities of Rauvolfia vomitoria (Afzel) Leaves and Picralima nitida (Stapf) Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oseyemi%20Omowunmi%20Olubomehin">Oseyemi Omowunmi Olubomehin</a>, <a href="https://publications.waset.org/abstracts/search?q=Olufemi%20Michael%20Denton"> Olufemi Michael Denton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes mellitus is a disease that is related to the digestion of carbohydrates, proteins and fats and how this affects the blood glucose levels. Various synthetic drugs employed in the management of the disease work through different mechanisms. Keeping postprandial blood glucose levels within acceptable range is a major factor in the management of type 2 diabetes and its complications. Thus, the inhibition of carbohydrate-hydrolyzing enzymes such as α-amylase is an important strategy in lowering postprandial blood glucose levels, but synthetic inhibitors have undesirable side effects like flatulence, diarrhea, gastrointestinal disorders to mention a few. Therefore, it is necessary to identify and explore the α-amylase inhibitors from plants due to their availability, safety, and low costs. In the present study, extracts from the leaves of Rauvolfia vomitoria and seeds of Picralima nitida which are used in the Nigeria traditional system of medicine to treat diabetes were tested for their α-amylase inhibitory effect. The powdered plant samples were subjected to phytochemical screening using standard procedures. The leaves and seeds macerated successively using n-hexane, ethyl acetate and methanol resulted in the crude extracts which at different concentrations (0.1, 0.5 and 1 mg/mL) alongside the standard drug acarbose, were subjected to α-amylase inhibitory assay using the Benfield and Miller methods, with slight modification. Statistical analysis was done using ANOVA, SPSS version 2.0. The phytochemical screening results of the leaves of Rauvolfia vomitoria and the seeds of Picralima nitida showed the presence of alkaloids, tannins, saponins and cardiac glycosides while in addition Rauvolfia vomitoria had phenols and Picralima nitida had terpenoids. The α-amylase assay results revealed that at 1 mg/mL the methanol, hexane, and ethyl acetate extracts of the leaves of Rauvolfia vomitoria gave (15.74, 23.13 and 26.36 %) α-amylase inhibitions respectively, the seeds of Picralima nitida gave (15.50, 30.68, 36.72 %) inhibitions which were not significantly different from the control at p < 0.05, while acarbose gave a significant 56 % inhibition at p < 0.05. The presence of alkaloids, phenols, tannins, steroids, saponins, cardiac glycosides and terpenoids in these plants are responsible for the observed anti-diabetic activity. However, the low percentages of α-amylase inhibition by these plant samples shows that α-amylase inhibition is not the major way by which both plants exhibit their anti-diabetic effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-amylase" title="alpha-amylase">alpha-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=Picralima%20nitida" title=" Picralima nitida"> Picralima nitida</a>, <a href="https://publications.waset.org/abstracts/search?q=postprandial%20hyperglycemia" title=" postprandial hyperglycemia"> postprandial hyperglycemia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rauvolfia%20vomitoria" title=" Rauvolfia vomitoria"> Rauvolfia vomitoria</a> </p> <a href="https://publications.waset.org/abstracts/93002/phytochemistry-and-alpha-amylase-inhibitory-activities-of-rauvolfia-vomitoria-afzel-leaves-and-picralima-nitida-stapf-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Studies on Propagation of Celastrus paniculatus Willd: An Endangered Medicinal Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Raviraja%20Shetty">G. Raviraja Shetty</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20G.%20Poojitha"> K. G. Poojitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment was conducted to study the effect of different growth regulators on seed germination and vegetative propagation by cuttings of an endangered medicinal plant species, Celastrus paniculatus Willd. at College of Horticulture, Mudigere during June- Sept 2014. Various growth parameters were recorded for seed germination and significantly higher results for Rate of germination (0.78), Plant vigour (2082.74), Plant height (22.10cm), number of leaves (7.83) fresh weight (136.58mg) and dry weight of plant (59.16mg) noticed in seeds treated with GA3 400 ppm when compared to control. In vegetative propagation the cuttings treated with IBA 2000 ppm recorded significantly highest sprouting percentage (98.00) when compared to control (71.00). The results of present investigation will be helpful for large scale multiplication of the species. It will also help for cultivation and conservation of this endangered species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Celastrus%20paniculatus%20Willd" title="Celastrus paniculatus Willd">Celastrus paniculatus Willd</a>, <a href="https://publications.waset.org/abstracts/search?q=seeds" title=" seeds"> seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=cuttings" title=" cuttings"> cuttings</a> </p> <a href="https://publications.waset.org/abstracts/34874/studies-on-propagation-of-celastrus-paniculatus-willd-an-endangered-medicinal-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Seed Quality Aspects of Nightshade (Solanum Nigrum) as Influenced by Gibberellins (GA3) on Seed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muga%20Moses">Muga Moses</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant growth regulators are actively involved in the growth and yield of plants. However, limited information is available on the combined effect of gibberellic acid (GA3) on growth attributes and yield of African nightshade. This experiment will be designed to fill this gap by studying the performance of African nightshade under the application of hormones. Gibberellic acid is a plant growth hormone that promotes cell expansion and division. A greenhouse and laboratory experiment will be conducted at the University of Sussex biotechnology greenhouse and Agriculture laboratory using a growth chamber to study the effect of GA3 on the growth and development attributes of African nightshade. The experiment consists of three replications and 5 treatments and is laid out in a randomized complete block design consisting of various concentrations of GA3. 0ppm, 50ppm, 100ppm, 150ppm and 200ppm. local farmer seed was grown in plastic pots, 6 seeds then hardening off to remain with four plants per pot at the greenhouse to attain purity of germplasm, proper management until maturity of berries then harvesting and squeezing to get seeds, paper dry on the sun for 7 days. In a laboratory, place 5 Whatman filter paper on glass petri-dish subject to different concentrations of stock solution, count 50 certified and clean, healthy seeds, then arrange on the moist filter paper and mark respectively. Spray with the stock solution twice a day and protrusion of radicle termed as germination count and discard to increase the accuracy of precision. Data will be collected on the application of GA3 to compare synergistic effects on the growth, yield, and nutrient contents on African nightshade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=African%20nightshade" title="African nightshade">African nightshade</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=shoot" title=" shoot"> shoot</a>, <a href="https://publications.waset.org/abstracts/search?q=gibberellins" title=" gibberellins"> gibberellins</a> </p> <a href="https://publications.waset.org/abstracts/150331/seed-quality-aspects-of-nightshade-solanum-nigrum-as-influenced-by-gibberellins-ga3-on-seed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Accumulation of Heavy Metals in Safflower (Carthamus tinctorius L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20R.%20Angelova">Violina R. Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20N.%20Perifanova-Nemska"> Mariana N. Perifanova-Nemska</a>, <a href="https://publications.waset.org/abstracts/search?q=Galina%20P.%20Uzunova"> Galina P. Uzunova</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20N.%20Kolentsova"> Elitsa N. Kolentsova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparative research has been conducted to allow us to determine the accumulation of heavy metals (Pb, Zn and Cd) in the vegetative and reproductive organs of safflower, and to identify the possibility of its growth on soils contaminated by heavy metals and efficacy for phytoremediation. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances (0.1, 0.5, 2.0, and 15&nbsp;km) from the source of pollution. The contents of heavy metals in plant materials (roots, stems, leaves, seeds) were determined. The quality of safflower oils (heavy metals and fatty acid composition) was also determined. The quantitative measurements were carried out with inductively-coupled plasma (ICP). Safflower is a plant that is tolerant to heavy metals and can be referred to the hyperaccumulators of lead and cadmium and the accumulators of zinc. The plant can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of safflower seeds into oil and the use of the obtained oil will greatly reduce the cost of phytoremediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=accumulation" title=" accumulation"> accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=safflower" title=" safflower"> safflower</a>, <a href="https://publications.waset.org/abstracts/search?q=polluted%20soils" title=" polluted soils"> polluted soils</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a> </p> <a href="https://publications.waset.org/abstracts/49641/accumulation-of-heavy-metals-in-safflower-carthamus-tinctorius-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> Optimization of a Bioremediation Strategy for an Urban Stream of Matanza-Riachuelo Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20D.%20Groppa">María D. Groppa</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Trentini"> Andrea Trentini</a>, <a href="https://publications.waset.org/abstracts/search?q=Myriam%20Zawoznik"> Myriam Zawoznik</a>, <a href="https://publications.waset.org/abstracts/search?q=Roxana%20Bigi"> Roxana Bigi</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Nadra"> Carlos Nadra</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20L.%20Marconi"> Patricia L. Marconi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, a remediation bioprocess based on the use of a local isolate of the microalgae <em>Chlorella vulgaris</em> immobilized in alginate beads is proposed. This process was shown to be effective for the reduction of several chemical and microbial contaminants present in Cild&aacute;&ntilde;ez stream, a water course that is part of the Matanza-Riachuelo Basin (Buenos Aires, Argentina). The bioprocess, involving the culture of the microalga in autotrophic conditions in a stirred-tank bioreactor supplied with a marine propeller for 6 days, allowed a significant reduction of <em>Escherichia coli</em> and total coliform numbers (over 95%), as well as of ammoniacal nitrogen (96%), nitrates (86%), nitrites (98%), and total phosphorus (53%) contents. Pb content was also significantly diminished after the bioprocess (95%). Standardized cytotoxicity tests using<em> Allium cepa</em> seeds and Cild&aacute;&ntilde;ez water pre- and post-remediation were also performed. Germination rate and mitotic index of onion seeds imbibed in Cild&aacute;&ntilde;ez water subjected to the bioprocess was similar to that observed in seeds imbibed in distilled water and significantly superior to that registered when untreated Cild&aacute;&ntilde;ez water was used for imbibition. Our results demonstrate the potential of this simple and cost-effective technology to remove urban-water contaminants, offering as an additional advantage the possibility of an easy biomass recovery, which may become a source of alternative energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title="bioreactor">bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20vulgaris" title=" Chlorella vulgaris"> Chlorella vulgaris</a>, <a href="https://publications.waset.org/abstracts/search?q=Matanza-Riachuelo%20Basin" title=" Matanza-Riachuelo Basin"> Matanza-Riachuelo Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a> </p> <a href="https://publications.waset.org/abstracts/105372/optimization-of-a-bioremediation-strategy-for-an-urban-stream-of-matanza-riachuelo-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Formulation and Characterization of Antimicrobial Chewing Gum Delivery of Some Herbal Extracts for Treatment of Periodontal Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reenu%20Yadav">Reenu Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidhi%20Guha"> Vidhi Guha</a>, <a href="https://publications.waset.org/abstracts/search?q=Udit%20N.%20Soni"> Udit N. Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Ram%20Patel"> Jay Ram Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chewing gums are mobile novel drug delivery systems, with a potential for administering drugs either for local action or for systemic absorption via the buccal route. An antimicrobial chewing gum delivery system of the methanolic extracts of Beatea monosperma (barks and twigs), Cordia obliqua (leaves and seeds) and Cuminun cyminum (seeds) against periodontal diseases caused by some oral pathogens, was designed and characterized on various parameters.The results of the study support the traditional application of the plants and suggest, plant extracts possess compounds with antimicrobial properties that can be used as potential antimicrobial agents and gums can be a good carrier of herbal extracts. Developed formulation will cure/protect from various periodontal diseases. Further development and evaluations chewing gums including the isolated compounds on the commercial scale and their clinical and toxicological studies are the future challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=periodontal%20diseases" title="periodontal diseases">periodontal diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20chewing%20gum" title=" herbal chewing gum"> herbal chewing gum</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20extracts" title=" herbal extracts"> herbal extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20drug%20delivery%20systems" title=" novel drug delivery systems"> novel drug delivery systems</a> </p> <a href="https://publications.waset.org/abstracts/45580/formulation-and-characterization-of-antimicrobial-chewing-gum-delivery-of-some-herbal-extracts-for-treatment-of-periodontal-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> Effect of Phosphorus Solubilizing Bacteria on Yield and Seed Quality of Camelina (Camelina sativa L.) under Drought Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naeem%20Chaudhry">Muhammad Naeem Chaudhry</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahim%20Nawaz"> Fahim Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Rana%20Nauman%20Shabbir"> Rana Nauman Shabbir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New strategies aimed at increasing the resilience of crop plants to the negative effects of climate change represent important research priorities of plant scientists. The use of soil microorganisms to alleviate abiotic stresses like drought has gained particular importance in recent past. A field experiment was planned to investigate the effect of phosphorous solubilizing bacteria on yield and seed quality of Camelina (Camelina sativa L.) under water deficit conditions. The study was conducted at Agronomic Research Farm, University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur, during 4th week of November, 2013. The available seeds of Camelina sativa were inoculated with two bacterial strains (pseudomonas and Bacillus spp.) and grown under various water stress levels i.e. D0, (four irrigations), D3 (three irrigation), D2 (two irrigations), and D1 (one irrigation). The results revealed that drought stress significantly reduced the plant growth and yield, consequently reducing protein contents and oil concentration in camelina. The exposure to drought stress decreased plant height (16%), plant population (27%), number of fertile branches (41-59%), number of pods per plant (35%) and seed per pod (33%). Drought stress also exerted a negative impact on yield characteristics by reducing the 1000-seed weight (65%), final seed yield (52%), biological yield (22%) and harvest index (39%) of camelina. However, the inoculation of seeds with Pseudomonas and Bacillus spp. promoted the plant growth characterized by increased plant height and enhanced plant population. It was noted that inoculation of seeds with Pseudomonas resulted in the maximum plant population (113.4 cm), primary branches (19 plant-1), and number of pods (664 plant-1), whereas Bacillus inoculation resulted in maximum plant height (113.4 cm), seeds per pod (15.9), 1000-seed weight (1.85 g), and seed yield (3378.8 kg ha-1). Moreover, the inoculation with Bacillus also significantly improved the quality attributes of camelina and gave 3.5% and 2.1% higher oil contents than Pseudomonas and control (no-inoculation), respectively. Similarly, the same strain also resulted in maximum protein contents (33.3%). Our results confirmed the hypothesis that inoculation of seeds with phosphorous solubilizing bacterial strains is an effective, viable and environment-friendly approach to improve yield and quality of camelina under water deficit conditions. However, further studies are suggested to investigate the physiological and molecular processes, stimulated by bacterial strains, for increasing drought tolerance in food crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camelina" title="Camelina">Camelina</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20solubilizing%20bacteria" title=" phosphate solubilizing bacteria"> phosphate solubilizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20quality" title=" seed quality"> seed quality</a> </p> <a href="https://publications.waset.org/abstracts/51111/effect-of-phosphorus-solubilizing-bacteria-on-yield-and-seed-quality-of-camelina-camelina-sativa-l-under-drought-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Species Composition of Lepidoptera (Insecta: Lepidoptera) Inhabited on the Saxaul (Chenopodiáceae: Haloxylon spp.) in the Desert Area of South-East Kazakhstan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Tumenbayeva">N. Tumenbayeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At the present time in Kazakhstan, the area for saxaul growing is strongly depopulateddue to anthropogenic and other factors. To prevent further reduction of natural haloxylon forest area their artificial crops are offered. Seed germination and survival of young plants in such haloxylon crops are very low. Insects, as one of the most important nutrient factors have appreciable effect on seed germination and saxaul productivity at the all stages of its formation. Insects, feeding on leaves, flowers, seeds and developing inside the trunk, branches, twigs, roots have a change in its formation and influence on the lifespan of saxaul. Representatives of Lepidoptera troop (Lepidopteraare the most harmful pests forsaxaul. As a result of our research we have identified 15 species of Lepidoptera living on haloxylon which display very different cycles and different types of food relations. It allows them to inhabit a variety of habitats, and feeding on various parts of saxaul. Some of them cause significant and sometimes very heavy damage for saxaul. There are 17identified species of Lepidoptera from the Coleophoridaefamily - 1, Gelechidae - 5, Pyralidae - 4, Noctuidae - 4, Lymantridae- 1, Cossidae - 2 species. At the same time we found 8 species for the first time, which have not been mentioned in the literature before. According to food specialization they are divided into monophages (2 types), oligophages (6 species) and polyphages (3 species). By affinity to plant parts, leaves and seeds are fed by 8 species, shoots by 1 specie, scions by 5 species, flowers, scions, seeds by 1, and 2species damage the roots and trunks. In whole installed seasonal groups of Lepidoptera - saxaul pests in the desert area, confined to the certain parts of the year, as well as certain parts of the plant for feeding. Harmfulness, depending on their activity appear during the growing season is also different. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saxaul" title="saxaul">saxaul</a>, <a href="https://publications.waset.org/abstracts/search?q=Lepidoptera" title=" Lepidoptera"> Lepidoptera</a>, <a href="https://publications.waset.org/abstracts/search?q=insecta" title=" insecta"> insecta</a>, <a href="https://publications.waset.org/abstracts/search?q=haloxylon" title=" haloxylon"> haloxylon</a> </p> <a href="https://publications.waset.org/abstracts/33307/species-composition-of-lepidoptera-insecta-lepidoptera-inhabited-on-the-saxaul-chenopodiaceae-haloxylon-spp-in-the-desert-area-of-south-east-kazakhstan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Physicochemical Analysis of Soxhlet Extracted Oils from Selected Northern Nigerian Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulhamid%20Abubakar">Abdulhamid Abubakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sani%20Ibrahim"> Sani Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fakai%20I.%20Musa"> Fakai I. Musa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study is to investigate the potential use of the selected seed oils. The oil was extracted using Soxhlet apparatus and the physicochemical characteristics of the oil determined using standard methods. The following results were obtained for the physicochemical parameters analysed: for Egusi seed oil, Oil yield 53.20%, Saponification value 178.03±1.25 mgKOH/g, iodine value 49.10±0.32 g I2/100 g, acid value 4.30±0.86 mgKOH/g, and Peroxide value 5.80±0.27 meq/kg were obtained. For Pawpaw seed oil, Oil yield 40.10%, Saponification value 24.13±3.93 mgKOH/g, iodine value 24.87±0.19 g I2/100g, acid value 9.46±0.40 mgKOH/g, and Peroxide value 3.12±1.22 meq/kg were obtained. For Sweet orange seed oil, oil yield 43.10%, Saponification value 106.30±2.37 mgKOH/g, Iodine value 37.08±0.04 g I2/100g, acid value 7.59±0.77 mgKOH/g, and Peroxide value 2.21±0.46 meq/kg were obtained. From the obtained values of the determined parameters, the oils can be extracted from the three selected seeds in commercial quantities and that the egusi and sweet orange seed oils may be utilized in the industrial soap production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carica%20papaya" title="Carica papaya">Carica papaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Citrus%20sinensis" title=" Citrus sinensis"> Citrus sinensis</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine%20value" title=" iodine value"> iodine value</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxide%20value" title=" peroxide value"> peroxide value</a> </p> <a href="https://publications.waset.org/abstracts/15152/physicochemical-analysis-of-soxhlet-extracted-oils-from-selected-northern-nigerian-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Seed Germination and Recovery Responses of Suaeda Heterophylla to Abiotic Stresses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hameed">Abdul Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zaheer%20Ahmed"> Muhammad Zaheer Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Salman%20Gulzar"> Salman Gulzar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilquees%20Gul"> Bilquees Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Alam"> Jan Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20K.%20Hegazy"> Ahmad K. Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Rehman%20A.%20Alatar"> Abdel Rehman A. Alatar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ajmal%20Khan"> M. Ajmal Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seed germination and recovery from salt stress of an annual halophyte Suaeda heterophylla (Kar. and Kir.) Bunge to different iso-osmotic concentrations (0, -0.46, -0.92, -1.38, -1.84, and -2.30 MPa) of NaCl and PEG-6000 at 15/25, 20/30 and 25/35°C in both 12-h temperature and light regimes and in complete darkness were studied. Maximum number of seeds germinated in distilled water and increase in concentrations of both NaCl and PEG-6000 decreased germination at all temperature regimes, light and dark conditions, with higher inhibition in NaCl than PEG-6000. Recovery of germination and viability of seeds were lower in NaCl than PEG-6000 both in the light and dark. Moderate alternate temperatures (20/30°C) and 12-h photoperiod were found to be the optimal for seed germination and recovery. Better seed germination of S. heterophylla when osmotic potential caused both by NaCl and PEG 6000 is lower, temperature regime of 20/30°C and light regime is for 12 h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title="seed germination">seed germination</a>, <a href="https://publications.waset.org/abstracts/search?q=abiotic%20stresses" title=" abiotic stresses"> abiotic stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=Suaeda%20heterophylla" title=" Suaeda heterophylla"> Suaeda heterophylla</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biology" title=" molecular biology"> molecular biology</a> </p> <a href="https://publications.waset.org/abstracts/2254/seed-germination-and-recovery-responses-of-suaeda-heterophylla-to-abiotic-stresses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds&amp;page=4" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds&amp;page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds&amp;page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds&amp;page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds&amp;page=6" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10