CINXE.COM

Search results for: dry matter

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dry matter</title> <meta name="description" content="Search results for: dry matter"> <meta name="keywords" content="dry matter"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dry matter" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dry matter"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1743</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dry matter</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1743</span> Exploring Students’ Visual Conception of Matter and Its Implications to Teaching and Learning Chemistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allen%20A.%20Espinosa">Allen A. Espinosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Arlyne%20C.%20Marasigan"> Arlyne C. Marasigan</a>, <a href="https://publications.waset.org/abstracts/search?q=Janir%20T.%20Datukan"> Janir T. Datukan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study explored how students visualize the states and classifications of matter using scientific models. It also identified misconceptions of students in using scientific models. In general, high percentage of students was able to use scientific models correctly and only a little misconception was identified. From the result of the study, a teaching framework was formulated wherein scientific models should be employed in classroom instruction to visualize abstract concepts in chemistry and for better conceptual understanding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20conception" title="visual conception">visual conception</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20models" title=" scientific models"> scientific models</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20models" title=" mental models"> mental models</a>, <a href="https://publications.waset.org/abstracts/search?q=states%20of%20matter" title=" states of matter"> states of matter</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20of%20matter" title=" classification of matter"> classification of matter</a> </p> <a href="https://publications.waset.org/abstracts/17627/exploring-students-visual-conception-of-matter-and-its-implications-to-teaching-and-learning-chemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1742</span> Zinc Contaminate on Urban Roadside in Rush Hour, Bangkok, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sivapan%20Choo-In">Sivapan Choo-In</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study the Zinc (Zn) concentration in fine particulate matter on Rajchawithee roadside in rush hour. 30 Samples were collected in Jun to August 2013 by 8 stage non-avaible cascade impactor. Each samples (filter paper) were digest with nitric acid and analyed by atomic absorption spectrophotometer for Zinc determination. The highest value for the mean fraction (18.00 ± 9.28 %) is the size 9.0 – 110.0 micron follow by the range 3.3 – 4.7 micron (14.77 ± 14.66 %) and 1.1 – 2.1 micron (14.01 ± 11.77 %) .The concentration of Zn in the particulate matter of range 0.43 – 0.7 μm, 0.7 – 1.1 μm, 1.1 – 2.1 μm, 2.1 – 3.3 μm, 3.3 – 4.7 μm, 4.7 – 5.8 μm, 5.8 – 9.0 μm, 9.0 – 10.0 μm, were 41.56 – 217.62 μg/m3 (175.86 ± 32.25 μg/m3), 152.60 – 217.24 μg/m3 (187.71 ± 17.42 μg/m3), 142.90 – 214.67 μg/m3 (180.95 ± 18.71 μg/m3), 155.48 – 218.19 μg/m3 (183.22 ± 19.94 μg/m3), 151.72 – 217.39 μg/m3 (181.85 ± 17.57 μg/m3), 133.86 – 220.17 μg/m3 (178.78 ± 23.45 μg/m3), 160.00 – 220.35 μg/m3 (182.58 ± 18.08 μg/m3), 153.30 – 226.70 μg/m3 (181.52 ± 20.05 μg/m3), repectively. The Zn concentration in each size of particulate matter was not statistically significant different (p > .005) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20distribution" title=" size distribution"> size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/8099/zinc-contaminate-on-urban-roadside-in-rush-hour-bangkok-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1741</span> Prediction of the Dark Matter Distribution and Fraction in Individual Galaxies Based Solely on Their Rotation Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramzi%20Suleiman">Ramzi Suleiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the author proposed an observationally-based relativity theory termed information relativity theory (IRT). The theory is simple and is based only on basic principles, with no prior axioms and no free parameters. For the case of a body of mass in uniform rectilinear motion relative to an observer, the theory transformations uncovered a matter-dark matter duality, which prescribes that the sum of the densities of the body's baryonic matter and dark matter, as measured by the observer, is equal to the body's matter density at rest. It was shown that the theory transformations were successful in predicting several important phenomena in small particle physics, quantum physics, and cosmology. This paper extends the theory transformations to the cases of rotating disks and spheres. The resulting transformations for a rotating disk are utilized to derive predictions of the radial distributions of matter and dark matter densities in rotationally supported galaxies based solely on their observed rotation curves. It is also shown that for galaxies with flattening curves, good approximations of the radial distributions of matter and dark matter and of the dark matter fraction could be obtained from one measurable scale radius. Test of the model on five galaxies, chosen randomly from the SPARC database, yielded impressive predictions. The rotation curves of all the investigated galaxies emerged as accurate traces of the predicted radial density distributions of their dark matter. This striking result raises an intriguing physical explanation of gravity in galaxies, according to which it is the proximal drag of the stars and gas in the galaxy by its rotating dark matter web. We conclude by alluding briefly to the application of the proposed model to stellar systems and black holes. This study also hints at the potential of the discovered matter-dark matter duality in fixing the standard model of elementary particles in a natural manner without the need for hypothesizing about supersymmetric particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title="dark matter">dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=galaxies%20rotation%20curves" title=" galaxies rotation curves"> galaxies rotation curves</a>, <a href="https://publications.waset.org/abstracts/search?q=SPARC" title=" SPARC"> SPARC</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk" title=" rotating disk"> rotating disk</a> </p> <a href="https://publications.waset.org/abstracts/171407/prediction-of-the-dark-matter-distribution-and-fraction-in-individual-galaxies-based-solely-on-their-rotation-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1740</span> Spin One Hawking Radiation from Dirty Black Holes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petarpa%20Boonserm">Petarpa Boonserm</a>, <a href="https://publications.waset.org/abstracts/search?q=Tritos%20Ngampitipan"> Tritos Ngampitipan</a>, <a href="https://publications.waset.org/abstracts/search?q=Matt%20Visser"> Matt Visser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 'clean' black hole is a black hole in vacuum such as the Schwarzschild black hole. However in real physical systems, there are matter fields around a black hole. Such a black hole is called a 'dirty black hole'. In this paper, The effect of matter fields on the black hole and the greybody factor is investigated. The results show that matter fields make a black hole smaller. They can increase the potential energy to a black hole to obstruct Hawking radiation to propagate. This causes the greybody factor of a dirty black hole to be less than that of a clean black hole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dirty%20black%20hole" title="dirty black hole">dirty black hole</a>, <a href="https://publications.waset.org/abstracts/search?q=greybody%20factor" title=" greybody factor"> greybody factor</a>, <a href="https://publications.waset.org/abstracts/search?q=hawking%20radiation" title=" hawking radiation"> hawking radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=matter%20fields." title=" matter fields."> matter fields.</a> </p> <a href="https://publications.waset.org/abstracts/1553/spin-one-hawking-radiation-from-dirty-black-holes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">598</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1739</span> Comparative Studies on the Concentration of Some Heavy Metal in Urban Particulate Matter, Bangkok, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sivapan%20Choo-In">Sivapan Choo-In</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study was investigate particulate matter concentration on main and secondary roadside in urban area. And studied on the concentration of some heavy metal including lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) in particulate matter in Bangkok area. The averaged particle concentration for main roadside are higher than secondary roadside. The particulate matter less than 10 micron concentration contribute the majority of the Total Suspended Particulate for main road and zinc concentration were higher than copper and lead for both site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title=" air quality"> air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=polution" title=" polution"> polution</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a> </p> <a href="https://publications.waset.org/abstracts/3877/comparative-studies-on-the-concentration-of-some-heavy-metal-in-urban-particulate-matter-bangkok-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1738</span> Poisson Type Spherically Symmetric Spacetimes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gonzalo%20Garc%C3%ADa-Reyes">Gonzalo García-Reyes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conformastat spherically symmetric exact solutions of Einstein's field equations representing matter distributions made of fluid both perfect and anisotropic from given solutions of Poisson's equation of Newtonian gravity are investigated. The approach is used in the construction of new relativistic models of thick spherical shells and three-component models of galaxies (bulge, disk, and dark matter halo), writing, in this case, the metric in cylindrical coordinates. In addition, the circular motion of test particles (rotation curves) along geodesics on the equatorial plane of matter configurations and the stability of the orbits against radial perturbations are studied. The models constructed satisfy all the energy conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title="general relativity">general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20symmetry" title=" spherical symmetry"> spherical symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=galaxy" title=" galaxy"> galaxy</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematics%20and%20dynamics" title=" kinematics and dynamics"> kinematics and dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title=" dark matter"> dark matter</a> </p> <a href="https://publications.waset.org/abstracts/151913/poisson-type-spherically-symmetric-spacetimes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1737</span> Characterization of the Soils of the Edough Massif (North East Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somia%20Lakehal%20Ayat">Somia Lakehal Ayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibtissem%20Samai"> Ibtissem Samai</a>, <a href="https://publications.waset.org/abstracts/search?q=Srara%20Lakehal%20Ayat"> Srara Lakehal Ayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaima%20Dahmani"> Chaima Dahmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work relates to the physicochemical diversity and the characterization of the different types of soils of the edough massif (North East of Algeria) and to the evaluation and characterization of the existing organic matter as well as to the evolution. and the dynamics of the latter, also on its influence on changes in the physical properties of soils. In order to know the soil properties of seraidi forest, we established a stratified sampling plan. The results obtained show that we are in the presence of a great diversity of soils, such as neutral to alkaline, whose adsorbent complex is sufficiently saturated. Also, the presence of limestone offers the soil a fairly significant buffering capacity. In our study region, the texture of the soils is varied between clayey and silty, where it offers medium porosity, there is a strong accumulation of organic matter, therefore soils rich in organic matter.The fractionation of the organic matter of the soils allowed to obtain a very high rate of humification. The soil characteristics of the edough massif (North East of Algeria) are controlled by the contribution of organic matter, which presents a dynamic and an important evolution and which varies with the climatic conditions and the nature and the type of plant formation, and these the latter have a capital and important role in the rate of mineralization of organic matter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20matter" title="organic matter">organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=foresty" title=" foresty"> foresty</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization" title=" mineralization"> mineralization</a> </p> <a href="https://publications.waset.org/abstracts/168523/characterization-of-the-soils-of-the-edough-massif-north-east-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1736</span> Feasibility of Weakly Interacting Massive Particles as Dark Matter Candidates: Exploratory Study on The Possible Reasons for Lack of WIMP Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sloka%20Bhushan">Sloka Bhushan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dark matter constitutes a majority of matter in the universe, yet very little is known about it due to its extreme lack of interaction with regular matter and the fundamental forces. Weakly Interacting Massive Particles, or WIMPs, have been contested to be one of the strongest candidates for dark matter due to their promising theoretical properties. However, various endeavors to detect these elusive particles have failed. This paper explores the various particles which may be WIMPs and the detection techniques being employed to detect WIMPs (such as underground detectors, LHC experiments, and so on). There is a special focus on the reasons for the lack of detection of WIMPs so far, and the possibility of limits in detection being a reason for the lack of physical evidence of the existence of WIMPs. This paper also explores possible inconsistencies within the WIMP particle theory as a reason for the lack of physical detection. There is a brief review on the possible solutions and alternatives to these inconsistencies. Additionally, this paper also reviews the supersymmetry theory and the possibility of the supersymmetric neutralino (A possible WIMP particle) being detectable. Lastly, a review on alternate candidates for dark matter such as axions and MACHOs has been conducted. The explorative study in this paper is conducted through a series of literature reviews. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title="dark matter">dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20detection" title=" particle detection"> particle detection</a>, <a href="https://publications.waset.org/abstracts/search?q=supersymmetry" title=" supersymmetry"> supersymmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=weakly%20interacting%20massive%20particles" title=" weakly interacting massive particles"> weakly interacting massive particles</a> </p> <a href="https://publications.waset.org/abstracts/132079/feasibility-of-weakly-interacting-massive-particles-as-dark-matter-candidates-exploratory-study-on-the-possible-reasons-for-lack-of-wimp-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1735</span> The Interleaving Effect of Subject Matter and Perceptual Modality on Students’ Attention and Learning: A Portable EEG Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Chen">Wen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate the interleaving effect of subject matter (mathematics vs. history) and perceptual modality (visual vs. auditory materials) on student’s attention and learning outcomes, the present study collected self-reported data on subjective cognitive load (SCL) and attention level, EEG data, and learning outcomes from micro-lectures. Eighty-one 7th grade students were randomly assigned to four learning conditions: blocked (by subject matter) micro-lectures with auditory textual information (B-A condition), blocked (by subject matter) micro-lectures with visual textual information (B-V condition), interleaved (by subject matter) micro-lectures with auditory textual information (I-A condition), and interleaved micro-lectures by both perceptual modality and subject matter (I-all condition). The results showed that although interleaved conditions may show advantages in certain indices, the I-all condition showed the best overall outcomes (best performance, low SCL, and high attention). This study suggests that interleaving by both subject matter and perceptual modality should be preferred in scheduling and planning classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20load" title="cognitive load">cognitive load</a>, <a href="https://publications.waset.org/abstracts/search?q=interleaving%20effect" title=" interleaving effect"> interleaving effect</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-lectures" title=" micro-lectures"> micro-lectures</a>, <a href="https://publications.waset.org/abstracts/search?q=sustained%20attention" title=" sustained attention"> sustained attention</a> </p> <a href="https://publications.waset.org/abstracts/105780/the-interleaving-effect-of-subject-matter-and-perceptual-modality-on-students-attention-and-learning-a-portable-eeg-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1734</span> Covariance and Quantum Cosmology: A Comparison of Two Matter Clocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theodore%20Halnon">Theodore Halnon</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Bojowald"> Martin Bojowald</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In relativity, time is relative between reference frames. However, quantum mechanics requires a specific time coordinate in order to write an evolution equation for wave functions. This difference between the two theories leads to the problem of time in quantum gravity. One method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In order to test the relationship between different reference frames, an isotropic cosmological model with two matter ingredients is introduced. One is given by a scalar field and one by vacuum energy or a cosmological constant. There are two matter fields, and thus two different Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for these equations and a comparison is made of the physical predictions that they imply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmology" title="cosmology">cosmology</a>, <a href="https://publications.waset.org/abstracts/search?q=deparameterization" title=" deparameterization"> deparameterization</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title=" general relativity"> general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a> </p> <a href="https://publications.waset.org/abstracts/55135/covariance-and-quantum-cosmology-a-comparison-of-two-matter-clocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1733</span> Light-Entropy Continuum Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Restall">Christopher Restall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> field causing attraction between mixed charges of matter during charge exchanges with antimatter. This asymmetry is caused from none-trinary quark amount variation in matter and anti-matter during entropy progression. This document explains how a circularity critique exercise assessed scientific knowledge and develop a unified theory from the information collected. The circularity critique, creates greater intuition leaps than an individual would naturally, the information collected can be integrated and assessed thoroughly for correctness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unified%20theory%20of%20everything" title="unified theory of everything">unified theory of everything</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20gravity" title=" quantum gravity"> quantum gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20model" title=" standard model"> standard model</a> </p> <a href="https://publications.waset.org/abstracts/188187/light-entropy-continuum-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1732</span> Fire Effects on Soil Properties of Meshchera Plain, Russia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Tsibart">Anna Tsibart</a>, <a href="https://publications.waset.org/abstracts/search?q=Timur%20Koshovskii"> Timur Koshovskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The properties of soils affected by the wildfires of 2002, 2010, and 2012 in Meshchera plain (Moscow region, Russia) were considered in a current research. The formation of ash horizons instead of organic peat horizons was detected both in histosols and histic podzols. The increase of pH and magnetic susceptibility was observed in soil profiles. Significant burning out of organic matter was observed, but already two years after the fire the new stage of organic matter accumulation started. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wildfires" title="wildfires">wildfires</a>, <a href="https://publications.waset.org/abstracts/search?q=peat%20soils" title=" peat soils"> peat soils</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter" title=" organic matter"> organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Meshchera%20plain" title=" Meshchera plain"> Meshchera plain</a> </p> <a href="https://publications.waset.org/abstracts/20498/fire-effects-on-soil-properties-of-meshchera-plain-russia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1731</span> Picture of the World by the Second Law of Thermodynamic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20V.%20Kuzminov">Igor V. Kuzminov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to its content, the proposed article is a collection of articles with comments and additions. All articles, in one way or another, have a connection with the Second Law of Thermodynamics. The content of the articles is given in a concise form. The articles were published in different journals at different times. Main topics are presented: gravity, biography of the Earth, physics of global warming-cooling cycles, multiverse. The articles are based on the laws of classical physics. Along the way, it should be noted that the Second Law of thermodynamics can be formulated as the Law of Matter Cooling. As it cools down, the processes of condensation, separation, and changes in the aggregate states of matter occur. In accordance with these changes, a picture of the world is being formed. Also, the main driving force of these processes is the inverse temperature dependence of the forces of gravity. As matter cools, the forces of gravity increase. The actions of these phenomena in the compartment form a picture of the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravitational%20forces" title="gravitational forces">gravitational forces</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20of%20matter" title=" cooling of matter"> cooling of matter</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20temperature%20dependence%20of%20gravitational%20forces" title=" inverse temperature dependence of gravitational forces"> inverse temperature dependence of gravitational forces</a>, <a href="https://publications.waset.org/abstracts/search?q=planetary%20model%20of%20the%20atom" title=" planetary model of the atom"> planetary model of the atom</a> </p> <a href="https://publications.waset.org/abstracts/172167/picture-of-the-world-by-the-second-law-of-thermodynamic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1730</span> Exploring White-Matter Hyperintensities in Patients with Psychiatric Disorders and Their Clinical Relevance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ubaid%20Ullah%20Kamgar">Ubaid Ullah Kamgar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajaz%20Ahmed%20Suhaff"> Ajaz Ahmed Suhaff</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Maqbool%20Dar"> Mohammad Maqbool Dar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The aim is to study the association of MRI findings of T₂/FLAIR white matter hyperintensities among patients with psychiatric disorders. Background and Rationale: MRI findings in psychiatric disorders can vary widely depending on specific disorders and individual differences. However, some general patterns have been observed, such as, in Depression - reduced volume in areas such as the prefrontal cortex and hippocampus; in Schizophrenia - enlarged ventricles, abnormalities in frontal and temporal lobes, as well as hippocampus and thalamus; in Bipolar Disorder – reduced volume in the prefrontal cortex and hippocampus and abnormalities in the amygdala; in OCD – abnormalities in the orbitofrontal cortex, anterior cingulate cortex and striatum. However, many patients show findings of white-matter hyper-intensities, which are usually considered non-specific in psychiatry. These hyperintensities are low attenuation in the deep and white matter. The pathogenic mechanisms of white matter hyperintensities are not well-understood and have been attributed to cerebral small vessel disease. The aim of the study is to study the association of the above MRI findings in patients with psychiatric disorders after ruling out neurological disorders (if any are found). Methodology: Patients admitted to psychiatric hospitals or presenting to OPDs with underlying psychiatric disorders, having undergone MRI Brain as part of investigations, and having T₂/FLAIR white-matter hyperintensities on MRI were taken to study the association of the above MRI findings with different psychiatric disorders. Results: Out of the 22 patients having MRI findings of T₂/FLAIR white-matter hyper-intensities, the underlying psychiatric comorbidities were: Major Depressive Disorder in 7 pts; Obsessive Compulsive Disorder in 5 pts; Bipolar Disorder in 5 pts; Dementia (vascular type) in 5pts. Discussion and conclusion: In our study, the white matter hyper-intensities were found mostly in MDD (32%), OCD (22.7%), Bipolar Disorder (22.7%) and Dementia in 22.7% of patients. In conclusion, the presence of white-matter hyperintensities in psychiatric disorders underscores the complex interplay between vascular, neurobiological and psychosocial factors. Further research with a large sample size is needed to fully elucidate their clinical significance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=white-matter%20hyperintensities" title="white-matter hyperintensities">white-matter hyperintensities</a>, <a href="https://publications.waset.org/abstracts/search?q=OCD" title=" OCD"> OCD</a>, <a href="https://publications.waset.org/abstracts/search?q=MDD" title=" MDD"> MDD</a>, <a href="https://publications.waset.org/abstracts/search?q=dementia" title=" dementia"> dementia</a>, <a href="https://publications.waset.org/abstracts/search?q=bipolar%20disorder." title=" bipolar disorder."> bipolar disorder.</a> </p> <a href="https://publications.waset.org/abstracts/183358/exploring-white-matter-hyperintensities-in-patients-with-psychiatric-disorders-and-their-clinical-relevance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1729</span> Depositional Environment and Source Potential of Devonian Source Rock, Ghadames Basin, Southern Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mahmoudi">S. Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belhaj%20Mohamed"> A. Belhaj Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saidi"> M. Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rezgui"> F. Rezgui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Depositional environment and source potential of the different organic rich levels of Devonian age (up to 990m thick) from the onshore EC-1 well (Southern Tunisia) were investigated using different geochemical techniques (Rock-Eval pyrolysis, GC-MS) of over than 130 cutting samples. The obtained results including Rock Eval Pyrolysis data and biomarker distribution (terpanes, steranes and aromatics) have been used to describe the depositional environment and to assess the thermal maturity of the Devonian organic matter. These results show that the Emsian deposits exhibit poor to fair TOC contents. The associated organic matter is composed of mixed kerogen (type II/III), as indicated by the predominance of C29 steranes over C27 and C28 homologous, that was deposited in a slightly reduced environment favoring organic matter preservation. Thermal maturity assessed from Tmax, TNR and MPI-1 values shows a mature stage of organic matter. The Middle Devonian (Eifelian) shales are rich in type II organic matter that was deposited in an open marine depositional environment. The TOC values are high and vary between 2 and 7 % indicating good to excellent source rock. The relatively high IH values (reaching 547 mg HC/g TOC) and the low values of t19/t23 ratio (down to 0.2) confirm the marine origin of the organic matter (type II). During the Upper Devonian, the organic matter was deposited under variable redox conditions, oxic to suboxic which is clearly indicated by the low C35/C34 hopanes ratio, immature to marginally mature with the vitrinite reflectance ranging from 0.5 to 0.7 Ro and Tmax value of 426°C-436 °C and the TOC values range between 0.8% to 4%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarker" title="biomarker">biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=depositional%20environment" title=" depositional environment"> depositional environment</a>, <a href="https://publications.waset.org/abstracts/search?q=devonian" title=" devonian"> devonian</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20rock" title=" source rock"> source rock</a> </p> <a href="https://publications.waset.org/abstracts/23722/depositional-environment-and-source-potential-of-devonian-source-rock-ghadames-basin-southern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1728</span> Calculating All Dark Energy and Dark Matter Effects Through Dynamic Gravity Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sean%20Kinney">Sean Kinney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifest. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, using the math of Dynamic Gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need of exotic measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity" title="gravity">gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20gravity" title=" dynamic gravity"> dynamic gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title=" dark matter"> dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a> </p> <a href="https://publications.waset.org/abstracts/162095/calculating-all-dark-energy-and-dark-matter-effects-through-dynamic-gravity-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1727</span> Calculating All Dark Energy and Dark Matter Effects through Dynamic Gravity Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sean%20Michael%20Kinney">Sean Michael Kinney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifests. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, use the math of Dynamic gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need for exotic measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20gravity" title="dynamic gravity">dynamic gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title=" dark matter"> dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a> </p> <a href="https://publications.waset.org/abstracts/162838/calculating-all-dark-energy-and-dark-matter-effects-through-dynamic-gravity-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1726</span> Evaluation of the Impact of Green Infrastructure on Dispersion and Deposition of Particulate Matter in Near-Roadway Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deeksha%20Chauhan">Deeksha Chauhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Jain"> Kamal Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollutant concentration is high in near-road environments, and vegetation is an effective measure to mitigate urban air quality problems. This paper presents the influence of roadside green infrastructure in dispersion and Deposition of Particulate matter (PM) by the ENVI-met Simulations. Six green infrastructure configurations were specified (i) hedges only, (ii) trees only, (iii) a mix of trees and shrubs (iv) green barrier (v) green wall, and (vi) no tree buffer were placed on both sides of the road. The changes in concentrations at all six scenarios were estimated to identify the best barrier to reduce the dispersion and deposition of PM10 and PM2.5 in an urban environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barrier" title="barrier">barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Particulate%20matter" title=" Particulate matter"> Particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant" title=" pollutant"> pollutant</a> </p> <a href="https://publications.waset.org/abstracts/127902/evaluation-of-the-impact-of-green-infrastructure-on-dispersion-and-deposition-of-particulate-matter-in-near-roadway-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1725</span> Accelerated Expansion of a Matter-Antimatter Universe and Gravity as an Electromagnetic Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maarten%20J.%20Van%20der%20Burgt">Maarten J. Van der Burgt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A universe containing matter and antimatter can only exist when matter and antimatter repel each other. Such a system, where like attracts like and like repels unlike, will always expand. Calculations made for such a symmetric universe demonstrate that the expansion is consistent with Hubble’s law, the observed increase in the expansion velocity with time, the initial high acceleration and the foam structure of the universe. Conversely, these observations can be considered as proof for a symmetrical universe and for antimatter possessing a negative gravitational mass. A second proof can be found by reinterpreting the behavior of relativistic moving charged particles. Attributing their behavior to a charge defect of √(1-v2/c2) instead of to a mass defect of 1/√(1-v2/c2) makes it plausible that gravitation is an electromagnetic force, as already suggested by Feynman. This would automatically imply that antimatter has a negative gravitational mass. These proofs underpin the untenability of the Weak Equivalence Principle which states that in a gravitational field all structure less point-like particles follow the same path. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=celestial%20mechanics" title="celestial mechanics">celestial mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmology" title=" cosmology"> cosmology</a>, <a href="https://publications.waset.org/abstracts/search?q=gravitation%20astrophysics" title=" gravitation astrophysics"> gravitation astrophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=origin%20of%20structure" title=" origin of structure"> origin of structure</a>, <a href="https://publications.waset.org/abstracts/search?q=miscellaneous%20%28matter%20and%20antimatter%29" title=" miscellaneous (matter and antimatter)"> miscellaneous (matter and antimatter)</a> </p> <a href="https://publications.waset.org/abstracts/57939/accelerated-expansion-of-a-matter-antimatter-universe-and-gravity-as-an-electromagnetic-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1724</span> Indoor Emissions Produced by Kerosene Heating, Determining Its Formation Potential of Secondary Particulate Matter and Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Mu%C3%B1oz">J. M. Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Vasquez"> Y. Vasquez</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Oyola"> P. Oyola</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rubio"> M. Rubio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All emissions of contaminants inside of homes, offices, school and another enclosure closer that affect the health of those who inhabit or use them are cataloged how indoor pollution. The importance of this study is because individuals spend most of their time in indoors ambient. The main indoor pollutants are oxides of nitrogen (NOₓ), sulfur dioxide (SO₂), carbon monoxide (CO) and particulate matter (PM). Combustion heaters are an important source of pollution indoors. It will be measured: NOₓ, SO₂, CO, PM₂,₅ y PM₁₀ continuous and discreet form at indoor and outdoor of two households with different heating energy; kerosene and electricity (control home) respectively, in addition to environmental parameters such as temperature. With the values obtained in the 'control home' it will be possible estimate the contaminants transport from outside to inside of the household and later the contribution generated by kerosene heating. Transporting the emissions from burning kerosene to a photochemical chamber coupled to a continuous and discreet measuring system of contaminants it will be evaluated the oxidation of the emissions and formation of secondary particulate matter. It will be expected watch a contaminants transport from outside to inside of the household and the kerosene emissions present a high potential of formation secondary particulate matter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heating" title="heating">heating</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20pollution" title=" indoor pollution"> indoor pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=kerosene" title=" kerosene"> kerosene</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20particulate%20matter" title=" secondary particulate matter"> secondary particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/73230/indoor-emissions-produced-by-kerosene-heating-determining-its-formation-potential-of-secondary-particulate-matter-and-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1723</span> Analysis of Particulate Matter Concentration, EC, OC Emission and Elemental Composition for Biodiesel-Fuelled Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Ashraful">A. M. Ashraful</a>, <a href="https://publications.waset.org/abstracts/search?q=H%20.H.%20Masjuki"> H .H. Masjuki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Kalam"> M. A. Kalam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparative investigations were performed on the particles matter emitted from a DI diesel engine utilizing palm biodiesel. In this experiment, palm biodiesel PB10 (90% diesel and 10% palm biodiesel), PB20 (80% diesel, 20% palm biodiesel) and diesel fuel samples exhaust were investigated at different working condition (25% and 50% load at 1500 rpm constant speed). Observation of this experiment it clearly seen that at low load condition particle matter concentration of palm biodiesel exhaust were de-creased than that of diesel fuel. At no load and 25% load condition PB10 biodiesel blend exhibited 2.2 times lower PM concentration than that of diesel fuel. On the other hand, elemental carbon (EC) and organic emission for PB10 showed decreases trend as varies 4.2% to 6.6% and 32 to 39% respectively, while elemental carbon percentage increased by 0.85 to 10% respectively. Similarly, metal composition of PB10 biodiesel blend increased by 4.8 to 26.5% respectively. SEM images for B10 and B20 demonstrated granular structure particulates with greater grain sizes compared with diesel fuel. Finally, the experimental outcomes showed that the blend composition and degree of unsaturation of the methyl ester present in biodiesel influence on the particulate matter formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title="particulate matter">particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20carbon" title=" elemental carbon"> elemental carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20carbon" title=" organic carbon"> organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a> </p> <a href="https://publications.waset.org/abstracts/37824/analysis-of-particulate-matter-concentration-ec-oc-emission-and-elemental-composition-for-biodiesel-fuelled-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1722</span> Effect of Carbon Nanotubes Functionalization with Nitrogen Groups on Pollutant Emissions in an Internal Combustion Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Gamboa">David Gamboa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernardo%20Herrera"> Bernardo Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Cacua"> Karen Cacua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials have been explored as alternatives to reduce particulate matter from diesel engines, which is one of the most common pollutants of the air in urban centers. However, the use of nanomaterials as additives for diesel has to overcome the instability of the dispersions to be considered viable for commercial use. In this work, functionalization of carbon nanotubes with amide groups was performed to improve the stability of these nanomaterials in a mix of 90% petroleum diesel and 10% palm oil biodiesel (B10) in concentrations of 50 and 100 ppm. The resulting nano fuel was used as the fuel for a stationary internal combustion engine, where the particulate matter, NOx, and CO were measured. The results showed that the use of amide groups significantly enhances the time for the carbon nanotubes to remain suspended in the fuel, and at the same time, these nanomaterials helped to reduce the particulate matter and NOx emissions. However, the CO emissions with nano fuel were higher than those ones with the combustion of B10. These results suggest that carbon nanotubes have thermal and catalytic effects on the combustion of B10. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20combustion%20engine" title=" internal combustion engine"> internal combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/156085/effect-of-carbon-nanotubes-functionalization-with-nitrogen-groups-on-pollutant-emissions-in-an-internal-combustion-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1721</span> The Effect of Fermented Organic Feed into Nutritive Contents of Kampong Chicken Meat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wahyu%20Widodo">Wahyu Widodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Imbang%20Dwi%20Rahayu"> Imbang Dwi Rahayu</a>, <a href="https://publications.waset.org/abstracts/search?q=Adi%20Sutanto"> Adi Sutanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research was to analyze the effect of the fermented organic feed to dry matter, ash, organic matter, protein, fat and crude fiber contents of kampong chicken meat. The research had conducted at January until June, 2016. One hundreds chickens were used in this research. Experimental method and completely randomized design were used to support this research. We had 4 treatment namely P0: organic feed without fermentation, P1: Organic feed with fermented rice bran, P2: Organic feed with fermented corn, P3: Organic feed with fermented rice bran and corn with 5 replication. The conclusion was the treatment had not a significant effect in the dry matter, ash, organic matter and protein contents of chicken meat. On the other hand, it had a significant effect in the fat and crude fiber contents of chicken meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn" title="corn">corn</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented%20organic%20feed" title=" fermented organic feed"> fermented organic feed</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritive%20contents" title=" nutritive contents"> nutritive contents</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran" title=" rice bran"> rice bran</a> </p> <a href="https://publications.waset.org/abstracts/62184/the-effect-of-fermented-organic-feed-into-nutritive-contents-of-kampong-chicken-meat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1720</span> Effect of Nitrogen Management on Nitrogen Uptake, Dry Matter Production and Some Yield Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Tayefe">Mandana Tayefe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Amiri"> Ebrahim Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Azin%20Nasrollah%20Zade"> Azin Nasrollah Zade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of nitrogen (N) fertilizer levels on nitrogen uptake, dry matter production, yield and some yield components of rice (Hashemi, Kazemi, Khazar) was investigated in an experiment as factorial in RCBD with 3 replications in a paddy light soil at Guilan province, Iran, 2008-2009. In this experiment, four treatments including: N1-control (no N fertilizer); N2- 30 kgN/ha; N3- 60 kgN/ha; N4- 90 kgN/ha were compared. Results showed that total biomass (8386 kg/ha), grain yield (3662 kg/ha), panicles m-2 (235.8) and total grain per panicle (103.8) were reached the highest value at high nitrogen level. Among the varieties the highest total biomass (7734 kg/ha), grain yield (3414 kg/ha) and total grain per panicle (78.2) belonged to Khazar. Dry matter, total N uptake was varied in different cultivars significantly and Khazar variety had the highest contents. Total biomass and total N uptake was varied significantly with the increasement of the amount of nitrogen applied. As total biomass and total N uptake increased with increasing in N fertilizing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20uptake" title=" nitrogen uptake"> nitrogen uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20matter" title=" dry matter"> dry matter</a> </p> <a href="https://publications.waset.org/abstracts/27769/effect-of-nitrogen-management-on-nitrogen-uptake-dry-matter-production-and-some-yield-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1719</span> Cosmic Dust as Dark Matter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Prevenslik">Thomas Prevenslik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weakly Interacting Massive Particle (WIMP) experiments suggesting dark matter does not exist are consistent with the argument that the long-standing galaxy rotation problem may be resolved without the need for dark matter if the redshift measurements giving the higher than expected galaxy velocities are corrected for the redshift in cosmic dust. Because of the ubiquity of cosmic dust, all velocity measurements in astronomy based on redshift are most likely overstated, e.g., an accelerating Universe expansion need not exist if data showing supernovae brighter than expected based on the redshift/distance relation is corrected for the redshift in dust. Extensions of redshift corrections for cosmic dust to other historical astronomical observations are briefly discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20theories" title="alternative theories">alternative theories</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20dust%20redshift" title=" cosmic dust redshift"> cosmic dust redshift</a>, <a href="https://publications.waset.org/abstracts/search?q=doppler%20effect" title=" doppler effect"> doppler effect</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20electrodynamics" title=" quantum electrodynamics"> quantum electrodynamics</a> </p> <a href="https://publications.waset.org/abstracts/60993/cosmic-dust-as-dark-matter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1718</span> Organic Geochemical Characteristics of Cenozoic Mudstones, NE Bengal Basin, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Zakir%20Hossain">H. M. Zakir Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cenozoic mudstone samples, obtained from drilled cored and outcrop in northeastern Bengal Basin of Bangladesh were organic geochemically analyzed to identify vertical variations of organic facies, thermal maturity, hydrocarbon potential and depositional environments. Total organic carbon (TOC) content ranges from 0.11 to 1.56 wt% with an average of 0.43 wt%, indicating a good source rock potential. Total sulphur content is variable with values ranging from ~0.001 to 1.75 wt% with an average of 0.065 wt%. Rock-Eval S1 and S2 yields range from 0.03 to 0.14 mg HC/g rock and 0.01 to 0.66 mg HC/g rock, respectively. The hydrogen index values range from 2.71 to 56.09 mg HC/g TOC. These results revealed that the samples are dominated by type III kerogene. Tmax values of 426 to 453 °C and vitrinite reflectance of 0.51 to 0.66% indicate the organic matter is immature to mature. Saturated hydrocarbon ratios such as pristane, phytane, steranes, and hopanes, indicate mostly terrigenous organic matter with small influence of marine organic matter. Organic matter in the succession was accumulated in three different environmental conditions based on the integration of biomarker proxies. First phase (late Eocene to early Miocene): Deposition occurred entirely in seawater-dominated oxic conditions, with high inputs of land plants organic matter including angiosperms. Second phase (middle to late Miocene): Deposition occurred in freshwater-dominated anoxic conditions, with phytoplanktonic organic matter and a small influence of land plants. Third phase (late Miocene to Pleistocene): Deposition occurred in oxygen-poor freshwater conditions, with abundant input of planktonic organic matter and high influx of angiosperms. The lower part (middle Eocene to early Miocene) of the succession with moderate TOC contents and primarily terrestrial organic matter could have generated some condensates and oils in and around the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title="Bangladesh">Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential" title=" hydrocarbon potential"> hydrocarbon potential</a>, <a href="https://publications.waset.org/abstracts/search?q=mudstone" title=" mudstone"> mudstone</a> </p> <a href="https://publications.waset.org/abstracts/14260/organic-geochemical-characteristics-of-cenozoic-mudstones-ne-bengal-basin-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1717</span> Reduction of Toxic Matter from Marginal Water Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheyaa%20Wajid%20Abbood">Dheyaa Wajid Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Eitizaz%20Awad%20Jasim"> Eitizaz Awad Jasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the environmental hydraulic laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=toxic%20matter" title="toxic matter">toxic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20water" title=" marginal water"> marginal water</a>, <a href="https://publications.waset.org/abstracts/search?q=trickling%20filter" title=" trickling filter"> trickling filter</a>, <a href="https://publications.waset.org/abstracts/search?q=stepped%20cascade%20weir" title=" stepped cascade weir"> stepped cascade weir</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20efficiency" title=" removal efficiency"> removal efficiency</a> </p> <a href="https://publications.waset.org/abstracts/32593/reduction-of-toxic-matter-from-marginal-water-using-sludge-recycling-from-combination-of-stepped-cascade-weir-with-limestone-trickling-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1716</span> Controlling Interactions and Non-Equilibrium Steady State in Spinning Active Matter Monolayers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Paul%20Steimel">Joshua Paul Steimel</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Pappas"> Michael Pappas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethan%20Hall"> Ethan Hall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle-particle interactions are critical in determining the state of an active matter system. Unique and ubiquitous non-equilibrium behavior like swarming, vortexing, spiraling, and much more is governed by interactions between active units or particles. In hybrid active-passive matter systems, the attraction between spinning active units in a 2D monolayer of passive particles is controlled by the mechanical behavior of the passive monolayer. We demonstrate here that the range and dynamics of this attraction can be controlled by changing the composition of the passive monolayer by adding dopant passive particles. These dopant passive particles effectively pin the movement of dislocation motion in the passive media and reduce the probability of defect motion required to erode the bridge of passive particles between active spinners, thus reducing the range of attraction. Additionally, by adding an out of plane component to the magnetic moment and creating a top-like motion a short range repulsion emerges between the top-like particle. At inter-top distances less than four particle diameters apart, the tops repel but beyond that, distance attract up to 13 particle diameters apart. The tops were also able to locally and transiently anneal the passive monolayer. Thus we demonstrate that by tuning several parameters of the hybrid active matter system, one can observe very different emergent behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20matter" title="active matter">active matter</a>, <a href="https://publications.waset.org/abstracts/search?q=colloids" title=" colloids"> colloids</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic" title=" ferromagnetic"> ferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a> </p> <a href="https://publications.waset.org/abstracts/155350/controlling-interactions-and-non-equilibrium-steady-state-in-spinning-active-matter-monolayers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1715</span> Observational Study Reveals Inverse Relationship: Rising PM₂.₅ Concentrations Linked to Decreasing Muon Flux</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yashas%20Mattur">Yashas Mattur</a>, <a href="https://publications.waset.org/abstracts/search?q=Jensen%20Coonradt"> Jensen Coonradt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Muon flux, the rate of muons reaching Earth from the atmosphere, is impacted by various factors such as air pressure, temperature, and humidity. However, the influence of concentrations of PM₂.₅ (particulate matter with diameters 2.5 mm or smaller) on muon detection rates remains unexplored. During the summer of 2023, smoke from Canadian wildfires (containing significant amounts of particulate matter) blew over regions in the Northern US, introducing huge fluctuations in PM₂.₅ concentrations, thus inspiring our experiment to investigate the correlation of PM₂.₅ concentrations and muon rates. To investigate this correlation, muon collision rates were measured and analyzed alongside PM₂.₅ concentration data over the periods of both light and heavy smoke. Other confounding variables, including temperature, humidity, and atmospheric pressure, were also considered. The results reveal a statistically significant inverse correlation between muon flux and PM₂.₅ concentrations, indicating that particulate matter has an impact on the rate of muons reaching the earth’s surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muon%20Flux" title="Muon Flux">Muon Flux</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20effects%20on%20muons" title=" atmospheric effects on muons"> atmospheric effects on muons</a>, <a href="https://publications.waset.org/abstracts/search?q=PM%E2%82%82.%E2%82%85" title=" PM₂.₅"> PM₂.₅</a>, <a href="https://publications.waset.org/abstracts/search?q=airborne%20particulate%20matter" title=" airborne particulate matter"> airborne particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/174018/observational-study-reveals-inverse-relationship-rising-pm25-concentrations-linked-to-decreasing-muon-flux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1714</span> Reduction of Toxic Matter from Marginal Water Treatment Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheyaa%20Wajid%20Abbood">Dheyaa Wajid Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohammed%20Tawfeeq%20Baqer"> Ali Mohammed Tawfeeq Baqer</a>, <a href="https://publications.waset.org/abstracts/search?q=Eitizaz%20Awad%20Jasim"> Eitizaz Awad Jasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the Environmental Hydraulic Laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marginal%20water" title="Marginal water ">Marginal water </a>, <a href="https://publications.waset.org/abstracts/search?q=Toxic%20matter" title="Toxic matter">Toxic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Stepped%20Cascade%20weir" title=" Stepped Cascade weir"> Stepped Cascade weir</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone%20trickling%20filter" title=" limestone trickling filter"> limestone trickling filter</a> </p> <a href="https://publications.waset.org/abstracts/33447/reduction-of-toxic-matter-from-marginal-water-treatment-using-sludge-recycling-from-combination-of-stepped-cascade-weir-with-limestone-trickling-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dry%20matter&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dry%20matter&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dry%20matter&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dry%20matter&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dry%20matter&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dry%20matter&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dry%20matter&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dry%20matter&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dry%20matter&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dry%20matter&amp;page=58">58</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dry%20matter&amp;page=59">59</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dry%20matter&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10