CINXE.COM

Isbell duality in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Isbell duality in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Isbell duality </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/5615/#Item_43" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="higher_algebra">Higher algebra</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></strong></p> <p><a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a></p> <h2 id="algebraic_theories">Algebraic theories</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+theory">algebraic theory</a> / <a class="existingWikiWord" href="/nlab/show/2-algebraic+theory">2-algebraic theory</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-algebraic+theory">(∞,1)-algebraic theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monad">monad</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-monad">(∞,1)-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/operad">operad</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-operad">(∞,1)-operad</a></p> </li> </ul> <h2 id="algebras_and_modules">Algebras and modules</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+monad">algebra over a monad</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-monad">∞-algebra over an (∞,1)-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+algebraic+theory">algebra over an algebraic theory</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-algebraic+theory">∞-algebra over an (∞,1)-algebraic theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+operad">algebra over an operad</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-operad">∞-algebra over an (∞,1)-operad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/action">action</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/representation">representation</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module">module</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-module">∞-module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/associated+bundle">associated bundle</a>, <a class="existingWikiWord" href="/nlab/show/associated+%E2%88%9E-bundle">associated ∞-bundle</a></p> </li> </ul> <h2 id="higher_algebras">Higher algebras</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+%28%E2%88%9E%2C1%29-category">monoidal (∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+%28%E2%88%9E%2C1%29-category">symmetric monoidal (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+in+an+%28%E2%88%9E%2C1%29-category">monoid in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/commutative+monoid+in+an+%28%E2%88%9E%2C1%29-category">commutative monoid in an (∞,1)-category</a></p> </li> </ul> </li> <li> <p>symmetric monoidal (∞,1)-category of spectra</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/smash+product+of+spectra">smash product of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+smash+product+of+spectra">symmetric monoidal smash product of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ring+spectrum">ring spectrum</a>, <a class="existingWikiWord" href="/nlab/show/module+spectrum">module spectrum</a>, <a class="existingWikiWord" href="/nlab/show/algebra+spectrum">algebra spectrum</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+algebra">A-∞ algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+ring">A-∞ ring</a>, <a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+space">A-∞ space</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/C-%E2%88%9E+algebra">C-∞ algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+ring">E-∞ ring</a>, <a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+algebra">E-∞ algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-module">∞-module</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-module+bundle">(∞,1)-module bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/multiplicative+cohomology+theory">multiplicative cohomology theory</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E+algebra">L-∞ algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/deformation+theory">deformation theory</a></li> </ul> </li> </ul> <h2 id="model_category_presentations">Model category presentations</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+T-algebras">model structure on simplicial T-algebras</a> / <a class="existingWikiWord" href="/nlab/show/homotopy+T-algebra">homotopy T-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+operads">model structure on operads</a></p> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+algebras+over+an+operad">model structure on algebras over an operad</a></p> </li> </ul> <h2 id="geometry_on_formal_duals_of_algebras">Geometry on formal duals of algebras</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+geometry">derived geometry</a></p> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+conjecture">Deligne conjecture</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/delooping+hypothesis">delooping hypothesis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal Dold-Kan correspondence</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/higher+algebra+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="higher_geometry">Higher geometry</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/higher+geometry">higher geometry</a></strong> / <strong><a class="existingWikiWord" href="/nlab/show/derived+geometry">derived geometry</a></strong></p> <p><strong>Ingredients</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+topos+theory">higher topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></p> </li> </ul> <p><strong>Concepts</strong></p> <ul> <li> <p><strong>geometric <a class="existingWikiWord" href="/nlab/show/big+and+little+toposes">little</a> <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a>es</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/structured+%28%E2%88%9E%2C1%29-topos">structured (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometry+%28for+structured+%28%E2%88%9E%2C1%29-toposes%29">geometry (for structured (∞,1)-toposes)</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+scheme">generalized scheme</a></p> </li> </ul> </li> <li> <p><strong>geometric <a class="existingWikiWord" href="/nlab/show/big+and+little+toposes">big</a> <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a>es</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cohesive+%28%E2%88%9E%2C1%29-topos">cohesive (∞,1)-topos</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/function+algebras+on+%E2%88%9E-stacks">function algebras on ∞-stacks</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/geometric+%E2%88%9E-stacks">geometric ∞-stacks</a></li> </ul> </li> </ul> <p><strong>Constructions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/loop+space+object">loop space object</a>, <a class="existingWikiWord" href="/nlab/show/free+loop+space+object">free loop space object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+in+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a> / <a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+of+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">of a locally ∞-connected (∞,1)-topos</a></p> </li> </ul> <p><strong>Examples</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+algebraic+geometry">derived algebraic geometry</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%C3%A9tale+%28%E2%88%9E%2C1%29-site">étale (∞,1)-site</a>, <a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Hochschild cohomology</a> of <a class="existingWikiWord" href="/nlab/show/dg-algebra">dg-algebra</a>s</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dg-geometry">dg-geometry</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/dg-scheme">dg-scheme</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/schematic+homotopy+type">schematic homotopy type</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+noncommutative+geometry">derived noncommutative geometry</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/noncommutative+geometry">noncommutative geometry</a></li> </ul> </li> <li> <p>derived smooth geometry</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+geometry">differential geometry</a>, <a class="existingWikiWord" href="/nlab/show/differential+topology">differential topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+smooth+manifold">derived smooth manifold</a>, <a class="existingWikiWord" href="/nlab/show/dg-manifold">dg-manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-groupoid">smooth ∞-groupoid</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebroid">∞-Lie algebroid</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+symplectic+geometry">higher symplectic geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+Klein+geometry">higher Klein geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+Cartan+geometry">higher Cartan geometry</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Jones' theorem</a>, <a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Deligne-Kontsevich conjecture</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality+for+geometric+stacks">Tannaka duality for geometric stacks</a></p> </li> </ul> </div></div> <h4 id="duality">Duality</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/duality">duality</a></strong></p> <ul> <li> <p>abstract duality: <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite category</a>,</p> <p><a class="existingWikiWord" href="/nlab/show/Eckmann-Hilton+duality">Eckmann-Hilton duality</a></p> </li> <li> <p>concrete duality: <a class="existingWikiWord" href="/nlab/show/dual+object">dual object</a>, <a class="existingWikiWord" href="/nlab/show/dualizable+object">dualizable object</a>, <a class="existingWikiWord" href="/nlab/show/fully+dualizable+object">fully dualizable object</a>, <a class="existingWikiWord" href="/nlab/show/dualizing+object">dualizing object</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/dual+vector+space">dual vector space</a></li> </ul> </li> </ul> <p><strong>Examples</strong></p> <ul> <li> <p>between <a class="existingWikiWord" href="/nlab/show/higher+geometry">higher geometry</a>/<a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Stone+duality">Stone duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gelfand+duality">Gelfand duality</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Langlands+duality">Langlands duality</a>, <a class="existingWikiWord" href="/nlab/show/geometric+Langlands+duality">geometric Langlands duality</a>, <a class="existingWikiWord" href="/nlab/show/quantum+geometric+Langlands+duality">quantum geometric Langlands duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Pontryagin+duality">Pontryagin duality</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Cartier+duality">Cartier duality</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Poincar%C3%A9+duality">Poincaré duality</a> for <a class="existingWikiWord" href="/nlab/show/manifolds">manifolds</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Koszul+duality">Koszul duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Spanier-Whitehead+duality">Spanier-Whitehead duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+duality">Grothendieck duality</a></p> </li> </ul> <p><strong>In QFT and String theory</strong></p> <p><strong><a class="existingWikiWord" href="/nlab/show/duality+in+physics">duality in physics</a></strong>, <strong><a class="existingWikiWord" href="/nlab/show/duality+in+string+theory">duality in string theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Seiberg+duality">Seiberg duality</a>, <a class="existingWikiWord" href="/nlab/show/AGT+conjecture">AGT conjecture</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/S-duality">S-duality</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/electro-magnetic+duality">electro-magnetic duality</a>, <a class="existingWikiWord" href="/nlab/show/Montonen-Olive+duality">Montonen-Olive duality</a>, <a class="existingWikiWord" href="/nlab/show/geometric+Langlands+duality">geometric Langlands duality</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/T-duality">T-duality</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/mirror+symmetry">mirror symmetry</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/U-duality">U-duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open%2Fclosed+string+duality">open/closed string duality</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/AdS%2FCFT">AdS/CFT duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/KLT+relations">KLT relations</a></p> </li> </ul> </li> </ul> </div></div> </div> </div> <p><a class="existingWikiWord" href="/nlab/show/higher+geometry">higher geometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>←</mo></mrow><annotation encoding="application/x-tex">\leftarrow</annotation></semantics></math> <strong>Isbell duality</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\rightarrow</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></p> <hr /> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#example'>Example</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#relation_to_yoneda_embedding'>Relation to Yoneda embedding</a></li> <li><a href='#respect_for_limits'>Respect for limits</a></li> <li><a href='#isbell_selfdual_objects'>Isbell self-dual objects</a></li> <li><a href='#isbell_envelope'>Isbell envelope</a></li> <li><a href='#reflexive_completion'>Reflexive completion</a></li> </ul> <li><a href='#examples_and_similar_dualities'>Examples and similar dualities</a></li> <ul> <li><a href='#FunctionAlgebrasOnPresheaves'>Function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-Algebras on presheaves</a></li> <ul> <li><a href='#observation'>Observation</a></li> </ul> <li><a href='#FuncCompDerStacks'>Function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-algebras on derived <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stacks</a></li> <li><a href='#function_algebras_on_stacks'>Function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-algebras on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stacks</a></li> <li><a href='#function_2algebras_on_algebraic_stacks'>Function 2-algebras on algebraic stacks</a></li> <li><a href='#GelfandDuality'>Gelfand duality</a></li> <li><a href='#serreswan_theorem'>Serre-Swan theorem</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A general abstract <a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>𝒪</mi><mo>⊣</mo><mi>Spec</mi><mo stretchy="false">)</mo><mo>:</mo><mi>CoPresheaves</mi><munderover><mo>⇆</mo><mi>Spec</mi><mi>𝒪</mi></munderover><mi>Presheaves</mi></mrow><annotation encoding="application/x-tex"> (\mathcal{O} \dashv Spec) : CoPresheaves \underoverset{Spec}{\mathcal{O}}{\leftrightarrows} Presheaves </annotation></semantics></math></div> <p>relates (higher) <a class="existingWikiWord" href="/nlab/show/presheaves">presheaves</a> with (higher) <a class="existingWikiWord" href="/nlab/show/copresheaves">copresheaves</a> on a given (<a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher</a>) <a class="existingWikiWord" href="/nlab/show/category">category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>: this is called <strong>Isbell conjugation</strong> or <strong>Isbell duality</strong> (after <a class="existingWikiWord" href="/nlab/show/John+Isbell">John Isbell</a>).</p> <p>To the extent that this adjunction descends to presheaves that are (<a class="existingWikiWord" href="/nlab/show/higher+topos+theory">higher</a>) <a class="existingWikiWord" href="/nlab/show/sheaves">sheaves</a> and copresheaves that are (<a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-algebraic+theory">higher</a>) <a class="existingWikiWord" href="/nlab/show/algebra+over+an+algebraic+theory">algebras</a> this duality relates <a class="existingWikiWord" href="/nlab/show/higher+geometry">higher geometry</a> with <a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a>.</p> <p>Objects preserved by the <a class="existingWikiWord" href="/nlab/show/monad">monad</a> of this adjunction are called <strong>Isbell self-dual</strong>.</p> <p>Under the interpretation of <a class="existingWikiWord" href="/nlab/show/presheaves">presheaves</a> as generalized <a class="existingWikiWord" href="/nlab/show/spaces">spaces</a> and <a class="existingWikiWord" href="/nlab/show/copresheaves">copresheaves</a> as generalized <a class="existingWikiWord" href="/nlab/show/quantities">quantities</a> modeled on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> (<a href="#Lawvere86">Lawvere 86</a>, see at <em><a class="existingWikiWord" href="/nlab/show/space+and+quantity">space and quantity</a></em>), Isbell duality is the archetype of the <a class="existingWikiWord" href="/nlab/show/duality">duality</a> between <a class="existingWikiWord" href="/nlab/show/geometry">geometry</a> and <a class="existingWikiWord" href="/nlab/show/algebra">algebra</a> that permeates mathematics (such as <a class="existingWikiWord" href="/nlab/show/Gelfand+duality">Gelfand duality</a>, <a class="existingWikiWord" href="/nlab/show/Stone+duality">Stone duality</a>, or the <a class="existingWikiWord" href="/nlab/show/embedding+of+smooth+manifolds+into+formal+duals+of+R-algebras">embedding of smooth manifolds into formal duals of R-algebras</a>).</p> <h2 id="definition">Definition</h2> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒱</mi></mrow><annotation encoding="application/x-tex">\mathcal{V}</annotation></semantics></math> be a good enriching category (a <a class="existingWikiWord" href="/nlab/show/cosmos">cosmos</a>, i.e. a <a class="existingWikiWord" href="/nlab/show/complete+category">complete</a> and <a class="existingWikiWord" href="/nlab/show/cocomplete+category">cocomplete</a> <a class="existingWikiWord" href="/nlab/show/closed+monoidal+category">closed</a> <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a>).</p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/small+category">small</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒱</mi></mrow><annotation encoding="application/x-tex">\mathcal{V}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/enriched+category">enriched category</a>.</p> <p>Write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[\mathcal{C}^{op}, \mathcal{V}]</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>𝒞</mi><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[\mathcal{C}, \mathcal{V}]</annotation></semantics></math> for the <a class="existingWikiWord" href="/nlab/show/enriched+functor+categories">enriched functor categories</a>.</p> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>There is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>𝒪</mi><mo>⊣</mo><mi>Spec</mi><mo stretchy="false">)</mo><mo lspace="verythinmathspace">:</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup><munderover><mo>⇆</mo><mi>Spec</mi><mi>𝒪</mi></munderover><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex"> (\mathcal{O} \dashv Spec) \colon [C, \mathcal{V}]^{op} \underoverset{Spec}{\mathcal{O}}{\leftrightarrows} [C^{op}, \mathcal{V}] </annotation></semantics></math></div> <p>where</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo lspace="verythinmathspace">:</mo><mi>c</mi><mo>↦</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \mathcal{O}(X) \colon c \mapsto [C^{op}, \mathcal{V}](X, C(-,c)) \,, </annotation></semantics></math></div> <p>and</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Spec</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo lspace="verythinmathspace">:</mo><mi>c</mi><mo>↦</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> Spec(A) \colon c \mapsto [C, \mathcal{V}]^{op}(C(c,-),A) \,. </annotation></semantics></math></div></div> <div class="num_remark"> <h6 id="remark">Remark</h6> <p>This is also called <a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a>. Objects which are preserved by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi><mo>∘</mo><mi>Spec</mi></mrow><annotation encoding="application/x-tex">\mathcal{O} \circ Spec</annotation></semantics></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Spec</mi><mi>𝒪</mi></mrow><annotation encoding="application/x-tex">Spec \mathcal{O}</annotation></semantics></math> are called <strong>Isbell self-dual</strong>.</p> </div> <p>The proof is mostly a tautology after the notation is unwound. The mechanism of the proof may still be of interest and be relevant for generalizations and for less tautological variations of the setup. We therefore spell out several proofs.</p> <div class="proof"> <h6 id="proof_a">Proof A</h6> <p>Use the <a class="existingWikiWord" href="/nlab/show/end">end</a>-expression for the <a class="existingWikiWord" href="/nlab/show/hom-object">hom-object</a>s of the <a class="existingWikiWord" href="/nlab/show/enriched+functor+categories">enriched functor categories</a> to compute</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup><mo stretchy="false">(</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>:</mo><mo>=</mo><msub><mo>∫</mo> <mrow><mi>c</mi><mo>∈</mo><mi>C</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>,</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>:</mo><mo>=</mo><msub><mo>∫</mo> <mrow><mi>c</mi><mo>∈</mo><mi>C</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>,</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>:</mo><mo>=</mo><msub><mo>∫</mo> <mrow><mi>c</mi><mo>∈</mo><mi>C</mi></mrow></msub><msub><mo>∫</mo> <mrow><mi>d</mi><mo>∈</mo><mi>C</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>,</mo><mi>𝒱</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mi>d</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msub><mo>∫</mo> <mrow><mi>d</mi><mo>∈</mo><mi>C</mi></mrow></msub><msub><mo>∫</mo> <mrow><mi>c</mi><mo>∈</mo><mi>C</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo><mo>,</mo><mi>𝒱</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mi>d</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mo>:</mo><msub><mo>∫</mo> <mrow><mi>d</mi><mo>∈</mo><mi>C</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo><mo>,</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">(</mo><mi>d</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mo>:</mo><msub><mo>∫</mo> <mrow><mi>d</mi><mo>∈</mo><mi>C</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo><mo>,</mo><mi>Spec</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mo>:</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>Spec</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \begin{aligned} [C,\mathcal{V}]^{op}(\mathcal{O}(X), A) &amp; := \int_{c \in C} \mathcal{V}(A(c), \mathcal{O}(X)(c)) \\ &amp; := \int_{c \in C} \mathcal{V}(A(c), [C^{op}, \mathcal{V}](X, C(-,c))) \\ &amp; := \int_{c \in C} \int_{d \in C} \mathcal{V}(A(c), \mathcal{V}(X(d), C(d,c))) \\ &amp; \simeq \int_{d \in C} \int_{c \in C} \mathcal{V}(X(d), \mathcal{V}(A(c), C(d,c))) \\ &amp; =: \int_{d \in C} \mathcal{V}(X(d), [C,\mathcal{V}]^{op}(C(d,-),A)) \\ &amp; =: \int_{d \in C} \mathcal{V}(X(d), Spec(A)(d)) \\ &amp; =: [C^{op}, \mathcal{V}](X, Spec(A)) \end{aligned} \,. </annotation></semantics></math></div></div> <div class="num_remark"> <h6 id="remark_2">Remark</h6> <p>Here apart from writing out or hiding the ends, the only step that is not a definition is precisely the middle one, where we used that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒱</mi></mrow><annotation encoding="application/x-tex">\mathcal{V}</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric</a> <a class="existingWikiWord" href="/nlab/show/closed+monoidal+category">closed monoidal category</a>.</p> </div> <p id="ProofB">The following proof does not use ends and needs instead slightly more preparation, but has then the advantage that its structure goes through also in great generality in <a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a>.</p> <div class="proof"> <h6 id="proof_b">Proof B</h6> <p>Notice that</p> <p><strong>Lemma 1:</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Spec</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>≃</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Spec(C(c,-)) \simeq C(-,c)</annotation></semantics></math></p> <p>because we have a natural isomorphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><mi>Spec</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>:</mo><mo>=</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mi>d</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><mi>C</mi><mo stretchy="false">(</mo><mi>d</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \begin{aligned} Spec(C(c,-))(d) &amp; := [C,\mathcal{V}](C(c,-), C(d,-)) \\ &amp; \simeq C(d,c) \end{aligned} </annotation></semantics></math></div> <p>by the <a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a>.</p> <p>From this we get</p> <p><strong>Lemma 2:</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>Spec</mi><mi>C</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mi>Spec</mi><mi>A</mi><mo stretchy="false">)</mo><mo>≃</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">[C^{op}, \mathcal{V}](Spec C(c,-), Spec A) \simeq [C,\mathcal{V}](A, C(c,-))</annotation></semantics></math></p> <p>by the sequence of natural isomorphisms</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>Spec</mi><mi>C</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mi>Spec</mi><mi>A</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>≃</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>,</mo><mi>Spec</mi><mi>A</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><mo stretchy="false">(</mo><mi>Spec</mi><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>:</mo><mo>=</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \begin{aligned} [C^{op}, \mathcal{V}](Spec C(c,-), Spec A) &amp; \simeq [C^{op}, \mathcal{V}](C(-,c), Spec A) \\ &amp; \simeq (Spec A)(c) \\ &amp; := [C, \mathcal{V}](A, C(c,-)) \end{aligned} \,, </annotation></semantics></math></div> <p>where the first is Lemma 1 and the second the <a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a>.</p> <p>Since (by what is sometimes called the <a class="existingWikiWord" href="/nlab/show/co-Yoneda+lemma">co-Yoneda lemma</a>) every object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>∈</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">X \in [C^{op}, \mathcal{V}]</annotation></semantics></math> may be written as a <a class="existingWikiWord" href="/nlab/show/colimit">colimit</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>≃</mo><msub><mrow><munder><mi>lim</mi> <mo>→</mo></munder></mrow> <mi>i</mi></msub><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><msub><mi>c</mi> <mi>i</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> X \simeq {\lim_\to}_i C(-,c_i) </annotation></semantics></math></div> <p>over <a class="existingWikiWord" href="/nlab/show/representable+functor">representables</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><msub><mi>c</mi> <mi>i</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C(-,c_i)</annotation></semantics></math> we have</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>≃</mo><msub><mrow><munder><mi>lim</mi> <mo>→</mo></munder></mrow> <mi>i</mi></msub><mi>Spec</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> X \simeq {\lim_\to}_i Spec(C(c_i,-)) \,. </annotation></semantics></math></div> <p>In terms of the same diagram of representables it then follows that</p> <p><strong>Lemma 3:</strong></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>≃</mo><msub><mrow><munder><mi>lim</mi> <mo>←</mo></munder></mrow> <mi>i</mi></msub><mi>C</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \mathcal{O}(X) \simeq {\lim_{\leftarrow}}_i C(c_i,-) </annotation></semantics></math></div> <p>because using the above colimit representation and the Yoneda lemma we have natural isomorphisms</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>=</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><msub><mrow><munder><mi>lim</mi> <mo>→</mo></munder></mrow> <mi>i</mi></msub><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><msub><mi>c</mi> <mi>i</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msub><mrow><munder><mi>lim</mi> <mo>←</mo></munder></mrow> <mi>i</mi></msub><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><msub><mi>c</mi> <mi>i</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msub><mrow><munder><mi>lim</mi> <mo>←</mo></munder></mrow> <mi>i</mi></msub><mi>C</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \begin{aligned} \mathcal{O}(X)(d) &amp;= [C^{op}, \mathcal{V}](X, C(-,c)) \\ &amp; \simeq [C^{op}, \mathcal{V}]({\lim_\to}_i C(-,c_i), C(-,c)) \\ &amp; \simeq {\lim_\leftarrow}_i [C^{op}, \mathcal{V}](C(-,c_i), C(-,c)) \\ &amp; \simeq {\lim_\leftarrow}_i C(c_i,c) \end{aligned} \,. </annotation></semantics></math></div> <p>Using all this we can finally obtain the adjunction in question by the following sequence of natural isomorphisms</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup><mo stretchy="false">(</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>≃</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mrow><munder><mi>lim</mi> <mo>←</mo></munder></mrow> <mi>i</mi></msub><mi>C</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msub><mrow><munder><mi>lim</mi> <mo>←</mo></munder></mrow> <mi>i</mi></msub><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msub><mrow><munder><mi>lim</mi> <mo>←</mo></munder></mrow> <mi>i</mi></msub><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>Spec</mi><mi>C</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mi>Spec</mi><mi>A</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><msub><mrow><munder><mi>lim</mi> <mo>→</mo></munder></mrow> <mi>i</mi></msub><mi>Spec</mi><mi>C</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mi>Spec</mi><mi>A</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>Spec</mi><mi>A</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \begin{aligned} [C,\mathcal{V}]^{op}(\mathcal{O}(X), A) &amp; \simeq [C,\mathcal{V}](A, {\lim_\leftarrow}_i C(c_i,-)) \\ &amp; \simeq {\lim_{\leftarrow}}_i [C, \mathcal{V}](A, C(c_i,-)) \\ &amp; \simeq {\lim_{\leftarrow}}_i [C^{op}, \mathcal{V}](Spec C(c_i,-), Spec A) \\ &amp; \simeq [C^{op}, \mathcal{V}]({\lim_{\to}}_i Spec C(c_i,-), Spec A) \\ &amp; \simeq [C^{op}, \mathcal{V}](X, Spec A) \end{aligned} \,. </annotation></semantics></math></div></div> <p>The pattern of this proof has the advantage that it goes through in great generality also on <a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a> without reference to a higher notion of enriched category theory.</p> <div class="num_remark"> <h6 id="remark_3">Remark</h6> <p>Under certain circumstances, Isbell duality can be extended to large <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒱</mi></mrow><annotation encoding="application/x-tex">\mathcal{V}</annotation></semantics></math>-enriched categories <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>. For example, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> has a small generating subcategory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> and a small cogenerating subcategory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>, then for each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>:</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>→</mo><mi>𝒱</mi></mrow><annotation encoding="application/x-tex">F: C^{op} \to \mathcal{V}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>𝒱</mi></mrow><annotation encoding="application/x-tex">G: C \to \mathcal{V}</annotation></semantics></math>, one may construct <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{O}(F)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Spec</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Spec(G)</annotation></semantics></math> objectwise as appropriate subobjects in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒱</mi></mrow><annotation encoding="application/x-tex">\mathcal{V}</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>F</mi><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>↪</mo><msub><mo>∫</mo> <mrow><mi>s</mi><mo>:</mo><mi>S</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>F</mi><mi>s</mi><mo>,</mo><mi>hom</mi><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{O}(F)(c) = [C^{op}, \mathcal{V}](F, C(-, c)) \hookrightarrow \int_{s: S} \mathcal{V}(F s, \hom(s, c))</annotation></semantics></math></div><div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Spec</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>↪</mo><msub><mo>∫</mo> <mrow><mi>t</mi><mo>:</mo><mi>T</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>G</mi><mi>t</mi><mo>,</mo><mi>hom</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Spec(G)(c) = [C, \mathcal{V}](G, C(c, -)) \hookrightarrow \int_{t: T} \mathcal{V}(G t, \hom(c, t))</annotation></semantics></math></div></div> <h2 id="example">Example</h2> <p>In the simplest case, namely for an ordinary category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>, the adjunction between presheaves and copresheaves arises as follows.</p> <p>The category of <a class="existingWikiWord" href="/nlab/show/presheaves">presheaves</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mi mathvariant="normal">Set</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[\mathcal{C}^{op}, \mathrm{Set}]</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/free+cocompletion">free cocompletion</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>. This means that any functor</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">f \colon \mathcal{C} \to \mathcal{D}</annotation></semantics></math></div> <p>to a <a class="existingWikiWord" href="/nlab/show/cocomplete+category">cocomplete category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">\mathcal{D}</annotation></semantics></math> extends along the <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo lspace="verythinmathspace">:</mo><mi>𝒞</mi><mo>→</mo><mo stretchy="false">[</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mi mathvariant="normal">Set</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">y \colon \mathcal{C} \to [\mathcal{C}^{op}, \mathrm{Set}]</annotation></semantics></math> to a <a class="existingWikiWord" href="/nlab/show/cocontinuous+functor">cocontinuous functor</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo lspace="verythinmathspace">:</mo><mo stretchy="false">[</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mi mathvariant="normal">Set</mi><mo stretchy="false">]</mo><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">F \colon [\mathcal{C}^{op}, \mathrm{Set}] \to \mathcal{D}</annotation></semantics></math></div> <p>in a manner unique up to natural isomorphism.</p> <p>Dually, the category of <a class="existingWikiWord" href="/nlab/show/copresheaves">copresheaves</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>𝒞</mi><mo>,</mo><mi mathvariant="normal">Set</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">[\mathcal{C}, \mathrm{Set}]^{op}</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/free+completion">free completion</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>. This means that any functor</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>g</mi><mo lspace="verythinmathspace">:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">g \colon \mathcal{C} \to \mathcal{D}</annotation></semantics></math></div> <p>to a <a class="existingWikiWord" href="/nlab/show/complete+category">complete category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">\mathcal{D}</annotation></semantics></math> extends along the <a class="existingWikiWord" href="/nlab/show/co-Yoneda+lemma">co-Yoneda embedding</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>z</mi><mo lspace="verythinmathspace">:</mo><mi>𝒞</mi><mo>→</mo><mo stretchy="false">[</mo><mi>𝒞</mi><mo>,</mo><mi mathvariant="normal">Set</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">z \colon \mathcal{C} \to [\mathcal{C}, \mathrm{Set}]^{op}</annotation></semantics></math> to a <a class="existingWikiWord" href="/nlab/show/continuous+functor">continuous functor</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo lspace="verythinmathspace">:</mo><mo stretchy="false">[</mo><mi>𝒞</mi><mo>,</mo><mi mathvariant="normal">Set</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">G \colon [\mathcal{C}, \mathrm{Set}]^{op} \to \mathcal{D}</annotation></semantics></math></div> <p>in a manner unique up to natural isomorphism.</p> <p>We can apply these ideas to get the functors involved in Isbell duality. The presheaf category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mi mathvariant="normal">Set</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[\mathcal{C}^{op}, \mathrm{Set}]</annotation></semantics></math> has all limits, so we can extend the Yoneda embedding to a continuous functor</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo lspace="verythinmathspace">:</mo><mo stretchy="false">[</mo><mi>𝒞</mi><mo>,</mo><mi mathvariant="normal">Set</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup><mo>→</mo><mo stretchy="false">[</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mi mathvariant="normal">Set</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex"> Y \colon [\mathcal{C}, \mathrm{Set}]^{op} \to [\mathcal{C}^{op}, \mathrm{Set}] </annotation></semantics></math></div> <p>from copresheaves to presheaves. Dually, the copresheaf category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>𝒞</mi><mo>,</mo><mi mathvariant="normal">Set</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">[\mathcal{C}, \mathrm{Set}]^{op}</annotation></semantics></math> has all colimits, so we can extend the co-Yoneda embedding to a cocontinuous functor</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo lspace="verythinmathspace">:</mo><mo stretchy="false">[</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mi mathvariant="normal">Set</mi><mo stretchy="false">]</mo><mo>→</mo><mo stretchy="false">[</mo><mi>𝒞</mi><mo>,</mo><mi mathvariant="normal">Set</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex"> Z \colon [\mathcal{C}^{op}, \mathrm{Set}] \to [\mathcal{C}, \mathrm{Set}]^{op} </annotation></semantics></math></div> <p>from presheaves to copresheaves.</p> <p>Isbell duality says that these are adjoint functors: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> is right adjoint to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi></mrow><annotation encoding="application/x-tex">Z</annotation></semantics></math>.</p> <h2 id="properties">Properties</h2> <h3 id="relation_to_yoneda_embedding">Relation to Yoneda embedding</h3> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Spec</mi></mrow><annotation encoding="application/x-tex">Spec</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/left+Kan+extension">left Kan extension</a> of the <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a> along the contravariant Yoneda embedding, while <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi></mrow><annotation encoding="application/x-tex">\mathcal{O}</annotation></semantics></math> is the left Kan extension of the contravariant Yoneda embedding along the Yoneda embedding.</p> <p>The <a class="existingWikiWord" href="/nlab/show/codensity+monad">codensity monad</a> of the <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a> is isomorphic to the monad induced by the Isbell adjunction, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Spec</mi><mi>𝒪</mi></mrow><annotation encoding="application/x-tex">Spec \mathcal{O}</annotation></semantics></math> (<a href="#Kock66">Kock 66, Theorem 4.1</a> and <a href="#DiLiberti">Di Liberti 19, Theorem 2.7</a>).</p> <h3 id="respect_for_limits">Respect for limits</h3> <p>Choose any <a class="existingWikiWord" href="/nlab/show/class">class</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/limit">limit</a>s in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> and write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><msub><mo stretchy="false">]</mo> <mo>×</mo></msub><mo>⊂</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[C,\mathcal{V}]_\times \subset [C,\mathcal{V}]</annotation></semantics></math> for the <a class="existingWikiWord" href="/nlab/show/full+subcategory">full subcategory</a> consisting of those functors preserving these limits.</p> <div class="num_prop"> <h6 id="proposition_2">Proposition</h6> <p>The <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>𝒪</mi><mo>⊣</mo><mi>Spec</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\mathcal{O} \dashv Spec)</annotation></semantics></math>-adjunction does descend to this inclusion, in that we have an adjunction</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>𝒪</mi><mo>⊣</mo><mi>Spec</mi><mo stretchy="false">)</mo><mo>:</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><msubsup><mo stretchy="false">]</mo> <mo>×</mo> <mi>op</mi></msubsup><mover><munder><mo>→</mo><mi>Spec</mi></munder><mover><mo>←</mo><mi>𝒪</mi></mover></mover><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex"> (\mathcal{O} \dashv Spec) : [C, \mathcal{V}]_{\times}^{op} \stackrel{\overset{\mathcal{O}}{\leftarrow}}{\underset{Spec}{\to}} [C^{op}, \mathcal{V}] </annotation></semantics></math></div></div> <div class="proof"> <h6 id="proof">Proof</h6> <p>Because the <a class="existingWikiWord" href="/nlab/show/hom-functor">hom-functor</a>s preserves all <a class="existingWikiWord" href="/nlab/show/limit">limit</a>s:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><msub><mrow><munder><mi>lim</mi> <mo>←</mo></munder></mrow> <mi>j</mi></msub><msub><mi>c</mi> <mi>j</mi></msub><mo stretchy="false">)</mo></mtd> <mtd><mo>:</mo><mo>=</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><msub><mrow><munder><mi>lim</mi> <mo>←</mo></munder></mrow> <mi>j</mi></msub><msub><mi>c</mi> <mi>j</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mrow><munder><mi>lim</mi> <mo>←</mo></munder></mrow> <mi>j</mi></msub><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><msub><mi>c</mi> <mi>j</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msub><mrow><munder><mi>lim</mi> <mo>←</mo></munder></mrow> <mi>j</mi></msub><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><msub><mi>c</mi> <mi>j</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mo>:</mo><msub><mrow><munder><mi>lim</mi> <mo>←</mo></munder></mrow> <mi>j</mi></msub><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>j</mi></msub><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \begin{aligned} \mathcal{O}(X)({\lim_{\leftarrow}}_j c_j) &amp; := [C^{op}, \mathcal{V}](X,C(-,{\lim_{\leftarrow}}_j c_j)) \\ &amp; \simeq [C^{op}, \mathcal{V}](X,{\lim_{\leftarrow}}_j C(-,c_j)) \\ &amp; \simeq {\lim_{\leftarrow}}_j [C^{op}, \mathcal{V}](X,C(-,c_j)) \\ &amp; =: {\lim_{\leftarrow}}_j \mathcal{O}(X)(c_j) \end{aligned} \,. </annotation></semantics></math></div></div> <h3 id="isbell_selfdual_objects">Isbell self-dual objects</h3> <div class="num_defn"> <h6 id="definition_2">Definition</h6> <p>An object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is <strong>Isbell-self-dual</strong> if</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mover><mo>→</mo><mrow></mrow></mover><mi>𝒪</mi><mi>Spec</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A \stackrel{}{\to} \mathcal{O} Spec(A)</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[C,\mathcal{V}]</annotation></semantics></math>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>Spec</mi><mi>𝒪</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">X \to Spec \mathcal{O} X</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[C^{op}, \mathcal{V}]</annotation></semantics></math>, respectively.</p> </li> </ul> </div> <div class="num_prop"> <h6 id="proposition_3">Proposition</h6> <p>All <a class="existingWikiWord" href="/nlab/show/representable+functor">representables</a> are Isbell self-dual.</p> </div> <div class="proof"> <h6 id="proof_2">Proof</h6> <p>By <a href="#ProofB">Proof B , lemma 1</a> we have a <a class="existingWikiWord" href="/nlab/show/natural+isomorphism">natural isomorphism</a>s in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>c</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">c \in C</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Spec</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>≃</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> Spec(C(c,-)) \simeq C(-,c) \,. </annotation></semantics></math></div> <p>Therefore we have also the natural isomorphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><mi>𝒪</mi><mi>Spec</mi><mi>C</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>≃</mo><mi>𝒪</mi><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>:</mo><mo>=</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>,</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><mi>C</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \begin{aligned} \mathcal{O} Spec C(c,-)(d) &amp; \simeq \mathcal{O} C(-,c) (d) \\ &amp; := [C^{op}, \mathcal{V}](C(-,c), C(-,d)) \\ &amp; \simeq C(c,d) \end{aligned} \,, </annotation></semantics></math></div> <p>where the second step is the <a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a>. Similarly the other way round.</p> </div> <h3 id="isbell_envelope">Isbell envelope</h3> <p>See <a class="existingWikiWord" href="/nlab/show/Isbell+envelope">Isbell envelope</a>.</p> <h3 id="reflexive_completion">Reflexive completion</h3> <p>See <a class="existingWikiWord" href="/nlab/show/reflexive+completion">reflexive completion</a>.</p> <h2 id="examples_and_similar_dualities">Examples and similar dualities</h2> <p>Isbell duality is a template for many other <a class="existingWikiWord" href="/nlab/show/space">space</a>/<a class="existingWikiWord" href="/nlab/show/algebra">algebra</a>-<a class="existingWikiWord" href="/nlab/show/dualities">dualities</a> in <a class="existingWikiWord" href="/nlab/show/mathematics">mathematics</a>.</p> <h3 id="FunctionAlgebrasOnPresheaves">Function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-Algebras on presheaves</h3> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒱</mi></mrow><annotation encoding="application/x-tex">\mathcal{V}</annotation></semantics></math> be any <a class="existingWikiWord" href="/nlab/show/cartesian+closed+category">cartesian closed category</a>.</p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>:</mo><mo>=</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">C := T</annotation></semantics></math> be the <a class="existingWikiWord" href="/nlab/show/syntactic+category">syntactic category</a> of a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒱</mi></mrow><annotation encoding="application/x-tex">\mathcal{V}</annotation></semantics></math>-enriched <a class="existingWikiWord" href="/nlab/show/Lawvere+theory">Lawvere theory</a>, that is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒱</mi></mrow><annotation encoding="application/x-tex">\mathcal{V}</annotation></semantics></math>-category with finite <a class="existingWikiWord" href="/nlab/show/product">product</a>s such that all objects are generated under products from a single object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math>.</p> <p>Then write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>Alg</mi><mo>:</mo><mo>=</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>𝒱</mi><msub><mo stretchy="false">]</mo> <mo>×</mo></msub></mrow><annotation encoding="application/x-tex">T Alg := [C,\mathcal{V}]_\times</annotation></semantics></math> for category of product-preserving functors: the category of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-algebras. This comes with the canonical forgetful functor</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>U</mi> <mi>T</mi></msub><mo>:</mo><mi>T</mi><mi>Alg</mi><mo>→</mo><mi>𝒱</mi><mo>:</mo><mi>A</mi><mo>↦</mo><mi>A</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> U_T : T Alg \to \mathcal{V} : A \mapsto A(1) </annotation></semantics></math></div> <p>Write</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>F</mi> <mi>T</mi></msub><mo>:</mo><msup><mi>T</mi> <mi>op</mi></msup><mo>↪</mo><mi>T</mi><mi>Alg</mi></mrow><annotation encoding="application/x-tex"> F_T : T^{op} \hookrightarrow T Alg </annotation></semantics></math></div> <p>for the <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a>.</p> <div class="num_defn"> <h6 id="definition_3">Definition</h6> <p>Call</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>𝔸</mi> <mi>T</mi></msub><mo>:</mo><mo>=</mo><mi>Spec</mi><mo stretchy="false">(</mo><msub><mi>F</mi> <mi>T</mi></msub><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>∈</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex"> \mathbb{A}_T := Spec(F_T(1)) \in [C^{op}, \mathcal{V}] </annotation></semantics></math></div> <p>the <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-line object</strong>.</p> </div> <div class="num_lemma"> <h6 id="observation">Observation</h6> <p>For all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>∈</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">X \in [C^{op}, \mathcal{V}]</annotation></semantics></math> we have</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>≃</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>Spec</mi><mo stretchy="false">(</mo><msub><mi>F</mi> <mi>T</mi></msub><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \mathcal{O}(X) \simeq [C^{op}, \mathcal{V}](X, Spec(F_T(-))) \,. </annotation></semantics></math></div> <p>In particular</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>U</mi> <mi>T</mi></msub><mo stretchy="false">(</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>≃</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>𝔸</mi> <mi>T</mi></msub><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> U_T(\mathcal{O}(X)) \simeq [C^{op}, \mathcal{V}](X,\mathbb{A}_T) \,. </annotation></semantics></math></div></div> <div class="proof"> <h6 id="proof_3">Proof</h6> <p>We have isomorphisms natural in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>∈</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">k \in T</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>Spec</mi><mo stretchy="false">(</mo><msub><mi>F</mi> <mi>T</mi></msub><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd> <mtd><mo>≃</mo><mi>T</mi><mi>Alg</mi><mo stretchy="false">(</mo><msub><mi>F</mi> <mi>T</mi></msub><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>,</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \begin{aligned} [C^{op}, \mathcal{V}](X, Spec(F_T(k))) &amp; \simeq T Alg(F_T(k), \mathcal{O}(X)) \\ &amp; \simeq \mathcal{O}(X)(k) \end{aligned} </annotation></semantics></math></div> <p>by the above adjunction and then by the <a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a>.</p> </div> <p>All this generalizes to the following case:</p> <p>instead of setting <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>:</mo><mo>=</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">C := T</annotation></semantics></math> let more generally</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>T</mi><mo>⊂</mo><mi>C</mi><mo>⊂</mo><mi>T</mi><msup><mi>Alg</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex"> T \subset C \subset T Alg^{op} </annotation></semantics></math></div> <p>be a <a class="existingWikiWord" href="/nlab/show/small+category">small</a> <a class="existingWikiWord" href="/nlab/show/full+subcategory">full subcategory</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-algebras, containing all the free <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-algebras.</p> <p>Then the original construction of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi><mo>⊣</mo><mi>Spec</mi></mrow><annotation encoding="application/x-tex">\mathcal{O} \dashv Spec</annotation></semantics></math> no longer makes sense, but that in terms of the line object still does</p> <div class="num_prop"> <h6 id="proposition_4">Proposition</h6> <p>Set</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Spec</mi><mi>A</mi><mo>:</mo><mi>B</mi><mo>↦</mo><mi>T</mi><mi>Alg</mi><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> Spec A : B \mapsto T Alg(A,B) </annotation></semantics></math></div> <p>and</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>:</mo><mi>k</mi><mo>↦</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>Spec</mi><mo stretchy="false">(</mo><msub><mi>F</mi> <mi>T</mi></msub><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \mathcal{O}(X) : k \mapsto [C^{op}, \mathcal{V}](X, Spec(F_T(k))) \,. </annotation></semantics></math></div> <p>Then we still have an adjunction</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>𝒪</mi><mo>⊣</mo><mi>Spec</mi><mo stretchy="false">)</mo><mo>:</mo><mi>T</mi><msup><mi>Alg</mi> <mi>op</mi></msup><mover><munder><mo>→</mo><mi>Spec</mi></munder><mover><mo>←</mo><mi>𝒪</mi></mover></mover><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> (\mathcal{O} \dashv Spec) : T Alg^{op} \stackrel{\overset{\mathcal{O}}{\leftarrow}}{\underset{Spec}{\to}} [C^{op}, \mathcal{V}] \,. </annotation></semantics></math></div></div> <div class="proof"> <h6 id="proof_4">Proof</h6> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><mi>T</mi><msup><mi>Alg</mi> <mi>op</mi></msup><mo stretchy="false">(</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>:</mo><mo>=</mo><msub><mo>∫</mo> <mrow><mi>k</mi><mo>∈</mo><mi>T</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>,</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>:</mo><mo>=</mo><msub><mo>∫</mo> <mrow><mi>k</mi><mo>∈</mo><mi>T</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>,</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>𝒱</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>Spec</mi><mo stretchy="false">(</mo><msub><mi>F</mi> <mi>T</mi></msub><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>:</mo><mo>=</mo><msub><mo>∫</mo> <mrow><mi>k</mi><mo>∈</mo><mi>T</mi></mrow></msub><msub><mo>∫</mo> <mrow><mi>B</mi><mo>∈</mo><mi>C</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>,</mo><mi>𝒱</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mo>,</mo><mi>T</mi><mi>Alg</mi><mo stretchy="false">(</mo><msub><mi>F</mi> <mi>T</mi></msub><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>,</mo><mi>B</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msub><mo>∫</mo> <mrow><mi>k</mi><mo>∈</mo><mi>T</mi></mrow></msub><msub><mo>∫</mo> <mrow><mi>B</mi><mo>∈</mo><mi>C</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>,</mo><mi>𝒱</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mo>,</mo><mi>B</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msub><mo>∫</mo> <mrow><mi>k</mi><mo>∈</mo><mi>T</mi></mrow></msub><msub><mo>∫</mo> <mrow><mi>B</mi><mo>∈</mo><mi>C</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mo>,</mo><mi>𝒱</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>,</mo><mi>B</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mo>:</mo><msub><mo>∫</mo> <mrow><mi>B</mi><mo>∈</mo><mi>C</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mo>,</mo><mi>T</mi><mi>Alg</mi><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mo>:</mo><msub><mo>∫</mo> <mrow><mi>B</mi><mo>∈</mo><mi>C</mi></mrow></msub><mi>𝒱</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mo>,</mo><mi>Spec</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mo>:</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>Spec</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \begin{aligned} T Alg^{op}(\mathcal{O}(X), A) &amp; := \int_{k \in T} \mathcal{V}( A(k), \mathcal{O}(X)(k) ) \\ &amp; := \int_{k \in T} \mathcal{V}( A(k), [C^{op}, \mathcal{V}](X, Spec(F_T(k))) ) \\ &amp; := \int_{k \in T} \int_{B \in C} \mathcal{V}(A(k), \mathcal{V}(X(B), T Alg(F_T(k), B) )) \\ &amp; \simeq \int_{k \in T} \int_{B \in C} \mathcal{V}(A(k), \mathcal{V}(X(B), B(k) )) \\ &amp; \simeq \int_{k \in T} \int_{B \in C} \mathcal{V}(X(B), \mathcal{V}(A(k), B(k) )) \\ &amp; =: \int_{B \in C} \mathcal{V}(X(B), T Alg(A,B)) \\ &amp; =: \int_{B \in C} \mathcal{V}(X(B), Spec(A)(B)) \\ &amp; =: [C^{op}, Set](X,Spec(A)) \end{aligned} \,. </annotation></semantics></math></div> <p>The first step that is not a definition is the <a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a>. The step after that is the symmetric-closed-monoidal structure of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒱</mi></mrow><annotation encoding="application/x-tex">\mathcal{V}</annotation></semantics></math>.</p> </div> <h3 id="FuncCompDerStacks">Function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-algebras on derived <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stacks</h3> <p>The structure of our <a href="#ProofB">Proof B</a> above goes through in higher category theory.</p> <p>Formulated in terms of <a class="existingWikiWord" href="/nlab/show/derived+stack">derived stack</a>s over the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> of <a class="existingWikiWord" href="/nlab/show/dg-algebra">dg-algebra</a>s, this is essentially the argument appearing on <a href="http://arxiv.org/PS_cache/arxiv/pdf/1002/1002.3636v1.pdf#page=23">page 23</a> of (<a href="#Ben-ZviNadler">Ben-ZviNadler</a>).</p> <h3 id="function_algebras_on_stacks">Function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-algebras on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stacks</h3> <p>for the moment see at <em><a class="existingWikiWord" href="/nlab/show/function+algebras+on+%E2%88%9E-stacks">function algebras on ∞-stacks</a></em>.</p> <h3 id="function_2algebras_on_algebraic_stacks">Function 2-algebras on algebraic stacks</h3> <p>see <a class="existingWikiWord" href="/nlab/show/Tannaka+duality+for+geometric+stacks">Tannaka duality for geometric stacks</a></p> <h3 id="GelfandDuality">Gelfand duality</h3> <p><a class="existingWikiWord" href="/nlab/show/Gelfand+duality">Gelfand duality</a> is the <a class="existingWikiWord" href="/nlab/show/equivalence+of+categories">equivalence of categories</a> between (nonunital) commutative <a class="existingWikiWord" href="/nlab/show/C-star+algebra">C*-algebras</a> and (<a class="existingWikiWord" href="/nlab/show/locally+compact+space">locally</a>) <a class="existingWikiWord" href="/nlab/show/compact+topological+spaces">compact topological spaces</a>. See there for more details.</p> <h3 id="serreswan_theorem">Serre-Swan theorem</h3> <p>The <a class="existingWikiWord" href="/nlab/show/Serre-Swan+theorem">Serre-Swan theorem</a> says that suitable <a class="existingWikiWord" href="/nlab/show/modules">modules</a> over an commutative <a class="existingWikiWord" href="/nlab/show/C-star+algebra">C*-algebra</a> are equivalently modules of <a class="existingWikiWord" href="/nlab/show/sections">sections</a> of <a class="existingWikiWord" href="/nlab/show/vector+bundles">vector bundles</a> over the <a href="#GelfandDuality">Gelfand-dual</a> topological space.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/duality+between+algebra+and+geometry">duality between algebra and geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/function+algebra">function algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/function+algebras+on+%E2%88%9E-stacks">function algebras on ∞-stacks</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nucleus+of+a+profunctor">nucleus of a profunctor</a></p> </li> </ul> <div> <p><strong><a class="existingWikiWord" href="/nlab/show/duality+between+algebra+and+geometry">duality between</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thickmathspace"></mspace></mrow><annotation encoding="application/x-tex">\;</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/algebra">algebra</a> and <a class="existingWikiWord" href="/nlab/show/geometry">geometry</a></strong></p> <table style="margin:auto"><thead><tr><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/geometry">geometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/category">category</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/dual+category">dual category</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/algebra">algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th></tr></thead><tbody><tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/topology">topology</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>NC</mi></mphantom><msub><mi>TopSpaces</mi> <mrow><mi>H</mi><mo>,</mo><mi>cpt</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\phantom{NC}TopSpaces_{H,cpt}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>↪</mo><mtext><a href="https://ncatlab.org/nlab/show/Gelfand-Kolmogorov+theorem">Gelfand-Kolmogorov</a></mtext></mover><msubsup><mi>Alg</mi> <mi>ℝ</mi> <mi>op</mi></msubsup></mrow><annotation encoding="application/x-tex">\overset{\text{&lt;a href="https://ncatlab.org/nlab/show/Gelfand-Kolmogorov+theorem"&gt;Gelfand-Kolmogorov&lt;/a&gt;}}{\hookrightarrow} Alg^{op}_{\mathbb{R}}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/commutative+algebra">commutative algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/topology">topology</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>NC</mi></mphantom><msub><mi>TopSpaces</mi> <mrow><mi>H</mi><mo>,</mo><mi>cpt</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\phantom{NC}TopSpaces_{H,cpt}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>≃</mo><mtext><a class="existingWikiWord" href="https://ncatlab.org/nlab/show/Gelfand+duality">Gelfand duality</a></mtext></mover><msubsup><mi>TopAlg</mi> <mrow><msup><mi>C</mi> <mo>*</mo></msup><mo>,</mo><mi>comm</mi></mrow> <mi>op</mi></msubsup></mrow><annotation encoding="application/x-tex">\overset{\text{&lt;a class="existingWikiWord" href="https://ncatlab.org/nlab/show/Gelfand+duality"&gt;Gelfand duality&lt;/a&gt;}}{\simeq} TopAlg^{op}_{C^\ast, comm}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/commutative+C%2A-algebra">comm. C-star-algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/noncommutative+topology">noncomm. topology</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>NCTopSpaces</mi> <mrow><mi>H</mi><mo>,</mo><mi>cpt</mi></mrow></msub></mrow><annotation encoding="application/x-tex">NCTopSpaces_{H,cpt}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>≔</mo><mphantom><mtext>Gelfand duality</mtext></mphantom></mover><msubsup><mi>TopAlg</mi> <mrow><msup><mi>C</mi> <mo>*</mo></msup></mrow> <mi>op</mi></msubsup></mrow><annotation encoding="application/x-tex">\overset{\phantom{\text{Gelfand duality}}}{\coloneqq} TopAlg^{op}_{C^\ast}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math>general <a class="existingWikiWord" href="/nlab/show/C-star-algebra">C-star-algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/algebraic+geometry">algebraic geometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>NC</mi></mphantom><msub><mi>Schemes</mi> <mi>Aff</mi></msub></mrow><annotation encoding="application/x-tex">\phantom{NC}Schemes_{Aff}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>≃</mo><mtext><a href="https://ncatlab.org/nlab/show/affine+scheme#AffineSchemesFullSubcategoryOfOppositeOfRings">almost by def.</a></mtext></mover><mphantom><mi>Top</mi></mphantom><msup><mi>Alg</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">\overset{\text{&lt;a href="https://ncatlab.org/nlab/show/affine+scheme#AffineSchemesFullSubcategoryOfOppositeOfRings"&gt;almost by def.&lt;/a&gt;}}{\simeq} \phantom{Top}Alg^{op} </annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A} \phantom{A}</annotation></semantics></math> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/commutative+ring">commutative ring</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/noncommutative+algebraic+geometry">noncomm. algebraic</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/noncommutative+algebraic+geometry">geometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>NCSchemes</mi> <mi>Aff</mi></msub></mrow><annotation encoding="application/x-tex">NCSchemes_{Aff}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>≔</mo><mphantom><mtext>Gelfand duality</mtext></mphantom></mover><mphantom><mi>Top</mi></mphantom><msubsup><mi>Alg</mi> <mrow><mi>fin</mi><mo>,</mo><mi>red</mi></mrow> <mi>op</mi></msubsup></mrow><annotation encoding="application/x-tex">\overset{\phantom{\text{Gelfand duality}}}{\coloneqq} \phantom{Top}Alg^{op}_{fin, red}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/finitely+generated+algebra">fin. gen.</a> <br /><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/associative+algebra">associative algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/differential+geometry">differential geometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SmoothManifolds</mi></mrow><annotation encoding="application/x-tex">SmoothManifolds</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>↪</mo><mtext><a href="https://ncatlab.org/nlab/show/embedding+of+smooth+manifolds+into+formal+duals+of+R-algebras">Milnor's exercise</a></mtext></mover><mphantom><mi>Top</mi></mphantom><msubsup><mi>Alg</mi> <mi>comm</mi> <mi>op</mi></msubsup></mrow><annotation encoding="application/x-tex">\overset{\text{&lt;a href="https://ncatlab.org/nlab/show/embedding+of+smooth+manifolds+into+formal+duals+of+R-algebras"&gt;Milnor's exercise&lt;/a&gt;}}{\hookrightarrow} \phantom{Top}Alg^{op}_{comm}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/commutative+algebra">commutative algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/supergeometry">supergeometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msub><mi>SuperSpaces</mi> <mi>Cart</mi></msub></mtd></mtr> <mtr><mtd></mtd></mtr> <mtr><mtd><msup><mi>ℝ</mi> <mrow><mi>n</mi><mo stretchy="false">|</mo><mi>q</mi></mrow></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{SuperSpaces_{Cart} \\ \\ \mathbb{R}^{n\vert q}}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mover><mo>↪</mo><mphantom><mtext>Milnor's exercise</mtext></mphantom></mover></mtd> <mtd><msubsup><mi>Alg</mi> <mrow><msub><mi>ℤ</mi> <mn>2</mn></msub><mphantom><mi>AAAA</mi></mphantom></mrow> <mi>op</mi></msubsup></mtd></mtr> <mtr><mtd><mo>↦</mo></mtd> <mtd><msup><mi>C</mi> <mn>∞</mn></msup><mo stretchy="false">(</mo><msup><mi>ℝ</mi> <mi>n</mi></msup><mo stretchy="false">)</mo><mo>⊗</mo><msup><mo>∧</mo> <mo>•</mo></msup><msup><mi>ℝ</mi> <mi>q</mi></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{ \overset{\phantom{\text{Milnor's exercise}}}{\hookrightarrow} &amp; Alg^{op}_{\mathbb{Z}_2 \phantom{AAAA}} \\ \mapsto &amp; C^\infty(\mathbb{R}^n) \otimes \wedge^\bullet \mathbb{R}^q }</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/supercommutative+superalgebra">supercommutative</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/superalgebra">superalgebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/formal+moduli+problem">formal</a> <a class="existingWikiWord" href="/nlab/show/higher+differential+geometry">higher</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/supergeometry">supergeometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math>(<a class="existingWikiWord" href="/nlab/show/super+L-%E2%88%9E+algebra">super Lie theory</a>)<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom><mrow><mtable><mtr><mtd><mi>Super</mi><msub><mi>L</mi> <mn>∞</mn></msub><msub><mi>Alg</mi> <mi>fin</mi></msub></mtd></mtr> <mtr><mtd><mi>𝔤</mi></mtd></mtr></mtable></mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}\array{ Super L_\infty Alg_{fin} \\ \mathfrak{g} }\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom><mrow><mtable><mtr><mtd><mover><mo>↪</mo><mrow><mphantom><mi>A</mi></mphantom><mtext><a href="https://ncatlab.org/nlab/show/L-infinity-algebra#ReformulationInTermsOfSemifreeDGAlgebra">Lada-Markl</a></mtext><mphantom><mi>A</mi></mphantom></mrow></mover></mtd> <mtd><msup><mi>sdgcAlg</mi> <mi>op</mi></msup></mtd></mtr> <mtr><mtd><mo>↦</mo></mtd> <mtd><mi>CE</mi><mo stretchy="false">(</mo><mi>𝔤</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}\array{ \overset{ \phantom{A}\text{&lt;a href="https://ncatlab.org/nlab/show/L-infinity-algebra#ReformulationInTermsOfSemifreeDGAlgebra"&gt;Lada-Markl&lt;/a&gt;}\phantom{A} }{\hookrightarrow} &amp; sdgcAlg^{op} \\ \mapsto &amp; CE(\mathfrak{g}) }\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/differential+graded-commutative+superalgebra">differential graded-commutative</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/superalgebra">superalgebra</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> (“<a class="existingWikiWord" href="/nlab/show/D%27Auria-Fre+formulation+of+supergravity">FDAs</a>”)</td></tr> </tbody></table> <p><strong>in <a class="existingWikiWord" href="/nlab/show/physics">physics</a></strong>:</p> <table style="margin:auto"><thead><tr><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/algebra">algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/geometry">geometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th></tr></thead><tbody><tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Poisson+algebra">Poisson algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Poisson+manifold">Poisson manifold</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/deformation+quantization">deformation quantization</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/geometric+quantization">geometric quantization</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/algebra+of+observables">algebra of observables</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/space+of+states">space of states</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Heisenberg+picture">Heisenberg picture</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Schr%C3%B6dinger+picture">Schrödinger picture</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/AQFT">AQFT</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/FQFT">FQFT</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><strong><a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><strong><a class="existingWikiWord" href="/nlab/show/higher+geometry">higher geometry</a></strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Poisson+n-algebra">Poisson n-algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/n-plectic+manifold">n-plectic manifold</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/En-algebras">En-algebras</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/higher+symplectic+geometry">higher symplectic geometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Beilinson-Drinfeld+algebra">BD</a>-<a class="existingWikiWord" href="/nlab/show/BV+quantization">BV quantization</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/higher+geometric+quantization">higher geometric quantization</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/factorization+algebra+of+observables">factorization algebra of observables</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/extended+quantum+field+theory">extended quantum field theory</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/factorization+homology">factorization homology</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/cobordism+hypothesis">cobordism representation</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> </tbody></table> </div> <h2 id="references">References</h2> <p>The original articles on Isbell duality and the <a class="existingWikiWord" href="/nlab/show/Isbell+envelope">Isbell envelope</a> are</p> <ul> <li id="Isbell66"> <p><a class="existingWikiWord" href="/nlab/show/John+Isbell">John Isbell</a>, <em>Structure of categories</em>, Bulletin of the American Mathematical Society <strong>72</strong> (1966), 619-655. &lbrack;<a href="http://projecteuclid.org/euclid.bams/1183528163">euclid:1183528163</a>, <a href="https://www.ams.org/journals/bull/1966-72-04/S0002-9904-1966-11541-0/">ams:1966-72-04/S0002-9904-1966-11541-0</a>&rbrack;</p> </li> <li id="Isbell67"> <p><a class="existingWikiWord" href="/nlab/show/John+Isbell">John Isbell</a>, <em>Normal completions of categories</em>, Reports of the Midwest Category Seminar, <strong>47</strong>, Springer (1967) 110-155 &lbrack;<a href="https://doi.org/10.1007/BFb0074302">doi:10.1007/BFb0074302</a>&rbrack;</p> </li> <li id="Kock66"> <p><a class="existingWikiWord" href="/nlab/show/Anders+Kock">Anders Kock</a>. <em>Continuous Yoneda representation of a small category</em>. University of Aarhus, Denmark, 1966. (<a href="https://tildeweb.au.dk/au76680/CYRSC.pdf">pdf</a>)</p> </li> </ul> <p>More recent discussion:</p> <ul> <li id="Lawvere86"> <p><a class="existingWikiWord" href="/nlab/show/William+Lawvere">William Lawvere</a>, p. 17 of <em>Taking categories seriously</em>, Revista Colombiana de Matematicas, XX (1986) 147-178, reprinted as: Reprints in Theory and Applications of Categories, No. 8 (2005) pp. 1-24 (<a href="http://tac.mta.ca/tac/reprints/articles/8/tr8abs.html">web</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Michael+Barr">Michael Barr</a>, <a class="existingWikiWord" href="/nlab/show/John+Kennison">John Kennison</a>, <a class="existingWikiWord" href="/nlab/show/Robert+Raphael">Robert Raphael</a>, <em>Isbell Duality</em> Theory and Applications of Categories <strong>20</strong> 15 (2008) 504-542 &lbrack;<a href="http://www.tac.mta.ca/tac/volumes/20/15/20-15abs.html">tac:20-15</a>&rbrack;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Michael+Barr">Michael Barr</a>, <a class="existingWikiWord" href="/nlab/show/John+Kennison">John Kennison</a>, <a class="existingWikiWord" href="/nlab/show/Robert+Raphael">Robert Raphael</a>, <em>Isbell duality for for modules</em>, Theory and Applications of Categories <strong>22</strong> 17 (2009) 401-419 &lbrack;<a href="http://www.tac.mta.ca/tac/volumes/22/17/22-17abs.html">tac:22-17</a>, <a href="https://www.math.mcgill.ca/barr/papers/rmod.pdf">pdf</a>&rbrack;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Richard+Garner">Richard Garner</a>, <em>The Isbell monad</em>, Advances in Mathematics <strong>274</strong> (2015) pp.516-537. (<a href="http://comp.mq.edu.au/~rgarner/Papers/Isbell.pdf">draft</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Vaughan+Pratt">Vaughan Pratt</a>, <em>Communes via Yoneda, from an elementary perspective</em>, Fundamenta Informaticae 103 (2010), 203–218.</p> </li> <li id="DL19"> <p><a class="existingWikiWord" href="/nlab/show/Ivan+Di+Liberti">Ivan Di Liberti</a>, <a class="existingWikiWord" href="/nlab/show/Fosco+Loregian">Fosco Loregian</a>, <em>On the Unicity of Formal Category Theories</em>, arXiv:1901.01594 (2019). (<a href="https://arxiv.org/abs/1901.01594">abstract</a>)</p> </li> <li id="DiLiberti"> <p><a class="existingWikiWord" href="/nlab/show/Ivan+Di+Liberti">Ivan Di Liberti</a>, <em>Codensity: Isbell duality, pro-objects, compactness and accessibility</em>, (<a href="https://arxiv.org/abs/1910.01014">arXiv:1910.01014</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tom+Avery">Tom Avery</a>, <a class="existingWikiWord" href="/nlab/show/Tom+Leinster">Tom Leinster</a>. <em>Isbell conjugacy and the reflexive completion</em>. Theory and Applications of Categories, <strong>36</strong> 12 (2021) 306-347 &lbrack;<a href="http://www.tac.mta.ca/tac/volumes/36/12/36-12abs.html">tac:36-12</a>, <a href="http://www.tac.mta.ca/tac/volumes/36/12/36-12.pdf">pdf</a>&rbrack;</p> <blockquote> <p>(relation to <a class="existingWikiWord" href="/nlab/show/reflexive+completion">reflexive completion</a>)</p> </blockquote> </li> <li id="Baez22"> <p><a class="existingWikiWord" href="/nlab/show/John+Baez">John Baez</a>, Isbell duality, <em>Notices Amer. Math. Soc.</em> <strong>70</strong> (2022) 140-141 &lbrack;<a href="https://doi.org/10.1090/noti2602">doi:10.1090/noti2602</a>, <a href="https://www.ams.org/journals/notices/202301/rnoti-p140.pdf">pdf</a>&rbrack;</p> </li> </ul> <p>Isbell conjugacy for <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-presheaves">(∞,1)-presheaves</a> over the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> of duals of <a class="existingWikiWord" href="/nlab/show/dg-algebra">dg-algebra</a>s is discussed around page 32 of</p> <ul id="Ben-ZviNadler"> <li><a class="existingWikiWord" href="/nlab/show/David+Ben-Zvi">David Ben-Zvi</a>, <a class="existingWikiWord" href="/nlab/show/David+Nadler">David Nadler</a>, <em>Loop spaces and connections</em> (<a href="http://arxiv.org/abs/1002.3636">arXiv:1002.3636</a>)</li> </ul> <p>in</p> <ul> <li id="Toen"><a class="existingWikiWord" href="/nlab/show/Bertrand+To%C3%ABn">Bertrand Toën</a>, <em>Champs affines</em> (<a href="http://arxiv.org/abs/math/0012219">arXiv:math/0012219</a>)</li> </ul> <p>Isbell self-dual <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-stack">∞-stack</a>s over duals of commutative <a class="existingWikiWord" href="/nlab/show/associative+algebra">associative algebra</a>s are called <em>affine stacks</em>. They are characterized as those objects that are <em>small</em> in a sense and local with respect to the <a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a> with coefficients in the canonical <a class="existingWikiWord" href="/nlab/show/line+object">line object</a>.</p> <p>A generalization of this latter to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stacks over duals of <a class="existingWikiWord" href="/nlab/show/algebra+over+a+Lawvere+theory">algebras over arbitrary abelian Lawvere theories</a> is the content of</p> <ul> <li id="Stel"><a class="existingWikiWord" href="/nlab/show/Herman+Stel">Herman Stel</a>, <em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Stacks and their function algebras – with applications to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie theory</em>, master thesis (2010) (<a class="existingWikiWord" href="/schreiber/show/master+thesis+Stel">web</a>)</li> </ul> <p>See also</p> <ul> <li> <p>MathOverflow: <a href="http://mathoverflow.net/questions/84641/theme-of-isbell-duality">theme-of-isbell-duality</a></p> </li> <li> <p>R.J. Wood, <em>Some remarks on total categories</em>, J. Algebra <strong>75_:2, 1982, 538–545 <a href="http://dx.doi.org/10.1016/0021-8693(82)90055-2">doi</a></strong></p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on October 31, 2023 at 07:08:24. See the <a href="/nlab/history/Isbell+duality" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Isbell+duality" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/5615/#Item_43">Discuss</a><span class="backintime"><a href="/nlab/revision/Isbell+duality/51" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Isbell+duality" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Isbell+duality" accesskey="S" class="navlink" id="history" rel="nofollow">History (51 revisions)</a> <a href="/nlab/show/Isbell+duality/cite" style="color: black">Cite</a> <a href="/nlab/print/Isbell+duality" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Isbell+duality" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10