CINXE.COM
codensity monad in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> codensity monad in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> codensity monad </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/9165/#Item_40" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="category_theory">Category Theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></strong></p> <h2 id="sidebar_concepts">Concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a></p> </li> </ul> <h2 id="sidebar_universal_constructions">Universal constructions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+construction">universal construction</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor">adjoint functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit</a>/<a class="existingWikiWord" href="/nlab/show/colimit">colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end</a>/<a class="existingWikiWord" href="/nlab/show/coend">coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> </li> </ul> </li> </ul> <h2 id="sidebar_theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+construction">Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor+theorem">adjoint functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">monadicity theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+lifting+theorem">adjoint lifting theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gabriel-Ulmer+duality">Gabriel-Ulmer duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+object+argument">small object argument</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freyd-Mitchell+embedding+theorem">Freyd-Mitchell embedding theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+type+theory+and+category+theory">relation between type theory and category theory</a></p> </li> </ul> <h2 id="sidebar_extensions">Extensions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf+and+topos+theory">sheaf and topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> </ul> <h2 id="sidebar_applications">Applications</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/applications+of+%28higher%29+category+theory">applications of (higher) category theory</a></li> </ul> <div> <p> <a href="/nlab/edit/category+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#Idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#examples'>Examples</a></li> <li><a href='#properties'>Properties</a></li> <li><a href='#related_entries'>Related entries</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="Idea">Idea</h2> <p>Recall (eg. from <a href="monad#RelationBetweenAdjunctionsAndMonads">here</a>) that every <a class="existingWikiWord" href="/nlab/show/right+adjoint+functor">right adjoint functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>⊣</mo><mi>G</mi><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>ℬ</mi><mo>→</mo><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">F\dashv G \,\colon\, \mathcal{B}\to\mathcal{A}</annotation></semantics></math> induces a <a class="existingWikiWord" href="/nlab/show/monad">monad</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">\mathcal{A}</annotation></semantics></math> whose <a class="existingWikiWord" href="/nlab/show/underlying">underlying</a> <a class="existingWikiWord" href="/nlab/show/endofunctor">endofunctor</a> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>∘</mo><mi>F</mi></mrow><annotation encoding="application/x-tex">G\circ F</annotation></semantics></math>.</p> <p>The notion of the <em>codensity monad</em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>𝕋</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{T}^G</annotation></semantics></math> is a generalization of this construction to functors <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo lspace="verythinmathspace">:</mo><mi>ℬ</mi><mo>→</mo><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">G \colon \mathcal{B}\to\mathcal{A}</annotation></semantics></math> that need not be <a class="existingWikiWord" href="/nlab/show/right+adjoints">right adjoints</a> but do at least admit a right <a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ran</mi> <mi>G</mi></msub><mi>G</mi></mrow><annotation encoding="application/x-tex">Ran_G G</annotation></semantics></math> along themselves, such that both constructions agree when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> is in fact a <a class="existingWikiWord" href="/nlab/show/right+adjoint">right adjoint</a>.</p> <p>The name ‘codensity monad’ stems from the fact that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>𝕋</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{T}^G</annotation></semantics></math> reduces to the <a class="existingWikiWord" href="/nlab/show/identity+functor">identity</a> monad iff <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo lspace="verythinmathspace">:</mo><mi>ℬ</mi><mo>→</mo><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">G \colon \mathcal{B}\to\mathcal{A}</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/codense+functor">codense functor</a>. Thus, in general, the codensity monad “measures the failure of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> to be codense”.</p> <p>The same idea applies to <a class="existingWikiWord" href="/nlab/show/2-categories">2-categories</a> or <a class="existingWikiWord" href="/nlab/show/bicategories">bicategories</a> more general than <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a>: codensity monads can be defined whenever suitable right Kan extensions exist.</p> <h2 id="definition">Definition</h2> <p> <div class='num_defn' id='codensity_monad'> <h6>Definition</h6> <p><strong>(codensity monad)</strong> <br /> Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo lspace="verythinmathspace">:</mo><mi>ℬ</mi><mo>→</mo><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">G \colon \mathcal{B}\to\mathcal{A}</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/functor">functor</a> whose <a href="Kan+extension#Pointwise">pointwise</a> right <a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ran</mi> <mi>G</mi></msub><mi>G</mi><mspace width="thinmathspace"></mspace><mo>≡</mo><mspace width="thinmathspace"></mspace><mo stretchy="false">(</mo><msup><mi>T</mi> <mi>G</mi></msup><mo>,</mo><mspace width="thickmathspace"></mspace><mi>α</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Ran_G G \,\equiv\, (T^G,\;\alpha)</annotation></semantics></math> along itself exists, with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><msup><mi>T</mi> <mi>G</mi></msup><mo>∘</mo><mi>G</mi><mo>⇒</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">\alpha \,\colon\, T^G \circ G \Rightarrow G</annotation></semantics></math> denoting the corresponding <a class="existingWikiWord" href="/nlab/show/universal+construction">universal</a> <a class="existingWikiWord" href="/nlab/show/2-morphism">2-morphism</a> on the <a class="existingWikiWord" href="/nlab/show/underlying">underlying</a> functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>T</mi> <mi>G</mi></msup><mo lspace="verythinmathspace">:</mo><mi>𝒜</mi><mo>→</mo><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">T^G \colon \mathcal{A}\to\mathcal{A}</annotation></semantics></math>.</p> <p>The <em>codensity monad</em> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/monad">monad</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>𝕋</mi> <mi>G</mi></msup><mo>≔</mo><mo maxsize="1.2em" minsize="1.2em">⟨</mo><mspace width="thickmathspace"></mspace><msup><mi>T</mi> <mi>G</mi></msup><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>𝒜</mi><mo>→</mo><mi>𝒜</mi><mo>,</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msup><mi>η</mi> <mi>G</mi></msup><mo lspace="verythinmathspace">:</mo><msub><mi>id</mi> <mi>𝒜</mi></msub><mo>⇒</mo><msup><mi>T</mi> <mi>G</mi></msup><mo>,</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msup><mi>μ</mi> <mi>G</mi></msup><mo lspace="verythinmathspace">:</mo><msup><mi>T</mi> <mi>G</mi></msup><mo>∘</mo><msup><mi>T</mi> <mi>G</mi></msup><mo>⇒</mo><msup><mi>T</mi> <mi>G</mi></msup><mspace width="thickmathspace"></mspace><mo maxsize="1.2em" minsize="1.2em">⟩</mo><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \mathbb{T}^G \coloneqq \big\langle \; T^G \,\colon\, \mathcal{A} \to\mathcal{A} ,\;\;\; \eta^G \colon id_\mathcal{A}\Rightarrow T^G ,\;\;\; \mu^G \colon T^G\circ T^G \Rightarrow T^G \; \big\rangle \,, </annotation></semantics></math></div> <p>where</p> <ul> <li> <p>the carrier functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>𝕋</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{T}^G</annotation></semantics></math> is given by the end</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>𝕋</mi> <mi>G</mi></msup><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>∫</mo> <mrow><mi>B</mi><mo>∈</mo><mi>ℬ</mi></mrow></msub><mi>𝒜</mi><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>GB</mi><mo stretchy="false">)</mo><mo>⋔</mo><mi>GB</mi></mrow><annotation encoding="application/x-tex"> \mathbb{T}^G(A) = \int_{B \in \mathcal{B}} \mathcal{A}(A, GB) \pitchfork GB </annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⋔</mo></mrow><annotation encoding="application/x-tex">\pitchfork</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/power">power</a>, i.e. repeated product.</p> </li> <li> <p>the <em><a class="existingWikiWord" href="/nlab/show/monad+unit">monad unit</a></em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>η</mi> <mi>G</mi></msup><mo lspace="verythinmathspace">:</mo><msub><mi>id</mi> <mi>𝒜</mi></msub><mo>⇒</mo><msup><mi>T</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">\eta^G \colon id_\mathcal{A}\Rightarrow T^G</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a> given by the <a class="existingWikiWord" href="/nlab/show/universal+property">universal property</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msup><mi>T</mi> <mi>G</mi></msup><mo>,</mo><mspace width="thickmathspace"></mspace><mi>α</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(T^G,\;\alpha)</annotation></semantics></math> with respect to the pair <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>id</mi> <mi>𝒜</mi></msub><mo>,</mo><mspace width="thickmathspace"></mspace><msub><mn>1</mn> <mi>G</mi></msub><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace></mrow><annotation encoding="application/x-tex">(id_\mathcal{A},\;1_G)\;</annotation></semantics></math>,</p> </li> <li> <p>the <em>monad multiplication</em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>μ</mi> <mi>G</mi></msup><mo lspace="verythinmathspace">:</mo><msup><mi>T</mi> <mi>G</mi></msup><mo>∘</mo><msup><mi>T</mi> <mi>G</mi></msup><mo>⇒</mo><msup><mi>T</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">\mu^G \colon T^G\circ T^G\Rightarrow T^G</annotation></semantics></math> results from the <a class="existingWikiWord" href="/nlab/show/universal+property">universal property</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msup><mi>T</mi> <mi>G</mi></msup><mo>,</mo><mspace width="thickmathspace"></mspace><mi>α</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(T^G,\;\alpha)</annotation></semantics></math> with respect to the pair <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msup><mi>T</mi> <mi>G</mi></msup><mo>∘</mo><msup><mi>T</mi> <mi>G</mi></msup><mo>,</mo><mspace width="thickmathspace"></mspace><mi>α</mi><mo>∘</mo><mo stretchy="false">(</mo><msub><mn>1</mn> <mrow><msup><mi>T</mi> <mi>G</mi></msup></mrow></msub><mo>*</mo><mi>α</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(T^G\circ T^G,\;\alpha\circ (1_{T^G}\ast\alpha))</annotation></semantics></math>.</p> </li> </ul> <p></p> </div> </p> <p>Concerning existence, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ran</mi> <mi>G</mi></msub><mi>G</mi></mrow><annotation encoding="application/x-tex">Ran_G G</annotation></semantics></math> exists for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo lspace="verythinmathspace">:</mo><mi>ℬ</mi><mo>→</mo><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">G \colon \mathcal{B}\to\mathcal{A}</annotation></semantics></math>, e.g. when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℬ</mi></mrow><annotation encoding="application/x-tex">\mathcal{B}</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/small+category">small</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">\mathcal{A}</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/complete+category">complete</a>.</p> <p>In this circumstance, when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℬ</mi></mrow><annotation encoding="application/x-tex">\mathcal{B}</annotation></semantics></math> is small and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">\mathcal{A}</annotation></semantics></math> is complete, then the codensity monad is equivalently the one that <a href="monad#RelationToAdjunctionsAndMonadicity">arises</a> from the <a class="existingWikiWord" href="/nlab/show/adjoint+functor">adjunction</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>𝒜</mi><munderover><mo>⊥</mo><munder><mo>⟵</mo><mrow></mrow></munder><mover><mo>⟶</mo><mrow><mi>hom</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mover></munderover><mo stretchy="false">[</mo><mi>ℬ</mi><mo>,</mo><mi>Set</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \mathcal{A} \underoverset {\underset{}{\longleftarrow}} {\overset{hom(-,G)}{\longrightarrow}} {\bot} [\mathcal{B},Set]^{op} \,, </annotation></semantics></math></div> <p>where</p> <ul> <li> <p>the <a class="existingWikiWord" href="/nlab/show/left+adjoint">left adjoint</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>hom</mi><mo stretchy="false">(</mo><mtext>-</mtext><mo>,</mo><mi>G</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>𝒜</mi><mo>→</mo><mo stretchy="false">[</mo><mi>ℬ</mi><mo>,</mo><mi>Set</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">hom(\text{-},G) \,\colon\, \mathcal{A} \to [\mathcal{B},Set]^{op}</annotation></semantics></math> takes any <a class="existingWikiWord" href="/nlab/show/object">object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> to the <a class="existingWikiWord" href="/nlab/show/hom-functor">hom-functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Hom</mi> <mi>𝒜</mi></msub><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>a</mi><mo>,</mo><mspace width="thinmathspace"></mspace><mi>G</mi><mo stretchy="false">(</mo><mtext>-</mtext><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mo lspace="verythinmathspace">:</mo><mi>ℬ</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">Hom_{\mathcal{A}}\big(a, \,G(\text{-})\big) \colon \mathcal{B}\to Set</annotation></semantics></math>,</p> </li> <li> <p>the <a class="existingWikiWord" href="/nlab/show/right+adjoint">right adjoint</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>ℬ</mi><mo>,</mo><mi>Set</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup><mo>→</mo><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">[\mathcal{B},Set]^{op}\to \mathcal{A}</annotation></semantics></math> is the unique <a class="existingWikiWord" href="/nlab/show/preserved+limit">limit-preserving</a> functor from the <a class="existingWikiWord" href="/nlab/show/free+completion">free completion</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℬ</mi></mrow><annotation encoding="application/x-tex">\mathcal{B}</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">\mathcal{A}</annotation></semantics></math> which agrees on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℬ</mi></mrow><annotation encoding="application/x-tex">\mathcal{B}</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>.</p> </li> </ul> <p>(See also <a class="existingWikiWord" href="/nlab/show/nerve+and+realization">nerve and realization</a>; the description of the adjunction above is a formal dual of a nerve-realization adjunction, and gives the right Kan extension <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ran</mi> <mi>G</mi></msub><mi>G</mi></mrow><annotation encoding="application/x-tex">Ran_G G</annotation></semantics></math> as a pointwise Kan extension. In the pointwise setting, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> is codense if and only if the left adjoint is <a class="existingWikiWord" href="/nlab/show/full+and+faithful">full and faithful</a>.)</p> <p>Even if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ran</mi> <mi>G</mi></msub><mi>G</mi></mrow><annotation encoding="application/x-tex">Ran_G G</annotation></semantics></math> (assuming it exists) is not a pointwise Kan extension, Def. <a class="maruku-ref" href="#codensity_monad"></a> indeed defines a <a class="existingWikiWord" href="/nlab/show/monad">monad</a>. The proof may be given generally for any <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a> in which the right Kan extension <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ran</mi> <mi>G</mi></msub><mi>G</mi></mrow><annotation encoding="application/x-tex">Ran_G G</annotation></semantics></math> exists for a 1-cell <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>:</mo><mi>ℬ</mi><mo>→</mo><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">G: \mathcal{B} \to \mathcal{A}</annotation></semantics></math>.</p> <p> <div class='num_theorem'> <h6>Theorem</h6> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ran</mi> <mi>G</mi></msub><mi>G</mi></mrow><annotation encoding="application/x-tex">Ran_G G</annotation></semantics></math>, with the unit <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>η</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">\eta^G</annotation></semantics></math> and multiplication <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>μ</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">\mu^G</annotation></semantics></math>, is a monad.</p> </div> </p> <p> <div class='proof'> <h6>Proof</h6> <p>The <a class="existingWikiWord" href="/nlab/show/universal+property">universal property</a> of the <a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a> states that for any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi><mo>:</mo><mi>𝒜</mi><mo>→</mo><mi>ℬ</mi></mrow><annotation encoding="application/x-tex">H: \mathcal{A} \to \mathcal{B}</annotation></semantics></math>, there is a natural bijection</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>hom</mi><mo stretchy="false">(</mo><mi>H</mi><mo>,</mo><msup><mi>T</mi> <mi>G</mi></msup><mo stretchy="false">)</mo><mo>≅</mo><mi>hom</mi><mo stretchy="false">(</mo><mi>H</mi><mi>G</mi><mo>,</mo><mi>G</mi><mo stretchy="false">)</mo><mo>;</mo></mrow><annotation encoding="application/x-tex">\hom(H, T^G) \cong \hom(H G, G);</annotation></semantics></math></div> <p>let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ε</mi><mo>:</mo><msup><mi>T</mi> <mi>G</mi></msup><mi>G</mi><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">\varepsilon: T^G G \to G</annotation></semantics></math> be the 2-cell corresponding to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mn>1</mn> <mrow><msup><mi>T</mi> <mi>G</mi></msup></mrow></msub><mo>∈</mo><mi>hom</mi><mo stretchy="false">(</mo><msup><mi>T</mi> <mi>G</mi></msup><mo>,</mo><msup><mi>T</mi> <mi>G</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">1_{T^G} \in \hom(T^G, T^G)</annotation></semantics></math>. Note that the bijection takes a 2-cell <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>:</mo><mi>H</mi><mo>→</mo><msup><mi>T</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">\alpha: H \to T^G</annotation></semantics></math> to the composite</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="222.431pt" height="23.169pt" viewBox="0 0 222.431 23.169" version="1.2"> <defs> <g> <symbol overflow="visible" id="IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph0-1"> <path style="stroke:none;" d="M 10.78125 -8.796875 C 10.921875 -9.28125 10.953125 -9.4375 11.96875 -9.4375 C 12.234375 -9.4375 12.375 -9.4375 12.375 -9.6875 C 12.375 -9.84375 12.25 -9.84375 12.15625 -9.84375 C 11.890625 -9.84375 11.59375 -9.828125 11.328125 -9.828125 L 9.625 -9.828125 C 9.34375 -9.828125 9.046875 -9.84375 8.765625 -9.84375 C 8.671875 -9.84375 8.5 -9.84375 8.5 -9.578125 C 8.5 -9.4375 8.59375 -9.4375 8.875 -9.4375 C 9.734375 -9.4375 9.734375 -9.3125 9.734375 -9.15625 C 9.734375 -9.125 9.734375 -9.046875 9.671875 -8.828125 L 8.796875 -5.34375 L 4.4375 -5.34375 L 5.3125 -8.796875 C 5.4375 -9.28125 5.46875 -9.4375 6.484375 -9.4375 C 6.75 -9.4375 6.890625 -9.4375 6.890625 -9.6875 C 6.890625 -9.84375 6.765625 -9.84375 6.671875 -9.84375 C 6.421875 -9.84375 6.109375 -9.828125 5.84375 -9.828125 L 4.140625 -9.828125 C 3.859375 -9.828125 3.5625 -9.84375 3.28125 -9.84375 C 3.1875 -9.84375 3.015625 -9.84375 3.015625 -9.578125 C 3.015625 -9.4375 3.109375 -9.4375 3.390625 -9.4375 C 4.25 -9.4375 4.25 -9.3125 4.25 -9.15625 C 4.25 -9.125 4.25 -9.046875 4.203125 -8.828125 L 2.25 -1.0625 C 2.125 -0.5625 2.09375 -0.421875 1.09375 -0.421875 C 0.765625 -0.421875 0.65625 -0.421875 0.65625 -0.140625 C 0.65625 0 0.828125 0 0.859375 0 C 1.125 0 1.421875 -0.03125 1.703125 -0.03125 L 3.40625 -0.03125 C 3.671875 -0.03125 3.984375 0 4.25 0 C 4.375 0 4.53125 0 4.53125 -0.28125 C 4.53125 -0.421875 4.40625 -0.421875 4.1875 -0.421875 C 3.296875 -0.421875 3.296875 -0.53125 3.296875 -0.671875 C 3.296875 -0.6875 3.296875 -0.796875 3.328125 -0.90625 L 4.328125 -4.921875 L 8.703125 -4.921875 C 8.453125 -3.96875 7.71875 -0.953125 7.6875 -0.859375 C 7.53125 -0.4375 7.296875 -0.4375 6.453125 -0.421875 C 6.28125 -0.421875 6.140625 -0.421875 6.140625 -0.140625 C 6.140625 0 6.296875 0 6.34375 0 C 6.609375 0 6.90625 -0.03125 7.1875 -0.03125 L 8.890625 -0.03125 C 9.15625 -0.03125 9.453125 0 9.734375 0 C 9.84375 0 10.015625 0 10.015625 -0.28125 C 10.015625 -0.421875 9.875 -0.421875 9.65625 -0.421875 C 8.78125 -0.421875 8.78125 -0.53125 8.78125 -0.671875 C 8.78125 -0.6875 8.78125 -0.796875 8.8125 -0.90625 Z M 10.78125 -8.796875 "></path> </symbol> <symbol overflow="visible" id="IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph0-2"> <path style="stroke:none;" d="M 10.765625 -10.015625 C 10.765625 -10.15625 10.65625 -10.15625 10.625 -10.15625 C 10.59375 -10.15625 10.546875 -10.15625 10.421875 -10.015625 L 9.4375 -8.8125 C 9.359375 -8.921875 9.078125 -9.4375 8.515625 -9.765625 C 7.890625 -10.15625 7.265625 -10.15625 7.046875 -10.15625 C 3.96875 -10.15625 0.71875 -7.015625 0.71875 -3.609375 C 0.71875 -1.21875 2.359375 0.296875 4.53125 0.296875 C 5.5625 0.296875 6.875 -0.046875 7.59375 -0.953125 C 7.765625 -0.40625 8.078125 -0.015625 8.171875 -0.015625 C 8.25 -0.015625 8.265625 -0.0625 8.28125 -0.0625 C 8.296875 -0.09375 8.40625 -0.59375 8.484375 -0.84375 L 8.703125 -1.78125 C 8.828125 -2.25 8.890625 -2.453125 8.984375 -2.890625 C 9.125 -3.4375 9.15625 -3.46875 9.953125 -3.484375 C 10.015625 -3.484375 10.1875 -3.484375 10.1875 -3.765625 C 10.1875 -3.90625 10.03125 -3.90625 10 -3.90625 C 9.75 -3.90625 9.46875 -3.875 9.21875 -3.875 L 8.4375 -3.875 C 7.828125 -3.875 7.203125 -3.90625 6.609375 -3.90625 C 6.46875 -3.90625 6.296875 -3.90625 6.296875 -3.65625 C 6.296875 -3.5 6.421875 -3.5 6.421875 -3.484375 L 6.78125 -3.484375 C 7.921875 -3.484375 7.921875 -3.375 7.921875 -3.15625 C 7.921875 -3.140625 7.640625 -1.6875 7.375 -1.25 C 6.828125 -0.453125 5.6875 -0.109375 4.828125 -0.109375 C 3.71875 -0.109375 1.921875 -0.6875 1.921875 -3.1875 C 1.921875 -4.15625 2.265625 -6.359375 3.65625 -7.984375 C 4.578125 -9.03125 5.90625 -9.734375 7.1875 -9.734375 C 8.890625 -9.734375 9.484375 -8.28125 9.484375 -6.953125 C 9.484375 -6.71875 9.4375 -6.40625 9.4375 -6.203125 C 9.4375 -6.078125 9.578125 -6.078125 9.625 -6.078125 C 9.78125 -6.078125 9.796875 -6.09375 9.84375 -6.34375 Z M 10.765625 -10.015625 "></path> </symbol> <symbol overflow="visible" id="IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph0-3"> <path style="stroke:none;" d="M 6.015625 -8.796875 C 6.09375 -9.140625 6.125 -9.265625 6.34375 -9.328125 C 6.46875 -9.359375 6.9375 -9.359375 7.234375 -9.359375 C 8.6875 -9.359375 9.359375 -9.296875 9.359375 -8.171875 C 9.359375 -7.953125 9.296875 -7.40625 9.21875 -6.875 L 9.203125 -6.703125 C 9.203125 -6.65625 9.265625 -6.5625 9.34375 -6.5625 C 9.484375 -6.5625 9.484375 -6.640625 9.53125 -6.859375 L 9.953125 -9.421875 C 9.984375 -9.546875 9.984375 -9.578125 9.984375 -9.625 C 9.984375 -9.78125 9.890625 -9.78125 9.609375 -9.78125 L 1.71875 -9.78125 C 1.390625 -9.78125 1.375 -9.765625 1.28125 -9.5 L 0.40625 -6.90625 C 0.390625 -6.875 0.34375 -6.71875 0.34375 -6.703125 C 0.34375 -6.640625 0.40625 -6.5625 0.484375 -6.5625 C 0.609375 -6.5625 0.640625 -6.625 0.6875 -6.8125 C 1.296875 -8.546875 1.59375 -9.359375 3.515625 -9.359375 L 4.484375 -9.359375 C 4.828125 -9.359375 4.96875 -9.359375 4.96875 -9.203125 C 4.96875 -9.15625 4.96875 -9.125 4.90625 -8.875 L 2.96875 -1.125 C 2.828125 -0.5625 2.796875 -0.421875 1.265625 -0.421875 C 0.90625 -0.421875 0.8125 -0.421875 0.8125 -0.140625 C 0.8125 0 0.96875 0 1.03125 0 C 1.40625 0 1.78125 -0.03125 2.140625 -0.03125 L 4.390625 -0.03125 C 4.75 -0.03125 5.140625 0 5.5 0 C 5.65625 0 5.796875 0 5.796875 -0.28125 C 5.796875 -0.421875 5.703125 -0.421875 5.328125 -0.421875 C 4.03125 -0.421875 4.03125 -0.546875 4.03125 -0.765625 C 4.03125 -0.78125 4.03125 -0.875 4.078125 -1.109375 Z M 6.015625 -8.796875 "></path> </symbol> <symbol overflow="visible" id="IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph0-4"> <path style="stroke:none;" d="M 2.65625 -0.6875 C 2.65625 -1.109375 2.3125 -1.40625 1.96875 -1.40625 C 1.546875 -1.40625 1.25 -1.046875 1.25 -0.703125 C 1.25 -0.28125 1.59375 0 1.953125 0 C 2.359375 0 2.65625 -0.34375 2.65625 -0.6875 Z M 2.65625 -0.6875 "></path> </symbol> <symbol overflow="visible" id="IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph1-1"> <path style="stroke:none;" d="M 7.671875 -6.515625 C 7.6875 -6.546875 7.703125 -6.609375 7.703125 -6.65625 C 7.703125 -6.734375 7.640625 -6.78125 7.578125 -6.78125 C 7.5 -6.78125 7.484375 -6.75 7.40625 -6.65625 L 6.734375 -5.921875 C 6.28125 -6.53125 5.65625 -6.78125 5 -6.78125 C 2.75 -6.78125 0.515625 -4.703125 0.515625 -2.5 C 0.515625 -0.890625 1.703125 0.203125 3.34375 0.203125 C 4.375 0.203125 5.15625 -0.171875 5.5 -0.59375 C 5.625 -0.28125 5.859375 -0.015625 5.953125 -0.015625 C 5.984375 -0.015625 6.03125 -0.03125 6.046875 -0.0625 C 6.109375 -0.234375 6.34375 -1.21875 6.40625 -1.484375 C 6.5 -1.875 6.5625 -2.140625 6.625 -2.21875 C 6.703125 -2.328125 6.890625 -2.34375 7.1875 -2.34375 C 7.234375 -2.34375 7.375 -2.34375 7.375 -2.515625 C 7.375 -2.609375 7.3125 -2.65625 7.234375 -2.65625 C 7.15625 -2.65625 7.046875 -2.625 6.109375 -2.625 C 5.875 -2.625 5.546875 -2.625 5.40625 -2.640625 C 5.25 -2.640625 4.875 -2.65625 4.71875 -2.65625 C 4.671875 -2.65625 4.53125 -2.65625 4.53125 -2.46875 C 4.53125 -2.34375 4.625 -2.34375 4.875 -2.34375 C 5.078125 -2.34375 5.453125 -2.34375 5.671875 -2.25 C 5.6875 -2.234375 5.703125 -2.171875 5.703125 -2.140625 C 5.703125 -2.09375 5.640625 -1.875 5.609375 -1.75 C 5.546875 -1.5 5.453125 -1.09375 5.40625 -1 C 5.09375 -0.359375 4.171875 -0.109375 3.5 -0.109375 C 2.546875 -0.109375 1.4375 -0.609375 1.4375 -2.1875 C 1.4375 -2.984375 1.765625 -4.375 2.609375 -5.296875 C 3.53125 -6.296875 4.578125 -6.453125 5.078125 -6.453125 C 6.25 -6.453125 6.78125 -5.53125 6.78125 -4.5625 C 6.78125 -4.421875 6.75 -4.25 6.75 -4.140625 C 6.75 -4.015625 6.875 -4.015625 6.90625 -4.015625 C 7.03125 -4.015625 7.0625 -4.046875 7.09375 -4.21875 Z M 7.671875 -6.515625 "></path> </symbol> <symbol overflow="visible" id="IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph1-2"> <path style="stroke:none;" d="M 4.90625 -1.34375 C 5.796875 -2.328125 6.125 -3.578125 6.125 -3.65625 C 6.125 -3.75 6.0625 -3.78125 5.984375 -3.78125 C 5.859375 -3.78125 5.84375 -3.75 5.78125 -3.546875 C 5.515625 -2.5625 4.9375 -1.8125 4.90625 -1.8125 C 4.890625 -1.8125 4.890625 -2.046875 4.890625 -2.203125 C 4.875 -3.890625 3.765625 -4.25 3.125 -4.25 C 1.765625 -4.25 0.421875 -2.921875 0.421875 -1.5625 C 0.421875 -0.609375 1.09375 0.09375 2.109375 0.09375 C 2.78125 0.09375 3.5 -0.140625 4.25 -0.71875 C 4.46875 0.046875 5.03125 0.09375 5.203125 0.09375 C 5.75 0.09375 6.0625 -0.390625 6.0625 -0.578125 C 6.0625 -0.6875 5.953125 -0.6875 5.921875 -0.6875 C 5.8125 -0.6875 5.796875 -0.671875 5.765625 -0.59375 C 5.609375 -0.1875 5.28125 -0.171875 5.234375 -0.171875 C 5.09375 -0.171875 4.953125 -0.171875 4.90625 -1.34375 Z M 4.1875 -1.03125 C 3.5 -0.40625 2.6875 -0.171875 2.140625 -0.171875 C 1.640625 -0.171875 1.203125 -0.46875 1.203125 -1.234375 C 1.203125 -1.5625 1.359375 -2.5625 1.8125 -3.203125 C 2.1875 -3.75 2.71875 -3.96875 3.109375 -3.96875 C 3.640625 -3.96875 3.9375 -3.59375 4.0625 -3.015625 C 4.203125 -2.359375 4.125 -1.59375 4.1875 -1.03125 Z M 4.1875 -1.03125 "></path> </symbol> <symbol overflow="visible" id="IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph1-3"> <path style="stroke:none;" d="M 1.40625 -2.15625 C 1.734375 -2.015625 2.03125 -2.015625 2.296875 -2.015625 C 2.59375 -2.015625 3.125 -2.015625 3.125 -2.359375 C 3.125 -2.609375 2.765625 -2.640625 2.390625 -2.640625 C 1.890625 -2.640625 1.625 -2.546875 1.421875 -2.453125 C 1.296875 -2.515625 1.046875 -2.703125 1.046875 -2.96875 C 1.046875 -3.484375 1.9375 -3.84375 2.90625 -3.84375 C 3.203125 -3.84375 3.5 -3.796875 3.84375 -3.578125 C 3.953125 -3.5 3.96875 -3.484375 4.046875 -3.484375 C 4.171875 -3.484375 4.328125 -3.625 4.328125 -3.765625 C 4.328125 -3.96875 3.96875 -4.125 3.828125 -4.1875 C 3.453125 -4.34375 3.140625 -4.34375 3 -4.34375 C 1.859375 -4.34375 0.75 -3.703125 0.75 -2.96875 C 0.75 -2.609375 1.015625 -2.375 1.109375 -2.3125 C 0.4375 -1.875 0.28125 -1.359375 0.28125 -1.046875 C 0.28125 -0.390625 0.890625 0.203125 1.96875 0.203125 C 3.359375 0.203125 3.875 -0.671875 3.875 -0.8125 C 3.875 -0.875 3.828125 -0.9375 3.75 -0.9375 C 3.671875 -0.9375 3.640625 -0.90625 3.609375 -0.84375 C 3.46875 -0.609375 3.265625 -0.3125 2.0625 -0.3125 C 1.8125 -0.3125 0.59375 -0.3125 0.59375 -1.09375 C 0.59375 -1.390625 0.8125 -1.828125 1.40625 -2.15625 Z M 2.78125 -2.328125 C 2.640625 -2.28125 2.625 -2.28125 2.296875 -2.28125 C 2.1875 -2.28125 1.984375 -2.28125 1.84375 -2.3125 C 2.0625 -2.375 2.28125 -2.375 2.375 -2.375 C 2.546875 -2.375 2.65625 -2.359375 2.78125 -2.34375 Z M 2.78125 -2.328125 "></path> </symbol> </g> </defs> <g id="IlEfWvyXGCO4rmZbln4fwMn8X3M=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph0-1" x="9.78741" y="17.087138"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph0-2" x="22.602527" y="17.087138"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph0-3" x="100.414884" y="17.087138"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph1-1" x="110.6551" y="11.851185"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph0-2" x="119.219183" y="17.087138"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph0-2" x="197.027684" y="17.087138"></use> <use xlink:href="#IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph0-4" x="208.170762" y="17.087138"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -73.279414 -2.379971 L -18.0669 -2.379971 " transform="matrix(0.965375,0,0,-0.965375,110.941334,11.182904)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486107 2.868354 C -2.032915 1.148654 -1.021326 0.335336 -0.00164496 -0.000511255 C -1.021326 -0.336359 -2.032915 -1.14563 -2.486107 -2.869377 " transform="matrix(0.965375,0,0,-0.965375,93.732057,13.479975)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph1-2" x="59.818935" y="10.086238"></use> <use xlink:href="#IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph1-1" x="66.382032" y="10.086238"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 26.803131 -2.379971 L 82.015646 -2.379971 " transform="matrix(0.965375,0,0,-0.965375,110.941334,11.182904)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487588 2.868354 C -2.03035 1.148654 -1.018761 0.335336 0.000920681 -0.000511255 C -1.018761 -0.336359 -2.03035 -1.14563 -2.487588 -2.869377 " transform="matrix(0.965375,0,0,-0.965375,190.346767,13.479975)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#IlEfWvyXGCO4rmZbln4fwMn8X3M=-glyph1-3" x="161.335839" y="10.085273"></use> </g> </g> </svg> <p>The 2-cell <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>η</mi> <mi>G</mi></msup><mo lspace="verythinmathspace">:</mo><mn>1</mn><mo>→</mo><msup><mi>T</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">\eta^G\colon 1 \to T^G</annotation></semantics></math> is defined so that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>ε</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><msup><mi>η</mi> <mi>G</mi></msup><mi>G</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mn>1</mn> <mi>G</mi></msub></mrow><annotation encoding="application/x-tex">(\varepsilon) (\eta^G G) = 1_G</annotation></semantics></math>, and the 2-cell <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>μ</mi> <mi>G</mi></msup><mo lspace="verythinmathspace">:</mo><msup><mi>T</mi> <mi>G</mi></msup><msup><mi>T</mi> <mi>G</mi></msup><mo>→</mo><msup><mi>T</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">\mu^G \colon T^G T^G \to T^G</annotation></semantics></math> is defined so that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>ε</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><msup><mi>μ</mi> <mi>G</mi></msup><mi>G</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>ε</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><msup><mi>T</mi> <mi>G</mi></msup><mi>ε</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\varepsilon) (\mu^G G) = (\varepsilon)(T^G \varepsilon)</annotation></semantics></math>.</p> <p>To check the monad unit law that says the triangle</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="149.971pt" height="88.48pt" viewBox="0 0 149.971 88.48" version="1.2"> <defs> <g> <symbol overflow="visible" id="MsK0su3WZx3oUKderB_M26VJgPM=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="MsK0su3WZx3oUKderB_M26VJgPM=-glyph0-1"> <path style="stroke:none;" d="M 6.203125 -9.0625 C 6.28125 -9.421875 6.3125 -9.546875 6.53125 -9.609375 C 6.65625 -9.640625 7.140625 -9.640625 7.453125 -9.640625 C 8.953125 -9.640625 9.640625 -9.578125 9.640625 -8.421875 C 9.640625 -8.203125 9.578125 -7.640625 9.5 -7.09375 L 9.484375 -6.90625 C 9.484375 -6.84375 9.546875 -6.765625 9.625 -6.765625 C 9.78125 -6.765625 9.78125 -6.828125 9.828125 -7.078125 L 10.25 -9.703125 C 10.28125 -9.84375 10.28125 -9.859375 10.28125 -9.90625 C 10.28125 -10.078125 10.1875 -10.078125 9.890625 -10.078125 L 1.765625 -10.078125 C 1.421875 -10.078125 1.40625 -10.0625 1.328125 -9.796875 L 0.421875 -7.125 C 0.40625 -7.09375 0.359375 -6.921875 0.359375 -6.90625 C 0.359375 -6.828125 0.421875 -6.765625 0.5 -6.765625 C 0.625 -6.765625 0.65625 -6.828125 0.71875 -7.015625 C 1.34375 -8.8125 1.65625 -9.640625 3.625 -9.640625 L 4.625 -9.640625 C 4.984375 -9.640625 5.125 -9.640625 5.125 -9.484375 C 5.125 -9.4375 5.125 -9.40625 5.046875 -9.140625 L 3.0625 -1.15625 C 2.90625 -0.578125 2.875 -0.4375 1.3125 -0.4375 C 0.9375 -0.4375 0.828125 -0.4375 0.828125 -0.15625 C 0.828125 0 1 0 1.0625 0 C 1.4375 0 1.828125 -0.03125 2.203125 -0.03125 L 4.515625 -0.03125 C 4.890625 -0.03125 5.296875 0 5.65625 0 C 5.828125 0 5.96875 0 5.96875 -0.28125 C 5.96875 -0.4375 5.875 -0.4375 5.484375 -0.4375 C 4.140625 -0.4375 4.140625 -0.5625 4.140625 -0.78125 C 4.140625 -0.796875 4.140625 -0.90625 4.203125 -1.140625 Z M 6.203125 -9.0625 "></path> </symbol> <symbol overflow="visible" id="MsK0su3WZx3oUKderB_M26VJgPM=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="MsK0su3WZx3oUKderB_M26VJgPM=-glyph1-1"> <path style="stroke:none;" d="M 7.890625 -6.703125 C 7.90625 -6.75 7.921875 -6.8125 7.921875 -6.859375 C 7.921875 -6.921875 7.859375 -6.96875 7.796875 -6.96875 C 7.734375 -6.96875 7.703125 -6.9375 7.625 -6.859375 L 6.921875 -6.09375 C 6.46875 -6.71875 5.828125 -6.96875 5.15625 -6.96875 C 2.828125 -6.96875 0.53125 -4.828125 0.53125 -2.5625 C 0.53125 -0.90625 1.75 0.203125 3.4375 0.203125 C 4.5 0.203125 5.296875 -0.171875 5.671875 -0.609375 C 5.78125 -0.28125 6.015625 -0.015625 6.125 -0.015625 C 6.15625 -0.015625 6.21875 -0.03125 6.234375 -0.0625 C 6.296875 -0.234375 6.53125 -1.25 6.59375 -1.53125 C 6.6875 -1.921875 6.75 -2.203125 6.8125 -2.28125 C 6.90625 -2.390625 7.09375 -2.40625 7.390625 -2.40625 C 7.4375 -2.40625 7.59375 -2.40625 7.59375 -2.578125 C 7.59375 -2.6875 7.515625 -2.734375 7.4375 -2.734375 C 7.375 -2.734375 7.25 -2.703125 6.296875 -2.703125 C 6.046875 -2.703125 5.703125 -2.703125 5.5625 -2.71875 C 5.40625 -2.71875 5.015625 -2.734375 4.859375 -2.734375 C 4.796875 -2.734375 4.65625 -2.734375 4.65625 -2.546875 C 4.65625 -2.40625 4.765625 -2.40625 5.015625 -2.40625 C 5.234375 -2.40625 5.609375 -2.40625 5.84375 -2.3125 C 5.859375 -2.296875 5.859375 -2.234375 5.859375 -2.203125 C 5.859375 -2.15625 5.8125 -1.9375 5.78125 -1.796875 C 5.71875 -1.546875 5.609375 -1.125 5.5625 -1.03125 C 5.25 -0.359375 4.296875 -0.125 3.609375 -0.125 C 2.625 -0.125 1.46875 -0.640625 1.46875 -2.25 C 1.46875 -3.078125 1.8125 -4.5 2.6875 -5.453125 C 3.640625 -6.484375 4.703125 -6.640625 5.21875 -6.640625 C 6.421875 -6.640625 6.984375 -5.703125 6.984375 -4.703125 C 6.984375 -4.5625 6.9375 -4.375 6.9375 -4.265625 C 6.9375 -4.125 7.078125 -4.125 7.109375 -4.125 C 7.234375 -4.125 7.265625 -4.171875 7.296875 -4.34375 Z M 7.890625 -6.703125 "></path> </symbol> <symbol overflow="visible" id="MsK0su3WZx3oUKderB_M26VJgPM=-glyph1-2"> <path style="stroke:none;" d="M 5.15625 -2.734375 C 5.203125 -2.875 5.234375 -3.046875 5.234375 -3.265625 C 5.234375 -4.015625 4.71875 -4.375 4.015625 -4.375 C 3.203125 -4.375 2.6875 -3.890625 2.40625 -3.5 C 2.34375 -4.046875 1.90625 -4.375 1.390625 -4.375 C 1.046875 -4.375 0.796875 -4.140625 0.640625 -3.828125 C 0.40625 -3.390625 0.296875 -2.875 0.296875 -2.859375 C 0.296875 -2.765625 0.359375 -2.71875 0.453125 -2.71875 C 0.578125 -2.71875 0.578125 -2.765625 0.65625 -3.015625 C 0.78125 -3.53125 0.953125 -4.09375 1.359375 -4.09375 C 1.609375 -4.09375 1.6875 -3.859375 1.6875 -3.625 C 1.6875 -3.453125 1.640625 -3.265625 1.5625 -2.9375 C 1.53125 -2.859375 1.390625 -2.265625 1.34375 -2.125 L 0.984375 -0.640625 C 0.9375 -0.5 0.875 -0.25 0.875 -0.203125 C 0.875 0.015625 1.0625 0.09375 1.203125 0.09375 C 1.375 0.09375 1.53125 -0.015625 1.59375 -0.140625 C 1.625 -0.203125 1.703125 -0.53125 1.75 -0.75 L 1.984375 -1.625 C 2.015625 -1.765625 2.109375 -2.15625 2.140625 -2.296875 C 2.28125 -2.828125 2.28125 -2.84375 2.5 -3.171875 C 2.828125 -3.65625 3.296875 -4.09375 3.96875 -4.09375 C 4.3125 -4.09375 4.53125 -3.890625 4.53125 -3.421875 C 4.53125 -3.234375 4.453125 -2.859375 4.453125 -2.859375 L 3.328125 1.59375 C 3.28125 1.75 3.28125 1.796875 3.28125 1.828125 C 3.28125 2.078125 3.484375 2.125 3.609375 2.125 C 3.953125 2.125 4.03125 1.796875 4.0625 1.6875 Z M 5.15625 -2.734375 "></path> </symbol> <symbol overflow="visible" id="MsK0su3WZx3oUKderB_M26VJgPM=-glyph1-3"> <path style="stroke:none;" d="M 4.484375 -6 C 4.5625 -6.34375 4.578125 -6.375 4.984375 -6.375 L 5.734375 -6.375 C 6.765625 -6.375 6.890625 -6.046875 6.890625 -5.546875 C 6.890625 -5.296875 6.828125 -4.875 6.8125 -4.828125 C 6.796875 -4.71875 6.78125 -4.625 6.78125 -4.609375 C 6.78125 -4.484375 6.875 -4.453125 6.9375 -4.453125 C 7.046875 -4.453125 7.078125 -4.5 7.109375 -4.703125 L 7.375 -6.5625 C 7.375 -6.703125 7.265625 -6.703125 7.078125 -6.703125 L 1.25 -6.703125 C 1 -6.703125 0.984375 -6.703125 0.90625 -6.484375 L 0.3125 -4.78125 C 0.28125 -4.71875 0.25 -4.640625 0.25 -4.59375 C 0.25 -4.5 0.328125 -4.453125 0.40625 -4.453125 C 0.515625 -4.453125 0.53125 -4.5 0.59375 -4.671875 C 1.15625 -6.25 1.453125 -6.375 2.953125 -6.375 L 3.34375 -6.375 C 3.640625 -6.375 3.640625 -6.359375 3.640625 -6.28125 C 3.640625 -6.25 3.609375 -6.046875 3.59375 -6.015625 L 2.28125 -0.8125 C 2.203125 -0.4375 2.171875 -0.328125 1.140625 -0.328125 C 0.828125 -0.328125 0.71875 -0.328125 0.71875 -0.140625 C 0.71875 -0.125 0.71875 0 0.890625 0 C 1.15625 0 1.84375 -0.03125 2.109375 -0.03125 L 2.953125 -0.03125 C 3.234375 -0.03125 3.921875 0 4.203125 0 C 4.28125 0 4.421875 0 4.421875 -0.1875 C 4.421875 -0.328125 4.3125 -0.328125 4.046875 -0.328125 C 3.8125 -0.328125 3.734375 -0.328125 3.484375 -0.34375 C 3.15625 -0.375 3.125 -0.421875 3.125 -0.546875 C 3.125 -0.578125 3.125 -0.625 3.15625 -0.71875 Z M 4.484375 -6 "></path> </symbol> <symbol overflow="visible" id="MsK0su3WZx3oUKderB_M26VJgPM=-glyph1-4"> <path style="stroke:none;" d="M 2.390625 -3.5 C 2.453125 -3.6875 2.53125 -4.015625 2.53125 -4.0625 C 2.53125 -4.265625 2.375 -4.375 2.203125 -4.375 C 1.859375 -4.375 1.78125 -4.046875 1.75 -3.90625 L 0.359375 1.59375 C 0.328125 1.75 0.328125 1.796875 0.328125 1.828125 C 0.328125 2.078125 0.53125 2.125 0.640625 2.125 C 0.6875 2.125 0.921875 2.125 1.046875 1.859375 C 1.078125 1.78125 1.359375 0.609375 1.5625 -0.1875 C 1.734375 -0.0625 2.078125 0.09375 2.578125 0.09375 C 3.390625 0.09375 3.921875 -0.5625 3.953125 -0.609375 C 4.125 0.078125 4.796875 0.09375 4.921875 0.09375 C 5.375 0.09375 5.609375 -0.28125 5.6875 -0.453125 C 5.890625 -0.796875 6.015625 -1.375 6.015625 -1.421875 C 6.015625 -1.46875 5.984375 -1.546875 5.859375 -1.546875 C 5.75 -1.546875 5.71875 -1.484375 5.671875 -1.234375 C 5.53125 -0.6875 5.34375 -0.171875 4.953125 -0.171875 C 4.71875 -0.171875 4.640625 -0.359375 4.640625 -0.640625 C 4.640625 -0.8125 4.75 -1.234375 4.8125 -1.53125 L 5.078125 -2.53125 C 5.125 -2.796875 5.1875 -3 5.265625 -3.296875 C 5.3125 -3.515625 5.40625 -3.90625 5.40625 -3.96875 C 5.40625 -4.203125 5.203125 -4.265625 5.09375 -4.265625 C 4.75 -4.265625 4.6875 -4.015625 4.578125 -3.578125 L 4.375 -2.75 L 4.0625 -1.515625 L 3.96875 -1.125 C 3.9375 -1.0625 3.671875 -0.6875 3.453125 -0.5 C 3.28125 -0.359375 2.984375 -0.171875 2.625 -0.171875 C 2.15625 -0.171875 1.84375 -0.421875 1.84375 -1.046875 C 1.84375 -1.296875 1.921875 -1.59375 1.984375 -1.828125 Z M 2.390625 -3.5 "></path> </symbol> <symbol overflow="visible" id="MsK0su3WZx3oUKderB_M26VJgPM=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="MsK0su3WZx3oUKderB_M26VJgPM=-glyph2-1"> <path style="stroke:none;" d="M 6.609375 -5.015625 C 6.625 -5.078125 6.625 -5.109375 6.625 -5.125 C 6.625 -5.140625 6.625 -5.21875 6.515625 -5.21875 C 6.453125 -5.21875 6.453125 -5.21875 6.375 -5.140625 L 5.890625 -4.625 C 5.890625 -4.625 5.828125 -4.578125 5.8125 -4.578125 C 5.8125 -4.578125 5.796875 -4.578125 5.78125 -4.59375 C 5.59375 -4.8125 5.203125 -5.21875 4.328125 -5.21875 C 2.46875 -5.21875 0.625 -3.65625 0.625 -1.96875 C 0.625 -0.796875 1.5625 0.15625 3.078125 0.15625 C 3.625 0.15625 4.4375 0.0625 4.90625 -0.421875 C 4.953125 -0.3125 5.171875 0 5.28125 0 C 5.3125 0 5.34375 -0.015625 5.359375 -0.046875 C 5.390625 -0.109375 5.59375 -0.921875 5.625 -1.078125 C 5.671875 -1.265625 5.6875 -1.359375 5.71875 -1.46875 C 5.796875 -1.75 5.8125 -1.75 6.25 -1.765625 C 6.328125 -1.765625 6.4375 -1.765625 6.4375 -1.9375 C 6.4375 -2.015625 6.390625 -2.0625 6.3125 -2.0625 C 6.1875 -2.0625 6.03125 -2.03125 5.890625 -2.03125 C 5.75 -2.03125 5.59375 -2.03125 5.4375 -2.03125 C 5.234375 -2.03125 5.03125 -2.03125 4.828125 -2.03125 C 4.625 -2.03125 4.40625 -2.0625 4.203125 -2.0625 C 4.140625 -2.0625 4.09375 -2.0625 4.0625 -2 C 4.046875 -1.984375 4.015625 -1.890625 4.015625 -1.859375 C 4.03125 -1.765625 4.09375 -1.765625 4.328125 -1.765625 C 4.46875 -1.765625 4.625 -1.75 4.765625 -1.75 C 5.015625 -1.71875 5.03125 -1.6875 5.03125 -1.609375 C 5.03125 -1.5625 4.890625 -1.0625 4.875 -0.96875 C 4.828125 -0.8125 4.75 -0.515625 4.265625 -0.3125 C 3.84375 -0.140625 3.34375 -0.140625 3.25 -0.140625 C 2.390625 -0.140625 1.40625 -0.53125 1.40625 -1.78125 C 1.40625 -2.265625 1.59375 -3.265625 2.34375 -4.046875 C 2.578125 -4.3125 3.359375 -4.921875 4.421875 -4.921875 C 5.34375 -4.921875 5.875 -4.265625 5.875 -3.46875 C 5.875 -3.34375 5.84375 -3.203125 5.84375 -3.1875 C 5.84375 -3.078125 5.953125 -3.078125 6 -3.078125 C 6.09375 -3.078125 6.125 -3.09375 6.171875 -3.25 Z M 6.609375 -5.015625 "></path> </symbol> <symbol overflow="visible" id="MsK0su3WZx3oUKderB_M26VJgPM=-glyph2-2"> <path style="stroke:none;" d="M 3.859375 -4.46875 C 3.921875 -4.703125 3.9375 -4.71875 4.234375 -4.71875 L 4.921875 -4.71875 C 5.71875 -4.71875 5.828125 -4.484375 5.828125 -4.0625 C 5.828125 -3.953125 5.8125 -3.75 5.78125 -3.53125 C 5.78125 -3.5 5.765625 -3.421875 5.765625 -3.40625 C 5.765625 -3.328125 5.8125 -3.28125 5.90625 -3.28125 C 6.015625 -3.28125 6.03125 -3.359375 6.046875 -3.46875 L 6.25 -4.890625 C 6.25 -5.015625 6.171875 -5.015625 6.015625 -5.015625 L 1.1875 -5.015625 C 1 -5.015625 0.984375 -5.015625 0.9375 -4.859375 L 0.453125 -3.515625 C 0.421875 -3.421875 0.421875 -3.40625 0.421875 -3.390625 C 0.421875 -3.375 0.4375 -3.28125 0.5625 -3.28125 C 0.65625 -3.28125 0.671875 -3.296875 0.734375 -3.5 C 1.0625 -4.40625 1.296875 -4.71875 2.25 -4.71875 L 2.9375 -4.71875 C 3.078125 -4.71875 3.09375 -4.71875 3.171875 -4.703125 L 2.171875 -0.640625 C 2.125 -0.4375 2.078125 -0.359375 1.875 -0.328125 C 1.671875 -0.296875 1.234375 -0.296875 1.234375 -0.296875 C 1.046875 -0.296875 1.03125 -0.296875 1 -0.28125 C 0.953125 -0.25 0.921875 -0.140625 0.921875 -0.109375 C 0.921875 -0.09375 0.9375 0 1.0625 0 C 1.265625 0 1.484375 -0.015625 1.6875 -0.015625 C 1.984375 -0.015625 2.1875 -0.03125 2.375 -0.03125 C 2.609375 -0.03125 2.828125 -0.015625 3.046875 -0.015625 C 3.265625 -0.015625 3.5 0 3.71875 0 C 3.78125 0 3.828125 0 3.859375 -0.046875 C 3.875 -0.078125 3.90625 -0.15625 3.90625 -0.1875 C 3.875 -0.296875 3.828125 -0.296875 3.59375 -0.296875 C 3.4375 -0.296875 3.28125 -0.296875 3.125 -0.3125 C 2.953125 -0.328125 2.859375 -0.328125 2.859375 -0.453125 Z M 3.859375 -4.46875 "></path> </symbol> <symbol overflow="visible" id="MsK0su3WZx3oUKderB_M26VJgPM=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="MsK0su3WZx3oUKderB_M26VJgPM=-glyph3-1"> <path style="stroke:none;" d="M 3.109375 -6.3125 C 3.109375 -6.578125 3.09375 -6.59375 2.828125 -6.59375 C 2.421875 -6.1875 1.890625 -5.953125 0.953125 -5.953125 L 0.953125 -5.625 C 1.21875 -5.625 1.75 -5.625 2.328125 -5.890625 L 2.328125 -0.8125 C 2.328125 -0.453125 2.296875 -0.328125 1.359375 -0.328125 L 1.015625 -0.328125 L 1.015625 0 C 1.421875 -0.03125 2.265625 -0.03125 2.71875 -0.03125 C 3.15625 -0.03125 4.015625 -0.03125 4.421875 0 L 4.421875 -0.328125 L 4.078125 -0.328125 C 3.140625 -0.328125 3.109375 -0.453125 3.109375 -0.8125 Z M 3.109375 -6.3125 "></path> </symbol> </g> </defs> <g id="MsK0su3WZx3oUKderB_M26VJgPM=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph0-1" x="26.053078" y="17.596584"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph1-1" x="36.599844" y="12.205766"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph0-1" x="16.37098" y="82.525992"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph1-1" x="26.916503" y="77.133931"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph0-1" x="35.735921" y="82.525992"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph1-1" x="46.282687" y="77.133931"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph0-1" x="123.755875" y="82.525992"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph1-1" x="134.302641" y="77.133931"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -44.269805 20.821925 L -44.269805 -20.344378 " transform="matrix(0.994157,0,0,-0.994157,79.745525,43.981519)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486021 2.870602 C -2.034187 1.149566 -1.020448 0.336184 0.0011598 -0.00175527 C -1.020461 -0.335724 -2.034233 -1.149066 -2.486135 -2.870084 " transform="matrix(0.0000198831,0.994137,0.994137,-0.0000198831,35.73612,64.444159)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph1-2" x="3.621906" y="47.304987"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph2-1" x="9.257536" y="43.809281"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph1-3" x="16.956041" y="47.304987"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph2-1" x="24.543947" y="43.809281"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -30.050004 20.821925 L 37.186589 -23.861019 " transform="matrix(0.994157,0,0,-0.994157,79.745525,43.981519)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486319 2.869167 C -2.031131 1.147654 -1.018789 0.334237 -0.000289363 0.00142579 C -1.017597 -0.33492 -2.034517 -1.147523 -2.486066 -2.867698 " transform="matrix(0.827954,0.550206,0.550206,-0.827954,116.913518,67.833371)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph3-1" x="86.985973" y="38.330729"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph2-2" x="92.24755" y="42.12841"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph2-1" x="98.882308" y="39.995942"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -18.105215 -35.035684 L 37.108004 -35.035684 " transform="matrix(0.994157,0,0,-0.994157,79.745525,43.981519)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485972 2.867807 C -2.034113 1.146815 -1.020378 0.333469 0.00121603 -0.00051377 C -1.020378 -0.334496 -2.034113 -1.147842 -2.485972 -2.868835 " transform="matrix(0.994157,0,0,-0.994157,116.873791,78.811989)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph1-4" x="82.414838" y="73.39068"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#MsK0su3WZx3oUKderB_M26VJgPM=-glyph2-1" x="88.745134" y="69.894975"></use> </g> </g> </svg> <p>commutes, it suffices by universality to check that applying <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> on the right, followed by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ε</mi></mrow><annotation encoding="application/x-tex">\varepsilon</annotation></semantics></math>, results in a commutative diagram. This follows from commutativity of the diagram</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="244.047pt" height="94.629pt" viewBox="0 0 244.047 94.629" version="1.2"> <defs> <g> <symbol overflow="visible" id="ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph0-1"> <path style="stroke:none;" d="M 6.203125 -9.078125 C 6.296875 -9.4375 6.328125 -9.578125 6.546875 -9.640625 C 6.671875 -9.65625 7.15625 -9.65625 7.46875 -9.65625 C 8.96875 -9.65625 9.65625 -9.609375 9.65625 -8.4375 C 9.65625 -8.21875 9.609375 -7.65625 9.515625 -7.109375 L 9.5 -6.921875 C 9.5 -6.859375 9.5625 -6.78125 9.65625 -6.78125 C 9.796875 -6.78125 9.796875 -6.84375 9.84375 -7.09375 L 10.28125 -9.71875 C 10.296875 -9.859375 10.296875 -9.890625 10.296875 -9.9375 C 10.296875 -10.09375 10.21875 -10.09375 9.921875 -10.09375 L 1.765625 -10.09375 C 1.421875 -10.09375 1.421875 -10.078125 1.328125 -9.8125 L 0.421875 -7.125 C 0.40625 -7.109375 0.359375 -6.9375 0.359375 -6.921875 C 0.359375 -6.84375 0.421875 -6.78125 0.5 -6.78125 C 0.625 -6.78125 0.65625 -6.828125 0.71875 -7.03125 C 1.34375 -8.828125 1.65625 -9.65625 3.640625 -9.65625 L 4.625 -9.65625 C 4.984375 -9.65625 5.140625 -9.65625 5.140625 -9.5 C 5.140625 -9.453125 5.140625 -9.421875 5.0625 -9.15625 L 3.0625 -1.15625 C 2.921875 -0.578125 2.890625 -0.4375 1.3125 -0.4375 C 0.9375 -0.4375 0.828125 -0.4375 0.828125 -0.15625 C 0.828125 0 1 0 1.078125 0 C 1.4375 0 1.828125 -0.03125 2.203125 -0.03125 L 4.53125 -0.03125 C 4.90625 -0.03125 5.296875 0 5.671875 0 C 5.84375 0 5.984375 0 5.984375 -0.28125 C 5.984375 -0.4375 5.875 -0.4375 5.5 -0.4375 C 4.15625 -0.4375 4.15625 -0.5625 4.15625 -0.796875 C 4.15625 -0.796875 4.15625 -0.90625 4.21875 -1.140625 Z M 6.203125 -9.078125 "></path> </symbol> <symbol overflow="visible" id="ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph0-2"> <path style="stroke:none;" d="M 11.109375 -10.34375 C 11.109375 -10.484375 11 -10.484375 10.96875 -10.484375 C 10.9375 -10.484375 10.890625 -10.484375 10.765625 -10.328125 L 9.734375 -9.09375 C 9.65625 -9.21875 9.359375 -9.734375 8.78125 -10.078125 C 8.140625 -10.484375 7.5 -10.484375 7.28125 -10.484375 C 4.09375 -10.484375 0.75 -7.234375 0.75 -3.71875 C 0.75 -1.265625 2.4375 0.3125 4.671875 0.3125 C 5.75 0.3125 7.109375 -0.046875 7.84375 -0.984375 C 8.015625 -0.421875 8.34375 -0.015625 8.4375 -0.015625 C 8.515625 -0.015625 8.53125 -0.0625 8.546875 -0.0625 C 8.5625 -0.09375 8.6875 -0.609375 8.75 -0.875 L 9 -1.828125 C 9.109375 -2.328125 9.171875 -2.53125 9.28125 -2.984375 C 9.421875 -3.546875 9.453125 -3.59375 10.28125 -3.609375 C 10.328125 -3.609375 10.515625 -3.609375 10.515625 -3.890625 C 10.515625 -4.03125 10.359375 -4.03125 10.3125 -4.03125 C 10.0625 -4.03125 9.78125 -4 9.515625 -4 L 8.71875 -4 C 8.078125 -4 7.4375 -4.03125 6.8125 -4.03125 C 6.6875 -4.03125 6.5 -4.03125 6.5 -3.765625 C 6.5 -3.625 6.625 -3.625 6.625 -3.609375 L 7 -3.609375 C 8.171875 -3.609375 8.171875 -3.484375 8.171875 -3.265625 C 8.171875 -3.25 7.890625 -1.75 7.609375 -1.296875 C 7.046875 -0.46875 5.859375 -0.125 4.984375 -0.125 C 3.84375 -0.125 1.984375 -0.71875 1.984375 -3.296875 C 1.984375 -4.28125 2.34375 -6.5625 3.78125 -8.25 C 4.71875 -9.328125 6.109375 -10.046875 7.421875 -10.046875 C 9.171875 -10.046875 9.796875 -8.546875 9.796875 -7.171875 C 9.796875 -6.9375 9.734375 -6.609375 9.734375 -6.40625 C 9.734375 -6.265625 9.890625 -6.265625 9.9375 -6.265625 C 10.09375 -6.265625 10.109375 -6.28125 10.171875 -6.546875 Z M 11.109375 -10.34375 "></path> </symbol> <symbol overflow="visible" id="ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-1"> <path style="stroke:none;" d="M 7.90625 -6.71875 C 7.921875 -6.75 7.9375 -6.8125 7.9375 -6.859375 C 7.9375 -6.9375 7.875 -6.984375 7.8125 -6.984375 C 7.734375 -6.984375 7.703125 -6.953125 7.625 -6.859375 L 6.9375 -6.109375 C 6.484375 -6.734375 5.828125 -6.984375 5.15625 -6.984375 C 2.84375 -6.984375 0.53125 -4.84375 0.53125 -2.5625 C 0.53125 -0.90625 1.75 0.203125 3.4375 0.203125 C 4.515625 0.203125 5.3125 -0.171875 5.671875 -0.609375 C 5.796875 -0.28125 6.03125 -0.015625 6.125 -0.015625 C 6.171875 -0.015625 6.21875 -0.03125 6.234375 -0.0625 C 6.296875 -0.234375 6.53125 -1.25 6.609375 -1.53125 C 6.703125 -1.921875 6.765625 -2.203125 6.828125 -2.28125 C 6.921875 -2.40625 7.109375 -2.40625 7.40625 -2.40625 C 7.453125 -2.40625 7.59375 -2.40625 7.59375 -2.59375 C 7.59375 -2.6875 7.53125 -2.734375 7.453125 -2.734375 C 7.375 -2.734375 7.265625 -2.703125 6.296875 -2.703125 C 6.046875 -2.703125 5.71875 -2.703125 5.5625 -2.71875 C 5.421875 -2.734375 5.015625 -2.734375 4.875 -2.734375 C 4.8125 -2.734375 4.65625 -2.734375 4.65625 -2.546875 C 4.65625 -2.40625 4.765625 -2.40625 5.03125 -2.40625 C 5.234375 -2.40625 5.609375 -2.40625 5.859375 -2.328125 C 5.859375 -2.296875 5.875 -2.25 5.875 -2.203125 C 5.875 -2.15625 5.8125 -1.9375 5.78125 -1.8125 C 5.71875 -1.546875 5.609375 -1.125 5.578125 -1.03125 C 5.265625 -0.359375 4.296875 -0.125 3.609375 -0.125 C 2.625 -0.125 1.484375 -0.640625 1.484375 -2.25 C 1.484375 -3.078125 1.8125 -4.5 2.6875 -5.453125 C 3.640625 -6.484375 4.71875 -6.65625 5.234375 -6.65625 C 6.4375 -6.65625 7 -5.703125 7 -4.703125 C 7 -4.5625 6.953125 -4.390625 6.953125 -4.265625 C 6.953125 -4.140625 7.078125 -4.140625 7.125 -4.140625 C 7.25 -4.140625 7.265625 -4.171875 7.3125 -4.359375 Z M 7.90625 -6.71875 "></path> </symbol> <symbol overflow="visible" id="ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-2"> <path style="stroke:none;" d="M 5.171875 -2.734375 C 5.203125 -2.890625 5.25 -3.0625 5.25 -3.28125 C 5.25 -4.015625 4.734375 -4.375 4.015625 -4.375 C 3.21875 -4.375 2.703125 -3.890625 2.40625 -3.515625 C 2.34375 -4.0625 1.90625 -4.375 1.40625 -4.375 C 1.046875 -4.375 0.796875 -4.140625 0.640625 -3.84375 C 0.40625 -3.390625 0.296875 -2.890625 0.296875 -2.859375 C 0.296875 -2.765625 0.359375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.578125 -2.765625 0.65625 -3.03125 C 0.78125 -3.53125 0.96875 -4.09375 1.375 -4.09375 C 1.625 -4.09375 1.6875 -3.875 1.6875 -3.625 C 1.6875 -3.453125 1.640625 -3.265625 1.5625 -2.9375 C 1.53125 -2.859375 1.390625 -2.265625 1.34375 -2.140625 L 0.984375 -0.640625 C 0.9375 -0.5 0.890625 -0.25 0.890625 -0.203125 C 0.890625 0.015625 1.078125 0.09375 1.203125 0.09375 C 1.375 0.09375 1.53125 -0.015625 1.59375 -0.140625 C 1.625 -0.203125 1.703125 -0.53125 1.75 -0.75 L 1.984375 -1.625 C 2.015625 -1.78125 2.109375 -2.15625 2.140625 -2.296875 C 2.28125 -2.84375 2.28125 -2.84375 2.515625 -3.171875 C 2.84375 -3.65625 3.296875 -4.09375 3.96875 -4.09375 C 4.328125 -4.09375 4.53125 -3.890625 4.53125 -3.421875 C 4.53125 -3.234375 4.453125 -2.875 4.453125 -2.859375 L 3.328125 1.59375 C 3.296875 1.75 3.296875 1.8125 3.296875 1.828125 C 3.296875 2.078125 3.5 2.140625 3.609375 2.140625 C 3.953125 2.140625 4.03125 1.8125 4.0625 1.6875 Z M 5.171875 -2.734375 "></path> </symbol> <symbol overflow="visible" id="ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-3"> <path style="stroke:none;" d="M 4.484375 -6 C 4.578125 -6.359375 4.578125 -6.375 4.984375 -6.375 L 5.75 -6.375 C 6.78125 -6.375 6.890625 -6.046875 6.890625 -5.5625 C 6.890625 -5.3125 6.84375 -4.875 6.828125 -4.828125 C 6.8125 -4.71875 6.796875 -4.640625 6.796875 -4.609375 C 6.796875 -4.484375 6.890625 -4.453125 6.9375 -4.453125 C 7.046875 -4.453125 7.09375 -4.515625 7.125 -4.703125 L 7.390625 -6.5625 C 7.390625 -6.703125 7.265625 -6.703125 7.09375 -6.703125 L 1.25 -6.703125 C 1 -6.703125 0.984375 -6.703125 0.90625 -6.5 L 0.3125 -4.78125 C 0.28125 -4.734375 0.265625 -4.65625 0.265625 -4.59375 C 0.265625 -4.515625 0.328125 -4.453125 0.40625 -4.453125 C 0.515625 -4.453125 0.53125 -4.5 0.59375 -4.671875 C 1.15625 -6.265625 1.453125 -6.375 2.953125 -6.375 L 3.34375 -6.375 C 3.640625 -6.375 3.65625 -6.375 3.65625 -6.296875 C 3.65625 -6.265625 3.609375 -6.0625 3.609375 -6.015625 L 2.296875 -0.8125 C 2.203125 -0.4375 2.171875 -0.328125 1.140625 -0.328125 C 0.828125 -0.328125 0.71875 -0.328125 0.71875 -0.140625 C 0.71875 -0.125 0.71875 0 0.890625 0 C 1.15625 0 1.84375 -0.03125 2.109375 -0.03125 L 2.953125 -0.03125 C 3.234375 -0.03125 3.921875 0 4.203125 0 C 4.28125 0 4.4375 0 4.4375 -0.1875 C 4.4375 -0.328125 4.328125 -0.328125 4.0625 -0.328125 C 3.8125 -0.328125 3.734375 -0.328125 3.484375 -0.34375 C 3.171875 -0.375 3.125 -0.421875 3.125 -0.546875 C 3.125 -0.578125 3.140625 -0.625 3.171875 -0.71875 Z M 4.484375 -6 "></path> </symbol> <symbol overflow="visible" id="ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-4"> <path style="stroke:none;" d="M 1.453125 -2.21875 C 1.796875 -2.078125 2.09375 -2.078125 2.359375 -2.078125 C 2.671875 -2.078125 3.21875 -2.078125 3.21875 -2.4375 C 3.21875 -2.6875 2.84375 -2.734375 2.453125 -2.734375 C 1.9375 -2.734375 1.671875 -2.625 1.46875 -2.53125 C 1.328125 -2.59375 1.078125 -2.78125 1.078125 -3.0625 C 1.078125 -3.59375 2 -3.953125 3 -3.953125 C 3.296875 -3.953125 3.609375 -3.90625 3.96875 -3.6875 C 4.0625 -3.609375 4.09375 -3.59375 4.171875 -3.59375 C 4.3125 -3.59375 4.46875 -3.734375 4.46875 -3.890625 C 4.46875 -4.09375 4.09375 -4.25 3.953125 -4.3125 C 3.546875 -4.484375 3.25 -4.484375 3.09375 -4.484375 C 1.921875 -4.484375 0.78125 -3.8125 0.78125 -3.0625 C 0.78125 -2.6875 1.046875 -2.453125 1.15625 -2.375 C 0.453125 -1.9375 0.28125 -1.40625 0.28125 -1.078125 C 0.28125 -0.390625 0.921875 0.203125 2.03125 0.203125 C 3.46875 0.203125 3.984375 -0.6875 3.984375 -0.828125 C 3.984375 -0.90625 3.953125 -0.96875 3.859375 -0.96875 C 3.796875 -0.96875 3.765625 -0.9375 3.71875 -0.875 C 3.578125 -0.640625 3.359375 -0.3125 2.140625 -0.3125 C 1.875 -0.3125 0.609375 -0.3125 0.609375 -1.125 C 0.609375 -1.421875 0.828125 -1.890625 1.453125 -2.21875 Z M 2.875 -2.40625 C 2.71875 -2.34375 2.703125 -2.34375 2.359375 -2.34375 C 2.25 -2.34375 2.046875 -2.34375 1.890625 -2.375 C 2.140625 -2.4375 2.34375 -2.453125 2.4375 -2.453125 C 2.625 -2.453125 2.734375 -2.4375 2.875 -2.40625 Z M 2.875 -2.40625 "></path> </symbol> <symbol overflow="visible" id="ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph2-1"> <path style="stroke:none;" d="M 6.625 -5.015625 C 6.640625 -5.09375 6.640625 -5.109375 6.640625 -5.125 C 6.640625 -5.140625 6.640625 -5.234375 6.53125 -5.234375 C 6.46875 -5.234375 6.46875 -5.234375 6.390625 -5.140625 L 5.90625 -4.640625 C 5.890625 -4.640625 5.84375 -4.578125 5.828125 -4.578125 C 5.828125 -4.578125 5.8125 -4.59375 5.796875 -4.609375 C 5.609375 -4.8125 5.203125 -5.234375 4.34375 -5.234375 C 2.46875 -5.234375 0.625 -3.671875 0.625 -1.984375 C 0.625 -0.796875 1.5625 0.15625 3.09375 0.15625 C 3.625 0.15625 4.4375 0.0625 4.921875 -0.421875 C 4.953125 -0.3125 5.171875 0 5.28125 0 C 5.3125 0 5.359375 -0.015625 5.375 -0.046875 C 5.40625 -0.109375 5.59375 -0.921875 5.640625 -1.078125 C 5.6875 -1.265625 5.703125 -1.359375 5.734375 -1.46875 C 5.8125 -1.75 5.828125 -1.75 6.265625 -1.765625 C 6.34375 -1.765625 6.453125 -1.765625 6.453125 -1.953125 C 6.453125 -2.015625 6.390625 -2.0625 6.328125 -2.0625 C 6.203125 -2.0625 6.046875 -2.03125 5.90625 -2.03125 C 5.75 -2.03125 5.609375 -2.03125 5.453125 -2.03125 C 5.25 -2.03125 5.046875 -2.03125 4.828125 -2.03125 C 4.640625 -2.03125 4.40625 -2.0625 4.203125 -2.0625 C 4.15625 -2.0625 4.09375 -2.0625 4.0625 -2.015625 C 4.046875 -1.984375 4.03125 -1.890625 4.03125 -1.859375 C 4.046875 -1.765625 4.09375 -1.765625 4.34375 -1.765625 C 4.484375 -1.765625 4.640625 -1.75 4.78125 -1.75 C 5.015625 -1.71875 5.03125 -1.703125 5.03125 -1.609375 C 5.03125 -1.5625 4.90625 -1.0625 4.875 -0.96875 C 4.84375 -0.8125 4.765625 -0.515625 4.28125 -0.3125 C 3.84375 -0.140625 3.359375 -0.140625 3.25 -0.140625 C 2.40625 -0.140625 1.40625 -0.53125 1.40625 -1.78125 C 1.40625 -2.28125 1.59375 -3.265625 2.34375 -4.0625 C 2.59375 -4.3125 3.359375 -4.9375 4.421875 -4.9375 C 5.359375 -4.9375 5.890625 -4.28125 5.890625 -3.46875 C 5.890625 -3.34375 5.859375 -3.21875 5.859375 -3.203125 C 5.859375 -3.09375 5.96875 -3.09375 6.015625 -3.09375 C 6.109375 -3.09375 6.140625 -3.09375 6.1875 -3.25 Z M 6.625 -5.015625 "></path> </symbol> <symbol overflow="visible" id="ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph3-1"> <path style="stroke:none;" d="M 3.109375 -6.3125 C 3.109375 -6.59375 3.09375 -6.59375 2.828125 -6.59375 C 2.421875 -6.203125 1.890625 -5.96875 0.953125 -5.96875 L 0.953125 -5.640625 C 1.21875 -5.640625 1.75 -5.640625 2.328125 -5.90625 L 2.328125 -0.8125 C 2.328125 -0.453125 2.296875 -0.328125 1.359375 -0.328125 L 1.015625 -0.328125 L 1.015625 0 C 1.421875 -0.03125 2.265625 -0.03125 2.71875 -0.03125 C 3.171875 -0.03125 4.03125 -0.03125 4.4375 0 L 4.4375 -0.328125 L 4.09375 -0.328125 C 3.140625 -0.328125 3.109375 -0.453125 3.109375 -0.8125 Z M 3.109375 -6.3125 "></path> </symbol> </g> </defs> <g id="ajLKPUOILVDKFnfDHLMURUcIoHY=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph0-1" x="16.112731" y="17.629881"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-1" x="26.680051" y="12.228557"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph0-2" x="35.516656" y="17.629881"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph0-2" x="135.203826" y="17.629881"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph0-1" x="6.410768" y="82.685824"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-1" x="16.978088" y="77.2845"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph0-1" x="25.814694" y="82.685824"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-1" x="36.382014" y="77.2845"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph0-2" x="45.217374" y="82.685824"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph0-1" x="125.501863" y="82.685824"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-1" x="136.069183" y="77.2845"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph0-2" x="144.905788" y="82.685824"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph0-2" x="225.190028" y="82.685824"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -90.339659 20.823337 L -90.339659 -20.34525 " transform="matrix(0.996095,0,0,-0.996095,121.549359,44.066235)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.484707 2.869926 C -2.033727 1.148359 -1.018042 0.336596 0.00156519 -0.000659047 C -1.018042 -0.333992 -2.033727 -1.145756 -2.484707 -2.867323 " transform="matrix(0,0.996095,0.996095,0,31.563156,64.568753)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-2" x="35.066422" y="47.39618"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph2-1" x="40.713034" y="43.893662"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-3" x="48.425297" y="47.39618"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph2-1" x="56.029235" y="43.893662"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-1" x="63.741499" y="47.39618"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -68.147524 30.274308 L 6.546519 30.274308 " transform="matrix(0.996095,0,0,-0.996095,121.549359,44.066235)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486787 2.868633 C -2.031886 1.147066 -1.020122 0.335303 -0.000515075 -0.00195205 C -1.020122 -0.335285 -2.031886 -1.147049 -2.486787 -2.868616 " transform="matrix(0.996095,0,0,-0.996095,128.309107,13.908212)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-4" x="88.674248" y="10.406202"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 19.47984 20.823337 L 19.47984 -20.34525 " transform="matrix(0.996095,0,0,-0.996095,121.549359,44.066235)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.484707 2.869985 C -2.033727 1.148418 -1.018042 0.336655 0.00156519 -0.000600004 C -1.018042 -0.333933 -2.033727 -1.145697 -2.484707 -2.867264 " transform="matrix(0,0.996095,0.996095,0,140.953723,64.568753)"></path> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 154.945312 35.601562 L 126.960938 35.601562 L 126.960938 52.53125 L 154.945312 52.53125 Z M 154.945312 35.601562 "></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-2" x="130.165578" y="47.39618"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph2-1" x="135.81219" y="43.893662"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-1" x="143.524454" y="47.39618"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 31.93473 21.278238 L 96.977802 -25.753088 " transform="matrix(0.996095,0,0,-0.996095,121.549359,44.066235)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488469 2.86961 C -2.032167 1.147591 -1.019473 0.336033 -0.000862216 -0.00181291 C -1.017862 -0.335496 -2.033005 -1.146951 -2.486677 -2.868772 " transform="matrix(0.807155,0.583632,0.583632,-0.807155,218.341598,69.858415)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph3-1" x="189.448157" y="41.265217"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph2-1" x="194.719988" y="42.93243"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -58.406357 -35.035431 L -3.194647 -35.035431 " transform="matrix(0.996095,0,0,-0.996095,121.549359,44.066235)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488094 2.870324 C -2.033192 1.148757 -1.021429 0.333072 -0.00182189 -0.000261266 C -1.021429 -0.333594 -2.033192 -1.14928 -2.488094 -2.870847 " transform="matrix(0.996095,0,0,-0.996095,118.607284,78.964584)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-3" x="81.016272" y="91.055012"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph2-1" x="88.618965" y="87.552494"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-4" x="96.332474" y="91.055012"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 41.675896 -35.035431 L 96.887606 -35.035431 " transform="matrix(0.996095,0,0,-0.996095,121.549359,44.066235)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.48581 2.870324 C -2.030909 1.148757 -1.019145 0.333072 0.000461894 -0.000261266 C -1.019145 -0.333594 -2.030909 -1.14928 -2.48581 -2.870847 " transform="matrix(0.996095,0,0,-0.996095,218.296415,78.964584)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ajLKPUOILVDKFnfDHLMURUcIoHY=-glyph1-4" x="188.362413" y="86.738934"></use> </g> </g> </svg> <p>(where the square commutes by 2-categorical interchange), together with commutativity of</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="228.632pt" height="90.297pt" viewBox="0 0 228.632 90.297" version="1.2"> <defs> <g> <symbol overflow="visible" id="0On4sQcieoaYDXfF-pI50kuC9S4=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="0On4sQcieoaYDXfF-pI50kuC9S4=-glyph0-1"> <path style="stroke:none;" d="M 6.1875 -9.046875 C 6.265625 -9.40625 6.296875 -9.53125 6.53125 -9.59375 C 6.640625 -9.625 7.125 -9.625 7.4375 -9.625 C 8.921875 -9.625 9.625 -9.5625 9.625 -8.40625 C 9.625 -8.1875 9.5625 -7.625 9.46875 -7.078125 L 9.453125 -6.890625 C 9.453125 -6.828125 9.515625 -6.75 9.609375 -6.75 C 9.75 -6.75 9.75 -6.828125 9.796875 -7.0625 L 10.234375 -9.6875 C 10.265625 -9.8125 10.265625 -9.84375 10.265625 -9.890625 C 10.265625 -10.046875 10.171875 -10.046875 9.875 -10.046875 L 1.765625 -10.046875 C 1.421875 -10.046875 1.40625 -10.03125 1.3125 -9.765625 L 0.421875 -7.109375 C 0.40625 -7.078125 0.359375 -6.90625 0.359375 -6.890625 C 0.359375 -6.828125 0.421875 -6.75 0.5 -6.75 C 0.625 -6.75 0.65625 -6.8125 0.71875 -7 C 1.328125 -8.796875 1.640625 -9.625 3.625 -9.625 L 4.609375 -9.625 C 4.96875 -9.625 5.109375 -9.625 5.109375 -9.453125 C 5.109375 -9.421875 5.109375 -9.390625 5.046875 -9.125 L 3.046875 -1.15625 C 2.90625 -0.578125 2.875 -0.4375 1.3125 -0.4375 C 0.9375 -0.4375 0.828125 -0.4375 0.828125 -0.140625 C 0.828125 0 1 0 1.0625 0 C 1.4375 0 1.828125 -0.03125 2.1875 -0.03125 L 4.5 -0.03125 C 4.875 -0.03125 5.28125 0 5.65625 0 C 5.8125 0 5.96875 0 5.96875 -0.28125 C 5.96875 -0.4375 5.859375 -0.4375 5.46875 -0.4375 C 4.140625 -0.4375 4.140625 -0.5625 4.140625 -0.78125 C 4.140625 -0.796875 4.140625 -0.90625 4.203125 -1.140625 Z M 6.1875 -9.046875 "></path> </symbol> <symbol overflow="visible" id="0On4sQcieoaYDXfF-pI50kuC9S4=-glyph0-2"> <path style="stroke:none;" d="M 11.0625 -10.3125 C 11.0625 -10.4375 10.953125 -10.4375 10.921875 -10.4375 C 10.90625 -10.4375 10.84375 -10.4375 10.71875 -10.296875 L 9.703125 -9.0625 C 9.625 -9.171875 9.328125 -9.703125 8.75 -10.03125 C 8.109375 -10.4375 7.46875 -10.4375 7.25 -10.4375 C 4.078125 -10.4375 0.734375 -7.203125 0.734375 -3.703125 C 0.734375 -1.265625 2.4375 0.3125 4.65625 0.3125 C 5.71875 0.3125 7.078125 -0.046875 7.8125 -0.984375 C 7.984375 -0.421875 8.296875 -0.015625 8.40625 -0.015625 C 8.484375 -0.015625 8.5 -0.0625 8.515625 -0.0625 C 8.53125 -0.09375 8.640625 -0.609375 8.71875 -0.875 L 8.953125 -1.828125 C 9.078125 -2.3125 9.140625 -2.515625 9.234375 -2.96875 C 9.390625 -3.53125 9.421875 -3.578125 10.234375 -3.59375 C 10.296875 -3.59375 10.46875 -3.59375 10.46875 -3.875 C 10.46875 -4.015625 10.328125 -4.015625 10.28125 -4.015625 C 10.03125 -4.015625 9.734375 -3.984375 9.46875 -3.984375 L 8.671875 -3.984375 C 8.046875 -3.984375 7.40625 -4.015625 6.796875 -4.015625 C 6.65625 -4.015625 6.484375 -4.015625 6.484375 -3.75 C 6.484375 -3.609375 6.59375 -3.609375 6.59375 -3.59375 L 6.96875 -3.59375 C 8.140625 -3.59375 8.140625 -3.46875 8.140625 -3.25 C 8.140625 -3.234375 7.859375 -1.734375 7.578125 -1.296875 C 7.015625 -0.453125 5.84375 -0.125 4.96875 -0.125 C 3.828125 -0.125 1.96875 -0.71875 1.96875 -3.28125 C 1.96875 -4.265625 2.328125 -6.546875 3.765625 -8.21875 C 4.703125 -9.28125 6.078125 -10.015625 7.390625 -10.015625 C 9.140625 -10.015625 9.75 -8.515625 9.75 -7.140625 C 9.75 -6.90625 9.703125 -6.578125 9.703125 -6.375 C 9.703125 -6.25 9.84375 -6.25 9.890625 -6.25 C 10.046875 -6.25 10.0625 -6.25 10.125 -6.53125 Z M 11.0625 -10.3125 "></path> </symbol> <symbol overflow="visible" id="0On4sQcieoaYDXfF-pI50kuC9S4=-glyph0-3"> <path style="stroke:none;" d="M 2.734375 -0.71875 C 2.734375 -1.140625 2.375 -1.4375 2.015625 -1.4375 C 1.59375 -1.4375 1.296875 -1.078125 1.296875 -0.734375 C 1.296875 -0.296875 1.640625 0 2 0 C 2.4375 0 2.734375 -0.359375 2.734375 -0.71875 Z M 2.734375 -0.71875 "></path> </symbol> <symbol overflow="visible" id="0On4sQcieoaYDXfF-pI50kuC9S4=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="0On4sQcieoaYDXfF-pI50kuC9S4=-glyph1-1"> <path style="stroke:none;" d="M 7.875 -6.703125 C 7.890625 -6.734375 7.90625 -6.796875 7.90625 -6.84375 C 7.90625 -6.90625 7.859375 -6.96875 7.78125 -6.96875 C 7.71875 -6.96875 7.6875 -6.9375 7.609375 -6.84375 L 6.90625 -6.078125 C 6.453125 -6.71875 5.8125 -6.96875 5.140625 -6.96875 C 2.828125 -6.96875 0.53125 -4.828125 0.53125 -2.5625 C 0.53125 -0.90625 1.75 0.203125 3.4375 0.203125 C 4.5 0.203125 5.296875 -0.171875 5.65625 -0.609375 C 5.78125 -0.28125 6.015625 -0.015625 6.109375 -0.015625 C 6.15625 -0.015625 6.203125 -0.03125 6.21875 -0.0625 C 6.28125 -0.234375 6.515625 -1.25 6.59375 -1.515625 C 6.671875 -1.921875 6.75 -2.203125 6.8125 -2.28125 C 6.890625 -2.390625 7.078125 -2.40625 7.375 -2.40625 C 7.421875 -2.40625 7.578125 -2.40625 7.578125 -2.578125 C 7.578125 -2.6875 7.5 -2.734375 7.421875 -2.734375 C 7.359375 -2.734375 7.234375 -2.703125 6.28125 -2.703125 C 6.03125 -2.703125 5.703125 -2.703125 5.546875 -2.703125 C 5.40625 -2.71875 5 -2.734375 4.859375 -2.734375 C 4.796875 -2.734375 4.65625 -2.734375 4.65625 -2.546875 C 4.65625 -2.40625 4.75 -2.40625 5.015625 -2.40625 C 5.21875 -2.40625 5.59375 -2.40625 5.828125 -2.3125 C 5.84375 -2.296875 5.859375 -2.234375 5.859375 -2.203125 C 5.859375 -2.140625 5.796875 -1.921875 5.765625 -1.796875 C 5.703125 -1.546875 5.59375 -1.125 5.5625 -1.03125 C 5.234375 -0.359375 4.28125 -0.125 3.59375 -0.125 C 2.625 -0.125 1.46875 -0.640625 1.46875 -2.25 C 1.46875 -3.0625 1.8125 -4.484375 2.6875 -5.4375 C 3.625 -6.46875 4.703125 -6.640625 5.21875 -6.640625 C 6.421875 -6.640625 6.96875 -5.6875 6.96875 -4.6875 C 6.96875 -4.546875 6.9375 -4.375 6.9375 -4.25 C 6.9375 -4.125 7.0625 -4.125 7.09375 -4.125 C 7.234375 -4.125 7.25 -4.15625 7.296875 -4.34375 Z M 7.875 -6.703125 "></path> </symbol> <symbol overflow="visible" id="0On4sQcieoaYDXfF-pI50kuC9S4=-glyph1-2"> <path style="stroke:none;" d="M 1.4375 -2.21875 C 1.796875 -2.0625 2.09375 -2.0625 2.359375 -2.0625 C 2.65625 -2.0625 3.21875 -2.0625 3.21875 -2.421875 C 3.21875 -2.6875 2.84375 -2.71875 2.453125 -2.71875 C 1.9375 -2.71875 1.671875 -2.609375 1.46875 -2.515625 C 1.328125 -2.59375 1.078125 -2.78125 1.078125 -3.0625 C 1.078125 -3.578125 2 -3.953125 2.984375 -3.953125 C 3.296875 -3.953125 3.59375 -3.890625 3.953125 -3.671875 C 4.0625 -3.59375 4.078125 -3.578125 4.15625 -3.578125 C 4.296875 -3.578125 4.453125 -3.734375 4.453125 -3.875 C 4.453125 -4.078125 4.078125 -4.25 3.9375 -4.296875 C 3.546875 -4.46875 3.234375 -4.46875 3.078125 -4.46875 C 1.90625 -4.46875 0.765625 -3.8125 0.765625 -3.046875 C 0.765625 -2.6875 1.046875 -2.4375 1.140625 -2.375 C 0.453125 -1.921875 0.28125 -1.390625 0.28125 -1.0625 C 0.28125 -0.390625 0.921875 0.203125 2.015625 0.203125 C 3.453125 0.203125 3.96875 -0.6875 3.96875 -0.828125 C 3.96875 -0.90625 3.9375 -0.96875 3.84375 -0.96875 C 3.78125 -0.96875 3.75 -0.9375 3.703125 -0.875 C 3.5625 -0.640625 3.359375 -0.3125 2.125 -0.3125 C 1.875 -0.3125 0.609375 -0.3125 0.609375 -1.125 C 0.609375 -1.421875 0.828125 -1.875 1.4375 -2.21875 Z M 2.859375 -2.390625 C 2.703125 -2.34375 2.6875 -2.34375 2.359375 -2.34375 C 2.25 -2.34375 2.03125 -2.34375 1.890625 -2.375 C 2.125 -2.4375 2.34375 -2.4375 2.4375 -2.4375 C 2.609375 -2.4375 2.734375 -2.421875 2.859375 -2.40625 Z M 2.859375 -2.390625 "></path> </symbol> <symbol overflow="visible" id="0On4sQcieoaYDXfF-pI50kuC9S4=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="0On4sQcieoaYDXfF-pI50kuC9S4=-glyph2-1"> <path style="stroke:none;" d="M 3.109375 -6.296875 C 3.109375 -6.5625 3.078125 -6.578125 2.8125 -6.578125 C 2.40625 -6.1875 1.890625 -5.9375 0.953125 -5.9375 L 0.953125 -5.625 C 1.21875 -5.625 1.75 -5.625 2.328125 -5.890625 L 2.328125 -0.8125 C 2.328125 -0.4375 2.296875 -0.328125 1.359375 -0.328125 L 1.015625 -0.328125 L 1.015625 0 C 1.421875 -0.03125 2.265625 -0.03125 2.703125 -0.03125 C 3.15625 -0.03125 4.015625 -0.03125 4.421875 0 L 4.421875 -0.328125 L 4.078125 -0.328125 C 3.140625 -0.328125 3.109375 -0.4375 3.109375 -0.8125 Z M 3.109375 -6.296875 "></path> </symbol> <symbol overflow="visible" id="0On4sQcieoaYDXfF-pI50kuC9S4=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="0On4sQcieoaYDXfF-pI50kuC9S4=-glyph3-1"> <path style="stroke:none;" d="M 3.859375 -4.46875 C 3.921875 -4.703125 3.9375 -4.71875 4.234375 -4.71875 L 4.921875 -4.71875 C 5.71875 -4.71875 5.828125 -4.484375 5.828125 -4.0625 C 5.828125 -3.953125 5.8125 -3.75 5.78125 -3.53125 C 5.78125 -3.5 5.765625 -3.421875 5.765625 -3.40625 C 5.765625 -3.328125 5.8125 -3.28125 5.90625 -3.28125 C 6.015625 -3.28125 6.03125 -3.359375 6.046875 -3.46875 L 6.25 -4.890625 C 6.25 -5.015625 6.171875 -5.015625 6.015625 -5.015625 L 1.1875 -5.015625 C 1 -5.015625 0.984375 -5.015625 0.9375 -4.859375 L 0.453125 -3.515625 C 0.421875 -3.421875 0.421875 -3.40625 0.421875 -3.390625 C 0.421875 -3.375 0.4375 -3.28125 0.5625 -3.28125 C 0.65625 -3.28125 0.671875 -3.296875 0.734375 -3.5 C 1.0625 -4.40625 1.296875 -4.71875 2.25 -4.71875 L 2.9375 -4.71875 C 3.078125 -4.71875 3.09375 -4.71875 3.171875 -4.703125 L 2.171875 -0.640625 C 2.125 -0.4375 2.078125 -0.359375 1.875 -0.328125 C 1.671875 -0.296875 1.234375 -0.296875 1.234375 -0.296875 C 1.046875 -0.296875 1.03125 -0.296875 1 -0.28125 C 0.953125 -0.25 0.921875 -0.140625 0.921875 -0.109375 C 0.921875 -0.09375 0.9375 0 1.0625 0 C 1.265625 0 1.484375 -0.015625 1.6875 -0.015625 C 1.984375 -0.015625 2.1875 -0.03125 2.375 -0.03125 C 2.609375 -0.03125 2.828125 -0.015625 3.046875 -0.015625 C 3.265625 -0.015625 3.5 0 3.71875 0 C 3.78125 0 3.828125 0 3.859375 -0.046875 C 3.875 -0.078125 3.90625 -0.15625 3.90625 -0.1875 C 3.875 -0.296875 3.828125 -0.296875 3.59375 -0.296875 C 3.4375 -0.296875 3.28125 -0.296875 3.125 -0.3125 C 2.953125 -0.328125 2.859375 -0.328125 2.859375 -0.453125 Z M 3.859375 -4.46875 "></path> </symbol> <symbol overflow="visible" id="0On4sQcieoaYDXfF-pI50kuC9S4=-glyph3-2"> <path style="stroke:none;" d="M 6.609375 -5.015625 C 6.625 -5.078125 6.625 -5.109375 6.625 -5.125 C 6.625 -5.140625 6.625 -5.21875 6.515625 -5.21875 C 6.453125 -5.21875 6.453125 -5.21875 6.375 -5.140625 L 5.890625 -4.625 C 5.890625 -4.625 5.828125 -4.578125 5.8125 -4.578125 C 5.8125 -4.578125 5.796875 -4.578125 5.78125 -4.59375 C 5.59375 -4.8125 5.203125 -5.21875 4.328125 -5.21875 C 2.46875 -5.21875 0.625 -3.65625 0.625 -1.96875 C 0.625 -0.796875 1.5625 0.15625 3.078125 0.15625 C 3.625 0.15625 4.4375 0.0625 4.90625 -0.421875 C 4.953125 -0.3125 5.171875 0 5.28125 0 C 5.3125 0 5.34375 -0.015625 5.359375 -0.046875 C 5.390625 -0.109375 5.59375 -0.921875 5.625 -1.078125 C 5.671875 -1.265625 5.6875 -1.359375 5.71875 -1.46875 C 5.796875 -1.75 5.8125 -1.75 6.25 -1.765625 C 6.328125 -1.765625 6.4375 -1.765625 6.4375 -1.9375 C 6.4375 -2.015625 6.390625 -2.0625 6.3125 -2.0625 C 6.1875 -2.0625 6.03125 -2.03125 5.890625 -2.03125 C 5.75 -2.03125 5.59375 -2.03125 5.4375 -2.03125 C 5.234375 -2.03125 5.03125 -2.03125 4.828125 -2.03125 C 4.625 -2.03125 4.40625 -2.0625 4.203125 -2.0625 C 4.140625 -2.0625 4.09375 -2.0625 4.0625 -2 C 4.046875 -1.984375 4.015625 -1.890625 4.015625 -1.859375 C 4.03125 -1.765625 4.09375 -1.765625 4.328125 -1.765625 C 4.46875 -1.765625 4.625 -1.75 4.765625 -1.75 C 5.015625 -1.71875 5.03125 -1.6875 5.03125 -1.609375 C 5.03125 -1.5625 4.890625 -1.0625 4.875 -0.96875 C 4.828125 -0.8125 4.75 -0.515625 4.265625 -0.3125 C 3.84375 -0.140625 3.34375 -0.140625 3.25 -0.140625 C 2.390625 -0.140625 1.40625 -0.53125 1.40625 -1.78125 C 1.40625 -2.265625 1.59375 -3.265625 2.34375 -4.046875 C 2.578125 -4.3125 3.359375 -4.921875 4.421875 -4.921875 C 5.34375 -4.921875 5.875 -4.265625 5.875 -3.46875 C 5.875 -3.34375 5.84375 -3.203125 5.84375 -3.1875 C 5.84375 -3.078125 5.953125 -3.078125 6 -3.078125 C 6.09375 -3.078125 6.125 -3.09375 6.171875 -3.25 Z M 6.609375 -5.015625 "></path> </symbol> </g> </defs> <g id="0On4sQcieoaYDXfF-pI50kuC9S4=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph0-1" x="7.08484" y="17.563263"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph1-1" x="17.611634" y="12.181413"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph0-2" x="26.414351" y="17.563263"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph0-2" x="116.055458" y="17.563263"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph0-1" x="106.390702" y="82.368725"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph1-1" x="116.917496" y="76.988115"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph0-2" x="125.720213" y="82.368725"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph0-2" x="205.696564" y="82.368725"></use> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph0-3" x="217.150139" y="82.368725"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -77.891404 20.820799 L -14.463909 -20.56139 " transform="matrix(0.992275,0,0,-0.992275,114.133421,43.898234)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486593 2.871457 C -2.033024 1.146096 -1.02008 0.335702 -0.00136169 -0.000852213 C -1.019073 -0.335844 -2.031663 -1.146966 -2.487635 -2.868798 " transform="matrix(0.83099,0.542209,0.542209,-0.83099,99.978156,64.429718)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph2-1" x="72.000444" y="36.619899"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph3-1" x="77.252058" y="40.409148"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph3-2" x="83.874252" y="38.280719"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph1-1" x="92.17463" y="36.619899"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -70.179483 30.276661 L -5.224564 30.276661 " transform="matrix(0.992275,0,0,-0.992275,114.133421,43.898234)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486448 2.870227 C -2.033732 1.145969 -1.018073 0.335017 0.00152248 0.000400617 C -1.018073 -0.334216 -2.033732 -1.149105 -2.486448 -2.869426 " transform="matrix(0.992275,0,0,-0.992275,109.185989,13.855866)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph1-2" x="74.535706" y="10.367286"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 20.162968 21.474285 L 85.204494 -24.521672 " transform="matrix(0.992275,0,0,-0.992275,114.133421,43.898234)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.48741 2.868486 C -2.031468 1.146453 -1.018381 0.334364 0.000156235 -0.00132838 C -1.017421 -0.335195 -2.032689 -1.149615 -2.485642 -2.868275 " transform="matrix(0.810113,0.5729,0.5729,-0.810113,198.871728,68.366022)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph2-1" x="170.09077" y="40.395504"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph3-2" x="175.342384" y="42.056324"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 29.902269 -35.036495 L 85.113951 -35.036495 " transform="matrix(0.992275,0,0,-0.992275,114.133421,43.898234)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488013 2.868501 C -2.03136 1.14818 -1.019638 0.333291 -0.0000426771 -0.0013252 C -1.019638 -0.335941 -2.03136 -1.146894 -2.488013 -2.867215 " transform="matrix(0.992275,0,0,-0.992275,198.828167,78.662748)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0On4sQcieoaYDXfF-pI50kuC9S4=-glyph1-2" x="169.009191" y="86.407283"></use> </g> </g> </svg> <p>To check the other monad unit law is even simpler, because it follows directly from the commutativity of</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="256.131pt" height="94.629pt" viewBox="0 0 256.131 94.629" version="1.2"> <defs> <g> <symbol overflow="visible" id="2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph0-1"> <path style="stroke:none;" d="M 6.203125 -9.078125 C 6.296875 -9.4375 6.328125 -9.578125 6.546875 -9.640625 C 6.671875 -9.65625 7.15625 -9.65625 7.46875 -9.65625 C 8.96875 -9.65625 9.65625 -9.609375 9.65625 -8.4375 C 9.65625 -8.21875 9.609375 -7.65625 9.515625 -7.109375 L 9.5 -6.921875 C 9.5 -6.859375 9.5625 -6.78125 9.65625 -6.78125 C 9.796875 -6.78125 9.796875 -6.84375 9.84375 -7.09375 L 10.28125 -9.71875 C 10.296875 -9.859375 10.296875 -9.890625 10.296875 -9.9375 C 10.296875 -10.09375 10.21875 -10.09375 9.921875 -10.09375 L 1.765625 -10.09375 C 1.421875 -10.09375 1.421875 -10.078125 1.328125 -9.8125 L 0.421875 -7.125 C 0.40625 -7.109375 0.359375 -6.9375 0.359375 -6.921875 C 0.359375 -6.84375 0.421875 -6.78125 0.5 -6.78125 C 0.625 -6.78125 0.65625 -6.828125 0.71875 -7.03125 C 1.34375 -8.828125 1.65625 -9.65625 3.640625 -9.65625 L 4.625 -9.65625 C 4.984375 -9.65625 5.140625 -9.65625 5.140625 -9.5 C 5.140625 -9.453125 5.140625 -9.421875 5.0625 -9.15625 L 3.0625 -1.15625 C 2.921875 -0.578125 2.890625 -0.4375 1.3125 -0.4375 C 0.9375 -0.4375 0.828125 -0.4375 0.828125 -0.15625 C 0.828125 0 1 0 1.078125 0 C 1.4375 0 1.828125 -0.03125 2.203125 -0.03125 L 4.53125 -0.03125 C 4.90625 -0.03125 5.296875 0 5.671875 0 C 5.84375 0 5.984375 0 5.984375 -0.28125 C 5.984375 -0.4375 5.875 -0.4375 5.5 -0.4375 C 4.15625 -0.4375 4.15625 -0.5625 4.15625 -0.796875 C 4.15625 -0.796875 4.15625 -0.90625 4.21875 -1.140625 Z M 6.203125 -9.078125 "></path> </symbol> <symbol overflow="visible" id="2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph0-2"> <path style="stroke:none;" d="M 11.109375 -10.34375 C 11.109375 -10.484375 11 -10.484375 10.96875 -10.484375 C 10.9375 -10.484375 10.890625 -10.484375 10.765625 -10.328125 L 9.734375 -9.09375 C 9.65625 -9.21875 9.359375 -9.734375 8.78125 -10.078125 C 8.140625 -10.484375 7.5 -10.484375 7.28125 -10.484375 C 4.09375 -10.484375 0.75 -7.234375 0.75 -3.71875 C 0.75 -1.265625 2.4375 0.3125 4.671875 0.3125 C 5.75 0.3125 7.109375 -0.046875 7.84375 -0.984375 C 8.015625 -0.421875 8.34375 -0.015625 8.4375 -0.015625 C 8.515625 -0.015625 8.53125 -0.0625 8.546875 -0.0625 C 8.5625 -0.09375 8.6875 -0.609375 8.75 -0.875 L 9 -1.828125 C 9.109375 -2.328125 9.171875 -2.53125 9.28125 -2.984375 C 9.421875 -3.546875 9.453125 -3.59375 10.28125 -3.609375 C 10.328125 -3.609375 10.515625 -3.609375 10.515625 -3.890625 C 10.515625 -4.03125 10.359375 -4.03125 10.3125 -4.03125 C 10.0625 -4.03125 9.78125 -4 9.515625 -4 L 8.71875 -4 C 8.078125 -4 7.4375 -4.03125 6.8125 -4.03125 C 6.6875 -4.03125 6.5 -4.03125 6.5 -3.765625 C 6.5 -3.625 6.625 -3.625 6.625 -3.609375 L 7 -3.609375 C 8.171875 -3.609375 8.171875 -3.484375 8.171875 -3.265625 C 8.171875 -3.25 7.890625 -1.75 7.609375 -1.296875 C 7.046875 -0.46875 5.859375 -0.125 4.984375 -0.125 C 3.84375 -0.125 1.984375 -0.71875 1.984375 -3.296875 C 1.984375 -4.28125 2.34375 -6.5625 3.78125 -8.25 C 4.71875 -9.328125 6.109375 -10.046875 7.421875 -10.046875 C 9.171875 -10.046875 9.796875 -8.546875 9.796875 -7.171875 C 9.796875 -6.9375 9.734375 -6.609375 9.734375 -6.40625 C 9.734375 -6.265625 9.890625 -6.265625 9.9375 -6.265625 C 10.09375 -6.265625 10.109375 -6.28125 10.171875 -6.546875 Z M 11.109375 -10.34375 "></path> </symbol> <symbol overflow="visible" id="2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-1"> <path style="stroke:none;" d="M 7.90625 -6.71875 C 7.921875 -6.75 7.9375 -6.8125 7.9375 -6.859375 C 7.9375 -6.9375 7.875 -6.984375 7.8125 -6.984375 C 7.734375 -6.984375 7.703125 -6.953125 7.625 -6.859375 L 6.9375 -6.109375 C 6.484375 -6.734375 5.828125 -6.984375 5.15625 -6.984375 C 2.84375 -6.984375 0.53125 -4.84375 0.53125 -2.5625 C 0.53125 -0.90625 1.75 0.203125 3.4375 0.203125 C 4.515625 0.203125 5.3125 -0.171875 5.671875 -0.609375 C 5.796875 -0.28125 6.03125 -0.015625 6.125 -0.015625 C 6.171875 -0.015625 6.21875 -0.03125 6.234375 -0.0625 C 6.296875 -0.234375 6.53125 -1.25 6.609375 -1.53125 C 6.703125 -1.921875 6.765625 -2.203125 6.828125 -2.28125 C 6.921875 -2.40625 7.109375 -2.40625 7.40625 -2.40625 C 7.453125 -2.40625 7.59375 -2.40625 7.59375 -2.59375 C 7.59375 -2.6875 7.53125 -2.734375 7.453125 -2.734375 C 7.375 -2.734375 7.265625 -2.703125 6.296875 -2.703125 C 6.046875 -2.703125 5.71875 -2.703125 5.5625 -2.71875 C 5.421875 -2.734375 5.015625 -2.734375 4.875 -2.734375 C 4.8125 -2.734375 4.65625 -2.734375 4.65625 -2.546875 C 4.65625 -2.40625 4.765625 -2.40625 5.03125 -2.40625 C 5.234375 -2.40625 5.609375 -2.40625 5.859375 -2.328125 C 5.859375 -2.296875 5.875 -2.25 5.875 -2.203125 C 5.875 -2.15625 5.8125 -1.9375 5.78125 -1.8125 C 5.71875 -1.546875 5.609375 -1.125 5.578125 -1.03125 C 5.265625 -0.359375 4.296875 -0.125 3.609375 -0.125 C 2.625 -0.125 1.484375 -0.640625 1.484375 -2.25 C 1.484375 -3.078125 1.8125 -4.5 2.6875 -5.453125 C 3.640625 -6.484375 4.71875 -6.65625 5.234375 -6.65625 C 6.4375 -6.65625 7 -5.703125 7 -4.703125 C 7 -4.5625 6.953125 -4.390625 6.953125 -4.265625 C 6.953125 -4.140625 7.078125 -4.140625 7.125 -4.140625 C 7.25 -4.140625 7.265625 -4.171875 7.3125 -4.359375 Z M 7.90625 -6.71875 "></path> </symbol> <symbol overflow="visible" id="2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-2"> <path style="stroke:none;" d="M 4.484375 -6 C 4.578125 -6.359375 4.578125 -6.375 4.984375 -6.375 L 5.75 -6.375 C 6.78125 -6.375 6.890625 -6.046875 6.890625 -5.5625 C 6.890625 -5.3125 6.84375 -4.875 6.828125 -4.828125 C 6.8125 -4.71875 6.796875 -4.640625 6.796875 -4.609375 C 6.796875 -4.484375 6.890625 -4.453125 6.9375 -4.453125 C 7.046875 -4.453125 7.09375 -4.515625 7.125 -4.703125 L 7.390625 -6.5625 C 7.390625 -6.703125 7.265625 -6.703125 7.09375 -6.703125 L 1.25 -6.703125 C 1 -6.703125 0.984375 -6.703125 0.90625 -6.5 L 0.3125 -4.78125 C 0.28125 -4.734375 0.265625 -4.65625 0.265625 -4.59375 C 0.265625 -4.515625 0.328125 -4.453125 0.40625 -4.453125 C 0.515625 -4.453125 0.53125 -4.5 0.59375 -4.671875 C 1.15625 -6.265625 1.453125 -6.375 2.953125 -6.375 L 3.34375 -6.375 C 3.640625 -6.375 3.65625 -6.375 3.65625 -6.296875 C 3.65625 -6.265625 3.609375 -6.0625 3.609375 -6.015625 L 2.296875 -0.8125 C 2.203125 -0.4375 2.171875 -0.328125 1.140625 -0.328125 C 0.828125 -0.328125 0.71875 -0.328125 0.71875 -0.140625 C 0.71875 -0.125 0.71875 0 0.890625 0 C 1.15625 0 1.84375 -0.03125 2.109375 -0.03125 L 2.953125 -0.03125 C 3.234375 -0.03125 3.921875 0 4.203125 0 C 4.28125 0 4.4375 0 4.4375 -0.1875 C 4.4375 -0.328125 4.328125 -0.328125 4.0625 -0.328125 C 3.8125 -0.328125 3.734375 -0.328125 3.484375 -0.34375 C 3.171875 -0.375 3.125 -0.421875 3.125 -0.546875 C 3.125 -0.578125 3.140625 -0.625 3.171875 -0.71875 Z M 4.484375 -6 "></path> </symbol> <symbol overflow="visible" id="2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-3"> <path style="stroke:none;" d="M 5.171875 -2.734375 C 5.203125 -2.890625 5.25 -3.0625 5.25 -3.28125 C 5.25 -4.015625 4.734375 -4.375 4.015625 -4.375 C 3.21875 -4.375 2.703125 -3.890625 2.40625 -3.515625 C 2.34375 -4.0625 1.90625 -4.375 1.40625 -4.375 C 1.046875 -4.375 0.796875 -4.140625 0.640625 -3.84375 C 0.40625 -3.390625 0.296875 -2.890625 0.296875 -2.859375 C 0.296875 -2.765625 0.359375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.578125 -2.765625 0.65625 -3.03125 C 0.78125 -3.53125 0.96875 -4.09375 1.375 -4.09375 C 1.625 -4.09375 1.6875 -3.875 1.6875 -3.625 C 1.6875 -3.453125 1.640625 -3.265625 1.5625 -2.9375 C 1.53125 -2.859375 1.390625 -2.265625 1.34375 -2.140625 L 0.984375 -0.640625 C 0.9375 -0.5 0.890625 -0.25 0.890625 -0.203125 C 0.890625 0.015625 1.078125 0.09375 1.203125 0.09375 C 1.375 0.09375 1.53125 -0.015625 1.59375 -0.140625 C 1.625 -0.203125 1.703125 -0.53125 1.75 -0.75 L 1.984375 -1.625 C 2.015625 -1.78125 2.109375 -2.15625 2.140625 -2.296875 C 2.28125 -2.84375 2.28125 -2.84375 2.515625 -3.171875 C 2.84375 -3.65625 3.296875 -4.09375 3.96875 -4.09375 C 4.328125 -4.09375 4.53125 -3.890625 4.53125 -3.421875 C 4.53125 -3.234375 4.453125 -2.875 4.453125 -2.859375 L 3.328125 1.59375 C 3.296875 1.75 3.296875 1.8125 3.296875 1.828125 C 3.296875 2.078125 3.5 2.140625 3.609375 2.140625 C 3.953125 2.140625 4.03125 1.8125 4.0625 1.6875 Z M 5.171875 -2.734375 "></path> </symbol> <symbol overflow="visible" id="2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-4"> <path style="stroke:none;" d="M 1.453125 -2.21875 C 1.796875 -2.078125 2.09375 -2.078125 2.359375 -2.078125 C 2.671875 -2.078125 3.21875 -2.078125 3.21875 -2.4375 C 3.21875 -2.6875 2.84375 -2.734375 2.453125 -2.734375 C 1.9375 -2.734375 1.671875 -2.625 1.46875 -2.53125 C 1.328125 -2.59375 1.078125 -2.78125 1.078125 -3.0625 C 1.078125 -3.59375 2 -3.953125 3 -3.953125 C 3.296875 -3.953125 3.609375 -3.90625 3.96875 -3.6875 C 4.0625 -3.609375 4.09375 -3.59375 4.171875 -3.59375 C 4.3125 -3.59375 4.46875 -3.734375 4.46875 -3.890625 C 4.46875 -4.09375 4.09375 -4.25 3.953125 -4.3125 C 3.546875 -4.484375 3.25 -4.484375 3.09375 -4.484375 C 1.921875 -4.484375 0.78125 -3.8125 0.78125 -3.0625 C 0.78125 -2.6875 1.046875 -2.453125 1.15625 -2.375 C 0.453125 -1.9375 0.28125 -1.40625 0.28125 -1.078125 C 0.28125 -0.390625 0.921875 0.203125 2.03125 0.203125 C 3.46875 0.203125 3.984375 -0.6875 3.984375 -0.828125 C 3.984375 -0.90625 3.953125 -0.96875 3.859375 -0.96875 C 3.796875 -0.96875 3.765625 -0.9375 3.71875 -0.875 C 3.578125 -0.640625 3.359375 -0.3125 2.140625 -0.3125 C 1.875 -0.3125 0.609375 -0.3125 0.609375 -1.125 C 0.609375 -1.421875 0.828125 -1.890625 1.453125 -2.21875 Z M 2.875 -2.40625 C 2.71875 -2.34375 2.703125 -2.34375 2.359375 -2.34375 C 2.25 -2.34375 2.046875 -2.34375 1.890625 -2.375 C 2.140625 -2.4375 2.34375 -2.453125 2.4375 -2.453125 C 2.625 -2.453125 2.734375 -2.4375 2.875 -2.40625 Z M 2.875 -2.40625 "></path> </symbol> <symbol overflow="visible" id="2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph2-1"> <path style="stroke:none;" d="M 6.625 -5.015625 C 6.640625 -5.09375 6.640625 -5.109375 6.640625 -5.125 C 6.640625 -5.140625 6.640625 -5.234375 6.53125 -5.234375 C 6.46875 -5.234375 6.46875 -5.234375 6.390625 -5.140625 L 5.90625 -4.640625 C 5.890625 -4.640625 5.84375 -4.578125 5.828125 -4.578125 C 5.828125 -4.578125 5.8125 -4.59375 5.796875 -4.609375 C 5.609375 -4.8125 5.203125 -5.234375 4.34375 -5.234375 C 2.46875 -5.234375 0.625 -3.671875 0.625 -1.984375 C 0.625 -0.796875 1.5625 0.15625 3.09375 0.15625 C 3.625 0.15625 4.4375 0.0625 4.921875 -0.421875 C 4.953125 -0.3125 5.171875 0 5.28125 0 C 5.3125 0 5.359375 -0.015625 5.375 -0.046875 C 5.40625 -0.109375 5.59375 -0.921875 5.640625 -1.078125 C 5.6875 -1.265625 5.703125 -1.359375 5.734375 -1.46875 C 5.8125 -1.75 5.828125 -1.75 6.265625 -1.765625 C 6.34375 -1.765625 6.453125 -1.765625 6.453125 -1.953125 C 6.453125 -2.015625 6.390625 -2.0625 6.328125 -2.0625 C 6.203125 -2.0625 6.046875 -2.03125 5.90625 -2.03125 C 5.75 -2.03125 5.609375 -2.03125 5.453125 -2.03125 C 5.25 -2.03125 5.046875 -2.03125 4.828125 -2.03125 C 4.640625 -2.03125 4.40625 -2.0625 4.203125 -2.0625 C 4.15625 -2.0625 4.09375 -2.0625 4.0625 -2.015625 C 4.046875 -1.984375 4.03125 -1.890625 4.03125 -1.859375 C 4.046875 -1.765625 4.09375 -1.765625 4.34375 -1.765625 C 4.484375 -1.765625 4.640625 -1.75 4.78125 -1.75 C 5.015625 -1.71875 5.03125 -1.703125 5.03125 -1.609375 C 5.03125 -1.5625 4.90625 -1.0625 4.875 -0.96875 C 4.84375 -0.8125 4.765625 -0.515625 4.28125 -0.3125 C 3.84375 -0.140625 3.359375 -0.140625 3.25 -0.140625 C 2.40625 -0.140625 1.40625 -0.53125 1.40625 -1.78125 C 1.40625 -2.28125 1.59375 -3.265625 2.34375 -4.0625 C 2.59375 -4.3125 3.359375 -4.9375 4.421875 -4.9375 C 5.359375 -4.9375 5.890625 -4.28125 5.890625 -3.46875 C 5.890625 -3.34375 5.859375 -3.21875 5.859375 -3.203125 C 5.859375 -3.09375 5.96875 -3.09375 6.015625 -3.09375 C 6.109375 -3.09375 6.140625 -3.09375 6.1875 -3.25 Z M 6.625 -5.015625 "></path> </symbol> <symbol overflow="visible" id="2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph3-1"> <path style="stroke:none;" d="M 3.109375 -6.3125 C 3.109375 -6.59375 3.09375 -6.59375 2.828125 -6.59375 C 2.421875 -6.203125 1.890625 -5.96875 0.953125 -5.96875 L 0.953125 -5.640625 C 1.21875 -5.640625 1.75 -5.640625 2.328125 -5.90625 L 2.328125 -0.8125 C 2.328125 -0.453125 2.296875 -0.328125 1.359375 -0.328125 L 1.015625 -0.328125 L 1.015625 0 C 1.421875 -0.03125 2.265625 -0.03125 2.71875 -0.03125 C 3.171875 -0.03125 4.03125 -0.03125 4.4375 0 L 4.4375 -0.328125 L 4.09375 -0.328125 C 3.140625 -0.328125 3.109375 -0.453125 3.109375 -0.8125 Z M 3.109375 -6.3125 "></path> </symbol> </g> </defs> <g id="2Jty0XCbCkjQ1Sei2wl9YpABlk4=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph0-1" x="28.213975" y="17.629881"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-1" x="38.781295" y="12.228557"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph0-2" x="47.617901" y="17.629881"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph0-1" x="18.513009" y="82.685824"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-1" x="29.079084" y="77.2845"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph0-1" x="37.915689" y="82.685824"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-1" x="48.483009" y="77.2845"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph0-2" x="57.319614" y="82.685824"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph0-1" x="137.604103" y="82.685824"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-1" x="148.171423" y="77.2845"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph0-2" x="157.006784" y="82.685824"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph0-2" x="237.292268" y="82.685824"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -90.33934 20.823337 L -90.33934 -20.34525 " transform="matrix(0.996095,0,0,-0.996095,133.650603,44.066235)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.484707 2.870246 C -2.033727 1.148679 -1.018042 0.332993 0.00156519 -0.000339584 C -1.018042 -0.333673 -2.033727 -1.149358 -2.484707 -2.870925 " transform="matrix(0,0.996095,0.996095,0,43.664401,64.568753)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-2" x="3.271763" y="47.39618"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph2-1" x="10.874456" y="43.893662"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-3" x="18.587965" y="47.39618"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph2-1" x="24.234577" y="43.893662"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-1" x="31.94684" y="47.39618"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -74.449159 20.823337 L -3.12374 -21.592307 " transform="matrix(0.996095,0,0,-0.996095,133.650603,44.066235)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486428 2.869574 C -2.031825 1.146002 -1.019438 0.333587 0.000213718 0.0000155849 C -1.020043 -0.332929 -2.031438 -1.148815 -2.486143 -2.870155 " transform="matrix(0.856124,0.509104,0.509104,-0.856124,130.741997,65.695217)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph3-1" x="98.721545" y="41.068986"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -58.406038 -35.035431 L -3.194328 -35.035431 " transform="matrix(0.996095,0,0,-0.996095,133.650603,44.066235)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487774 2.870324 C -2.032873 1.148757 -1.021109 0.333072 -0.00150243 -0.000261266 C -1.021109 -0.333594 -2.032873 -1.14928 -2.487774 -2.870847 " transform="matrix(0.996095,0,0,-0.996095,130.708528,78.964584)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-2" x="93.117516" y="91.055012"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph2-1" x="100.721454" y="87.552494"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-4" x="108.433718" y="91.055012"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 41.672294 -35.035431 L 96.887926 -35.035431 " transform="matrix(0.996095,0,0,-0.996095,133.650603,44.066235)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485491 2.870324 C -2.030589 1.148757 -1.018825 0.333072 0.000781357 -0.000261266 C -1.018825 -0.333594 -2.030589 -1.14928 -2.485491 -2.870847 " transform="matrix(0.996095,0,0,-0.996095,230.397659,78.964584)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2Jty0XCbCkjQ1Sei2wl9YpABlk4=-glyph1-4" x="200.463658" y="86.738934"></use> </g> </g> </svg> <p>where commutativity of the triangle comes from how we introduced <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>η</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">\eta^G</annotation></semantics></math> in this proof.</p> <p>Monad associativity follows by showing that the maximal paths in</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="286.049pt" height="97.958pt" viewBox="0 0 286.049 97.958" version="1.2"> <defs> <g> <symbol overflow="visible" id="dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-1"> <path style="stroke:none;" d="M 6.203125 -9.078125 C 6.296875 -9.4375 6.328125 -9.578125 6.546875 -9.640625 C 6.671875 -9.65625 7.15625 -9.65625 7.46875 -9.65625 C 8.96875 -9.65625 9.65625 -9.609375 9.65625 -8.4375 C 9.65625 -8.21875 9.609375 -7.65625 9.515625 -7.109375 L 9.5 -6.921875 C 9.5 -6.859375 9.5625 -6.78125 9.65625 -6.78125 C 9.796875 -6.78125 9.796875 -6.84375 9.84375 -7.09375 L 10.28125 -9.71875 C 10.296875 -9.859375 10.296875 -9.890625 10.296875 -9.9375 C 10.296875 -10.09375 10.21875 -10.09375 9.921875 -10.09375 L 1.765625 -10.09375 C 1.421875 -10.09375 1.421875 -10.078125 1.328125 -9.8125 L 0.421875 -7.125 C 0.40625 -7.109375 0.359375 -6.9375 0.359375 -6.921875 C 0.359375 -6.84375 0.421875 -6.78125 0.5 -6.78125 C 0.625 -6.78125 0.65625 -6.828125 0.71875 -7.03125 C 1.34375 -8.828125 1.65625 -9.65625 3.640625 -9.65625 L 4.625 -9.65625 C 4.984375 -9.65625 5.140625 -9.65625 5.140625 -9.5 C 5.140625 -9.453125 5.140625 -9.421875 5.0625 -9.15625 L 3.0625 -1.15625 C 2.921875 -0.578125 2.890625 -0.4375 1.3125 -0.4375 C 0.9375 -0.4375 0.828125 -0.4375 0.828125 -0.15625 C 0.828125 0 1 0 1.078125 0 C 1.4375 0 1.828125 -0.03125 2.203125 -0.03125 L 4.53125 -0.03125 C 4.90625 -0.03125 5.296875 0 5.671875 0 C 5.84375 0 5.984375 0 5.984375 -0.28125 C 5.984375 -0.4375 5.875 -0.4375 5.5 -0.4375 C 4.15625 -0.4375 4.15625 -0.5625 4.15625 -0.796875 C 4.15625 -0.796875 4.15625 -0.90625 4.21875 -1.140625 Z M 6.203125 -9.078125 "></path> </symbol> <symbol overflow="visible" id="dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-2"> <path style="stroke:none;" d="M 11.109375 -10.34375 C 11.109375 -10.484375 11 -10.484375 10.96875 -10.484375 C 10.9375 -10.484375 10.890625 -10.484375 10.765625 -10.328125 L 9.734375 -9.09375 C 9.65625 -9.21875 9.359375 -9.734375 8.78125 -10.078125 C 8.140625 -10.484375 7.5 -10.484375 7.28125 -10.484375 C 4.09375 -10.484375 0.75 -7.234375 0.75 -3.71875 C 0.75 -1.265625 2.4375 0.3125 4.671875 0.3125 C 5.75 0.3125 7.109375 -0.046875 7.84375 -0.984375 C 8.015625 -0.421875 8.34375 -0.015625 8.4375 -0.015625 C 8.515625 -0.015625 8.53125 -0.0625 8.546875 -0.0625 C 8.5625 -0.09375 8.6875 -0.609375 8.75 -0.875 L 9 -1.828125 C 9.109375 -2.328125 9.171875 -2.53125 9.28125 -2.984375 C 9.421875 -3.546875 9.453125 -3.59375 10.28125 -3.609375 C 10.328125 -3.609375 10.515625 -3.609375 10.515625 -3.890625 C 10.515625 -4.03125 10.359375 -4.03125 10.3125 -4.03125 C 10.0625 -4.03125 9.78125 -4 9.515625 -4 L 8.71875 -4 C 8.078125 -4 7.4375 -4.03125 6.8125 -4.03125 C 6.6875 -4.03125 6.5 -4.03125 6.5 -3.765625 C 6.5 -3.625 6.625 -3.625 6.625 -3.609375 L 7 -3.609375 C 8.171875 -3.609375 8.171875 -3.484375 8.171875 -3.265625 C 8.171875 -3.25 7.890625 -1.75 7.609375 -1.296875 C 7.046875 -0.46875 5.859375 -0.125 4.984375 -0.125 C 3.84375 -0.125 1.984375 -0.71875 1.984375 -3.296875 C 1.984375 -4.28125 2.34375 -6.5625 3.78125 -8.25 C 4.71875 -9.328125 6.109375 -10.046875 7.421875 -10.046875 C 9.171875 -10.046875 9.796875 -8.546875 9.796875 -7.171875 C 9.796875 -6.9375 9.734375 -6.609375 9.734375 -6.40625 C 9.734375 -6.265625 9.890625 -6.265625 9.9375 -6.265625 C 10.09375 -6.265625 10.109375 -6.28125 10.171875 -6.546875 Z M 11.109375 -10.34375 "></path> </symbol> <symbol overflow="visible" id="dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-1"> <path style="stroke:none;" d="M 7.90625 -6.71875 C 7.921875 -6.75 7.9375 -6.8125 7.9375 -6.859375 C 7.9375 -6.9375 7.875 -6.984375 7.8125 -6.984375 C 7.734375 -6.984375 7.703125 -6.953125 7.625 -6.859375 L 6.9375 -6.109375 C 6.484375 -6.734375 5.828125 -6.984375 5.15625 -6.984375 C 2.84375 -6.984375 0.53125 -4.84375 0.53125 -2.5625 C 0.53125 -0.90625 1.75 0.203125 3.4375 0.203125 C 4.515625 0.203125 5.3125 -0.171875 5.671875 -0.609375 C 5.796875 -0.28125 6.03125 -0.015625 6.125 -0.015625 C 6.171875 -0.015625 6.21875 -0.03125 6.234375 -0.0625 C 6.296875 -0.234375 6.53125 -1.25 6.609375 -1.53125 C 6.703125 -1.921875 6.765625 -2.203125 6.828125 -2.28125 C 6.921875 -2.40625 7.109375 -2.40625 7.40625 -2.40625 C 7.453125 -2.40625 7.59375 -2.40625 7.59375 -2.59375 C 7.59375 -2.6875 7.53125 -2.734375 7.453125 -2.734375 C 7.375 -2.734375 7.265625 -2.703125 6.296875 -2.703125 C 6.046875 -2.703125 5.71875 -2.703125 5.5625 -2.71875 C 5.421875 -2.734375 5.015625 -2.734375 4.875 -2.734375 C 4.8125 -2.734375 4.65625 -2.734375 4.65625 -2.546875 C 4.65625 -2.40625 4.765625 -2.40625 5.03125 -2.40625 C 5.234375 -2.40625 5.609375 -2.40625 5.859375 -2.328125 C 5.859375 -2.296875 5.875 -2.25 5.875 -2.203125 C 5.875 -2.15625 5.8125 -1.9375 5.78125 -1.8125 C 5.71875 -1.546875 5.609375 -1.125 5.578125 -1.03125 C 5.265625 -0.359375 4.296875 -0.125 3.609375 -0.125 C 2.625 -0.125 1.484375 -0.640625 1.484375 -2.25 C 1.484375 -3.078125 1.8125 -4.5 2.6875 -5.453125 C 3.640625 -6.484375 4.71875 -6.65625 5.234375 -6.65625 C 6.4375 -6.65625 7 -5.703125 7 -4.703125 C 7 -4.5625 6.953125 -4.390625 6.953125 -4.265625 C 6.953125 -4.140625 7.078125 -4.140625 7.125 -4.140625 C 7.25 -4.140625 7.265625 -4.171875 7.3125 -4.359375 Z M 7.90625 -6.71875 "></path> </symbol> <symbol overflow="visible" id="dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-2"> <path style="stroke:none;" d="M 4.484375 -6 C 4.578125 -6.359375 4.578125 -6.375 4.984375 -6.375 L 5.75 -6.375 C 6.78125 -6.375 6.890625 -6.046875 6.890625 -5.5625 C 6.890625 -5.3125 6.84375 -4.875 6.828125 -4.828125 C 6.8125 -4.71875 6.796875 -4.640625 6.796875 -4.609375 C 6.796875 -4.484375 6.890625 -4.453125 6.9375 -4.453125 C 7.046875 -4.453125 7.09375 -4.515625 7.125 -4.703125 L 7.390625 -6.5625 C 7.390625 -6.703125 7.265625 -6.703125 7.09375 -6.703125 L 1.25 -6.703125 C 1 -6.703125 0.984375 -6.703125 0.90625 -6.5 L 0.3125 -4.78125 C 0.28125 -4.734375 0.265625 -4.65625 0.265625 -4.59375 C 0.265625 -4.515625 0.328125 -4.453125 0.40625 -4.453125 C 0.515625 -4.453125 0.53125 -4.5 0.59375 -4.671875 C 1.15625 -6.265625 1.453125 -6.375 2.953125 -6.375 L 3.34375 -6.375 C 3.640625 -6.375 3.65625 -6.375 3.65625 -6.296875 C 3.65625 -6.265625 3.609375 -6.0625 3.609375 -6.015625 L 2.296875 -0.8125 C 2.203125 -0.4375 2.171875 -0.328125 1.140625 -0.328125 C 0.828125 -0.328125 0.71875 -0.328125 0.71875 -0.140625 C 0.71875 -0.125 0.71875 0 0.890625 0 C 1.15625 0 1.84375 -0.03125 2.109375 -0.03125 L 2.953125 -0.03125 C 3.234375 -0.03125 3.921875 0 4.203125 0 C 4.28125 0 4.4375 0 4.4375 -0.1875 C 4.4375 -0.328125 4.328125 -0.328125 4.0625 -0.328125 C 3.8125 -0.328125 3.734375 -0.328125 3.484375 -0.34375 C 3.171875 -0.375 3.125 -0.421875 3.125 -0.546875 C 3.125 -0.578125 3.140625 -0.625 3.171875 -0.71875 Z M 4.484375 -6 "></path> </symbol> <symbol overflow="visible" id="dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-3"> <path style="stroke:none;" d="M 2.40625 -3.5 C 2.453125 -3.6875 2.53125 -4.015625 2.53125 -4.0625 C 2.53125 -4.28125 2.375 -4.375 2.203125 -4.375 C 1.859375 -4.375 1.78125 -4.046875 1.75 -3.90625 L 0.359375 1.59375 C 0.328125 1.75 0.328125 1.8125 0.328125 1.828125 C 0.328125 2.078125 0.53125 2.140625 0.640625 2.140625 C 0.6875 2.140625 0.921875 2.125 1.046875 1.859375 C 1.078125 1.78125 1.375 0.609375 1.5625 -0.1875 C 1.734375 -0.0625 2.078125 0.09375 2.578125 0.09375 C 3.390625 0.09375 3.921875 -0.5625 3.953125 -0.609375 C 4.140625 0.078125 4.8125 0.09375 4.9375 0.09375 C 5.390625 0.09375 5.609375 -0.28125 5.6875 -0.453125 C 5.890625 -0.796875 6.03125 -1.375 6.03125 -1.421875 C 6.03125 -1.484375 6 -1.546875 5.875 -1.546875 C 5.75 -1.546875 5.734375 -1.484375 5.671875 -1.234375 C 5.53125 -0.6875 5.34375 -0.171875 4.953125 -0.171875 C 4.734375 -0.171875 4.640625 -0.359375 4.640625 -0.640625 C 4.640625 -0.8125 4.75 -1.234375 4.828125 -1.53125 L 5.078125 -2.546875 C 5.140625 -2.796875 5.1875 -3 5.265625 -3.296875 C 5.3125 -3.515625 5.421875 -3.90625 5.421875 -3.96875 C 5.421875 -4.21875 5.21875 -4.28125 5.09375 -4.28125 C 4.75 -4.28125 4.6875 -4.03125 4.578125 -3.578125 L 4.0625 -1.515625 L 3.96875 -1.125 C 3.953125 -1.0625 3.6875 -0.6875 3.453125 -0.5 C 3.28125 -0.359375 3 -0.171875 2.625 -0.171875 C 2.15625 -0.171875 1.84375 -0.421875 1.84375 -1.046875 C 1.84375 -1.296875 1.921875 -1.59375 1.984375 -1.828125 Z M 2.40625 -3.5 "></path> </symbol> <symbol overflow="visible" id="dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-4"> <path style="stroke:none;" d="M 1.453125 -2.21875 C 1.796875 -2.078125 2.09375 -2.078125 2.359375 -2.078125 C 2.671875 -2.078125 3.21875 -2.078125 3.21875 -2.4375 C 3.21875 -2.6875 2.84375 -2.734375 2.453125 -2.734375 C 1.9375 -2.734375 1.671875 -2.625 1.46875 -2.53125 C 1.328125 -2.59375 1.078125 -2.78125 1.078125 -3.0625 C 1.078125 -3.59375 2 -3.953125 3 -3.953125 C 3.296875 -3.953125 3.609375 -3.90625 3.96875 -3.6875 C 4.0625 -3.609375 4.09375 -3.59375 4.171875 -3.59375 C 4.3125 -3.59375 4.46875 -3.734375 4.46875 -3.890625 C 4.46875 -4.09375 4.09375 -4.25 3.953125 -4.3125 C 3.546875 -4.484375 3.25 -4.484375 3.09375 -4.484375 C 1.921875 -4.484375 0.78125 -3.8125 0.78125 -3.0625 C 0.78125 -2.6875 1.046875 -2.453125 1.15625 -2.375 C 0.453125 -1.9375 0.28125 -1.40625 0.28125 -1.078125 C 0.28125 -0.390625 0.921875 0.203125 2.03125 0.203125 C 3.46875 0.203125 3.984375 -0.6875 3.984375 -0.828125 C 3.984375 -0.90625 3.953125 -0.96875 3.859375 -0.96875 C 3.796875 -0.96875 3.765625 -0.9375 3.71875 -0.875 C 3.578125 -0.640625 3.359375 -0.3125 2.140625 -0.3125 C 1.875 -0.3125 0.609375 -0.3125 0.609375 -1.125 C 0.609375 -1.421875 0.828125 -1.890625 1.453125 -2.21875 Z M 2.875 -2.40625 C 2.71875 -2.34375 2.703125 -2.34375 2.359375 -2.34375 C 2.25 -2.34375 2.046875 -2.34375 1.890625 -2.375 C 2.140625 -2.4375 2.34375 -2.453125 2.4375 -2.453125 C 2.625 -2.453125 2.734375 -2.4375 2.875 -2.40625 Z M 2.875 -2.40625 "></path> </symbol> <symbol overflow="visible" id="dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph2-1"> <path style="stroke:none;" d="M 6.640625 -5.03125 C 6.640625 -5.09375 6.65625 -5.125 6.65625 -5.140625 C 6.65625 -5.15625 6.640625 -5.25 6.546875 -5.25 C 6.484375 -5.25 6.484375 -5.234375 6.40625 -5.15625 L 5.921875 -4.65625 C 5.90625 -4.640625 5.859375 -4.59375 5.84375 -4.59375 C 5.828125 -4.59375 5.828125 -4.59375 5.8125 -4.609375 C 5.625 -4.828125 5.21875 -5.25 4.359375 -5.25 C 2.46875 -5.25 0.640625 -3.671875 0.640625 -1.984375 C 0.640625 -0.8125 1.5625 0.15625 3.09375 0.15625 C 3.640625 0.15625 4.453125 0.0625 4.921875 -0.421875 C 4.96875 -0.328125 5.1875 0 5.296875 0 C 5.328125 0 5.359375 -0.015625 5.375 -0.046875 C 5.40625 -0.109375 5.609375 -0.9375 5.65625 -1.09375 C 5.6875 -1.265625 5.71875 -1.359375 5.75 -1.46875 C 5.828125 -1.765625 5.84375 -1.765625 6.28125 -1.765625 C 6.34375 -1.765625 6.46875 -1.765625 6.46875 -1.953125 C 6.46875 -2.015625 6.40625 -2.0625 6.34375 -2.0625 C 6.203125 -2.0625 6.046875 -2.046875 5.921875 -2.046875 C 5.765625 -2.046875 5.625 -2.03125 5.46875 -2.03125 C 5.265625 -2.03125 5.046875 -2.046875 4.84375 -2.046875 C 4.640625 -2.046875 4.421875 -2.0625 4.21875 -2.0625 C 4.15625 -2.0625 4.109375 -2.0625 4.078125 -2.015625 C 4.0625 -1.984375 4.03125 -1.90625 4.03125 -1.875 C 4.046875 -1.765625 4.109375 -1.765625 4.359375 -1.765625 C 4.5 -1.765625 4.640625 -1.765625 4.78125 -1.75 C 5.03125 -1.734375 5.046875 -1.703125 5.046875 -1.625 C 5.046875 -1.578125 4.90625 -1.0625 4.890625 -0.96875 C 4.859375 -0.8125 4.78125 -0.515625 4.28125 -0.328125 C 3.859375 -0.140625 3.359375 -0.140625 3.265625 -0.140625 C 2.40625 -0.140625 1.421875 -0.53125 1.421875 -1.78125 C 1.421875 -2.28125 1.59375 -3.28125 2.34375 -4.0625 C 2.59375 -4.328125 3.375 -4.953125 4.4375 -4.953125 C 5.375 -4.953125 5.890625 -4.28125 5.890625 -3.484375 C 5.890625 -3.359375 5.875 -3.21875 5.875 -3.203125 C 5.875 -3.09375 5.984375 -3.09375 6.015625 -3.09375 C 6.125 -3.09375 6.15625 -3.09375 6.1875 -3.25 Z M 6.640625 -5.03125 "></path> </symbol> </g> </defs> <g id="dHhhqgfmmtMgTDWEKgmtuJgQh-0=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-1" x="9.4446" y="21.099688"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-1" x="20.018197" y="15.695156"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-1" x="28.860052" y="21.099688"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-1" x="39.433649" y="15.695156"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-1" x="48.275503" y="21.099688"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-1" x="58.847854" y="15.695156"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-2" x="67.689708" y="21.099688"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-1" x="148.021886" y="21.099688"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-1" x="158.595483" y="15.695156"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-1" x="167.437337" y="21.099688"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-1" x="178.010934" y="15.695156"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-2" x="186.851542" y="21.099688"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-1" x="19.152326" y="86.194274"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-1" x="29.725923" y="80.789742"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-1" x="38.567777" y="86.194274"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-1" x="49.140128" y="80.789742"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-2" x="57.981983" y="86.194274"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-1" x="157.729611" y="86.194274"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-1" x="168.303208" y="80.789742"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-2" x="177.143817" y="86.194274"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph0-2" x="267.18372" y="86.194274"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -58.404096 30.277071 L -3.193808 30.277071 " transform="matrix(0.996686,0,0,-0.996686,144.066037,47.551745)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.48589 2.869692 C -2.031259 1.149147 -1.020096 0.333946 -0.00109432 0.000810824 C -1.020096 -0.336244 -2.031259 -1.147526 -2.48589 -2.86807 " transform="matrix(0.996686,0,0,-0.996686,141.122184,17.375808)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-2" x="94.802818" y="11.941136"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph2-1" x="102.410027" y="8.437784"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-3" x="110.128117" y="11.941136"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph2-1" x="116.474518" y="8.437784"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-1" x="124.191363" y="11.941136"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -100.07734 20.823872 L -100.07734 -20.343791 " transform="matrix(0.996686,0,0,-0.996686,144.066037,47.551745)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.484939 2.870469 C -2.034183 1.145979 -1.019064 0.334701 -0.0000356918 0.00158007 C -1.019051 -0.335501 -2.034137 -1.14682 -2.484824 -2.867408 " transform="matrix(-0.0000199337,0.996666,0.996666,0.0000199337,44.318738,68.066442)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-3" x="3.20634" y="50.883668"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph2-1" x="9.552741" y="47.379069"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-2" x="17.270831" y="50.883668"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph2-1" x="24.87804" y="47.379069"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-1" x="32.594885" y="50.883668"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 29.222199 20.823872 L 29.222199 -20.343791 " transform="matrix(0.996686,0,0,-0.996686,144.066037,47.551745)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.484939 2.870788 C -2.034183 1.146299 -1.019064 0.335021 -0.0000356982 0.00189934 C -1.019051 -0.335182 -2.034137 -1.146501 -2.484824 -2.871008 " transform="matrix(-0.0000199337,0.996666,0.996666,0.0000199337,173.189513,68.066442)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-2" x="176.693564" y="51.84846"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph2-1" x="184.302019" y="48.343862"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-4" x="192.018863" y="51.84846"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -68.147318 -35.037009 L 6.545496 -35.037009 " transform="matrix(0.996686,0,0,-0.996686,144.066037,47.551745)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486467 2.870961 C -2.031836 1.146497 -1.020673 0.335215 -0.00167103 -0.00183943 C -1.020673 -0.334975 -2.031836 -1.146257 -2.486467 -2.870721 " transform="matrix(0.996686,0,0,-0.996686,150.82979,82.470823)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-2" x="103.509871" y="94.568433"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph2-1" x="111.11708" y="91.063835"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-4" x="118.833924" y="94.568433"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 51.412918 -35.037009 L 116.366428 -35.037009 " transform="matrix(0.996686,0,0,-0.996686,144.066037,47.551745)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485434 2.870961 C -2.030803 1.146497 -1.01964 0.335215 -0.00063836 -0.00183943 C -1.01964 -0.334975 -2.030803 -1.146257 -2.485434 -2.870721 " transform="matrix(0.996686,0,0,-0.996686,260.285792,82.470823)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#dHhhqgfmmtMgTDWEKgmtuJgQh-0=-glyph1-4" x="225.480367" y="90.249791"></use> </g> </g> </svg> <p>evaluate to the same 2-cell. By 2-categorical interchange, we may replace the composite “down, then right” to obtain the diagram</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="283.953pt" height="99.895pt" viewBox="0 0 283.953 99.895" version="1.2"> <defs> <g> <symbol overflow="visible" id="LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-1"> <path style="stroke:none;" d="M 6.21875 -9.109375 C 6.3125 -9.453125 6.34375 -9.59375 6.5625 -9.65625 C 6.6875 -9.6875 7.171875 -9.6875 7.484375 -9.6875 C 8.984375 -9.6875 9.6875 -9.625 9.6875 -8.453125 C 9.6875 -8.234375 9.625 -7.671875 9.53125 -7.125 L 9.515625 -6.9375 C 9.515625 -6.875 9.578125 -6.796875 9.671875 -6.796875 C 9.8125 -6.796875 9.8125 -6.859375 9.859375 -7.109375 L 10.296875 -9.75 C 10.328125 -9.875 10.328125 -9.90625 10.328125 -9.953125 C 10.328125 -10.109375 10.234375 -10.109375 9.9375 -10.109375 L 1.78125 -10.109375 C 1.4375 -10.109375 1.421875 -10.109375 1.328125 -9.828125 L 0.421875 -7.140625 C 0.40625 -7.125 0.359375 -6.953125 0.359375 -6.9375 C 0.359375 -6.859375 0.421875 -6.796875 0.5 -6.796875 C 0.625 -6.796875 0.65625 -6.84375 0.71875 -7.046875 C 1.34375 -8.84375 1.65625 -9.6875 3.640625 -9.6875 L 4.640625 -9.6875 C 5 -9.6875 5.140625 -9.6875 5.140625 -9.515625 C 5.140625 -9.46875 5.140625 -9.453125 5.078125 -9.171875 L 3.078125 -1.15625 C 2.921875 -0.578125 2.890625 -0.4375 1.3125 -0.4375 C 0.9375 -0.4375 0.828125 -0.4375 0.828125 -0.15625 C 0.828125 0 1 0 1.078125 0 C 1.453125 0 1.828125 -0.03125 2.203125 -0.03125 L 4.53125 -0.03125 C 4.90625 -0.03125 5.3125 0 5.6875 0 C 5.84375 0 6 0 6 -0.28125 C 6 -0.4375 5.890625 -0.4375 5.5 -0.4375 C 4.15625 -0.4375 4.15625 -0.5625 4.15625 -0.796875 C 4.15625 -0.8125 4.15625 -0.90625 4.21875 -1.15625 Z M 6.21875 -9.109375 "></path> </symbol> <symbol overflow="visible" id="LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-2"> <path style="stroke:none;" d="M 11.125 -10.375 C 11.125 -10.5 11.03125 -10.5 11 -10.5 C 10.96875 -10.5 10.90625 -10.5 10.78125 -10.359375 L 9.765625 -9.125 C 9.6875 -9.234375 9.390625 -9.765625 8.796875 -10.109375 C 8.15625 -10.5 7.515625 -10.5 7.296875 -10.5 C 4.109375 -10.5 0.75 -7.25 0.75 -3.734375 C 0.75 -1.265625 2.453125 0.3125 4.6875 0.3125 C 5.765625 0.3125 7.125 -0.046875 7.859375 -0.984375 C 8.03125 -0.421875 8.359375 -0.015625 8.453125 -0.015625 C 8.53125 -0.015625 8.546875 -0.0625 8.5625 -0.0625 C 8.578125 -0.09375 8.703125 -0.609375 8.78125 -0.875 L 9.015625 -1.828125 C 9.125 -2.328125 9.1875 -2.53125 9.296875 -2.984375 C 9.453125 -3.546875 9.46875 -3.59375 10.296875 -3.609375 C 10.359375 -3.609375 10.53125 -3.609375 10.53125 -3.890625 C 10.53125 -4.046875 10.390625 -4.046875 10.34375 -4.046875 C 10.09375 -4.046875 9.796875 -4.015625 9.53125 -4.015625 L 8.734375 -4.015625 C 8.109375 -4.015625 7.453125 -4.046875 6.828125 -4.046875 C 6.703125 -4.046875 6.515625 -4.046875 6.515625 -3.78125 C 6.515625 -3.625 6.640625 -3.625 6.640625 -3.609375 L 7.015625 -3.609375 C 8.1875 -3.609375 8.1875 -3.484375 8.1875 -3.265625 C 8.1875 -3.25 7.90625 -1.75 7.625 -1.296875 C 7.0625 -0.46875 5.875 -0.125 5 -0.125 C 3.84375 -0.125 1.984375 -0.71875 1.984375 -3.296875 C 1.984375 -4.296875 2.34375 -6.578125 3.796875 -8.265625 C 4.734375 -9.34375 6.125 -10.078125 7.4375 -10.078125 C 9.1875 -10.078125 9.8125 -8.5625 9.8125 -7.1875 C 9.8125 -6.953125 9.765625 -6.625 9.765625 -6.421875 C 9.765625 -6.28125 9.90625 -6.28125 9.953125 -6.28125 C 10.109375 -6.28125 10.125 -6.296875 10.1875 -6.5625 Z M 11.125 -10.375 "></path> </symbol> <symbol overflow="visible" id="LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-1"> <path style="stroke:none;" d="M 7.9375 -6.734375 C 7.9375 -6.78125 7.96875 -6.84375 7.96875 -6.890625 C 7.96875 -6.953125 7.90625 -7 7.828125 -7 C 7.765625 -7 7.734375 -6.984375 7.65625 -6.890625 L 6.953125 -6.125 C 6.5 -6.765625 5.859375 -7 5.171875 -7 C 2.84375 -7 0.53125 -4.859375 0.53125 -2.578125 C 0.53125 -0.921875 1.765625 0.203125 3.453125 0.203125 C 4.53125 0.203125 5.328125 -0.171875 5.6875 -0.609375 C 5.8125 -0.28125 6.046875 -0.015625 6.15625 -0.015625 C 6.1875 -0.015625 6.234375 -0.03125 6.265625 -0.0625 C 6.3125 -0.234375 6.5625 -1.25 6.625 -1.53125 C 6.71875 -1.9375 6.78125 -2.203125 6.84375 -2.296875 C 6.9375 -2.40625 7.125 -2.421875 7.421875 -2.421875 C 7.46875 -2.421875 7.625 -2.421875 7.625 -2.59375 C 7.625 -2.703125 7.546875 -2.75 7.46875 -2.75 C 7.40625 -2.75 7.28125 -2.71875 6.3125 -2.71875 C 6.078125 -2.71875 5.734375 -2.71875 5.578125 -2.734375 C 5.4375 -2.734375 5.03125 -2.75 4.890625 -2.75 C 4.828125 -2.75 4.671875 -2.75 4.671875 -2.5625 C 4.671875 -2.421875 4.78125 -2.421875 5.046875 -2.421875 C 5.25 -2.421875 5.640625 -2.421875 5.875 -2.328125 C 5.875 -2.3125 5.890625 -2.25 5.890625 -2.203125 C 5.890625 -2.15625 5.828125 -1.9375 5.796875 -1.8125 C 5.75 -1.546875 5.640625 -1.140625 5.59375 -1.03125 C 5.28125 -0.375 4.3125 -0.125 3.625 -0.125 C 2.640625 -0.125 1.484375 -0.640625 1.484375 -2.265625 C 1.484375 -3.078125 1.828125 -4.515625 2.703125 -5.46875 C 3.65625 -6.515625 4.734375 -6.671875 5.25 -6.671875 C 6.453125 -6.671875 7.015625 -5.71875 7.015625 -4.71875 C 7.015625 -4.578125 6.984375 -4.40625 6.984375 -4.28125 C 6.984375 -4.15625 7.109375 -4.15625 7.140625 -4.15625 C 7.28125 -4.15625 7.296875 -4.1875 7.328125 -4.375 Z M 7.9375 -6.734375 "></path> </symbol> <symbol overflow="visible" id="LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-2"> <path style="stroke:none;" d="M 4.5 -6.015625 C 4.59375 -6.375 4.59375 -6.40625 5 -6.40625 L 5.765625 -6.40625 C 6.796875 -6.40625 6.921875 -6.078125 6.921875 -5.578125 C 6.921875 -5.328125 6.859375 -4.890625 6.84375 -4.84375 C 6.828125 -4.734375 6.8125 -4.640625 6.8125 -4.625 C 6.8125 -4.5 6.90625 -4.46875 6.96875 -4.46875 C 7.078125 -4.46875 7.109375 -4.53125 7.140625 -4.71875 L 7.421875 -6.59375 C 7.421875 -6.734375 7.296875 -6.734375 7.109375 -6.734375 L 1.25 -6.734375 C 1 -6.734375 0.984375 -6.734375 0.921875 -6.515625 L 0.3125 -4.796875 C 0.28125 -4.75 0.265625 -4.671875 0.265625 -4.609375 C 0.265625 -4.53125 0.328125 -4.46875 0.40625 -4.46875 C 0.515625 -4.46875 0.53125 -4.515625 0.59375 -4.6875 C 1.171875 -6.28125 1.453125 -6.40625 2.96875 -6.40625 L 3.359375 -6.40625 C 3.65625 -6.40625 3.65625 -6.390625 3.65625 -6.3125 C 3.65625 -6.28125 3.625 -6.078125 3.609375 -6.046875 L 2.296875 -0.8125 C 2.203125 -0.4375 2.1875 -0.328125 1.140625 -0.328125 C 0.828125 -0.328125 0.734375 -0.328125 0.734375 -0.140625 C 0.734375 -0.125 0.734375 0 0.890625 0 C 1.171875 0 1.84375 -0.03125 2.125 -0.03125 L 2.96875 -0.03125 C 3.25 -0.03125 3.9375 0 4.21875 0 C 4.296875 0 4.453125 0 4.453125 -0.1875 C 4.453125 -0.328125 4.34375 -0.328125 4.078125 -0.328125 C 3.828125 -0.328125 3.75 -0.328125 3.5 -0.34375 C 3.171875 -0.375 3.140625 -0.421875 3.140625 -0.546875 C 3.140625 -0.59375 3.140625 -0.625 3.171875 -0.734375 Z M 4.5 -6.015625 "></path> </symbol> <symbol overflow="visible" id="LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-3"> <path style="stroke:none;" d="M 2.40625 -3.515625 C 2.453125 -3.703125 2.53125 -4.03125 2.53125 -4.078125 C 2.53125 -4.296875 2.375 -4.390625 2.203125 -4.390625 C 1.875 -4.390625 1.796875 -4.0625 1.75 -3.921875 L 0.375 1.609375 C 0.328125 1.765625 0.328125 1.8125 0.328125 1.828125 C 0.328125 2.078125 0.53125 2.140625 0.640625 2.140625 C 0.703125 2.140625 0.921875 2.125 1.0625 1.875 C 1.078125 1.796875 1.375 0.609375 1.578125 -0.1875 C 1.734375 -0.0625 2.078125 0.09375 2.59375 0.09375 C 3.40625 0.09375 3.9375 -0.5625 3.96875 -0.609375 C 4.15625 0.078125 4.828125 0.09375 4.953125 0.09375 C 5.40625 0.09375 5.640625 -0.28125 5.71875 -0.453125 C 5.90625 -0.8125 6.046875 -1.390625 6.046875 -1.421875 C 6.046875 -1.484375 6.015625 -1.546875 5.890625 -1.546875 C 5.765625 -1.546875 5.75 -1.5 5.6875 -1.25 C 5.546875 -0.703125 5.359375 -0.171875 4.96875 -0.171875 C 4.75 -0.171875 4.65625 -0.375 4.65625 -0.640625 C 4.65625 -0.8125 4.765625 -1.25 4.84375 -1.53125 L 5.09375 -2.546875 C 5.15625 -2.8125 5.203125 -3.015625 5.28125 -3.3125 C 5.328125 -3.53125 5.4375 -3.921875 5.4375 -3.984375 C 5.4375 -4.234375 5.234375 -4.296875 5.109375 -4.296875 C 4.765625 -4.296875 4.703125 -4.046875 4.59375 -3.59375 L 4.390625 -2.765625 L 4.078125 -1.515625 L 3.984375 -1.125 C 3.96875 -1.0625 3.6875 -0.6875 3.46875 -0.5 C 3.296875 -0.375 3 -0.171875 2.640625 -0.171875 C 2.171875 -0.171875 1.84375 -0.421875 1.84375 -1.046875 C 1.84375 -1.296875 1.9375 -1.609375 1.984375 -1.84375 Z M 2.40625 -3.515625 "></path> </symbol> <symbol overflow="visible" id="LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-4"> <path style="stroke:none;" d="M 1.453125 -2.234375 C 1.796875 -2.078125 2.09375 -2.078125 2.375 -2.078125 C 2.671875 -2.078125 3.234375 -2.078125 3.234375 -2.4375 C 3.234375 -2.703125 2.859375 -2.734375 2.46875 -2.734375 C 1.953125 -2.734375 1.6875 -2.625 1.46875 -2.53125 C 1.328125 -2.609375 1.078125 -2.796875 1.078125 -3.078125 C 1.078125 -3.609375 2.015625 -3.96875 3 -3.96875 C 3.3125 -3.96875 3.625 -3.921875 3.984375 -3.6875 C 4.078125 -3.625 4.09375 -3.609375 4.1875 -3.609375 C 4.3125 -3.609375 4.484375 -3.75 4.484375 -3.90625 C 4.484375 -4.109375 4.09375 -4.265625 3.96875 -4.328125 C 3.5625 -4.5 3.25 -4.5 3.109375 -4.5 C 1.921875 -4.5 0.78125 -3.828125 0.78125 -3.0625 C 0.78125 -2.703125 1.0625 -2.453125 1.15625 -2.390625 C 0.453125 -1.9375 0.28125 -1.40625 0.28125 -1.078125 C 0.28125 -0.390625 0.921875 0.203125 2.03125 0.203125 C 3.46875 0.203125 4 -0.703125 4 -0.84375 C 4 -0.90625 3.96875 -0.96875 3.875 -0.96875 C 3.796875 -0.96875 3.765625 -0.9375 3.734375 -0.875 C 3.578125 -0.640625 3.375 -0.3125 2.140625 -0.3125 C 1.875 -0.3125 0.609375 -0.3125 0.609375 -1.140625 C 0.609375 -1.4375 0.84375 -1.890625 1.453125 -2.234375 Z M 2.875 -2.40625 C 2.734375 -2.359375 2.703125 -2.359375 2.375 -2.359375 C 2.265625 -2.359375 2.046875 -2.359375 1.90625 -2.390625 C 2.140625 -2.453125 2.359375 -2.453125 2.453125 -2.453125 C 2.625 -2.453125 2.75 -2.4375 2.875 -2.421875 Z M 2.875 -2.40625 "></path> </symbol> <symbol overflow="visible" id="LsJw_lScz7pszU343CRW_PCTV4o=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="LsJw_lScz7pszU343CRW_PCTV4o=-glyph2-1"> <path style="stroke:none;" d="M 6.640625 -5.046875 C 6.65625 -5.109375 6.671875 -5.140625 6.671875 -5.15625 C 6.671875 -5.171875 6.65625 -5.265625 6.5625 -5.265625 C 6.5 -5.265625 6.484375 -5.25 6.421875 -5.171875 L 5.9375 -4.65625 C 5.921875 -4.65625 5.875 -4.59375 5.859375 -4.59375 C 5.84375 -4.59375 5.84375 -4.609375 5.8125 -4.625 C 5.625 -4.84375 5.234375 -5.265625 4.359375 -5.265625 C 2.484375 -5.265625 0.640625 -3.6875 0.640625 -1.984375 C 0.640625 -0.8125 1.5625 0.15625 3.09375 0.15625 C 3.640625 0.15625 4.453125 0.0625 4.9375 -0.421875 C 4.984375 -0.328125 5.203125 0 5.3125 0 C 5.34375 0 5.375 -0.015625 5.390625 -0.046875 C 5.421875 -0.109375 5.625 -0.9375 5.65625 -1.09375 C 5.703125 -1.265625 5.734375 -1.359375 5.765625 -1.46875 C 5.828125 -1.765625 5.859375 -1.765625 6.28125 -1.765625 C 6.359375 -1.765625 6.46875 -1.765625 6.46875 -1.953125 C 6.46875 -2.03125 6.421875 -2.0625 6.359375 -2.0625 C 6.21875 -2.0625 6.0625 -2.046875 5.9375 -2.046875 C 5.78125 -2.046875 5.625 -2.03125 5.46875 -2.03125 C 5.265625 -2.03125 5.0625 -2.046875 4.859375 -2.046875 C 4.65625 -2.046875 4.421875 -2.0625 4.234375 -2.0625 C 4.171875 -2.0625 4.109375 -2.0625 4.078125 -2.015625 C 4.078125 -2 4.046875 -1.90625 4.046875 -1.875 C 4.0625 -1.765625 4.109375 -1.765625 4.359375 -1.765625 C 4.5 -1.765625 4.65625 -1.765625 4.796875 -1.75 C 5.046875 -1.734375 5.0625 -1.703125 5.0625 -1.625 C 5.0625 -1.578125 4.921875 -1.0625 4.90625 -0.984375 C 4.859375 -0.8125 4.78125 -0.515625 4.296875 -0.328125 C 3.859375 -0.140625 3.375 -0.140625 3.265625 -0.140625 C 2.40625 -0.140625 1.421875 -0.53125 1.421875 -1.796875 C 1.421875 -2.28125 1.59375 -3.28125 2.359375 -4.078125 C 2.59375 -4.328125 3.375 -4.953125 4.4375 -4.953125 C 5.390625 -4.953125 5.90625 -4.296875 5.90625 -3.484375 C 5.90625 -3.359375 5.890625 -3.21875 5.890625 -3.21875 C 5.890625 -3.09375 6 -3.09375 6.03125 -3.09375 C 6.125 -3.09375 6.171875 -3.109375 6.203125 -3.265625 Z M 6.640625 -5.046875 "></path> </symbol> </g> </defs> <g id="LsJw_lScz7pszU343CRW_PCTV4o=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-1" x="7.49885" y="21.005921"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-1" x="18.096461" y="15.589114"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-1" x="26.958396" y="21.005921"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-1" x="37.554758" y="15.589114"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-1" x="46.416693" y="21.005921"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-1" x="57.014304" y="15.589114"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-2" x="65.876239" y="21.005921"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-1" x="146.39086" y="21.005921"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-1" x="156.987222" y="15.589114"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-1" x="165.849157" y="21.005921"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-1" x="176.446768" y="15.589114"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-2" x="185.308703" y="21.005921"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-1" x="17.228623" y="86.248344"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-1" x="27.824985" y="80.830289"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-1" x="36.68692" y="86.248344"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-1" x="47.284531" y="80.830289"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-2" x="56.146466" y="86.248344"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-1" x="156.119634" y="86.248344"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-1" x="166.717245" y="80.830289"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-2" x="175.57918" y="86.248344"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph0-2" x="265.823324" y="86.248344"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -58.405322 30.276406 L -3.191097 30.276406 " transform="matrix(0.99895,0,0,-0.99895,142.426028,47.518054)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485912 2.870348 C -2.03231 1.145881 -1.019528 0.336437 0.00107481 0.000146327 C -1.019528 -0.336144 -2.03231 -1.149498 -2.485912 -2.870055 " transform="matrix(0.99895,0,0,-0.99895,139.475489,17.273584)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-2" x="93.050926" y="11.826569"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph2-1" x="100.675412" y="8.314011"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-3" x="108.409782" y="11.826569"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph2-1" x="114.771845" y="8.314011"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-1" x="122.506215" y="11.826569"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -100.077984 20.821166 L -100.077984 -20.34315 " transform="matrix(0.99895,0,0,-0.99895,142.426028,47.518054)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488311 2.867234 C -2.030756 1.146652 -1.021848 0.333302 -0.00121788 0.000935611 C -1.021834 -0.335382 -2.03071 -1.148773 -2.488197 -2.869373 " transform="matrix(-0.000019979,0.99893,0.99893,0.000019979,42.45219,68.079342)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-2" x="3.339222" y="51.824527"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph2-1" x="10.963708" y="48.311969"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-2" x="18.699327" y="51.824527"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph2-1" x="26.323813" y="48.311969"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-4" x="34.058183" y="51.824527"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 29.221843 20.821166 L 29.221843 -20.34315 " transform="matrix(0.99895,0,0,-0.99895,142.426028,47.518054)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488311 2.867841 C -2.030756 1.14726 -1.021848 0.333909 -0.00121789 0.00154294 C -1.021834 -0.334775 -2.03071 -1.148165 -2.488197 -2.868765 " transform="matrix(-0.000019979,0.99893,0.99893,0.000019979,171.615646,68.079342)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-2" x="175.127655" y="51.824527"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph2-1" x="182.752141" y="48.311969"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-4" x="190.48776" y="51.824527"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -68.146018 -35.034357 L 6.545689 -35.034357 " transform="matrix(0.99895,0,0,-0.99895,142.426028,47.518054)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485095 2.871014 C -2.031494 1.146547 -1.018712 0.333193 0.00189129 0.000812525 C -1.018712 -0.335478 -2.031494 -1.148832 -2.485095 -2.869389 " transform="matrix(0.99895,0,0,-0.99895,149.205142,82.516437)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-3" x="100.730853" y="94.641522"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph2-1" x="107.091668" y="91.128964"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-1" x="114.826038" y="94.641522"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 51.413113 -35.034357 L 116.368034 -35.034357 " transform="matrix(0.99895,0,0,-0.99895,142.426028,47.518054)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486561 2.871014 C -2.032959 1.146547 -1.020177 0.333193 0.000425644 0.000812525 C -1.020177 -0.335478 -2.032959 -1.148832 -2.486561 -2.869389 " transform="matrix(0.99895,0,0,-0.99895,258.909731,82.516437)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#LsJw_lScz7pszU343CRW_PCTV4o=-glyph1-4" x="224.024259" y="90.313072"></use> </g> </g> </svg> <p>and then use how we introduced <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>μ</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">\mu^G</annotation></semantics></math> in this proof to further replace “right, then down” by</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="288.018pt" height="97.958pt" viewBox="0 0 288.018 97.958" version="1.2"> <defs> <g> <symbol overflow="visible" id="WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-1"> <path style="stroke:none;" d="M 6.203125 -9.078125 C 6.296875 -9.4375 6.328125 -9.578125 6.546875 -9.640625 C 6.671875 -9.65625 7.15625 -9.65625 7.46875 -9.65625 C 8.96875 -9.65625 9.65625 -9.609375 9.65625 -8.4375 C 9.65625 -8.21875 9.609375 -7.65625 9.515625 -7.109375 L 9.5 -6.921875 C 9.5 -6.859375 9.5625 -6.78125 9.65625 -6.78125 C 9.796875 -6.78125 9.796875 -6.84375 9.84375 -7.09375 L 10.28125 -9.71875 C 10.296875 -9.859375 10.296875 -9.890625 10.296875 -9.9375 C 10.296875 -10.09375 10.21875 -10.09375 9.921875 -10.09375 L 1.765625 -10.09375 C 1.421875 -10.09375 1.421875 -10.078125 1.328125 -9.8125 L 0.421875 -7.125 C 0.40625 -7.109375 0.359375 -6.9375 0.359375 -6.921875 C 0.359375 -6.84375 0.421875 -6.78125 0.5 -6.78125 C 0.625 -6.78125 0.65625 -6.828125 0.71875 -7.03125 C 1.34375 -8.828125 1.65625 -9.65625 3.640625 -9.65625 L 4.625 -9.65625 C 4.984375 -9.65625 5.140625 -9.65625 5.140625 -9.5 C 5.140625 -9.453125 5.140625 -9.421875 5.0625 -9.15625 L 3.0625 -1.15625 C 2.921875 -0.578125 2.890625 -0.4375 1.3125 -0.4375 C 0.9375 -0.4375 0.828125 -0.4375 0.828125 -0.15625 C 0.828125 0 1 0 1.078125 0 C 1.4375 0 1.828125 -0.03125 2.203125 -0.03125 L 4.53125 -0.03125 C 4.90625 -0.03125 5.296875 0 5.671875 0 C 5.84375 0 5.984375 0 5.984375 -0.28125 C 5.984375 -0.4375 5.875 -0.4375 5.5 -0.4375 C 4.15625 -0.4375 4.15625 -0.5625 4.15625 -0.796875 C 4.15625 -0.796875 4.15625 -0.90625 4.21875 -1.140625 Z M 6.203125 -9.078125 "></path> </symbol> <symbol overflow="visible" id="WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-2"> <path style="stroke:none;" d="M 11.109375 -10.34375 C 11.109375 -10.484375 11 -10.484375 10.96875 -10.484375 C 10.9375 -10.484375 10.890625 -10.484375 10.765625 -10.328125 L 9.734375 -9.09375 C 9.65625 -9.21875 9.359375 -9.734375 8.78125 -10.078125 C 8.140625 -10.484375 7.5 -10.484375 7.28125 -10.484375 C 4.09375 -10.484375 0.75 -7.234375 0.75 -3.71875 C 0.75 -1.265625 2.4375 0.3125 4.671875 0.3125 C 5.75 0.3125 7.109375 -0.046875 7.84375 -0.984375 C 8.015625 -0.421875 8.34375 -0.015625 8.4375 -0.015625 C 8.515625 -0.015625 8.53125 -0.0625 8.546875 -0.0625 C 8.5625 -0.09375 8.6875 -0.609375 8.75 -0.875 L 9 -1.828125 C 9.109375 -2.328125 9.171875 -2.53125 9.28125 -2.984375 C 9.421875 -3.546875 9.453125 -3.59375 10.28125 -3.609375 C 10.328125 -3.609375 10.515625 -3.609375 10.515625 -3.890625 C 10.515625 -4.03125 10.359375 -4.03125 10.3125 -4.03125 C 10.0625 -4.03125 9.78125 -4 9.515625 -4 L 8.71875 -4 C 8.078125 -4 7.4375 -4.03125 6.8125 -4.03125 C 6.6875 -4.03125 6.5 -4.03125 6.5 -3.765625 C 6.5 -3.625 6.625 -3.625 6.625 -3.609375 L 7 -3.609375 C 8.171875 -3.609375 8.171875 -3.484375 8.171875 -3.265625 C 8.171875 -3.25 7.890625 -1.75 7.609375 -1.296875 C 7.046875 -0.46875 5.859375 -0.125 4.984375 -0.125 C 3.84375 -0.125 1.984375 -0.71875 1.984375 -3.296875 C 1.984375 -4.28125 2.34375 -6.5625 3.78125 -8.25 C 4.71875 -9.328125 6.109375 -10.046875 7.421875 -10.046875 C 9.171875 -10.046875 9.796875 -8.546875 9.796875 -7.171875 C 9.796875 -6.9375 9.734375 -6.609375 9.734375 -6.40625 C 9.734375 -6.265625 9.890625 -6.265625 9.9375 -6.265625 C 10.09375 -6.265625 10.109375 -6.28125 10.171875 -6.546875 Z M 11.109375 -10.34375 "></path> </symbol> <symbol overflow="visible" id="WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-3"> <path style="stroke:none;" d="M 2.90625 0.0625 C 2.90625 -0.796875 2.625 -1.4375 2.015625 -1.4375 C 1.53125 -1.4375 1.296875 -1.0625 1.296875 -0.734375 C 1.296875 -0.40625 1.515625 0 2.03125 0 C 2.21875 0 2.375 -0.0625 2.515625 -0.1875 C 2.546875 -0.21875 2.5625 -0.21875 2.578125 -0.21875 C 2.609375 -0.21875 2.609375 -0.015625 2.609375 0.0625 C 2.609375 0.546875 2.515625 1.515625 1.65625 2.484375 C 1.484375 2.671875 1.484375 2.6875 1.484375 2.71875 C 1.484375 2.796875 1.5625 2.875 1.640625 2.875 C 1.75 2.875 2.90625 1.765625 2.90625 0.0625 Z M 2.90625 0.0625 "></path> </symbol> <symbol overflow="visible" id="WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-1"> <path style="stroke:none;" d="M 7.90625 -6.71875 C 7.921875 -6.75 7.9375 -6.8125 7.9375 -6.859375 C 7.9375 -6.9375 7.875 -6.984375 7.8125 -6.984375 C 7.734375 -6.984375 7.703125 -6.953125 7.625 -6.859375 L 6.9375 -6.109375 C 6.484375 -6.734375 5.828125 -6.984375 5.15625 -6.984375 C 2.84375 -6.984375 0.53125 -4.84375 0.53125 -2.5625 C 0.53125 -0.90625 1.75 0.203125 3.4375 0.203125 C 4.515625 0.203125 5.3125 -0.171875 5.671875 -0.609375 C 5.796875 -0.28125 6.03125 -0.015625 6.125 -0.015625 C 6.171875 -0.015625 6.21875 -0.03125 6.234375 -0.0625 C 6.296875 -0.234375 6.53125 -1.25 6.609375 -1.53125 C 6.703125 -1.921875 6.765625 -2.203125 6.828125 -2.28125 C 6.921875 -2.40625 7.109375 -2.40625 7.40625 -2.40625 C 7.453125 -2.40625 7.59375 -2.40625 7.59375 -2.59375 C 7.59375 -2.6875 7.53125 -2.734375 7.453125 -2.734375 C 7.375 -2.734375 7.265625 -2.703125 6.296875 -2.703125 C 6.046875 -2.703125 5.71875 -2.703125 5.5625 -2.71875 C 5.421875 -2.734375 5.015625 -2.734375 4.875 -2.734375 C 4.8125 -2.734375 4.65625 -2.734375 4.65625 -2.546875 C 4.65625 -2.40625 4.765625 -2.40625 5.03125 -2.40625 C 5.234375 -2.40625 5.609375 -2.40625 5.859375 -2.328125 C 5.859375 -2.296875 5.875 -2.25 5.875 -2.203125 C 5.875 -2.15625 5.8125 -1.9375 5.78125 -1.8125 C 5.71875 -1.546875 5.609375 -1.125 5.578125 -1.03125 C 5.265625 -0.359375 4.296875 -0.125 3.609375 -0.125 C 2.625 -0.125 1.484375 -0.640625 1.484375 -2.25 C 1.484375 -3.078125 1.8125 -4.5 2.6875 -5.453125 C 3.640625 -6.484375 4.71875 -6.65625 5.234375 -6.65625 C 6.4375 -6.65625 7 -5.703125 7 -4.703125 C 7 -4.5625 6.953125 -4.390625 6.953125 -4.265625 C 6.953125 -4.140625 7.078125 -4.140625 7.125 -4.140625 C 7.25 -4.140625 7.265625 -4.171875 7.3125 -4.359375 Z M 7.90625 -6.71875 "></path> </symbol> <symbol overflow="visible" id="WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-2"> <path style="stroke:none;" d="M 4.484375 -6 C 4.578125 -6.359375 4.578125 -6.375 4.984375 -6.375 L 5.75 -6.375 C 6.78125 -6.375 6.890625 -6.046875 6.890625 -5.5625 C 6.890625 -5.3125 6.84375 -4.875 6.828125 -4.828125 C 6.8125 -4.71875 6.796875 -4.640625 6.796875 -4.609375 C 6.796875 -4.484375 6.890625 -4.453125 6.9375 -4.453125 C 7.046875 -4.453125 7.09375 -4.515625 7.125 -4.703125 L 7.390625 -6.5625 C 7.390625 -6.703125 7.265625 -6.703125 7.09375 -6.703125 L 1.25 -6.703125 C 1 -6.703125 0.984375 -6.703125 0.90625 -6.5 L 0.3125 -4.78125 C 0.28125 -4.734375 0.265625 -4.65625 0.265625 -4.59375 C 0.265625 -4.515625 0.328125 -4.453125 0.40625 -4.453125 C 0.515625 -4.453125 0.53125 -4.5 0.59375 -4.671875 C 1.15625 -6.265625 1.453125 -6.375 2.953125 -6.375 L 3.34375 -6.375 C 3.640625 -6.375 3.65625 -6.375 3.65625 -6.296875 C 3.65625 -6.265625 3.609375 -6.0625 3.609375 -6.015625 L 2.296875 -0.8125 C 2.203125 -0.4375 2.171875 -0.328125 1.140625 -0.328125 C 0.828125 -0.328125 0.71875 -0.328125 0.71875 -0.140625 C 0.71875 -0.125 0.71875 0 0.890625 0 C 1.15625 0 1.84375 -0.03125 2.109375 -0.03125 L 2.953125 -0.03125 C 3.234375 -0.03125 3.921875 0 4.203125 0 C 4.28125 0 4.4375 0 4.4375 -0.1875 C 4.4375 -0.328125 4.328125 -0.328125 4.0625 -0.328125 C 3.8125 -0.328125 3.734375 -0.328125 3.484375 -0.34375 C 3.171875 -0.375 3.125 -0.421875 3.125 -0.546875 C 3.125 -0.578125 3.140625 -0.625 3.171875 -0.71875 Z M 4.484375 -6 "></path> </symbol> <symbol overflow="visible" id="WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-3"> <path style="stroke:none;" d="M 1.453125 -2.21875 C 1.796875 -2.078125 2.09375 -2.078125 2.359375 -2.078125 C 2.671875 -2.078125 3.21875 -2.078125 3.21875 -2.4375 C 3.21875 -2.6875 2.84375 -2.734375 2.453125 -2.734375 C 1.9375 -2.734375 1.671875 -2.625 1.46875 -2.53125 C 1.328125 -2.59375 1.078125 -2.78125 1.078125 -3.0625 C 1.078125 -3.59375 2 -3.953125 3 -3.953125 C 3.296875 -3.953125 3.609375 -3.90625 3.96875 -3.6875 C 4.0625 -3.609375 4.09375 -3.59375 4.171875 -3.59375 C 4.3125 -3.59375 4.46875 -3.734375 4.46875 -3.890625 C 4.46875 -4.09375 4.09375 -4.25 3.953125 -4.3125 C 3.546875 -4.484375 3.25 -4.484375 3.09375 -4.484375 C 1.921875 -4.484375 0.78125 -3.8125 0.78125 -3.0625 C 0.78125 -2.6875 1.046875 -2.453125 1.15625 -2.375 C 0.453125 -1.9375 0.28125 -1.40625 0.28125 -1.078125 C 0.28125 -0.390625 0.921875 0.203125 2.03125 0.203125 C 3.46875 0.203125 3.984375 -0.6875 3.984375 -0.828125 C 3.984375 -0.90625 3.953125 -0.96875 3.859375 -0.96875 C 3.796875 -0.96875 3.765625 -0.9375 3.71875 -0.875 C 3.578125 -0.640625 3.359375 -0.3125 2.140625 -0.3125 C 1.875 -0.3125 0.609375 -0.3125 0.609375 -1.125 C 0.609375 -1.421875 0.828125 -1.890625 1.453125 -2.21875 Z M 2.875 -2.40625 C 2.71875 -2.34375 2.703125 -2.34375 2.359375 -2.34375 C 2.25 -2.34375 2.046875 -2.34375 1.890625 -2.375 C 2.140625 -2.4375 2.34375 -2.453125 2.4375 -2.453125 C 2.625 -2.453125 2.734375 -2.4375 2.875 -2.40625 Z M 2.875 -2.40625 "></path> </symbol> <symbol overflow="visible" id="WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-4"> <path style="stroke:none;" d="M 2.40625 -3.5 C 2.453125 -3.6875 2.53125 -4.015625 2.53125 -4.0625 C 2.53125 -4.28125 2.375 -4.375 2.203125 -4.375 C 1.859375 -4.375 1.78125 -4.046875 1.75 -3.90625 L 0.359375 1.59375 C 0.328125 1.75 0.328125 1.8125 0.328125 1.828125 C 0.328125 2.078125 0.53125 2.140625 0.640625 2.140625 C 0.6875 2.140625 0.921875 2.125 1.046875 1.859375 C 1.078125 1.78125 1.375 0.609375 1.5625 -0.1875 C 1.734375 -0.0625 2.078125 0.09375 2.578125 0.09375 C 3.390625 0.09375 3.921875 -0.5625 3.953125 -0.609375 C 4.140625 0.078125 4.8125 0.09375 4.9375 0.09375 C 5.390625 0.09375 5.609375 -0.28125 5.6875 -0.453125 C 5.890625 -0.796875 6.03125 -1.375 6.03125 -1.421875 C 6.03125 -1.484375 6 -1.546875 5.875 -1.546875 C 5.75 -1.546875 5.734375 -1.484375 5.671875 -1.234375 C 5.53125 -0.6875 5.34375 -0.171875 4.953125 -0.171875 C 4.734375 -0.171875 4.640625 -0.359375 4.640625 -0.640625 C 4.640625 -0.8125 4.75 -1.234375 4.828125 -1.53125 L 5.078125 -2.546875 C 5.140625 -2.796875 5.1875 -3 5.265625 -3.296875 C 5.3125 -3.515625 5.421875 -3.90625 5.421875 -3.96875 C 5.421875 -4.21875 5.21875 -4.28125 5.09375 -4.28125 C 4.75 -4.28125 4.6875 -4.03125 4.578125 -3.578125 L 4.0625 -1.515625 L 3.96875 -1.125 C 3.953125 -1.0625 3.6875 -0.6875 3.453125 -0.5 C 3.28125 -0.359375 3 -0.171875 2.625 -0.171875 C 2.15625 -0.171875 1.84375 -0.421875 1.84375 -1.046875 C 1.84375 -1.296875 1.921875 -1.59375 1.984375 -1.828125 Z M 2.40625 -3.5 "></path> </symbol> <symbol overflow="visible" id="WP5WUqXPl75PI4YMA38PYnc45iM=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="WP5WUqXPl75PI4YMA38PYnc45iM=-glyph2-1"> <path style="stroke:none;" d="M 6.640625 -5.03125 C 6.640625 -5.09375 6.65625 -5.125 6.65625 -5.140625 C 6.65625 -5.15625 6.640625 -5.25 6.546875 -5.25 C 6.484375 -5.25 6.484375 -5.234375 6.40625 -5.15625 L 5.921875 -4.65625 C 5.90625 -4.640625 5.859375 -4.59375 5.84375 -4.59375 C 5.828125 -4.59375 5.828125 -4.59375 5.8125 -4.609375 C 5.625 -4.828125 5.21875 -5.25 4.359375 -5.25 C 2.46875 -5.25 0.640625 -3.671875 0.640625 -1.984375 C 0.640625 -0.8125 1.5625 0.15625 3.09375 0.15625 C 3.640625 0.15625 4.453125 0.0625 4.921875 -0.421875 C 4.96875 -0.328125 5.1875 0 5.296875 0 C 5.328125 0 5.359375 -0.015625 5.375 -0.046875 C 5.40625 -0.109375 5.609375 -0.9375 5.65625 -1.09375 C 5.6875 -1.265625 5.71875 -1.359375 5.75 -1.46875 C 5.828125 -1.765625 5.84375 -1.765625 6.28125 -1.765625 C 6.34375 -1.765625 6.46875 -1.765625 6.46875 -1.953125 C 6.46875 -2.015625 6.40625 -2.0625 6.34375 -2.0625 C 6.203125 -2.0625 6.046875 -2.046875 5.921875 -2.046875 C 5.765625 -2.046875 5.625 -2.03125 5.46875 -2.03125 C 5.265625 -2.03125 5.046875 -2.046875 4.84375 -2.046875 C 4.640625 -2.046875 4.421875 -2.0625 4.21875 -2.0625 C 4.15625 -2.0625 4.109375 -2.0625 4.078125 -2.015625 C 4.0625 -1.984375 4.03125 -1.90625 4.03125 -1.875 C 4.046875 -1.765625 4.109375 -1.765625 4.359375 -1.765625 C 4.5 -1.765625 4.640625 -1.765625 4.78125 -1.75 C 5.03125 -1.734375 5.046875 -1.703125 5.046875 -1.625 C 5.046875 -1.578125 4.90625 -1.0625 4.890625 -0.96875 C 4.859375 -0.8125 4.78125 -0.515625 4.28125 -0.328125 C 3.859375 -0.140625 3.359375 -0.140625 3.265625 -0.140625 C 2.40625 -0.140625 1.421875 -0.53125 1.421875 -1.78125 C 1.421875 -2.28125 1.59375 -3.28125 2.34375 -4.0625 C 2.59375 -4.328125 3.375 -4.953125 4.4375 -4.953125 C 5.375 -4.953125 5.890625 -4.28125 5.890625 -3.484375 C 5.890625 -3.359375 5.875 -3.21875 5.875 -3.203125 C 5.875 -3.09375 5.984375 -3.09375 6.015625 -3.09375 C 6.125 -3.09375 6.15625 -3.09375 6.1875 -3.25 Z M 6.640625 -5.03125 "></path> </symbol> </g> </defs> <g id="WP5WUqXPl75PI4YMA38PYnc45iM=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-1" x="7.35592" y="19.171629"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-1" x="17.928622" y="13.767554"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-1" x="26.769728" y="19.171629"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-1" x="37.341185" y="13.767554"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-1" x="46.182291" y="19.171629"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-1" x="56.754993" y="13.767554"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-2" x="65.5961" y="19.171629"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-1" x="145.921479" y="19.171629"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-1" x="156.492936" y="13.767554"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-1" x="165.334042" y="19.171629"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-1" x="175.906744" y="13.767554"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-2" x="184.747851" y="19.171629"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-1" x="17.062824" y="84.260707"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-1" x="27.634281" y="78.855386"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-1" x="36.475387" y="84.260707"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-1" x="47.048089" y="78.855386"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-2" x="55.889195" y="84.260707"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-1" x="155.627387" y="84.260707"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-1" x="166.200089" y="78.855386"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-2" x="175.041195" y="84.260707"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-2" x="265.07323" y="84.260707"></use> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph0-3" x="276.576755" y="84.260707"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -60.438614 31.728101 L -5.223654 31.728101 " transform="matrix(0.996602,0,0,-0.996602,143.991061,47.06951)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487537 2.868055 C -2.032867 1.147365 -1.021618 0.336014 0.00138918 -0.00106865 C -1.021618 -0.334232 -2.032867 -1.149502 -2.487537 -2.870193 " transform="matrix(0.996602,0,0,-0.996602,139.022053,15.448154)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-2" x="93.750357" y="11.94427"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph2-1" x="101.358168" y="8.441214"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-2" x="109.07436" y="11.94427"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph2-1" x="116.680925" y="8.441214"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-3" x="124.398363" y="11.94427"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -102.111466 22.274102 L -102.111466 -18.889205 " transform="matrix(0.996602,0,0,-0.996602,143.991061,47.06951)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486805 2.868886 C -2.032091 1.14817 -1.020806 0.332904 -0.00169145 -0.000245688 C -1.020793 -0.333436 -2.032046 -1.148743 -2.48669 -2.869477 " transform="matrix(-0.000019932,0.996582,0.996582,0.000019932,42.226807,66.134498)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-2" x="3.206069" y="49.917799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph2-1" x="10.812634" y="46.413497"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-2" x="18.530072" y="49.917799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph2-1" x="26.136637" y="46.413497"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-3" x="33.852828" y="49.917799"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 27.187257 22.274102 L 27.187257 -18.889205 " transform="matrix(0.996602,0,0,-0.996602,143.991061,47.06951)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486805 2.868388 C -2.032091 1.147672 -1.020806 0.336326 -0.00169144 -0.000743483 C -1.020793 -0.333934 -2.032046 -1.149241 -2.48669 -2.869975 " transform="matrix(-0.000019932,0.996582,0.996582,0.000019932,171.086678,66.134498)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-2" x="174.590731" y="49.917799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph2-1" x="182.197297" y="46.413497"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-3" x="189.914734" y="49.917799"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -70.178742 -33.583667 L 4.516473 -33.583667 " transform="matrix(0.996602,0,0,-0.996602,143.991061,47.06951)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487299 2.867737 C -2.032629 1.147047 -1.021381 0.335696 0.00162664 -0.00138682 C -1.021381 -0.33455 -2.032629 -1.145901 -2.487299 -2.870511 " transform="matrix(0.996602,0,0,-0.996602,148.728848,80.53768)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-4" x="100.369041" y="92.634157"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph2-1" x="106.714905" y="89.129855"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-1" x="114.431096" y="92.634157"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 49.379853 -33.583667 L 114.33494 -33.583667 " transform="matrix(0.996602,0,0,-0.996602,143.991061,47.06951)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.484812 2.867737 C -2.034062 1.147047 -1.018894 0.335696 0.000193933 -0.00138682 C -1.018894 -0.33455 -2.034062 -1.145901 -2.484812 -2.870511 " transform="matrix(0.996602,0,0,-0.996602,258.175588,80.53768)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WP5WUqXPl75PI4YMA38PYnc45iM=-glyph1-3" x="223.37241" y="88.315881"></use> </g> </g> </svg> <p>and finally finish the proof by observing that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ε</mi></mrow><annotation encoding="application/x-tex">\varepsilon</annotation></semantics></math> coequalizes <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>μ</mi> <mi>G</mi></msup><mi>G</mi></mrow><annotation encoding="application/x-tex">\mu^G G</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>T</mi> <mi>G</mi></msup><mi>ε</mi></mrow><annotation encoding="application/x-tex">T^G \varepsilon</annotation></semantics></math>.</p> </div> </p> <h2 id="examples">Examples</h2> <p> <div class='num_remark'> <h6>Example</h6> <p>Every monad that is <a href="monad#RelationBetweenAdjunctionsAndMonads">induced</a> by an adjunction <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>⊣</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">L \dashv R</annotation></semantics></math> is the codensity monad of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>. In particular, every <a class="existingWikiWord" href="/nlab/show/enriched+monad">enriched monad</a> is a codensity monad (via its <a class="existingWikiWord" href="/nlab/show/Kleisli+category">Kleisli category</a>).</p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math> be an object in a <a class="existingWikiWord" href="/nlab/show/closed+category">closed category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>. Then the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>-enriched codensity monad of the <a class="existingWikiWord" href="/nlab/show/constant+functor">constant functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>d</mi><mo>:</mo><mn>1</mn><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">d : 1 \to C</annotation></semantics></math> is the <strong>double dualization monad</strong> associated to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math>, given by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>d</mi> <mrow><msup><mi>d</mi> <mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow></msup></mrow></msup></mrow><annotation encoding="application/x-tex">d^{d^{(-)}}</annotation></semantics></math>.</p> <p>More conceptually, the codensity monad construction may be seen as a generalisation of the double dualisation construction analogous to the generalisation from <a class="existingWikiWord" href="/nlab/show/algebras+for+a+monad">algebras for a monad</a> to <a class="existingWikiWord" href="/nlab/show/modules+over+a+monad">modules over a monad</a> (the latter is the perspective that is most natural 2-categorically).</p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>The <a class="existingWikiWord" href="/nlab/show/Giry+monad">Giry monad</a> (as well as a finitely additive version) arise as codensity monads of forgetful functors from subcategories of the category of <a class="existingWikiWord" href="/nlab/show/convex+sets">convex sets</a> to the category of <a class="existingWikiWord" href="/nlab/show/measurable+spaces">measurable spaces</a> (<a href="#Avery14">Avery 14</a>).</p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>The codensity monad of the inclusion <a class="existingWikiWord" href="/nlab/show/FinSet">FinSet</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>↪</mo></mrow><annotation encoding="application/x-tex">\hookrightarrow</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Set">Set</a> is the <a class="existingWikiWord" href="/nlab/show/ultrafilter">ultrafilter</a> monad. Its algebras are <a class="existingWikiWord" href="/nlab/show/compact+Hausdorff+spaces">compact Hausdorff spaces</a>.</p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>The codensity monad of the inclusion <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>FinGrp</mi><mo>↪</mo></mrow><annotation encoding="application/x-tex">FinGrp \hookrightarrow</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a>, is the <a class="existingWikiWord" href="/nlab/show/profinite+completion+of+a+group">profinite completion</a> monad, whose algebras may be identified with <a class="existingWikiWord" href="/nlab/show/profinite+groups">profinite groups</a> – that is, <a class="existingWikiWord" href="/nlab/show/topological+groups">topological groups</a> whose underlying topological space is profinite (<a href="#Avery17">Avery 17, Proposition 2.7.10</a>).</p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>The codensity monad of the inclusion <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>FinSet</mi><mo>→</mo><mi>Top</mi></mrow><annotation encoding="application/x-tex">FinSet \to Top</annotation></semantics></math> computes the <a class="existingWikiWord" href="/nlab/show/Stone+spectrum">Stone spectrum</a> of the <a class="existingWikiWord" href="/nlab/show/Boolean+algebra">Boolean algebra</a> of <a class="existingWikiWord" href="/nlab/show/clopen+subsets">clopen subsets</a> of a <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>. Its algebras are precisely the <a class="existingWikiWord" href="/nlab/show/Stone+spaces">Stone spaces</a>. (<a href="#Sipos">Sipoș, Theorem 2</a>).</p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>The codensity monad of the inclusion <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo>→</mo><mi>Top</mi></mrow><annotation encoding="application/x-tex">N \to Top</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math> denotes the <a class="existingWikiWord" href="/nlab/show/full+subcategory">full subcategory</a> of <a class="existingWikiWord" href="/nlab/show/Top">Top</a> consisting of arbitrary <a class="existingWikiWord" href="/nlab/show/small+products">small products</a> of the <a class="existingWikiWord" href="/nlab/show/Sierpinski+space">Sierpiński space</a>, is the <span class="newWikiWord">localic spectrum<a href="/nlab/new/localic+spectrum">?</a></span> of the <a class="existingWikiWord" href="/nlab/show/frame">frame</a> of opens of a <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>. Its algebras are precisely the <a class="existingWikiWord" href="/nlab/show/sober+spaces">sober spaces</a>. (<a href="#Sipos">Sipoș, Theorem 6</a>)</p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>The codensity monad of the inclusion of <a class="existingWikiWord" href="/nlab/show/countable+sets">countable sets</a> in all sets, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ctbl</mi><mo>↪</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">Ctbl \hookrightarrow Set</annotation></semantics></math>, assigns to each set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> the set of ultrafilters on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> closed under countable intersections. This still holds for the inclusion of the full subcategory of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ctbl</mi></mrow><annotation encoding="application/x-tex">Ctbl</annotation></semantics></math> on the single set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\mathbb{N}</annotation></semantics></math>.</p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>More generally, the codensity monad of the inclusion of sets of cardinality less than that of fixed <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Set</mi> <mrow><mo><</mo><mi>Y</mi></mrow></msub><mo>↪</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set_{\lt Y} \hookrightarrow Set</annotation></semantics></math>, assigns to each set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> the set of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>-complete ultrafilters on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>For the codensity monad induced by the inclusion of <a class="existingWikiWord" href="/nlab/show/homotopy+types+with+finite+homotopy+groups">homotopy types with finite homotopy groups</a> into all <a class="existingWikiWord" href="/nlab/show/homotopy+types">homotopy types</a> see <a href="homotopy+type+with+finite+homotopy+groups#CodensityMonadOfInclusionIntoAllHomotopyTypes">there</a>.</p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>The codensity monad induced by the <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a> is isomorphic to the monad induced by the <a class="existingWikiWord" href="/nlab/show/Isbell+adjunction">Isbell adjunction</a>.</p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>In the bicategory <a class="existingWikiWord" href="/nlab/show/Rel">Rel</a>, the right Kan extension of a relation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">T: A \to C</annotation></semantics></math> along a relation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">R: A \to B</annotation></semantics></math> is the relation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mo stretchy="false">/</mo><mi>R</mi><mo>:</mo><mi>B</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">T/R: B \to C</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>T</mi><mo stretchy="false">/</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">(b,c)\in T/R</annotation></semantics></math> iff <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>∀</mo> <mrow><mi>a</mi><mo>:</mo><mi>A</mi></mrow></msub><mspace width="thickmathspace"></mspace><mi>R</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>⇒</mo><mi>T</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\forall_{a: A}\; R(a, b) \Rightarrow T(a, c)</annotation></semantics></math>. In particular, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo stretchy="false">/</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">R/R</annotation></semantics></math> reduces to the identity relation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>id</mi> <mi>B</mi></msub></mrow><annotation encoding="application/x-tex">id_B</annotation></semantics></math> iff whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>b</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(b,b')</annotation></semantics></math> is such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>∀</mo> <mrow><mi>a</mi><mo>:</mo><mi>A</mi></mrow></msub><mspace width="thickmathspace"></mspace><mi>R</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>⇒</mo><mi>R</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\forall_{a:A}\; R(a,b)\Rightarrow R(a,b')</annotation></semantics></math> then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>=</mo><mi>b</mi><mo>′</mo><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">b=b'\,</annotation></semantics></math>, in other words, iff <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>R</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mi>b</mi><mo>⊆</mo><msup><mi>R</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mi>b</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">R^{-1}b\subseteq R^{-1}b'</annotation></semantics></math> implies <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>=</mo><mi>b</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">b=b'</annotation></semantics></math>. The codensity monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo stretchy="false">/</mo><mi>R</mi><mo>:</mo><mi>B</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">R/R: B \to B</annotation></semantics></math>, being a monad in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Rel</mi></mrow><annotation encoding="application/x-tex">Rel</annotation></semantics></math>, is a <a class="existingWikiWord" href="/nlab/show/preorder">preorder</a>. This construction frequently recurs; see for instance <a class="existingWikiWord" href="/nlab/show/specialization+order">specialization order</a> for a <a class="existingWikiWord" href="/nlab/show/topological+space">topology</a>.</p> <p></p> </div> </p> <h2 id="properties">Properties</h2> <p> <div class='num_prop'> <h6>Proposition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>:</mo><mi>B</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">G : B \to A</annotation></semantics></math> be a functor admitting a codensity monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>T</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">T^G</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>. The <a class="existingWikiWord" href="/nlab/show/Kleisli+category">Kleisli category</a> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>T</mi> <mi>G</mi></msup></mrow><annotation encoding="application/x-tex">T^G</annotation></semantics></math> has homs <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Kl</mi><mo stretchy="false">(</mo><msup><mi>T</mi> <mi>G</mi></msup><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>′</mo><mo stretchy="false">)</mo><mo>≅</mo><mo stretchy="false">[</mo><mi>B</mi><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">(</mo><mi>a</mi><mo>′</mo><mo>,</mo><mi>G</mi><mo>−</mo><mo stretchy="false">)</mo><mo>,</mo><mi>B</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>G</mi><mo>−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Kl(T^G)(a, a') \cong [B, Set](B(a', G-), B(a, G-))</annotation></semantics></math>.</p> </div> </p> <p>See <a href="#BC80">Bourn and Cordier 1980</a>, for instance.</p> <h2 id="related_entries">Related entries</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/codense+functor">codense functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dense">dense</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dense+functor">dense functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/shape+theory">shape theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+theory">algebraic theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ultrafilter">ultrafilter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/idempotent+monad">idempotent monad</a></p> </li> </ul> <h2 id="references">References</h2> <p>One of the first references is</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Anders+Kock">Anders Kock</a>, <em>Continuous Yoneda Representations of a Small Category</em>, Preprint Aarhus University (1966). (<a href="http://home.math.au.dk/kock/CYRSC.pdf">pdf</a>)</li> </ul> <p>For the special case of double dualisation, see:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Anders+Kock">Anders Kock</a>. <em>On double dualization monads</em>, Mathematica Scandinavica 27.2 (1970): 151-165. (<a href="https://www.jstor.org/stable/24489892">JSTOR</a>)</li> </ul> <p>Overview:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Fred+Linton">Fred Linton</a>, <em>Codensity triples</em>, Section 8 in: <em>An outline of functorial semantics</em>, in <em><a class="existingWikiWord" href="/nlab/show/Seminar+on+Triples+and+Categorical+Homology+Theory">Seminar on Triples and Categorical Homology Theory</a></em>, Lecture Notes in Mathematics <strong>80</strong>, Springer (1969) 7-52 [<a href="https://doi.org/10.1007/BFb0083080">doi:10.1007/BFb0083080</a>]</p> </li> <li id="Leinster13"> <p><a class="existingWikiWord" href="/nlab/show/Tom+Leinster">Tom Leinster</a>, <em>Codensity and the Ultrafilter Monad</em> , TAC <strong>12</strong> no.13 (2013) pp.332-370. [<a href="http://www.tac.mta.ca/tac/volumes/28/13/28-13abs.html">tac:28-13</a>]</p> </li> </ul> <p>See also:</p> <ul> <li> <p>nCafé blog 2012: <em><a href="https://golem.ph.utexas.edu/category/2012/09/where_do_monads_come_from.html">Where do Monads come from?</a></em></p> </li> <li> <p>MO-discussion <a class="existingWikiWord" href="/nlab/show/Tim+Campion">Tim Campion</a>: <em><a href="https://mathoverflow.net/questions/220246/what-is-the-point-of-pointwise-kan-extensions">What is the point of pointwise Kan extensions?</a></em></p> </li> </ul> <p>Codensity monads arising from subcategory inclusions are studied in</p> <ul> <li id="diLiberti19"><a class="existingWikiWord" href="/nlab/show/Ivan+Di+Liberti">Ivan Di Liberti</a>, <em>Codensity: Isbell duality, pro-objects, compactness and accessibility</em>, arXiv:1910.01014 (2019). (<a href="https://arxiv.org/abs/1910.01014">abstract</a>)</li> </ul> <p>The role in shape theory is discussed in</p> <ul> <li> <p>Armin Frei, <em>On categorical shape theory</em> , Cah. Top. Géom. Diff. <strong>XVII</strong> no.3 (1976) pp.261-294. (<a href="http://www.numdam.org/item/?id=CTGDC_1976__17_3_261_0">numdam</a>)</p> </li> <li> <p>D. Bourn, J.-M. Cordier, <em>Distributeurs et théorie de la forme</em>, Cah. Top. Géom. Diff. Cat. <strong>21</strong> no.2 (1980) pp.161-189. (<a href="http://archive.numdam.org/ARCHIVE/CTGDC/CTGDC_1980__21_2/CTGDC_1980__21_2_161_0/CTGDC_1980__21_2_161_0.pdf">pdf</a>)</p> </li> <li> <p>J.-M. Cordier, <a class="existingWikiWord" href="/nlab/show/Tim+Porter">T. Porter</a>, <em>Shape Theory: Categorical Methods of Approximation</em> , (1989), Mathematics and its Applications, Ellis Horwood. Reprinted Dover (2008).</p> </li> </ul> <p>The dual concept of a “model-induced cotriple”:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Harry+Applegate">Harry Applegate</a>, <a class="existingWikiWord" href="/nlab/show/Myles+Tierney">Myles Tierney</a>, <em>Categories with models</em>, in: <a class="existingWikiWord" href="/nlab/show/Beno+Eckmann">Beno Eckmann</a> (ed.) <em><a class="existingWikiWord" href="/nlab/show/Seminar+on+Triples+and+Categorical+Homology+Theory">Seminar on Triples and Categorical Homology Theory</a></em> Lecture Notes in Mathematics, <strong>80</strong>, Springer (1969) 156-244 [<a href="https://doi.org/10.1007/BFb0083086">doi:10.1007/BFb0083086</a>, <a href="https://link.springer.com/content/pdf/10.1007/BFb0083086">pdf</a>]</li> </ul> <p>On possible uses in <a class="existingWikiWord" href="/nlab/show/functional+programming">functional programming</a>:</p> <ul> <li>Ralf Hinze, <em>Kan extensions for program optimisation - Or: Art and Dan explain an old trick</em>, in: Jeremy Gibbons, Pablo Nogueira (eds.), <em>11th International Conference on Mathematics of Program Construction (MPC ‘12)</em>, LNCS <strong>7342</strong> Springer (2012) 324–362. (<a href="http://dx.doi.org/10.1007/978-3-642-31113-0_16">doi: 10.1007/978-3-642-31113-0_16</a>, <a href="https://www.cs.ox.ac.uk/ralf.hinze/publications/MPC12.pdf">pdf draft</a>)</li> </ul> <p>For a description of the <a class="existingWikiWord" href="/nlab/show/Giry+monad">Giry monad</a> and other <a class="existingWikiWord" href="/nlab/show/probability+monads">probability monads</a> as codensity monads, see</p> <ul> <li id="Avery14"> <p><a class="existingWikiWord" href="/nlab/show/Tom+Avery">Tom Avery</a>, <em>Codensity and the Giry monad</em>, Journal of Pure and Applied Algebra <strong>220</strong> 3 (2016) 1229-1251 [<a href="https://arxiv.org/abs/1410.4432">arXiv:1410.4432</a>, <a href="https://doi.org/10.1016/j.jpaa.2015.08.017">doi:10.1016/j.jpaa.2015.08.017</a>]</p> </li> <li> <p>Ruben Van Belle, <em>Probability monads as codensity monads</em>. Theory and Applications of Categories 38 (2022), 811–842, (<a href="http://tac.mta.ca/tac/volumes/38/21/38-21abs.html">tac</a>)</p> </li> </ul> <p>Other references include</p> <ul> <li id="BC80"> <p><a class="existingWikiWord" href="/nlab/show/Dominique+Bourn">Dominique Bourn</a> and Jean-Marc Cordier, <em>Distributeurs et théorie de la forme</em>, Cahiers de topologie et géométrie différentielle 21.2 (1980): 161-189.</p> </li> <li id="Avery17"> <p><a class="existingWikiWord" href="/nlab/show/Tom+Avery">Tom Avery</a>, <em>Structure and Semantics</em>, (<a href="https://arxiv.org/abs/1708.01050">arXiv:1708.01050</a>)</p> </li> <li> <p>C. Casacuberta, A. Frei, <em>Localizations as idempotent approximations to completions</em> , JPAA <strong>142</strong> (1999) no. 1 pp.25–33. (<a href="http://atlas.mat.ub.es/personals/casac/articles/cfre1.pdf">draft</a>)</p> </li> <li> <p>Yves Diers, <em>Complétion monadique</em> , Cah. Top. Géom. Diff. Cat. <strong>XVII</strong> no.4 (1976) pp.362-379. (<a href="http://www.numdam.org/item/?id=CTGDC_1976__17_4_363_0">numdam</a>)</p> </li> <li> <p>S. Katsumata, T. Sato, <a class="existingWikiWord" href="/nlab/show/Tarmo+Uustalu">T. Uustalu</a>, <em>Codensity lifting of monads and its dual</em> , arXiv:1810.07972 (2012). (<a href="https://arxiv.org/abs/1810.07972">abstract</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Joachim+Lambek">J. Lambek</a>, B. A. Rattray, <em>Localization and Codensity Triples</em> , Comm. Algebra <strong>1</strong> (1974) pp.145-164.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Ji%C5%99%C3%AD+Ad%C3%A1mek">Jiří Adámek</a>, <span class="newWikiWord">Lurdes Sousa<a href="/nlab/new/Lurdes+Sousa">?</a></span>, <em>D-Ultrafilters and their Monads</em>, (<a href="https://arxiv.org/abs/1909.04950">arXiv:1909.04950</a>)</p> </li> <li id="Sipos"> <p><span class="newWikiWord">Andrei Sipoş<a href="/nlab/new/Andrei+Sipo%C5%9F">?</a></span>, <em>Codensity and Stone spaces</em>, Mathematica Slovaca, 68 no. 1, p. 57–70, (2018). <a href="https://doi.org/10.1515/ms-2017-0080">doi:10.1515/ms-2017-0080</a>, (<a href="https://arxiv.org/abs/1409.1370">arXiv:1409.1370</a>)</p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on December 29, 2024 at 11:35:41. See the <a href="/nlab/history/codensity+monad" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/codensity+monad" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/9165/#Item_40">Discuss</a><span class="backintime"><a href="/nlab/revision/codensity+monad/49" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/codensity+monad" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/codensity+monad" accesskey="S" class="navlink" id="history" rel="nofollow">History (49 revisions)</a> <a href="/nlab/show/codensity+monad/cite" style="color: black">Cite</a> <a href="/nlab/print/codensity+monad" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/codensity+monad" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>