CINXE.COM

Search results for: provenance

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: provenance</title> <meta name="description" content="Search results for: provenance"> <meta name="keywords" content="provenance"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="provenance" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="provenance"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 29</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: provenance</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Provenance in Scholarly Publications: Introducing the provCite Ontology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Joseph%20Israel">Maria Joseph Israel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Amer"> Ahmed Amer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our work aims to broaden the application of provenance technology beyond its traditional domains of scientific workflow management and database systems by offering a general provenance framework to capture richer and extensible metadata in unstructured textual data sources such as literary texts, commentaries, translations, and digital humanities. Specifically, we demonstrate the feasibility of capturing and representing expressive provenance metadata, including more of the context for citing scholarly works (e.g., the authors’ explicit or inferred intentions at the time of developing his/her research content for publication), while also supporting subsequent augmentation with similar additional metadata (by third parties, be they human or automated). To better capture the nature and types of possible citations, in our proposed provenance scheme metaScribe, we extend standard provenance conceptual models to form our proposed provCite ontology. This provides a conceptual framework which can accurately capture and describe more of the functional and rhetorical properties of a citation than can be achieved with any current models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge%20representation" title="knowledge representation">knowledge representation</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance%20architecture" title=" provenance architecture"> provenance architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=metadata" title=" metadata"> metadata</a>, <a href="https://publications.waset.org/abstracts/search?q=bibliographic%20citation" title=" bibliographic citation"> bibliographic citation</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web%20annotation" title=" semantic web annotation"> semantic web annotation</a> </p> <a href="https://publications.waset.org/abstracts/137227/provenance-in-scholarly-publications-introducing-the-provcite-ontology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Preserving Privacy in Workflow Delegation Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noha%20Nagy">Noha Nagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Mokhtar"> Hoda Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El%20Sherkawi"> Mohamed El Sherkawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The popularity of workflow delegation models and the increasing number of workflow provenance-aware systems motivate the need for finding more strict delegation models. Such models combine different approaches for enhanced security and respecting workflow privacy. Although modern enterprises seek conformance to workflow constraints to ensure correctness of their work, these constraints pose a threat to security, because these constraints can be good seeds for attacking privacy even in secure models. This paper introduces a comprehensive Workflow Delegation Model (WFDM) that utilizes provenance and workflow constraints to prevent malicious delegate from attacking workflow privacy as well as extending the delegation functionalities. In addition, we argue the need for exploiting workflow constraints to improve workflow security models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=workflow%20delegation%20models" title="workflow delegation models">workflow delegation models</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20workflow" title=" secure workflow"> secure workflow</a>, <a href="https://publications.waset.org/abstracts/search?q=workflow%20privacy" title=" workflow privacy"> workflow privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=workflow%20provenance" title=" workflow provenance"> workflow provenance</a> </p> <a href="https://publications.waset.org/abstracts/47106/preserving-privacy-in-workflow-delegation-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Modal Composition and Tectonic Provenance of the Sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Baiyegunhi">Christopher Baiyegunhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuiwu%20Liu"> Kuiwu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Oswald%20Gwavava"> Oswald Gwavava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Petrography of the sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province of South Africa have been investigated on composition, provenance and influence of weathering conditions. Petrographic studies based on quantitative analysis of the detrital minerals revealed that the sandstones are composed mostly of quartz, feldspar and lithic fragments of metamorphic and sedimentary rocks. The sandstones have an average framework composition of 24.3% quartz, 19.3% feldspar, 26.1% rock fragments, and 81.33% of the quartz grains are monocrystalline. These sandstones are generally very fine to fine grained, moderate to well sorted, and subangular to subrounded in shape. In addition, they are compositionally immature and can be classified as feldspathic wacke and lithic wacke. The absence of major petrographically distinctive compositional variations in the sandstones perhaps indicate homogeneity of their source. As a result of this, it is inferred that the transportation distance from the source area was quite short and the main mechanism of transportation was by river systems to the basin. The QFL ternary diagrams revealed dissected and transitional arc provenance pointing to an active margin and uplifted basement preserving the signature of a recycled provenance. This is an indication that the sandstones were derived from a magmatic arc provenance. Since magmatic provenance includes transitional arc and dissected arc, it also shows that the source area of the Ecca sediments had a secondary sedimentary and metasedimentary rocks from a marginal belt that developed as a result of rifting. The weathering diagrams and semi-quantitative weathering index indicate that the Ecca sandstones are mostly from a plutonic source area, with climatic conditions ranging from arid to humid. The compositional immaturity of the sandstones is suggested to be due to weathering or recycling and low relief or short transport from the source area. The detrital modal compositions of these sandstones are related to back arc to island and continental margin arc. The origin and deposition of the Ecca sandstones are due to low-moderate weathering, recycling of pre-existing rocks, erosion and transportation of debris from the orogeny of the Cape Fold Belt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petrography" title="petrography">petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonic%20setting" title=" tectonic setting"> tectonic setting</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecca%20Group" title=" Ecca Group"> Ecca Group</a>, <a href="https://publications.waset.org/abstracts/search?q=Karoo%20Basin" title=" Karoo Basin"> Karoo Basin</a> </p> <a href="https://publications.waset.org/abstracts/66142/modal-composition-and-tectonic-provenance-of-the-sandstones-of-ecca-group-karoo-supergroup-in-the-eastern-cape-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Provenance and Paleoweathering Conditions of Doganhisar Clay Beds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Yavuz%20Huseyinca">Mehmet Yavuz Huseyinca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The clay beds are located at the south-southeast of Doğanhisar and northwest of Konya in the Central Anatolia. In the scope of preliminary study, three types of samples were investigated including basement phyllite (Bp) overlain by the clay beds, weathered phyllite (Wp) and Doğanhisar clay (Dc). The Chemical Index of Alteration (CIA) values of Dc range from 81 to 88 with an average of 85. This value is higher than that of Post Archean Australian Shale (PAAS) and defines very intense chemical weathering in the source-area. On the other hand, the A-CN-K diagram indicates that Bp underwent high degree post-depositional K-metasomatism. The average reconstructed CIA value of the Bp prior to the K-metasomatism is mainly 81 which overlaps the CIA values of the Wp (83) and Dc (85). Similar CIA values indicate parallel weathering trends. Also, extrapolation of the samples back to the plagioclase-alkali feldspar line in the A-CN-K diagram suggests an identical provenance close to granite in composition. Hereby the weathering background of Dc includes two steps. First one is intense weathering process of a granitic source to Bp with post-depositional K-metasomatism and the latter is progressively weathering of Bp to premetasomatised conditions (formation of Wp) ending with Dc deposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%20beds" title="clay beds">clay beds</a>, <a href="https://publications.waset.org/abstracts/search?q=Doganhisar" title=" Doganhisar"> Doganhisar</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=weathering" title=" weathering"> weathering</a> </p> <a href="https://publications.waset.org/abstracts/49547/provenance-and-paleoweathering-conditions-of-doganhisar-clay-beds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Chemical and Oxygen Isotope Analysis of Roman Glasses from Northern Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Karalis">P. Karalis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Dotsika"> E. Dotsika</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Godelitsas"> A. Godelitsas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tassi"> M. Tassi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ignatiadou"> D. Ignatiadou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass artefacts originated from Northern Greece, dated between 1st and 6th AC, were analyzed for their oxygen isotopic and chemical compositions in order to identify their raw materials provenance. The chemical composition of these glasses is rather heterogeneous although they are all obtained with natron as flux, having both K₂O and MgO contents lower than 1.5 wt%. The majority of these samples have a homogeneous oxygen isotopic composition (𝛿18O= 16‰,), which is equal to or very close to the mean value of “Roman” glass (from about 15‰ to 16.0‰). The rest of the samples present heavily enriched 𝛿18O values that indicate that their raw materials differ from those normally used in Roman and Medieval glass production, and this matches with the possibility of the different origins of these materials. So, all these fragments are soda-lime-silica natron-glass produced from natron, possibly coming from more than one source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancient%20glass" title="ancient glass">ancient glass</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance%20of%20raw%20materials%20of%20ancient%20glass" title=" provenance of raw materials of ancient glass"> provenance of raw materials of ancient glass</a>, <a href="https://publications.waset.org/abstracts/search?q=roman%20glass" title=" roman glass"> roman glass</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20isotope%20analysis%20in%20glass" title=" oxygen isotope analysis in glass"> oxygen isotope analysis in glass</a> </p> <a href="https://publications.waset.org/abstracts/151620/chemical-and-oxygen-isotope-analysis-of-roman-glasses-from-northern-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Evaluation and Provenance Studies of Heavy Mineral Deposits in Recent Sediment of Ologe Lagoon, South Western, Nigeria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayowa%20Philips%20Ibitola">Mayowa Philips Ibitola</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinade-Solomon%20Olorunfemi"> Akinade-Solomon Olorunfemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abe%20Oluwaseun%20Banji"> Abe Oluwaseun Banji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy minerals studies were carried out on eighteen sediment samples from Ologe lagoon located at Lagos Barrier complex, with the aim of evaluating the heavy mineral deposits and determining the provenance of the sediments. The samples were subjected to grain analysis techniques in order to collect the finest grain size. Separation of heavy minerals from the samples was done with the aid of bromoform to enable petrographic analyses of the heavy mineral suite, under the polarising microscope. The data obtained from the heavy mineral analysis were used in preparing histograms and pie chart, from which the individual heavy mineral percentage distribution and ZTR index were derived. The percentage composition of the individual heavy mineral analyzed are opaque mineral 63.92%, Zircon 12.43%, Tourmaline 5.79%, Rutile 13.44%, Garnet 1.74% and Staurolite 3.52%. The calculated zircon, tourmaline, rutile index in percentage (ZTR) varied between 76.13 -92.15%, average garnet-zircon index (GZI), average rutile-zircon index (RuZI) and average staurolite-zircon index values in all the stations are 16.18%, 54.33%, 25.11% respectively. The mean ZTR index percentage value is 85.17% indicates that the sediments within the lagoon are mineralogically matured. The high percentage of zircon, rutile, and tourmaline indicates an acid igneous rock source for the sediments. However, the low percentage of staurolite, rutile and garnet occurrence indicates sediment of metamorphic rock source input. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lagoon" title="lagoon">lagoon</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20mineral" title=" heavy mineral"> heavy mineral</a>, <a href="https://publications.waset.org/abstracts/search?q=ZTR%20index" title=" ZTR index"> ZTR index</a> </p> <a href="https://publications.waset.org/abstracts/90033/evaluation-and-provenance-studies-of-heavy-mineral-deposits-in-recent-sediment-of-ologe-lagoon-south-western-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Evaluation and Selection of Elite Jatropha Genotypes for Biofuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bambang%20Heliyanto">Bambang Heliyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Rully%20Dyah%20Purwati"> Rully Dyah Purwati</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasnam"> Hasnam</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadjry%20Djufry"> Fadjry Djufry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jatropha curcas L., a drought tolerant and monoecious perennial shrub, has received attention worldwide during the past decade. Realizing the facts, the Indonesian government has decided to option for Jatropha and palm oil for in country biofuel production. To support the program development of high yielding jatropha varieties is necessary. This paper reviews Jatropha improvement program in Indonesia using mass selection and hybrid development. To start with, at the end of 2005, in-country germplasm collection was mobilized to Lampung and Nusa Tenggara Barat (NTB) provinces and successfully collected 15 provenances/sub-provenances which serves as a base population for selection. A significant improvement has been achieved through a simple recurrent breeding selection during 2006 to 2007. Seed yield productivity increased more than double, from 0.36 to 0.97 ton dry seed per hectare during the first selection cycle (IP-1), and then increased to 2.2 ton per hectare during the second cycles (IP-2) in Lampung provenance. Similar result was also observed in NTB provenance. Seed yield productivity increased from 0.43 ton to 1 ton dry seed per hectare in the first cycle (IP-1), and then 1.9 ton in the second cycle (IP-2). In 2008, the population IP-3 resulted from the third cycle of selection have been identified which were capable of producing 2.2 to 2.4 ton seed yield per hectare. To improve the seed yield per hectare, jatropha hybrid varieties was developed involving superior provenances. As a result a Jatropha Energy Terbarukan (JET) variety-2 was released in 2017 with seed yield potential of 2.6 ton per hectare. The use of this high yielding genotypes for biofuel is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title="Jatropha curcas">Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=improve%20population" title=" improve population"> improve population</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a> </p> <a href="https://publications.waset.org/abstracts/92125/evaluation-and-selection-of-elite-jatropha-genotypes-for-biofuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Rare Earth Element (REE) Geochemistry of Tepeköy Sandstones (Central Anatolia, Turkey)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Yavuz%20H%C3%BCseyinca">Mehmet Yavuz Hüseyinca</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Euayip%20K%C3%BCpeli"> Şuayip Küpeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandstones from Upper Eocene - Oligocene Tepeköy formation (Member of Mezgit Group) that exposed on the eastern edge of Tuz Gölü (Salt Lake) were analyzed for their rare earth element (REE) contents. Average concentrations of ΣREE, ΣLREE (Total light rare earth elements) and ΣHREE (Total heavy rare earth elements) were determined as 31.37, 26.47 and 4.55 ppm respectively. These values are lower than UCC (Upper continental crust) which indicates grain size and/or CaO dilution effect. The chondrite-normalized REE pattern is characterized by the average ratios of (La/Yb)cn = 6.20, (La/Sm)cn = 4.06, (Gd/Lu)cn = 1.10, Eu/Eu* = 0.99 and Ce/Ce* = 0.94. Lower values of ΣLREE/ΣHREE (Average 5.97) and (La/Yb)cn suggest lower fractionation of overall REE. Moreover (La/Sm)cn and (Gd/Lu)cn ratios define less inclined LREE and almost flat HREE pattern when compared with UCC. Almost no Ce anomaly (Ce/Ce*) emphasizes that REE were originated from terrigenous material. Also depleted LREE and no Eu anomaly (Eu/Eu*) suggest an undifferentiated mafic provenance for the sandstones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20Anatolia" title="central Anatolia">central Anatolia</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a>, <a href="https://publications.waset.org/abstracts/search?q=REE" title=" REE"> REE</a>, <a href="https://publications.waset.org/abstracts/search?q=Tepek%C3%B6y%20sandstone" title=" Tepeköy sandstone"> Tepeköy sandstone</a> </p> <a href="https://publications.waset.org/abstracts/31994/rare-earth-element-ree-geochemistry-of-tepekoy-sandstones-central-anatolia-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Late Bronze Age Pigments: Characterization of Mycenaean Pottery with Multi-Analytical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Do%C4%9Fru">Elif Doğru</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%BClent%20K%C4%B1z%C4%B1lduman"> Bülent Kızılduman</a>, <a href="https://publications.waset.org/abstracts/search?q=Huriye%20%C4%B0cil"> Huriye İcil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Throughout history, Cyprus has been involved in various commercial and cultural relationships with different civilizations, owing to its strategic location. Particularly during the Late Bronze Age, Cyprus emerged as a significant region engaged in interactions with the Mycenaeans and other Mediterranean civilizations. Presently, findings from archaeological excavations provide valuable insights into Cyprus' cultural history and its connections with other civilizations. Painted Mycenaean ceramics discovered during the excavations at Kaleburnu-Kral Tepesi (Galinaporni-Vasili), dated to the Late Bronze Age in Cyprus, are considered significant archaeological findings that carry traces of the art and culture of that era, reflecting the island's commercial and cultural connections. Considering these findings, there is a need for archaeometric studies to aid in the understanding of the commercial and cultural ties at Kaleburnu-Kral Tepesi. In line with this need, analytical studies have been initiated concerning the provenance and production techniques of the Mycenaean ceramics discovered in the excavations at Kaleburnu-Kral Tepesi, dated to the Late Bronze Age. In the context of origin analysis studies, it is advocated that understanding the techniques and materials used for the figures and designs applied on Mycenaean ceramics would significantly contribute to a better comprehension of historical contexts. Hence, the adopted approach involves not only the analysis of the ceramic raw material but also the characterization of the pigments on the ceramics as a whole. In light of this, in addition to the studies aimed at determining the provenance and production techniques of the Mycenaean ceramic bodies, the characterization of the pigments used in the decorations of the relevant ceramics has been included in the research scope. Accordingly, this study aims to characterize the pigments used in the decorations of Mycenaean ceramics discovered at Kaleburnu-Kral Tepesi, dated to the Late Bronze Age. The X-Ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) methods have been employed to determine the surface morphology and chemical properties of the Mycenaean pigments. The characterization has been conducted through the combination of multiple analytical methods. The characterization of the pigments of Mycenaean ceramics aims to enhance the scientific perspective adopted for understanding the contributions of Mycenaean ceramics found in Cyprus to the island's culture, by providing scientific data on the types and origins of pigments used during the Late Bronze Age. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycenaean" title="mycenaean">mycenaean</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic" title=" ceramic"> ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=pigment" title=" pigment"> pigment</a> </p> <a href="https://publications.waset.org/abstracts/174824/late-bronze-age-pigments-characterization-of-mycenaean-pottery-with-multi-analytical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoda%20A.%20Abdel%20Hafez">Hoda A. Abdel Hafez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mining%20big%20data" title="mining big data">mining big data</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=telecommunication" title=" telecommunication"> telecommunication</a> </p> <a href="https://publications.waset.org/abstracts/41412/mining-big-data-in-telecommunications-industry-challenges-techniques-and-revenue-opportunity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Tracing Sources of Sediment in an Arid River, Southern Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesam%20Gholami">Hesam Gholami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elevated suspended sediment loads in riverine systems resulting from accelerated erosion due to human activities are a serious threat to the sustainable management of watersheds and ecosystem services therein worldwide. Therefore, mitigation of deleterious sediment effects as a distributed or non-point pollution source in the catchments requires reliable provenance information. Sediment tracing or sediment fingerprinting, as a combined process consisting of sampling, laboratory measurements, different statistical tests, and the application of mixing or unmixing models, is a useful technique for discriminating the sources of sediments. From 1996 to the present, different aspects of this technique, such as grouping the sources (spatial and individual sources), discriminating the potential sources by different statistical techniques, and modification of mixing and unmixing models, have been introduced and modified by many researchers worldwide, and have been applied to identify the provenance of fine materials in agricultural, rural, mountainous, and coastal catchments, and in large catchments with numerous lakes and reservoirs. In the last two decades, efforts exploring the uncertainties associated with sediment fingerprinting results have attracted increasing attention. The frameworks used to quantify the uncertainty associated with fingerprinting estimates can be divided into three groups comprising Monte Carlo simulation, Bayesian approaches and generalized likelihood uncertainty estimation (GLUE). Given the above background, the primary goal of this study was to apply geochemical fingerprinting within the GLUE framework in the estimation of sub-basin spatial sediment source contributions in the arid Mehran River catchment in southern Iran, which drains into the Persian Gulf. The accuracy of GLUE predictions generated using four different sets of statistical tests for discriminating three sub-basin spatial sources was evaluated using 10 virtual sediments (VS) samples with known source contributions using the root mean square error (RMSE) and mean absolute error (MAE). Based on the results, the contributions modeled by GLUE for the western, central and eastern sub-basins are 1-42% (overall mean 20%), 0.5-30% (overall mean 12%) and 55-84% (overall mean 68%), respectively. According to the mean absolute fit (MAF; ≥ 95% for all target sediment samples) and goodness-of-fit (GOF; ≥ 99% for all samples), our suggested modeling approach is an accurate technique to quantify the source of sediments in the catchments. Overall, the estimated source proportions can help watershed engineers plan the targeting of conservation programs for soil and water resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment%20source%20tracing" title="sediment source tracing">sediment source tracing</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20likelihood%20uncertainty%20estimation" title=" generalized likelihood uncertainty estimation"> generalized likelihood uncertainty estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20sediment%20mixtures" title=" virtual sediment mixtures"> virtual sediment mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/166240/tracing-sources-of-sediment-in-an-arid-river-southern-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Governance Framework for an Emerging Trust Ecosystem with a Blockchain-Based Supply Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismael%20%C3%81vila">Ismael Ávila</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Reynaldo%20F.%20Filho"> José Reynaldo F. Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasco%20Varanda%20Picchi"> Vasco Varanda Picchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ever-growing consumer awareness of food provenance in Brazil is driving the creation of a trusted ecosystem around the animal protein supply chain. The traceability and accountability requirements of such an ecosystem demand a blockchain layer to strengthen the weak links in that chain. For that, direct involvement of the companies in the blockchain transactions, including as validator nodes of the network, implies formalizing a partnership with the consortium behind the ecosystem. Yet, their compliance standards usually require that a formal governance structure is in place before they agree with any membership terms. In light of such a strategic role of blockchain governance, the paper discusses a framework for tailoring a governance model for a blockchain-based solution aimed at the meat supply chain and evaluates principles and attributes in terms of their relevance to the development of a robust trust ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=governance" title=" governance"> governance</a>, <a href="https://publications.waset.org/abstracts/search?q=trust%20ecosystem" title=" trust ecosystem"> trust ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a> </p> <a href="https://publications.waset.org/abstracts/153296/governance-framework-for-an-emerging-trust-ecosystem-with-a-blockchain-based-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Geochemical Investigation of Weathering and Sorting for Tepeköy Sandstones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yavuz%20H%C3%BCseyinca">M. Yavuz Hüseyinca</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Euayip%20K%C3%BCpeli"> Şuayip Küpeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Chemical Index of Alteration (CIA) values of Late Eocene-Oligocene aged sandstones that exposed on the eastern edge of Tuz Lake (Central Anatolia, Turkey) range from 49 to 59 with an average of 51. The A-CN-K diagram indicates that sandstones underwent post-depositional K-metasomatism. The original average CIA value before the K-metasomatism is calculated as 55. This value is lower than that of Post Archean Australian Shale (PAAS) and defines a low intense chemical weathering in the source-area. Extrapolation of sandstones back to the plagioclase-alkali feldspar line in the A-CN-K diagram suggests a high average plagioclase to alkali feldspar ratio in the provenance and a composition close to granodiorite. The Zr/Sc and Th/Sc ratios with the Al₂O₃-Zr-TiO₂ space do not show zircon addition that refuse both recycling of sediments and sorting effect. All these data suggest direct and rapid transportation from the source due to topographic uplift and probably arid to semi-arid climate conditions for the sandstones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20Anatolia" title="central Anatolia">central Anatolia</a>, <a href="https://publications.waset.org/abstracts/search?q=sandstone" title=" sandstone"> sandstone</a>, <a href="https://publications.waset.org/abstracts/search?q=sorting" title=" sorting"> sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=weathering" title=" weathering"> weathering</a> </p> <a href="https://publications.waset.org/abstracts/48202/geochemical-investigation-of-weathering-and-sorting-for-tepekoy-sandstones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> The Effect of Artificial Intelligence on Decoration Designs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayed%20Mouris%20Gad%20Elsayed%20Khalil">Ayed Mouris Gad Elsayed Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on historical techniques associated with the Lajevardin and Haft-Rangi production methods in tile production, with particular attention to identifying techniques for applying gold leaf to the surface of these historical glazed tiles. In this context, the history of the production of glazed, gilded and glazed Lajevardin ceramics from the Khwarizmanshahid and Mongol periods (11th to 13th centuries) was first evaluated in order to better understand the context and history of the methods of historical enameling. After a historical overview of glazed ceramic production techniques and the adoption of these techniques by civilizations, we focused on the niche production methods of glazes and Lajevardin glazes, two categories of decoration commonly found on tiles. A general method for classifying the different types of gold tiles was then introduced, applicable to tiles from to the Safavid period (16th-17th centuries). These categories include gold glazed Lajevardina tiles, haft rangi gold tiles, gold glazed monolithic tiles and gold mosaic tiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethnicity" title="ethnicity">ethnicity</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-cultural" title=" multi-cultural"> multi-cultural</a>, <a href="https://publications.waset.org/abstracts/search?q=jewelry" title=" jewelry"> jewelry</a>, <a href="https://publications.waset.org/abstracts/search?q=craft%20techniquemycenaean" title=" craft techniquemycenaean"> craft techniquemycenaean</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic" title=" ceramic"> ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=pigmentAmorium" title=" pigmentAmorium"> pigmentAmorium</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20bracelets" title=" glass bracelets"> glass bracelets</a>, <a href="https://publications.waset.org/abstracts/search?q=image" title=" image"> image</a>, <a href="https://publications.waset.org/abstracts/search?q=Byzantine%20empire" title=" Byzantine empire"> Byzantine empire</a> </p> <a href="https://publications.waset.org/abstracts/184426/the-effect-of-artificial-intelligence-on-decoration-designs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Blockchain for Transport: Performance Simulations of Blockchain Network for Emission Monitoring Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dermot%20O%27Brien">Dermot O&#039;Brien</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasileios%20Christaras"> Vasileios Christaras</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Fontaras"> Georgios Fontaras</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Nai%20Fovino"> Igor Nai Fovino</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Kounelis"> Ioannis Kounelis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rise of the Internet of Things (IoT), 5G, and blockchain (BC) technologies, vehicles are becoming ever increasingly connected and are already transmitting substantial amounts of data to the original equipment manufacturers (OEMs) servers. This data could be used to help detect mileage fraud and enable more accurate vehicle emissions monitoring. This would not only help regulators but could enable applications such as permitting efficient drivers to pay less tax, geofencing for air quality improvement, as well as pollution tolling and trading platforms for transport-related businesses and EU citizens. Other applications could include traffic management and shared mobility systems. BC enables the transmission of data with additional security and removes single points of failure while maintaining data provenance, identity ownership, and the possibility to retain varying levels of privacy depending on the requirements of the applied use case. This research performs simulations of vehicles interacting with European member state authorities and European Commission BC nodes that are running hyperleger fabric and explores whether the technology is currently feasible for transport applications such as the emission monitoring use-case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=future%20transportation%20systems" title="future transportation systems">future transportation systems</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20innovations" title=" technological innovations"> technological innovations</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20approaches%20for%20transportation%20future" title=" policy approaches for transportation future"> policy approaches for transportation future</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20and%20regulatory%20trends" title=" economic and regulatory trends"> economic and regulatory trends</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a> </p> <a href="https://publications.waset.org/abstracts/141507/blockchain-for-transport-performance-simulations-of-blockchain-network-for-emission-monitoring-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Forensic Methods Used for the Verification of the Authenticity of Prints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olivia%20Rybak-Karkosz">Olivia Rybak-Karkosz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to present the results of scientific research on methods of forging art prints and their elements, such as signature or provenance and forensic science methods that might be used to verify their authenticity. In the last decades, the art market has observed significant interest in purchasing prints. They are considered an economical alternative to paintings and a considerable investment. However, the authenticity of an art print is difficult to establish as similar visual effects might be achieved with drawings or xerox. The latter is easy to make using a home printer. They are then offered on flea markets or internet auctions as genuine prints. This probable ease of forgery and, at the same time, the difficulty of distinguishing art print techniques were the main reasons why this research was undertaken. A lack of scientific methods dedicated to disclosing a forgery encouraged the author to verify the possibility of using forensic science's methods known and used in other fields of expertise. This research methodology consisted of completing representative forgery samples collected in selected museums based in Poland and a few in Germany and Austria. That allowed the author to present a typology of methods used to forge art prints. Given that one of the most famous graphic design examples is bills and securities, it seems only appropriate to propose in print verification the usage of methods of detecting counterfeit currency. These methods contain an examination of ink, paper, and watermarks. On prints, additionally, signatures and imprints of stamps, etc., are forged as well. So the examination should be completed with handwriting examination and forensic sphragistics. The paper contains a stipulation to conduct a complex analysis of authenticity with the participation of an art restorer, art historian, and forensic expert as head of this team. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=art%20forgery" title="art forgery">art forgery</a>, <a href="https://publications.waset.org/abstracts/search?q=examination%20of%20an%20artwork" title=" examination of an artwork"> examination of an artwork</a>, <a href="https://publications.waset.org/abstracts/search?q=handwriting%20analysis" title=" handwriting analysis"> handwriting analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=prints" title=" prints"> prints</a> </p> <a href="https://publications.waset.org/abstracts/152763/forensic-methods-used-for-the-verification-of-the-authenticity-of-prints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> A Piebald Cladistic Portray of Mitochondrial DNA Control Region Haplogroups in Khyber Pakhtunkhwa, Pakistan </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahzad%20Bhatti">Shahzad Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aslamkhan"> M. Aslamkhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Abbas"> Sana Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcella%20Attimonelli"> Marcella Attimonelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hikmet%20Hakan%20Aydin"> Hikmet Hakan Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Erica%20Martinha%20Silva%20de%20Souza"> Erica Martinha Silva de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q="> </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite being situated at the crossroad of Asia, Pakistan has gained crucial importance because of its pivotal role in subsequent migratory events. To highlight the genetic footprints and to contribute an enigmatic picture of the relative population expansion pattern among four major Pashtun tribes in Khyber Pakhtunkhwa viz., Bangash, Khattak, Mahsuds and Orakzai, the complete mitochondrial control region of 100 Pashtun were analyzed. All Pashtun tribes studied here revealed high genetic diversity; that was comparable to the other Central Asian, Southeast Asian and European populations. The configuration of genetic variation and heterogeneity further unveiled through Multidimensional Scaling, Principal Component Analysis, and phylogenetic analysis. The results revealed that the Pashtun is a composite mosaic of West Eurasian ancestry of numerous geographic origin. They received substantial gene flow during different invasions and have a high element of the Western provenance. The most common haplogroups reported in this study are: South Asian haplogroup M (28%) and R (8%); whereas, West Asians haplogroups are present, albeit in high frequencies (67%) and widespread over all; HV (15%), U (17%), H (9%), J (8%), K (8%), W (4%), N (3%) and T (3%). Herein we linked the unexplored genetic connection between Ashkenazi Jews and Pashtun. The presence of specific haplotypes J1b (4%) and K1a1b1a (5%) point to a genetic connection of Jewish conglomeration with Khattak tribe. This was a result of an ancient genetic influx in the early Neolithic period that led to the formation of a diverse genetic substratum in present day Pashtun. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mtDNA%20haplogroups" title="mtDNA haplogroups">mtDNA haplogroups</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20region" title=" control region"> control region</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=KPK" title=" KPK"> KPK</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnicity" title=" ethnicity"> ethnicity</a> </p> <a href="https://publications.waset.org/abstracts/47522/a-piebald-cladistic-portray-of-mitochondrial-dna-control-region-haplogroups-in-khyber-pakhtunkhwa-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Bean in Turkey: Characterization, Inter Gene Pool Hybridization Events, Breeding, Utilizations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faheem%20Shahzad%20Baloch">Faheem Shahzad Baloch</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Azhar%20Nadeem"> Muhammad Azhar Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Amjad%20Nawaz"> Muhammad Amjad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ephrem%20Habyarimana"> Ephrem Habyarimana</a>, <a href="https://publications.waset.org/abstracts/search?q=Gonul%20Comertpay"> Gonul Comertpay</a>, <a href="https://publications.waset.org/abstracts/search?q=Tolga%20Karakoy"> Tolga Karakoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Rustu%20Hatipoglu"> Rustu Hatipoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Zahit%20Yeken"> Mehmet Zahit Yeken</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahdettin%20Ciftci"> Vahdettin Ciftci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turkey is considered a bridge between Europe, Asia, and Africa and possibly played an important role in the distribution of many crops including common bean. Hundreds of common bean landraces can be found in Turkey, particularly in farmers’ fields, and they consistently contribute to the overall production. To investigate the existing genetic diversity and hybridization events between the Andean and Mesoamerican gene pools in the Turkish common bean, 188 common bean accessions (182 landraces and 6 modern cultivars as controls) were collected from 19 different Turkish geographic regions. These accessions were characterized using phenotypic data (growth habit and seed weight), geographic provenance, 12557 high-quality whole-genome DArTseq markers, and 3767 novel DArTseq loci were also identified. The clustering algorithms resolved the Turkish common bean landrace germplasm into the two recognized gene pools, the Mesoamerican and Andean gene pools. Hybridization events were observed in both gene pools (14.36% of the accessions) but mostly in the Mesoamerican (7.97% of the accessions), and was low relative to previous European studies. The lower level of hybridization witnessed the existence of Turkish common bean germplasm in its original form as compared to Europe. Mesoamerican gene pool reflected a higher level of diversity, while the Andean gene pool was predominant (56.91% of the accessions), but genetically less diverse and phenotypically more pure, reflecting farmers greater preference for the Andean gene pool. We also found some genetically distinct landraces and overall, a meaningful level of genetic variability which can be used by the scientific community in breeding efforts to develop superior common bean strains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bean%20germplasm" title="bean germplasm">bean germplasm</a>, <a href="https://publications.waset.org/abstracts/search?q=DArTseq%20markers" title=" DArTseq markers"> DArTseq markers</a>, <a href="https://publications.waset.org/abstracts/search?q=genotyping%20by%20sequencing" title=" genotyping by sequencing"> genotyping by sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a>, <a href="https://publications.waset.org/abstracts/search?q=whole%20genome%20diversity" title=" whole genome diversity"> whole genome diversity</a> </p> <a href="https://publications.waset.org/abstracts/92658/bean-in-turkey-characterization-inter-gene-pool-hybridization-events-breeding-utilizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xianglu%20Tang">Xianglu Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenxue%20Jiang"> Zhenxue Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Li"> Zhuo Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title="heterogeneity">heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20unit" title=" homogeneous unit"> homogeneous unit</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale" title=" multiscale"> multiscale</a>, <a href="https://publications.waset.org/abstracts/search?q=shale" title=" shale"> shale</a> </p> <a href="https://publications.waset.org/abstracts/24081/multiscale-analysis-of-shale-heterogeneity-in-silurian-longmaxi-formation-from-south-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Materials and Techniques of Anonymous Egyptian Polychrome Cartonnage Mummy Mask: A Multiple Analytical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanaa%20A.%20Al-Gaoudi">Hanaa A. Al-Gaoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Ebeid"> Hassan Ebeid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research investigates the materials and processes used in the manufacturing of an Egyptian polychrome cartonnage mummy mask with the aim of dating this object and establishing trade patterns of certain materials that were used and available at the time of ancient Egypt. This anonymous-source object was held in the basement storage of the Egyptian Museum in Cairo (EMC) and has never been on display. Furthermore, there is no information available regarding its owner, provenance, date, and even the time of its possession by the museum. Moreover, the object is in a very poor condition where almost two-thirds of the mask was bent and has never received any previous conservation treatment. This research has utilized well-established multi-analytical methods to identify the considerable diversity of materials that have been used in the manufacturing of this object. These methods include Computed Tomography Scan (CT scan) to acquire detailed pictures of the inside physical structure and condition of the bended layers. Dino-Lite portable digital microscope, scanning electron microscopy with energy dispersive X-ray spectrometer (SEM-EDX), and the non-invasive imaging technique of multispectral imaging (MSI) to obtain information about the physical characteristics and condition of the painted layers and to examine the microstructure of the materials. Portable XRF Spectrometer (PXRF) and X-Ray powder diffraction (XRD) to identify mineral phases and the bulk element composition in the gilded layer, ground, and pigments; Fourier-transform infrared (FTIR) to identify organic compounds and their molecular characterization; accelerator mass spectrometry (AMS 14C) to date the object. Preliminary results suggest that there are no human remains inside the object, and the textile support is linen fibres with tabby weave 1/1 and these fibres are in a very bad condition. Several pigments have been identified, such as Egyptian blue, Magnetite, Egyptian green frit, Hematite, Calcite, and Cinnabar; moreover, the gilded layers are pure gold and the binding media in the pigments is Arabic gum and animal glue in the textile support layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20methods" title="analytical methods">analytical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=Egyptian%20museum" title=" Egyptian museum"> Egyptian museum</a>, <a href="https://publications.waset.org/abstracts/search?q=mummy%20mask" title=" mummy mask"> mummy mask</a>, <a href="https://publications.waset.org/abstracts/search?q=pigments" title=" pigments"> pigments</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a> </p> <a href="https://publications.waset.org/abstracts/115089/materials-and-techniques-of-anonymous-egyptian-polychrome-cartonnage-mummy-mask-a-multiple-analytical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Vertical and Horizantal Distribution Patterns of Major and Trace Elements: Surface and Subsurface Sediments of Endhorheic Lake Acigol Basin, Denizli Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Budakoglu">M. Budakoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karaman"> M. Karaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lake Acıgöl is located in area with limited influences from urban and industrial pollution sources, there is nevertheless a need to understand all potential lithological and anthropogenic sources of priority contaminants in this closed basin. This study discusses vertical and horizontal distribution pattern of major, trace elements of recent lake sediments to better understand their current geochemical analog with lithological units in the Lake Acıgöl basin. This study also provides reliable background levels for the region by the detailed surfaced lithological units data. The detail results of surface, subsurface and shallow core sediments from these relatively unperturbed ecosystems, highlight its importance as conservation area, despite the high-scale industrial salt production activity. While P2O5/TiO2 versus MgO/CaO classification diagram indicate magmatic and sedimentary origin of lake sediment, Log(SiO2/Al2O3) versus Log(Na2O/K2O) classification diagrams express lithological assemblages of shale, iron-shale, vacke and arkose. The plot between TiO2 vs. SiO2 and P2O5/TiO2 vs. MgO/CaO also supports the origin of the primary magma source. The average compositions of the 20 different lithological units used as a proxy for geochemical background in the study area. As expected from weathered rock materials, there is a large variation in the major element content for all analyzed lake samples. The A-CN-K and A-CNK-FM ternary diagrams were used to deduce weathering trends. Surface and subsurface sediments display an intense weathering history according to these ternary diagrams. The most of the sediments samples plot around UCC and TTG, suggesting a low to moderate weathering history for the provenance. The sediments plot in a region clearly suggesting relative similar contents in Al2O3, CaO, Na2O, and K2O from those of lithological samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lake%20Ac%C4%B1g%C3%B6l" title="Lake Acıgöl">Lake Acıgöl</a>, <a href="https://publications.waset.org/abstracts/search?q=recent%20lake%20sediment" title=" recent lake sediment"> recent lake sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemical%20speciation%20of%20major%20and%20trace%20elements" title=" geochemical speciation of major and trace elements"> geochemical speciation of major and trace elements</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=Denizli" title=" Denizli"> Denizli</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/10630/vertical-and-horizantal-distribution-patterns-of-major-and-trace-elements-surface-and-subsurface-sediments-of-endhorheic-lake-acigol-basin-denizli-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Investigation of Effectiveness of Different Concentrations of the Mycotoxin Detoxification Agent Added to Broiler Feed, in the Presence of T-2 Toxin, on Performance, Organ Mass and the Residues T-2 Toxin and His Metabolites in the Broiler Tissues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Nedeljkovi%C4%87%20Trailovi%C4%87">Jelena Nedeljković Trailović</a>, <a href="https://publications.waset.org/abstracts/search?q=Marko%20Vasiljevi%C4%87"> Marko Vasiljević</a>, <a href="https://publications.waset.org/abstracts/search?q=Jog%20Raj"> Jog Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunor%20Farka%C5%A1"> Hunor Farkaš</a>, <a href="https://publications.waset.org/abstracts/search?q=Branko%20Petrujki%C4%87"> Branko Petrujkić</a>, <a href="https://publications.waset.org/abstracts/search?q=Stamen%20Radulovi%C4%87"> Stamen Radulović</a>, <a href="https://publications.waset.org/abstracts/search?q=Gorana%20Popvi%C4%87"> Gorana Popvić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experiment was performed on a total of 99 one-day-old broilers of Cob 500 provenance, which were divided into IX equal groups. Broilers of the E-I group were fed 0.25 mg T-2 toxin/kg feed, E-II and E-III groups 0.25 mg T-2 toxin/kg feed with the addition of 1 kg/t and 3 kg/t of the mycotoxin detoxification agent MDA, respectively. The E-IV group received 1 mg of T-2 toxin/kg of feed, and the broilers of E-V and E-VI groups received 1 mg of T-2 toxin/kg of feed with the addition of 1 kg/t and 3 kg/t of the MDA detoxification preparation, respectively. The E-VII group received commercial feed without toxins and additives, the E-VIII and E-IX groups received feed with 1kg/t and 3kg/t of the MDA detoxification preparation. The trial lasted 42 days. Observing the results obtained on the 42nd day of the experiment, we can conclude that the change in the absolute mass of the spleen occurred in the broilers of the E-IV group (1.66±0.14)g, which was statistically significantly lower compared to the broilers of the E-V and E-VI groups (2.58±0.15 and 2.68±0.23)g. Heart mass was significantly statistically lower in broilers of group E-IV (9.1±0.38)g compared to broilers of group E-V and E-VI (12.23±0.5 and 11.43±0.51)g. It can be concluded that the broilers that received 1 kg/t and 3 kg/t of the detoxification preparation had an absolute mass of organs within physiological limits. Broilers of the E-IV group achieved the lowest BM during the experiment (on the 42nd day of the experiment 1879±52.73)g, they were significantly statistically lower than the BW of broilers of all experimental groups. This trend is observed from the beginning to the end of the experiment. The protective effect of the detoxification preparation can be seen in broilers of the E-V group, that had a significantly statistically higher BM on the 42nd day of the experiment (2225±58.81)g compared to broilers of group E-IV. Broilers of E-VIII group (2452±46.71) g, which received commercial feed with the addition of 1 kg/t MDA preparation, had the highest BMI at the end of the experiment. At the end of the trial on the 42nd day, blood samples were collected from broilers of the experimental groups that received T-2 toxin and MR detoxification preparations in different concentrations. Also, liver and breast musculature samples were collected for testing for the presence and content of T-2 toxin, HT-2 toxin, T-2 tetraol and T-2 triol. Due to very rapid elimination from the blood, no remains of T-2 toxin and its metabolites were detected in the blood of broilers of groups E-I to E-VI. In the breast muscles, T-2 toxin residues below LoQ < 0.2 (μg/kg) were detected in all groups that received T-2 toxin in food, the highest value was recorded in the E-IV group (0.122 μg/kg and the lowest in E -VI group 0.096 μg/kg). No T-2 toxin residues were detected in the liver. Remains of HT-2 were detected in the breast muscles and livers of broilers from E-IV, E-V and E-VI groups, LoQ < 1 (μg/kg); for the breast muscles: 0.054, 0.044 and 0.041 μg/kg, and for the liver: 0.473, 0.231 and 0.185 μg/kg. Summing up all the results, a partial protective effect of the detoxification preparation, added to food in the amount of 1kg/t, can be seen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=T-2%20toxin" title="T-2 toxin">T-2 toxin</a>, <a href="https://publications.waset.org/abstracts/search?q=bloiler" title=" bloiler"> bloiler</a>, <a href="https://publications.waset.org/abstracts/search?q=MDA" title=" MDA"> MDA</a>, <a href="https://publications.waset.org/abstracts/search?q=mycotoxuns" title=" mycotoxuns"> mycotoxuns</a> </p> <a href="https://publications.waset.org/abstracts/177742/the-investigation-of-effectiveness-of-different-concentrations-of-the-mycotoxin-detoxification-agent-added-to-broiler-feed-in-the-presence-of-t-2-toxin-on-performance-organ-mass-and-the-residues-t-2-toxin-and-his-metabolites-in-the-broiler-tissues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Bioleaching of Metals Contained in Spent Catalysts by Acidithiobacillus thiooxidans DSM 26636</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrea%20M.%20Rivas-Castillo">Andrea M. Rivas-Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Marlenne%20G%C3%B3mez-Ramirez"> Marlenne Gómez-Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Isela%20Rodr%C3%ADguez-Pozos"> Isela Rodríguez-Pozos</a>, <a href="https://publications.waset.org/abstracts/search?q=Norma%20G.%20Rojas-Avelizapa"> Norma G. Rojas-Avelizapa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spent catalysts are considered as hazardous residues of major concern, mainly due to the simultaneous presence of several metals in elevated concentrations. Although hydrometallurgical, pyrometallurgical and chelating agent methods are available to remove and recover some metals contained in spent catalysts; these procedures generate potentially hazardous wastes and the emission of harmful gases. Thus, biotechnological treatments are currently gaining importance to avoid the negative impacts of chemical technologies. To this end, diverse microorganisms have been used to assess the removal of metals from spent catalysts, comprising bacteria, archaea and fungi, whose resistance and metal uptake capabilities differ depending on the microorganism tested. Acidophilic sulfur oxidizing bacteria have been used to investigate the biotreatment and extraction of valuable metals from spent catalysts, namely <em>Acidithiobacillus thiooxidans</em> and <em>Acidithiobacillus</em> <em>ferroxidans</em>, as they present the ability to produce leaching agents such as sulfuric acid and sulfur oxidation intermediates. In the present work, the ability of <em>A. thiooxidans</em> DSM 26636 for the bioleaching of metals contained in five different spent catalysts was assessed by growing the culture in modified Starkey mineral medium (with elemental sulfur at 1%, w/v), and 1% (w/v) pulp density of each residue for up to 21 days at 30 &deg;C and 150 rpm. Sulfur-oxidizing activity was periodically evaluated by determining sulfate concentration in the supernatants according to the NMX-k-436-1977 method. The production of sulfuric acid was assessed in the supernatants as well, by a titration procedure using NaOH 0.5 M with bromothymol blue as acid-base indicator, and by measuring pH using a digital potentiometer. On the other hand, Inductively Coupled Plasma - Optical Emission Spectrometry was used to analyze metal removal from the five different spent catalysts by <em>A. thiooxidans</em> DSM 26636. Results obtained show that, as could be expected, sulfuric acid production is directly related to the diminish of pH, and also to highest metal removal efficiencies. It was observed that Al and Fe are recurrently removed from refinery spent catalysts regardless of their origin and previous usage, although these removals may vary from 9.5 &plusmn; 2.2 to 439 &plusmn; 3.9 mg/kg for Al, and from 7.13 &plusmn; 0.31 to 368.4 &plusmn; 47.8 mg/kg for Fe, depending on the spent catalyst proven. Besides, bioleaching of metals like Mg, Ni, and Si was also obtained from automotive spent catalysts, which removals were of up to 66 &plusmn; 2.2, 6.2&plusmn;0.07, and 100&plusmn;2.4, respectively. Hence, the data presented here exhibit the potential of <em>A. thiooxidans</em> DSM 26636 for the simultaneous bioleaching of metals contained in spent catalysts from diverse provenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioleaching" title="bioleaching">bioleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20removal" title=" metal removal"> metal removal</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20catalysts" title=" spent catalysts"> spent catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=Acidithiobacillus%20thiooxidans" title=" Acidithiobacillus thiooxidans"> Acidithiobacillus thiooxidans</a> </p> <a href="https://publications.waset.org/abstracts/99618/bioleaching-of-metals-contained-in-spent-catalysts-by-acidithiobacillus-thiooxidans-dsm-26636" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Investigating the Effect of Plant Root Exudates and of Saponin on Polycyclic Aromatic Hydrocarbons Solubilization in Brownfield Contaminated Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marie%20Davin">Marie Davin</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie-Laure%20Fauconnier"> Marie-Laure Fauconnier</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilles%20Colinet"> Gilles Colinet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Wallonia, there are 6,000 estimated brownfields (rising to over 3.5 million in Europe) that require remediation. Polycyclic Aromatic Hydrocarbons (PAHs) are a class of recalcitrant carcinogenic/mutagenic organic compounds of major concern as they accumulate in the environment and represent 17% of all encountered pollutants. As an alternative to environmentally aggressive, expensive and often disruptive soil remediation strategies, a lot of research has been directed to developing techniques targeting organic pollutants. The following experiment, based on the observation that PAHs soil content decreases in the presence of plants, aimed at improving our understanding of the underlying mechanisms involved in phytoremediation. It focusses on plant root exudates and whether they improve PAHs solubilization, which would make them more available for bioremediation by soil microorganisms. The effect of saponin, a natural surfactant found in some plant roots such as members of the Fabaceae family, on PAHs solubilization was also investigated as part of the implementation of the experimental protocol. The experiments were conducted on soil collected from a brownfield in Saint-Ghislain (Belgium) and presenting weathered PAHs contamination. Samples of soil were extracted with different solutions containing either plant root exudates or commercial saponin. Extracted PAHs were determined in the different aqueous solutions using High-Performance Liquid Chromatography and Fluorimetric Detection (HPLC-FLD). Both root exudates of alfalfa (Medicago sativa L.) or red clover (Trifolium pratense L.) and commercial saponin were tested in different concentrations. Distilled water was used as a control. First of all, results show that PAHs are more extracted using saponin solutions than distilled water and that the amounts generally rise with the saponin concentration. However, the amount of each extracted compound diminishes as its molecular weight rises. Also, it appears that passed a certain surfactant concentration, PAHs are less extracted. This suggests that saponin might be investigated as a washing agent in polluted soil remediation techniques, either for ex-situ or in-situ treatments, as an alternative to synthetic surfactants. On the other hand, preliminary results on experiments using plant root exudates also show differences in PAHs solubilization compared to the control solution. Further results will allow discussion as to whether or not there are differences according to the exudates provenance and concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brownfield" title="brownfield">brownfield</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicago%20sativa" title=" Medicago sativa"> Medicago sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbons" title=" polycyclic aromatic hydrocarbons"> polycyclic aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20exudates" title=" root exudates"> root exudates</a>, <a href="https://publications.waset.org/abstracts/search?q=saponin" title=" saponin"> saponin</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization" title=" solubilization"> solubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=Trifolium%20pratense" title=" Trifolium pratense"> Trifolium pratense</a> </p> <a href="https://publications.waset.org/abstracts/51055/investigating-the-effect-of-plant-root-exudates-and-of-saponin-on-polycyclic-aromatic-hydrocarbons-solubilization-in-brownfield-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Investigating Sediment-Bound Chemical Transport in an Eastern Mediterranean Perennial Stream to Identify Priority Pollution Sources on a Catchment Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felicia%20Orah%20Rein%20Moshe">Felicia Orah Rein Moshe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil erosion has become a priority global concern, impairing water quality and degrading ecosystem services. In Mediterranean climates, following a long dry period, the onset of rain occurs when agricultural soils are often bare and most vulnerable to erosion. Early storms transport sediments and sediment-bound pollutants into streams, along with dissolved chemicals. This results in loss of valuable topsoil, water quality degradation, and potentially expensive dredged-material disposal costs. Information on the provenance of fine sediment and priority sources of adsorbed pollutants represents a critical need for developing effective control strategies aimed at source reduction. Modifying sediment traps designed for marine systems, this study tested a cost-effective method to collect suspended sediments on a catchment scale to characterize stream water quality during first-flush storm events in a flashy Eastern Mediterranean coastal perennial stream. This study investigated the Kishon Basin, deploying sediment traps in 23 locations, including 4 in the mainstream and one downstream in each of 19 tributaries, enabling the characterization of sediment as a vehicle for transporting chemicals. Further, it enabled direct comparison of sediment-bound pollutants transported during the first-flush winter storms of 2020 from each of 19 tributaries, allowing subsequent ecotoxicity ranking. Sediment samples were successfully captured in 22 locations. Pesticides, pharmaceuticals, nutrients, and metal concentrations were quantified, identifying a total of 50 pesticides, 15 pharmaceuticals, and 22 metals, with 16 pesticides and 3 pharmaceuticals found in all 23 locations, demonstrating the importance of this transport pathway. Heavy metals were detected in only one tributary, identifying an important watershed pollution source with immediate potential influence on long-term dredging costs. Simultaneous sediment sampling at first flush storms enabled clear identification of priority tributaries and their chemical contributions, advancing a new national watershed monitoring approach, facilitating strategic plan development based on source reduction, and advancing the goal of improving the farm-stream interface, conserving soil resources, and protecting water quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorbed%20pollution" title="adsorbed pollution">adsorbed pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=dredged%20material" title=" dredged material"> dredged material</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=suspended%20sediment" title=" suspended sediment"> suspended sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20monitoring" title=" water quality monitoring"> water quality monitoring</a> </p> <a href="https://publications.waset.org/abstracts/153169/investigating-sediment-bound-chemical-transport-in-an-eastern-mediterranean-perennial-stream-to-identify-priority-pollution-sources-on-a-catchment-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Aspects Concerning the Use of Recycled Concrete Aggregates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ion%20Robu">Ion Robu</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudiu%20Mazilu"> Claudiu Mazilu</a>, <a href="https://publications.waset.org/abstracts/search?q=Radu%20Deju"> Radu Deju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural aggregates (gravel and crushed) are essential non-renewable resources which are used for infrastructure works and civil engineering. In European Union member states from Southeast Europe, it is estimated that the construction industry will grow by 4.2% thereafter complicating aggregate supply management. In addition, a significant additional problem that can be associated to the aggregates industry is wasting potential resources through waste dumping of inert waste, especially waste from construction and demolition activities. In 2012, in Romania, less than 10% of construction and demolition waste (including concrete) are valorized, while the European Union requires that by 2020 this proportion should be at least 70% (Directive 2008/98/EC on waste, transposed into Romanian legislation by Law 211/2011). Depending on the efficiency of waste processing and the quality of recycled aggregate concrete (RCA) obtained, poor quality aggregate can be used as foundation material for roads and at the high quality for new concrete on construction. To obtain good quality concrete using recycled aggregate is necessary to meet the minimum requirements defined by the rules for the manufacture of concrete with natural aggregate. Properties of recycled aggregate (density, granulosity, granule shape, water absorption, weight loss to Los Angeles test, attached mortar content etc.) are the basis for concrete quality; also establishing appropriate proportions between components and the concrete production methods are extremely important for its quality. This paper presents a study on the use of recycled aggregates, from a concrete of specified class, to acquire new cement concrete with different percentages of recycled aggregates. To achieve recycled aggregates several batches of concrete class C16/20, C25/30 and C35/45 were made, the compositions calculation being made according NE012/2007 CP012/2007. Tests for producing recycled aggregate was carried out using concrete samples of the established three classes after 28 days of storage under the above conditions. Cubes with 150mm side were crushed in a first stage with a jaw crusher Liebherr type set at 50 mm nominally. The resulting material was separated by sieving on granulometric sorts and 10-50 sort was used for preliminary tests of crushing in the second stage with a jaw crusher BB 200 Retsch model, respectively a hammer crusher Buffalo Shuttle WA-12-H model. It was highlighted the influence of the type of crusher used to obtain recycled aggregates on granulometry and granule shape and the influence of the attached mortar on the density, water absorption, behavior to the Los Angeles test etc. The proportion of attached mortar was determined and correlated with provenance concrete class of the recycled aggregates and their granulometric sort. The aim to characterize the recycled aggregates is their valorification in new concrete used in construction. In this regard have been made a series of concrete in which the recycled aggregate content was varied from 0 to 100%. The new concrete were characterized by point of view of the change in the density and compressive strength with the proportion of recycled aggregates. It has been shown that an increase in recycled aggregate content not necessarily mean a reduction in compressive strength, quality of the aggregate having a decisive role. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title="recycled concrete aggregate">recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristics" title=" characteristics"> characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate%20concrete" title=" recycled aggregate concrete"> recycled aggregate concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/45448/aspects-concerning-the-use-of-recycled-concrete-aggregates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karolina%20Wieczorek">Karolina Wieczorek</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophie%20Wiliams"> Sophie Wiliams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated" title="automated">automated</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=NLP" title=" NLP"> NLP</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a> </p> <a href="https://publications.waset.org/abstracts/154836/clinical-validation-of-an-automated-natural-language-processing-algorithm-for-finding-covid-19-symptoms-and-complications-in-patient-notes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Bringing Together Student Collaboration and Research Opportunities to Promote Scientific Understanding and Outreach Through a Seismological Community</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Ray%20Brunt">Michael Ray Brunt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China has been the site of some of the most significant earthquakes in history; however, earthquake monitoring has long been the provenance of universities and research institutions. The China Digital Seismographic Network was initiated in 1983 and improved significantly during 1992-1993. Data from the CDSN is widely used by government and research institutions, and, generally, this data is not readily accessible to middle and high school students. An educational seismic network in China is needed to provide collaboration and research opportunities for students and engaging students around the country in scientific understanding of earthquake hazards and risks while promoting community awareness. In 2022, the Tsinghua International School (THIS) Seismology Team, made up of enthusiastic students and facilitated by two experienced teachers, was established. As a group, the team’s objective is to install seismographs in schools throughout China, thus creating an educational seismic network that shares data from the THIS Educational Seismic Network (THIS-ESN) and facilitates collaboration. The THIS-ESN initiative will enhance education and outreach in China about earthquake risks and hazards, introduce seismology to a wider audience, stimulate interest in research among students, and develop students’ programming, data collection and analysis skills. It will also encourage and inspire young minds to pursue science, technology, engineering, the arts, and math (STEAM) career fields. The THIS-ESN utilizes small, low-cost RaspberryShake seismographs as a powerful tool linked into a global network, giving schools and the public access to real-time seismic data from across China, increasing earthquake monitoring capabilities in the perspective areas and adding to the available data sets regionally and worldwide helping create a denser seismic network. The RaspberryShake seismograph is compatible with free seismic data viewing platforms such as SWARM, RaspberryShake web programs and mobile apps are designed specifically towards teaching seismology and seismic data interpretation, providing opportunities to enhance understanding. The RaspberryShake is powered by an operating system embedded in the Raspberry Pi, which makes it an easy platform to teach students basic computer communication concepts by utilizing processing tools to investigate, plot, and manipulate data. THIS Seismology Team believes strongly in creating opportunities for committed students to become part of the seismological community by engaging in analysis of real-time scientific data with tangible outcomes. Students will feel proud of the important work they are doing to understand the world around them and become advocates spreading their knowledge back into their homes and communities, helping to improve overall community resilience. We trust that, in studying the results seismograph stations yield, students will not only grasp how subjects like physics and computer science apply in real life, and by spreading information, we hope students across the country can appreciate how and why earthquakes bear on their lives, develop practical skills in STEAM, and engage in the global seismic monitoring effort. By providing such an opportunity to schools across the country, we are confident that we will be an agent of change for society. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collaboration" title="collaboration">collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=outreach" title=" outreach"> outreach</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=seismology" title=" seismology"> seismology</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20awareness" title=" public awareness"> public awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20opportunities" title=" research opportunities"> research opportunities</a> </p> <a href="https://publications.waset.org/abstracts/175467/bringing-together-student-collaboration-and-research-opportunities-to-promote-scientific-understanding-and-outreach-through-a-seismological-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Sandstone Petrology of the Kolhan Basin, Eastern India: Implications for the Tectonic Evolution of a Half-Graben</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohini%20Das">Rohini Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhasish%20Das"> Subhasish Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Smruti%20Rekha%20Sahoo"> Smruti Rekha Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagupta%20Yesmin"> Shagupta Yesmin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Paleoproterozoic Kolhan Group (Purana) ensemble constitutes the youngest lithostratigraphic 'outlier' in the Singhbhum Archaean craton. The Kolhan unconformably overlies both the Singhbhum granite and the Iron Ore Group (IOG). Representing a typical sandstone-shale ( +/- carbonates) sequence, the Kolhan is characterized by the development of thin and discontinuous patches of basal conglomerates draped by sandstone beds. The IOG-fault limits the western 'distal' margin of the Kolhan basin showing evidence of passive subsidence subsequent to the initial rifting stage. The basin evolved as a half-graben under the influence of an extensional stress regime. The assumption of a tectonic setting for the NE-SW trending Kolhan basin possibly relates to the basin opening to the E-W extensional stress system that prevailed during the development of the Newer Dolerite dyke. The Paleoproterozoic age of the Kolhan basin is based on the consideration of the conformable stress pattern responsible both for the basin opening and the development of the conjugate fracture system along which the Newer Dolerite dykes intruded the Singhbhum Archaean craton. The Kolhan sandstones show progressive change towards greater textural and mineralogical maturity in its upbuilding. The trend of variations in different mineralogical and textural attributes, however, exhibits inflections at different lithological levels. Petrological studies collectively indicate that the sandstones were dominantly derived from a weathered granitic crust under a humid climatic condition. Provenance-derived variations in sandstone compositions are therefore a key in unraveling regional tectonic histories. The basin axis controlled the progradation direction which was likely driven by climatically induced sediment influx, a eustatic fall, or both. In the case of the incongruent shift, increased sediment supply permitted the rivers to cross the basinal deep. Temporal association of the Kolhan with tectonic structures in the belt indicates that syn-tectonic thrust uplift, not isostatic uplift or climate, caused the influx of quartz. The sedimentation pattern in the Kolhan reflects a change from braided fluvial-ephemeral pattern to a fan-delta-lacustrine type. The channel geometries and the climate exerted a major control on the processes of sediment transfer. Repeated fault controlled uplift of the source followed by subsidence and forced regression, generated multiple sediment cyclicity that led to the fluvial-fan delta sedimentation pattern. Intermittent uplift of the faulted blocks exposed fresh bedrock to mechanical weathering that generated a large amount of detritus and resulted to forced regressions, repeatedly disrupting the cycles which may reflect a stratigraphic response of connected rift basins at the early stage of extension. The marked variations in the thickness of the fan delta succession and the stacking pattern in different measured profiles reflect the overriding tectonic controls on fan delta evolution. The accumulated fault displacement created higher accommodation and thicker delta sequences. Intermittent uplift of fault blocks exposed fresh bedrock to mechanical weathering, generated a large amount of detritus, and resulted in forced closure of the land-locked basin, repeatedly disrupting the fining upward pattern. The control of source rock lithology or climate was of secondary importance to tectonic effects. Such a retrograding fan delta could be a stratigraphic response of connected rift basins at the early stage of extension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kolhan%20basin" title="Kolhan basin">Kolhan basin</a>, <a href="https://publications.waset.org/abstracts/search?q=petrology" title=" petrology"> petrology</a>, <a href="https://publications.waset.org/abstracts/search?q=sandstone" title=" sandstone"> sandstone</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonics" title=" tectonics"> tectonics</a> </p> <a href="https://publications.waset.org/abstracts/35436/sandstone-petrology-of-the-kolhan-basin-eastern-india-implications-for-the-tectonic-evolution-of-a-half-graben" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10