CINXE.COM

Search results for: renewable raw materials

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: renewable raw materials</title> <meta name="description" content="Search results for: renewable raw materials"> <meta name="keywords" content="renewable raw materials"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="renewable raw materials" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="renewable raw materials"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8004</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: renewable raw materials</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8004</span> Comprehensive Study of Renewable Energy Resources and Present Scenario in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aparna%20Bhat">Aparna Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeshwari%20Hegde"> Rajeshwari Hegde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewable energy sources also called non-conventional energy sources that are continuously replenished by natural processes. For example, solar energy, wind energy, bio-energy- bio-fuels grown sustain ably), hydropower etc., are some of the examples of renewable energy sources. A renewable energy system converts the energy found in sunlight, wind, falling-water, sea-waves, geothermal heat, or biomass into a form, we can use such as heat or electricity. Most of the renewable energy comes either directly or indirectly from sun and wind and can never be exhausted, and therefore they are called renewable. This paper presents a review about conventional and renewable energy scenario of India. The paper also presents current status, major achievements and future aspects of renewable energy in India and implementing renewable for the future is also been presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=renewabe%20energy" title=" renewabe energy"> renewabe energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-diesel" title=" bio-diesel"> bio-diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=feedin" title=" feedin"> feedin</a> </p> <a href="https://publications.waset.org/abstracts/19854/comprehensive-study-of-renewable-energy-resources-and-present-scenario-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8003</span> Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Ali%20Bekhet">Hussain Ali Bekhet</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Hamisham%20Harun"> Nor Hamisham Harun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title="Malaysia">Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=non-renewable%20energy" title=" non-renewable energy"> non-renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title=" sustainable energy"> sustainable energy</a> </p> <a href="https://publications.waset.org/abstracts/54485/role-of-non-renewable-and-renewable-energy-for-sustainable-electricity-generation-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8002</span> Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Hroudova">Jitka Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Zach"> Jiri Zach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Green%20thermal%20and%20acoustic%20insulating%20materials" title="Green thermal and acoustic insulating materials">Green thermal and acoustic insulating materials</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibres" title=" natural fibres"> natural fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20hemp" title=" technical hemp"> technical hemp</a>, <a href="https://publications.waset.org/abstracts/search?q=flax" title=" flax"> flax</a>, <a href="https://publications.waset.org/abstracts/search?q=floor%20construction" title=" floor construction"> floor construction</a> </p> <a href="https://publications.waset.org/abstracts/15542/acoustic-and-thermal-insulating-materials-based-on-natural-fibres-used-in-floor-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8001</span> Renewable Energy and Ecosystem Services: A Geographi̇cal Classification in Azerbaijan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nijat%20S.%20%C4%B0mamverdiyev">Nijat S. İmamverdiyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transition to renewable energy sources has become a critical component of global efforts to mitigate climate change and promote sustainable development. However, the deployment of renewable energy technologies can also have significant impacts on ecosystems and the services they provide, such as carbon sequestration, soil fertility, water quality, and biodiversity. It also highlights the potential co-benefits of renewable energy deployment for ecosystem services, such as reducing greenhouse gas emissions and improving air and water quality. Renewable energy sources, such as wind, solar, hydro, and biomass, are increasingly being used to meet the world's energy needs due to their environmentally friendly nature and the desire to reduce greenhouse gas emissions. However, the expansion of renewable energy infrastructure can also impact ecosystem services, which are the benefits that humans derive from nature, such as clean water, air, and food. This geographical assessment aims to evaluate the relationship between renewable energy infrastructure and ecosystem services. Here, also explores potential solutions to mitigate the negative effects of renewable energy infrastructure on ecosystem services, such as the use of ecological compensation measures, biodiversity-friendly design of renewable energy infrastructure, and stakeholder involvement in decision-making processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20production" title=" energy production"> energy production</a> </p> <a href="https://publications.waset.org/abstracts/160856/renewable-energy-and-ecosystem-services-a-geographical-classification-in-azerbaijan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8000</span> A Comparison of the Environmental Impacts of Edible and Non-Edible Oil Crops in Biodiesel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halit%20Tutar">Halit Tutar</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Eren"> Omer Eren</a>, <a href="https://publications.waset.org/abstracts/search?q=Oguz%20Parlakay"> Oguz Parlakay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for food and energy of mankind has been increasing every passing day. Renewable energy sources have been pushed to forefront since fossil fuels will be run out in the near future and their negative effects to the environment. As in every sector, the transport sector benefits from biofuel (biogas, bioethanol and biodiesel) one of the renewable energy sources as well. The edible oil crops are used in production of biodiesel. Utilizing edible oil crops as renewable energy source may raise a debate in the view of that there is a shortage in raw material of edible oil crops in Turkey. Researches related to utilization of non-edible oil crops as biodiesel raw materials have been recently increased, and especially studies related to their vegetative production and adaptation have been accelerated in Europe. In this review edible oil crops are compared to non-edible oil crops for biodiesel production in the sense of biodiesel production, some features of non-edible oil crops and their harmful emissions to environment are introduced. The data used in this study, obtained from articles, thesis, reports relevant to edible and non edible oil crops in biodiesel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20oil%20crops" title=" edible oil crops"> edible oil crops</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title=" environmental impacts"> environmental impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/66235/a-comparison-of-the-environmental-impacts-of-edible-and-non-edible-oil-crops-in-biodiesel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7999</span> SWOT Analysis of Renewable Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahad%C4%B1r%20Ayd%C4%B1n">Bahadır Aydın</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Being one of the most important elements of social evolution, energy has a vital role for a sustainable economy and development. Energy has great importance to level up the welfare. By this importance, countries having rich resources can apply energy as an political instrument. While needs of energy is increasing, sources to respond this need is very limited. Therefore, countries seek for alternative resources to meet their needs. Renewable energy sources have firstly taken into consideration. Being clean and belonging to countries own sources, renewable energy resources have been widely applied during the last decades. However, renewable energy cannot meet all the expectation of energy needs. In this respect, energy efficiency can be seen as an alternative. Energy efficiency can minimize energy consumption without degrading standard of living, lessening quality of products and without increasing energy bills. In this article, energy resources, SWOT analysis of renewable sources, and energy efficiency topics are mainly discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20regulations" title=" energy regulations"> energy regulations</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20relations" title=" international relations"> international relations</a> </p> <a href="https://publications.waset.org/abstracts/4120/swot-analysis-of-renewable-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7998</span> A Review of Renewable Energy Conditions in Iran Country</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Atash%20Zaban">Ehsan Atash Zaban</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Beyk"> Mehdi Beyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, concerns over the depletion of non-renewable fuels and environmental pollution have led countries around the world to look for alternative energy sources for these fuels. An energy source that can have the necessary reliability, be a suitable alternative to fossil fuels, be technologically achievable, comply with environmental standards to the maximum, and at the same time cause countries to meet domestic consumption for electricity production. Iran is one of the richest countries in the world in terms of various energy sources because, on the one hand, it has extensive sources of fossil and non-renewable fuels such as oil and gas, and on the other hand, it has great potential for renewable energy. In this paper, the potential of renewable energy in Iran, which includes solar, wind, geothermal, hydrogen technology, and biomass, has been reviewed and analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20stations" title=" solar stations"> solar stations</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=hydropower" title=" hydropower"> hydropower</a> </p> <a href="https://publications.waset.org/abstracts/163330/a-review-of-renewable-energy-conditions-in-iran-country" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7997</span> Biodegradable Polymeric Composites of Polylactide and Epoxidized Natural Rubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masek%20A.">Masek A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Diakowska%20K."> Diakowska K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaborski%20M."> Zaborski M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric materials have found their use almost in every branch of industry worldwide. Most of them constitute so-called “petropolymers" obtained from crude oil. However literature information sounds a warning that its global sources are running out. Thus, it seems that one should search for polymeric materials from renewable raw materials belonging to the group of green polymers. Therefore on account of environmental protection and the issue of sustainable technologies, nowadays greater and greater achievements have been observed in the field of green technology using engineering sciences to develop composite materials. The main aim of this study was to research what is the influence of biofillers on the properties. We used biofillers like : cellulose with different length of fiber, cellulose UFC100, silica and montmorillonite. In our research, we reported on biodegradable composites exhibitingspecificity properties by melt blending of polylactide (PLA), one of the commercially available biodegradable material, and epoxidized natural rubber (ENR) containing 50 mol.%epoxy group. Blending hydrophilic natural polymers and aliphatic polyesters is of significant interest, since it could lead to the development of a new range of biodegradable polymeric materials. We research the degradation of composites on the basis epoxidized natural rubber and poly(lactide). The addition of biofillers caused far-reaching degradation processes. The greatest resistance to biodegradation showed a montmorillonite-based mixtures, the smallest inflated cellulose fibers of varying length.The final aim in the present study is to use ENR and poly(lactide) to design composite from renewable resources with controlled degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20resources" title="renewable resources">renewable resources</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title=" biopolymer"> biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactide" title=" polylactide"> polylactide</a> </p> <a href="https://publications.waset.org/abstracts/16425/biodegradable-polymeric-composites-of-polylactide-and-epoxidized-natural-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7996</span> Study of Hydrothermal Behavior of Thermal Insulating Materials Based on Natural Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Zach">J. Zach</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hroudova"> J. Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Brozovsky"> J. Brozovsky </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials" title="thermal insulating materials">thermal insulating materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp%20fibers" title=" hemp fibers"> hemp fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20wool%20fibers" title=" sheep wool fibers"> sheep wool fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a> </p> <a href="https://publications.waset.org/abstracts/12473/study-of-hydrothermal-behavior-of-thermal-insulating-materials-based-on-natural-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7995</span> Renewable Energy from Local Waste for Producing of Processed Agricultural Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruedee%20Niyomrath">Ruedee Niyomrath</a>, <a href="https://publications.waset.org/abstracts/search?q=Somboon%20Sarasit"> Somboon Sarasit</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaisri%20Tharaswatpipat"> Chaisri Tharaswatpipat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study the potential of local waste material in quantity and quality. The potential for such local forms of waste material used as renewable energy for the production of processed agricultural products. The results of this study are useful to producers of agricultural products to use fuel that in local, reduce production costs, and conservation. The results showed that Samut Songkhram is a small province located in the central Thailand, sea area, and subdivided into 3 districts. This province has a population of 80 percent of farmers and agriculture with 50 percent of the area planted to coconut growing. Productivity of coconut help create value for the primacy of the province. Waste materials from coconut have quantity and quality potentials for processing biomass into charcoal as the renewable energy for the production of processed agricultural products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste" title="waste">waste</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=producing%20of%20product" title=" producing of product"> producing of product</a>, <a href="https://publications.waset.org/abstracts/search?q=processed%20agricultural%20products" title=" processed agricultural products"> processed agricultural products</a> </p> <a href="https://publications.waset.org/abstracts/16430/renewable-energy-from-local-waste-for-producing-of-processed-agricultural-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7994</span> Analysis of Trends and Challenges of Using Renewable Biomass for Bioplastics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Namasivayam%20Navaranjan">Namasivayam Navaranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Dimla"> Eric Dimla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The world needs more quality food, shelter and transportation to meet the demands of growing population and improving living standard of those who currently live below the poverty line. Materials are essential commodities for various applications including food and pharmaceutical packaging, building and automobile. Petroleum based plastics are widely used materials amongst others for these applications and their demand is expected to increase. Use of plastics has environment related issues because considerable amount of plastic used worldwide is disposed in landfills, where its resources are wasted, the material takes up valuable space and blights communities. Some countries have been implementing regulations and/or legislations to increase reuse, recycle, renew and remanufacture materials as well as to minimise the use of non-environmentally friendly materials such as petroleum plastics. However, issue of material waste is still a concern in the countries who have low environmental regulations. Development of materials, mostly bioplastics from renewable biomass resources has become popular in the last decade. It is widely believed that the potential for up to 90% substitution of total plastics consumption by bioplastics is technically possible. The global demand for bioplastics is estimated to be approximately six times larger than in 2010. Recently, standard polymers like polyethylene (PE), polypropylene (PP), Polyvinyl Chloride (PVC) or Polyethylene terephthalate (PET), but also high-performance polymers such as polyamides or polyesters have been totally or partially substituted by their renewable equivalents. An example is Polylactide (PLA) being used as a substitute in films and injection moulded products made of petroleum plastics, e.g. PET. The starting raw materials for bio-based materials are usually sugars or starches that are mostly derived from food resources, partially also recycled materials from food or wood processing. The risk in lower food availability by increasing price of basic grains as a result of competition with biomass-based product sectors for feedstock also needs to be considered for the future bioplastic production. Manufacturing of bioplastic materials is often still reliant upon petroleum as an energy and materials source. Life Cycle Assessment (LCA) of bioplastic products has being conducted to determine the sustainability of a production route. However, the accuracy of LCA depends on several factors and needs improvement. Low oil price and high production cost may also limit the technically possible growth of these plastics in the coming years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioplastics" title="bioplastics">bioplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=plastics" title=" plastics"> plastics</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20resources" title=" renewable resources"> renewable resources</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/46723/analysis-of-trends-and-challenges-of-using-renewable-biomass-for-bioplastics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7993</span> Green-Y Model for Preliminary Sustainable Economical Concept of Renewable Energy Sources Deployment in ASEAN Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Goh">H. H. Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Goh"> K. C. Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20N.%20Z.%20S.%20Wan%20Sukri"> W. N. Z. S. Wan Sukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20S.%20Chua"> Q. S. Chua</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Lee"> S. W. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Kok"> B. C. Kok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endowed of renewable energy sources (RES) are the advantages of ASEAN, but they are using a low amount of RES only to generate electricity because their primary energy sources are fossil and coal. The cost of purchasing fossil and coal is cheaper now, but it might be expensive soon, as it will be depleted sooner and after. ASEAN showed that the RES are convenient to be implemented. Some country in ASEAN has huge renewable energy sources potential and use. The primary aim of this project is to assist ASEAN countries in preparing the renewable energy and to guide the policies for RES in the more upright direction. The Green-Y model will help ASEAN government to study and forecast the economic concept, including feed-in tariff. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASEAN%20RES" title="ASEAN RES">ASEAN RES</a>, <a href="https://publications.waset.org/abstracts/search?q=Renewable%20Energy" title=" Renewable Energy"> Renewable Energy</a>, <a href="https://publications.waset.org/abstracts/search?q=RES%20Policies" title=" RES Policies"> RES Policies</a>, <a href="https://publications.waset.org/abstracts/search?q=RES%20Potential" title=" RES Potential"> RES Potential</a>, <a href="https://publications.waset.org/abstracts/search?q=RES%20Utilization" title=" RES Utilization"> RES Utilization</a> </p> <a href="https://publications.waset.org/abstracts/16609/green-y-model-for-preliminary-sustainable-economical-concept-of-renewable-energy-sources-deployment-in-asean-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7992</span> Role of Renewable Energy in Foreign Policy of China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alina%20Gilmanova">Alina Gilmanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China’s dependency on coal for energy is causing pollution in China and abroad. To supply the increasing energy demand and being under the pressure from international society to reduce the emissions, China was pushed to develop renewable energy. The increasing subsidies in Renewable energy sources (RES) led not only to the price-cutting but also affecting the international trade in green technology sector. In order to evaluate the role of RES in foreign policy of China, I am going to give an (i) overview of RES development in China and examine the cooperation between China and (ii) developed, (ii) developing and emerging countries. The conclusive remarks are intended to address the question of how the present Chinese renewable energy development is impacting its foreign policy and international society. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=China" title=" China"> China</a>, <a href="https://publications.waset.org/abstracts/search?q=foreign%20affairs" title=" foreign affairs"> foreign affairs</a>, <a href="https://publications.waset.org/abstracts/search?q=brics" title=" brics"> brics</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperation" title=" cooperation"> cooperation</a> </p> <a href="https://publications.waset.org/abstracts/31187/role-of-renewable-energy-in-foreign-policy-of-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">638</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7991</span> Hydrothermal Synthesis of V₂O₅-Carbon Nanotube Composite for Supercapacitor Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamta%20Bulla">Mamta Bulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Kumar"> Vinay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transition to renewable energy sources is essential due to the finite limitations of conventional fossil fuels, which contribute significantly to environmental pollution and greenhouse gas emissions. Traditional energy storage solutions, such as batteries and capacitors, are also hindered by limitations, particularly in capacity, cycle life, and energy density. Conventional supercapacitors, while able to deliver high power, often suffer from low energy density, limiting their efficiency in storing and providing renewable energy consistently. Renewable energy sources, such as solar and wind, produce power intermittently, so efficient energy storage solutions are required to manage this variability. Advanced materials, particularly those with high capacity and long cycle life, are critical to developing supercapacitors capable of effectively storing renewable energy. Among various electrode materials, vanadium pentoxide (V₂O₅) offers high theoretical capacitance, but its poor conductivity and cycling stability limit practical applications. This study explores the hydrothermal synthesis of a V₂O₅-carbon nanotube (CNT) composite to overcome these drawbacks, combining the high capacitance of V₂O₅ with the exceptional conductivity and mechanical stability of CNTs. The resulting V₂O₅-CNT composite demonstrates enhanced electrochemical performance, showing high specific capacitance of 890 F g⁻¹ at 0.1 A g⁻¹ current density, excellent rate capability, and improved cycling stability, making it a promising candidate for next-generation supercapacitors, with significant improvements in energy storage efficiency and durability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclability" title="cyclability">cyclability</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20density" title=" energy density"> energy density</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/193471/hydrothermal-synthesis-of-v2o5-carbon-nanotube-composite-for-supercapacitor-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7990</span> Polymer Recycling by Biomaterial and Its Application in Grease Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amitkumar%20Barot">Amitkumar Barot</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaykumar%20Sinha"> Vijaykumar Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is growing interest in the development of new materials based on recycled polymers from plastic waste, and also in the field of lubricants much effort has been spent on substitution of petro-based raw materials by natural-based renewable ones. This is due to the facts of depleting fossil fuels and due to strict environmental laws. In relevance to this, new technique for the formulation of grease that combines the chemical recycling of poly (ethylene terephthalate) PET with the use of castor oil (CO) has been developed. Comparison to diols used in chemical recycling of PET, castor oil is renewable, easily available, environmentally friendly, economically cheaper and hence sustainability indeed. The process parameters like CO concentration and temperature were altered, and further, the influences of the process parameters have been studied in order to establish technically and commercially viable process. Further thereby formed depolymerized product find an application as base oil in the formulation of grease. A depolymerized product has been characterized by various chemical and instrumental methods, while formulated greases have been evaluated for its tribological properties. The grease formulated using this new environmentally friendly approach presents applicative properties similar, and in some cases superior, compared to those of a commercial grease obtained from non-renewable resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title="castor oil">castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=grease%20formulation" title=" grease formulation"> grease formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/67396/polymer-recycling-by-biomaterial-and-its-application-in-grease-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7989</span> Promotion of Renewable Marines Energies in Morocco: Perspectives and Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nachtane%20Mourad">Nachtane Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarfaoui%20Mostapha"> Tarfaoui Mostapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Saifaoui%20Dennoun"> Saifaoui Dennoun</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Moumen%20Ahmed"> El Moumen Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current energy policy recommends the subject of energy efficiency and to phase out fossil energy as a master question for the prospective years. The kingdom requires restructuring its power equipment by improving the percentage of renewable energy supply and optimizing power systems and storage. Developing energy efficiency, therefore, obliges as a consubstantial objection to reducing energy consumption. The objective of this work is to show the energy transition in Morocco towards renewable energies, in particular, to show the great potential of renewable marine energies in Morocco, This goes back to the advantages of cost and non-pollution in addition to that of the independence of fossil energies. Bearing in mind the necessity of the balance of the Moroccan energy mix, hydraulic and thermal power plants have also been installed which will be added to the power stations already established as a prospect for a balanced network that is flexible to fluctuate demand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20marine%20energy" title="renewable marine energy">renewable marine energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title=" energy transition"> energy transition</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20energy" title=" efficiency energy"> efficiency energy</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/76700/promotion-of-renewable-marines-energies-in-morocco-perspectives-and-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7988</span> Study the Relationship amongst Digital Finance, Renewable Energy, and Economic Development of Least Developed Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Sohail">Fatima Sohail</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizan%20Iftikhar"> Faizan Iftikhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the relationship between digital finance, renewable energy, and the economic development of Pakistan and least developed countries from 2000 to 2022. The paper used panel analysis and generalized method of moments Arellano-Bond approaches. The findings show that under the growth model, renewable energy (RE) has a strong and favorable link with fixed broadband and mobile subscribers. However, FB and MD have a strong but negative association with the uptake of renewable energy (RE) in the average and simple model. This paper provides valuable insights for policymakers, investors of the digital economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20finance" title="digital finance">digital finance</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20development" title=" economic development"> economic development</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20subscription" title=" mobile subscription"> mobile subscription</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20broadband" title=" fixed broadband"> fixed broadband</a> </p> <a href="https://publications.waset.org/abstracts/187345/study-the-relationship-amongst-digital-finance-renewable-energy-and-economic-development-of-least-developed-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7987</span> Status Check: Journey of India’s Energy Sustainability through Renewable Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Ghosh">Santosh Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar%20Yadav"> Vinod Kumar Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivekananda%20Mukherjee"> Vivekananda Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishta%20Garg"> Ishta Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India, akin to the rest of the world today, is grappling with balancing act between ever increasing demand for energy and alarmingly high level of green house gas emission, which is inevitable corollary of energy production in the conventional way. Researchers and energy policy makers around the world are now focusing on renewable energy (RE) technologies to find solution to this crisis. In India various agencies at both national and state level has been set up and bestowed with responsibility of development of renewable energy technologies, viz. Ministry of New Renewable Energy (MNRE), National Vidyut Vyapar Nigam Ltd. (NVVNL), Indian Renewable Energy Development Agency Limited (IREDA) and RE Development Agencies in respective states. In the present work, the preparedness of India in terms of forming institutional and policy frame work briefly discussed. Status of implementation of RE technologies state wise and of India as a whole, critically reviewed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title="energy policy">energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20sustainability" title=" energy sustainability"> energy sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=IREDA" title=" IREDA"> IREDA</a> </p> <a href="https://publications.waset.org/abstracts/26397/status-check-journey-of-indias-energy-sustainability-through-renewable-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7986</span> Evolution of Germany’s Feed-in Tariff Policy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaafar%20Muhammed">Gaafar Muhammed</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20T.%20Ersoy"> N. T. Ersoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The role of electricity in the economic development of any country is undeniable. The main goal of utilizing renewable sources in electricity generation, especially in the emerging countries, is to improve electricity access, economic development and energy sustainability. Germany’s recent transition from conventional to renewable energy technologies is overwhelming, this might not be associated with its abundant natural resources but owing to the policies in place. In line with the fast economic and technological developments recorded in recent years, Germany currently produces approximately 1059 GW of its energy from renewable sources. Hence, at the end of 2016, Germany is among the world leaders in terms of installed renewable energy capacity. As one of the most important factors that lead to renewable energy utilization in any nation is an effective policy, this study aims at examining the effect of policies on renewable energy (RE) development in Germany. Also, the study will focus on the evolution of the adopted feed-in tariff policies, as this evolution has affected the renewable energy capacity in Germany over a period of 15 years (2000 to 2015). The main contribution of the study is to establish a link between the feed-in tariff and the increase of RE in Germany’s energy mix. This is done by analyzing the characteristics of various feed-in tariff mechanisms adopted through the years. These characteristics include the feed-in-tariff rate, degression, special conditions, supported technology, etc. Then, the renewable energy development in Germany has been analyzed through the years along with the targets and the progress in reaching these targets. The study reveals that Germany’s renewable energy support policies (especially feed-in tariff) lead to several benefits and contribute towards the targets existing for renewable energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feed-in%20tariff" title="feed-in tariff">feed-in tariff</a>, <a href="https://publications.waset.org/abstracts/search?q=Germany" title=" Germany"> Germany</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a>, <a href="https://publications.waset.org/abstracts/search?q=penewable%20energy" title=" penewable energy"> penewable energy</a> </p> <a href="https://publications.waset.org/abstracts/89642/evolution-of-germanys-feed-in-tariff-policy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7985</span> High Heating Value Bio-Chars from a Bio-Oil Upgrading Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julius%20K.%20Gane">Julius K. Gane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20N.%20Nahil"> Mohamad N. Nahil</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20T.%20Williams"> Paul T. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today’s world of rapid population growth and a changing climate, one way to mitigate various negative effects is via renewable energy solutions. Energy and power as basic requirements in almost all human endeavours are also the banes of the changing climate and the impacts thereof. Thus it is crucial to develop innovative and environmentally friendly energy options to ameliorate various negative repercussions. Upgrading of fast pyrolysis bio-oil via hydro-treatment offers such opportunities, as quality renewable liquid transportation fuels can be produced. The process, however, is typically accompanied by bio-char formation as a by-product. The goal of this work was to study the yield and some properties of bio-chars formed from a hydrotreatment process, with an overall aim to promote the valuable utilization of wastes or by-products from renewable energy technologies. It is assumed that bio-chars that have comparable energy contents with coals will be more desirable as solid energy materials due to renewability and environmental friendliness. Therefore, the analytical work in this study focused mainly on determining the higher heating value (HHV) of the chars. The method involved the reaction of bio-oil in an autoclave supplied by the Parr Instrument Company, IL, USA. Two main parameters (different temperatures and resident times) were investigated. The chars were characterized using a Thermo EA2000 CHNS analyser, then oxygen contents and HHVs computed based on the literature. From the results, these bio-chars can readily serve as feedstocks for the production of renewable solid fuels. Their HHVs ranged between 29.26-39.18 MJ/kg, affected by different temperatures and retention times. There was an inverse relationship between the oxygen content and the HHVs of the chars. It can, therefore, be concluded that it is possible to optimize the process efficiency of the hydrotreatment process used through the production of renewable energy materials from the 'waste’ char by-products. Future work should consider developing a suitable balance between the primary objective of bio-oil upgrading processes (which is to improve the quality of the liquid fuels) and the conversion of its solid wastes into value-added products such as smokeless briquettes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-char" title="bio-char">bio-char</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20solid%20biofuels" title=" renewable solid biofuels"> renewable solid biofuels</a>, <a href="https://publications.waset.org/abstracts/search?q=valorisation" title=" valorisation"> valorisation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste-to-energy" title=" waste-to-energy"> waste-to-energy</a> </p> <a href="https://publications.waset.org/abstracts/98223/high-heating-value-bio-chars-from-a-bio-oil-upgrading-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7984</span> New Platform of Biobased Aromatic Building Blocks for Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Caillol">Sylvain Caillol</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxence%20Fache"> Maxence Fache</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Boutevin"> Bernard Boutevin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent years have witnessed an increasing demand on renewable resource-derived polymers owing to increasing environmental concern and restricted availability of petrochemical resources. Thus, a great deal of attention was paid to renewable resources-derived polymers and to thermosetting materials especially, since they are crosslinked polymers and thus cannot be recycled. Also, most of thermosetting materials contain aromatic monomers, able to confer high mechanical and thermal properties to the network. Therefore, the access to biobased, non-harmful, and available aromatic monomers is one of the main challenges of the years to come. Starting from phenols available in large volumes from renewable resources, our team designed platforms of chemicals usable for the synthesis of various polymers. One of these phenols, vanillin, which is readily available from lignin, was more specifically studied. Various aromatic building blocks bearing polymerizable functions were synthesized: epoxy, amine, acid, carbonate, alcohol etc. These vanillin-based monomers can potentially lead to numerous polymers. The example of epoxy thermosets was taken, as there is also the problematic of bisphenol A substitution for these polymers. Materials were prepared from the biobased epoxy monomers obtained from vanillin. Their thermo-mechanical properties were investigated and the effect of the monomer structure was discussed. The properties of the materials prepared were found to be comparable to the current industrial reference, indicating a potential replacement of petrosourced, bisphenol A-based epoxy thermosets by biosourced, vanillin-based ones. The tunability of the final properties was achieved through the choice of monomer and through a well-controlled oligomerization reaction of these monomers. This follows the same strategy than the one currently used in industry, which supports the potential of these vanillin-derived epoxy thermosets as substitutes of their petro-based counterparts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignin" title="lignin">lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=vanillin" title=" vanillin"> vanillin</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=amine" title=" amine"> amine</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate" title=" carbonate"> carbonate</a> </p> <a href="https://publications.waset.org/abstracts/40489/new-platform-of-biobased-aromatic-building-blocks-for-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7983</span> Optimal Design of the Power Generation Network in California: Moving towards 100% Renewable Electricity by 2045</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wennan%20Long">Wennan Long</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuhao%20Nie"> Yuhao Nie</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunan%20Li"> Yunan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Brandt"> Adam Brandt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To fight against climate change, California government issued the Senate Bill No. 100 (SB-100) in 2018 September, which aims at achieving a target of 100% renewable electricity by the end of 2045. A capacity expansion problem is solved in this case study using a binary quadratic programming model. The optimal locations and capacities of the potential renewable power plants (i.e., solar, wind, biomass, geothermal and hydropower), the phase-out schedule of existing fossil-based (nature gas) power plants and the transmission of electricity across the entire network are determined with the minimal total annualized cost measured by net present value (NPV). The results show that the renewable electricity contribution could increase to 85.9% by 2030 and reach 100% by 2035. Fossil-based power plants will be totally phased out around 2035 and solar and wind will finally become the most dominant renewable energy resource in California electricity mix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=100%25%20renewable%20electricity" title="100% renewable electricity">100% renewable electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=California" title=" California"> California</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20expansion" title=" capacity expansion"> capacity expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20non-linear%20programming" title=" mixed integer non-linear programming"> mixed integer non-linear programming</a> </p> <a href="https://publications.waset.org/abstracts/110652/optimal-design-of-the-power-generation-network-in-california-moving-towards-100-renewable-electricity-by-2045" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7982</span> Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Kusakana">K. Kusakana </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energies" title="renewable energies">renewable energies</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20control" title=" operation control"> operation control</a> </p> <a href="https://publications.waset.org/abstracts/48787/overview-of-different-approaches-used-in-optimal-operation-control-of-hybrid-renewable-energy-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7981</span> Improve of Biomass Properties through Torrefaction Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Walkowiak">Malgorzata Walkowiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Witczak"> Magdalena Witczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Cichy"> Wojciech Cichy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass is an important renewable energy source in Poland. As a biofuel, it has many advantages like renewable in noticeable time and relatively high energy potential. But disadvantages of biomass like high moisture content and hygroscopic nature causes that gaining, transport, storage and preparation for combustion become troublesome and uneconomic. Thermal modification of biomass can improve hydrophobic properties, increase its calorific value and natural resistance. This form of thermal processing is known as torrefaction. The aim of the study was to investigate the effect of the pre-heat treatment of wood and plant lignocellulosic raw materials on the properties of solid biofuels. The preliminary studies included pine, beech and willow wood and other lignocellulosic raw materials: mustard, hemp, grass stems, tobacco stalks, sunflower husks, Miscanthus straw, rape straw, cereal straw, Virginia Mallow straw, rapeseed meal. Torrefaction was carried out using variable temperatures and time of the process, depending on the material used. It was specified the weight loss and the ash content and calorific value was determined. It was found that the thermal treatment of the tested lignocellulosic raw materials is able to provide solid biofuel with improved properties. In the woody materials, the increase of the lower heating value was in the range of 0,3 MJ/kg (pine and beech) to 1,1 MJ/kg (willow), in non-woody materials – from 0,5 MJ/kg (tobacco stalks, Miscanthus) to 3,5 MJ/kg (rapeseed meal). The obtained results indicate for further research needs, particularly in terms of conditions of the torrefaction process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20materials" title=" lignocellulosic materials"> lignocellulosic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20biofuels" title=" solid biofuels"> solid biofuels</a>, <a href="https://publications.waset.org/abstracts/search?q=torrefaction" title=" torrefaction"> torrefaction</a> </p> <a href="https://publications.waset.org/abstracts/53382/improve-of-biomass-properties-through-torrefaction-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7980</span> Experimental Investigation on the Fire Performance of Corrugated Sandwich Panels made from Renewable Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avishek%20Chanda">Avishek Chanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Kyeun%20Kim"> Nam Kyeun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Debes%20Bhattacharyya"> Debes Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of renewable substitutes in various semi-structural and structural applications has experienced an increase since the last few decades. Sandwich panels have been used for many decades, although research on understanding the effects of the core structures on the panels&rsquo; fire-reaction properties is limited. The current work investigates the fire-performance of a corrugated sandwich panel made from renewable, biodegradable, and sustainable material, plywood. The bench-scale fire testing apparatus, cone-calorimeter, was employed to evaluate the required fire-reaction properties of the sandwich core in a panel configuration, with three corrugated layers glued together with face-sheets under a heat irradiance of 50 kW/m<sup>2</sup>. The study helped in documenting a unique heat release trend associated with the fire performance of the 3-layered corrugated sandwich panels and in understanding the structural stability of the samples in the event of a fire. Furthermore, the total peak heat release rate was observed to be around 421 kW/m<sup>2</sup>, which is significantly low compared to many polymeric materials in the literature. The total smoke production was also perceived to be very limited compared to other structural materials, and the total heat release was also nominal. The time to ignition of 21.7 s further outlined the advantages of using the plywood component since polymeric composites, even with flame-retardant additives, tend to ignite faster. Overall, the corrugated plywood sandwich panels had significant fire-reaction properties and could have important structural applications. The possible use of structural panels made from bio-degradable material opens a new avenue for the use of similar structures in sandwich panel preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20sandwich%20panel" title="corrugated sandwich panel">corrugated sandwich panel</a>, <a href="https://publications.waset.org/abstracts/search?q=fire-reaction%20properties" title=" fire-reaction properties"> fire-reaction properties</a>, <a href="https://publications.waset.org/abstracts/search?q=plywood" title=" plywood"> plywood</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20material" title=" renewable material"> renewable material</a> </p> <a href="https://publications.waset.org/abstracts/132693/experimental-investigation-on-the-fire-performance-of-corrugated-sandwich-panels-made-from-renewable-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7979</span> Investigating The Nexus Between Energy Deficiency, Environmental Sustainability and Renewable Energy: The Role of Energy Trade in Global Perspectives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahim%20Ullah">Fahim Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Usman"> Muhammad Usman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy consumption and environmental sustainability are hard challenges of 21st century. Energy richness increases environmental pollution while energy poverty hinders economic growth. Considering these two aspects, present study calculates energy deficiency and examines the role of renewable energy to overcome rising energy deficiency and carbon emission for selected countries from 1990 to 2021. For empirical analysis, this study uses methods of moments panel quantile regression analysis and to check the robustness, study used panel quantile robust analysis. Graphical analysis indicated rising global energy deficiency since last three decades where energy consumption is higher than energy production. Empirical results showed that renewable energy is a significant factor for reducing energy deficiency. Secondly, the energy deficiency increases carbon emission level and again renewable energy decreases emissions level. This study recommends that global energy deficiency and rising carbon emissions can be controlled through structural change in the form of energy transition to replace non-renewable resources with renewable resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20deficiency" title="energy deficiency">energy deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title=" carbon emission"> carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20trade" title=" energy trade"> energy trade</a>, <a href="https://publications.waset.org/abstracts/search?q=PQL%20analysis" title=" PQL analysis"> PQL analysis</a> </p> <a href="https://publications.waset.org/abstracts/183640/investigating-the-nexus-between-energy-deficiency-environmental-sustainability-and-renewable-energy-the-role-of-energy-trade-in-global-perspectives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7978</span> Concept, Modules and Objectives of the Syllabus Course: Small Power Plants and Renewable Energy Sources </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rade%20M.%20Ciric">Rade M. Ciric</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikola%20L.%20J.%20Rajakovic"> Nikola L. J. Rajakovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a curriculum of the subject small power plants and renewable energy sources, dealing with the concept of distributed generation, renewable energy sources, hydropower, wind farms, geothermal power plants, cogeneration plants, biogas plants of agriculture and animal origin, solar power and fuel cells. The course is taught the manner of connecting small power plants to the grid, the impact of small generators on the distribution system, as well as economic, environmental and legal aspects of operation of distributed generators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title="distributed generation">distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title=" renewable energy sources"> renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title=" energy policy"> energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=curriculum" title=" curriculum"> curriculum</a> </p> <a href="https://publications.waset.org/abstracts/44109/concept-modules-and-objectives-of-the-syllabus-course-small-power-plants-and-renewable-energy-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7977</span> Electrolysis Ship for Green Hydrogen Production and Possible Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julian%20David%20Hunt">Julian David Hunt</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Nascimento"> Andreas Nascimento</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green hydrogen is the most environmental, renewable alternative to produce hydrogen. However, an important challenge to make hydrogen a competitive energy carrier is a constant supply of renewable energy, such as solar, wind and hydropower. Given that the electricity generation potential of these sources vary seasonally and interannually, this paper proposes installing an electrolysis hydrogen production plant in a ship and move the ship to the locations where electricity is cheap, or where the seasonal potential for renewable generation is high. An example of electrolysis ship application is to produce green hydrogen with hydropower from the North region of Brazil and then sail to the Northeast region of Brazil and generate hydrogen using excess electricity from offshore wind power. The electrolysis ship concept is interesting because it has the flexibility to produce green hydrogen using the cheapest renewable electricity available in the market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20hydrogen" title="green hydrogen">green hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolysis%20ship" title=" electrolysis ship"> electrolysis ship</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energies" title=" renewable energies"> renewable energies</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20variations" title=" seasonal variations"> seasonal variations</a> </p> <a href="https://publications.waset.org/abstracts/133018/electrolysis-ship-for-green-hydrogen-production-and-possible-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7976</span> Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=PR">PR</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title=" renewable energy sources"> renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=spiral%20model" title=" spiral model"> spiral model</a>, <a href="https://publications.waset.org/abstracts/search?q=optimize" title=" optimize"> optimize</a> </p> <a href="https://publications.waset.org/abstracts/193878/applying-and-connecting-the-microgrid-of-artificial-intelligence-in-the-form-of-a-spiral-model-to-optimize-renewable-energy-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7975</span> Prevalence of Plastic Use in Building and Construction: An Analysis of 250 Common Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teresa%20McGrath">Teresa McGrath</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Johnson"> Ryan Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Stamm"> Rebecca Stamm</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassidy%20Clarity"> Cassidy Clarity</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yung%20Lui"> Wei Yung Lui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building and construction is the second largest plastic user behind packaging, accounting for 16% of plastic production. Building and construction is also by far the largest user of one of the most impactful plastics, polyvinyl chloride (aka vinyl or PVC), accounting for 69% of PVC production. Building materials also have an outsized contribution to plastic pollution, including microplastic pollution. Yet building materials are often overlooked in plastic waste and pollution reduction efforts. Habitable will present a plastics and petrochemical analysis of over 250 common building material types and demonstrate how changes to building material selection towards safer, renewable, and lower carbon materials can reduce global consumption of plastics and associated pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fenceline%20communities" title=" fenceline communities"> fenceline communities</a>, <a href="https://publications.waset.org/abstracts/search?q=microplastics" title=" microplastics"> microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=safer%20alternatives" title=" safer alternatives"> safer alternatives</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20analysis" title=" life cycle analysis"> life cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemicals" title=" petrochemicals"> petrochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a> </p> <a href="https://publications.waset.org/abstracts/190126/prevalence-of-plastic-use-in-building-and-construction-an-analysis-of-250-common-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=renewable%20raw%20materials&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=renewable%20raw%20materials&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=renewable%20raw%20materials&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=renewable%20raw%20materials&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=renewable%20raw%20materials&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=renewable%20raw%20materials&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=renewable%20raw%20materials&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=renewable%20raw%20materials&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=renewable%20raw%20materials&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=renewable%20raw%20materials&amp;page=266">266</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=renewable%20raw%20materials&amp;page=267">267</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=renewable%20raw%20materials&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10