CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–30 of 30 results for author: <span class="mathjax">Scheurer, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Scheurer%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Scheurer, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Scheurer%2C+F&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Scheurer, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02726">arXiv:2409.02726</a> <span> [<a href="https://arxiv.org/pdf/2409.02726">pdf</a>, <a href="https://arxiv.org/format/2409.02726">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Molecular spin-probe sensing of H-mediated changes in Co nanomagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=F%C3%A9tida%2C+A">A. F茅tida</a>, <a href="/search/cond-mat?searchtype=author&query=Bengone%2C+O">O. Bengone</a>, <a href="/search/cond-mat?searchtype=author&query=Goyhenex%2C+C">C. Goyhenex</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">F. Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Robles%2C+R">R. Robles</a>, <a href="/search/cond-mat?searchtype=author&query=Lorente%2C+N">N. Lorente</a>, <a href="/search/cond-mat?searchtype=author&query=Limot%2C+L">L. Limot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02726v1-abstract-short" style="display: inline;"> The influence of hydrogen on magnetization is of significant interest to spintronics. Understanding and controlling this phenomenon at the atomic scale, particularly in nanoscale systems, is crucial. In this study, we utilized scanning tunneling microscopy (STM) combined with a nickelocene molecule to sense the spin of a hydrogen-loaded nanoscale Co island grown on Cu(111). Magnetic exchange maps… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02726v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02726v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02726v1-abstract-full" style="display: none;"> The influence of hydrogen on magnetization is of significant interest to spintronics. Understanding and controlling this phenomenon at the atomic scale, particularly in nanoscale systems, is crucial. In this study, we utilized scanning tunneling microscopy (STM) combined with a nickelocene molecule to sense the spin of a hydrogen-loaded nanoscale Co island grown on Cu(111). Magnetic exchange maps obtained from the molecular tip revealed the presence of a hydrogen superstructure and a 90$^{\circ}$ rotation of the magnetization compared to the pristine island. \textit{Ab initio} calculations corroborate these observations, indicating that hydrogen hybridization with Co atoms on the island surface drives the spin reorientation of the island. This reorientation is further reinforced by hydrogen penetration into the island that locates at the Co/Cu interface. However, the subsurface sensitivity of the magnetic exchange maps indicate that this effect is limited. Our study provides valuable microscopic insights into the chemical control of magnetism at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02726v1-abstract-full').style.display = 'none'; document.getElementById('2409.02726v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15229">arXiv:2405.15229</a> <span> [<a href="https://arxiv.org/pdf/2405.15229">pdf</a>, <a href="https://arxiv.org/format/2405.15229">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Multi-Orbital Interactions and Spin Polarization in Single Rare-Earth Adatoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kelai%2C+M">Massine Kelai</a>, <a href="/search/cond-mat?searchtype=author&query=Reale%2C+S">Stefano Reale</a>, <a href="/search/cond-mat?searchtype=author&query=Robles%2C+R">Roberto Robles</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J">Jaehyun Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Jyoti%2C+D">Divya Jyoti</a>, <a href="/search/cond-mat?searchtype=author&query=Ohresser%2C+P">Philippe Ohresser</a>, <a href="/search/cond-mat?searchtype=author&query=Otero%2C+E">Edwige Otero</a>, <a href="/search/cond-mat?searchtype=author&query=Choueikani%2C+F">Fadi Choueikani</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Lorente%2C+N">Nicol谩s Lorente</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+D">Deung-Jang Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Singha%2C+A">Aparajita Singha</a>, <a href="/search/cond-mat?searchtype=author&query=Donati%2C+F">Fabio Donati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15229v1-abstract-short" style="display: inline;"> Surface-adsorbed rare-earth nanostructures are ideal platforms to investigate the interplay between intra-atomic interactions and multi-orbital spin configurations. However, addressing these properties has posed severe experimental and theoretical challenges. Here, we use the orbital selectivity offered by X-ray absorption spectroscopy to quantify the Coulomb integrals of Nd atoms on conductive su… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15229v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15229v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15229v1-abstract-full" style="display: none;"> Surface-adsorbed rare-earth nanostructures are ideal platforms to investigate the interplay between intra-atomic interactions and multi-orbital spin configurations. However, addressing these properties has posed severe experimental and theoretical challenges. Here, we use the orbital selectivity offered by X-ray absorption spectroscopy to quantify the Coulomb integrals of Nd atoms on conductive surfaces, as well as the variation of individual orbital occupation upon cluster nucleation. Using X-ray magnetic circular dichroism we identify magnetic moments of the order of \MK{few tens of}~$渭_{\rm{B}}$ at the $5d$ orbitals and their magnetic coupling with the $4f$ spins. Our results validate orbital-resolved X-ray spectroscopy as a reliable method for quantifying complex multi-orbital interactions in surface-adsorbed lanthanides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15229v1-abstract-full').style.display = 'none'; document.getElementById('2405.15229v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06176">arXiv:2404.06176</a> <span> [<a href="https://arxiv.org/pdf/2404.06176">pdf</a>, <a href="https://arxiv.org/format/2404.06176">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Higher order topological defects in a moir茅 lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gambari%2C+E">Eugenio Gambari</a>, <a href="/search/cond-mat?searchtype=author&query=Meyer%2C+S">Sebastian Meyer</a>, <a href="/search/cond-mat?searchtype=author&query=Guesne%2C+S">Sacha Guesne</a>, <a href="/search/cond-mat?searchtype=author&query=David%2C+P">Pascal David</a>, <a href="/search/cond-mat?searchtype=author&query=Debontridder%2C+F">Fran莽cois Debontridder</a>, <a href="/search/cond-mat?searchtype=author&query=Limot%2C+L">Laurent Limot</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Brun%2C+C">Christophe Brun</a>, <a href="/search/cond-mat?searchtype=author&query=Dup%C3%A9%2C+B">Bertrand Dup茅</a>, <a href="/search/cond-mat?searchtype=author&query=Cren%2C+T">Tristan Cren</a>, <a href="/search/cond-mat?searchtype=author&query=Herv%C3%A9%2C+M">Marie Herv茅</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06176v1-abstract-short" style="display: inline;"> Topological defects are ubiquitous, they manifest in a wide variety of systems such as liquid crystals, magnets or superconductors. The recent quest for nonabelian anyons in condensed matter physics stimulates the interest for topological defects since they can be hosted in vortices in quantum magnets or topological superconductors. In addition to these vortex defects, in this study we propose to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06176v1-abstract-full').style.display = 'inline'; document.getElementById('2404.06176v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06176v1-abstract-full" style="display: none;"> Topological defects are ubiquitous, they manifest in a wide variety of systems such as liquid crystals, magnets or superconductors. The recent quest for nonabelian anyons in condensed matter physics stimulates the interest for topological defects since they can be hosted in vortices in quantum magnets or topological superconductors. In addition to these vortex defects, in this study we propose to investigate edge dislocations in 2D magnets as new building blocks for topological physics since they can be described as vortices in the structural phase field. Here we demonstrate the existence of higher order topological dislocations within the higher order moir茅 pattern of the van der Waals 2D magnet CrCl3 deposited on Au(111). Surprizingly, these higher order dislocations arise from ordinary simple edge dislocations in the atomic lattice of CrCl3. We provide a theoretical framework explaining the higher order dislocations as vortex with a winding Chern number of 2. We expect that these original defects could stabilize some anyons either in a 2D quantum magnet or within a 2D superconductor coupled to it. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06176v1-abstract-full').style.display = 'none'; document.getElementById('2404.06176v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10410">arXiv:2403.10410</a> <span> [<a href="https://arxiv.org/pdf/2403.10410">pdf</a>, <a href="https://arxiv.org/format/2403.10410">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Gating single-molecule fluorescence with electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kaiser%2C+K">Katharina Kaiser</a>, <a href="/search/cond-mat?searchtype=author&query=Romeo%2C+M">Michelangelo Romeo</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a>, <a href="/search/cond-mat?searchtype=author&query=Ros%C5%82awska%2C+A">Anna Ros艂awska</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10410v1-abstract-short" style="display: inline;"> Tip-enhanced photoluminescence (TEPL) measurements are performed with sub-nanometer spatial resolution on individual molecules decoupled from a metallic substrate by a thin NaCl layer. TEPL spectra reveal progressive fluorescence quenching with decreasing tip-molecule distance when electrons tunneling from the tip of a scanning tunneling microscope are injected at resonance with the molecular stat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10410v1-abstract-full').style.display = 'inline'; document.getElementById('2403.10410v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10410v1-abstract-full" style="display: none;"> Tip-enhanced photoluminescence (TEPL) measurements are performed with sub-nanometer spatial resolution on individual molecules decoupled from a metallic substrate by a thin NaCl layer. TEPL spectra reveal progressive fluorescence quenching with decreasing tip-molecule distance when electrons tunneling from the tip of a scanning tunneling microscope are injected at resonance with the molecular states. Rate equations based on a many-body model reveal that the luminescence quenching is due to a progressive population inversion between the ground neutral (S$_0$) and the ground charge ($D_0^-$) states of the molecule occurring when the current is raised. We demonstrate that both the bias voltage and the atomic-scale lateral position of the tip can be used to gate the molecular emission. Our approach can in principle be applied to any molecular system, providing unprecedented control over the fluorescence of a single molecule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10410v1-abstract-full').style.display = 'none'; document.getElementById('2403.10410v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17536">arXiv:2402.17536</a> <span> [<a href="https://arxiv.org/pdf/2402.17536">pdf</a>, <a href="https://arxiv.org/format/2402.17536">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Electrically driven cascaded photon-emission in a single molecule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kaiser%2C+K">Katharina Kaiser</a>, <a href="/search/cond-mat?searchtype=author&query=Ros%C5%82awska%2C+A">Anna Ros艂awska</a>, <a href="/search/cond-mat?searchtype=author&query=Romeo%2C+M">Michelangelo Romeo</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Neuman%2C+T">Tom谩拧 Neuman</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17536v1-abstract-short" style="display: inline;"> Controlling electrically-stimulated quantum light sources (QLS) is key for developing integrated and low-scale quantum devices. The mechanisms leading to quantum emission are complex, as a large number of electronic states of the system impacts the emission dynamics. Here, we use a scanning tunneling microscope (STM) to excite a model QLS, namely a single molecule. The luminescence spectra reveal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17536v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17536v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17536v1-abstract-full" style="display: none;"> Controlling electrically-stimulated quantum light sources (QLS) is key for developing integrated and low-scale quantum devices. The mechanisms leading to quantum emission are complex, as a large number of electronic states of the system impacts the emission dynamics. Here, we use a scanning tunneling microscope (STM) to excite a model QLS, namely a single molecule. The luminescence spectra reveal two lines, associated to the emission of the neutral and positively charged molecule, both exhibiting single-photon source behavior. In addition, we find a correlation between the charged and neutral molecule's emission, the signature of a photon cascade. By adjusting the charging/discharging rate, we can control these emission statistics. This generic strategy is further established by a rate equation model revealing the complex internal dynamics of the molecular junction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17536v1-abstract-full').style.display = 'none'; document.getElementById('2402.17536v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16805">arXiv:2311.16805</a> <span> [<a href="https://arxiv.org/pdf/2311.16805">pdf</a>, <a href="https://arxiv.org/format/2311.16805">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Fluorescent single-molecule STM probe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Friedrich%2C+N">Niklas Friedrich</a>, <a href="/search/cond-mat?searchtype=author&query=Roslawska%2C+A">Anna Roslawska</a>, <a href="/search/cond-mat?searchtype=author&query=Arrieta%2C+X">Xabier Arrieta</a>, <a href="/search/cond-mat?searchtype=author&query=Romeo%2C+M">Michelangelo Romeo</a>, <a href="/search/cond-mat?searchtype=author&query=Moal%2C+E+L">Eric Le Moal</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Aizpurua%2C+J">Javier Aizpurua</a>, <a href="/search/cond-mat?searchtype=author&query=Borisov%2C+A+G">Andrei G. Borisov</a>, <a href="/search/cond-mat?searchtype=author&query=Neuman%2C+T">Tomas Neuman</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16805v1-abstract-short" style="display: inline;"> The plasmonic tip of a scanning tunnelling microscope (STM) is functionalized with a single fluorescent molecule and is scanned on a plasmonic substrate. The tunneling current flowing through the tip-molecule-substrate junction generates a narrow-line emission of light corresponding to the fluorescence of the negatively charged molecule suspended at the apex of the tip, i.e., the emission of the e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16805v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16805v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16805v1-abstract-full" style="display: none;"> The plasmonic tip of a scanning tunnelling microscope (STM) is functionalized with a single fluorescent molecule and is scanned on a plasmonic substrate. The tunneling current flowing through the tip-molecule-substrate junction generates a narrow-line emission of light corresponding to the fluorescence of the negatively charged molecule suspended at the apex of the tip, i.e., the emission of the excited molecular anion (trion). The fluorescence of this molecular probe is recorded for tip-substrate nanocavities featuring different plasmonic resonances, for different tip-substrate distances and applied bias voltages, and on different substrates. We demonstrate that the width of the emission peak can be used as a probe of the trion-plasmon coupling strength and that the energy of the emitted photons is governed by the molecule interactions with its electrostatic environment. Additionally, we theoretically elucidate why the direct contact of the suspended molecule with the metallic tip does not totally quench the radiative emission of the molecule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16805v1-abstract-full').style.display = 'none'; document.getElementById('2311.16805v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages in the main manuscript, including 4 figures, 11 pages in the supporting info, including 5 figures and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14584">arXiv:2311.14584</a> <span> [<a href="https://arxiv.org/pdf/2311.14584">pdf</a>, <a href="https://arxiv.org/format/2311.14584">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Single-spin quantum sensing: A molecule-on-tip approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=F%C3%A9tida%2C+A">A. F茅tida</a>, <a href="/search/cond-mat?searchtype=author&query=Bengone%2C+O">O. Bengone</a>, <a href="/search/cond-mat?searchtype=author&query=Romeo%2C+M">M. Romeo</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">F. Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Robles%2C+R">R. Robles</a>, <a href="/search/cond-mat?searchtype=author&query=Lorente%2C+N">N. Lorente</a>, <a href="/search/cond-mat?searchtype=author&query=Limot%2C+L">L. Limot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14584v1-abstract-short" style="display: inline;"> Quantum sensing is a key component of quantum technology, enabling highly sensitive magnetometry. We combined a nickelocene molecule with scanning tunneling microscopy to perform versatile spin sensing of magnetic surfaces, namely of model Co islands on Cu(111) of different thickness. We demonstrate that atomic-scale sensitivity to spin polarization and orientation is possible due to direct exchan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14584v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14584v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14584v1-abstract-full" style="display: none;"> Quantum sensing is a key component of quantum technology, enabling highly sensitive magnetometry. We combined a nickelocene molecule with scanning tunneling microscopy to perform versatile spin sensing of magnetic surfaces, namely of model Co islands on Cu(111) of different thickness. We demonstrate that atomic-scale sensitivity to spin polarization and orientation is possible due to direct exchange coupling between the Nc-tip and the Co surfaces. We find that magnetic exchange maps lead to unique signatures, which are well described by computed spin density maps. These advancements improve our ability to probe magnetic properties at the atomic level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14584v1-abstract-full').style.display = 'none'; document.getElementById('2311.14584v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.13157">arXiv:2305.13157</a> <span> [<a href="https://arxiv.org/pdf/2305.13157">pdf</a>, <a href="https://arxiv.org/format/2305.13157">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Submolecular-scale control of phototautomerization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ros%C5%82awska%2C+A">Anna Ros艂awska</a>, <a href="/search/cond-mat?searchtype=author&query=Kaiser%2C+K">Katharina Kaiser</a>, <a href="/search/cond-mat?searchtype=author&query=Romeo%2C+M">Michelangelo Romeo</a>, <a href="/search/cond-mat?searchtype=author&query=Devaux%2C+E">Elo茂se Devaux</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Berciaud%2C+S">St茅phane Berciaud</a>, <a href="/search/cond-mat?searchtype=author&query=Neuman%2C+T">Tom谩拧 Neuman</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.13157v1-abstract-short" style="display: inline;"> Many natural and artificial reactions including photosynthesis or photopolymerization are initiated by stimulating organic molecules into an excited state, which enables new reaction paths. Controlling light-matter interaction can influence this key concept of photochemistry, however, it remained a challenge to apply this strategy to control photochemical reactions at the atomic scale. Here, we pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13157v1-abstract-full').style.display = 'inline'; document.getElementById('2305.13157v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.13157v1-abstract-full" style="display: none;"> Many natural and artificial reactions including photosynthesis or photopolymerization are initiated by stimulating organic molecules into an excited state, which enables new reaction paths. Controlling light-matter interaction can influence this key concept of photochemistry, however, it remained a challenge to apply this strategy to control photochemical reactions at the atomic scale. Here, we profit from the extreme confinement of the electromagnetic field at the apex of a scanning tunneling microscope (STM) tip to drive and control the rate of a free-base phthalocyanine phototautomerization with submolecular precision. By tuning the laser excitation wavelength and choosing the STM tip position, we control the phototautomerization rate and the relative tautomer population. This sub-molecular optical control can be used to study any other photochemical processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13157v1-abstract-full').style.display = 'none'; document.getElementById('2305.13157v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.00126">arXiv:2210.00126</a> <span> [<a href="https://arxiv.org/pdf/2210.00126">pdf</a>, <a href="https://arxiv.org/format/2210.00126">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.126202">10.1103/PhysRevLett.130.126202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Many-body description of STM-induced fluorescence of charged molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+S">Song Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Neuman%2C+T">Tomas Neuman</a>, <a href="/search/cond-mat?searchtype=author&query=Bretel%2C+R">Remi Bretel</a>, <a href="/search/cond-mat?searchtype=author&query=Boeglin%2C+A">Alex Boeglin</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Moal%2C+E+L">Eric Le Moal</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.00126v1-abstract-short" style="display: inline;"> A scanning tunneling microscope is used to study the fluorescence of a model charged molecule (quinacridone) adsorbed on a sodium chloride (NaCl)-covered metallic sample. Fluorescence from the neutral and positively charged species is reported and imaged using hyper-resolved fluorescence microscopy. A many-body excitation model is established based on a detailed analysis of voltage, current and sp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.00126v1-abstract-full').style.display = 'inline'; document.getElementById('2210.00126v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.00126v1-abstract-full" style="display: none;"> A scanning tunneling microscope is used to study the fluorescence of a model charged molecule (quinacridone) adsorbed on a sodium chloride (NaCl)-covered metallic sample. Fluorescence from the neutral and positively charged species is reported and imaged using hyper-resolved fluorescence microscopy. A many-body excitation model is established based on a detailed analysis of voltage, current and spatial dependencies of the fluorescence and electron transport features. This model reveals that quinacridone adopts a large palette of charge states, transient or not, depending on the voltage used and the nature of the underlying substrate. This model has a universal character and explains the electronic and fluorescence properties of many other molecules adsorbed on thin insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.00126v1-abstract-full').style.display = 'none'; document.getElementById('2210.00126v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 126202 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01471">arXiv:2209.01471</a> <span> [<a href="https://arxiv.org/pdf/2209.01471">pdf</a>, <a href="https://arxiv.org/format/2209.01471">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abq6948">10.1126/science.abq6948 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topologically localized excitons in single graphene nanoribbons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+S">Song Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Neuman%2C+T">Tomas Neuman</a>, <a href="/search/cond-mat?searchtype=author&query=Boeglin%2C+A">Alex Boeglin</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01471v1-abstract-short" style="display: inline;"> Excitonic emission from atomically precise graphene nanoribbons (GNRs) synthesised on a metal surface is probed with atomic-scale spatial resolution using a scanning tunneling microscopy (STM) approach. A STM-based strategy to transfer the GNRs to a partially insulating surface is used to prevent light emission quenching of the ribbons by the metal substrate. Sub-nanometer resolved STM-induced flu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01471v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01471v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01471v1-abstract-full" style="display: none;"> Excitonic emission from atomically precise graphene nanoribbons (GNRs) synthesised on a metal surface is probed with atomic-scale spatial resolution using a scanning tunneling microscopy (STM) approach. A STM-based strategy to transfer the GNRs to a partially insulating surface is used to prevent light emission quenching of the ribbons by the metal substrate. Sub-nanometer resolved STM-induced fluorescence spectra reveal emission from localized dark excitons build upon the topological end states of the GNRs. A low frequency vibronic emission comb whose characteristics change with the GNR length is attributed to longitudinal acoustic modes confined to a finite box. Overall, our study provides a novel path to investigate the interplay between excitons, vibrons and topology in atomically precise graphene nanostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01471v1-abstract-full').style.display = 'none'; document.getElementById('2209.01471v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 379, 1049-1054 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03145">arXiv:2208.03145</a> <span> [<a href="https://arxiv.org/pdf/2208.03145">pdf</a>, <a href="https://arxiv.org/format/2208.03145">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Length-independent quantum transport through topological band states of graphene nanoribbons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+S">Song Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Q">Qiang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Ruffieux%2C+P">Pascal Ruffieux</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+X">Xuelin Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Narita%2C+A">Akimitsu Narita</a>, <a href="/search/cond-mat?searchtype=author&query=Mullen%2C+K">Klaus Mullen</a>, <a href="/search/cond-mat?searchtype=author&query=Fasel%2C+R">Roman Fasel</a>, <a href="/search/cond-mat?searchtype=author&query=Frederiksen%2C+T">Thomas Frederiksen</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03145v1-abstract-short" style="display: inline;"> Atomically precise graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic applications due to their widely tunable energy band gaps resulting from lateral quantum confinement and edge effects. Here we report on the electronic transport characterization of an edge-modified GNR suspended between the tip of a scanning tunneling microscope (STM) and a Au(111) substrate. Di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03145v1-abstract-full').style.display = 'inline'; document.getElementById('2208.03145v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03145v1-abstract-full" style="display: none;"> Atomically precise graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic applications due to their widely tunable energy band gaps resulting from lateral quantum confinement and edge effects. Here we report on the electronic transport characterization of an edge-modified GNR suspended between the tip of a scanning tunneling microscope (STM) and a Au(111) substrate. Differential conductance measurements on this metal-GNR-metal junction reveal loss-less transport properties (inverse decay length $尾< 0.001 /\overset{\circ}{\mathrm{A}}$) with high conductance ($\sim 0.1$ G$_0$) at low voltages (50 meV) over long distances ($z > 10$ nm). The transport behavior is sensitive to the coupling between ribbon and electrodes, an effect that is rationalized using tight-binding and density functional theory simulations. From extensive modelling we infer that the length-independent transport is a manifestation of band transport through topological valence states, which originate from the zigzag segments on the GNR edges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03145v1-abstract-full').style.display = 'none'; document.getElementById('2208.03145v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.14022">arXiv:2204.14022</a> <span> [<a href="https://arxiv.org/pdf/2204.14022">pdf</a>, <a href="https://arxiv.org/format/2204.14022">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-023-01494-4">10.1038/s41563-023-01494-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tip-induced excitonic luminescence nanoscopy of an atomically-resolved van der Waals heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=L%C3%B3pez%2C+L+E+P">Luis E. Parra L贸pez</a>, <a href="/search/cond-mat?searchtype=author&query=Ros%C5%82awska%2C+A">Anna Ros艂awska</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Berciaud%2C+S">St茅phane Berciaud</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.14022v1-abstract-short" style="display: inline;"> Low-temperature scanning tunneling microscopy is used to probe, with atomic-scale spatial resolution, the intrinsic luminescence of a van der Waals heterostructure, made of a transition metal dichalcogenide monolayer stacked onto a few-layer graphene flake supported by an Au(111) substrate. Sharp emission lines arising from neutral, charged and localised excitons are reported. Their intensities an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14022v1-abstract-full').style.display = 'inline'; document.getElementById('2204.14022v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.14022v1-abstract-full" style="display: none;"> Low-temperature scanning tunneling microscopy is used to probe, with atomic-scale spatial resolution, the intrinsic luminescence of a van der Waals heterostructure, made of a transition metal dichalcogenide monolayer stacked onto a few-layer graphene flake supported by an Au(111) substrate. Sharp emission lines arising from neutral, charged and localised excitons are reported. Their intensities and emission energies vary as a function of the nanoscale environment of the van der Waals heterostructure, explaining the variability of the emission properties observed with diffraction-limited approaches. Our work paves the way towards understanding and control of optoelectronic phenomena in moir茅 superlattices with atomic-scale resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14022v1-abstract-full').style.display = 'none'; document.getElementById('2204.14022v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, 3 supplementary figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 22, 482 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15880">arXiv:2110.15880</a> <span> [<a href="https://arxiv.org/pdf/2110.15880">pdf</a>, <a href="https://arxiv.org/format/2110.15880">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-28241-8">10.1038/s41467-022-28241-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Internal Stark effect of single-molecule fluorescence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vasilev%2C+K">Kirill Vasilev</a>, <a href="/search/cond-mat?searchtype=author&query=Doppagne%2C+B">Benjamin Doppagne</a>, <a href="/search/cond-mat?searchtype=author&query=Neuman%2C+T">Tom谩拧 Neuman</a>, <a href="/search/cond-mat?searchtype=author&query=Ros%C5%82awska%2C+A">Anna Ros艂awska</a>, <a href="/search/cond-mat?searchtype=author&query=Bulou%2C+H">Herv茅 Bulou</a>, <a href="/search/cond-mat?searchtype=author&query=Boeglin%2C+A">Alex Boeglin</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15880v1-abstract-short" style="display: inline;"> The optical properties of chromophores can be efficiently tuned by electrostatic fields generated in their close environment, a phenomenon that plays a central role for the optimization of complex functions within living organisms where it is known as internal Stark effect (ISE). Here, we realised an ISE experiment at the lowest possible scale, by monitoring the Stark shift generated by charges co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15880v1-abstract-full').style.display = 'inline'; document.getElementById('2110.15880v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15880v1-abstract-full" style="display: none;"> The optical properties of chromophores can be efficiently tuned by electrostatic fields generated in their close environment, a phenomenon that plays a central role for the optimization of complex functions within living organisms where it is known as internal Stark effect (ISE). Here, we realised an ISE experiment at the lowest possible scale, by monitoring the Stark shift generated by charges confined within a single chromophore on its emission energy. To this end, a scanning tunneling microscope (STM) functioning at cryogenic temperatures is used to sequentially remove the two central protons of a free-base phthalocyanine chromophore deposited on a NaCl-covered Ag(111) surface. STM-induced fluorescence measurements reveal spectral shifts that are associated to the electrostatic field generated by the internal charges remaining in the chromophores upon deprotonation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15880v1-abstract-full').style.display = 'none'; document.getElementById('2110.15880v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.01072">arXiv:2107.01072</a> <span> [<a href="https://arxiv.org/pdf/2107.01072">pdf</a>, <a href="https://arxiv.org/format/2107.01072">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Mapping Lamb, Stark and Purcell effects at a chromophore-picocavity junction with hyper-resolved fluorescence microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roslawska%2C+A">Anna Roslawska</a>, <a href="/search/cond-mat?searchtype=author&query=Neuman%2C+T">Tom谩拧 Neuman</a>, <a href="/search/cond-mat?searchtype=author&query=Doppagne%2C+B">Benjamin Doppagne</a>, <a href="/search/cond-mat?searchtype=author&query=Borisov%2C+A+G">Andrei G. Borisov</a>, <a href="/search/cond-mat?searchtype=author&query=Romeo%2C+M">Michelangelo Romeo</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Aizpurua%2C+J">Javier Aizpurua</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.01072v1-abstract-short" style="display: inline;"> The interactions between the excited states of a single chromophore with static and dynamic electric fields confined to a plasmonic cavity of picometer dimensions are investigated in a joint experimental and theoretical effort. In this configuration, the spatial extensions of the confined fields are smaller than the one of the molecular exciton, a property that is used to generate fluorescence map… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01072v1-abstract-full').style.display = 'inline'; document.getElementById('2107.01072v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.01072v1-abstract-full" style="display: none;"> The interactions between the excited states of a single chromophore with static and dynamic electric fields confined to a plasmonic cavity of picometer dimensions are investigated in a joint experimental and theoretical effort. In this configuration, the spatial extensions of the confined fields are smaller than the one of the molecular exciton, a property that is used to generate fluorescence maps of the chromophores with intra-molecular resolution. Theoretical simulations of the electrostatic and electrodynamic interactions occurring at the chromophore-picocavity junction are able to reproduce and interpret these hyper-resolved fluorescence maps, and reveal the key role played by subtle variations of Purcell, Lamb and Stark effects at the chromophore-picocavity junction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01072v1-abstract-full').style.display = 'none'; document.getElementById('2107.01072v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.01105">arXiv:2101.01105</a> <span> [<a href="https://arxiv.org/pdf/2101.01105">pdf</a>, <a href="https://arxiv.org/format/2101.01105">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41557-021-00697-z">10.1038/s41557-021-00697-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy funnelling within multichromophore architectures monitored with subnanometre resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cao%2C+S">Shuiyan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Ros%C5%82awska%2C+A">Anna Ros艂awska</a>, <a href="/search/cond-mat?searchtype=author&query=Doppagne%2C+B">Benjamin Doppagne</a>, <a href="/search/cond-mat?searchtype=author&query=Romeo%2C+M">Michelangelo Romeo</a>, <a href="/search/cond-mat?searchtype=author&query=F%C3%A9ron%2C+M">Michel F茅ron</a>, <a href="/search/cond-mat?searchtype=author&query=Ch%C3%A9rioux%2C+F">Fr茅d茅ric Ch茅rioux</a>, <a href="/search/cond-mat?searchtype=author&query=Bulou%2C+H">Herv茅 Bulou</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.01105v2-abstract-short" style="display: inline;"> In natural and artificial light-harvesting complexes (LHC) the resonant energy transfer (RET) between chromophores enables an efficient and directional transport of solar energy between collection and reaction centers. The detailed mechanisms involved in this energy funneling are intensely debated, essentially because they rely on a succession of individual RET steps that can hardly be addressed s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01105v2-abstract-full').style.display = 'inline'; document.getElementById('2101.01105v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.01105v2-abstract-full" style="display: none;"> In natural and artificial light-harvesting complexes (LHC) the resonant energy transfer (RET) between chromophores enables an efficient and directional transport of solar energy between collection and reaction centers. The detailed mechanisms involved in this energy funneling are intensely debated, essentially because they rely on a succession of individual RET steps that can hardly be addressed separately. Here, we developed a scanning tunnelling microscopy-induced luminescence (STML) approach allowing visualizing, addressing and manipulating energy funneling within multi-chromophoric structures with sub-molecular precision. We first rationalize the efficiency of the RET process at the level of chromophore dimers. We then use highly resolved fluorescence microscopy (HRFM) maps to follow energy transfer paths along an artificial trimer of descending excitonic energies which reveals a cascaded RET from high- to low-energy gap molecules. Mimicking strategies developed by photosynthetic systems, this experiment demonstrates that intermediate gap molecules can be used as efficient ancillary units to convey energy between distant donor and acceptor chromophores. Eventually, we demonstrate that the RET between donors and acceptors is enhanced by the insertion of passive molecules acting as non-covalent RET bridges. This mechanism, that occurs in experiments performed in inhomogeneous media and which plays a decisive role in fastening RET in photosynthetic systems, is reported at the level of individual chromophores with atomic-scale resolution. As it relies on organic chromophores as elementary components, our approach constitutes a powerful model to address fundamental physical processes at play in natural LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01105v2-abstract-full').style.display = 'none'; document.getElementById('2101.01105v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Chemistry, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.10335">arXiv:1802.10335</a> <span> [<a href="https://arxiv.org/pdf/1802.10335">pdf</a>, <a href="https://arxiv.org/format/1802.10335">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.7b03797">10.1021/acs.nanolett.7b03797 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bright electroluminescence from single graphene nanoribbon junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chong%2C+M+C">Michael C. Chong</a>, <a href="/search/cond-mat?searchtype=author&query=Afshar-Imani%2C+N">Nasima Afshar-Imani</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Cardoso%2C+C">Claudia Cardoso</a>, <a href="/search/cond-mat?searchtype=author&query=Ferretti%2C+A">Andrea Ferretti</a>, <a href="/search/cond-mat?searchtype=author&query=Prezzi%2C+D">Deborah Prezzi</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.10335v1-abstract-short" style="display: inline;"> Thanks to their highly tunable band gaps, graphene nanoribbons (GNRs) with atomically precise edges are emerging as mechanically and chemically robust candidates for nanoscale light emitting devices of modulable emission color. While their optical properties have been addressed theoretically in depth, only few experimental studies exist, limited to ensemble measurements and without any attempt to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.10335v1-abstract-full').style.display = 'inline'; document.getElementById('1802.10335v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.10335v1-abstract-full" style="display: none;"> Thanks to their highly tunable band gaps, graphene nanoribbons (GNRs) with atomically precise edges are emerging as mechanically and chemically robust candidates for nanoscale light emitting devices of modulable emission color. While their optical properties have been addressed theoretically in depth, only few experimental studies exist, limited to ensemble measurements and without any attempt to integrate them in an electronic-like circuit. Here we report on the electroluminescence of individual GNRs suspended between the tip of a scanning tunneling microscope (STM) and a Au(111) substrate, constituting thus a realistic opto-electronic circuit. Emission spectra of such GNR junctions reveal a bright and narrow band emission of red light, whose energy can be tuned with the bias voltage applied to the junction, but always lying below the gap of infinite GNRs. Comparison with {\it ab initio} calculations indicate that the emission involves electronic states localized at the GNR termini. Our results shed light on unpredicted optical transitions in GNRs and provide a promising route for the realization of bright, robust and controllable graphene-based light emitting devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.10335v1-abstract-full').style.display = 'none'; document.getElementById('1802.10335v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supporting Information avail on the ACS website at DOI: 10.1021/acs.nanolett.7b03797</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 2018, 18, 175-181 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.00764">arXiv:1802.00764</a> <span> [<a href="https://arxiv.org/pdf/1802.00764">pdf</a>, <a href="https://arxiv.org/ps/1802.00764">ps</a>, <a href="https://arxiv.org/format/1802.00764">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aat1603">10.1126/science.aat1603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrofluorochromism at the single molecule level </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Doppagne%2C+B">Benjamin Doppagne</a>, <a href="/search/cond-mat?searchtype=author&query=Chong%2C+M+C">Michael C. Chong</a>, <a href="/search/cond-mat?searchtype=author&query=Bulou%2C+H">Herv茅 Bulou</a>, <a href="/search/cond-mat?searchtype=author&query=Boeglin%2C+A">Alex Boeglin</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.00764v2-abstract-short" style="display: inline;"> The interplay between the oxidation state and the optical properties of molecules plays a key role for applications in displays, sensors or molecular-based memories. The fundamental mechanisms occurring at the level of a single-molecule have been difficult to probe. We used a scanning tunneling microscope (STM) to characterize and control the fluorescence of a single Zn-phthalocyanine radical cati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.00764v2-abstract-full').style.display = 'inline'; document.getElementById('1802.00764v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.00764v2-abstract-full" style="display: none;"> The interplay between the oxidation state and the optical properties of molecules plays a key role for applications in displays, sensors or molecular-based memories. The fundamental mechanisms occurring at the level of a single-molecule have been difficult to probe. We used a scanning tunneling microscope (STM) to characterize and control the fluorescence of a single Zn-phthalocyanine radical cation adsorbed on a NaCl-covered Au(111) sample. The neutral and oxidized states of the molecule were identified on the basis of their fluorescence spectra that revealed very different emission energies and vibronic fingerprints. The emission of the charged molecule was controlled by tuning the thickness of the insulator and the plasmons localized at the apex of the STM tip. In addition, sub-nanometric variations of the tip position were used to investigate the charging and electroluminescence mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.00764v2-abstract-full').style.display = 'none'; document.getElementById('1802.00764v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.07143">arXiv:1801.07143</a> <span> [<a href="https://arxiv.org/pdf/1801.07143">pdf</a>, <a href="https://arxiv.org/format/1801.07143">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.8b00304">10.1021/acs.nanolett.8b00304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fano description of single-hydrocarbon fluorescence excited by a scanning tunneling microscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kr%C3%B6ger%2C+J">J枚rg Kr枚ger</a>, <a href="/search/cond-mat?searchtype=author&query=Doppagne%2C+B">Benjamin Doppagne</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.07143v2-abstract-short" style="display: inline;"> The detection of fluorescence with submolecular resolution enables the exploration of spatially varying photon yields and vibronic properties at the single-molecule level. By placing individual polycyclic aromatic hydrocarbon molecules into the plasmon cavity formed by the tip of a scanning tunneling microscope and a NaCl-covered Ag(111) surface, molecular light emission spectra are obtained that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07143v2-abstract-full').style.display = 'inline'; document.getElementById('1801.07143v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.07143v2-abstract-full" style="display: none;"> The detection of fluorescence with submolecular resolution enables the exploration of spatially varying photon yields and vibronic properties at the single-molecule level. By placing individual polycyclic aromatic hydrocarbon molecules into the plasmon cavity formed by the tip of a scanning tunneling microscope and a NaCl-covered Ag(111) surface, molecular light emission spectra are obtained that unravel vibrational progression. In addition, light spectra unveil a signature of the molecule even when the tunneling current is injected well separated from the molecular emitter. This signature exhibits a distance-dependent Fano profile that reflects the subtle interplay between inelastic tunneling electrons, the molecular exciton and localized plasmons in at-distance as well as on-molecule fluorescence. The presented findings open the path to luminescence of a different class of molecules than investigated before and contribute to the understanding of single-molecule luminescence at surfaces in a unified picture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07143v2-abstract-full').style.display = 'none'; document.getElementById('1801.07143v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.02600">arXiv:1712.02600</a> <span> [<a href="https://arxiv.org/pdf/1712.02600">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Cu metal / Mn phthalocyanine organic spinterfaces atop Co with high spin polarization at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Urbain%2C+E">E. Urbain</a>, <a href="/search/cond-mat?searchtype=author&query=Ibrahim%2C+F">F. Ibrahim</a>, <a href="/search/cond-mat?searchtype=author&query=Studniarek%2C+M">M. Studniarek</a>, <a href="/search/cond-mat?searchtype=author&query=Ngassam%2C+F">F. Ngassam</a>, <a href="/search/cond-mat?searchtype=author&query=Joly%2C+L">L. Joly</a>, <a href="/search/cond-mat?searchtype=author&query=Arabski%2C+J">J. Arabski</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">F. Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Bertran%2C+F">F. Bertran</a>, <a href="/search/cond-mat?searchtype=author&query=F%C3%A8vre%2C+P+L">P. Le F猫vre</a>, <a href="/search/cond-mat?searchtype=author&query=Garreau%2C+G">G. Garreau</a>, <a href="/search/cond-mat?searchtype=author&query=Denys%2C+E">E. Denys</a>, <a href="/search/cond-mat?searchtype=author&query=Wetzel%2C+P">P. Wetzel</a>, <a href="/search/cond-mat?searchtype=author&query=Alouani%2C+M">M. Alouani</a>, <a href="/search/cond-mat?searchtype=author&query=Beaurepaire%2C+E">E. Beaurepaire</a>, <a href="/search/cond-mat?searchtype=author&query=Boukari%2C+S">S. Boukari</a>, <a href="/search/cond-mat?searchtype=author&query=Bowen%2C+M">M. Bowen</a>, <a href="/search/cond-mat?searchtype=author&query=Weber%2C+W">W. Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.02600v1-abstract-short" style="display: inline;"> The organic spinterface describes the spin-polarized properties that develop, due to charge transfer, at the interface between a ferromagnetic metal (FM) and the molecules of an organic semiconductor. Yet, if the latter is also magnetic (e.g. molecular spin chains), the interfacial magnetic coupling can generate complexity within magnetotransport experiments. Also, assembling this interface may de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02600v1-abstract-full').style.display = 'inline'; document.getElementById('1712.02600v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.02600v1-abstract-full" style="display: none;"> The organic spinterface describes the spin-polarized properties that develop, due to charge transfer, at the interface between a ferromagnetic metal (FM) and the molecules of an organic semiconductor. Yet, if the latter is also magnetic (e.g. molecular spin chains), the interfacial magnetic coupling can generate complexity within magnetotransport experiments. Also, assembling this interface may degrade the properties of its constituents (e.g. spin crossover or non-sublimable molecules). To circumvent these issues, one can separate the molecular and FM films using a less reactive nonmagnetic metal (NM). Spin-resolved photoemission spectroscopy measurements on the prototypical system Co(001)//Cu/Mnphthalocyanine (MnPc) reveal that the Cu/MnPc spinterface atop ferromagnetic Co is highly spin-polarized at room temperature, up to Cu spacer thicknesses of at least 10 monolayers. Ab-initio theory describes a spin polarization of the topmost Cu layer after molecular hybridization that can be accompanied by magnetic hardening effects. This spinterface's unexpected robustness paves the way for 1) integrating electronically fragile molecules within organic spinterfaces, and 2) manipulating molecular spin chains using the well-documented spin transfer torque properties of the FM/NM bilayer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02600v1-abstract-full').style.display = 'none'; document.getElementById('1712.02600v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages. Submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.05622">arXiv:1703.05622</a> <span> [<a href="https://arxiv.org/pdf/1703.05622">pdf</a>, <a href="https://arxiv.org/ps/1703.05622">ps</a>, <a href="https://arxiv.org/format/1703.05622">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aa969a">10.1088/1367-2630/aa969a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging isodensity contours of molecular states with STM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Reecht%2C+G">Ga毛l Reecht</a>, <a href="/search/cond-mat?searchtype=author&query=Heinrich%2C+B">Benjamin Heinrich</a>, <a href="/search/cond-mat?searchtype=author&query=Bulou%2C+H">Herv茅 Bulou</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Limot%2C+L">Laurent Limot</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.05622v1-abstract-short" style="display: inline;"> We present an improved way for imaging the local density of states with a scanning tunneling microscope, which consists in mapping the surface topography while keeping the differential conductance (d$I$/d$V$) constant. When archetypical C$_{60}$ molecules on Cu(111) are imaged with this method, these so-called iso-d$I$/d$V$ maps are in excellent agreement with theoretical simulations of the isoden… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.05622v1-abstract-full').style.display = 'inline'; document.getElementById('1703.05622v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.05622v1-abstract-full" style="display: none;"> We present an improved way for imaging the local density of states with a scanning tunneling microscope, which consists in mapping the surface topography while keeping the differential conductance (d$I$/d$V$) constant. When archetypical C$_{60}$ molecules on Cu(111) are imaged with this method, these so-called iso-d$I$/d$V$ maps are in excellent agreement with theoretical simulations of the isodensity contours of the molecular orbitals. A direct visualization and unambiguous identification of superatomic C$_{60}$ orbitals and their hybridization is then possible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.05622v1-abstract-full').style.display = 'none'; document.getElementById('1703.05622v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New Journal of Physics 19, 113033 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.04653">arXiv:1612.04653</a> <span> [<a href="https://arxiv.org/pdf/1612.04653">pdf</a>, <a href="https://arxiv.org/format/1612.04653">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.127401">10.1103/PhysRevLett.118.127401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrically-driven vibronic spectroscopy with sub-molecular resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Doppagne%2C+B">Benjamin Doppagne</a>, <a href="/search/cond-mat?searchtype=author&query=Chong%2C+M+C">Michael C. Chong</a>, <a href="/search/cond-mat?searchtype=author&query=Lorchat%2C+E">Etienne Lorchat</a>, <a href="/search/cond-mat?searchtype=author&query=Berciaud%2C+S">St茅phane Berciaud</a>, <a href="/search/cond-mat?searchtype=author&query=Romeo%2C+M">Michelangelo Romeo</a>, <a href="/search/cond-mat?searchtype=author&query=Bulou%2C+H">Herv茅 Bulou</a>, <a href="/search/cond-mat?searchtype=author&query=Boeglin%2C+A">Alex Boeglin</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.04653v1-abstract-short" style="display: inline;"> A scanning tunneling microscope is used to generate the electroluminescence of phthalocyanine molecules deposited on NaCl/Ag(111). Photon spectra reveal an intense emission line at 1.9 eV that corresponds to the fluorescence of the molecules, and a series of weaker red-shifted lines. Based on a comparison with Raman spectra acquired on macroscopic molecular crystals, these spectroscopic features c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04653v1-abstract-full').style.display = 'inline'; document.getElementById('1612.04653v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.04653v1-abstract-full" style="display: none;"> A scanning tunneling microscope is used to generate the electroluminescence of phthalocyanine molecules deposited on NaCl/Ag(111). Photon spectra reveal an intense emission line at 1.9 eV that corresponds to the fluorescence of the molecules, and a series of weaker red-shifted lines. Based on a comparison with Raman spectra acquired on macroscopic molecular crystals, these spectroscopic features can be associated to the vibrational modes of the molecules and provide a detailed chemical fingerprint of the probed species. Maps of the vibronic features reveal sub- molecularly-resolved structures whose patterns are related to the symmetry of the probed vibrational modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04653v1-abstract-full').style.display = 'none'; document.getElementById('1612.04653v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 127401 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.00534">arXiv:1611.00534</a> <span> [<a href="https://arxiv.org/pdf/1611.00534">pdf</a>, <a href="https://arxiv.org/ps/1611.00534">ps</a>, <a href="https://arxiv.org/format/1611.00534">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Single-molecule enhanced spin-flip detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ormaza%2C+M">M. Ormaza</a>, <a href="/search/cond-mat?searchtype=author&query=Bachellier%2C+N">N. Bachellier</a>, <a href="/search/cond-mat?searchtype=author&query=Faraggi%2C+M+N">M. N. Faraggi</a>, <a href="/search/cond-mat?searchtype=author&query=Verlhac%2C+B">B. Verlhac</a>, <a href="/search/cond-mat?searchtype=author&query=Abufager%2C+P">P. Abufager</a>, <a href="/search/cond-mat?searchtype=author&query=Ohresser%2C+P">P. Ohresser</a>, <a href="/search/cond-mat?searchtype=author&query=Joly%2C+L">L. Joly</a>, <a href="/search/cond-mat?searchtype=author&query=Romeo%2C+M">M. Romeo</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">F. Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Bocquet%2C+M+-">M. -L. Bocquet</a>, <a href="/search/cond-mat?searchtype=author&query=Lorente%2C+N">N. Lorente</a>, <a href="/search/cond-mat?searchtype=author&query=Limot%2C+L">L. Limot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.00534v1-abstract-short" style="display: inline;"> We studied the spin-flip excitations of a double-decker nickelocene molecule (Nc) adsorbed on Cu(100) by means of inelastic tunneling spectroscopy (IETS), X-ray magnetic circular dichroism (XMCD) and density functional theory calculations (DFT). The results show that the molecule preserves its magnetic moment and magnetic anisotropy not only on Cu(100), but also in different metallic environments… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00534v1-abstract-full').style.display = 'inline'; document.getElementById('1611.00534v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.00534v1-abstract-full" style="display: none;"> We studied the spin-flip excitations of a double-decker nickelocene molecule (Nc) adsorbed on Cu(100) by means of inelastic tunneling spectroscopy (IETS), X-ray magnetic circular dichroism (XMCD) and density functional theory calculations (DFT). The results show that the molecule preserves its magnetic moment and magnetic anisotropy not only on Cu(100), but also in different metallic environments including the tip apex. Taking advantage of the efficient spin-flip excitation of this molecule, we show how such a molecular functionalized tip boosts the inelastic signal of a surface supported Nc by almost one order of magnitude thanks to a double spin-excitation process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00534v1-abstract-full').style.display = 'none'; document.getElementById('1611.00534v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.03987">arXiv:1509.03987</a> <span> [<a href="https://arxiv.org/pdf/1509.03987">pdf</a>, <a href="https://arxiv.org/ps/1509.03987">ps</a>, <a href="https://arxiv.org/format/1509.03987">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.036802">10.1103/PhysRevLett.116.036802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Narrow-line single-molecule transducer between electronic circuits and surface plasmons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chong%2C+M+C">Michael C. Chong</a>, <a href="/search/cond-mat?searchtype=author&query=Reecht%2C+G">Ga毛l Reecht</a>, <a href="/search/cond-mat?searchtype=author&query=Bulou%2C+H">Herv茅 Bulou</a>, <a href="/search/cond-mat?searchtype=author&query=Boeglin%2C+A">Alex Boeglin</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Mathevet%2C+F">Fabrice Mathevet</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillame Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.03987v1-abstract-short" style="display: inline;"> A molecular wire containing an emitting molecular center is controllably suspended between the plasmonic electrodes of a cryogenic scanning tunneling microscope. Passing current through this circuit generates an ultra narrow-line emission at an energy of ? 1.5 eV which is assigned to the fluorescence of the molecular center. Control over the linewidth is obtained by progressively detaching the emi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.03987v1-abstract-full').style.display = 'inline'; document.getElementById('1509.03987v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.03987v1-abstract-full" style="display: none;"> A molecular wire containing an emitting molecular center is controllably suspended between the plasmonic electrodes of a cryogenic scanning tunneling microscope. Passing current through this circuit generates an ultra narrow-line emission at an energy of ? 1.5 eV which is assigned to the fluorescence of the molecular center. Control over the linewidth is obtained by progressively detaching the emitting unit from the surface. The recorded spectra also reveal several vibronic peaks of low intensities that can be viewed as a fingerprint of the emitter. Surface-plasmon localized at the tip-sample interface are shown to play a major role on both excitation and emission of the molecular excitons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.03987v1-abstract-full').style.display = 'none'; document.getElementById('1509.03987v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 036802 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.05653">arXiv:1506.05653</a> <span> [<a href="https://arxiv.org/pdf/1506.05653">pdf</a>, <a href="https://arxiv.org/ps/1506.05653">ps</a>, <a href="https://arxiv.org/format/1506.05653">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.5b01283">10.1021/acs.jpclett.5b01283 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulling and Stretching a Molecular Wire to Tune its Conductance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Reecht%2C+G">Ga毛l Reecht</a>, <a href="/search/cond-mat?searchtype=author&query=Bulou%2C+H">Herv茅 Bulou</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Speisser%2C+V">Virginie Speisser</a>, <a href="/search/cond-mat?searchtype=author&query=Mathevet%2C+F">Fabrice Mathevet</a>, <a href="/search/cond-mat?searchtype=author&query=Gonz%C3%A1lez%2C+C">C茅sar Gonz谩lez</a>, <a href="/search/cond-mat?searchtype=author&query=Dappe%2C+Y+J">Yannick J. Dappe</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.05653v2-abstract-short" style="display: inline;"> A scanning tunnelling microscope is used to pull a polythiophene wire from a Au(111) surface while measuring the current traversing the junction. Abrupt current increases measured during the lifting procedure are associated to the detachment of molecular sub-units, in apparent contradiction with the expected exponential decrease of the conductance with wire length. \textit{Ab initio} simulations r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.05653v2-abstract-full').style.display = 'inline'; document.getElementById('1506.05653v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.05653v2-abstract-full" style="display: none;"> A scanning tunnelling microscope is used to pull a polythiophene wire from a Au(111) surface while measuring the current traversing the junction. Abrupt current increases measured during the lifting procedure are associated to the detachment of molecular sub-units, in apparent contradiction with the expected exponential decrease of the conductance with wire length. \textit{Ab initio} simulations reproduce the experimental data and demonstrate that this unexpected behavior is due to release of mechanical stress in the wire, paving the way to mechanically gated single-molecule electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.05653v2-abstract-full').style.display = 'none'; document.getElementById('1506.05653v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Chem. Lett., 2015, 6, pp 2987 2992 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.6901">arXiv:1410.6901</a> <span> [<a href="https://arxiv.org/pdf/1410.6901">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Efficient, high-density, carbon-based spinterfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Djeghloul%2C+F">F. Djeghloul</a>, <a href="/search/cond-mat?searchtype=author&query=Garreau%2C+G">G. Garreau</a>, <a href="/search/cond-mat?searchtype=author&query=Gruber%2C+M">M. Gruber</a>, <a href="/search/cond-mat?searchtype=author&query=Joly%2C+L">L. Joly</a>, <a href="/search/cond-mat?searchtype=author&query=Boukari%2C+S">S. Boukari</a>, <a href="/search/cond-mat?searchtype=author&query=Arabski%2C+J">J. Arabski</a>, <a href="/search/cond-mat?searchtype=author&query=Bulou%2C+H">H. Bulou</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">F. Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Bertran%2C+F">F. Bertran</a>, <a href="/search/cond-mat?searchtype=author&query=F%C3%A8vre%2C+P+L">P. Le F猫vre</a>, <a href="/search/cond-mat?searchtype=author&query=Taleb-Ibrahimi%2C+A">A. Taleb-Ibrahimi</a>, <a href="/search/cond-mat?searchtype=author&query=Wulfhekel%2C+W">W. Wulfhekel</a>, <a href="/search/cond-mat?searchtype=author&query=Beaurepaire%2C+E">E. Beaurepaire</a>, <a href="/search/cond-mat?searchtype=author&query=Hajjar-Garreau%2C+S">S. Hajjar-Garreau</a>, <a href="/search/cond-mat?searchtype=author&query=Wetzel%2C+P">P. Wetzel</a>, <a href="/search/cond-mat?searchtype=author&query=Bowen%2C+M">M. Bowen</a>, <a href="/search/cond-mat?searchtype=author&query=Weber%2C+W">W. Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.6901v1-abstract-short" style="display: inline;"> The research field of spintronics has sought, over the past 25 years and through several materials science tracks, a source of highly spin-polarized current at room temperature. Organic spinterfaces, which consist in an interface between a ferromagnetic metal and a molecule, represent the most promising track as demonstrated for a handful of interface candidates. How general is this effect? We dep… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.6901v1-abstract-full').style.display = 'inline'; document.getElementById('1410.6901v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.6901v1-abstract-full" style="display: none;"> The research field of spintronics has sought, over the past 25 years and through several materials science tracks, a source of highly spin-polarized current at room temperature. Organic spinterfaces, which consist in an interface between a ferromagnetic metal and a molecule, represent the most promising track as demonstrated for a handful of interface candidates. How general is this effect? We deploy topographical and spectroscopic techniques to show that a strongly spin-polarized interface arises already between ferromagnetic cobalt and mere carbon atoms. Scanning tunneling microscopy and spectroscopy show how a dense semiconducting carbon film with a low band gap of about 0.4 eV is formed atop the metallic interface. Spin-resolved photoemission spectroscopy reveals a high degree of spin polarization at room temperature of carbon-induced interface states at the Fermi energy. From both our previous study of cobalt/phthalocyanine spinterfaces and present x-ray photoemission spectroscopy studies of the cobalt/carbon interface, we infer that these highly spin-polarized interface states arise mainly from sp2-bonded carbon atoms. We thus demonstrate the molecule-agnostic, generic nature of the spinterface formation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.6901v1-abstract-full').style.display = 'none'; document.getElementById('1410.6901v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.2322">arXiv:1401.2322</a> <span> [<a href="https://arxiv.org/pdf/1401.2322">pdf</a>, <a href="https://arxiv.org/ps/1401.2322">ps</a>, <a href="https://arxiv.org/format/1401.2322">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Electroluminescence from a polythiophene molecular wire suspended in a plasmonic scanning tunneling microscope junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Reecht%2C+G">Ga毛l Reecht</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Speisser%2C+V">Virginie Speisser</a>, <a href="/search/cond-mat?searchtype=author&query=Dappe%2C+Y+J">Yannick J. Dappe</a>, <a href="/search/cond-mat?searchtype=author&query=Mathevet%2C+F">Fabrice Mathevet</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.2322v1-abstract-short" style="display: inline;"> The electroluminescence of a polythiophene wire suspended between two metallic electrodes is probed using a scanning tunneling microscope. Under positive sample voltage, the spectral and voltage dependencies of the emitted light are consistent with the fluorescence of the wire junction mediated by localized plasmons. This emission is strongly attenuated for the opposite polarity. Both emission mec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.2322v1-abstract-full').style.display = 'inline'; document.getElementById('1401.2322v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.2322v1-abstract-full" style="display: none;"> The electroluminescence of a polythiophene wire suspended between two metallic electrodes is probed using a scanning tunneling microscope. Under positive sample voltage, the spectral and voltage dependencies of the emitted light are consistent with the fluorescence of the wire junction mediated by localized plasmons. This emission is strongly attenuated for the opposite polarity. Both emission mechanism and polarity dependence are similar to what occurs in organic light emitting diodes (OLED) but at the level of a single molecular wire. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.2322v1-abstract-full').style.display = 'none'; document.getElementById('1401.2322v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to be published in Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.4860">arXiv:1301.4860</a> <span> [<a href="https://arxiv.org/pdf/1301.4860">pdf</a>, <a href="https://arxiv.org/ps/1301.4860">ps</a>, <a href="https://arxiv.org/format/1301.4860">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.056802">10.1103/PhysRevLett.110.056802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Oligothiophene nano-rings as electron resonators for whispering gallery modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Reecht%2C+G">Ga毛l Reecht</a>, <a href="/search/cond-mat?searchtype=author&query=Bulou%2C+H">Herv茅 Bulou</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">Fabrice Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Speisser%2C+V">Virginie Speisser</a>, <a href="/search/cond-mat?searchtype=author&query=Carri%C3%A8re%2C+B">Bernard Carri猫re</a>, <a href="/search/cond-mat?searchtype=author&query=Mathevet%2C+F">Fabrice Mathevet</a>, <a href="/search/cond-mat?searchtype=author&query=Schull%2C+G">Guillaume Schull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.4860v1-abstract-short" style="display: inline;"> Structural and electronic properties of oligothiophene nano-wires and rings synthesized on a Au(111) surface are investigated by scanning tunneling microscopy. The spectroscopic data of the linear and cyclic oligomers show remarkable differences which, to a first approximation, can be accounted by considering electronic states confinement to one-dimensional (1D) boxes having respectively fixed and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4860v1-abstract-full').style.display = 'inline'; document.getElementById('1301.4860v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.4860v1-abstract-full" style="display: none;"> Structural and electronic properties of oligothiophene nano-wires and rings synthesized on a Au(111) surface are investigated by scanning tunneling microscopy. The spectroscopic data of the linear and cyclic oligomers show remarkable differences which, to a first approximation, can be accounted by considering electronic states confinement to one-dimensional (1D) boxes having respectively fixed and periodic boundary conditions. A more detailed analysis shows that polythiophene must be treated as a ribbon (i.e. having an effective width) rather than a purely 1D structure. A fascinating consequence is that the molecular nano-rings act as whispering gallery mode resonators for electrons, opening the way for new applications in quantum-electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4860v1-abstract-full').style.display = 'none'; document.getElementById('1301.4860v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages with 4 figures, To be published in Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.1267">arXiv:1209.1267</a> <span> [<a href="https://arxiv.org/pdf/1209.1267">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep01272">10.1038/srep01272 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of a highly spin-polarized organic spinterface at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Djeghloul%2C+F">F. Djeghloul</a>, <a href="/search/cond-mat?searchtype=author&query=Ibrahim%2C+F">F. Ibrahim</a>, <a href="/search/cond-mat?searchtype=author&query=Cantoni%2C+M">M. Cantoni</a>, <a href="/search/cond-mat?searchtype=author&query=Bowen%2C+M">M. Bowen</a>, <a href="/search/cond-mat?searchtype=author&query=Joly%2C+L">L. Joly</a>, <a href="/search/cond-mat?searchtype=author&query=Boukari%2C+S">S. Boukari</a>, <a href="/search/cond-mat?searchtype=author&query=Ohresser%2C+P">P. Ohresser</a>, <a href="/search/cond-mat?searchtype=author&query=Bertran%2C+F">F. Bertran</a>, <a href="/search/cond-mat?searchtype=author&query=Lef%C3%A8vre%2C+P">P. Lef猫vre</a>, <a href="/search/cond-mat?searchtype=author&query=Thakur%2C+P">P. Thakur</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">F. Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Miyamachi%2C+T">T. Miyamachi</a>, <a href="/search/cond-mat?searchtype=author&query=Mattana%2C+R">R. Mattana</a>, <a href="/search/cond-mat?searchtype=author&query=Seneor%2C+P">P. Seneor</a>, <a href="/search/cond-mat?searchtype=author&query=Jaafar%2C+A">A. Jaafar</a>, <a href="/search/cond-mat?searchtype=author&query=Rinaldi%2C+C">C. Rinaldi</a>, <a href="/search/cond-mat?searchtype=author&query=Javaid%2C+S">S. Javaid</a>, <a href="/search/cond-mat?searchtype=author&query=Arabski%2C+J">J. Arabski</a>, <a href="/search/cond-mat?searchtype=author&query=Kappler%2C+J+-">J. -P. Kappler</a>, <a href="/search/cond-mat?searchtype=author&query=Wulfhekel%2C+W">W. Wulfhekel</a>, <a href="/search/cond-mat?searchtype=author&query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&query=Bertacco%2C+R">R. Bertacco</a>, <a href="/search/cond-mat?searchtype=author&query=Taleb-Ibrahimi%2C+A">A. Taleb-Ibrahimi</a>, <a href="/search/cond-mat?searchtype=author&query=Alouani%2C+M">M. Alouani</a>, <a href="/search/cond-mat?searchtype=author&query=Beaurepaire%2C+E">E. Beaurepaire</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.1267v2-abstract-short" style="display: inline;"> The design of large-scale electronic circuits that are entirely spintronics-driven requires a current source that is highly spin-polarised at and beyond room temperature, cheap to build, efficient at the nanoscale and straightforward to integrate with semiconductors. Yet despite research within several subfields spanning nearly two decades, this key building block is still lacking. We experimental… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.1267v2-abstract-full').style.display = 'inline'; document.getElementById('1209.1267v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.1267v2-abstract-full" style="display: none;"> The design of large-scale electronic circuits that are entirely spintronics-driven requires a current source that is highly spin-polarised at and beyond room temperature, cheap to build, efficient at the nanoscale and straightforward to integrate with semiconductors. Yet despite research within several subfields spanning nearly two decades, this key building block is still lacking. We experimentally and theoretically show how the interface between Co and phthalocyanine molecules constitutes a promising candidate. Spin-polarised direct and inverse photoemission experiments reveal a high degree of spin polarisation at room temperature at this interface. We measured a magnetic moment on the molecules's nitrogen pi orbitals, which substantiates an ab-initio theoretical description of highly spin-polarised charge conduction across the interface due to differing spinterface formation mechanims in each spin channel. We propose, through this example, a recipe to engineer simple organic-inorganic interfaces with remarkable spintronic properties that can endure well above room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.1267v2-abstract-full').style.display = 'none'; document.getElementById('1209.1267v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 3 1272 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0612181">arXiv:cond-mat/0612181</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0612181">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0612181">ps</a>, <a href="https://arxiv.org/format/cond-mat/0612181">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.76.125201">10.1103/PhysRevB.76.125201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Paramagnetism of the Co sublattice in ferromagnetic Zn$_{1-x}$Co$_{x}$O films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Barla%2C+A">A. Barla</a>, <a href="/search/cond-mat?searchtype=author&query=Schmerber%2C+G">G. Schmerber</a>, <a href="/search/cond-mat?searchtype=author&query=Beaurepaire%2C+E">E. Beaurepaire</a>, <a href="/search/cond-mat?searchtype=author&query=Dinia%2C+A">A. Dinia</a>, <a href="/search/cond-mat?searchtype=author&query=Bieber%2C+H">H. Bieber</a>, <a href="/search/cond-mat?searchtype=author&query=Colis%2C+S">S. Colis</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">F. Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Kappler%2C+J+-">J. -P. Kappler</a>, <a href="/search/cond-mat?searchtype=author&query=Imperia%2C+P">P. Imperia</a>, <a href="/search/cond-mat?searchtype=author&query=Nolting%2C+F">F. Nolting</a>, <a href="/search/cond-mat?searchtype=author&query=Wilhelm%2C+F">F. Wilhelm</a>, <a href="/search/cond-mat?searchtype=author&query=Rogalev%2C+A">A. Rogalev</a>, <a href="/search/cond-mat?searchtype=author&query=Muller%2C+D">D. Muller</a>, <a href="/search/cond-mat?searchtype=author&query=Grob%2C+J+J">J. J. Grob</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0612181v1-abstract-short" style="display: inline;"> Using the spectroscopies based upon x-ray absorption, we have studied the structural and magnetic properties of Zn$_{1-x}$Co$_{x}$O films ($x$ = 0.1 and 0.25) produced by reactive magnetron sputtering. These films show ferromagnetism with a Curie temperature $T_{\mathrm{C}}$ above room temperature in bulk magnetization measurements. Our results show that the Co atoms are in a divalent state and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0612181v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0612181v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0612181v1-abstract-full" style="display: none;"> Using the spectroscopies based upon x-ray absorption, we have studied the structural and magnetic properties of Zn$_{1-x}$Co$_{x}$O films ($x$ = 0.1 and 0.25) produced by reactive magnetron sputtering. These films show ferromagnetism with a Curie temperature $T_{\mathrm{C}}$ above room temperature in bulk magnetization measurements. Our results show that the Co atoms are in a divalent state and in tetrahedral coordination, thus substituting Zn in the wurtzite-type structure of ZnO. However, x-ray magnetic circular dichroism at the Co \textit{L}$_{2,3}$ edges reveals that the Co 3\textit{d} sublattice is paramagnetic at all temperatures down to 2 K, both at the surface and in the bulk of the films. The Co 3\textit{d} magnetic moment at room temperature is considerably smaller than that inferred from bulk magnetisation measurements, suggesting that the Co 3\textit{d} electrons are not directly at the origin of the observed ferromagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0612181v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0612181v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0311231">arXiv:cond-mat/0311231</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0311231">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0311231">ps</a>, <a href="https://arxiv.org/format/cond-mat/0311231">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.69.155413">10.1103/PhysRevB.69.155413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structure of self-organized Fe clusters grown on Au(111) analyzed by Grazing Incidence X-Ray Diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bulou%2C+H">H. Bulou</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+F">F. Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Ohresser%2C+P">P. Ohresser</a>, <a href="/search/cond-mat?searchtype=author&query=Barbier%2C+A">A. Barbier</a>, <a href="/search/cond-mat?searchtype=author&query=Stanescu%2C+S">S. Stanescu</a>, <a href="/search/cond-mat?searchtype=author&query=Quiros%2C+C">C. Quiros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0311231v1-abstract-short" style="display: inline;"> We report a detailed investigation of the first stages of the growth of self-organized Fe clusters on the reconstructed Au(111) surface by grazing incidence X-ray diffraction. Below one monolayer coverage, the Fe clusters are in "local epitaxy" whereas the subsequent layers adopt first a strained fcc lattice and then a partly relaxed bcc(110) phase in a Kurdjumov-Sachs epitaxial relationship. Th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0311231v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0311231v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0311231v1-abstract-full" style="display: none;"> We report a detailed investigation of the first stages of the growth of self-organized Fe clusters on the reconstructed Au(111) surface by grazing incidence X-ray diffraction. Below one monolayer coverage, the Fe clusters are in "local epitaxy" whereas the subsequent layers adopt first a strained fcc lattice and then a partly relaxed bcc(110) phase in a Kurdjumov-Sachs epitaxial relationship. The structural evolution is discussed in relation with the magnetic properties of the Fe clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0311231v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0311231v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, submitted to Physical Review B September 2003</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>