CINXE.COM

Search results for: water waste

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: water waste</title> <meta name="description" content="Search results for: water waste"> <meta name="keywords" content="water waste"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="water waste" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="water waste"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10447</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: water waste</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10447</span> Application of Dissolved Air Flotation for Removal of Oil from Wastewater </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talat%20Ghomashchi">Talat Ghomashchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Akbari"> Zahra Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shirin%20Malekpour"> Shirin Malekpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Marjan%20Alimirzaee"> Marjan Alimirzaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixing the waste water of industries with natural water has caused environmental pollution. So researcher try to obtain methods and optimum conditions for waste water treatment. One of important stage in waste water treatment is dissolved air flotation. DAF is used for the removal of suspended solids and oils from waste water. In this paper, the effect of several parameters on flotation efficiency with Cationic polyacrylamide as flocculant, was examined, namely, (a) concentration of cationic flocculants, (b) pH (c) fast mixing time, (d) fast mixing speed,(e) slow mixing time,(f) retention time and temperature. After design of experiment, in each trial turbidity of waste water was measured by spectrophotometer. Results show that contribution of pH and concentration of flocculant on flotation efficiency are 75% and 9% respectively. Cationic polyacrylamide led to a significant increase in the settling speed and effect of temperature is negligible. In the optimum condition, the outcome of the DAF unit is increased and amount of suspended solid and oil in waste water is decreased effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissolved%20air%20flotation" title="dissolved air flotation">dissolved air flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20industry" title=" oil industry"> oil industry</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/33427/application-of-dissolved-air-flotation-for-removal-of-oil-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10446</span> Research on Steam Injection Technology of Extended Range Engine Cylinder for Waste Heat Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiyuan%20Jia">Zhiyuan Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiuxiu%20Sun"> Xiuxiu Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Chen"> Yong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Hai"> Liu Hai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuangqing%20Li"> Shuangqing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The engine cooling water and exhaust gas contain a large amount of available energy. In order to improve energy efficiency, a steam injection technology based on waste heat recovery is proposed. The models of cooling water waste heat utilization, exhaust gas waste heat utilization, and exhaust gas-cooling water waste heat utilization were constructed, and the effects of the three modes on the performance of steam injection were analyzed, and then the feasibility of in-cylinder water injection steam technology based on waste heat recovery was verified. The research results show that when the injection water flow rate is 0.10 kg/s and the temperature is 298 K, at a cooling water temperature of 363 K, the maximum temperature of the injection water heated by the cooling water can reach 314.5 K; at an exhaust gas temperature of 973 K and an exhaust gas flow rate of 0.12 kg/s, the maximum temperature of the injection water heated by the exhaust gas can reach 430 K; Under the condition of cooling water temperature of 363 K, exhaust gas temperature of 973 K and exhaust gas flow rate of 0.12 kg/s, after cooling water and exhaust gas heating, the maximum temperature of the injection water can reach 463 K. When the engine is 1200 rpm, the water injection volume is 30 mg, and the water injection time is 36°CA, the engine power increases by 2% and the fuel consumption is reduced by 2.6%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20water" title="cooling water">cooling water</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20gas" title=" exhaust gas"> exhaust gas</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20range%20engine" title=" extended range engine"> extended range engine</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20injection" title=" steam injection"> steam injection</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20heat%20recovery" title=" waste heat recovery"> waste heat recovery</a> </p> <a href="https://publications.waset.org/abstracts/128975/research-on-steam-injection-technology-of-extended-range-engine-cylinder-for-waste-heat-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10445</span> Green Technology for the Treatment of Industrial Effluent Contaminated with Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afzaal%20Gulzar">Afzaal Gulzar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafaq%20Mubarak"> Shafaq Mubarak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zia-Ur-Rehman"> M. Zia-Ur-Rehman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial waste waters put environmental constrains to the water quality of aqueous reserves. Number of techniques has been used to treat them before disposal to water bodies. In this work a novel green approach is study by using poultry waste eggshells as a low cost efficient adsorbent for the dyes present in industrial effluent of textile and paper industries. The developed technique not only used to treat contaminated waters but also resulted in the utilization of poultry eggshell waste which in turn assists in solid waste management. Batch sorption studies like contact time, adsorbent dose, dye concentration, temp and pH has been conducted to find the optimum adsorption parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title="green technology">green technology</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20management" title=" solid waste management"> solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20effluent" title=" industrial effluent"> industrial effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshell%20waste%20utilization" title=" eggshell waste utilization"> eggshell waste utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20treatment" title=" waste water treatment"> waste water treatment</a> </p> <a href="https://publications.waset.org/abstracts/11994/green-technology-for-the-treatment-of-industrial-effluent-contaminated-with-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10444</span> Phenols and Manganese Removal from Landfill Leachate and Municipal Waste Water Using the Constructed Wetland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mojiri">Amin Mojiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Lou%20Ziyang"> Lou Ziyang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Constructed wetland (CW) is a reasonable method to treat waste water. Current study was carried out to co-treat landfill leachate and domestic waste water using a CW system. Typha domingensis was transplanted to CW, which encloses two substrate layers of adsorbents named ZELIAC and zeolite. Response surface methodology and central composite design were employed to evaluate experimental data. Contact time (h) and leachate to waste water mixing ratio (%; v/v) were selected as independent factors. Phenols and manganese removal were selected as dependent responses. At optimum contact time (48.7 h) and leachate to waste water mixing ratio (20.0%), removal efficiencies of phenols and manganese removal efficiencies were 90.5%, and 89.4%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constructed%20wetland" title="constructed wetland">constructed wetland</a>, <a href="https://publications.waset.org/abstracts/search?q=Manganese" title=" Manganese"> Manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=phenols" title=" phenols"> phenols</a>, <a href="https://publications.waset.org/abstracts/search?q=Thypha%20domingensis" title=" Thypha domingensis"> Thypha domingensis</a> </p> <a href="https://publications.waset.org/abstracts/33592/phenols-and-manganese-removal-from-landfill-leachate-and-municipal-waste-water-using-the-constructed-wetland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10443</span> Preparation of Water Hyacinth and Oil Palm Fiber for Plastic Waste Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pattamaphorn%20Phuangngamphan">Pattamaphorn Phuangngamphan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rewadee%20Anuwattana"> Rewadee Anuwattana</a>, <a href="https://publications.waset.org/abstracts/search?q=Narumon%20Soparatana"> Narumon Soparatana</a>, <a href="https://publications.waset.org/abstracts/search?q=Nestchanok%20Yongpraderm"> Nestchanok Yongpraderm</a>, <a href="https://publications.waset.org/abstracts/search?q=Atiporn%20Jinpayoon"> Atiporn Jinpayoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Supinya%20Sutthima"> Supinya Sutthima</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Klangkongsub"> Saroj Klangkongsub</a>, <a href="https://publications.waset.org/abstracts/search?q=Worapong%20Pattayawan"> Worapong Pattayawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to utilize the agricultural waste and plastic waste in Thailand in a study of the optimum conditions for preparing composite materials from water hyacinth and oil palm fiber and plastic waste in landfills. The water hyacinth and oil palm fiber were prepared by alkaline treatment with NaOH (5, 15 wt%) at 25-60 °C for 1 h. The treated fiber (5 and 10 phr) was applied to plastic waste composite. The composite was prepared by using a screw extrusion process from 185 °C to 200 °C with a screw speed of 60 rpm. The result confirmed that alkaline treatment can remove lignin, hemicellulose and other impurities on the fiber surface and also increase the cellulose content. The optimum condition of composite material is 10 phr of fiber coupling with 3 wt% PE-g-MA as compatibilizer. The composite of plastic waste and oil palm fiber has good adhesion between fiber and plastic matrix. The PE-g-MA has improved fiber-plastic interaction. The results suggested that the composite material from plastic waste and agricultural waste has the potential to be used as value-added products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title="agricultural waste">agricultural waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20utilization" title=" waste utilization"> waste utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20fiber" title=" cellulose fiber"> cellulose fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a> </p> <a href="https://publications.waset.org/abstracts/141733/preparation-of-water-hyacinth-and-oil-palm-fiber-for-plastic-waste-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10442</span> Innovative Method for Treating Oil-Produced Water with Low Operating Cost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Salman">Maha Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gada%20Al-Nuwaibit"> Gada Al-Nuwaibit</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Haji"> Ahmed Al-Haji</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Al-Haddad"> Saleh Al-Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Al-Mesri"> Abbas Al-Mesri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Al-Rugeeb"> Mansour Al-Rugeeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high salinity of oil-produced water and its complicated chemical composition, makes designing a suitable treatment system for oil-produced water is extremely difficult and costly. On the current study, a new innovative method was proposed to treat the complicated oil-produced water through a simple mixing with brine stream produced from waste water treatment plant. The proposal will investigate the scaling potential of oil-produce water, seawater and the selected brine water (BW) produced from Sulaibiya waste water treatment and reclamation plant (SWWTRP) before and after the mixing with oil-produced water, and will calculate the scaling potential of all expected precipitated salts using different conversion and different % of mixing to optimize the % of mixing between the oil-produced water and the selected stream. The result shows a great, feasible and economic solution to treat oil produced with a very low capital cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brine%20water" title="brine water">brine water</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-produced%20water" title=" oil-produced water"> oil-produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling%20potential" title=" scaling potential"> scaling potential</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaibiyah%20waste%20water%20and%20reclaminatin%20plant" title=" Sulaibiyah waste water and reclaminatin plant"> Sulaibiyah waste water and reclaminatin plant</a> </p> <a href="https://publications.waset.org/abstracts/64421/innovative-method-for-treating-oil-produced-water-with-low-operating-cost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10441</span> Study of Fly Ash Geopolymer Based Composites with Polyester Waste Addition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Sotiriadis">Konstantinos Sotiriadis</a>, <a href="https://publications.waset.org/abstracts/search?q=Olesia%20Mikhailova"> Olesia Mikhailova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, fly ash geopolymer based composites including polyester (PES) waste were studied. Specimens of three compositions were prepared: (a) fly ash geopolymer with 5% PES waste, (b) fly ash geopolymer mortar with 5% PES waste, (c) fly ash geopolymer mortar with 6.25% PES waste. Compressive and bending strength measurements, water absorption test and determination of thermal conductivity coefficient were performed. The results showed that the addition of sand in a mixture of geopolymer with 5% PES content led to higher compressive strength, while it increased water absorption and reduced thermal conductivity coefficient. The increase of PES addition in geopolymer mortars resulted in a more dense structure, indicated by the increase of strength and thermal conductivity and the decrease of water absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title="fly ash">fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymers" title=" geopolymers"> geopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester%20waste" title=" polyester waste"> polyester waste</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a> </p> <a href="https://publications.waset.org/abstracts/24754/study-of-fly-ash-geopolymer-based-composites-with-polyester-waste-addition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10440</span> Treatment of Rice Industry Waste Water by Flotation-Flocculation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Kapoor">J. K. Kapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Jabin"> Shagufta Jabin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Bhatia"> H. S. Bhatia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyamine flocculants were synthesized by poly-condensation of diphenylamine and epichlorohydrin using 1, 2-diaminoethane as modifying agent. The polyelectrolytes were prepared by taking epichlohydrin-diphenylamine in a molar ratio of 1:1, 1.5:1, 2:1, and 2.5:1. The flocculation performance of these polyelectrolytes was evaluated with rice industry waste water. The polyelectrolytes have been used in conjunction with alum for coagulation- flocculation process. Prior to the coagulation- flocculation process, air flotation technique was used with the aim to remove oil and grease content from waste water. Significant improvement was observed in the removal of oil and grease content after the air flotation technique. It has been able to remove 91.7% oil and grease from rice industry waste water. After coagulation-flocculation method, it has been observed that polyelectrolyte with epichlohydrin-diphenylamine molar ratio of 1.5:1 showed best results for the removal of pollutants from rice industry waste water. The highest efficiency of turbidity and TSS removal with polyelectrolyte has been found to be 97.5% and 98.2%, respectively. Results of these evaluations also reveal 86.8% removal of COD and 87.5% removal of BOD from rice industry waste water. Thus, we demonstrate optimization of coagulation–flocculation technique which is appropriate for waste water treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation" title="coagulation">coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculation" title=" flocculation"> flocculation</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flotation%20technique" title=" air flotation technique"> air flotation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolyte" title=" polyelectrolyte"> polyelectrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidity" title=" turbidity "> turbidity </a> </p> <a href="https://publications.waset.org/abstracts/16797/treatment-of-rice-industry-waste-water-by-flotation-flocculation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10439</span> Sintered Phosphate Cement for HLW Encapsulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20M.%20Nelwamondo">S. M. M. Nelwamondo</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20C.%20M.%20H.%20Meyer"> W. C. M. H. Meyer</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Krieg"> H. Krieg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of volatile radionuclides in high level waste (HLW) in the nuclear industry limits the use of high temperature encapsulation technologies (glass and ceramic). Chemically bonded phosphate cement (CBPC) matrixes can be used for encapsulation of low level waste. This waste form is however not suitable for high level waste due to the radiolysis of water in these matrixes. In this research, the sintering behavior of the magnesium potassium phosphate cement waste forms was investigated. The addition of sintering aids resulted in the sintering of these phosphate cement matrixes into dense monoliths containing no water. Experimental evidence will be presented that this waste form can now be considered as a waste form for volatile radionuclides and high level waste as radiation studies indicated no chemical phase transition or physical degradation of this waste form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemically%20bonded%20phosphate%20cements" title="chemically bonded phosphate cements">chemically bonded phosphate cements</a>, <a href="https://publications.waset.org/abstracts/search?q=HLW%20encapsulation" title=" HLW encapsulation"> HLW encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20stability" title=" radiation stability"> radiation stability</a> </p> <a href="https://publications.waset.org/abstracts/30155/sintered-phosphate-cement-for-hlw-encapsulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">638</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10438</span> Constructed Wetlands: A Sustainable Approach for Waste Water Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sehar">S. Sehar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khan"> S. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ali"> N. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ahmed"> S. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade, the hunt for cost-effective, eco-friendly and energy sustainable technologies for waste water treatment are gaining much attention due to emerging water crisis and rapidly depleting existing water reservoirs all over the world. In this scenario, constructed wetland being a “green technology” could be a reliable mean for waste water treatment especially in small communities due to cost-effectiveness, ease in management, less energy consumption and sludge production. Therefore, a low cost, lab-scale sub-surface flow hybrid constructed wetland (SS-HCW) was established for domestic waste water treatment.It was observed that not only the presence but also choice of suitable vegetation along with hydraulic retention time (HRT) are key intervening ingredients which directly influence pollutant removals in constructed wetlands. Another important aspect of vegetation is that it may facilitate microbial attachment in rhizosphere, thus promote biofilm formation via microbial interactions. The major factors that influence initial aggregation and subsequent biofilm formation i.e. divalent cations (Ca2+) and extra cellular DNA (eDNA) were also studied in detail. The presence of Ca2+ in constructed wetland demonstrate superior performances in terms of effluent quality, i.e BOD5, COD, TDS, TSS, and PO4- than in absence of Ca2+. Finally, light and scanning electron microscopies coupled with EDS were carried out to get more insights into the mechanics of biofilm formation with or without Ca addition. Therefore, the same strategy can be implemented in other waste water treatment technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20constructed%20wetland" title="hybrid constructed wetland">hybrid constructed wetland</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm%20formation" title=" biofilm formation"> biofilm formation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20treatment" title=" waste water treatment"> waste water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/17083/constructed-wetlands-a-sustainable-approach-for-waste-water-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10437</span> Urgent Need for E -Waste Management in Mongolia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enkhjargal%20Bat-Ochir">Enkhjargal Bat-Ochir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global market of electrical and electronic equipment (EEE) has increasing rapidly while the lifespan of these products has become increasingly shorter. So, e-waste is becoming the world’s fastest growing waste stream. E-waste is a huge problem when it’s not properly disposed of, as these devices contain substances that are harmful to the environment and to human health as they contaminate the land, water, and air. This paper tends to highlight e-waste problem and harmful effects and can grasp the extent of the problem and take the necessary measures to solve it in Mongolia and to improve standards and human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e%20-waste" title="e -waste">e -waste</a>, <a href="https://publications.waset.org/abstracts/search?q=recycle" title=" recycle"> recycle</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical" title=" electrical"> electrical</a>, <a href="https://publications.waset.org/abstracts/search?q=Mongolia" title=" Mongolia"> Mongolia</a> </p> <a href="https://publications.waset.org/abstracts/15308/urgent-need-for-e-waste-management-in-mongolia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10436</span> The Effect of Treated Waste-Water on Compaction and Compression of Fine Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Attom">M. Attom</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Abed"> F. Abed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elemam"> M. Elemam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nazal"> M. Nazal</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20ElMessalami"> N. ElMessalami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> —The main objective of this paper is to study the effect of treated waste-water (TWW) on the compaction and compressibility properties of fine soil. Two types of fine soils (clayey soils) were selected for this study and classified as CH soil and Cl type of soil. Compaction and compressibility properties such as optimum water content, maximum dry unit weight, consolidation index and swell index, maximum past pressure and volume change were evaluated using both tap and treated waste water. It was found that the use of treated waste water affects all of these properties. The maximum dry unit weight increased for both soils and the optimum water content decreased as much as 13.6% for highly plastic soil. The significant effect was observed in swell index and swelling pressure of the soils. The swell indexed decreased by as much as 42% and 33% for highly plastic and low plastic soils, respectively, when TWW is used. Additionally, the swelling pressure decreased by as much as 16% for both soil types. The result of this research pointed out that the use of treated waste water has a positive effect on compaction and compression properties of clay soil and promise for potential use of this water in engineering applications. Keywords—Consolidation, proctor compaction, swell index, treated waste-water, volume change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consolidation" title="consolidation">consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=proctor%20compaction" title=" proctor compaction"> proctor compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=swell%20index" title=" swell index"> swell index</a>, <a href="https://publications.waset.org/abstracts/search?q=treated%20waste-water" title=" treated waste-water"> treated waste-water</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20change" title=" volume change"> volume change</a> </p> <a href="https://publications.waset.org/abstracts/49669/the-effect-of-treated-waste-water-on-compaction-and-compression-of-fine-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10435</span> Production of Clean Reusable Distillery Waste Water Using Activated Carbon Prepared from Waste Orange Peels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Govha">Joseph Govha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharon%20Mudutu"> Sharon Mudutu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research details the treatment of distillery waste water by making use of activated carbon prepared from orange peels as an adsorbent. Adsorption was carried out at different conditions to determine the optimum conditions that work best for the removal of color in distillery waste water using orange peel activated carbon. Adsorption was carried out at different conditions by varying contact time, adsorbent dosage, pH, testing for color intensity and Biological Oxygen Demand. A maximum percentage color removal of 88% was obtained at pH 7 at an adsorbent dosage of 1g/20ml. Maximum adsorption capacity was obtained from the Langmuir isotherm at R2=0.98. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillery" title="distillery">distillery</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20peel" title=" orange peel"> orange peel</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/69881/production-of-clean-reusable-distillery-waste-water-using-activated-carbon-prepared-from-waste-orange-peels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10434</span> Phytoremediation Waste Processing of Coffee in Various Concentration of Organic Materials Plant Using Kiambang</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Aminatu%20Zuhria">Siti Aminatu Zuhria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On wet coffee processing can improve the quality of coffee, but the coffee liquid waste that can pollute the environment. Liquid waste a lot of coffee resulting from the stripping and washing the coffee. This research will be carried out the process of handling liquid waste stripping coffee from the coffee skin with media phytoremediation using plants kiambang. The purpose of this study was to determine the characteristics of the coffee liquid waste and plant phytoremediation kiambang as agent in various concentrations of liquid waste coffee as well as determining the most optimal concentration in the improved quality of waste water quality standard approach. This research will be conducted through two stages, namely the preliminary study and the main study. In a preliminary study aims to determine the ability of the plant life kiambang as phytoremediation agent in the media well water, distilled water and liquid waste coffee. The main study will be conducted wastewater dilution and coffee will be obtained COD concentration variations. Results are expected at this research that can determine the ability of plants kiambang as an agent for phytoremediation in wastewater treatment with various concentrations of waste and the most optimal concentration in the improved quality of waste water quality standard approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wet%20coffee%20processing" title="wet coffee processing">wet coffee processing</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiambang%20plant" title=" Kiambang plant"> Kiambang plant</a>, <a href="https://publications.waset.org/abstracts/search?q=variation%20%20concentration%20liquid%20waste" title=" variation concentration liquid waste"> variation concentration liquid waste</a> </p> <a href="https://publications.waset.org/abstracts/63378/phytoremediation-waste-processing-of-coffee-in-various-concentration-of-organic-materials-plant-using-kiambang" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10433</span> Phytoremediation Aeration System by Using Water Lettuce (Pistia Stratiotes I) Based on Zero Waste to Reduce the Impact of Industrial Liquid Waste in Jember, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wahyu%20Eko%20Diyanto">Wahyu Eko Diyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Amalia%20Dyah%20Arumsari"> Amalia Dyah Arumsari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulfatu%20Layinatinnahdiyah%20%20Arrosyadi"> Ulfatu Layinatinnahdiyah Arrosyadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tofu industry is one of the local food industry which is can being competitive industry in the ASEAN Economic Community (AEC). However, a lot of tofu entrepreneurs just thinking how to produce good quality product without considering the impact of environmental conditions from the production process. Production of tofu per day requires a number of 15 kg with liquid waste generated is 652.5 liters. That liquid waste is discharged directly into waterways, whereas tofu liquid waste contains organic compounds that quickly unraveled, so it can pollute waterways. In addition, tofu liquid waste is high in Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solid (TSS), nitrogen and phosphorus. This research is aim to create a method of handling liquid waste effectively and efficiently by using water lettuce. The method is done by observation and experiment by using phytoremediation method in the tofu liquid waste using water lettuce and adding aeration to reduce the concentration of contaminants. The results of the research analyzed the waste quality standard parameters based on SNI (National Standardization Agency of Indonesia). The efficiency concentration and parameters average of tofu liquid waste are obtained pH 3,42% (from 4,0 to be 3,3), COD 76,13% (from 3579 ppm to be 854 ppm), BOD 55 % (from 11600 ppm to be 5242 ppm), TSS 93,6% (from 3174 ppm to be 203 ppm), turbidity is 64,8% (from 977 NTU to be 1013 NTU), and temperature 36oC (from 45oC to be 40oC). The efficiency of these parameters indicates a safe value for the effluent to be channeled in waterways. Water lettuce and tofu liquid waste phytoremediation result will be used as biogas as renewable energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeration" title="aeration">aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20letuce" title=" water letuce"> water letuce</a>, <a href="https://publications.waset.org/abstracts/search?q=tofu%20liquid%20waste" title=" tofu liquid waste"> tofu liquid waste</a> </p> <a href="https://publications.waset.org/abstracts/63364/phytoremediation-aeration-system-by-using-water-lettuce-pistia-stratiotes-i-based-on-zero-waste-to-reduce-the-impact-of-industrial-liquid-waste-in-jember-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10432</span> Study on the Treatment of Waste Water Containing Nitrogen Heterocyclic Aromatic Hydrocarbons by Phenol-Induced Microbial Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhichao%20Li">Zhichao Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project has treated the waste-water that contains the nitrogen heterocyclic aromatic hydrocarbons, by using the phenol-induced microbial communities. The treatment of nitrogen heterocyclic aromatic hydrocarbons is a difficult problem for coking waste-water treatment. Pyridine, quinoline and indole are three kinds of most common nitrogen heterocyclic compounds in the f, and treating these refractory organics biologically has always been a research focus. The phenol-degrading bacteria can be used in the enhanced biological treatment effectively, and has a good treatment effect. Therefore, using the phenol-induced microbial communities to treat the coking waste-water can remove multiple pollutants concurrently, and improve the treating efficiency of coking waste-water. Experiments have proved that the phenol-induced microbial communities can degrade the nitrogen heterocyclic ring aromatic hydrocarbon efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol" title="phenol">phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20heterocyclic%20aromatic%20hydrocarbons" title=" nitrogen heterocyclic aromatic hydrocarbons"> nitrogen heterocyclic aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol-degrading%20bacteria" title=" phenol-degrading bacteria"> phenol-degrading bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20communities" title=" microbial communities"> microbial communities</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment%20technology" title=" biological treatment technology"> biological treatment technology</a> </p> <a href="https://publications.waset.org/abstracts/78438/study-on-the-treatment-of-waste-water-containing-nitrogen-heterocyclic-aromatic-hydrocarbons-by-phenol-induced-microbial-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10431</span> Removal of Nitrate and Phosphates from Waste Water Using Activated Bio-Carbon Produced from Agricultural Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kgomotso%20Matobole">Kgomotso Matobole</a>, <a href="https://publications.waset.org/abstracts/search?q=Natania%20De%20Wet"> Natania De Wet</a>, <a href="https://publications.waset.org/abstracts/search?q=Tefo%20Mbambo"> Tefo Mbambo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen and phosphorus are nutrients which are required in the ecosystem, however, at high levels, these nutrients contribute to the process of eutrophication in the receiving water bodies, which threatens aquatic organisms. Hence it is vital that they are removed before the water is discharged. This phenomenon increases the cost related to wastewater treatment. This raises the need for the development of processes that are cheaper. Activated biocarbon was used in batch and filtration system to remove nitrates and phosphates. The batch system has higher nutrients removal capabilities than the filtration system. For phosphate removal, 93 % removal is achieved at the adsorbent of 300 g while for nitrates, 84 % removal is achieved when 200 g of activated carbon is loaded. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20treatment" title="waste water treatment">waste water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphates" title=" phosphates"> phosphates</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrates" title=" nitrates"> nitrates</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title=" agricultural waste"> agricultural waste</a> </p> <a href="https://publications.waset.org/abstracts/64536/removal-of-nitrate-and-phosphates-from-waste-water-using-activated-bio-carbon-produced-from-agricultural-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10430</span> Technical Option Brought Solution for Safe Waste Water Management in Urban Public Toilet and Improved Ground Water Table</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Kumar">Chandan Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Context: Population growth and rapid urbanization resulted nearly 2 Lacs migrants along with families moving to Delhi each year in search of jobs. Most of these poor migrant families end up living in slums and constitute an estimated population of 1.87 lacs every year. Further, more than half (52 per cent) of Delhi’s population resides in places such as unauthorized and resettled colonies. Slum population is fully dependent on public toilet to defecate. In Public toilets, manholes either connected with Sewer line or septic tank. Septic tank connected public toilet faces major challenges to dispose of waste water. They have to dispose of waste water in outside open drain and waste water struck out side of public toilet complex and near to the slum area. As a result, outbreak diseases such as Malaria, Dengue and Chikungunya in slum area due to stagnated waste water. Intervention and Innovation took place by Save the Children in 21 Public Toilet Complexes of South Delhi and North Delhi. These public toilet complexes were facing same waste water disposal problem. They were disposing of minimum 1800 liters waste water every day in open drain. Which caused stagnated water-borne diseases among the nearest community. Construction of Soak Well: Construction of soak well in urban context was an innovative approach to minimizing the problem of waste water management and increased water table of existing borewell in toilet complex. This technique made solution in Ground water recharging system, and additional water was utilized in vegetable gardening within the complex premises. Soak well had constructed with multiple filter media with inlet and safeguarding bed on surrounding surface. After construction, soak well started exhausting 2000 liters of waste water to raise ground water level through different filter media. Finally, we brought a change in the communities by constructing soak well and with zero maintenance system. These Public Toilet Complexes were empowered by safe disposing waste water mechanism and reduced stagnated water-borne diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diseases" title="diseases">diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20water%20recharging%20system" title=" ground water recharging system"> ground water recharging system</a>, <a href="https://publications.waset.org/abstracts/search?q=soak%20well" title=" soak well"> soak well</a>, <a href="https://publications.waset.org/abstracts/search?q=toilet%20complex" title=" toilet complex"> toilet complex</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/58853/technical-option-brought-solution-for-safe-waste-water-management-in-urban-public-toilet-and-improved-ground-water-table" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10429</span> Waste Recovery: A Sustainable Way for Application of Solid Waste from WTP&#039;s in Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Araujo">Flavio Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Livia%20Dias"> Livia Dias</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabiolla%20Lima"> Fabiolla Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Scalize"> Paulo Scalize</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Albuquerque"> Antonio Albuquerque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water treatment residues (WTR) are solid waste produced during drinking water treatment and have recently been seen as a reusable material. The aim of this research was show how to use the residue generated in a Water Treatment Plant, located in Goiania, Brazil, following the considerations of the law of solid waste to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residue" title="residue">residue</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20plants" title=" water treatment plants"> water treatment plants</a>, <a href="https://publications.waset.org/abstracts/search?q=WTR" title=" WTR"> WTR</a>, <a href="https://publications.waset.org/abstracts/search?q=WTP" title=" WTP"> WTP</a> </p> <a href="https://publications.waset.org/abstracts/19974/waste-recovery-a-sustainable-way-for-application-of-solid-waste-from-wtps-in-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10428</span> Influence of Plastic Waste Reinforcement on Compaction and Consolidation Behavior of Silty Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Meftahi">Maryam Meftahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashar%20Hamidzadeh"> Yashar Hamidzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, the amount of solid waste production has been rising. In the meantime, plastic waste is one of the major parts of urban solid waste, so, recycling plastic waste from water bottles has become a serious challenge in the whole world. The experimental program includes the study of the effect of waste plastic fibers on maximum dry density (MDD), optimum moisture content (OMC) with different sizes and contents. Also, one dimensional consolidation tests were carried out to evaluate the benefit of utilizing randomly distributed waste plastics fiber to improve the engineering behavior of a tested soils. Silty soil specimens were prepared and tested at five different percentages of plastic waste content (i.e. 0.25%, 0.50%, 0.75%, 1% and 1.25% by weight of the parent soil). The size of plastic chips used, are 4 mm, 8 mm and 12 mm long and 4 mm in width. The results show that with the addition of waste plastic fibers, the MDD and OMC and also the compressibility of soil decrease significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silty%20soil" title="silty soil">silty soil</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20plastic" title=" waste plastic"> waste plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement" title=" reinforcement"> reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/108863/influence-of-plastic-waste-reinforcement-on-compaction-and-consolidation-behavior-of-silty-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10427</span> Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Vega%20Camacho">Oscar Vega Camacho</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Vargas"> Andrea Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ellery%20Ariza"> Ellery Ariza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its waste water treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title="decision making">decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20chain" title=" markov chain"> markov chain</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/12123/finite-dynamic-programming-to-decision-making-in-the-use-of-industrial-residual-water-treatment-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10426</span> Investigation of Utilization Possibility of Fluid Gas Desulfurization Waste for Industrial Waste Water Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K%C4%B1z%C4%B1ltas%20Demir">S. Kızıltas Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Moroydor%20Derun"> E. Moroydor Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul"> N. Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flue gas desulfurization gypsum (FGD) is a waste material arouse from coal power plants. Hydroxyapatite (HAP) is a biomaterial with porous structure. In this study, FGD gypsum which retrieved from coal power plant in Turkey was characterized and HAP particles which can be used as an adsorbent in wastewater treatment application were synthesized from the FGD gypsum. The raw materials are characterized by using X Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques and produced HAP are characterized by using XRD. As a result, HAP particles were synthesized at the molar ratio of 5:10, 5:15, 5:20, 5:24, at room temperature, in alkaline medium (pH=11) and in 1 hour-reaction time. Among these conditions, 5:20 had the best result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FGD%20wastes" title="FGD wastes">FGD wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=HAP" title=" HAP"> HAP</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphogypsum" title=" phosphogypsum"> phosphogypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/32402/investigation-of-utilization-possibility-of-fluid-gas-desulfurization-waste-for-industrial-waste-water-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10425</span> Consequential Effects of Coal Utilization on Urban Water Supply Sources – a Study of Ajali River in Enugu State Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enebe%20Christian%20Chukwudi">Enebe Christian Chukwudi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water bodies around the world notably underground water, ground water, rivers, streams, and seas, face degradation of their water quality as a result of activities associated with coal utilization including coal mining, coal processing, coal burning, waste storage and thermal pollution from coal plants which tend to contaminate these water bodies. This contamination results from heavy metals, presence of sulphate and iron, dissolved solids, mercury and other toxins contained in coal ash, sludge, and coal waste. These wastes sometimes find their way to sources of urban water supply and contaminate them. A major problem encountered in the supply of potable water to Enugu municipality is the contamination of Ajali River, the source of water supply to Enugu municipal by coal waste. Hydro geochemical analysis of Ajali water samples indicate high sulphate and iron content, high total dissolved solids(TDS), low pH (acidity values) and significant hardness in addition to presence of heavy metals, mercury, and other toxins. This is indicative of the following remedial measures: I. Proper disposal of mine wastes at designated disposal sites that are suitably prepared. II. Proper water treatment and III. Reduction of coal related contaminants taking advantage of clean coal technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effects" title="effects">effects</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=utilization" title=" utilization"> utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sources" title=" sources"> sources</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination" title=" contamination"> contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/16098/consequential-effects-of-coal-utilization-on-urban-water-supply-sources-a-study-of-ajali-river-in-enugu-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10424</span> Effect of Aeration on Co-Composting of Mixture of Food Waste with Sawdust and Sewage Sludge from Nicosia Waste Water Treatment Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azad%20Khalid">Azad Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ime%20Akanyeti"> Ime Akanyeti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> About 68% of the urban solid waste generated in Turkish Republic of Northern Cyprus TRNC is household solid waste, at present, its disposal in landfills. In other hand more than 3000 ton per year of sewage sludge produces in Nicosia waste water treatment plant, the produced sludge piled up without any processing. Co-composting of organic fraction of municipal solid waste and sewage sludge is diverting of municipal solid waste from landfills and best disposal of wastewater sewage sludge. Three 10 L insulated bioreactor R1, R2 and R3 obtained with aeration rate 0.05 m3/h.kg for R2 and R3, R1 was without aeration. The mixture was destined with ratio of sewage sludge: food waste: sawdust; 1:5:0.8 (w/w). The effective of aeration monitored during 42 days of process through investigation in key parameter moisture, C/N ratio, temperature and pH. Results show that the high moisture content cause problem and around 60% recommend, C/N ratio decreased about 17% in aerated reactors and 10% in without aeration and mixture volume reduced in volume 40% in final compost with size of 1.00 to 20.0 mm. temperature in reactors with aeration reached thermophilic phase above 50 °C and <40 °C in without aeration. The final pH is 6.1 in R1, 8.23 in R2 and 8.1 in R3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeration" title="aeration">aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20waste" title=" food waste"> food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=sawdust" title=" sawdust"> sawdust</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a> </p> <a href="https://publications.waset.org/abstracts/172531/effect-of-aeration-on-co-composting-of-mixture-of-food-waste-with-sawdust-and-sewage-sludge-from-nicosia-waste-water-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10423</span> Modelling and Simulation of Bioethanol Production from Food Waste Using CHEMCAD Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kgomotso%20Matobole">Kgomotso Matobole</a>, <a href="https://publications.waset.org/abstracts/search?q=Noluzuko%20Monakali"> Noluzuko Monakali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On a global scale, there is an alarming generation of food waste. Food waste is generated across the food supply chain. Worldwide urbanization, as well as global economic growth, have contributed to this amount of food waste the environment is receiving. Food waste normally ends on illegal dumping sites when not properly disposed, or disposed to landfills. This results in environmental pollution due to inadequate waste management practices. Food waste is rich in organic matter and highly biodegradable; hence, it can be utilized for the production of bioethanol, a type of biofuel. In so doing, alternative energy will be created, and the volumes of food waste will be reduced in the process. This results in food waste being seen as a precious commodity in energy generation instead of a pollutant. The main aim of the project was to simulate a biorefinery, using a software called CHEMCAD 7.12. The resulting purity of the ethanol from the simulation was 98.9%, with the feed ratio of 1: 2 for food waste and water. This was achieved by integrating necessary unit operations and optimisation of their operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20waste" title=" food waste"> food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/112719/modelling-and-simulation-of-bioethanol-production-from-food-waste-using-chemcad-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10422</span> Study of Environmental Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houmame%20Benbouali">Houmame Benbouali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The risks, in general, exist in any project; one can hardly carry out a project without taking risks. The hydraulic works are rather complex projects in their design, realization and exploitation, and are often subjected at the multiple risks being able to influence with their good performance, and can have an negative impact on their environment. The present study was carried out to quote the impacts caused by purification plant STEP Chlef on the environment, it aims has studies the environmental impacts during construction and when designing this STEP, it is divided into two parts: The first part results from a research task bibliographer which contain three chapters (-cleansing of water worn-general information on water worn-proceed of purification of waste water). The second part is an experimental part which is divided into four chapters (detailed state initial-description of the station of purification-evaluation of the impacts of the project analyzes measurements and recommendations). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=treatment%20plant" title="treatment plant">treatment plant</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20treatment" title=" waste water treatment"> waste water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/23227/study-of-environmental-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10421</span> The Prospect of Producing Hydrogen by Electrolysis of Idle Discharges of Water from Reservoirs and Recycling of Waste-Gas Condensates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inom%20Sh.%20Normatov">Inom Sh. Normatov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurmakhmad%20Shermatov"> Nurmakhmad Shermatov</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajabali%20Barotov"> Rajabali Barotov</a>, <a href="https://publications.waset.org/abstracts/search?q=Rano%20Eshankulova"> Rano Eshankulova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The results of the studies for the hydrogen production by the application of water electrolysis and plasma-chemical processing of gas condensate-waste of natural gas production methods are presented. Thin coating covers the electrode surfaces in the process of water electrolysis. Therefore, water for electrolysis was first exposed to electrosedimentation. The threshold voltage is shifted to a lower value compared with the use of electrodes made of stainless steel. At electrolysis of electrosedimented water by use of electrodes from stainless steel, a significant amount of hydrogen is formed. Pyrolysis of gas condensates in the atmosphere of a nitrogen was followed by the formation of acetylene (3-7 vol.%), ethylene (4-8 vol.%), and pyrolysis carbon (10-15 wt.%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrolyze" title="electrolyze">electrolyze</a>, <a href="https://publications.waset.org/abstracts/search?q=gascondensate" title=" gascondensate"> gascondensate</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/57794/the-prospect-of-producing-hydrogen-by-electrolysis-of-idle-discharges-of-water-from-reservoirs-and-recycling-of-waste-gas-condensates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10420</span> Brine Waste from Seawater Desalination in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cynthia%20Mahadi">Cynthia Mahadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhafezah%20Kasmuri"> Norhafezah Kasmuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity is a growing issue these days. As a result, saltwater is being considered a limitless supply of fresh water through the desalination process, which is likely to address the worldwide water crisis, including in Malaysia. This study aims to offer the best management practice for controlling brine discharge in Malaysia by comparing environmental regulations on brine waste management in other countries. Then, a survey was distributed to the public to acquire further information about their level of awareness of the harmful effects of brine waste and to find out their perspective on the proposed solutions to ensure the effectiveness of the measures. As a result, it has been revealed that Malaysia still lacks regulations regarding the disposal of brine waste. Thus, a recommendation based on practices in other nations has been put forth by this study. This study suggests that the government and Malaysia's environmental regulatory body should govern brine waste disposal in the Environmental Quality Act 1974. Also, to add the construction of a desalination plant in Schedule 1 of prescribed activities was necessary. Because desalination plants can harm the environment during both construction and operation, every proposal for the construction of a desalination plant should involve the submission of an environmental impact assessment (EIA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seawater%20desalination" title="seawater desalination">seawater desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=brine%20waste" title=" brine waste"> brine waste</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact%20assessment" title=" environmental impact assessment"> environmental impact assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20Delphi%20method" title=" fuzzy Delphi method"> fuzzy Delphi method</a> </p> <a href="https://publications.waset.org/abstracts/168128/brine-waste-from-seawater-desalination-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10419</span> Waste Management in Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Ekene%20Egwu">Peter Ekene Egwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste management is of critical importance in Africa for reasons related to public health, human dignity, climate resilience and environmental preservation. However, delivering waste management services requires adequate funding, which has generally been lacking in a context where the generation of waste is outpacing the development of waste management infrastructure in most cities. The sector represents a growing percentage of cities’ greenhouse gas (GHG) emissions, and some of the African cities profiled in this study are now designing waste management strategies with emission reduction in mind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=management%20waste%20material" title="management waste material">management waste material</a>, <a href="https://publications.waset.org/abstracts/search?q=Africa" title=" Africa"> Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=uses%20of%20new%20technology%20to%20manage%20waste" title=" uses of new technology to manage waste"> uses of new technology to manage waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/184334/waste-management-in-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10418</span> Effect of Waste Dumping on Groundwater Quality at Guntun Layi Funtua, Katsina State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isiya%20Aminu%20Dabai">Isiya Aminu Dabai</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebola%20Kayode"> Adebola Kayode</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeosun%20Kayode%20Daniel"> Adeosun Kayode Daniel </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rural water supply relies mainly on groundwater exploitation, because it is more accessible, reliable, cheaper to develop and maintain, also with good quality compared to the surface water. Despite these advantages, groundwater has come under pollution threats like waste dumps, mineral exploitation, industrialization etc. This study investigates the effects of an open dumping to the surrounding groundwater. Ten hand dug well water samples were collected from the surroundings and tested. The average result shows that temperature, colour and turbidity to be 8.50 c, 6.1 TCU and 3.1 NTU respectively and pH, conductivity, total dissolved solids, chloride content and hardness to be 7.2, 4.78, 1.8, 5.7, and 3.4 respectively while in the bacteriological test well no. 1, 2, 3, and 5 shows the presence of coliforms and E. Coli bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a>, <a href="https://publications.waset.org/abstracts/search?q=dump%20site" title=" dump site"> dump site</a>, <a href="https://publications.waset.org/abstracts/search?q=unsafe" title=" unsafe"> unsafe</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality "> quality </a> </p> <a href="https://publications.waset.org/abstracts/18514/effect-of-waste-dumping-on-groundwater-quality-at-guntun-layi-funtua-katsina-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">681</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20waste&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20waste&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20waste&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20waste&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20waste&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20waste&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20waste&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20waste&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20waste&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20waste&amp;page=348">348</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20waste&amp;page=349">349</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20waste&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10