CINXE.COM
Search results for: antihypertensive model drug
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: antihypertensive model drug</title> <meta name="description" content="Search results for: antihypertensive model drug"> <meta name="keywords" content="antihypertensive model drug"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="antihypertensive model drug" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="antihypertensive model drug"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18517</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: antihypertensive model drug</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18517</span> Formulation, Evaluation and Statistical Optimization of Transdermal Niosomal Gel of Atenolol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Sirisha%20Kotikalapudi">Lakshmi Sirisha Kotikalapudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atenolol, the widely used antihypertensive drug is ionisable and degrades in the acidic environment of the GIT lessening the bioavailability. Transdermal route may be selected as an alternative to enhance the bioavailability. Half-life of the drug is 6-7 hours suggesting the requirement of prolonged release of the drug. The present work of transdermal niosomal gel aims to extend release of the drug and increase the bioavailability. Ethanol injection method was used for the preparation of niosomes using span-60 and cholesterol at different molar ratios following central composite design. The prepared niosomes were characterized for size, zeta-potential, entrapment efficiency, drug content and in-vitro drug release. Optimized formulation was selected by statistically analyzing the results obtained using the software Stat-Ease Design Expert. The optimized formulation also showed high drug retention inside the vesicles over a period of three months at a temperature of 4 °C indicating stability. Niosomes separated as a pellet were dried and incorporated into the hydrogel prepared using chitosan a natural polymer as a gelling agent. The effect of various chemical permeation enhancers was also studied over the gel formulations. The prepared formulations were characterized for viscosity, pH, drug release using Franz diffusion cells, and skin irritation test as well as in-vivo pharmacological activities. Atenolol niosomal gel preparations showed the prolonged release of the drug and pronounced antihypertensive activity indicating the suitability of niosomal gel for topical and systemic delivery of atenolol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atenolol" title="atenolol">atenolol</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=niosomes" title=" niosomes"> niosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=transdermal" title=" transdermal"> transdermal</a> </p> <a href="https://publications.waset.org/abstracts/59549/formulation-evaluation-and-statistical-optimization-of-transdermal-niosomal-gel-of-atenolol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18516</span> Antihypertensive Activity of Alcoholic Extract of Citrus Paradise Juice in One Clip One Kidney Hypertension Model in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lokesh%20Bhatt">Lokesh Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayesh%20Rathod"> Jayesh Rathod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hypertension is one of the most prevalent cardiovascular disorder. It is responsible for several other cardiovascular disorders. Although many drugs are available for the treatment of hypertension, still a large population has uncontrolled blood pressure. Thus there is an unmet need for new therapeutic approaches for the same. Fruit juice of Citrus paradise contains several flavonoids with vasodilatory activity. We hypothesized that alcoholic extract of Citrus paradise, which contains flavonoids, might attenuate hypertension. The objective of the present study was to evaluate the antihypertensive activity of alcoholic extract of Citrus paradise fruit juice in rats. Hypertension was induced using one clip one kidney model in rats. The renal artery was occluded for 4 h after removal of one kidney. Once stabilized, the ganglionic blockade was performed followed by removal of the arterial clip from the kidney. Removal of clip resulted in an increase in blood pressure which is due to release of renin from the kidney. Alcoholic extract of Citrus paradise fruit juice was then administered at 50 mg/kg and 100 mg/kg dose by intravenous injection. Blood pressure was monitored continuously. Alcoholic extract of Citrus paradise fruit juice reduced hypertension in dose-dependent manner. Antihypertensive activity was found to be associated with vasodilation. The results of the present study showed antihypertensive potential of alcoholic extract of Citrus paradise fruit juice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citrus%20paradise" title="citrus paradise">citrus paradise</a>, <a href="https://publications.waset.org/abstracts/search?q=alcoholic%20extract" title=" alcoholic extract"> alcoholic extract</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20clip%20one%20kidney%20model" title=" one clip one kidney model"> one clip one kidney model</a>, <a href="https://publications.waset.org/abstracts/search?q=vasodilation" title=" vasodilation"> vasodilation</a> </p> <a href="https://publications.waset.org/abstracts/67780/antihypertensive-activity-of-alcoholic-extract-of-citrus-paradise-juice-in-one-clip-one-kidney-hypertension-model-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18515</span> In silico and Toxicity Study of the Combination of Roselle (Hibiscus sabdariffa L.) and Garlic (Allium sativum L.) as Antihypertensive Herbs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doni%20Dermawan">Doni Dermawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hypertension is a disease with a high prevalence in Indonesia. The prevalence of hypertension in Indonesia is based on the Basic Health Research (Riskesdas) in 2013 which amounted to 25.8%. Medicinal plants have been widely used to treat hypertension including roselle (Hibiscus sabdariffa L.) and garlic (Allium sativum L.) by a mechanism as angiotensin converting enzyme (ACE) inhibitor. The purpose of this research is to analyze the in silico (molecular studies) of pharmacological effects and toxicity of roselle (Hibiscus sabdariffa L.) and garlic (Allium sativum L.) as well as a combination of both are used as antihypertensive herbs. The results of study showed that roselle (Hibiscus sabdariffa L.) and garlic (Allium sativum L.) have great potential as antihypertensive herbs based on the affinity and stability of active substances to specific receptor with a much better value than a of antihypertensive drugs (lisinopril). Toxicity values determined by the method of AST, ALT and ALP in which the three values obtained indicate the presence of acute toxic effects that need to be considered in determining the dose of the extract of roselle and garlic as antihypertensives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allium%20sativum" title="Allium sativum">Allium sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=antihypertensive" title=" antihypertensive"> antihypertensive</a>, <a href="https://publications.waset.org/abstracts/search?q=Hibiscus%20sabdariffa" title=" Hibiscus sabdariffa"> Hibiscus sabdariffa</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silico" title=" in silico"> in silico</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/69330/in-silico-and-toxicity-study-of-the-combination-of-roselle-hibiscus-sabdariffa-l-and-garlic-allium-sativum-l-as-antihypertensive-herbs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18514</span> Management Practices in Hypertension: Results of Win-Over-A Pan India Registry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Trailokya">Abhijit Trailokya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamlesh%20Patel"> Kamlesh Patel </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Hypertension is a common disease seen in clinical practice and is associated with high morbidity and mortality. Many patients require combination therapy for the management of hypertension. Objective: To evaluate co-morbidities, risk factors and management practices of hypertension in Indian population. Material and methods: A total of 1596 hypertensive adult patients received anti-hypertensive medications were studied in a cross-sectional, multi-centric, non-interventional, observational registry. Statistical analysis: Categories or nominal data was expressed as numbers with percentages. Continuous variables were analyzed by descriptive statistics using mean, SD, and range Chi square test was used for in between group comparison. Results: The study included 73.50% males and 26.50% females. Overweight (50.50%) and obesity (30.01%) was common in the hypertensive patients (n=903). A total of 54.76% patients had history of smoking. Alcohol use (33.08%), sedentary life style (32.96%) and history of tobacco chewing (17.92%) were the other lifestyle habits of hypertensive patients. Diabetes (36.03%) and dyslipidemia (39.79%) history was common in these patients. Family history of hypertension and diabetes was seen in 82.21% and 45.99% patients respectively. Most (89.16%) patients were treated with combination of antihypertensive agents. ARBs were the by far most commonly used agents (91.98%) followed by calcium channel blockers (68.23%) and diuretics (60.21%). ARB was the most (80.35%) preferred agent as monotherapy. ARB was also the most common agent as a component of dual therapy, four drug and five drug combinations. Conclusion: Most of the hypertensive patients need combination treatment with antihypertensive agents. ARBs are the most preferred agents as monotherapy for the management of hypertension. ARBs are also very commonly used as a component of combination therapy during hypertension management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antihypertensive" title="antihypertensive">antihypertensive</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertension" title=" hypertension"> hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=ARB" title=" ARB"> ARB</a> </p> <a href="https://publications.waset.org/abstracts/17885/management-practices-in-hypertension-results-of-win-over-a-pan-india-registry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18513</span> Effect of Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose Polymer on the Release Profile of Diltiazem Hydrochloride Sustained Release Pellets </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahana%20Sharmin">Shahana Sharmin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the effect of cellulose polymers Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose was evaluated on the release profile of drug from sustained release pellet. Diltiazem Hydrochloride, an antihypertensive, cardio-protective agent and slow channel blocker were used as a model drug to evaluate its release characteristics from different pellets formulations. Diltiazem Hydrochloride sustained release pellets were prepared by drug loading (drug binder suspension) on neutral pellets followed by different percentages of spraying, i.e. 2%,4%, 6%, 8% and 10% coating suspension using ethyl cellulose and hydroxy-propyl methyl cellulose polymer in a fixed 85:15 ratios respectively. The in vitro dissolution studies of Diltiazem Hydrochloride from these sustained release pellets were carried out in pH 7.2 phosphate buffer for 1, 2, 3, 4, 5, 6, 7, and 8 hrs using USP-I method. Statistically, significant differences were found among the drug release profile from different formulations. Polymer content with the highest concentration of Ethyl cellulose on the pellets shows the highest release retarding rate of the drug. The retarding capacity decreases with the decreased concentration of ethyl cellulose. The release mechanism was explored and explained with zero order, first order, Higuchi and Korsmeyer’s equations. Finally, the study showed that the profile and kinetics of drug release were functions of polymer type, polymer concentration & the physico-chemical properties of the drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diltiazem%20hydrochloride" title="diltiazem hydrochloride">diltiazem hydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=ethyl%20cellulose" title=" ethyl cellulose"> ethyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxy%20propyl%20methyl%20cellulose" title=" hydroxy propyl methyl cellulose"> hydroxy propyl methyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=release%20kinetics" title=" release kinetics"> release kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=sustained%20release%20pellets" title=" sustained release pellets"> sustained release pellets</a> </p> <a href="https://publications.waset.org/abstracts/21180/effect-of-ethyl-cellulose-and-hydroxy-propyl-methyl-cellulose-polymer-on-the-release-profile-of-diltiazem-hydrochloride-sustained-release-pellets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18512</span> Improved Wetting for Improved Solubility and Dissolution of Candesartan Cilexetil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Bhilegaonkar">Shilpa Bhilegaonkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Gaud"> Ram Gaud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Candesartan cilexetil is a poorly soluble antihypertensive agent with solubility limited bioavailability (15%). To initiate process of solubilisation, it is very much necessary to displace the air at the surface and wet the drug surface with a solvent, with which drug is compatible. Present research adopts the same principle to improve solubility and dissolution of candesartan cilexetil. Solvents used here are surfactant and modified surfactant in different drug: solvent (1:1-1:9) ratio’s for preparation of adsorbates. Adsorbates were then converted into free flowing powders as liquisolid compacts and compressed to form tablets. Liquisolid compacts were evaluated for improvement in saturation solubility and dissolution of candesartan cilexetil. All systems were evaluated for improvement in saturation solubility and dissolution in different medias such as water, 0.1 N HCl, Phosphate buffer pH 6.8 and media given by office of generic drugs along with other physicochemical testing. All systems exhibited a promising advantage in terms of solubility and dissolution without affecting the drug structure as confirmed by IR and XRD. No considerable advantage was seen of increasing solvent ratio with drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=candesartan%20cilexetil" title="candesartan cilexetil">candesartan cilexetil</a>, <a href="https://publications.waset.org/abstracts/search?q=improved%20dissolution" title=" improved dissolution"> improved dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility" title=" solubility"> solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=liquisolid" title=" liquisolid"> liquisolid</a> </p> <a href="https://publications.waset.org/abstracts/6565/improved-wetting-for-improved-solubility-and-dissolution-of-candesartan-cilexetil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18511</span> Drug-Drug Interaction Prediction in Diabetes Mellitus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashini%20Maduka">Rashini Maduka</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20R.%20Wijesinghe"> C. R. Wijesinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Weerasinghe"> A. R. Weerasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug-drug%20interaction%20prediction" title="drug-drug interaction prediction">drug-drug interaction prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20embedding" title=" graph embedding"> graph embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20convolutional%20networks" title=" graph convolutional networks"> graph convolutional networks</a>, <a href="https://publications.waset.org/abstracts/search?q=adverse%20drug%20effects" title=" adverse drug effects"> adverse drug effects</a> </p> <a href="https://publications.waset.org/abstracts/165305/drug-drug-interaction-prediction-in-diabetes-mellitus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18510</span> Iontophoretic Drug Transport of Some Anti-Diabetic Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Jain">Ashish Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Nayak"> Satish Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transdermal iontophoretic drug delivery system is viable drug delivery platform technology and has a strong market worldwide. Transdermal drug delivery system is particularly desirable for therapeutic agents that need prolonged administration at controlled plasma level. This makes appropriateness to antihypertensive and anti-diabetic agents for their transdermal development. Controlled zero order absorption, easily termination of drug delivery and easy to administration also support for popularity of transdermal delivery. In this current research iontophoretic delivery of various anti diabetic agents like glipizide, glibenclamide and glimepiride were carried out. The experiments were carried out at different drug concentrations and different current densities using cathodal iontophoresis. Diffusion cell for iontophoretic permeation study was modified according to Glikfield Design. Pig skin was used for in vitro permeation study and for the in-vivo study New Zealand rabbits were used. At all concentration level iontophoresis showed enhanced permeation rate compared to passive controls. Iontophoretic transports of selected drugs were found to be increased with the current densities. Results showed that target permeation rate for selected drugs could be achieved with the aid of iontophoresis by increasing the area in an appreciable range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transdermal" title="transdermal">transdermal</a>, <a href="https://publications.waset.org/abstracts/search?q=iontophoresis" title=" iontophoresis"> iontophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=pig%20skin" title=" pig skin"> pig skin</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbits" title=" rabbits"> rabbits</a>, <a href="https://publications.waset.org/abstracts/search?q=glipizide" title=" glipizide"> glipizide</a>, <a href="https://publications.waset.org/abstracts/search?q=glibeclamide" title=" glibeclamide"> glibeclamide</a> </p> <a href="https://publications.waset.org/abstracts/45635/iontophoretic-drug-transport-of-some-anti-diabetic-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18509</span> Formulation and Evaluation of Niosomes Containing an Antihypertensive Drug</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kamboj">Sunil Kamboj</a>, <a href="https://publications.waset.org/abstracts/search?q=Suman%20Bala"> Suman Bala</a>, <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Saini"> Vipin Saini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Niosomes were formulated with an aim of enhancing the oral bioavailability of losartan potassium and formulated in different molar ratios of surfactant, cholesterol and dicetyl phosphate. The formulated niosomes were found in range of 54.98 µm to 107.85 µm in size. Formulations with 1:1 ratio of surfactant and cholesterol have shown maximum entrapment efficiencies. Niosomes with sorbitan monostearate showed maximum drug release and zero order release kinetics, at the end of 24 hours. The <em>in vivo</em> study has shown the significant enhancement in oral bioavailability of losartan potassium in rats, after a dose of 10 mg/kg. The average relative bioavailability in relation with pure drug solution was found 2.56, indicates more than two fold increase in oral bioavailability. A significant increment in MRT reflects the release retarding ability of the vesicles. In conclusion, niosomes could be a promising delivery of losartan potassium with improved oral bioavailability and prolonged release profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-ionic%20surfactant%20vesicles" title="non-ionic surfactant vesicles">non-ionic surfactant vesicles</a>, <a href="https://publications.waset.org/abstracts/search?q=losartan%20potassium" title=" losartan potassium"> losartan potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20bioavailability" title=" oral bioavailability"> oral bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20release" title=" controlled release"> controlled release</a> </p> <a href="https://publications.waset.org/abstracts/37426/formulation-and-evaluation-of-niosomes-containing-an-antihypertensive-drug" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18508</span> Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jay%20Ananth">Jay Ananth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title="drug discovery">drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=lipophilicity" title=" lipophilicity"> lipophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=ligand-receptor%20interactions" title=" ligand-receptor interactions"> ligand-receptor interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20development" title=" drug development"> drug development</a> </p> <a href="https://publications.waset.org/abstracts/163127/modeling-optimal-lipophilicity-and-drug-performance-in-ligand-receptor-interactions-a-machine-learning-approach-to-drug-discovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18507</span> Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishank%20Raisinghani">Nishank Raisinghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title="drug discovery">drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=transformers" title=" transformers"> transformers</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20neural%20networks" title=" graph neural networks"> graph neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=multiomics" title=" multiomics"> multiomics</a> </p> <a href="https://publications.waset.org/abstracts/169926/proposing-an-architecture-for-drug-response-prediction-by-integrating-multiomics-data-and-utilizing-graph-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18506</span> Formulation of Extended-Release Gliclazide Tablet Using a Mathematical Model for Estimation of Hypromellose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Khajavi">Farzad Khajavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzaneh%20Jalilfar"> Farzaneh Jalilfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Faranak%20Jafari"> Faranak Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Shokrani"> Leila Shokrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formulation of gliclazide in the form of extended-release tablet in 30 and 60 mg dosage forms was performed using hypromellose (HPMC K4M) as a retarding agent. Drug-release profiles were investigated in comparison with references Diamicron MR 30 and 60 mg tablets. The effect of size of powder particles, the amount of hypromellose in formulation, hardness of tablets, and also the effect of halving the tablets were investigated on drug release profile. A mathematical model which describes hypromellose behavior in initial times of drug release was proposed for the estimation of hypromellose content in modified-release gliclazide 60 mg tablet. This model is based on erosion of hypromellose in dissolution media. The model is applicable to describe release profiles of insoluble drugs. Therefore, by using dissolved amount of drug in initial times of dissolution and the model, the amount of hypromellose in formulation can be predictable. The model was used to predict the HPMC K4M content in modified-release gliclazide 30 mg and extended-release quetiapine 200 mg tablets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gliclazide" title="Gliclazide">Gliclazide</a>, <a href="https://publications.waset.org/abstracts/search?q=hypromellose" title=" hypromellose"> hypromellose</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release" title=" drug release"> drug release</a>, <a href="https://publications.waset.org/abstracts/search?q=modified-release%20tablet" title=" modified-release tablet"> modified-release tablet</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a> </p> <a href="https://publications.waset.org/abstracts/75442/formulation-of-extended-release-gliclazide-tablet-using-a-mathematical-model-for-estimation-of-hypromellose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18505</span> Optimization of Gastro-Retentive Matrix Formulation and Its Gamma Scintigraphic Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapnila%20V.%20Shinde">Swapnila V. Shinde</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemant%20P.%20Joshi"> Hemant P. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20R.%20Dhas"> Sumit R. Dhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhananjaysingh%20B.%20Rajput"> Dhananjaysingh B. Rajput</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the present study is to develop hydro-dynamically balanced system for atenolol, β-blocker as a single unit floating tablet. Atenolol shows pH dependent solubility resulting into a bioavailability of 36%. Thus, site specific oral controlled release floating drug delivery system was developed. Formulation includes novice use of rate controlling polymer such as locust bean gum (LBG) in combination of HPMC K4M and gas generating agent sodium bicarbonate. Tablet was prepared by direct compression method and evaluated for physico-mechanical properties. The statistical method was utilized to optimize the effect of independent variables, namely amount of HPMC K4M, LBG and three dependent responses such as cumulative drug release, floating lag time, floating time. Graphical and mathematical analysis of the results allowed the identification and quantification of the formulation variables influencing the selected responses. To study the gastrointestinal transit of the optimized gastro-retentive formulation, in vivo gamma scintigraphy was carried out in six healthy rabbits, after radio labeling the formulation with 99mTc. The transit profiles demonstrated that the dosage form was retained in the stomach for more than 5 hrs. The study signifies the potential of the developed system for stomach targeted delivery of atenolol with improved bioavailability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20tablet" title="floating tablet">floating tablet</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20scintigraphy" title=" gamma scintigraphy"> gamma scintigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug" title=" antihypertensive model drug"> antihypertensive model drug</a>, <a href="https://publications.waset.org/abstracts/search?q=HPMC" title=" HPMC"> HPMC</a>, <a href="https://publications.waset.org/abstracts/search?q=locust%20bean%20gum" title=" locust bean gum"> locust bean gum</a> </p> <a href="https://publications.waset.org/abstracts/8593/optimization-of-gastro-retentive-matrix-formulation-and-its-gamma-scintigraphic-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18504</span> Assessment of Drug Delivery Systems from Molecular Dynamic Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahimnejad">M. Rahimnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Vahidi"> B. Vahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ebrahimi%20Hoseinzadeh"> B. Ebrahimi Hoseinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Yazdian"> F. Yazdian</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Motamed%20Fath"> P. Motamed Fath</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Jamjah"> R. Jamjah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-cancer%20drug" title="anti-cancer drug">anti-cancer drug</a>, <a href="https://publications.waset.org/abstracts/search?q=center%20of%20mass" title=" center of mass"> center of mass</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20energy" title=" interaction energy"> interaction energy</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocarrier" title=" nanocarrier"> nanocarrier</a> </p> <a href="https://publications.waset.org/abstracts/73548/assessment-of-drug-delivery-systems-from-molecular-dynamic-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18503</span> In Silico Studies on Selected Drug Targets for Combating Drug Resistance in Plasmodium Falcifarum </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepika%20Bhaskar">Deepika Bhaskar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neena%20Wadehra"> Neena Wadehra</a>, <a href="https://publications.waset.org/abstracts/search?q=Megha%20Gulati"> Megha Gulati</a>, <a href="https://publications.waset.org/abstracts/search?q=Aruna%20Narula"> Aruna Narula</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Vishnu"> R. Vishnu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunjan%20Katyal"> Gunjan Katyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With drug resistance becoming widespread in Plasmodium falciparum infections, development of the alternative drugs is the desired strategy for prevention and cure of malaria. Three drug targets were selected to screen promising drug molecules from the GSK library of around 14000 molecules. Using an in silico structure-based drug designing approach, the differences in binding energies of the substrate and inhibitor were exploited between target sites of parasite and human to design a drug molecule against Plasmodium. The docking studies have shown several promising molecules from GSK library with more effective binding as compared to the already known inhibitors for the drug targets. Though stronger interaction has been shown by several molecules as compare to reference, few molecules have shown the potential as drug candidates though in vitro studies are required to validate the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmodium" title="plasmodium">plasmodium</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20targets" title=" drug targets"> drug targets</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silico%20studies" title=" in silico studies"> in silico studies</a> </p> <a href="https://publications.waset.org/abstracts/24319/in-silico-studies-on-selected-drug-targets-for-combating-drug-resistance-in-plasmodium-falcifarum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18502</span> Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Ren">Yong Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaping%20Zhang"> Yaping Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material" title="phase change material">phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release%20kinetics" title=" drug release kinetics"> drug release kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20emulsion" title=" double emulsion"> double emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a> </p> <a href="https://publications.waset.org/abstracts/22132/numerical-investigation-of-thermally-triggered-release-kinetics-of-double-emulsion-for-drug-delivery-using-phase-change-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18501</span> Potential Drug-Drug Interactions at a Referral Hematology-Oncology Ward in Iran: A Cross-Sectional Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Ataei">Sara Ataei</a>, <a href="https://publications.waset.org/abstracts/search?q=Molouk%20Hadjibabaie"> Molouk Hadjibabaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Shirinsadat%20Badri"> Shirinsadat Badri</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Moslehi"> Amirhossein Moslehi</a>, <a href="https://publications.waset.org/abstracts/search?q=Iman%20Karimzadeh"> Iman Karimzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ardeshir%20Ghavamzadeh"> Ardeshir Ghavamzadeh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: To assess the pattern and probable risk factors for moderate and major drug–drug interactions in a referral hematology-oncology ward in Iran. Methods: All patients admitted to hematology–oncology ward of Dr. Shariati Hospital during a 6-month period and received at least two anti-cancer or non-anti-cancer medications simultaneously were included. All being scheduled anti-cancer and non-anti-cancer medications both prescribed and administered during ward stay were considered for drug–drug interaction screening by Lexi-Interact On- Desktop software. Results: One hundred and eighty-five drug–drug interactions with moderate or major severity were detected from 83 patients. Most of drug–drug interactions (69.73 %) were classified as pharmacokinetics. Fluconazole (25.95 %) was the most commonly offending medication in drug–drug interactions. Interaction of sulfamethoxazole-trimethoprim with fluconazole was the most common drug–drug interaction (27.27 %). Vincristine with imatinib was the only identified interaction between two anti-cancer agents. The number of administered medications during ward stay was considered as an independent risk factor for developing a drug–drug interaction. Conclusions: Potential moderate or major drug–drug interactions occur frequently in patients with hematological malignancies or related diseases. Performing larger standard studies are required to assess the real clinical and economical effects of drug–drug interactions on patients with hematological and non-hematological malignancies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%E2%80%93drug%20interactions" title="drug–drug interactions">drug–drug interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=hematology%E2%80%93oncology%20ward" title=" hematology–oncology ward"> hematology–oncology ward</a>, <a href="https://publications.waset.org/abstracts/search?q=hematological%20malignancies" title=" hematological malignancies "> hematological malignancies </a> </p> <a href="https://publications.waset.org/abstracts/17983/potential-drug-drug-interactions-at-a-referral-hematology-oncology-ward-in-iran-a-cross-sectional-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18500</span> Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Khanday">M. A. Khanday</a>, <a href="https://publications.waset.org/abstracts/search?q=Aasma%20Rafiq"> Aasma Rafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Nazir"> Khalid Nazir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laplace%20transform" title="Laplace transform">Laplace transform</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalue%20method" title=" eigenvalue method"> eigenvalue method</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a> </p> <a href="https://publications.waset.org/abstracts/43080/mathematical-models-for-drug-diffusion-through-the-compartments-of-blood-and-tissue-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18499</span> Mesoporous Tussah Silk Fibroin Microspheres for Drug Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weitao%20Zhou">Weitao Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Wang"> Qing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianxin%20He"> Jianxin He</a>, <a href="https://publications.waset.org/abstracts/search?q=Shizhong%20Cui"> Shizhong Cui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesoporous Tussah silk fibroin (TSF) spheres were fabricated via the self-assembly of TSF molecules in aqueous solutions. The results showed that TSF particles were approximately three-dimensional spheres with the diameter ranging from 500nm to 6μm without adherence. More importantly, the surface morphology is mesoporous structure with nano-pores of 20nm - 200nm in size. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) studies demonstrated that mesoporous TSF spheres mainly contained beta-sheet conformation (44.1 %) as well as slight amounts of random coil (13.2 %). Drug release test was performed with 5-fluorouracil (5-Fu) as a model drug and the result indicated the mesoporous TSF microspheres had a good capacity of sustained drug release. It is expected that these stable and high-crystallinity mesoporous TSF sphere produced without organic solvents, which have significantly improved drug release properties, is a very promising material for controlled gene medicines delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tussah%20silk%20fibroin" title="Tussah silk fibroin">Tussah silk fibroin</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20materials" title=" porous materials"> porous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=microsphere" title=" microsphere"> microsphere</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release" title=" drug release"> drug release</a> </p> <a href="https://publications.waset.org/abstracts/69674/mesoporous-tussah-silk-fibroin-microspheres-for-drug-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18498</span> Drug Use Knowledge and Antimicrobial Drug Use Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pimporn%20Thongmuang">Pimporn Thongmuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The import value of antimicrobial drugs reached approximately fifteen million Baht in 2010, considered as the highest import value of all modern drugs, and this value is rising every year. Antimicrobials are considered the hazardous drugs by the Ministry of Public Health. This research was conducted in order to investigate the past knowledge of drug use and Antimicrobial drug use behavior. A total of 757 students were selected as the samples out of a population of 1,800 students. This selected students had the experience of Antimicrobial drugs use a year ago. A questionnaire was utilized in this research. The findings put on the view that knowledge gained by the students about proper use of antimicrobial drugs was not brought into practice. This suggests that the education procedure regarding drug use needs adjustment. And therefore the findings of this research are expected to be utilized as guidelines for educating people about the proper use of antimicrobial drugs. At a broader perspective, correct drug use behavior of the public may potentially reduce drug cost of the Ministry of Public Health of Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20use%20knowledge" title="drug use knowledge">drug use knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20drugs" title=" antimicrobial drugs"> antimicrobial drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20use%20behavior" title=" drug use behavior"> drug use behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=drug" title=" drug"> drug</a> </p> <a href="https://publications.waset.org/abstracts/3900/drug-use-knowledge-and-antimicrobial-drug-use-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18497</span> Development of Mucoadhesive Multiparticulate System for Nasal Drug Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Hemant%20Yadav">K. S. Hemant Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20G.%20Shivakumar"> H. G. Shivakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigation was to prepare and evaluate the mucoadhesive multi-particulate system for nasal drug delivery of anti-histaminic drug. Ebastine was chosen as the model drug. Drug loaded nanoparticles of Ebastine were prepared by ionic gelation method using chitosan as polymer using the drug-polymer weight ratios 1:1, 1:2, 1:3. Sodium tripolyphosphate (STPP) was used as the cross-linking agent in the range of 0.5 and 0.7% w/v. FTIR and DSC studies indicated that no chemical interaction occurred between the drug and polymers. Particle size ranged from 169 to 500 nm. The drug loading and entrapment efficiency was found to increase with increase in chitosan concentration and decreased with increase in poloxamer 407 concentration. The results of in vitro mucoadhesion carried out showed that all the prepared formulation had good mucoadhesive property and mucoadhesion increases with increase in the concentration of chitosan. The in vitro release pattern of all the formulations was observed to be in a biphasic manner characterized by slight burst effect followed by a slow release. By the end of 8 hrs, formulation F6 showed a release of only 86.9% which explains its sustained behaviour. The ex-vivo permeation of the pure drug ebastine was rapid than the optimized formulation(F6) indicating the capability of the chitosan polymer to control drug permeation rate through the sheep nasal mucosa. The results indicated that the mucoadhesive nanoparticulate system can be used for the nasal delivery of antihistaminic drugs in an effective manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nasal" title="nasal">nasal</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=ebastine" title=" ebastine"> ebastine</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-histaminic%20drug" title=" anti-histaminic drug"> anti-histaminic drug</a>, <a href="https://publications.waset.org/abstracts/search?q=mucoadhesive%20multi-particulate%20system" title=" mucoadhesive multi-particulate system"> mucoadhesive multi-particulate system</a> </p> <a href="https://publications.waset.org/abstracts/1786/development-of-mucoadhesive-multiparticulate-system-for-nasal-drug-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18496</span> Probability Sampling in Matched Case-Control Study in Drug Abuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surya%20R.%20Niraula">Surya R. Niraula</a>, <a href="https://publications.waset.org/abstracts/search?q=Devendra%20B%20Chhetry"> Devendra B Chhetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Girish%20K.%20Singh"> Girish K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nagesh"> S. Nagesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederick%20A.%20Connell"> Frederick A. Connell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20abuse" title="drug abuse">drug abuse</a>, <a href="https://publications.waset.org/abstracts/search?q=matched%20case-control%20study" title=" matched case-control study"> matched case-control study</a>, <a href="https://publications.waset.org/abstracts/search?q=non-probability%20sampling" title=" non-probability sampling"> non-probability sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20sampling" title=" probability sampling"> probability sampling</a> </p> <a href="https://publications.waset.org/abstracts/24612/probability-sampling-in-matched-case-control-study-in-drug-abuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18495</span> Spray-Dried, Biodegradable, Drug-Loaded Microspheres for Use in the Treatment of Lung Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazen%20AlGharsan">Mazen AlGharsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The Carbopol Microsphere of Linezolid, a drug used to treat lung disease (pulmonary disease), was prepared using Buchi B-90 nano spray-drier. Methods: Production yield, drug content, external morphology, particle size, and in vitro release pattern were performed. Results: The work was 79.35%, and the drug content was 66.84%. The surface of the particles was shriveled in shape, with particle size distribution with a mean diameter of 9.6 µm; the drug was released in a biphasic manner with an initial release of 25.2 ± 5.7% at 60 minutes. It later prolonged the release by 95.5 ± 2.5% up to 12 hours. Differential scanning calorimetry (DSC) revealed no change in the melting point of the formulation. Fourier-transform infrared (FT-IR) studies showed no polymer-drug interaction in the prepared nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title="nanotechnology">nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=Linezolid" title=" Linezolid"> Linezolid</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20disease" title=" lung disease"> lung disease</a> </p> <a href="https://publications.waset.org/abstracts/193025/spray-dried-biodegradable-drug-loaded-microspheres-for-use-in-the-treatment-of-lung-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18494</span> Management and Evaluation of the Importance of Porous Media in Biomedical Engineering as Associated with Magnetic Resonance Imaging Besides Drug Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fateme%20Nokhodchi%20Bonab">Fateme Nokhodchi Bonab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies related to magnetic resonance imaging (MRI) and drug delivery are reviewed in this study to demonstrate the role of transport theory in porous media in facilitating advances in biomedical applications. Diffusion processes are believed to be important in many therapeutic modalities such as: B. Delivery of drugs to the brain. We analyse the progress in the development of diffusion equations using the local volume average method and the evaluation of applications related to diffusion equations. Torsion and porosity have significant effects on diffusive transport. In this study, various relevant models of torsion are presented and mathematical modeling of drug release from biodegradable delivery systems is analysed. In this study, a new model of drug release kinetics from porous biodegradable polymeric microspheres under bulk and surface erosion of the polymer matrix is presented. Solute drug diffusion, drug dissolution from the solid phase, and polymer matrix erosion have been found to play a central role in controlling the overall drug release process. This work paves the way for MRI and drug delivery researchers to develop comprehensive models based on porous media theory that use fewer assumptions compared to other approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MRI" title="MRI">MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a> </p> <a href="https://publications.waset.org/abstracts/158833/management-and-evaluation-of-the-importance-of-porous-media-in-biomedical-engineering-as-associated-with-magnetic-resonance-imaging-besides-drug-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18493</span> Role of Social Support in Drug Cessation among Male Addicts in the West of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Jalilian">Farzad Jalilian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Mirzaei%20Alavijeh"> Mehdi Mirzaei Alavijeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazel%20Zinat%20Motlagh"> Fazel Zinat Motlagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social support is an important benchmark of health for people in avoidance conditions. The main goal of this study was to determine the three kinds of social support (family, friend and other significant) to drug cessation among male addicts, in Kermanshah, the west of Iran. This cross-sectional study was conducted among 132 addicts, randomly selected to participate voluntarily in the study. Data were collected from conduct interviews based on standard questionnaire and analyzed by using SPSS-18 at 95% significance level. The majority of addicts were young (Mean: 30.4 years), and with little education. Opium (36.4%), Crack (21.2%), and Methamphetamine (12.9%) were the predominant drugs. Inabilities to reject the offer and having addict friends are the most often reasons for drug usage. Almost, 18.9% reported history of drug injection. 43.2% of the participants already did drug cessation at least once. Logistic regression showed the family support (OR = 1.110), age (OR = 1.106) and drug use initiation age (OR = 0.918) was predicting drug cessation. Our result showed; family support is a more important effect among types of social support in drug cessation. It seems that providing educational program to addict’s families for more support of patients at drug cessation can be beneficial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20cessation" title="drug cessation">drug cessation</a>, <a href="https://publications.waset.org/abstracts/search?q=family%20support" title=" family support"> family support</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20use" title=" drug use"> drug use</a>, <a href="https://publications.waset.org/abstracts/search?q=initiation%20age" title=" initiation age"> initiation age</a> </p> <a href="https://publications.waset.org/abstracts/33735/role-of-social-support-in-drug-cessation-among-male-addicts-in-the-west-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18492</span> Functionalized Nanoparticles for Drug Delivery Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Geremew">Temesgen Geremew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functionalized nanoparticles have emerged as a revolutionary platform for drug delivery, offering significant advantages over traditional methods. By strategically modifying their surface properties, these nanoparticles can be designed to target specific tissues and cells, significantly reducing off-target effects and enhancing therapeutic efficacy. This targeted approach allows for lower drug doses, minimizing systemic exposure and potential side effects. Additionally, functionalization enables controlled release of the encapsulated drug, improving drug stability and reducing the frequency of administration, leading to improved patient compliance. This work explores the immense potential of functionalized nanoparticles in revolutionizing drug delivery, addressing limitations associated with conventional therapies and paving the way for personalized medicine with precise and targeted treatment strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=drug" title=" drug"> drug</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a> </p> <a href="https://publications.waset.org/abstracts/183288/functionalized-nanoparticles-for-drug-delivery-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18491</span> Pharmaceutical Science and Development in Drug Research</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adegoke%20Yinka%20Adebayo">Adegoke Yinka Adebayo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An understanding of the critical product attributes that impact on in vivo performance is key to the production of safe and effective medicines. Thus, a key driver for our research is the development of new basic science and technology underpinning the development of new pharmaceutical products. Research includes the structure and properties of drugs and excipients, biopharmaceutical characterisation, pharmaceutical processing and technology and formulation and analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title="drug discovery">drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20development" title=" drug development"> drug development</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery "> drug delivery </a> </p> <a href="https://publications.waset.org/abstracts/19017/pharmaceutical-science-and-development-in-drug-research" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18490</span> Regular or Irregular: An Investigation of Medicine Consumption Pattern with Poisson Mixture Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lichung%20Jen">Lichung Jen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Chun%20Liu"> Yi Chun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuan-Wei%20Lee"> Kuan-Wei Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fruitful data has been accumulated in database nowadays and is commonly used as support for decision-making. In the healthcare industry, hospital, for instance, ordering pharmacy inventory is one of the key decision. With large drug inventory, the current cost increases and its expiration dates might lead to future issue, such as drug disposal and recycle. In contrast, underestimating demand of the pharmacy inventory, particularly standing drugs, affects the medical treatment and possibly hospital reputation. Prescription behaviour of hospital physicians is one of the critical factor influencing this decision, particularly irregular prescription behaviour. If a drug’s usage amount in the month is irregular and less than the regular usage, it may cause the trend of subsequent stockpiling. On the contrary, if a drug has been prescribed often than expected, it may result in insufficient inventory. We proposed a hierarchical Bayesian mixture model with two components to identify physicians’ regular/irregular prescription patterns with probabilities. Heterogeneity of hospital is considered in our proposed hierarchical Bayes model. The result suggested that modeling the prescription patterns of physician is beneficial for estimating the order quantity of medication and pharmacy inventory management of the hospital. Managerial implication and future research are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20model" title="hierarchical Bayesian model">hierarchical Bayesian model</a>, <a href="https://publications.waset.org/abstracts/search?q=poission%20mixture%20model" title=" poission mixture model"> poission mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=medicines%20prescription%20behavior" title=" medicines prescription behavior"> medicines prescription behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=irregular%20behavior" title=" irregular behavior"> irregular behavior</a> </p> <a href="https://publications.waset.org/abstracts/106808/regular-or-irregular-an-investigation-of-medicine-consumption-pattern-with-poisson-mixture-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18489</span> Spatial Relationship of Drug Smuggling Based on Geographic Information System Knowledge Discovery Using Decision Tree Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Niamkaeo">S. Niamkaeo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Robert"> O. Robert</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Chaowalit"> O. Chaowalit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, we focus on discovering spatial relationship of drug smuggling along the northern border of Thailand. Thailand is no longer a drug production site, but Thailand is still one of the major drug trafficking hubs due to its topographic characteristics facilitating drug smuggling from neighboring countries. Our study areas cover three districts (Mae-jan, Mae-fahluang, and Mae-sai) in Chiangrai city and four districts (Chiangdao, Mae-eye, Chaiprakarn, and Wienghang) in Chiangmai city where drug smuggling of methamphetamine crystal and amphetamine occurs mostly. The data on drug smuggling incidents from 2011 to 2017 was collected from several national and local published news. Geo-spatial drug smuggling database was prepared. Decision tree algorithm was applied in order to discover the spatial relationship of factors related to drug smuggling, which was converted into rules using rule-based system. The factors including land use type, smuggling route, season and distance within 500 meters from check points were found that they were related to drug smuggling in terms of rules-based relationship. It was illustrated that drug smuggling was occurred mostly in forest area in winter. Drug smuggling exhibited was discovered mainly along topographic road where check points were not reachable. This spatial relationship of drug smuggling could support the Thai Office of Narcotics Control Board in surveillance drug smuggling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20smuggling" title=" drug smuggling"> drug smuggling</a>, <a href="https://publications.waset.org/abstracts/search?q=Geographic%20Information%20System" title=" Geographic Information System"> Geographic Information System</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20knowledge%20discovery" title=" GIS knowledge discovery"> GIS knowledge discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=rule-based%20system" title=" rule-based system"> rule-based system</a> </p> <a href="https://publications.waset.org/abstracts/99772/spatial-relationship-of-drug-smuggling-based-on-geographic-information-system-knowledge-discovery-using-decision-tree-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18488</span> Preparation and Physicochemical Characterization of Non-ionic Surfactant Vesicles Containing Itraconazole </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ataei">S. Ataei</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Sarrafzadeh%20Javadi"> F. Sarrafzadeh Javadi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gilani"> K. Gilani</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Moazeni"> E. Moazeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drug delivery systems using colloidal particulate carriers such as niosomes or liposomes have distinct advantages over conventional dosage forms because the particles can act as drug-containing reservoirs. These carriers play an increasingly important role in drug delivery. Niosomes are vesicular delivery systems which result from the self-assembly of hydrated surfactant. Niosomes are now widely studied as an attractive to liposomes because they alleviate the disadvantages associated with liposomes, such as chemical instability, variable purity of phospholipids and high cost. The encapsulation of drugs in niosomes can decrease drug toxicity, increase the stability of drug and increase the penetrability of drug in the location of application, and may reduce the dose and systemic side effect. Nowadays, Niosomes are used by the pharmaceutical industry in manufacturing skin medications, eye medication, in cosmetic formulas and these vesicular systems can be used to deliver aspiratory drugs. One way of improving dispersion in the water phase and solubility of the hydrophobic drug is to formulate in into niosomes. Itraconazole (ITZ) was chosen as a model hydrophobic drug. This drug is water insoluble (solubility ~ 1 ng/ml at neutral pH), is a broad-spectrum triazole antifungal agent and is used to treat various fungal disease. This study aims to investigate the capability of forming itraconazole niosomes with Spans, Tweens, Brijs as non-ionic surfactants. To this end, various formulations of niosomes have been studied with regard to parameters such as the degree of containment and particle size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title="physicochemical">physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=non-ionic%20surfactant%20vesicles" title=" non-ionic surfactant vesicles"> non-ionic surfactant vesicles</a>, <a href="https://publications.waset.org/abstracts/search?q=itraconazole" title=" itraconazole"> itraconazole</a> </p> <a href="https://publications.waset.org/abstracts/18011/preparation-and-physicochemical-characterization-of-non-ionic-surfactant-vesicles-containing-itraconazole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug&page=617">617</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug&page=618">618</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>