CINXE.COM

Search results for: equilibrium isotherm

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: equilibrium isotherm</title> <meta name="description" content="Search results for: equilibrium isotherm"> <meta name="keywords" content="equilibrium isotherm"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="equilibrium isotherm" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="equilibrium isotherm"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1014</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: equilibrium isotherm</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1014</span> GAC Adsorption Modelling of Metsulfuron Methyl from Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathaporn%20Areerachakul">Nathaporn Areerachakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the adsorption capacity of GAC with metsulfuron methyl was evaluated by using adsorption equilibrium and a fixed bed. Mathematical modelling was also used to simulate the GAC adsorption behavior. Adsorption equilibrium experiment of GAC was conducted using a constant concentration of metsulfuron methyl of 10 mg/L. The purpose of this study was to find the single component equilibrium concentration of herbicide. The adsorption behavior was simulated using the Langmuir, Freundlich, and Sips isotherm. The Sips isotherm fitted the experimental data reasonably well with an error of 6.6 % compared with 15.72 % and 7.07% for the Langmuir isotherm and Freudrich isotherm. Modelling using GAC adsorption theory could not replicate the experimental results in fixed bed column of 10 and 15 cm bed depths after a period more than 10 days of operation. This phenomenon is attributed to the formation of micro-organism (BAC) on the surface of GAC in addition to GAC alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotherm" title="isotherm">isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title=" adsorption equilibrium"> adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=GAC" title=" GAC"> GAC</a>, <a href="https://publications.waset.org/abstracts/search?q=metsulfuron%20methyl" title=" metsulfuron methyl"> metsulfuron methyl</a> </p> <a href="https://publications.waset.org/abstracts/8935/gac-adsorption-modelling-of-metsulfuron-methyl-from-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1013</span> Methyl Red Dye Adsorption On PMMA/GO and PMMA/GO-Fe3O4 Nanocomposites: Equilibrium Isotherm Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Rajabi">Mostafa Rajabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazem%20Mahanpoor"> Kazem Mahanpoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performances of the methyl red (MR) dye adsorption on poly(methyl methacrylate)/graphene oxide (PMMA/GO) and poly(methyl methacrylate)/graphene oxide-Fe3O4 (PMMA/GO-Fe3O4) nanocomposites as adsorbents were investigated. Our results showed that for adsorption of MR dye on PMMA/GO-Fe3O4 and PMMA/GO nanocomposites, 80 minutes, 298 K, and pH 2 were the best contact time, temperature and pH value for process, respectively, because the optimum adsorption of the MR dye with both nanocomposite adsorbents were observed in these values of the parameters. The equilibrium study results showed that PMMA/GO-Fe3O4 and PMMA/GO were suitable adsorbents for MR dye removing and were best in agreement with the Langmuir isotherm model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20methacrylate" title=" methyl methacrylate"> methyl methacrylate</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20red" title=" methyl red"> methyl red</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20magnetic%20Fe3O4" title=" nano magnetic Fe3O4"> nano magnetic Fe3O4</a> </p> <a href="https://publications.waset.org/abstracts/140772/methyl-red-dye-adsorption-on-pmmago-and-pmmago-fe3o4-nanocomposites-equilibrium-isotherm-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1012</span> Kinetics, Equilibrium and Thermodynamics of the Adsorption of Triphenyltin onto NanoSiO₂/Fly Ash/Activated Carbon Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olushola%20S.%20Ayanda">Olushola S. Ayanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Olalekan%20S.%20Fatoki"> Olalekan S. Fatoki</a>, <a href="https://publications.waset.org/abstracts/search?q=Folahan%20A.%20Adekola"> Folahan A. Adekola</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhekumusa%20J.%20Ximba"> Bhekumusa J. Ximba</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20O.%20Akintayo"> Cecilia O. Akintayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the kinetics, equilibrium and thermodynamics of the adsorption of triphenyltin (TPT) from TPT-contaminated water onto nanoSiO2/fly ash/activated carbon composite was investigated in batch adsorption system. Equilibrium adsorption data were analyzed using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R) isotherm models. Pseudo first- and second-order, Elovich and fractional power models were applied to test the kinetic data and in order to understand the mechanism of adsorption, thermodynamic parameters such as ΔG°, ΔSo and ΔH° were also calculated. The results showed a very good compliance with pseudo second-order equation while the Freundlich and D-R models fit the experiment data. Approximately 99.999 % TPT was removed from the initial concentration of 100 mg/L TPT at 80oC, contact time of 60 min, pH 8 and a stirring speed of 200 rpm. Thus, nanoSiO2/fly ash/activated carbon composite could be used as effective adsorbent for the removal of TPT from contaminated water and wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotherm" title="isotherm">isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoSiO%E2%82%82%2Ffly%20ash%2Factivated%20carbon%20composite" title=" nanoSiO₂/fly ash/activated carbon composite"> nanoSiO₂/fly ash/activated carbon composite</a>, <a href="https://publications.waset.org/abstracts/search?q=tributyltin" title=" tributyltin"> tributyltin</a> </p> <a href="https://publications.waset.org/abstracts/52321/kinetics-equilibrium-and-thermodynamics-of-the-adsorption-of-triphenyltin-onto-nanosio2fly-ashactivated-carbon-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1011</span> Adsorption of Congo Red on MgO Nanoparticles Prepared by Molten Salt Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahbaa%20F.%20Bdewi">Shahbaa F. Bdewi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakhtyar%20K.%20Aziz"> Bakhtyar K. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayad%20A.%20R.%20Mutar"> Ayad A. R. Mutar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano-materials show different surface properties due to their high surface area and active sites. This study investigates the feasibility of using nano-MgO (NMO) for removing Congo red (CR) dye from wastewater. NMO was prepared by molten salt method. Equilibrium experiments show the equilibrium was reached after 120 minutes and maximum adsorption efficiency was obtained in acidic media up to pH 6. Isotherm studies revealed the favorability of the adsorption process. The overall adsorption process was spontaneous and endothermic in nature with a maximum adsorption capacity of 1100 mg g-1 at 40°C as estimated from Langmuir isotherm. The adsorption kinetics was found to follow pseudo second-order rate equation. Relatively high activation energy (180.7 kJ mol-1) was obtained which is consistent with chemisorption mechanism for the adsorption process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=congo%20red" title=" congo red"> congo red</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20oxide" title=" magnesium oxide"> magnesium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/62294/adsorption-of-congo-red-on-mgo-nanoparticles-prepared-by-molten-salt-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1010</span> The Experimental and Modeling Adsorption Properties of Sr2+ on Raw and Purified Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Khodadadi">A. A. Khodadadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Ravaj"> S. C. Ravaj</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20D.%20Tavildari"> B. D. Tavildari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Abdolahi"> M. B. Abdolahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption properties of local bentonite (Semnan Iran) and purified prepared from this bentonite towards Sr2+ adsorption, were investigated by batch equilibration. The influence of equilibration time, adsorption isotherms, kinetic adsorption, solution pH, and presence of EDTA and NaCl on these properties was studied and discussed. Kinetic data were found to be well fitted with a pseudo-second order kinetic model. Sr2+ is preferably adsorbed by bentonite and purified bentonite. The D-R isotherm model has the best fit with experimental data than other adsorption isotherm models. The maximum adsorption of Sr2+ representing the highest negative charge density on the surface of the adsorbent was seen at pH 12. Presence of EDTA and NaCl decreased the amount of Sr2+ adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite" title="bentonite">bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=purified%20bentonite" title=" purified bentonite"> purified bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=Sr2%2B" title=" Sr2+"> Sr2+</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm" title=" equilibrium isotherm"> equilibrium isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/5687/the-experimental-and-modeling-adsorption-properties-of-sr2-on-raw-and-purified-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1009</span> Removal of Copper(II) and Lead(II) from Aqueous Phase by Plum Stone Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serife%20Parlayici">Serife Parlayici</a>, <a href="https://publications.waset.org/abstracts/search?q=Erol%20Pehlivan"> Erol Pehlivan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, plum stone shell activated carbon (PS-AC) was prepared to adsorb Cu(II) and Pb(II) ions in aqueous solutions. Some important parameters that influence the adsorption of metal ions such as pH, contact time and metal concentration have been systematically investigated in batch type reactors. The characterization of adsorbent is carried out by means of FTIR and SEM. It was found that the adsorption capacities of PS-AC were pH-dependent, and the optimal pH values were 4.5 and 5.0 for Cu(II) and Pb(II), respectively. The adsorption was rapid and the equilibrium was reached within 60 minutes to remove of Cu(II) and Pb(II) ions. The adsorption stability was studied in various doses of adsorbent. Langmuir, Freundlich and D-R adsorption models were used to describe adsorption equilibrium studies of PS-AC. Adsorption data showed that the adsorption of Cu(II) and Pb(II) is compatible with Langmuir isotherm model. The result showed that adsorption capacities calculated from the Langmuir isotherm were 33.22 mg/g and 57.80 mg/g for Cu(II) and Pb(II), respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plum-stone" title="plum-stone">plum-stone</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20and%20lead" title=" copper and lead"> copper and lead</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherms" title=" isotherms"> isotherms</a> </p> <a href="https://publications.waset.org/abstracts/71963/removal-of-copperii-and-leadii-from-aqueous-phase-by-plum-stone-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1008</span> Biosorption of Phenol onto Water Hyacinth Activated Carbon: Kinetics and Isotherm Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Mahapatra">Manoj Kumar Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Batch adsorption experiments were carried out for the removal of phenol from its aqueous solution using water hyancith activated carbon (WHAC) as an adsorbent. The sorption kinetics were analysed using pseudo-first order kinetics and pseudo-second order model, and it was observed that the sorption data tend to fit very well in pseudo-second order model for the entire sorption time. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Equilibrium data fitted well to the Freundlich model with a maximum biosorption capacity of 31.45 mg/g estimated using Langmuir model. The adsorption intensity 3.7975 represents a favorable adsorption condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a> </p> <a href="https://publications.waset.org/abstracts/56589/biosorption-of-phenol-onto-water-hyacinth-activated-carbon-kinetics-and-isotherm-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1007</span> Fabrication of Activated Carbon from Palm Trunksfor Removal of Harmful Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20Alzahrani">Eman Alzahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Date palm trees are abundant and cheap natural resources in Saudi Arabia. In this study, an activated carbon was prepared from palm trunks by chemical processes. The chemical activation was performed by impregnation of the raw materials after grinding with H3PO4 solution (63%), followed by placing of the sample solution on a muffle furnace at 400ºC for 30 min, and then at 800ºC for 10 min. The morphology of the fabricated material was checked using scanning electron microscopy that showed the rough surfaces on the carbon samples. The use of fabricated activated carbon for removal of eosin dye from aqueous solutions at different contact time, initial dye concentration, pH and adsorbent doses was investigated. The experimental results show that the adsorption process attains equilibrium within 20 min. The adsorption isotherm equilibrium was studied by means of the Langmuir and Freundlich isotherms, and it was found that the data fit the Langmuir isotherm equation with maximum monolayer adsorption capacity of 126.58 mg g-1. The results indicated that the home made activated carbon prepared from palm trunks has the ability to remove eosin dye from aqueous solution and it will be a promising adsorbent for the removal of harmful dyes from waste water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palm%20trunks" title=" date palm trunks"> date palm trunks</a>, <a href="https://publications.waset.org/abstracts/search?q=H3PO4%20activation" title=" H3PO4 activation"> H3PO4 activation</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20removal" title=" dye removal"> dye removal</a>, <a href="https://publications.waset.org/abstracts/search?q=eosin%20dye" title=" eosin dye"> eosin dye</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a> </p> <a href="https://publications.waset.org/abstracts/14227/fabrication-of-activated-carbon-from-palm-trunksfor-removal-of-harmful-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1006</span> Removal of Cr⁶⁺, Co²⁺ and Ni²⁺ Ions from Aqueous Solutions by Algerian Enteromorpha compressa (L.) Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Aid">Asma Aid</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Amokrane"> Samira Amokrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Nibou"> Djamel Nibou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadj%20Mekatel"> Hadj Mekatel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The marine Enteromorpha Compressa (L.) (ECL) biomass was used as a low-cost biological adsorbent for the removal of Cr⁶⁺, Co²⁺ and Ni²⁺ ions from artificially contaminated aqueous solutions. The operating variables pH, the initial concentration C₀, the solid/liquid ratio R and the temperature T were studied. A full factorial experimental design technique enabled us to obtain a mathematical model describing the adsorption of Cr⁶⁺, Co²⁺ and Ni²⁺ ions and to study the main effects and interactions among operational parameters. The equilibrium isotherm has been analyzed by Langmuir, Freundlich, and Dubinin-Radushkevich models; it has been found that the adsorption process follows the Langmuir model for the used ions. Kinetic studies showed that the pseudo-second-order model correlates our experimental data. Thermodynamic parameters showed the endothermic heat of adsorption and the spontaneity of the adsorption process for Cr⁶⁺ ions and exothermic heat of adsorption for Co²⁺ and Ni²⁺ ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enteromorpha%20Compressa" title="enteromorpha Compressa">enteromorpha Compressa</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20process" title=" adsorption process"> adsorption process</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr%E2%81%B6%E2%81%BA" title=" Cr⁶⁺"> Cr⁶⁺</a>, <a href="https://publications.waset.org/abstracts/search?q=Co%C2%B2%E2%81%BA%20and%20Ni%C2%B2%E2%81%BA" title=" Co²⁺ and Ni²⁺"> Co²⁺ and Ni²⁺</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm" title=" equilibrium isotherm"> equilibrium isotherm</a> </p> <a href="https://publications.waset.org/abstracts/67678/removal-of-cr6-co2-and-ni2-ions-from-aqueous-solutions-by-algerian-enteromorpha-compressa-l-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1005</span> Oryzanol Recovery from Rice Bran Oil: Adsorption Equilibrium Models Through Kinetics Data Approachments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.D.%20Susanti">A.D. Susanti</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20Sediawan"> W. B. Sediawan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.K.%20Wirawan"> S.K. Wirawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Budhijanto"> Budhijanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritmaleni"> Ritmaleni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oryzanol content in rice bran oil (RBO) naturally has high antioxidant activity. Its reviewed has several health properties and high interested in pharmacy, cosmetics, and nutrition’s. Because of the low concentration of oryzanol in crude RBO (0.9-2.9%) then its need to be further processed for practical usage, such as via adsorption process. In this study, investigation and adjustment of adsorption equilibrium models were conducted through the kinetic data approachments. Mathematical modeling on kinetics of batch adsorption of oryzanol separation from RBO has been set-up and then applied for equilibrium results. The size of adsorbent particles used in this case are usually relatively small then the concentration in the adsorbent is assumed to be not different. Hence, the adsorption rate is controlled by the rate of oryzanol mass transfer from the bulk fluid of RBO to the surface of silica gel. In this approachments, the rate of mass transfer is assumed to be proportional to the concentration deviation from the equilibrium state. The equilibrium models applied were Langmuir, coefficient distribution, and Freundlich with the values of the parameters obtained from equilibrium results. It turned out that the models set-up can quantitatively describe the experimental kinetics data and the adjustment of the values of equilibrium isotherm parameters significantly improves the accuracy of the model. And then the value of mass transfer coefficient per unit adsorbent mass (kca) is obtained by curve fitting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title="adsorption equilibrium">adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20kinetics" title=" adsorption kinetics"> adsorption kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=oryzanol" title=" oryzanol"> oryzanol</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran%20oil" title=" rice bran oil "> rice bran oil </a> </p> <a href="https://publications.waset.org/abstracts/31079/oryzanol-recovery-from-rice-bran-oil-adsorption-equilibrium-models-through-kinetics-data-approachments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1004</span> Characterization of Activated Tire Char (ATC) and Adsorptive Desulfurization of Tire Pyrolytic Oil (TPO) Using ATC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moshe%20Mello">Moshe Mello</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorptive ability of different carbon materials, tire char (TC), demineralized tire char (DTC), activated tire char (ATC) and Aldrich supplied commercial activated carbon (CAC) was studied for desulfurization of tire pyrolytic oil (TPO). TPO with an initial sulfur content of 7767.7 ppmw was used in this present study. Preparation of ATC was achieved by chemical treatment of raw TC using a potassium hydroxide (KOH) solution and subsequent activation at 800°C in the presence of nitrogen. The thermal behavior of TC, surface microstructure, and the surface functional groups of the carbon materials was investigated using TGA, SEM, and FTIR, respectively. Adsorptive desulfurization of TPO using the carbon materials was performed and they performed in the order of CAC>ATC>DTC>TC. Adsorption kinetics were studied, and pseudo-first order kinetic model displayed a better fit compared to pseudo-second order model. For isotherm studies, the Freundlich isotherm model fitted to the equilibrium data better than the Langmuir isotherm model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATC" title="ATC">ATC</a>, <a href="https://publications.waset.org/abstracts/search?q=desulfurization" title=" desulfurization"> desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=tire" title=" tire"> tire</a>, <a href="https://publications.waset.org/abstracts/search?q=TPO" title=" TPO"> TPO</a> </p> <a href="https://publications.waset.org/abstracts/158463/characterization-of-activated-tire-char-atc-and-adsorptive-desulfurization-of-tire-pyrolytic-oil-tpo-using-atc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1003</span> Influence of Silica Surface Hydrophilicity on Adsorbed Water and Isopropanol Studied by in-situ NMR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyung%20T.%20Kwak">Hyung T. Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Gao"> Jun Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao%20An"> Yao An</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20Kleinhammes"> Alfred Kleinhammes</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Wu"> Yue Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface wettability is a crucial factor in oil recovery. In oil industry, the rock wettability involves the interplay between water, oil, and solid surface. Therefore, studying the interplay between adsorptions of water and hydrocarbon molecules on solid surface would be very informative for understanding rock wettability. Here we use the in-situ Nuclear Magnetic Resonance (NMR) gas isotherm technique to study competitive adsorptions of water and isopropanol, an intermediate step from hydrocarbons. This in-situ NMR technique obtains information on thermodynamic properties such as the isotherm, molecular dynamics via spin relaxation measurements, and adsorption kinetics such as how fast the system can reach thermal equilibrium after changes of vapor pressures. Using surfaces of silica glass beads, which can be modified from hydrophilic to hydrophobic, we obtained information on the influence of surface hydrophilicity on the state of surface water via obtained thermodynamic and dynamic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wettability" title="Wettability">Wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR" title=" NMR"> NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=Gas%20Isotherm" title=" Gas Isotherm"> Gas Isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrophilicity" title=" Hydrophilicity"> Hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/117675/influence-of-silica-surface-hydrophilicity-on-adsorbed-water-and-isopropanol-studied-by-in-situ-nmr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1002</span> Calculation of Pressure-Varying Langmuir and Brunauer-Emmett-Teller Isotherm Adsorption Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trevor%20C.%20Brown">Trevor C. Brown</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20J.%20Miron"> David J. Miron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas-solid physical adsorption methods are central to the characterization and optimization of the effective surface area, pore size and porosity for applications such as heterogeneous catalysis, and gas separation and storage. Properties such as adsorption uptake, capacity, equilibrium constants and Gibbs free energy are dependent on the composition and structure of both the gas and the adsorbent. However, challenges remain, in accurately calculating these properties from experimental data. Gas adsorption experiments involve measuring the amounts of gas adsorbed over a range of pressures under isothermal conditions. Various constant-parameter models, such as Langmuir and Brunauer-Emmett-Teller (BET) theories are used to provide information on adsorbate and adsorbent properties from the isotherm data. These models typically do not provide accurate interpretations across the full range of pressures and temperatures. The Langmuir adsorption isotherm is a simple approximation for modelling equilibrium adsorption data and has been effective in estimating surface areas and catalytic rate laws, particularly for high surface area solids. The Langmuir isotherm assumes the systematic filling of identical adsorption sites to a monolayer coverage. The BET model is based on the Langmuir isotherm and allows for the formation of multiple layers. These additional layers do not interact with the first layer and the energetics are equal to the adsorbate as a bulk liquid. This BET method is widely used to measure the specific surface area of materials. Both Langmuir and BET models assume that the affinity of the gas for all adsorption sites are identical and so the calculated adsorbent uptake at the monolayer and equilibrium constant are independent of coverage and pressure. Accurate representations of adsorption data have been achieved by extending the Langmuir and BET models to include pressure-varying uptake capacities and equilibrium constants. These parameters are determined using a novel regression technique called flexible least squares for time-varying linear regression. For isothermal adsorption the adsorption parameters are assumed to vary slowly and smoothly with increasing pressure. The flexible least squares for pressure-varying linear regression (FLS-PVLR) approach assumes two distinct types of discrepancy terms, dynamic and measurement for all parameters in the linear equation used to simulate the data. Dynamic terms account for pressure variation in successive parameter vectors, and measurement terms account for differences between observed and theoretically predicted outcomes via linear regression. The resultant pressure-varying parameters are optimized by minimizing both dynamic and measurement residual squared errors. Validation of this methodology has been achieved by simulating adsorption data for n-butane and isobutane on activated carbon at 298 K, 323 K and 348 K and for nitrogen on mesoporous alumina at 77 K with pressure-varying Langmuir and BET adsorption parameters (equilibrium constants and uptake capacities). This modeling provides information on the adsorbent (accessible surface area and micropore volume), adsorbate (molecular areas and volumes) and thermodynamic (Gibbs free energies) variations of the adsorption sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Langmuir%20adsorption%20isotherm" title="Langmuir adsorption isotherm">Langmuir adsorption isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=BET%20adsorption%20isotherm" title=" BET adsorption isotherm"> BET adsorption isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure-varying%20adsorption%20parameters" title=" pressure-varying adsorption parameters"> pressure-varying adsorption parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbate%20and%20adsorbent%20properties%20and%20energetics" title=" adsorbate and adsorbent properties and energetics"> adsorbate and adsorbent properties and energetics</a> </p> <a href="https://publications.waset.org/abstracts/69945/calculation-of-pressure-varying-langmuir-and-brunauer-emmett-teller-isotherm-adsorption-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1001</span> Banana Peels as an Eco-Sorbent for Manganese Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mahmoud">M. S. Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to evaluate the manganese removal from aqueous solution using Banana peels activated carbon (BPAC). Batch experiments have been carried out to determine the influence of parameters such as pH, biosorbent dose, initial metal ion concentrations and contact times on the biosorption process. From these investigations, a significant increase in percentage removal of manganese 97.4 % is observed at pH value 5.0, biosorbent dose 0.8 g, initial concentration 20 ppm, temperature 25 ± 2 °C, stirring rate 200 rpm and contact time 2 h. The equilibrium concentration and the adsorption capacity at equilibrium of the experimental results were fitted to the Langmuir and Freundlich isotherm models; the Langmuir isotherm was found to well represent the measured adsorption data implying BPAC had heterogeneous surface. A raw groundwater samples were collected from Baharmos groundwater treatment plant network at Embaba and Manshiet Elkanater City/District-Giza, Egypt, for treatment at the best conditions that reached at first phase by BPAC. The treatment with BPAC could reduce iron and manganese value of raw groundwater by 91.4 % and 97.1 %, respectively and the effect of the treatment process on the microbiological properties of groundwater sample showed decrease of total bacterial count either at 22°C or at 37°C to 85.7 % and 82.4 %, respectively. Also, BPAC was characterized using SEM and FTIR spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=banana%20peels" title=" banana peels"> banana peels</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20models" title=" isothermal models"> isothermal models</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese" title=" manganese "> manganese </a> </p> <a href="https://publications.waset.org/abstracts/15641/banana-peels-as-an-eco-sorbent-for-manganese-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1000</span> Separation of Oryzanol from Rice Bran Oil Using Silica: Equilibrium of Batch Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Susanti">A. D. Susanti</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20Sediawan"> W. B. Sediawan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Wirawan"> S. K. Wirawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Budhijanto"> Budhijanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritmaleni"> Ritmaleni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice bran oil contains significant amounts of oryzanol, a natural antioxidant that considered has higher antioxidant activity than vitamin E (tocopherol). Oryzanol reviewed has several health properties and interested in pharmacy, nutrition, and cosmetics. For practical usage, isolation and purification would be necessary due to the low concentration of oryzanol in crude rice bran oil (0.9-2.9%). Batch chromatography has proved as a promising process for the oryzanol recovery, but productivity was still low and scale-up processes of industrial interest have not yet been described. In order to improve productivity of batch chromatography, a continuous chromatography design namely Simulated Moving Bed (SMB) concept have been proposed. The SMB concept has interested for continuous commercial scale separation of binary system (oryzanol and rice bran oil), and rice bran oil still obtained as side product. Design of SMB chromatography for oryzanol separation requires quantification of its equilibrium. In this study, equilibrium of oryzanol separation conducted in batch adsorption using silica as the adsorbent and n-hexane/acetone (9:1) as the eluent. Three isotherm models, namely the Henry, Langmuir, and Freundlich equations, have been applied and modified for the experimental data to establish appropriate correlation for each sample. It turned out that the model quantitatively describe the equilibrium experimental data and will directed for design of SMB chromatography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title=" equilibrium"> equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=oryzanol" title=" oryzanol"> oryzanol</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran%20oil" title=" rice bran oil"> rice bran oil</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20moving%20bed" title=" simulated moving bed"> simulated moving bed</a> </p> <a href="https://publications.waset.org/abstracts/30372/separation-of-oryzanol-from-rice-bran-oil-using-silica-equilibrium-of-batch-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">999</span> Equilibrium and Kinetic Studies of Lead Adsorption on Activated Carbon Derived from Mangrove Propagule Waste by Phosphoric Acid Activation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Widi%20Astuti">Widi Astuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizki%20Agus%20Hermawan"> Rizki Agus Hermawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hariono%20Mukti"> Hariono Mukti</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Retno%20Sugiyono"> Nurul Retno Sugiyono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The removal of lead ion (Pb<sup>2+</sup>) from aqueous solution by activated carbon with phosphoric acid activation employing mangrove propagule as precursor was investigated in a batch adsorption system. Batch studies were carried out to address various experimental parameters including pH and contact time. The Langmuir and Freundlich models were able to describe the adsorption equilibrium, while the pseudo first order and pseudo second order models were used to describe kinetic process of Pb<sup>2+</sup> adsorption. The results show that the adsorption data are seen in accordance with Langmuir isotherm model and pseudo-second order kinetic model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title=" equilibrium"> equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20propagule" title=" mangrove propagule"> mangrove propagule</a> </p> <a href="https://publications.waset.org/abstracts/82675/equilibrium-and-kinetic-studies-of-lead-adsorption-on-activated-carbon-derived-from-mangrove-propagule-waste-by-phosphoric-acid-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">998</span> Batch Kinetic, Isotherm and Thermodynamic Studies of Copper (II) Removal from Wastewater Using HDL as Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadjet%20Taoualit">Nadjet Taoualit</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoubida%20Chemat"> Zoubida Chemat</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel-Eddine%20Hadj-Boussaad"> Djamel-Eddine Hadj-Boussaad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims the removal of copper Cu (II) contained in wastewater by adsorption on a perfect synthesized mud. It is the materials Hydroxides Double Lamellar, HDL, prepared and synthesized by co-precipitation method at constant pH, which requires a simple titration assembly, with an inexpensive and available material in the laboratory, and also allows us better control of the composition of the reaction medium, and gives well crystallized products. A characterization of the adsorbent proved essential. Thus a range of physic-chemical analysis was performed including: FTIR spectroscopy, X-ray diffraction… The adsorption of copper ions was investigated in dispersed medium (batch). A systematic study of various parameters (amount of support, contact time, initial copper concentration, temperature, pH…) was performed. Adsorption kinetic data were tested using pseudo-first order, pseudo-second order, Bangham's equation and intra-particle diffusion models. The equilibrium data were analyzed using Langmuir, Freundlich, Tempkin and other isotherm models at different doses of HDL. The thermodynamics parameters were evaluated at different temperatures. The results have established good potentiality for the HDL to be used as a sorbent for the removal of Copper from wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsoption" title="adsoption">adsoption</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=HDL" title=" HDL"> HDL</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a> </p> <a href="https://publications.waset.org/abstracts/36340/batch-kinetic-isotherm-and-thermodynamic-studies-of-copper-ii-removal-from-wastewater-using-hdl-as-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">997</span> Adsorption of Methyl Violet Dye from Aqueous Solution onto Modified Kapok Sawdust : Characteristics and Equilibrium Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Widi%20Astuti">Widi Astuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Triastuti%20Sulistyaningsih"> Triastuti Sulistyaningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Masni%20Maksiola"> Masni Maksiola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kapok sawdust, an inexpensive material, has been utilized as an adsorbent for the removal of methyl violet in aqueous solution. To increase the adsorption capacity, kapok sawdust was reacted with sodium hydroxide (NaOH) solution having various concentrations. Various physico-chemical parameters such as solution pH, contact time and initial dye concentration were studied. Langmuir, Freundlich and Redlich-Peterson isotherm model were used to analyze the equilibrium data. The research shows that the experimental data fitted well with the Redlich-Peterson model, with the value of constants are 41.001 for KR, 0.523 for aR and 0.799 for g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kapok%20sawdust" title="kapok sawdust">kapok sawdust</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20violet" title=" methyl violet"> methyl violet</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/31072/adsorption-of-methyl-violet-dye-from-aqueous-solution-onto-modified-kapok-sawdust-characteristics-and-equilibrium-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">996</span> Kinetics, Equilibrium and Thermodynamic Studies on Adsorption of Reactive Blue 29 from Aqueous Solution Using Activated Tamarind Kernel Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20D.%20Paul">E. D. Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Adams"> A. D. Adams</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Sunmonu"> O. Sunmonu</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20S.%20Ishiaku"> U. S. Ishiaku </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated tamarind kernel powder (ATKP) was prepared from tamarind fruit (Tamarindus indica), and utilized for the removal of Reactive Blue 29 (RB29) from its aqueous solution. The powder was activated using 4N nitric acid (HNO₃). The adsorbent was characterised using infrared spectroscopy, bulk density, ash content, pH, moisture content and dry matter content measurements. The effect of various parameters which include; temperature, pH, adsorbent dosage, ion concentration, and contact time were studied. Four different equilibrium isotherm models were tested on the experimental data, but the Temkin isotherm model was best-fitted into the experimental data. The pseudo-first order and pseudo-second-order kinetic models were also fitted into the graphs, but pseudo-second order was best fitted to the experimental data. The thermodynamic parameters showed that the adsorption of Reactive Blue 29 onto activated tamarind kernel powder is a physical process, feasible and spontaneous, exothermic in nature and there is decreased randomness at the solid/solution interphase during the adsorption process. Therefore, activated tamarind kernel powder has proven to be a very good adsorbent for the removal of Reactive Blue 29 dyes from industrial waste water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tamarind%20kernel%20powder" title="tamarind kernel powder">tamarind kernel powder</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20blue%2029" title=" reactive blue 29"> reactive blue 29</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherms" title=" isotherms"> isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/75190/kinetics-equilibrium-and-thermodynamic-studies-on-adsorption-of-reactive-blue-29-from-aqueous-solution-using-activated-tamarind-kernel-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">995</span> Adsorptive Performance of Surface Modified Montmorillonite in Vanadium Removal from Real Mine Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Opeyemi%20Atiba-Oyewo">Opeyemi Atiba-Oyewo</a>, <a href="https://publications.waset.org/abstracts/search?q=Taile%20Y.%20Leswfi"> Taile Y. Leswfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maurice%20S.%20Onyango"> Maurice S. Onyango</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Wolkersdorfer"> Christian Wolkersdorfer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the preparation of surface modified montmorillonite using hexadecyltrimethylammonium bromide (HDTMA-Br) for the removal of vanadium from mine water. The adsorbent before and after adsorption was characterised by Fourier transform infra-red (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the amount of vanadium adsorbed was determined by ICP-OES. The batch adsorption method was employed using vanadium concentrations in solution ranging from 50 to 320 mg/L and vanadium tailings seepage water from a South African mine. Also, solution pH, temperature and sorbent mass were varied. Results show that the adsorption capacity was affected by solution pH, temperature, sorbent mass and the initial concentration. Electrical conductivity of the mine water before and after adsorption was measured to estimate the total dissolved solids in the mine water. Equilibrium isotherm results revealed that vanadium sorption follows the Freundlich isotherm, indicating that the surface of the sorbent was heterogeneous. The pseudo-second order kinetic model gave the best fit to the kinetic experimental data compared to the first order and Elovich models. The results of this study may be used to predict the uptake efficiency of South Africa montmorillonite in view of its application for the removal of vanadium from mine water. However, the choice of this adsorbent for the uptake of vanadium or other contaminants will depend on the composition of the effluent to be treated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium" title=" vanadium"> vanadium</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20montmorillonite" title=" modified montmorillonite"> modified montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title=" equilibrium"> equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20water" title=" mine water"> mine water</a> </p> <a href="https://publications.waset.org/abstracts/38212/adsorptive-performance-of-surface-modified-montmorillonite-in-vanadium-removal-from-real-mine-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">994</span> Study of Adsorption Isotherm Models on Rare Earth Elements Biosorption for Separation Purposes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nice%20Vasconcelos%20Coimbra">Nice Vasconcelos Coimbra</a>, <a href="https://publications.waset.org/abstracts/search?q=F%C3%A1bio%20dos%20Santos%20Gon%C3%A7alves"> Fábio dos Santos Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Marisa%20Nascimento"> Marisa Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=Ellen%20Cristine%20Giese"> Ellen Cristine Giese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of chemical routes for the recovery and separation of rare earth elements (REE) is seen as a priority and strategic action by several countries demanding these elements. Among the possibilities of alternative routes, the biosorption process has been evaluated in our laboratory. In this theme, the present work attempts to assess and fit the solution equilibrium data in Langmuir, Freundlich and DKR isothermal models, based on the biosorption results of the lanthanum and samarium elements by <em>Bacillus subtilis</em> immobilized on calcium alginate gel. It was observed that the preference of adsorption of REE by the immobilized biomass followed the order Sm (III)&gt; La (III). It can be concluded that among the studied isotherms models, the Langmuir model presented better mathematical results than the Freundlich and DKR models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title="rare earth elements">rare earth elements</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20subtilis" title=" Bacillus subtilis"> Bacillus subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherm%20models" title=" adsorption isotherm models"> adsorption isotherm models</a> </p> <a href="https://publications.waset.org/abstracts/95469/study-of-adsorption-isotherm-models-on-rare-earth-elements-biosorption-for-separation-purposes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">993</span> Potassium Acetate - Coconut Shell Activated Carbon for Adsorption of Benzene and Toluene: Equilibrium and Kinetic Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jibril%20Mohammed">Jibril Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Dadum%20Hamza"> Usman Dadum Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulsalam%20Surajudeen"> Abdulsalam Surajudeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Baba%20Yahya%20Danjuma"> Baba Yahya Danjuma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considerable concerns have been raised over the presence of volatile organic compounds (VOCs) in water. In this study, coconut shell based activated carbon was produced through chemical activation with potassium acetate (PAAC) for adsorption of benzene and toluene. The porous carbons were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), proximate analysis, and ultimate analysis and nitrogen adsorption tests. Adsorption of benzene and toluene on the porous carbons were conducted at varying concentrations (50-250 mg/l). The high BET surface area of 622 m2/g and highly heteroporous adsorbent prepared gave good removal efficiencies of 79 and 82% for benzene and toluene respectively, with 32% yield. Equilibrium data were fitted to Langmuir, Freundlich and Temkin isotherms with all the models having R2 > 0.94. The equilibrium data were best represented by the Langmuir isotherm, with maximum adsorption capacity of 192 mg/g and 227 mg/g for benzene and toluene respectively. The Webber and Chakkravorti equilibrium parameter (RL) values are between 0 and 1 confirming the favourability of the Langmuir model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The PAAC produced can be used effectively to salvage environmental pollution problems posed by VOCs through a sustainable process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20and%20kinetics%20studies" title=" equilibrium and kinetics studies"> equilibrium and kinetics studies</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20acetate" title=" potassium acetate"> potassium acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment "> water treatment </a> </p> <a href="https://publications.waset.org/abstracts/47700/potassium-acetate-coconut-shell-activated-carbon-for-adsorption-of-benzene-and-toluene-equilibrium-and-kinetic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">992</span> Colour and Curcuminoids Removal from Turmeric Wastewater Using Activated Carbon Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nattawat%20Thongpraphai">Nattawat Thongpraphai</a>, <a href="https://publications.waset.org/abstracts/search?q=Anusorn%20Boonpoke"> Anusorn Boonpoke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to determine the removal of colour and curcuminoids from turmeric wastewater using granular activated carbon (GAC) adsorption. The adsorption isotherm and kinetic behavior of colour and curcuminoids was invested using batch and fixed bed columns tests. The results indicated that the removal efficiency of colour and curcuminoids were 80.13 and 78.64%, respectively at 8 hr of equilibrium time. The adsorption isotherm of colour and curcuminoids were well fitted with the Freundlich adsorption model. The maximum adsorption capacity of colour and curcuminoids were 130 Pt-Co/g and 17 mg/g, respectively. The continuous experiment data showed that the exhaustion concentration of colour and curcuminoids occurred at 39 hr of operation time. The adsorption characteristic of colour and curcuminoids from turmeric wastewater by GAC can be described by the Thomas model. The maximum adsorption capacity obtained from kinetic approach were 39954 Pt-Co/g and 0.0516 mg/kg for colour and curcuminoids, respectively. Moreover, the decrease of colour and curcuminoids concentration during the service time showed a similar trend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=turmeric" title=" turmeric"> turmeric</a>, <a href="https://publications.waset.org/abstracts/search?q=colour" title=" colour"> colour</a>, <a href="https://publications.waset.org/abstracts/search?q=curcuminoids" title=" curcuminoids"> curcuminoids</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a> </p> <a href="https://publications.waset.org/abstracts/26353/colour-and-curcuminoids-removal-from-turmeric-wastewater-using-activated-carbon-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">991</span> The Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Affected by Thermal Radiation Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Zakaraia%20Abdel%20Wahid">Taha Zakaraia Abdel Wahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behavior of the unsteady non-equilibrium distribution function for a dilute gas under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the dilute gas is determined for the first time. The non-equilibrium thermodynamic properties of the system (gas+the heated plate) are investigated. The results are applied to the Argon gas, for various values of radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior. The results are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dilute%20gas" title="dilute gas">dilute gas</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20field" title=" radiation field"> radiation field</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling%20wave%20method" title=" travelling wave method"> travelling wave method</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20BGK%20model" title=" unsteady BGK model"> unsteady BGK model</a>, <a href="https://publications.waset.org/abstracts/search?q=irreversible%20thermodynamics" title=" irreversible thermodynamics"> irreversible thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20non-equilibrium%20distribution%20functions" title=" unsteady non-equilibrium distribution functions"> unsteady non-equilibrium distribution functions</a> </p> <a href="https://publications.waset.org/abstracts/10132/the-unsteady-non-equilibrium-distribution-function-and-exact-equilibrium-time-for-a-dilute-gas-affected-by-thermal-radiation-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">990</span> The Use of Thermally Modified Diatomite to Remove Lead Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Limo%20Rutto">Hilary Limo Rutto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To better understand the application of diatomite as an adsorbent for the removal of Pb2+ from heavy metal-contaminated water, in this paper, diatomite was used to adsorb Pb2+ from aqueous solution under various conditions. The intrinsic exchange properties were further improved by heating the raw diatomite with fluxing agent at different temperatures and modification with manganese oxides. It is evident that the mass of the adsorbed Pb2+ generally increases after thermal treatment and modification with manganese oxides. The adsorption characteristics of lead on diatomite were studied at pH range of 2.5–12. The favourable pH range was found to be 7.5-8.5. The thermodynamic parameters (i.e.,∆H° ∆G° ∆S°) were evaluated from the temperature dependent adsorption isotherms. The results indicated that the adsorption process of Pb2+ on diatomite was spontaneous, endothermic and physical in nature. The equilibrium data have been analyzed using Langmuir and freundlich isotherm. The Langmuir isotherm was demonstrated to provide the best correlation for the adsorption of lead onto diatomite. The kinetics was studied using Pseudo- first and second-order model on the adsorption of lead onto diatomite. The results give best fit in second-order studies and it can be concluded that the adsorption of lead onto diatomite is second order reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermally%20modified" title="thermally modified">thermally modified</a>, <a href="https://publications.waset.org/abstracts/search?q=diatomite" title=" diatomite"> diatomite</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a> </p> <a href="https://publications.waset.org/abstracts/42331/the-use-of-thermally-modified-diatomite-to-remove-lead-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">989</span> Bioremoval of Malachite Green Dye from Aqueous Solution Using Marine Algae: Isotherm, Kinetic and Mechanistic Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jerold">M. Jerold</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sivasubramanian"> V. Sivasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports the removal of Malachite Green (MG) from simulated wastewater by using marine macro algae Ulva lactuca. Batch biosorption experiments were carried out to determine the biosorption capacity. The biosorption capacity was found to be maximum at pH 10. The effect of various other operation parameters such as biosorbent dosage, initial dye concentration, contact time and agitation was also investigated. The equilibrium attained at 120 min with 0.1 g/L of biosorbent. The isotherm experimental data fitted well with Langmuir Model with R² value of 0.994. The maximum Langmuir biosorption capacity was found to be 76.92 mg/g. Further, Langmuir separation factor RL value was found to be 0.004. Therefore, the adsorption is favorable. The biosorption kinetics of MG was found to follow pseudo second-order kinetic model. The mechanistic study revealed that the biosorption of malachite onto Ulva lactuca was controlled by film diffusion. The solute transfer in a solid-liquid adsorption process is characterized by the film diffusion and/or particle diffusion. Thermodynamic study shows ΔG° is negative indicates the feasibility and spontaneous nature for the biosorption of malachite green. The biosorbent was characterized using Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and elemental analysis (CHNS: Carbon, Hydrogen, Nitrogen, Sulphur). This study showed that Ulva lactuca can be used as promising biosorbent for the removal of MG from wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulva%20lactuca" title=" Ulva lactuca"> Ulva lactuca</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite%20green" title=" malachite green"> malachite green</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics "> kinetics </a> </p> <a href="https://publications.waset.org/abstracts/114326/bioremoval-of-malachite-green-dye-from-aqueous-solution-using-marine-algae-isotherm-kinetic-and-mechanistic-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">988</span> Development of Method for Recovery of Nickel from Aqueous Solution Using 2-Hydroxy-5-Nonyl- Acetophenone Oxime Impregnated on Activated Charcoal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Adebayo">A. O. Adebayo</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Idowu"> G. A. Idowu</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Odegbemi"> F. Odegbemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigations on the recovery of nickel from aqueous solution using 2-hydroxy-5-nonyl- acetophenone oxime (LIX-84I) impregnated on activated charcoal was carried out. The LIX-84I was impregnated onto the pores of dried activated charcoal by dry method and optimum conditions for different equilibrium parameters (pH, adsorbent dosage, extractant concentration, agitation time and temperature) were determined using a simulated solution of nickel. The kinetics and adsorption isotherm studies were also evaluated. It was observed that the efficiency of recovery with LIX-84I impregnated on charcoal was dependent on the pH of the aqueous solution as there was little or no recovery at pH below 4. However, as the pH was raised, percentage recovery increases and peaked at pH 5.0. The recovery was found to increase with temperature up to 60ºC. Also it was observed that nickel adsorbed onto the loaded charcoal best at a lower concentration (0.1M) of the extractant when compared with higher concentrations. Similarly, a moderately low dosage (1 g) of the adsorbent showed better recovery than larger dosages. These optimum conditions were used to recover nickel from the leachate of Ni-MH batteries dissolved with sulphuric acid, and a 99.6% recovery was attained. Adsorption isotherm studies showed that the equilibrium data fitted best to Temkin model, with a negative value of constant, b (-1.017 J/mol) and a high correlation coefficient, R² of 0.9913. Kinetic studies showed that the adsorption process followed a pseudo-second order model. Thermodynamic parameter values (∆G⁰, ∆H⁰, and ∆S⁰) showed that the adsorption was endothermic and spontaneous. The impregnated charcoal appreciably recovered nickel using a relatively smaller volume of extractant than what is required in solvent extraction. Desorption studies showed that the loaded charcoal is reusable for three times, and so might be economical for nickel recovery from waste battery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charcoal" title="charcoal">charcoal</a>, <a href="https://publications.waset.org/abstracts/search?q=impregnated" title=" impregnated"> impregnated</a>, <a href="https://publications.waset.org/abstracts/search?q=LIX-84I" title=" LIX-84I"> LIX-84I</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a> </p> <a href="https://publications.waset.org/abstracts/111271/development-of-method-for-recovery-of-nickel-from-aqueous-solution-using-2-hydroxy-5-nonyl-acetophenone-oxime-impregnated-on-activated-charcoal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">987</span> Adsorption Isotherm, Kinetic and Mechanism Studies of Some Substituted Phenols from Aqueous Solution by Jujuba Seeds Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Benturki">O. Benturki</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benturki"> A. Benturki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon was prepared from Jujube seeds by chemical activation with potassium hydroxide (KOH), followed by pyrolysis at 800°C. Batch studies were conducted for kinetic, thermodynamic and equilibrium studies on the adsorption of phenol (P) and 2-4 dichlorophenol (2-4 DCP) from aqueous solution, than the adsorption capacities followed the order of 2-4 dichlorophenol > phenol. The operating variables studied were initial phenols concentration, contact time, temperature and solution pH. Results show that the pH value of 7 is favorable for the adsorption of phenols. The sorption data have been analyzed using Langmuir and Freundlich isotherms. The isotherm data followed Langmuir Model. The adsorption processes conformed to the pseudo-second-order rate kinetics. Thermodynamic parameters such as enthalpy, entropy and Gibb’s free energy changes were also calculated and it was found that the sorption of phenols by Jujuba seeds activated carbon was a spontaneous process The maximum adsorption efficiency of phenol and 2-4 dichlorophenol was 142.85 mg.g−1 and 250 mg.g−1, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherms" title=" isotherms"> isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds" title=" Jujuba seeds"> Jujuba seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=phenols" title=" phenols"> phenols</a>, <a href="https://publications.waset.org/abstracts/search?q=langmuir" title=" langmuir "> langmuir </a> </p> <a href="https://publications.waset.org/abstracts/17568/adsorption-isotherm-kinetic-and-mechanism-studies-of-some-substituted-phenols-from-aqueous-solution-by-jujuba-seeds-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">986</span> MHD Equilibrium Study in Alborz Tokamak</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryamosadat%20Ghasemi">Maryamosadat Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Amrollahi"> Reza Amrollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be able to support this plasma equilibrium geometry. In this work the prepared numerical code based on radial basis functions are presented and used to solve the Grad–Shafranov (GS) equation for the axisymmetric equilibrium of tokamak plasma. The radial basis functions (RBFs) which is a kind of numerical meshfree method (MFM) for solving partial differential equations (PDEs) has appeared in the last decade and is developing significantly in the last few years. This technique is applied in this study to obtain the equilibrium configuration for Alborz Tokamak. The behavior of numerical solution convergences show the validation of this calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title="equilibrium">equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=grad%E2%80%93shafranov" title=" grad–shafranov"> grad–shafranov</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20functions" title=" radial basis functions"> radial basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Alborz%20Tokamak" title=" Alborz Tokamak"> Alborz Tokamak</a> </p> <a href="https://publications.waset.org/abstracts/30952/mhd-equilibrium-study-in-alborz-tokamak" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> Arsenic(III) Removal from Aqueous Solutions by Adsorption onto Fly Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olushola%20Ayanda">Olushola Ayanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Simphiwe%20Nelana"> Simphiwe Nelana</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliazer%20Naidoo"> Eliazer Naidoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the kinetics, equilibrium and thermodynamics of the adsorption of As(III) ions from aqueous solution onto fly ash (FA) was investigated in batch adsorption system. Prior to the adsorption studies, the FA was characterized by means of x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area determination. The effect of contact time, initial As(III) concentration, FA dosage, stirring speed, solution pH and temperature was examined on the adsorption rate. Experimental results showed a very good compliance with the pseudo-second-order equation, while the equilibrium study showed that the sorption of As(III) ions onto FA fitted the Langmuir and Freundlich isotherms. The adsorption process is endothermic and spontaneous, moreover, the maximum percentage removal of As(III) achieved with approx. 2.5 g FA mixed with 25 mL of 100 mg/L As(III) solution was 65.4 % at pH 10, 60 min contact time, temperature of 353 K and a stirring speed of 120 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/75668/arseniciii-removal-from-aqueous-solutions-by-adsorption-onto-fly-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm&amp;page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm&amp;page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10