CINXE.COM
Search results for: Berk Nimetoglu
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Berk Nimetoglu</title> <meta name="description" content="Search results for: Berk Nimetoglu"> <meta name="keywords" content="Berk Nimetoglu"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Berk Nimetoglu" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Berk Nimetoglu"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Berk Nimetoglu</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Change of Flavor Characteristics of Flavor Oil Made Using Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito) According to Extraction Temperature and Extraction Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyeong-Suk%20Jo">Gyeong-Suk Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo-Hyun%20Ji"> Soo-Hyun Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=You-Seok%20Lee"> You-Seok Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Hwa%20Kang"> Jeong-Hwa Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To develop an flavor oil using Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito), infiltration extraction method was used to add dried mushroom flavor of Sarcodon aspratus to base olive oil. Edible base oil used during infiltration extraction was pressed olive oil, and infiltration extraction was done while varying extraction temperature to 20, 30, 40 and 50(℃) extraction time to 24 hours, 48 hours and 72 hours. Amount of Sarcodon aspratus added to base oil was 20% compared to 100% of base oil. Production yield of Sarcodon aspratus flavor oil decreased with increasing extraction frequency. Aroma intensity was 2195~2447 (A.U./1㎖), and it increased with increasing extraction temperature and extraction time. Chromaticity of Sarcodon aspratus flavor oil was bright pale yellow with pH of 4.5, sugar content of 71~72 (°Brix), and highest average turbidity of 16.74 (Haze %) shown by the 40℃ group. In the aromatic evaluation, increasing extraction temperature and extraction time resulted in increase of cheese aroma, savory sweet aroma and beef jerky aroma, as well as spicy taste comprised of slight bitter taste, savory taste and slight acrid taste, to make aromatic oil with unique flavor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavor%20Characteristics" title="Flavor Characteristics">Flavor Characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavor%20Oil" title=" Flavor Oil"> Flavor Oil</a>, <a href="https://publications.waset.org/abstracts/search?q=Infiltration%20extraction%20method" title=" Infiltration extraction method"> Infiltration extraction method</a>, <a href="https://publications.waset.org/abstracts/search?q=mushroom" title=" mushroom"> mushroom</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarcodon%20aspratus%20%28Sarcodon%20aspratus%20Berk.%20S.%20Ito%29" title=" Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito)"> Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito)</a> </p> <a href="https://publications.waset.org/abstracts/76522/change-of-flavor-characteristics-of-flavor-oil-made-using-sarcodon-aspratus-sarcodon-aspratus-berk-s-ito-according-to-extraction-temperature-and-extraction-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Improving Diagnostic Accuracy of Ankle Syndesmosis Injuries: A Comparison of Traditional Radiographic Measurements and Computed Tomography-Based Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasar%20Samet%20Gokceoglu">Yasar Samet Gokceoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Nur%20Incesu"> Ayse Nur Incesu</a>, <a href="https://publications.waset.org/abstracts/search?q=Furkan%20Okatar"> Furkan Okatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Berk%20Nimetoglu"> Berk Nimetoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Bayram"> Serkan Bayram</a>, <a href="https://publications.waset.org/abstracts/search?q=Turgut%20Akgul"> Turgut Akgul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ankle syndesmosis injuries pose a significant challenge in orthopedic practice due to their potential for prolonged recovery and chronic ankle dysfunction. Accurate diagnosis and management of these injuries are essential for achieving optimal patient outcomes. The use of radiological methods, such as X-ray, computed tomography (CT), and magnetic resonance imaging (MRI), plays a vital role in the accurate diagnosis of syndesmosis injuries in the context of ankle fractures. Treatment options for ankle syndesmosis injuries vary, with surgical interventions such as screw fixation and suture-button implantation being commonly employed. The choice of treatment is influenced by the severity of the injury and the presence of associated fractures. Additionally, the mechanism of injury, such as pure syndesmosis injury or specific fracture types, can impact the stability and management of syndesmosis injuries. Ankle fractures with syndesmosis injury present a complex clinical scenario, requiring accurate diagnosis, appropriate reduction, and tailored management strategies. The interplay between the mechanism of injury, associated fractures, and treatment modalities significantly influences the outcomes of these challenging injuries. The long-term outcomes and patient satisfaction following ankle fractures with syndesmosis injury are crucial considerations in the field of orthopedics. Patient-reported outcome measures, such as the Foot and Ankle Outcome Score (FAOS), provide essential information about functional recovery and quality of life after these injuries. When diagnosing syndesmosis injuries, standard measurements, such as the medial clear space, tibiofibular overlap, tibiofibular clear space, anterior tibiofibular ratio (ATFR), and the anterior-posterior tibiofibular ratio (APTF), are assessed through radiographs and computed tomography (CT) scans. These parameters are critical in evaluating the presence and severity of syndesmosis injuries, enabling clinicians to choose the most appropriate treatment approach. Despite advancements in diagnostic imaging, challenges remain in accurately diagnosing and treating ankle syndesmosis injuries. Traditional diagnostic parameters, while beneficial, may not capture the full extent of the injury or provide sufficient information to guide therapeutic decisions. This gap highlights the need for exploring additional diagnostic parameters that could enhance the accuracy of syndesmosis injury diagnoses and inform treatment strategies more effectively. The primary goal of this research is to evaluate the usefulness of traditional radiographic measurements in comparison to new CT-based measurements for diagnosing ankle syndesmosis injuries. Specifically, this study aims to assess the accuracy of conventional parameters, including medial clear space, tibiofibular overlap, tibiofibular clear space, ATFR, and APTF, in contrast with the recently proposed CT-based measurements such as the delta and gamma angles. Moreover, the study intends to explore the relationship between these diagnostic parameters and functional outcomes, as measured by the Foot and Ankle Outcome Score (FAOS). Establishing a correlation between specific diagnostic measurements and FAOS scores will enable us to identify the most reliable predictors of functional recovery following syndesmosis injuries. This comparative analysis will provide valuable insights into the accuracy and dependability of CT-based measurements in diagnosing ankle syndesmosis injuries and their potential impact on predicting patient outcomes. The results of this study could greatly influence clinical practices by refining diagnostic criteria and optimizing treatment planning for patients with ankle syndesmosis injuries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20syndesmosis%20injury" title="ankle syndesmosis injury">ankle syndesmosis injury</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20accuracy" title=" diagnostic accuracy"> diagnostic accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=radiographic%20measurements" title=" radiographic measurements"> radiographic measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=Tibiofibular%20syndesmosis%20distance" title=" Tibiofibular syndesmosis distance"> Tibiofibular syndesmosis distance</a> </p> <a href="https://publications.waset.org/abstracts/183462/improving-diagnostic-accuracy-of-ankle-syndesmosis-injuries-a-comparison-of-traditional-radiographic-measurements-and-computed-tomography-based-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> The Measurement of the Multi-Period Efficiency of the Turkish Health Care Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erhan%20Berk">Erhan Berk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to examine the efficiency and productivity of the health care sector in Turkey based on four years of health care cross-sectional data. Efficiency measures are calculated by a nonparametric approach known as Data Envelopment Analysis (DEA). Productivity is measured by the Malmquist index. The research shows how DEA-based Malmquist productivity index can be operated to appraise the technology and productivity changes resulted in the Turkish hospitals which are located all across the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title="data envelopment analysis">data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20care" title=" health care"> health care</a>, <a href="https://publications.waset.org/abstracts/search?q=Malmquist%20Index" title=" Malmquist Index"> Malmquist Index</a> </p> <a href="https://publications.waset.org/abstracts/40739/the-measurement-of-the-multi-period-efficiency-of-the-turkish-health-care-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Comparison of the Amount of Microplastics in Plant- and Animal-Based Milks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meli%CC%87sa%20A%C5%9Fci">Meli̇sa Aşci</a>, <a href="https://publications.waset.org/abstracts/search?q=Berk%20Kili%C3%A7"> Berk Kiliç</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Ulusoy"> Emine Ulusoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ingestion of microplastics in humans has been increasing rapidly, as such hazardous materials are abundant in multiple food products, specifically milks. With increasing consumption rates, humans have been ingesting microplastics on a daily basis, making them prone to be intoxicated and even cause the disruption of intracellular pathways and liver cell disruption, and eventually tissue and organ damage. In this experiment, different milk types(animal-based and plant-based) were tested for microplastics. Results showed that animal-based milks contained a higher concentration of microplastics compared to plant-based milks. Research has shown that in addition to causing health issues in humans, microplastics can also affect livestock animals and plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microplastics" title="microplastics">microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=plant-based%20milks" title=" plant-based milks"> plant-based milks</a>, <a href="https://publications.waset.org/abstracts/search?q=animal-based%20milks" title=" animal-based milks"> animal-based milks</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20nutrition" title=" preventive nutrition"> preventive nutrition</a> </p> <a href="https://publications.waset.org/abstracts/189310/comparison-of-the-amount-of-microplastics-in-plant-and-animal-based-milks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Hydrocolloid Dressings for Wound Healing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berk%20Kili%C3%A7">Berk Kiliç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the medical and surgical fields, wound care is a critical and expansive industry. Hydrocolloid wound dressings have been introduced and are widely used due to their effectiveness in promoting healing, managing wound fluids, and protecting against infection. Hydrocolloid wound dressings have been introduced as effective solutions, adherence to wound surfaces and infection prevention. it fabricated different hydrocolloid wound dressings with myrrh resin, garlic and sorrel inorder to enhance healing properties. The physical and mechanical properties were evaluated to confirm which one is most suitable as a hydrocolloid wound dressing. it observations show that mirderm solution showed superior wound healing and fluid control properties compared to other prepared solutions. This indicates that “mirderm” could be a viable alternative to standard gauze and some commercial hydrocolloid dressings that do not contain myrrh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wound" title="wound">wound</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocolloid" title=" hydrocolloid"> hydrocolloid</a>, <a href="https://publications.waset.org/abstracts/search?q=myrrh" title=" myrrh"> myrrh</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=sorrel" title=" sorrel"> sorrel</a> </p> <a href="https://publications.waset.org/abstracts/189282/hydrocolloid-dressings-for-wound-healing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Pesticide Risk: A Study on the Effectiveness of Organic/Biopesticides in Sustainable Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berk%20K%C4%B1l%C4%B1%C3%A7">Berk Kılıç</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Ayd%C4%B1n"> Ömer Aydın</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerem%20Mestani"> Kerem Mestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Defne%20Uzun"> Defne Uzun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In agriculture and farming, pesticides are frequently used to kill off or fend off any pests (bugs, bacteria, fungi, etc.). However, traditional pesticides have proven to have harmful effects on both the environment and the human body, such as hazards in the endocrine, neurodevelopmental, and reproductive systems. This experiment aims to test the effectiveness of organic/bio-pesticides (environmentally friendly pesticides) compared to traditional pesticides. Black pepper and garlic will be used as biopesticides in this experiment. The results support that organic farming applying organic pesticides operates through non-toxic mechanisms, offering minimal threats to human well-being and the environment. Consequently, consuming organic produce can significantly diminish the dangers associated with pesticide intake. In this study, method is introduced to reduce pesticide-related risks by promoting organic farming techniques within organic/bio-pesticide usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide" title="pesticide">pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20pepper" title=" black pepper"> black pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-pesticide" title=" bio-pesticide"> bio-pesticide</a> </p> <a href="https://publications.waset.org/abstracts/179368/pesticide-risk-a-study-on-the-effectiveness-of-organicbiopesticides-in-sustainable-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Removal of Heavy Metals from Water in the Presence of Organic Wastes: Fruit Peels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zge%20Y%C4%B1lmaz%20Gel">Özge Yılmaz Gel</a>, <a href="https://publications.waset.org/abstracts/search?q=Berk%20K%C4%B1l%C4%B1%C3%A7"> Berk Kılıç</a>, <a href="https://publications.waset.org/abstracts/search?q=Derin%20Dalg%C4%B1%C3%A7"> Derin Dalgıç</a>, <a href="https://publications.waset.org/abstracts/search?q=Ela%20Mia%20Sevilla%20Levi"> Ela Mia Sevilla Levi</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Ayd%C4%B1n"> Ömer Aydın</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this experiment, our goal was to remove heavy metals from water. Most recent studies have used removing toxic heavy elements: Cu⁺², Cr⁺³ and Fe⁺³ ions from aqueous solutions has been previously investigated with different kinds of plants like kiwi and tangerines. However, in this study, three different fruit peels were used. We tested banana, peach, and potato peels to remove heavy metal ions from their solution. The first step of the experiment was to wash the peels with distilled water and then dry the peels in an oven for 48 hrs at 80°C. Once the peels were washed and dried, 0.2 grams were weighed and added into 200 mL of %0.1 percent heavy metal solutions by mass. The mixing process was done via a magnetic stirrer. Each sample was taken in 15-minute intervals, and absorbance changes of the solutions were detected using a UV-Vis Spectrophotometer. Among the used waste products, banana peel was the most efficient one. Moreover, the amount of fruit peel, pH values of the initial heavy metal solution, and initial concentration of heavy metal solutions were investigated to determine the effect of fruit peels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbance" title="absorbance">absorbance</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20of%20heavy%20metals" title=" removal of heavy metals"> removal of heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20peels" title=" fruit peels"> fruit peels</a> </p> <a href="https://publications.waset.org/abstracts/160535/removal-of-heavy-metals-from-water-in-the-presence-of-organic-wastes-fruit-peels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Characteristics of Oak Mushroom Cultivar, Bambithyang Developed by Golden Seed Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeongseon%20Jang">Yeongseon Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhim%20Ryoo"> Rhim Ryoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Ae%20Park"> Young-Ae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang-Hyeon%20Ka"> Kang-Hyeon Ka</a>, <a href="https://publications.waset.org/abstracts/search?q=Donha%20Choi"> Donha Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Suk%20Lee"> Sung-Suk Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lentinula edodes (Berk.) Pegler, oak mushroom, is one of the most largely produced mushrooms in the world. To increase the competitiveness of Korean oak mushroom, golden seed project is ongoing. In this project, we develop new oak mushroom varieties to increase its productivity, quality, disease resistance, and so on. Through the project, new oak mushroom cultivar, Bambithyang was developed by mono-mono hybridization method. The optimum temperature for mycelial growth was at 25°C on potato dextrose agar (PDA) media. For the mass production test, it was cultivated using sawdust media with sawdust block type for 100 days. The temperature for primordia formation and fruit body production was broad (between 11°C and 20°C) which is good for spring and fall. Each flush period lasted for 6-7 days and the highest fruit body production was recorded in the first flush. The fruiting is sporadic. The pileus was deep brown. Its diameter was 69.2 mm and width was 17.8 mm. The stipe was ivory. It was 14.7 mm thick and 54.7 mm long. We would continue to develop new varieties while increasing the market share of domestic spawn with this variety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lentinula%20edodes" title="Lentinula edodes">Lentinula edodes</a>, <a href="https://publications.waset.org/abstracts/search?q=mono-mono%20hybridization" title=" mono-mono hybridization"> mono-mono hybridization</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20cultivar" title=" new cultivar"> new cultivar</a>, <a href="https://publications.waset.org/abstracts/search?q=oak%20mushroom" title=" oak mushroom"> oak mushroom</a> </p> <a href="https://publications.waset.org/abstracts/87136/characteristics-of-oak-mushroom-cultivar-bambithyang-developed-by-golden-seed-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Promise of Nunca Más after Cambiemos: Representations of the 2x1 Decision of the Supreme Court and Santiago Maldonado's Disappearance in the Newspaper La Nación</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uluhan%20Berk%20Ondul">Uluhan Berk Ondul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article aims to shed light on the new stage of transitional justice in Argentina through examining the representations of the 2x1 decision of the Supreme Court and Santiago Maldonado’s Disappearance in the newspaper, La Nación. The two events hold the key to understanding Argentina’s journey since return to democracy as they are about the same crimes of the dictatorship, namely, the forced disappearance of civilians and the subsequent impunity that follows. In the case of a convicted torturer, The Supreme Court of Argentina ruled on 3rd of May 2017 that the days spent in preventive detention after two years should be counted double for the overall sentence. This court decision was met with severe resistance from the members of the parliament as well as the human rights movement. The second item on the list still continues and divides the country into two camps: (1) those who think that the police force has committed another act of forced disappearance in the case of activist Santiago Maldonado and (2) the others who blame the peronistas (the party and supporters of the ex-president Cristina Fernandez de Kirchner) of using this subject as a means to score political points. As a newspaper known for its proximity to the current administration, La Nación offers an insight to the direction of the country and also demonstrates how the neoliberal mindset works. The results of the study show that the transitional justice process in Argentina is far from being complete as the Promise of Nunca Más is still not a shared value but a political statement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Argentina" title="Argentina">Argentina</a>, <a href="https://publications.waset.org/abstracts/search?q=Fallo%202x1" title=" Fallo 2x1"> Fallo 2x1</a>, <a href="https://publications.waset.org/abstracts/search?q=impunity" title=" impunity"> impunity</a>, <a href="https://publications.waset.org/abstracts/search?q=Santiago%20Maldonado" title=" Santiago Maldonado"> Santiago Maldonado</a>, <a href="https://publications.waset.org/abstracts/search?q=transitional%20justice" title=" transitional justice"> transitional justice</a> </p> <a href="https://publications.waset.org/abstracts/79846/the-promise-of-nunca-mas-after-cambiemos-representations-of-the-2x1-decision-of-the-supreme-court-and-santiago-maldonados-disappearance-in-the-newspaper-la-nacion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Investigation of the Ductility Improvement of Replaceable Hinge Member on Different Types of Precast Concrete Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Berk%20Bozan">Ali Berk Bozan</a>, <a href="https://publications.waset.org/abstracts/search?q=Re%C5%9Fat%20Atalay%20Oygu%C3%A7"> Reşat Atalay Oyguç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for precast reinforced concrete (RC) structures is growing, considering their certain benefits, including faster assembly, homogeneous materials, and high-quality labor. The structural integrity of precast reinforced concrete (RC) constructions is influenced by the effectiveness of the joints and connections. This paper contains an analytical study about four types of precast reinforced concrete frames, which vary according to the number of storeys and the number of bays with two different types of moment-resisting beam-to-column connection is investigated under cyclic displacement loading up to 5.6% drift rate by using ABAQUS software. The first connection type is the widely used moment-resisting connection that is defined as a wet connection in the Turkish Seismic Code (TBDY). The second connection type is known as Artificial Controllable Plastic Hinge. The goal of this connection is to defend reinforced concrete components from earthquake-related plastic deformations by keeping them in a specialized connecting section. It will be possible to repair the broken connections after the earthquake. The cyclic behavior of the four types of frames with the mechanical plastic hinge and wet connection was analytically investigated, and then comparisons and suggestions were made on period, ductility, and structural system behavior coefficient. The analytical study shows that the replaceable plastic hinge element provides a significant period increase. Especially in the case of two storeys and two bays, the change in the period was felt the most compared to other frames. The results for ductility show a significant change in the ductility of the frames with replaceable plastic hinges. For the structural system behavior coefficient, a recommendation between 3.90 and 4.52 values was made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precast%20structures" title="precast structures">precast structures</a>, <a href="https://publications.waset.org/abstracts/search?q=replaceable%20plastic%20hinge" title=" replaceable plastic hinge"> replaceable plastic hinge</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20to%20column%20connections" title=" beam to column connections"> beam to column connections</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a> </p> <a href="https://publications.waset.org/abstracts/188294/investigation-of-the-ductility-improvement-of-replaceable-hinge-member-on-different-types-of-precast-concrete-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Bulk Modification of Poly(Dimethylsiloxane) for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Aslihan%20Gokaltun">A. Aslihan Gokaltun</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20L.%20Yarmush"> Martin L. Yarmush</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Asatekin"> Ayse Asatekin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Berk%20Usta"> O. Berk Usta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade microfabrication processes including rapid prototyping techniques have advanced rapidly and achieved a fairly matured stage. These advances encouraged and enabled the use of microfluidic devices by a wider range of users with applications in biological separations, and cell and organoid cultures. Accordingly, a significant current challenge in the field is controlling biomolecular interactions at interfaces and the development of novel biomaterials to satisfy the unique needs of the biomedical applications. Poly(dimethylsiloxane) (PDMS) is by far the most preferred material in the fabrication of microfluidic devices. This can be attributed its favorable properties, including: (1) simple fabrication by replica molding, (2) good mechanical properties, (3) excellent optical transparency from 240 to 1100 nm, (4) biocompatibility and non-toxicity, and (5) high gas permeability. However, high hydrophobicity (water contact angle ~108°±7°) of PDMS often limits its applications where solutions containing biological samples are concerned. In our study, we created a simple, easy method for modifying the surface chemistry of PDMS microfluidic devices through the addition of surface-segregating additives during manufacture. In this method, a surface segregating copolymer is added to precursors for silicone and the desired device is manufactured following the usual methods. When the device surface is in contact with an aqueous solution, the copolymer self-organizes to expose its hydrophilic segments to the surface, making the surface of the silicone device more hydrophilic. This can lead to several improved performance criteria including lower fouling, lower non-specific adsorption, and better wettability. Specifically, this approach is expected to be useful for the manufacture of microfluidic devices. It is also likely to be useful for manufacturing silicone tubing and other materials, biomaterial applications, and surface coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=non-specific%20protein%20adsorption" title=" non-specific protein adsorption"> non-specific protein adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=PDMS" title=" PDMS"> PDMS</a>, <a href="https://publications.waset.org/abstracts/search?q=PEG" title=" PEG"> PEG</a>, <a href="https://publications.waset.org/abstracts/search?q=copolymer" title=" copolymer"> copolymer</a> </p> <a href="https://publications.waset.org/abstracts/71777/bulk-modification-of-polydimethylsiloxane-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> PLO-AIM: Potential-Based Lane Organization in Autonomous Intersection Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berk%20Ecer">Berk Ecer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Akcapinar%20Sezer"> Ebru Akcapinar Sezer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional management models of intersections, such as no-light intersections or signalized intersection, are not the most effective way of passing the intersections if the vehicles are intelligent. To this end, Dresner and Stone proposed a new intersection control model called Autonomous Intersection Management (AIM). In the AIM simulation, they were examining the problem from a multi-agent perspective, demonstrating that intelligent intersection control can be made more efficient than existing control mechanisms. In this study, autonomous intersection management has been investigated. We extended their works and added a potential-based lane organization layer. In order to distribute vehicles evenly to each lane, this layer triggers vehicles to analyze near lanes, and they change their lane if other lanes have an advantage. We can observe this behavior in real life, such as drivers, change their lane by considering their intuitions. Basic intuition on selecting the correct lane for traffic is selecting a less crowded lane in order to reduce delay. We model that behavior without any change in the AIM workflow. Experiment results show us that intersection performance is directly connected with the vehicle distribution in lanes of roads of intersections. We see the advantage of handling lane management with a potential approach in performance metrics such as average delay of intersection and average travel time. Therefore, lane management and intersection management are problems that need to be handled together. This study shows us that the lane through which vehicles enter the intersection is an effective parameter for intersection management. Our study draws attention to this parameter and suggested a solution for it. We observed that the regulation of AIM inputs, which are vehicles in lanes, was as effective as contributing to aim intersection management. PLO-AIM model outperforms AIM in evaluation metrics such as average delay of intersection and average travel time for reasonable traffic rates, which is in between 600 vehicle/hour per lane to 1300 vehicle/hour per lane. The proposed model reduced the average travel time reduced in between %0.2 - %17.3 and reduced the average delay of intersection in between %1.6 - %17.1 for 4-lane and 6-lane scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AIM%20project" title="AIM project">AIM project</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20intersection%20management" title=" autonomous intersection management"> autonomous intersection management</a>, <a href="https://publications.waset.org/abstracts/search?q=lane%20organization" title=" lane organization"> lane organization</a>, <a href="https://publications.waset.org/abstracts/search?q=potential-based%20approach" title=" potential-based approach"> potential-based approach</a> </p> <a href="https://publications.waset.org/abstracts/133634/plo-aim-potential-based-lane-organization-in-autonomous-intersection-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> A Facile One Step Modification of Poly(dimethylsiloxane) via Smart Polymers for Biomicrofluidics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Aslihan%20Gokaltun">A. Aslihan Gokaltun</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20L.%20Yarmush"> Martin L. Yarmush</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Asatekin"> Ayse Asatekin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Berk%20Usta"> O. Berk Usta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poly(dimethylsiloxane) (PDMS) is one of the most widely used materials in the fabrication of microfluidic devices. It is easily patterned and can replicate features down to nanometers. Its flexibility, gas permeability that allows oxygenation, and low cost also drive its wide adoption. However, a major drawback of PDMS is its hydrophobicity and fast hydrophobic recovery after surface hydrophilization. This results in significant non-specific adsorption of proteins as well as small hydrophobic molecules such as therapeutic drugs limiting the utility of PDMS in biomedical microfluidic circuitry. While silicon, glass, and thermoplastics have been used, they come with problems of their own such as rigidity, high cost, and special tooling needs, which limit their use to a smaller user base. Many strategies to alleviate these common problems with PDMS are lack of general practical applicability, or have limited shelf lives in terms of the modifications they achieve. This restricts large scale implementation and adoption by industrial and research communities. Accordingly, we aim to tailor biocompatible PDMS surfaces by developing a simple and one step bulk modification approach with novel smart materials to reduce non-specific molecular adsorption and to stabilize long-term cell analysis with PDMS substrates. Smart polymers that blended with PDMS during device manufacture, spontaneously segregate to surfaces when in contact with aqueous solutions and create a < 1 nm layer that reduces non-specific adsorption of organic and biomolecules. Our methods are fully compatible with existing PDMS device manufacture protocols without any additional processing steps. We have demonstrated that our modified PDMS microfluidic system is effective at blocking the adsorption of proteins while retaining the viability of primary rat hepatocytes and preserving the biocompatibility, oxygen permeability, and transparency of the material. We expect this work will enable the development of fouling-resistant biomedical materials from microfluidics to hospital surfaces and tubing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20culture" title="cell culture">cell culture</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=non-specific%20protein%20adsorption" title=" non-specific protein adsorption"> non-specific protein adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=PDMS" title=" PDMS"> PDMS</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20polymers" title=" smart polymers"> smart polymers</a> </p> <a href="https://publications.waset.org/abstracts/69953/a-facile-one-step-modification-of-polydimethylsiloxane-via-smart-polymers-for-biomicrofluidics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Parametric Study of a Washing Machine to Develop an Energy Efficient Program Regarding the Enhanced Washing Efficiency Index and Micro Organism Removal Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peli%CC%87n%20Yilmaz">Peli̇n Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi%CC%87zemnur%20Yildiz%20Uysal"> Gi̇zemnur Yildiz Uysal</a>, <a href="https://publications.waset.org/abstracts/search?q=Emi%CC%87ne%20Bi%CC%87rci%CC%87"> Emi̇ne Bi̇rci̇</a>, <a href="https://publications.waset.org/abstracts/search?q=Berk%20%C3%96zcan"> Berk Özcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Koca"> Burak Koca</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Tuzcuo%C4%9Flu"> Ehsan Tuzcuoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fati%CC%87h%20Kasap"> Fati̇h Kasap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of Energy Efficient Programs (EEP) is one of the most significant trends in the wet appliance industry of the recent years. Thanks to the EEP, the energy consumption of a washing machine as one of the most energy-consuming home appliances can shrink considerably, while its washing performance and the textile hygiene should remain almost unchanged. Here in, the goal of the present study is to achieve an optimum EEP algorithm providing excellent textile hygiene results as well as cleaning performance in a domestic washing machine. In this regard, steam-pretreated cold wash approach with a combination of innovative algorithm solution in a relatively short washing cycle duration was implemented. For the parametric study, steam exposure time, washing load, total water consumption, main-washing time, and spinning rpm as the significant parameters affecting the textile hygiene and cleaning performance were investigated within a Design of Experiment study using Minitab 2021 statistical program. For the textile hygiene studies, specific loads containing the contaminated cotton carriers with Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa bacteria were washed. Then, the microbial removal performance of the designed programs was expressed as log reduction calculated as a difference of microbial count per ml of the liquids in which the cotton carriers before and after washing. For the cleaning performance studies, tests were carried out with various types of detergents and EMPA Standard Stain Strip. According to the results, the optimum EEP program provided an excellent hygiene performance of more than 2 log reduction of microorganism and a perfect Washing Efficiency Index (Iw) of 1.035, which is greater than the value specified by EU ecodesign regulation 2019/2023. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=washing%20machine" title="washing machine">washing machine</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient%20programs" title=" energy efficient programs"> energy efficient programs</a>, <a href="https://publications.waset.org/abstracts/search?q=hygiene" title=" hygiene"> hygiene</a>, <a href="https://publications.waset.org/abstracts/search?q=washing%20efficiency%20index" title=" washing efficiency index"> washing efficiency index</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganism" title=" microorganism"> microorganism</a>, <a href="https://publications.waset.org/abstracts/search?q=escherichia%20coli" title=" escherichia coli"> escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=staphylococcus%20aureus" title=" staphylococcus aureus"> staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas%20aeruginosa" title=" pseudomonas aeruginosa"> pseudomonas aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=laundry" title=" laundry"> laundry</a> </p> <a href="https://publications.waset.org/abstracts/154362/parametric-study-of-a-washing-machine-to-develop-an-energy-efficient-program-regarding-the-enhanced-washing-efficiency-index-and-micro-organism-removal-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Bioincision of Gmelina Arborea Roxb. Heartwood with Inonotus Dryophilus (Berk.) Murr. for Improved Chemical Uptake and Penetration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20%20Adenaiya">A. O. Adenaiya</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Curling"> S. F. Curling</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Y.%20Ogunsanwo"> O. Y. Ogunsanwo</a>, <a href="https://publications.waset.org/abstracts/search?q=G%20.%20A.%20%20Ormondroyd"> G . A. Ormondroyd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Treatment of wood with chemicals in order to prolong its service life may prove difficult in some refractory wood species. This impermeability in wood is usually due to biochemical changes which occur during heartwood formation. Bioincision, which is a short-term, controlled microbial decomposition of wood, is one of the promising approaches capable of improving the amenability of refractory wood to chemical treatments. Gmelina Arborea, a mainstay timber species in Nigeria, has impermeable heartwood due to the excessive tyloses which occlude its vessels. Therefore, the chemical uptake and penetration in Gmelina arborea heartwood bioincised with Inonotus dryophilus fungus was investigated. Five mature Gmelina Arborea trees were harvested at the Departmental plantation in Ajibode, Ibadan, Nigeria and a bolt of 300 cm was obtained from the basal portion of each tree. The heartwood portion of the bolts was extracted and converted into dimensions 20 mm x 20 mm x 60 mm and subsequently conditioned (200C at 65% Relative Humidity). Twenty wood samples each were bioincised with the white-rot fungus Inonotus dryophilus (ID, 999) for 3, 5, 7 and 9 weeks using standard procedure, while a set of sterile control samples were prepared. Ten of each bioincised and control sample were pressure-treated with 5% tanalith preservative, while the other ten of each bioincised and control samples were pressure-treated with a liquid dye for easy traceability of the chemical in the wood, both using a full cell treatment process. The bioincised and control samples were evaluated for their Weight Loss before chemical treatment (WL, %), Preservative Absorption (PA, Kg/m3), Preservative Retention (PR, Kg/m3), Axial Absorption (AA, Kg/m3), Lateral Absorption (LA, Kg/m3), Axial Penetration Depth (APD, mm), Radial Penetration Depth (RPD, mm), and Tangential Penetration Depth (TPD, mm). The data obtained were analyzed using ANOVA at α0.05. Results show that the weight loss was least in the samples bioincised for three weeks (0.09%) and highest after 7 weeks of bioincision (0.48%). The samples bioincised for 3 weeks had the least PA (106.72 Kg/m3) and PR (5.87 Kg/m3), while the highest PA (134.9 Kg/m3) and PR were observed after 7 weeks of bioincision (7.42 Kg/m3). The AA ranged from 27.28 Kg/m3 (3 weeks) to 67.05 Kg/m3 (5 weeks), while the LA was least after 5 weeks of incubation (28.1 Kg/m3) and highest after 9 weeks (71.74 Kg/m3). Significantly lower APD was observed in control samples (6.97 mm) than in the samples bioincised after 9weeks (19.22 mm). The RPD increased from 0.08 mm (control samples) to 3.48 mm (5 weeks), while TPD ranged from 0.38 mm (control samples) to 0.63 mm (9 weeks), implying that liquid flow in the wood was predominantly through the axial pathway. Bioincising G. arborea heartwood with I. dryophilus fungus for 9 weeks is capable of enhancing chemical uptake and deeper penetration of chemicals in the wood through the degradation of the occluding vessel tyloses, which is accompanied by a minimal degradation of the polymeric wood constituents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bioincision" title="Bioincision">Bioincision</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20uptake" title=" chemical uptake"> chemical uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20depth" title=" penetration depth"> penetration depth</a>, <a href="https://publications.waset.org/abstracts/search?q=refractory%20wood" title=" refractory wood"> refractory wood</a>, <a href="https://publications.waset.org/abstracts/search?q=tyloses" title=" tyloses"> tyloses</a> </p> <a href="https://publications.waset.org/abstracts/149898/bioincision-of-gmelina-arborea-roxb-heartwood-with-inonotus-dryophilus-berk-murr-for-improved-chemical-uptake-and-penetration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>