CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 172 results for author: <span class="mathjax">Huang, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Huang%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Huang, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Huang%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Huang, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Huang%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Huang%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+M&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16846">arXiv:2502.16846</a> <span> [<a href="https://arxiv.org/pdf/2502.16846">pdf</a>, <a href="https://arxiv.org/format/2502.16846">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Carrier Emission and Capture Competition mediated A(n)BC Recombination Model in Semiconductors with Multi-Level Defects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shanshan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Menglin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+S">Su-Huai Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+X">Xin-Gao Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shiyou Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16846v1-abstract-short" style="display: inline;"> The ABC model has been widely used to describe the carrier recombination rate, in which the rate of non-radiative recombination assisted by deep-level defects is assumed to depend linearly on excess carrier density $螖n$, leading to a constant recombination coefficient A. However, for multi-level defects that are prevalent in semiconductors, we demonstrate here that the rate should depend nonlinear… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16846v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16846v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16846v1-abstract-full" style="display: none;"> The ABC model has been widely used to describe the carrier recombination rate, in which the rate of non-radiative recombination assisted by deep-level defects is assumed to depend linearly on excess carrier density $螖n$, leading to a constant recombination coefficient A. However, for multi-level defects that are prevalent in semiconductors, we demonstrate here that the rate should depend nonlinearly on $螖n$. When $螖n$ varies, the carrier capture and emission of defects can change the defect density distribution in different charge states, which can further change the carrier capture and emission rates of the defects and thus make the recombination rate depend non-linearly on $螖n$, leading to an $A(n)$ function. However, in many recent calculation studies on carrier recombination rate of multi-level defects, only carrier capture was considered while carrier emission from defect levels was neglected, causing incorrect charge-state distribution and misleading linear dependence of the rate on $螖n$. For $\text{V}_{\text{Ga}}$-$\text{O}_{\text{N}}$ in GaN and $\text{Pb}_\text{I}$ in CsPbI$_3$, our calculations showed that neglecting the carrier emission can cause the recombination rate underestimation by more than 8 orders of magnitude when $螖n$ is $10^{15}$ cm$^{-3}$. Our findings suggest that the recent studies on carrier recombination assisted by multi-level defects should be revisited with carrier emission considered, and the widely-used $ABC$ model should be reformed into the $A(n)BC$ model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16846v1-abstract-full').style.display = 'none'; document.getElementById('2502.16846v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07283">arXiv:2502.07283</a> <span> [<a href="https://arxiv.org/pdf/2502.07283">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-025-57111-2">10.1038/s41467-025-57111-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Bloch States at Integer Flux Quanta Induced by Super-moir茅 Potential in Graphene Aligned with Twisted Boron Nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Y">Yaqi Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meizhen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W">Weixiong Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Z">Zishu Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+K">Kai Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenhui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Lou%2C+C">Chenxuan Lou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Weikang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+H">Haoxi Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yibo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Zefei Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+X">Xiaodong Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+W">Wang Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+S">Shichao Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07283v2-abstract-short" style="display: inline;"> Two-dimensional electron systems in both magnetic fields and periodic potentials are described by Hofstadter butterfly, a fundamental problem of solid-state physics. While moir茅 systems provide a powerful method to realize this spectrum, previous experiments, however, have been limited to fractional flux quanta regime due to the difficulty of building ~ 50 nm periodic modulations. Here, we demonst… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07283v2-abstract-full').style.display = 'inline'; document.getElementById('2502.07283v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07283v2-abstract-full" style="display: none;"> Two-dimensional electron systems in both magnetic fields and periodic potentials are described by Hofstadter butterfly, a fundamental problem of solid-state physics. While moir茅 systems provide a powerful method to realize this spectrum, previous experiments, however, have been limited to fractional flux quanta regime due to the difficulty of building ~ 50 nm periodic modulations. Here, we demonstrate a super-moir茅 strategy to overcome this challenge. By aligning monolayer graphene (G) with 1.0掳 twisted hexagonal boron nitride (t-hBN), a 63.2 nm bichromatic G/t-hBN super-moir茅 is constructed, made possible by exploiting the electrostatic nature of t-hBN potential. Under magnetic field B, magnetic Bloch states at integer flux quanta (1-9) are achieved and observed as integer Brown-Zak oscillations, expanding the flux quanta from factions to integers. Theoretical analysis reproduces these experimental findings. This work opens new avenues to study unexplored Hofstadter butterfly, explore emergent topological order at integer flux quanta and engineer long-wavelength periodic modulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07283v2-abstract-full').style.display = 'none'; document.getElementById('2502.07283v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 16, 1860 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05671">arXiv:2502.05671</a> <span> [<a href="https://arxiv.org/pdf/2502.05671">pdf</a>, <a href="https://arxiv.org/format/2502.05671">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Engineered Chirality of One-Dimensional Nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Briggeman%2C+M">Megan Briggeman</a>, <a href="/search/cond-mat?searchtype=author&query=Mansfield%2C+E">Elliott Mansfield</a>, <a href="/search/cond-mat?searchtype=author&query=Kombe%2C+J">Johannes Kombe</a>, <a href="/search/cond-mat?searchtype=author&query=Damanet%2C+F">Fran莽ois Damanet</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+H">Hyungwoo Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Y">Yuhe Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+M">Muqing Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Biswas%2C+S">Sayanwita Biswas</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jianan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengchen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Eom%2C+C">Chang-Beom Eom</a>, <a href="/search/cond-mat?searchtype=author&query=Irvin%2C+P">Patrick Irvin</a>, <a href="/search/cond-mat?searchtype=author&query=Daley%2C+A+J">Andrew J. Daley</a>, <a href="/search/cond-mat?searchtype=author&query=Levy%2C+J">Jeremy Levy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05671v1-abstract-short" style="display: inline;"> The origin and function of chirality in DNA, proteins, and other building blocks of life represent a central question in biology. Observations of spin polarization and magnetization associated with electron transport through chiral molecules, known collectively as the chiral induced spin selectivity (CISS) effect, suggest that chirality improves electron transfer by inhibiting backscattering. Mean… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05671v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05671v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05671v1-abstract-full" style="display: none;"> The origin and function of chirality in DNA, proteins, and other building blocks of life represent a central question in biology. Observations of spin polarization and magnetization associated with electron transport through chiral molecules, known collectively as the chiral induced spin selectivity (CISS) effect, suggest that chirality improves electron transfer by inhibiting backscattering. Meanwhile, the role of coherence in the electron transport within chiral nanowires is believed to be important but is challenging to investigate experimentally. Using reconfigurable nanoscale control over conductivity at the LaAlO$_3$/SrTiO$_3$ interface, we create chiral electron potentials that explicitly lack mirror symmetry. Quantum transport measurements on these chiral regions that constitute effective nanowires for the electrons reveal oscillatory transmission resonances as a function of both magnetic field and chemical potential. We interpret these resonances as arising from an engineered axial spin-orbit interaction within the chiral region. The ability to create 1D effective electron waveguides with this specificity and complexity creates new opportunities to test, via analog quantum simulation, theories about the relationship between chirality and spin-polarized electron transport in one-dimensional geometries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05671v1-abstract-full').style.display = 'none'; document.getElementById('2502.05671v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04289">arXiv:2501.04289</a> <span> [<a href="https://arxiv.org/pdf/2501.04289">pdf</a>, <a href="https://arxiv.org/format/2501.04289">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Defect Phonon Renormalization during Nonradiative Multiphonon Transitions in Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Junjie Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shanshan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Menglin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+X">Xin-Gao Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shiyou Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04289v1-abstract-short" style="display: inline;"> As a typical nonradiative multiphonon transition in semiconductors, carrier capture at defects is critical to the performance of semiconductor devices. Its transition rate is usually calculated using the equal-mode approximation, which assumes that phonon modes and frequencies remain unchanged before and after the transition. Using the carbon substitutional defect ($\text{C}_\text{N}$) in GaN as a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04289v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04289v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04289v1-abstract-full" style="display: none;"> As a typical nonradiative multiphonon transition in semiconductors, carrier capture at defects is critical to the performance of semiconductor devices. Its transition rate is usually calculated using the equal-mode approximation, which assumes that phonon modes and frequencies remain unchanged before and after the transition. Using the carbon substitutional defect ($\text{C}_\text{N}$) in GaN as a benchmark, here we demonstrate that the phonon renormalization can be significant during defect relaxation, which causes errors as large as orders of magnitude in the approximation. To address this issue, we consider (i) Duschinsky matrix connecting the initial-state and final-state phonons, which accounts for the changes in phonon modes and frequencies; and (ii) the off-diagonal contributions in total transition matrix element, which incorporates the cross terms of electron-phonon interactions between different modes. With this improvement, the calculated transition rates show agreements with experimental results within an order of magnitude. We believe the present method makes one step forward for the accurate calculation of multiphonon transition rate, especially in cases with large defect relaxations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04289v1-abstract-full').style.display = 'none'; document.getElementById('2501.04289v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08525">arXiv:2412.08525</a> <span> [<a href="https://arxiv.org/pdf/2412.08525">pdf</a>, <a href="https://arxiv.org/format/2412.08525">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Limited thermal and spin transport in a dissipative superfluid junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meng-Zi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Fabritius%2C+P">Philipp Fabritius</a>, <a href="/search/cond-mat?searchtype=author&query=Mohan%2C+J">Jeffrey Mohan</a>, <a href="/search/cond-mat?searchtype=author&query=Talebi%2C+M">Mohsen Talebi</a>, <a href="/search/cond-mat?searchtype=author&query=Wili%2C+S">Simon Wili</a>, <a href="/search/cond-mat?searchtype=author&query=Esslinger%2C+T">Tilman Esslinger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08525v1-abstract-short" style="display: inline;"> Limited transport occurs in various systems when microscopic details give way to fundamental principles, ranging from quantized conductance for fermions in one dimension to quantum-limited sound and spin diffusivity in strongly interacting Fermi gases. However, limited transport in dissipative open quantum systems is rare due to the lack of many conservation laws. In particular, thermal and spin t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08525v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08525v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08525v1-abstract-full" style="display: none;"> Limited transport occurs in various systems when microscopic details give way to fundamental principles, ranging from quantized conductance for fermions in one dimension to quantum-limited sound and spin diffusivity in strongly interacting Fermi gases. However, limited transport in dissipative open quantum systems is rare due to the lack of many conservation laws. In particular, thermal and spin transport in interacting systems under particle dissipation are largely unexplored. Here we observe dissipation-induced but limited thermal and spin transport through a dissipative one-dimensional junction connecting two superfluids of unitary Fermi gases. The thermal and spin conductances of the superfluid junction increase sharply with particle dissipation and seemingly approach values for a non-dissipative, non-interacting system -- limited due to quantum confinement of the junction. This behavior is independent of the dissipation mechanism, being either spin-dependent or pairwise losses. This work may inform theories on interacting open quantum systems and opens up perspectives for dissipative control of spin and thermoelectric transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08525v1-abstract-full').style.display = 'none'; document.getElementById('2412.08525v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures, M.-Z.H. and P.F. contributed equally to this work</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03781">arXiv:2412.03781</a> <span> [<a href="https://arxiv.org/pdf/2412.03781">pdf</a>, <a href="https://arxiv.org/format/2412.03781">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0251773">10.1063/5.0251773 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scaling laws for concentration-gradient-driven electrolyte transport through a 2D membrane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Baldock%2C+H+C+M">Holly C. M. Baldock</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+D+M">David M. Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03781v1-abstract-short" style="display: inline;"> Two-dimensional (2D) nanomaterials exhibit unique properties that are promising for diverse applications, including those relevant to concentration-gradient-driven transport of electrolyte solutions through porous membranes made from these materials, such as water desalination, osmotic power, and iontronics. Here we derive general equations, and determine scaling laws in the thick and thin electri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03781v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03781v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03781v1-abstract-full" style="display: none;"> Two-dimensional (2D) nanomaterials exhibit unique properties that are promising for diverse applications, including those relevant to concentration-gradient-driven transport of electrolyte solutions through porous membranes made from these materials, such as water desalination, osmotic power, and iontronics. Here we derive general equations, and determine scaling laws in the thick and thin electric-double-layer limits, that quantify the variation of the concentration-gradient-driven flow rate, solute flux and electric current with the pore radius, surface charge density and Debye screening length for the transport of a dilute electrolyte solution through a circular aperture in an infinitesimally thin planar membrane. We also determine scaling laws for the electric-field-driven flow rate in the thin electric-double-layer limit in the same geometry. We show that these scaling laws accurately capture the scaling relationships from finite-element numerical simulations within the Debye-H眉ckel regime, and extend the theory to obtain scaling laws in the thin electric-double-layer limit that hold even when the electric potential energy is large compared with the thermal energy. These scaling laws indicate unusual behavior for concentration-gradient-driven flow in a 2D membrane that is not seen in thicker membranes, which has broad implications for liquid transport through membranes whose thickness comparable to, or smaller than, their pore size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03781v1-abstract-full').style.display = 'none'; document.getElementById('2412.03781v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Fluids 37, 022032 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12336">arXiv:2411.12336</a> <span> [<a href="https://arxiv.org/pdf/2411.12336">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Double Splay Nematic Order in Confined Polar Fluids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Z">Zhongjie Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+M">Miao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+A">Aile Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+S">Shengzhu Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jidan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mingjun Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Aya%2C+S">Satoshi Aya</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+Q">Qi-Huo Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12336v1-abstract-short" style="display: inline;"> In this study, we demonstrate that when a ferroelectric nematic is confined between two glass plates coated with ionic polymers, a modulated phase emerges in a narrow temperature range between the nematic and ferroelectric nematic phases. This modulated phase emerges from the nematic phase in a continuous manner and then transforms into the ferroelectric nematic phase via a first-order transition… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12336v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12336v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12336v1-abstract-full" style="display: none;"> In this study, we demonstrate that when a ferroelectric nematic is confined between two glass plates coated with ionic polymers, a modulated phase emerges in a narrow temperature range between the nematic and ferroelectric nematic phases. This modulated phase emerges from the nematic phase in a continuous manner and then transforms into the ferroelectric nematic phase via a first-order transition upon cooling. Using optical microscopy, we provide compelling evidence that this modulated phase corresponds to the theoretically predicted double splay nematic phase. In this phase, splay deformations alternate in two orthogonal directions oriented at 45掳 to the substrate surfaces, creating a modulation wavelength that is twice the thickness of the cell. Our experiments with different ionic coatings reveal that only polymeric cationic coatings effectively promote the formation of this phase, highlighting the critical role of electrical screening. These findings not only confirm the existence of the double splay nematic phase but also provide insights into the distinctive topological defects of this phase in confined geometries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12336v1-abstract-full').style.display = 'none'; document.getElementById('2411.12336v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04823">arXiv:2411.04823</a> <span> [<a href="https://arxiv.org/pdf/2411.04823">pdf</a>, <a href="https://arxiv.org/format/2411.04823">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Si/SiO$_\text{2}$ MOSFET Reliability Physics: From Four-State Model to All-State Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guo%2C+X">Xinjing Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Menglin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shiyou Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04823v1-abstract-short" style="display: inline;"> As implemented in the commercialized device modeling software, the four-state nonradiative multi-phonon model has attracted intensive attention in the past decade for describing the physics in negative bias temperature instability (NBTI) and other reliability issues of Si/SiO$_\text{2}$ MOSFET devices. It was proposed initially based on the assumption that the oxygen vacancy defects (V$_\text{O}$)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04823v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04823v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04823v1-abstract-full" style="display: none;"> As implemented in the commercialized device modeling software, the four-state nonradiative multi-phonon model has attracted intensive attention in the past decade for describing the physics in negative bias temperature instability (NBTI) and other reliability issues of Si/SiO$_\text{2}$ MOSFET devices. It was proposed initially based on the assumption that the oxygen vacancy defects (V$_\text{O}$) in SiO$_\text{2}$ dielectric layer are bistable in the Si-dimer and back-projected structures during carrier capture and emission. Through high-throughput first-principles structural search, we found V$_\text{O}$ on non-equivalent O sites in amorphous SiO$_\text{2}$ can take 4 types of structural configurations in neutral state and 7 types of configurations in +1 charged state after capturing holes, which produce a wide range of charge-state transition levels for trapping holes. The finding contrasts the structural-bistability assumption and makes the four-state model invalid for most of O sites. To describe the reliability physics accurately, we propose an all-state model to consider all these structural configurations as well as all the carrier capture/emission transitions and thermal transitions between them. With the all-state model, we show that the V$_\text{O}$ defects play important roles in causing NBTI, which challenges the recent studies that discarded V$_\text{O}$ as a possible hole trap in NBTI. Our systematical calculations on the diversified V$_\text{O}$ properties and the all-state model provide the microscopic foundation for describing the reliability physics of MOSFETs and other transistors accurately. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04823v1-abstract-full').style.display = 'none'; document.getElementById('2411.04823v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02648">arXiv:2409.02648</a> <span> [<a href="https://arxiv.org/pdf/2409.02648">pdf</a>, <a href="https://arxiv.org/format/2409.02648">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Creating a Microstructure Latent Space with Rich Material Information for Multiphase Alloy Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xudong Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yuqi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chenchong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+M">Ming Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mingxin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+W">Wei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02648v1-abstract-short" style="display: inline;"> The intricate microstructure serves as the cornerstone for the composition/processing-structure-property (CPSP) connection in multiphase alloys. Traditional alloy design methods often overlook microstructural details, which diminishes the reliability and effectiveness of the outcomes. This study introduces an improved alloy design algorithm that integrates authentic microstructural information to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02648v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02648v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02648v1-abstract-full" style="display: none;"> The intricate microstructure serves as the cornerstone for the composition/processing-structure-property (CPSP) connection in multiphase alloys. Traditional alloy design methods often overlook microstructural details, which diminishes the reliability and effectiveness of the outcomes. This study introduces an improved alloy design algorithm that integrates authentic microstructural information to establish precise CPSP relationships. The approach utilizes a deep-learning framework based on a variational autoencoder to map real microstructural data to a latent space, enabling the prediction of composition, processing steps, and material properties from the latent space vector. By integrating this deep learning model with a specific sampling strategy in the latent space, a novel, microstructure-centered algorithm for multiphase alloy design is developed. This algorithm is demonstrated through the design of a unified dual-phase steel, and the results are assessed at three performance levels. Moreover, an exploration into the latent vector space of the model highlights its seamless interpolation ability and its rich material information content. Notably, the current configuration of the latent space is particularly advantageous for alloy design, offering an exhaustive representation of microstructure, composition, processing, and property variations essential for multiphase alloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02648v1-abstract-full').style.display = 'none'; document.getElementById('2409.02648v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09137">arXiv:2408.09137</a> <span> [<a href="https://arxiv.org/pdf/2408.09137">pdf</a>, <a href="https://arxiv.org/format/2408.09137">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.208101">10.1103/PhysRevLett.133.208101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mean-field theory of the uniaxial ferroelectric smectic A liquid crystal phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Erkoreka%2C+A">Aitor Erkoreka</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Minjung Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Aya%2C+S">Satoshi Aya</a>, <a href="/search/cond-mat?searchtype=author&query=Martinez-Perdiguero%2C+J">Josu Martinez-Perdiguero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09137v1-abstract-short" style="display: inline;"> Following the groundbreaking discovery of the ferroelectric nematic liquid crystal phase (NF), a series of closely-related new polar phases have also been found. An especially interesting one is the ferroelectric smectic A phase (SmAF) with spontaneous polarization along the layer normal observed in a few materials of the NF realm. Here, we present a mean-field molecular model that successfully ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09137v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09137v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09137v1-abstract-full" style="display: none;"> Following the groundbreaking discovery of the ferroelectric nematic liquid crystal phase (NF), a series of closely-related new polar phases have also been found. An especially interesting one is the ferroelectric smectic A phase (SmAF) with spontaneous polarization along the layer normal observed in a few materials of the NF realm. Here, we present a mean-field molecular model that successfully captures the rich phase diagrams experimentally observed in the literature in terms of two parameters. Additionally, we carry out second harmonic generation, X-ray diffraction and birefringence measurements in a compound exhibiting the SmAF phase to determine the appropriate order parameters and compare with the model predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09137v1-abstract-full').style.display = 'none'; document.getElementById('2408.09137v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13326">arXiv:2406.13326</a> <span> [<a href="https://arxiv.org/pdf/2406.13326">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Chiral 蟺 Domain Walls Composed of Twin Half-Integer Surface Disclinations in Ferroelectric Nematic Liquid Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yi%2C+S">Shengzhu Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+Z">Zening Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Z">Zhongjie Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+C">Chao Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+M">Miao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+X">Xiang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mingjun Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Aya%2C+S">Satoshi Aya</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+Q">Qi-Huo Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13326v1-abstract-short" style="display: inline;"> Ferroelectric nematic liquid crystals are polar fluids characterized by microscopic orientational ordering and macroscopic spontaneous polarizations. Within these fluids, walls that separate domains of different polarizations are ubiquitous. We demonstrate that the 蟺 walls in films of polar fluids consist of twin half-integer surface disclinations spaced horizontally, enclosing a subdomain where t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13326v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13326v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13326v1-abstract-full" style="display: none;"> Ferroelectric nematic liquid crystals are polar fluids characterized by microscopic orientational ordering and macroscopic spontaneous polarizations. Within these fluids, walls that separate domains of different polarizations are ubiquitous. We demonstrate that the 蟺 walls in films of polar fluids consist of twin half-integer surface disclinations spaced horizontally, enclosing a subdomain where the polarization exhibits left- or right-handed 蟺 twists across the film. The degenerate geometric configurations of these twin disclinations give rise to kinks and antikinks, effectively partitioning subdomains of opposite chirality like Ising chains. The hierarchical topological structures dictate that field-driven polar switching entails a two-step annihilation process of the disclinations. These findings serve as a cornerstone for comprehending other walls in ferroelectric and ferromagnetic materials, thereby laying the base for domain engineering crucial for advancing their nonlinear and optoelectronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13326v1-abstract-full').style.display = 'none'; document.getElementById('2406.13326v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12250">arXiv:2406.12250</a> <span> [<a href="https://arxiv.org/pdf/2406.12250">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-49942-2">10.1038/s41467-024-49942-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of stacking engineered magnetic phase transitions within moir茅 supercells of twisted van der Waals magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Senlei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zeliang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=McLaughlin%2C+N+J">Nathan J. McLaughlin</a>, <a href="/search/cond-mat?searchtype=author&query=Sharmin%2C+A">Afsana Sharmin</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Nishkarsh Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Sung%2C+S+H">Suk Hyun Sung</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+S">Shaohua Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Hovden%2C+R">Robert Hovden</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hua Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12250v1-abstract-short" style="display: inline;"> Twist engineering of magnetic van der Waals (vdW) moir茅 superlattices provides an attractive way to achieve precise nanoscale control over the spin degree of freedom on two-dimensional flatland. Despite the very recent demonstrations of moir茅 magnetism featuring exotic phases with noncollinear spin order in twisted vdW magnet chromium triiodide CrI3, the local magnetic interactions, spin dynamics,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12250v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12250v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12250v1-abstract-full" style="display: none;"> Twist engineering of magnetic van der Waals (vdW) moir茅 superlattices provides an attractive way to achieve precise nanoscale control over the spin degree of freedom on two-dimensional flatland. Despite the very recent demonstrations of moir茅 magnetism featuring exotic phases with noncollinear spin order in twisted vdW magnet chromium triiodide CrI3, the local magnetic interactions, spin dynamics, and magnetic phase transitions within and across individual moir茅 supercells remain elusive. Taking advantage of a scanning single-spin magnetometry platform, here we report observation of two distinct magnetic phase transitions with separate critical temperatures within a moir茅 supercell of small-angle twisted double trilayer CrI3. By measuring temperature dependent spin fluctuations at the coexisting ferromagnetic and antiferromagnetic regions in twisted CrI3, we explicitly show that the Curie temperature of the ferromagnetic state is higher than the N茅el temperature of the antiferromagnetic one by ~10 K. Our mean-field calculations attribute such a spatial and thermodynamic phase separation to the stacking order modulated interlayer exchange coupling at the twisted interface of the moir茅 superlattices. The presented results highlight twist engineering as a promising tuning knob to realize on-demand control of not only the nanoscale spin order of moir茅 quantum matter but also its dynamic magnetic responses, which may find relevant applications in developing transformative vdW electronic and magnetic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12250v1-abstract-full').style.display = 'none'; document.getElementById('2406.12250v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 5712 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03104">arXiv:2406.03104</a> <span> [<a href="https://arxiv.org/pdf/2406.03104">pdf</a>, <a href="https://arxiv.org/format/2406.03104">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.223403">10.1103/PhysRevLett.133.223403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark state transport between unitary Fermi superfluids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Talebi%2C+M">Mohsen Talebi</a>, <a href="/search/cond-mat?searchtype=author&query=Wili%2C+S">Simon Wili</a>, <a href="/search/cond-mat?searchtype=author&query=Mohan%2C+J">Jeffrey Mohan</a>, <a href="/search/cond-mat?searchtype=author&query=Fabritius%2C+P">Philipp Fabritius</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meng-Zi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Esslinger%2C+T">Tilman Esslinger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03104v3-abstract-short" style="display: inline;"> The formation of dark states is an important concept in quantum sciences, but its compatibility with strong interparticle interactions -- for example, in a quantum degenerate gas -- is hardly explored. Here, we realize a dark state in one of the spins of a two-component, resonantly interacting Fermi gas using a $螞$ system within the $D_2$ transitions of $^6$Li at high magnetic field. The dark stat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03104v3-abstract-full').style.display = 'inline'; document.getElementById('2406.03104v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03104v3-abstract-full" style="display: none;"> The formation of dark states is an important concept in quantum sciences, but its compatibility with strong interparticle interactions -- for example, in a quantum degenerate gas -- is hardly explored. Here, we realize a dark state in one of the spins of a two-component, resonantly interacting Fermi gas using a $螞$ system within the $D_2$ transitions of $^6$Li at high magnetic field. The dark state is created in a micrometer-sized region within a one-dimensional channel connecting two superfluid reservoirs. The particle transport between the reservoirs is used as a probe. We observe that atoms are transported in the dark state and the superfluid-assisted fast current is preserved. If the dark state resonant condition is not met, the transport is suppressed by the spontaneous emission. We also uncover an asymmetry in the transport timescale across the two-photon resonance, which is absent in the non-interacting regime and diminished at higher temperatures. This work raises questions on the interplay of dark states with interparticle interactions and opens up perspectives for optical manipulation of fermionic pairing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03104v3-abstract-full').style.display = 'none'; document.getElementById('2406.03104v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 223403 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00994">arXiv:2406.00994</a> <span> [<a href="https://arxiv.org/pdf/2406.00994">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Half-integer Topological Defects Paired via String Micelles in Polar Liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Z">Zhongjie Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+M">Miao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Y">Yaohao Song</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+A">Aile Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+S">Shengzhu Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+C">Chao Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+X">Xiang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mingjun Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Aya%2C+S">Satoshi Aya</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+Q">Qi-Huo Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00994v2-abstract-short" style="display: inline;"> Ferroelectric nematic (NF) liquid crystals present a compelling platform for exploring topological defects in polar fields, while their structural properties can be significantly altered by ionic doping. In this study, we demonstrate that doping the ferroelectric nematic material RM734 with cationic polymers enable the formation of polymeric micelles that connect pairs of half-integer topological… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00994v2-abstract-full').style.display = 'inline'; document.getElementById('2406.00994v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00994v2-abstract-full" style="display: none;"> Ferroelectric nematic (NF) liquid crystals present a compelling platform for exploring topological defects in polar fields, while their structural properties can be significantly altered by ionic doping. In this study, we demonstrate that doping the ferroelectric nematic material RM734 with cationic polymers enable the formation of polymeric micelles that connect pairs of half-integer topological defects. Polarizing optical microscopy reveals that these string defects exhibit butterfly textures, featured with a two-dimensional polarization field divided by N茅el-type kink-walls into domains exhibiting either uniform polarization or negative splay and bend deformations. Through analysis of electrophoretic motion and direct measurements of polarization divergences, we show that the string micelles are positively charged and their side regions exhibit positive bound charges. To elucidate these observations, we propose a charge double layer model for the string defects: the positive charged cationic polymer chains and densely packed RM734 molecules form a Stern charge layer, while small anionic ions and positive bound charges constitute the charge diffusion layer. Notably, our experiments indicate that only cationic polymer doping effectively induces the formation of these unique string defects. These findings enhance our understanding of ionic doping effects and provide valuable insights for engineering polar topologies in liquid crystal systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00994v2-abstract-full').style.display = 'none'; document.getElementById('2406.00994v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04059">arXiv:2405.04059</a> <span> [<a href="https://arxiv.org/pdf/2405.04059">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Three-dimensional hidden phase probed by in-plane magnetotransport in kagome metal CsV$_3$Sb$_5$ thin flakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wei%2C+X">Xinjian Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+C">Congkuan Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+H">Hang Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+Y">Yuxin Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Shaobo Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Y">Yuanjun Song</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y">Ya Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Miaoling Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+Q">Qihua Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+X+C">X. C. Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jian-Hao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04059v1-abstract-short" style="display: inline;"> Transition metal compounds with kagome structure have been found to exhibit a variety of exotic structural, electronic, and magnetic orders. These orders are competing with energies very close to each other, resulting in complex phase transitions. Some of the phases are easily observable, such as the charge density wave (CDW) and the superconducting phase, while others are more challenging to iden… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04059v1-abstract-full').style.display = 'inline'; document.getElementById('2405.04059v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04059v1-abstract-full" style="display: none;"> Transition metal compounds with kagome structure have been found to exhibit a variety of exotic structural, electronic, and magnetic orders. These orders are competing with energies very close to each other, resulting in complex phase transitions. Some of the phases are easily observable, such as the charge density wave (CDW) and the superconducting phase, while others are more challenging to identify and characterize. Here we present magneto-transport evidence of a new phase below ~35 K in the kagome topological metal CsV$_3$Sb$_5$ (CVS) thin flakes between the CDW and the superconducting transition temperatures. This phase is characterized by six-fold rotational symmetry in the in-plane magnetoresistance (MR) and is connected to the orbital current order in CVS. Furthermore, the phase is characterized by a large in-plane negative magnetoresistance, which suggests the existence of a three-dimensional, magnetic field-tunable orbital current ordered phase. Our results highlight the potential of magneto-transport to reveal the interactions between exotic quantum states of matter and to uncover the symmetry of such hidden phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04059v1-abstract-full').style.display = 'none'; document.getElementById('2405.04059v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00802">arXiv:2405.00802</a> <span> [<a href="https://arxiv.org/pdf/2405.00802">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adk8495">10.1126/sciadv.adk8495 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensing Spin Wave Excitations by Spin Defects in Few-Layer Thick Hexagonal Boron Nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jingcheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+D">Di Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+G+Q">Gerald Q. Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Al-matouq%2C+F">Faris Al-matouq</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+J">Jiu Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Djugba%2C+D">Dziga Djugba</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhigang Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00802v1-abstract-short" style="display: inline;"> Optically active spin defects in wide band-gap semiconductors serve as a local sensor of multiple degrees of freedom in a variety of "hard" and "soft" condensed matter systems. Taking advantage of the recent progress on quantum sensing using van der Waals (vdW) quantum materials, here we report direct measurements of spin waves excited in magnetic insulator Y3Fe5O12 (YIG) by boron vacancy $V_B^-$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00802v1-abstract-full').style.display = 'inline'; document.getElementById('2405.00802v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00802v1-abstract-full" style="display: none;"> Optically active spin defects in wide band-gap semiconductors serve as a local sensor of multiple degrees of freedom in a variety of "hard" and "soft" condensed matter systems. Taking advantage of the recent progress on quantum sensing using van der Waals (vdW) quantum materials, here we report direct measurements of spin waves excited in magnetic insulator Y3Fe5O12 (YIG) by boron vacancy $V_B^-$ spin defects contained in few-layer thick hexagonal boron nitride nanoflakes. We show that the ferromagnetic resonance and parametric spin excitations can be effectively detected by $V_B^-$ spin defects under various experimental conditions through optically detected magnetic resonance measurements. The off-resonant dipole interaction between YIG magnons and $V_B^-$ spin defects is mediated by multi-magnon scattering processes, which may find relevant applications in a range of emerging quantum sensing, computing, and metrology technologies. Our results also highlight the opportunities offered by quantum spin defects in layered two-dimensional vdW materials for investigating local spin dynamic behaviors in magnetic solid-state matters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00802v1-abstract-full').style.display = 'none'; document.getElementById('2405.00802v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18619">arXiv:2404.18619</a> <span> [<a href="https://arxiv.org/pdf/2404.18619">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Patterning of 2D second harmonic generation active arrays in ferroelectric nematic fluids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lov%C5%A1in%2C+M">M. Lov拧in</a>, <a href="/search/cond-mat?searchtype=author&query=Petelin%2C+A">A. Petelin</a>, <a href="/search/cond-mat?searchtype=author&query=Berteloot%2C+B">B. Berteloot</a>, <a href="/search/cond-mat?searchtype=author&query=Osterman%2C+N">N. Osterman</a>, <a href="/search/cond-mat?searchtype=author&query=Aya%2C+S">S. Aya</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">M. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Dreven%C5%A1ek-Olenik%2C+I">I. Dreven拧ek-Olenik</a>, <a href="/search/cond-mat?searchtype=author&query=Mandle%2C+R+J">R. J. Mandle</a>, <a href="/search/cond-mat?searchtype=author&query=Neyts%2C+K">K. Neyts</a>, <a href="/search/cond-mat?searchtype=author&query=Mertelj%2C+A">A. Mertelj</a>, <a href="/search/cond-mat?searchtype=author&query=Sebastian%2C+N">N. Sebastian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18619v1-abstract-short" style="display: inline;"> Ferroelectric nematic liquid crystals exhibit unique non-linear optical properties, with the potential to become transformative materials for photonic applications. A promising direction relies on the fabrication of tailored polar orientational patterns via photoalignment, thus shaping the non-linear optical susceptibility through thin slabs of the ferroelectric fluid. Here, we explore the fabrica… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18619v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18619v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18619v1-abstract-full" style="display: none;"> Ferroelectric nematic liquid crystals exhibit unique non-linear optical properties, with the potential to become transformative materials for photonic applications. A promising direction relies on the fabrication of tailored polar orientational patterns via photoalignment, thus shaping the non-linear optical susceptibility through thin slabs of the ferroelectric fluid. Here, we explore the fabrication of 2D periodic SHG active arrays in ferroelectric nematic fluids, for different materials, cell thicknesses and motifs. Based on polarizing optical microscopy observations in combination with optical simulations, second harmonic generation microscopy and interferometry, the 3D structure of the motifs are revealed. Two different 2D periodic patterns are explored, showing that the balance between flexoelectric and electrostatic energy can lead to different domain structures, an effect which is rooted in the difference between the flexoelectric properties of the materials. It is shown that by combining the surface-inscribed alignment with different spontaneous degrees of twist, 2D SHG active arrays can be obtained in the micrometre scale, in which adjacent areas exhibit maximum SHG signals at opposite angles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18619v1-abstract-full').style.display = 'none'; document.getElementById('2404.18619v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 Images main, 15 supplementary images</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02952">arXiv:2404.02952</a> <span> [<a href="https://arxiv.org/pdf/2404.02952">pdf</a>, <a href="https://arxiv.org/format/2404.02952">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Chirality-Driven Orbital Angular Momentum and Circular Dichroism in CoSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Brinkman%2C+S+S">Stefanie Suzanne Brinkman</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+X+L">Xin Liang Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Brekke%2C+B">Bj酶rnulf Brekke</a>, <a href="/search/cond-mat?searchtype=author&query=Mathisen%2C+A+C">Anders Christian Mathisen</a>, <a href="/search/cond-mat?searchtype=author&query=Finnseth%2C+%C3%98">脴yvind Finnseth</a>, <a href="/search/cond-mat?searchtype=author&query=Schenk%2C+R+J">Richard Justin Schenk</a>, <a href="/search/cond-mat?searchtype=author&query=Hagiwara%2C+K">Kenta Hagiwara</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meng-Jie Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Buck%2C+J">Jens Buck</a>, <a href="/search/cond-mat?searchtype=author&query=Kall%C3%A4ne%2C+M">Matthias Kall盲ne</a>, <a href="/search/cond-mat?searchtype=author&query=Hoesch%2C+M">Moritz Hoesch</a>, <a href="/search/cond-mat?searchtype=author&query=Rossnagel%2C+K">Kai Rossnagel</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+K+O">Kui-Hon Ou Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+M">Minn-Tsong Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Shu%2C+G">Guo-Jiun Shu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Ying-Jiun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Tusche%2C+C">Christian Tusche</a>, <a href="/search/cond-mat?searchtype=author&query=Bentmann%2C+H">Hendrik Bentmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02952v1-abstract-short" style="display: inline;"> Chiral crystals and molecules were recently predicted to form an intriguing platform for unconventional orbital physics. Here, we report the observation of chirality-driven orbital textures in the bulk electronic structure of CoSi, a prototype member of the cubic B20 family of chiral crystals. Using circular dichroism in soft X-ray angle-resolved photoemission, we demonstrate the formation of a bu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02952v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02952v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02952v1-abstract-full" style="display: none;"> Chiral crystals and molecules were recently predicted to form an intriguing platform for unconventional orbital physics. Here, we report the observation of chirality-driven orbital textures in the bulk electronic structure of CoSi, a prototype member of the cubic B20 family of chiral crystals. Using circular dichroism in soft X-ray angle-resolved photoemission, we demonstrate the formation of a bulk orbital-angular-momentum texture and monopole-like orbital-momentum locking that depends on crystal handedness. We introduce the intrinsic chiral circular dichroism, icCD, as a differential photoemission observable and a natural probe of chiral electron states. Our findings render chiral crystals promising for spin-orbitronics applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02952v1-abstract-full').style.display = 'none'; document.getElementById('2404.02952v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> QuSpin 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18683">arXiv:2403.18683</a> <span> [<a href="https://arxiv.org/pdf/2403.18683">pdf</a>, <a href="https://arxiv.org/format/2403.18683">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploring the Berezinskii-Kosterlitz-Thouless Transition in a Two-dimensional Dipolar Bose Gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yifei He</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Ziting Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhen%2C+H">Haoting Zhen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mingchen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Parit%2C+M+K">Mithilesh K Parit</a>, <a href="/search/cond-mat?searchtype=author&query=Jo%2C+G">Gyu-Boong Jo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18683v1-abstract-short" style="display: inline;"> Long-range and anisotropic dipolar interactions induce complex order in quantum systems. It becomes particularly interesting in two-dimension (2D), where the superfluidity with quasi-long-range order emerges via Berezinskii-Kosterlitz-Thouless (BKT) mechanism, which still remains elusive with dipolar interactions. Here, we observe the BKT transition from a normal gas to the superfluid phase in a q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18683v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18683v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18683v1-abstract-full" style="display: none;"> Long-range and anisotropic dipolar interactions induce complex order in quantum systems. It becomes particularly interesting in two-dimension (2D), where the superfluidity with quasi-long-range order emerges via Berezinskii-Kosterlitz-Thouless (BKT) mechanism, which still remains elusive with dipolar interactions. Here, we observe the BKT transition from a normal gas to the superfluid phase in a quasi-2D dipolar Bose gas of erbium atoms. Controlling the orientation of dipoles, we characterize the transition point by monitoring extended coherence and measuring the equation of state. This allows us to gain a systematic understanding of the BKT transition based on an effective short-range description of dipolar interaction in 2D. Additionally, we observe anisotropic density fluctuations and non-local effects in the superfluid regime, which establishes the dipolar nature of the 2D superfluid. Our results lay the ground for understanding the behavior of dipolar bosons in 2D and open up opportunities for examining complex orders in a dipolar superfluid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18683v1-abstract-full').style.display = 'none'; document.getElementById('2403.18683v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figues, supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17838">arXiv:2403.17838</a> <span> [<a href="https://arxiv.org/pdf/2403.17838">pdf</a>, <a href="https://arxiv.org/format/2403.17838">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal entropy transport far from equilibrium across the BCS-BEC crossover </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mohan%2C+J">Jeffrey Mohan</a>, <a href="/search/cond-mat?searchtype=author&query=Fabritius%2C+P">Philipp Fabritius</a>, <a href="/search/cond-mat?searchtype=author&query=Talebi%2C+M">Mohsen Talebi</a>, <a href="/search/cond-mat?searchtype=author&query=Wili%2C+S">Simon Wili</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meng-Zi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Esslinger%2C+T">Tilman Esslinger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17838v1-abstract-short" style="display: inline;"> The transport properties of strongly interacting fermionic systems can reveal exotic states of matter, but experiments and theory have predominantly focused on bulk systems in the hydrodynamic limit describable with linear response coefficients such as electrical and thermal conductivity. In a ballistic channel connecting two superfluid reservoirs, recent experiments revealed a far-from-equilibriu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17838v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17838v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17838v1-abstract-full" style="display: none;"> The transport properties of strongly interacting fermionic systems can reveal exotic states of matter, but experiments and theory have predominantly focused on bulk systems in the hydrodynamic limit describable with linear response coefficients such as electrical and thermal conductivity. In a ballistic channel connecting two superfluid reservoirs, recent experiments revealed a far-from-equilibrium regime beyond linear hydrodynamics where particle and entropy currents respond nonlinearly to biases of chemical potential and temperature, and their ratio is robust to the channel geometry. However, the origin of this robustness and its relation to the strong interparticle interactions remain unknown. Here, we study the coupled transport of particles and entropy tuning the interaction across the Bardeen-Cooper-Schrieffer to Bose-Einstein condensate (BCS-BEC) crossover, the reservoir degeneracy across the superfluid phase transition, as well as the local potentials and confinement of the channel. Surprisingly, the entropy advectively transported per particle depends only on the interactions and reservoir degeneracy and not on the details of the channel, suggesting that this property has its origin in the universal equilibrium properties of the reservoirs. In contrast, the magnitudes of the advective and diffusive entropy currents vary significantly with the channel details. The advective current increases monotonically towards the BEC side, which can be largely explained by the estimated superfluid gap in the channel. The Wiedemann-Franz law that links the advective and diffusive currents in Fermi liquids is most egregiously violated at unitarity, suggesting a change in the nature of the excitations responsible for entropy diffusion near unitarity. These observations pose fundamental questions regarding transport phenomena in strongly interacting Fermi systems far from equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17838v1-abstract-full').style.display = 'none'; document.getElementById('2403.17838v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07452">arXiv:2403.07452</a> <span> [<a href="https://arxiv.org/pdf/2403.07452">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ad4206">10.1088/1367-2630/ad4206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A compact approach to higher-resolution resonant inelastic X-ray scattering detection using photoelectrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Schunck%2C+J+O">Jan O. Schunck</a>, <a href="/search/cond-mat?searchtype=author&query=Buck%2C+J">Jens Buck</a>, <a href="/search/cond-mat?searchtype=author&query=Engel%2C+R+Y">Robin Y. Engel</a>, <a href="/search/cond-mat?searchtype=author&query=Kruse%2C+S+R">Simon R. Kruse</a>, <a href="/search/cond-mat?searchtype=author&query=Marotzke%2C+S">Simon Marotzke</a>, <a href="/search/cond-mat?searchtype=author&query=Scholz%2C+M">Markus Scholz</a>, <a href="/search/cond-mat?searchtype=author&query=Mahatha%2C+S+K">Sanjoy K. Mahatha</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meng-Jie Huang</a>, <a href="/search/cond-mat?searchtype=author&query=R%C3%B8nnow%2C+H+M">Henrik M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&query=Dakovski%2C+G">Georgi Dakovski</a>, <a href="/search/cond-mat?searchtype=author&query=Hoesch%2C+M">Moritz Hoesch</a>, <a href="/search/cond-mat?searchtype=author&query=Kall%C3%A4ne%2C+M">Matthias Kall盲ne</a>, <a href="/search/cond-mat?searchtype=author&query=Rossnagel%2C+K">Kai Rossnagel</a>, <a href="/search/cond-mat?searchtype=author&query=Beye%2C+M">Martin Beye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07452v1-abstract-short" style="display: inline;"> The detection of inelastically scattered soft X-rays with high energy resolution usually requires large grating spectrometers. Recently, photoelectron spectrometry for analysis of X-rays (PAX) has been rediscovered for modern spectroscopy experiments at synchrotron light sources. By converting scattered photons to electrons and using an electron energy analyser, the energy resolution for resonant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07452v1-abstract-full').style.display = 'inline'; document.getElementById('2403.07452v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07452v1-abstract-full" style="display: none;"> The detection of inelastically scattered soft X-rays with high energy resolution usually requires large grating spectrometers. Recently, photoelectron spectrometry for analysis of X-rays (PAX) has been rediscovered for modern spectroscopy experiments at synchrotron light sources. By converting scattered photons to electrons and using an electron energy analyser, the energy resolution for resonant inelastic X-ray scattering (RIXS) becomes decoupled from the X-ray spot size and instrument length. In this work, we develop PAX towards high energy resolution using a modern photoemission spectroscopy setup studying Ba2Cu3O4Cl2 at the Cu L3-edge. We measure a momentum transfer range of 24% of the first Brillouin zone simultaneously. Our results hint at the observation of a magnon excitation below 100 meV energy transfer and show intensity variations related to the dispersion of dd-excitations. With dedicated setups, PAX can become an alternative to the best and largest RIXS instruments, while at the same time opening new opportunities to acquire RIXS at a range of momentum transfers simultaneously and combine it with angle-resolved photoemission spectroscopy in a single instrument. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07452v1-abstract-full').style.display = 'none'; document.getElementById('2403.07452v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 26 (2024) 053008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12130">arXiv:2401.12130</a> <span> [<a href="https://arxiv.org/pdf/2401.12130">pdf</a>, <a href="https://arxiv.org/format/2401.12130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Time-Resolved Imaging Reveals Transiently Chaotic Spin-Orbit-Torque-Driven Dynamics Under Controlled Conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kern%2C+L">Lisa-Marie Kern</a>, <a href="/search/cond-mat?searchtype=author&query=Litzius%2C+K">Kai Litzius</a>, <a href="/search/cond-mat?searchtype=author&query=Deinhart%2C+V">Victor Deinhart</a>, <a href="/search/cond-mat?searchtype=author&query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&query=Klose%2C+C">Christopher Klose</a>, <a href="/search/cond-mat?searchtype=author&query=Gerlinger%2C+K">Kathinka Gerlinger</a>, <a href="/search/cond-mat?searchtype=author&query=Battistelli%2C+R">Riccardo Battistelli</a>, <a href="/search/cond-mat?searchtype=author&query=Engel%2C+D">Dieter Engel</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%BCnther%2C+C+M">Christian M. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meng-Jie Huang</a>, <a href="/search/cond-mat?searchtype=author&query=H%C3%B6flich%2C+K">Katja H枚flich</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%BCttner%2C+F">Felix B眉ttner</a>, <a href="/search/cond-mat?searchtype=author&query=Eisebitt%2C+S">Stefan Eisebitt</a>, <a href="/search/cond-mat?searchtype=author&query=Pfau%2C+B">Bastian Pfau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12130v1-abstract-short" style="display: inline;"> Spin-orbit torques (SOTs) act as efficient drivers for nanoscale magnetic systems, such as in magnetic tunnel junctions, nano-oscillators and racetrack geometries. In particular, in combination with materials exhibiting high Dzyaloshinskii--Moriya interaction, SOTs are considered to result in well-controlled deterministic magnetisation dynamics and are, therefore, used as robust drives to move and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12130v1-abstract-full').style.display = 'inline'; document.getElementById('2401.12130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12130v1-abstract-full" style="display: none;"> Spin-orbit torques (SOTs) act as efficient drivers for nanoscale magnetic systems, such as in magnetic tunnel junctions, nano-oscillators and racetrack geometries. In particular, in combination with materials exhibiting high Dzyaloshinskii--Moriya interaction, SOTs are considered to result in well-controlled deterministic magnetisation dynamics and are, therefore, used as robust drives to move and create magnetic skyrmions. In contrast to these expectations, we here find unpredictable, transiently chaotic dynamics induced by SOT at an artificial anisotropy-engineered defect in a magnetic racetrack. Based on these controlled conditions, we directly observe the nanoscale dynamics with holography-based, time-resolved x-ray imaging. In concert with micromagnetic simulations, we disclose a regime of violent picosecond fluctuations, including topological instabilities that, remarkably, result in deterministic final configurations. In addition, our images expose previously unseen skyrmion shedding and highlight the potential of transiently chaotic pathways for topological switching. Our approach offers new perspectives for the investigation and application of highly non-linear SOT dynamics in spintronics materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12130v1-abstract-full').style.display = 'none'; document.getElementById('2401.12130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01733">arXiv:2312.01733</a> <span> [<a href="https://arxiv.org/pdf/2312.01733">pdf</a>, <a href="https://arxiv.org/format/2312.01733">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Metastability and anharmonicity enhance defect-assisted nonradiative recombination in low-symmetry semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Menglin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shanshan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shiyou Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01733v1-abstract-short" style="display: inline;"> Strong nonradiative recombination has been observed in quasi-one-dimensional antimony selenide, which runs counter to the simple intuition that claims high defect tolerance exists in semiconductors with antibonding state in the valence band and bonding state in the conduction band. Here we reveal such a defect intolerance actually stems from the richness of structural metastability and vibrational… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01733v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01733v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01733v1-abstract-full" style="display: none;"> Strong nonradiative recombination has been observed in quasi-one-dimensional antimony selenide, which runs counter to the simple intuition that claims high defect tolerance exists in semiconductors with antibonding state in the valence band and bonding state in the conduction band. Here we reveal such a defect intolerance actually stems from the richness of structural metastability and vibrational anharmonicity owing to the low-symmetry atomic structure. Taking the deep defect V$_{\rm Se}$ as a benchmark, we show the defect with its ground-state configuration alone does not act as a recombination center. Instead, we identify three different configurations with different formation energies, such richness of metastability offers a higher probability to accomplish a rapid recombination cycle. Another contributing factor is the anharmonicity in the potential energy surfaces that is caused by the large atomic relaxation, which elevates the total capture coefficient by 2-3 orders of magnitude compared with harmonic approximation. Therefore, the unique properties from both crystals and phonons in quasi-one-dimensional system enhance the nonradiative recombination, making the traditional intuition of defect tolerance invalid. These results highlight the importance of the correct identification of metastable defects and phonon anharmonicity in the nonradiative recombination in low-symmetry semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01733v1-abstract-full').style.display = 'none'; document.getElementById('2312.01733v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.12256">arXiv:2311.12256</a> <span> [<a href="https://arxiv.org/pdf/2311.12256">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.3c10633">10.1021/acsnano.3c10633 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local control of a single nitrogen-vacancy center by nanoscale engineered magnetic domain wall motions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=McLaughlin%2C+N+J">Nathan J. McLaughlin</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Senlei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Brock%2C+J+A">Jeffrey A. Brock</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+Y">Yuxuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jingcheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Tserkovnyak%2C+Y">Yaroslav Tserkovnyak</a>, <a href="/search/cond-mat?searchtype=author&query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.12256v1-abstract-short" style="display: inline;"> Effective control and readout of qubits form the technical foundation of next-generation, transformative quantum information sciences and technologies. The nitrogen-vacancy (NV) center, an intrinsic three-level spin system, is naturally relevant in this context due to its excellent quantum coherence, high fidelity of operations, and remarkable functionality over a broad range of experimental condi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12256v1-abstract-full').style.display = 'inline'; document.getElementById('2311.12256v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.12256v1-abstract-full" style="display: none;"> Effective control and readout of qubits form the technical foundation of next-generation, transformative quantum information sciences and technologies. The nitrogen-vacancy (NV) center, an intrinsic three-level spin system, is naturally relevant in this context due to its excellent quantum coherence, high fidelity of operations, and remarkable functionality over a broad range of experimental conditions. It is an active contender for the development and implementation of cutting-edge quantum technologies. Here, we report magnetic domain wall motion driven local control and measurements of NV spin properties. By engineering the local magnetic field environment of an NV center via nanoscale reconfigurable domain wall motions, we show that NV photoluminescence, spin level energies, and coherence time can be reliably controlled and correlated to the magneto-transport response of a magnetic device. Our results highlight the electrically tunable dipole interaction between NV centers and nanoscale magnetic structures, providing an attractive platform to realize interactive information transfer between spin qubits and non-volatile magnetic memory in hybrid quantum spintronic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12256v1-abstract-full').style.display = 'none'; document.getElementById('2311.12256v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11540">arXiv:2311.11540</a> <span> [<a href="https://arxiv.org/pdf/2311.11540">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-40525-1">10.1038/s41467-023-40525-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prominent Josephson tunneling between twisted single copper oxide planes of Bi$_2$Sr$_{2-x}$LaxCuO$_{6+y}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Heng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yuying Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+Z">Zhonghua Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zechao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+S">Shuxu Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+H">Hong-Yi Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+X">Xiaopeng Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+J">Jian Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Miaoling Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jianhao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+Y">Ying Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xinyan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jing Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Ding Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xue%2C+Q">Qi-Kun Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11540v1-abstract-short" style="display: inline;"> Josephson tunneling in twisted cuprate junctions provides a litmus test for the pairing symmetry, which is fundamental for understanding the microscopic mechanism of high temperature superconductivity. This issue is rekindled by experimental advances in van der Waals stacking and the proposal of an emergent d+id-wave. So far, all experiments have been carried out on Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11540v1-abstract-full').style.display = 'inline'; document.getElementById('2311.11540v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11540v1-abstract-full" style="display: none;"> Josephson tunneling in twisted cuprate junctions provides a litmus test for the pairing symmetry, which is fundamental for understanding the microscopic mechanism of high temperature superconductivity. This issue is rekindled by experimental advances in van der Waals stacking and the proposal of an emergent d+id-wave. So far, all experiments have been carried out on Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (Bi-2212) with double CuO$_2$ planes but show controversial results. Here, we investigate junctions made of Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+y}$ (Bi-2201) with single CuO$_2$ planes. Our on-site cold stacking technique ensures uncompromised crystalline quality and stoichiometry at the interface. Junctions with carefully calibrated twist angles around 45掳 show strong Josephson tunneling and conventional temperature dependence. Furthermore, we observe standard Fraunhofer diffraction patterns and integer Fiske steps in a junction with a twist angle of 45.0$\pm$0.2掳. Together, these results pose strong constraints on the d or d+id-wave pairing and suggest an indispensable isotropic pairing component. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11540v1-abstract-full').style.display = 'none'; document.getElementById('2311.11540v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 5201 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03493">arXiv:2311.03493</a> <span> [<a href="https://arxiv.org/pdf/2311.03493">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-024-02618-6">10.1038/s41567-024-02618-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dimensionality crossover to 2D vestigial nematicity from 3D zigzag antiferromagnetism in an XY-type honeycomb van der Waals magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zeliang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+G">Gaihua Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+C">Chengkang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+N">Nan Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qiuyang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+Z">Zhipeng Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Nnokwe%2C+C">Cynthia Nnokwe</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+H">Hui Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Mandrus%2C+D">David Mandrus</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C">Chunhui Du</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+R">Rui He</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03493v1-abstract-short" style="display: inline;"> Fluctuations and disorder effects are substantially enhanced in reduced dimensionalities. While they are mostly considered as the foe for long-range orders, fluctuations and disorders can also stimulate the emergence of novel phases of matter, for example, vestigial orders. Taking 2D magnetism as a platform, existing efforts have been focused on maintaining 2D long-range magnetic orders by suppres… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03493v1-abstract-full').style.display = 'inline'; document.getElementById('2311.03493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03493v1-abstract-full" style="display: none;"> Fluctuations and disorder effects are substantially enhanced in reduced dimensionalities. While they are mostly considered as the foe for long-range orders, fluctuations and disorders can also stimulate the emergence of novel phases of matter, for example, vestigial orders. Taking 2D magnetism as a platform, existing efforts have been focused on maintaining 2D long-range magnetic orders by suppressing fluctuations, whereas the other side, exploiting fluctuations for realizing new 2D magnetic phases, remains as an uncharted territory. Here, using a combination of NV spin relaxometry, optical spectroscopy, and Monte Carlo simulations, we report, in an XY-type honeycomb magnet NiPS3, the phase transition from the zigzag AFM order in 3D bulk to a new Z3 vestigial Potts-nematicity in 2D few layers. Spin fluctuations are shown to significantly enhance over the GHz-THz range as the layer number of NiPS3 reduces, using the NV spin relaxometry and the optical Raman quasi-elastic scattering. As a result, the Raman signatures of the zigzag AFM for bulk NiPS3, a zone-folded phonon at ~30cm-1 from the broken translational symmetry (PBTS) and a degeneracy lift of two phonons at ~180cm-1 for the broken 3-fold rotational symmetry (PBRS), evolve into the disappearance of PBTS and the survival of PBRS in few-layer NiPS3, with a critical thickness of ~10nm. The optical linear dichroism microscopy images all three nematic domain states in a single few-layer NiPS3 flake. The large-scale Monte Carlo simulations for bilayer NiPS3 model confirms the absence of long-range zigzag AFM order but the formation of the Z3 vestigial Potts-nematic phase, corroborating with the experimental finding. Our results demonstrate the positivity of strong fluctuations in creating new phases of matter after destroying more conventional ones, and offer an unprecedented pathway for developing novel 2D phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03493v1-abstract-full').style.display = 'none'; document.getElementById('2311.03493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.16103">arXiv:2309.16103</a> <span> [<a href="https://arxiv.org/pdf/2309.16103">pdf</a>, <a href="https://arxiv.org/format/2309.16103">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0178576">10.1063/5.0178576 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-equilibrium molecular dynamics of steady-state fluid transport through a 2D membrane driven by a concentration gradient </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rankin%2C+D+J">Daniel J. Rankin</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+D+M">David M. Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.16103v1-abstract-short" style="display: inline;"> We use a novel non-equilibrium algorithm to simulate steady-state fluid transport through a two-dimensional (2D) membrane due to a concentration gradient by molecular dynamics (MD) for the first time. We confirm that, as required by the Onsager reciprocal relations in the linear-response regime, the solution flux obtained using this algorithm agrees with the excess solute flux obtained from an est… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.16103v1-abstract-full').style.display = 'inline'; document.getElementById('2309.16103v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.16103v1-abstract-full" style="display: none;"> We use a novel non-equilibrium algorithm to simulate steady-state fluid transport through a two-dimensional (2D) membrane due to a concentration gradient by molecular dynamics (MD) for the first time. We confirm that, as required by the Onsager reciprocal relations in the linear-response regime, the solution flux obtained using this algorithm agrees with the excess solute flux obtained from an established non-equilibrium MD algorithm for pressure-driven flow. In addition, we show that the concentration-gradient solution flux in this regime is quantified far more efficiently by explicitly applying a transmembrane concentration difference using our algorithm than by applying Onsager reciprocity to pressure-driven flow. The simulated fluid fluxes are captured with reasonable quantitative accuracy by our previously derived continuum theory of concentration-gradient-driven fluid transport through a 2D membrane [J. Chem. Phys. 151, 044705 (2019)] for a wide range of solution and membrane parameters even though the simulated pore sizes are only several times the size of the fluid particles. The simulations deviate from the theory especially for strong solute--membrane interactions relative to the thermal energy, for which the theoretical approximations break down. Our findings will be beneficial for molecular-level understanding of fluid transport driven by concentration gradients through membranes made from 2D materials, which have diverse applications in energy harvesting, molecular separations, and biosensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.16103v1-abstract-full').style.display = 'none'; document.getElementById('2309.16103v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 159, 214705 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04359">arXiv:2309.04359</a> <span> [<a href="https://arxiv.org/pdf/2309.04359">pdf</a>, <a href="https://arxiv.org/format/2309.04359">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-024-02483-3">10.1038/s41567-024-02483-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Irreversible entropy transport enhanced by fermionic superfluidity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fabritius%2C+P">Philipp Fabritius</a>, <a href="/search/cond-mat?searchtype=author&query=Mohan%2C+J">Jeffrey Mohan</a>, <a href="/search/cond-mat?searchtype=author&query=Talebi%2C+M">Mohsen Talebi</a>, <a href="/search/cond-mat?searchtype=author&query=Wili%2C+S">Simon Wili</a>, <a href="/search/cond-mat?searchtype=author&query=Zwerger%2C+W">Wilhelm Zwerger</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meng-Zi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Esslinger%2C+T">Tilman Esslinger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04359v2-abstract-short" style="display: inline;"> The nature of particle and entropy flow between two superfluids is often understood in terms of reversible flow carried by an entropy-free, macroscopic wavefunction. While this wavefunction is responsible for many intriguing properties of superfluids and superconductors, its interplay with excitations in non-equilibrium situations is less understood. Here, we observe large concurrent flows of both… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04359v2-abstract-full').style.display = 'inline'; document.getElementById('2309.04359v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04359v2-abstract-full" style="display: none;"> The nature of particle and entropy flow between two superfluids is often understood in terms of reversible flow carried by an entropy-free, macroscopic wavefunction. While this wavefunction is responsible for many intriguing properties of superfluids and superconductors, its interplay with excitations in non-equilibrium situations is less understood. Here, we observe large concurrent flows of both particles and entropy through a ballistic channel connecting two strongly interacting fermionic superfluids. Both currents respond nonlinearly to chemical potential and temperature biases. We find that the entropy transported per particle is much larger than the prediction of superfluid hydrodynamics in the linear regime and largely independent of changes in the channel's geometry. In contrast, the timescales of advective and diffusive entropy transport vary significantly with the channel geometry. In our setting, superfluidity counterintuitively increases the speed of entropy transport. Moreover, we develop a phenomenological model describing the nonlinear dynamics within the framework of generalised gradient dynamics. Our approach for measuring entropy currents may help elucidate mechanisms of heat transfer in superfluids and superconducting devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04359v2-abstract-full').style.display = 'none'; document.getElementById('2309.04359v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version of the article has been accepted for publication, after peer review but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s41567-024-02483-3</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01497">arXiv:2309.01497</a> <span> [<a href="https://arxiv.org/pdf/2309.01497">pdf</a>, <a href="https://arxiv.org/format/2309.01497">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0173813">10.1063/5.0173813 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collective and non-collective molecular dynamics in a ferroelectric nematic liquid crystal studied by broadband dielectric spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Erkoreka%2C+A">Aitor Erkoreka</a>, <a href="/search/cond-mat?searchtype=author&query=Mertelj%2C+A">Alenka Mertelj</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mingjun Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Aya%2C+S">Satoshi Aya</a>, <a href="/search/cond-mat?searchtype=author&query=Sebasti%C3%A1n%2C+N">Nerea Sebasti谩n</a>, <a href="/search/cond-mat?searchtype=author&query=Martinez-Perdiguero%2C+J">Josu Martinez-Perdiguero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01497v2-abstract-short" style="display: inline;"> A great deal of effort has been recently devoted to the study of dielectric relaxation processes in ferroelectric nematic liquid crystals, yet their interpretation remains unclear. In this work, we present the results of broadband dielectric spectroscopy experiments of a prototypical ferroelectric nematogen in the frequency range 10 Hz-110 MHz at different electrode separations and under the appli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01497v2-abstract-full').style.display = 'inline'; document.getElementById('2309.01497v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01497v2-abstract-full" style="display: none;"> A great deal of effort has been recently devoted to the study of dielectric relaxation processes in ferroelectric nematic liquid crystals, yet their interpretation remains unclear. In this work, we present the results of broadband dielectric spectroscopy experiments of a prototypical ferroelectric nematogen in the frequency range 10 Hz-110 MHz at different electrode separations and under the application of DC bias fields. The results evidence a complex behavior in all phases due to the magnitude of polar correlations in these systems. The observed modes have been assigned to different relaxation mechanisms based on existing theoretical frameworks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01497v2-abstract-full').style.display = 'none'; document.getElementById('2309.01497v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The following article has been submitted to The Journal of Chemical Physics. After it is published, it will be found at https://pubs.aip.org/aip/jcp</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 159, 184502 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15396">arXiv:2308.15396</a> <span> [<a href="https://arxiv.org/pdf/2308.15396">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Layer-dependent magnetism and spin fluctuations in atomically thin van der Waals magnet CrPS4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Green%2C+J+C">Jazmine C. Green</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jingcheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Williams%2C+V">Violet Williams</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Senlei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Djugba%2C+D">Dziga Djugba</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Flebus%2C+B">Benedetta Flebus</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+N">Ni Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15396v1-abstract-short" style="display: inline;"> van der Waals (vdW) magnets, an emerging family of two-dimensional (2D) materials, have received tremendous attention due to their rich fundamental physics and significant potential for cutting-edge technological applications. In contrast to the conventional bulk counterparts, vdW magnets exhibit significant tunability of local material properties, such as stacking engineered interlayer coupling a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15396v1-abstract-full').style.display = 'inline'; document.getElementById('2308.15396v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15396v1-abstract-full" style="display: none;"> van der Waals (vdW) magnets, an emerging family of two-dimensional (2D) materials, have received tremendous attention due to their rich fundamental physics and significant potential for cutting-edge technological applications. In contrast to the conventional bulk counterparts, vdW magnets exhibit significant tunability of local material properties, such as stacking engineered interlayer coupling and layer-number dependent magnetic and electronic interactions, which promise to deliver previously unavailable merits to develop multifunctional microelectronic devices. As a further ingredient of this emerging topic, here we report nanoscale quantum sensing and imaging of atomically thin vdW magnet chromium thiophosphate CrPS4, revealing its characteristic layer-dependent 2D static magnetism and dynamic spin fluctuations. We also show a large tunneling magnetoresistance in CrPS4-based spin filter vdW heterostructures. The excellent material stability, robust strategy against environmental degradation, in combination with tailored magnetic properties highlight the potential of CrPS4 in developing state-of-the-art 2D spintronic devices for next-generation information technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15396v1-abstract-full').style.display = 'none'; document.getElementById('2308.15396v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03876">arXiv:2307.03876</a> <span> [<a href="https://arxiv.org/pdf/2307.03876">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Revealing intrinsic domains and fluctuations of moir茅 magnetism by a wide-field quantum microscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zeliang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+G">Gerald Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+H">Hongchao Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Nishkarsh Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+G">Gaihua Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Sung%2C+S+H">Suk Hyun Sung</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jingcheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+S">Shaohua Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+S">Shangjie Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Hovden%2C+R">Robert Hovden</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+R">Rui He</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03876v1-abstract-short" style="display: inline;"> Moir茅 magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront condensed matter physics research. Nanoscale imaging of moir茅 magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03876v1-abstract-full').style.display = 'inline'; document.getElementById('2307.03876v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03876v1-abstract-full" style="display: none;"> Moir茅 magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront condensed matter physics research. Nanoscale imaging of moir茅 magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlations, and unconventional nanomagnetism. Here we report spin defect-based wide-field imaging of magnetic domains and spin fluctuations in twisted double trilayer (tDT) chromium triiodide CrI3. We explicitly show that intrinsic moir茅 domains of opposite magnetizations appear over arrays of moir茅 supercells in low-twist-angle tDT CrI3. In contrast, spin fluctuations measured in tDT CrI3 manifest little spatial variations on the same mesoscopic length scale due to the dominant driving force of intralayer exchange interaction. Our results enrich the current understanding of exotic magnetic phases sustained by moir茅 magnetism and highlight the opportunities provided by quantum spin sensors in probing microscopic spin related phenomena on two-dimensional flatland. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03876v1-abstract-full').style.display = 'none'; document.getElementById('2307.03876v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09575">arXiv:2306.09575</a> <span> [<a href="https://arxiv.org/pdf/2306.09575">pdf</a>, <a href="https://arxiv.org/format/2306.09575">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adf1506">10.1126/science.adf1506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Trevisan%2C+T+V">Tha铆s V. Trevisan</a>, <a href="/search/cond-mat?searchtype=author&query=Onishi%2C+Y">Yugo Onishi</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shao-Wen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Houchen Li</a>, <a href="/search/cond-mat?searchtype=author&query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C+R">Chunhui Rita Du</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09575v2-abstract-short" style="display: inline;"> Quantum geometry - the geometry of electron Bloch wavefunctions - is central to modern condensed matter physics. Due to the quantum nature, quantum geometry has two parts, the real part quantum metric and the imaginary part Berry curvature. The studies of Berry curvature have led to countless breakthroughs, ranging from the quantum Hall effect in 2DEGs to the anomalous Hall effect (AHE) in ferroma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09575v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09575v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09575v2-abstract-full" style="display: none;"> Quantum geometry - the geometry of electron Bloch wavefunctions - is central to modern condensed matter physics. Due to the quantum nature, quantum geometry has two parts, the real part quantum metric and the imaginary part Berry curvature. The studies of Berry curvature have led to countless breakthroughs, ranging from the quantum Hall effect in 2DEGs to the anomalous Hall effect (AHE) in ferromagnets. However, in contrast to Berry curvature, the quantum metric has rarely been explored. Here, we report a new nonlinear Hall effect induced by quantum metric by interfacing even-layered MnBi2Te4 (a PT-symmetric antiferromagnet (AFM)) with black phosphorus. This novel nonlinear Hall effect switches direction upon reversing the AFM spins and exhibits distinct scaling that suggests a non-dissipative nature. Like the AHE brought Berry curvature under the spotlight, our results open the door to discovering quantum metric responses. Moreover, we demonstrate that the AFM can harvest wireless electromagnetic energy via the new nonlinear Hall effect, therefore enabling intriguing applications that bridges nonlinear electronics with AFM spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09575v2-abstract-full').style.display = 'none'; document.getElementById('2306.09575v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures and a Supplementary Materials with 66 pages, 4 figures and 3 tables. Originally submitted to Science on Oct. 5, 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 381, 181-186 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11343">arXiv:2305.11343</a> <span> [<a href="https://arxiv.org/pdf/2305.11343">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c01523">10.1021/acs.nanolett.3c01523 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoscale magnetic domains in polycrystalline Mn3Sn films imaged by a scanning single-spin magnetometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Senlei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&query=McLaughlin%2C+N+J">Nathan J. McLaughlin</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+Y">Yuxuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jingcheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hua Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11343v1-abstract-short" style="display: inline;"> Noncollinear antiferromagnets with novel magnetic orders, vanishingly small net magnetization and exotic spin related properties hold enormous promise for developing next-generation, transformative spintronic applications. A major ongoing research focus of this community is to explore, control, and harness unconventional magnetic phases of this emergent material system to deliver state-of-the-art… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11343v1-abstract-full').style.display = 'inline'; document.getElementById('2305.11343v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11343v1-abstract-full" style="display: none;"> Noncollinear antiferromagnets with novel magnetic orders, vanishingly small net magnetization and exotic spin related properties hold enormous promise for developing next-generation, transformative spintronic applications. A major ongoing research focus of this community is to explore, control, and harness unconventional magnetic phases of this emergent material system to deliver state-of-the-art functionalities for modern microelectronics. Here we report direct imaging of magnetic domains of polycrystalline Mn3Sn films, a prototypical noncollinear antiferromagnet, using nitrogen-vacancy-based single-spin scanning microscopy. Nanoscale evolution of local stray field patterns of Mn3Sn samples are systematically investigated in response to external driving forces, revealing the characteristic "heterogeneous" magnetic switching behaviors in polycrystalline textured Mn3Sn films. Our results contribute to a comprehensive understanding of inhomogeneous magnetic orders of noncollinear antiferromagnets, highlighting the potential of nitrogen-vacancy centers to study microscopic spin properties of a broad range of emergent condensed matter systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11343v1-abstract-full').style.display = 'none'; document.getElementById('2305.11343v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2023, 23, 11, 5326-5333 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03422">arXiv:2305.03422</a> <span> [<a href="https://arxiv.org/pdf/2305.03422">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-41830-5">10.1038/s41467-023-41830-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrically programmable magnetic coupling in an Ising network exploiting solid-state ionic gating </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yun%2C+C">Chao Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+Z">Zhongyu Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Hrabec%2C+A">Ale拧 Hrabec</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhentao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mantao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Leran Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+Y">Yifei Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+Y">Yikun Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wenyun Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+Y">Yanglong Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinbo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Heyderman%2C+L+J">Laura J. Heyderman</a>, <a href="/search/cond-mat?searchtype=author&query=Gambardella%2C+P">Pietro Gambardella</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+Z">Zhaochu Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03422v1-abstract-short" style="display: inline;"> Two-dimensional arrays of magnetically coupled nanomagnets provide a mesoscopic platform for exploring collective phenomena as well as realizing a broad range of spintronic devices. In particular, the magnetic coupling plays a critical role in determining the nature of the cooperative behaviour and providing new functionalities in nanomagnet-based devices. Here, we create coupled Ising-like nanoma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03422v1-abstract-full').style.display = 'inline'; document.getElementById('2305.03422v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03422v1-abstract-full" style="display: none;"> Two-dimensional arrays of magnetically coupled nanomagnets provide a mesoscopic platform for exploring collective phenomena as well as realizing a broad range of spintronic devices. In particular, the magnetic coupling plays a critical role in determining the nature of the cooperative behaviour and providing new functionalities in nanomagnet-based devices. Here, we create coupled Ising-like nanomagnets in which the coupling between adjacent nanomagnetic regions can be reversibly converted between parallel and antiparallel through solid-state ionic gating. This is achieved with the voltage-control of magnetic anisotropies in a nanosized region where the symmetric exchange interaction favours parallel alignment and the antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction, favours antiparallel alignment. Applying this concept to a two-dimensional lattice, we demonstrate a voltage-controlled phase transition in artificial spin ices. Furthermore, we achieve an addressable control of the individual couplings and realize an electrically programmable Ising network, which opens up new avenues to design nanomagnet-based logic devices and neuromorphic computers <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03422v1-abstract-full').style.display = 'none'; document.getElementById('2305.03422v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 14, 6367 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00928">arXiv:2304.00928</a> <span> [<a href="https://arxiv.org/pdf/2304.00928">pdf</a>, <a href="https://arxiv.org/format/2304.00928">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.033095">10.1103/PhysRevResearch.5.033095 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DC transport in a dissipative superconducting quantum point contact </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Visuri%2C+A">Anne-Maria Visuri</a>, <a href="/search/cond-mat?searchtype=author&query=Mohan%2C+J">Jeffrey Mohan</a>, <a href="/search/cond-mat?searchtype=author&query=Uchino%2C+S">Shun Uchino</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meng-Zi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Esslinger%2C+T">Tilman Esslinger</a>, <a href="/search/cond-mat?searchtype=author&query=Giamarchi%2C+T">Thierry Giamarchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00928v2-abstract-short" style="display: inline;"> We study the current-voltage characteristics of a superconducting junction with particle losses at the contacts. We adopt the Keldysh formalism to compute the steady-state current for varying transmission of the contact. In the low transmission regime, the dissipation leads to an enhancement of the current at low bias, a nonmonotonic dependence of current on dissipation, and the emergence of new s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00928v2-abstract-full').style.display = 'inline'; document.getElementById('2304.00928v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00928v2-abstract-full" style="display: none;"> We study the current-voltage characteristics of a superconducting junction with particle losses at the contacts. We adopt the Keldysh formalism to compute the steady-state current for varying transmission of the contact. In the low transmission regime, the dissipation leads to an enhancement of the current at low bias, a nonmonotonic dependence of current on dissipation, and the emergence of new structures in the current-voltage curves. The effect of dissipation by particle loss is found to be qualitatively different from that of a finite temperature and a finite inelastic scattering rate in the reservoirs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00928v2-abstract-full').style.display = 'none'; document.getElementById('2304.00928v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 033095 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.11012">arXiv:2303.11012</a> <span> [<a href="https://arxiv.org/pdf/2303.11012">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> High-g-Factor Phase-Matched Circular Dichroism of Second Harmonic Generation in Chiral Polar Liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+X">Xiuhu Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jinxing Li</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mingjun Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Aya%2C+S">Satoshi Aya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.11012v1-abstract-short" style="display: inline;"> Circular dichroism is a technologically important phenomenon contrasting the absorption and resultant emission properties between left- and right-handed circularly polarized light. While the chiral handedness of systems mainly determines the mechanism of the circular dichroism in linear optics, the counterpart in the nonlinear optical regime is nontrivial. Here, in contrast to traditional nonlinea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11012v1-abstract-full').style.display = 'inline'; document.getElementById('2303.11012v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.11012v1-abstract-full" style="display: none;"> Circular dichroism is a technologically important phenomenon contrasting the absorption and resultant emission properties between left- and right-handed circularly polarized light. While the chiral handedness of systems mainly determines the mechanism of the circular dichroism in linear optics, the counterpart in the nonlinear optical regime is nontrivial. Here, in contrast to traditional nonlinear circular dichroism responses from structured surfaces, we report on an unprecedented bulk-material-induced circular dichroism of second harmonic generation with a massive g-factor up to 1.8. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11012v1-abstract-full').style.display = 'none'; document.getElementById('2303.11012v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.06683">arXiv:2303.06683</a> <span> [<a href="https://arxiv.org/pdf/2303.06683">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effect of AC current annealing on the microstructure, magnetism and magnetoimpedance of CoFeSiBNb$_3$ microfibers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jingshun Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+F">Feng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meifang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yun Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Congliang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Ze Li</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+H">Hongxian Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Phan%2C+M">Manh-Huong Phan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.06683v1-abstract-short" style="display: inline;"> This paper systematically studies the changes in the microstructure and magnetic properties of CoFeSiBNb$_3$ metallic microfibers before and after AC annealing. The influence of current intensity on the magneto-impedance (MI) effect of the microfibers was analyzed and the microstructure changes of the microfibers before and after annealing were explored by means of high-resolution transmission ele… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06683v1-abstract-full').style.display = 'inline'; document.getElementById('2303.06683v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.06683v1-abstract-full" style="display: none;"> This paper systematically studies the changes in the microstructure and magnetic properties of CoFeSiBNb$_3$ metallic microfibers before and after AC annealing. The influence of current intensity on the magneto-impedance (MI) effect of the microfibers was analyzed and the microstructure changes of the microfibers before and after annealing were explored by means of high-resolution transmission electron microscopy. Using this data, the mechanism of current annealing to improve the MI characteristics was further revealed. The results show that the surface of the CoFeSiBNb$_3$ metallic microfibers after AC current annealing is smooth and continuous; its general magnetic properties and MI ratio increase at first with current intensity and then decrease at higher intensities. During the current annealing process, Joule heat eliminates residual stresses in the microfibers while forming atomically ordered micro-domains, which improves the degree of its organizational order. Meanwhile, a stable toroidal magnetic field is generated, which promotes the distribution of the magnetic domain structure of the microfibers, thereby improving the MI effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06683v1-abstract-full').style.display = 'none'; document.getElementById('2303.06683v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.06621">arXiv:2303.06621</a> <span> [<a href="https://arxiv.org/pdf/2303.06621">pdf</a>, <a href="https://arxiv.org/format/2303.06621">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0133795">10.1063/5.0133795 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Realization of independent contacts in barrier-separated InAs/GaSb quantum wells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xingjun Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jianhuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Miaoling Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+S">Shili Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+R">Rui-Rui Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.06621v1-abstract-short" style="display: inline;"> InAs/GaSb double quantum wells (QWs) separated by a 100 脜 AlSb middle barrier are grown by molecular beam epitaxy. We report a nanofabrication technique that utilizes the surface Fermi level pinning position in InAs $[E_f^s(\rm InAs)]$ for realizing independent electric contacts to each well. In particular, separate ohmic contacts to the upper InAs quantum well are achieved by selectively etching… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06621v1-abstract-full').style.display = 'inline'; document.getElementById('2303.06621v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.06621v1-abstract-full" style="display: none;"> InAs/GaSb double quantum wells (QWs) separated by a 100 脜 AlSb middle barrier are grown by molecular beam epitaxy. We report a nanofabrication technique that utilizes the surface Fermi level pinning position in InAs $[E_f^s(\rm InAs)]$ for realizing independent electric contacts to each well. In particular, separate ohmic contacts to the upper InAs quantum well are achieved by selectively etching down to the InAs, while contacts to the lower GaSb quantum well are obtained by the depletion method. For the latter, the upper InAs quantum well is locally pinched off by top etched trenches capped with a remaining 2-3 nm InAs layer. As a result of a relatively low $E_f^s(\rm InAs)$, applying a negative bias gate potential will create a conducting hole channel in GaSb, and hence a separate ohmic contact to the lower quantum well. This method is demonstrated with experiment and the support of a self-consistent band bending calculation. A number of experiments on separately probing Coulomb and tunnel-coupled InAs/GaSb systems now become accessible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06621v1-abstract-full').style.display = 'none'; document.getElementById('2303.06621v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 122, 122102 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.12868">arXiv:2302.12868</a> <span> [<a href="https://arxiv.org/pdf/2302.12868">pdf</a>, <a href="https://arxiv.org/format/2302.12868">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ijengsci.2023.103888">10.1016/j.ijengsci.2023.103888 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stiffness matrix method for modelling wave propagation in arbitrary multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Ming Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Cegla%2C+F">Frederic Cegla</a>, <a href="/search/cond-mat?searchtype=author&query=Lan%2C+B">Bo Lan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.12868v1-abstract-short" style="display: inline;"> Natural and engineered media usually involve combinations of solid, fluid and porous layers, and accurate and stable modelling of wave propagation in such complex multilayered media is fundamental to evaluating their properties with wave-based methods. Here we present a general stiffness matrix method for modelling waves in arbitrary multilayers. The method first formulates stiffness matrices for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12868v1-abstract-full').style.display = 'inline'; document.getElementById('2302.12868v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.12868v1-abstract-full" style="display: none;"> Natural and engineered media usually involve combinations of solid, fluid and porous layers, and accurate and stable modelling of wave propagation in such complex multilayered media is fundamental to evaluating their properties with wave-based methods. Here we present a general stiffness matrix method for modelling waves in arbitrary multilayers. The method first formulates stiffness matrices for individual layers based on the governing wave equations for fluids and solids, and the Biot theory for porous materials. Then it utilises the boundary conditions considered at layer interfaces to assemble the layer matrices into a global system of equations, to obtain solutions for reflection and transmission coefficients at any incidence. Its advantage over existing methods is manifested by its unconditional computational stability, and its validity is proved by experimental validations on single solid sheets, porous layers, and porous-solid-porous battery electrodes. This establishes a powerful theoretical platform that allows us to develop advanced wave-based methods to quantitatively characterise properties of the layers, especially for layers of porous materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12868v1-abstract-full').style.display = 'none'; document.getElementById('2302.12868v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal of Engineering Science 190(2023): 103888 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.11681">arXiv:2302.11681</a> <span> [<a href="https://arxiv.org/pdf/2302.11681">pdf</a>, <a href="https://arxiv.org/format/2302.11681">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2341-2">10.1007/s11433-024-2341-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy--Information Trade-off Induces Continuous and Discontinuous Phase Transitions in Lateral Predictive Coding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Z">Zhen-Ye Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+R">Ruyi Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Miao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Hai-Jun Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.11681v2-abstract-short" style="display: inline;"> Lateral predictive coding is a recurrent neural network which creates energy-efficient internal representations by exploiting statistical regularity in sensory inputs. Here we investigate the trade-off between information robustness and energy in a linear model of lateral predictive coding analytically and by numerical minimization of a free energy. We observe several phase transitions in the syna… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.11681v2-abstract-full').style.display = 'inline'; document.getElementById('2302.11681v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.11681v2-abstract-full" style="display: none;"> Lateral predictive coding is a recurrent neural network which creates energy-efficient internal representations by exploiting statistical regularity in sensory inputs. Here we investigate the trade-off between information robustness and energy in a linear model of lateral predictive coding analytically and by numerical minimization of a free energy. We observe several phase transitions in the synaptic weight matrix, especially a continuous transition which breaks reciprocity and permutation symmetry and builds cyclic dominance and a discontinuous transition with the associated sudden emergence of tight balance between excitatory and inhibitory interactions. The optimal network follows an ideal-gas law in an extended temperature range and saturates the efficiency upper-bound of energy utilization. These results bring theoretical insights on the emergence and evolution of complex internal models in predictive processing systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.11681v2-abstract-full').style.display = 'none'; document.getElementById('2302.11681v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages main text, supplementary text combined. This is an extensively revised version, containing new analytical results and numerical results</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science China Physics, Mechanics Astronomy 67, 260511 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07067">arXiv:2302.07067</a> <span> [<a href="https://arxiv.org/pdf/2302.07067">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/aelm.202201105">10.1002/aelm.202201105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum solid phase and Coulomb drag in two-dimensional electron-electron bilayers of MoS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meizhen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Zefei Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chui%2C+S">Siu-Tat Chui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07067v1-abstract-short" style="display: inline;"> Coulomb drag experiments can give us information about the interaction state of double-layer systems. Here, we demonstrate anomalous Coulomb drag behaviours in a two-dimensional electron-electron bilayer system constructed by stacking atomically thin MoS2 on opposite sides of thin dielectric layers of boron nitride. In the low temperature regime, the measured drag resistance does not follow the be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07067v1-abstract-full').style.display = 'inline'; document.getElementById('2302.07067v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07067v1-abstract-full" style="display: none;"> Coulomb drag experiments can give us information about the interaction state of double-layer systems. Here, we demonstrate anomalous Coulomb drag behaviours in a two-dimensional electron-electron bilayer system constructed by stacking atomically thin MoS2 on opposite sides of thin dielectric layers of boron nitride. In the low temperature regime, the measured drag resistance does not follow the behaviour predicted by the Coulomb drag models of exchanging momenta and energies with the particles in Fermi-liquid bilayer systems. Instead, it shows an upturn to higher and higher values. We investigate quantum solid/fluid phases and the Kosterlitz-Thouless/Wigner two-dimensional quantum melting transition in this bilayer system and describe this interesting phenomenon based on thermally activated carriers of quantum defects from the formation of the correlation-induced electron solid phases with enhanced stabilization by the potential due to the boron nitride dielectric layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07067v1-abstract-full').style.display = 'none'; document.getElementById('2302.07067v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published in Advanced Electronic Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.10881">arXiv:2301.10881</a> <span> [<a href="https://arxiv.org/pdf/2301.10881">pdf</a>, <a href="https://arxiv.org/format/2301.10881">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0143724">10.1063/5.0143724 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic molecular coarse-graining by force and torque matching with neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+M+O">Marltan O. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+D+M">David M. Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.10881v1-abstract-short" style="display: inline;"> We develop a machine-learning method for coarse-graining condensed-phase molecular systems using anisotropic particles. The method extends currently available high-dimensional neural network potentials by addressing molecular anisotropy. We demonstrate the flexibility of the method by parametrizing single-site coarse-grained models of a rigid small molecule (benzene) and a semi-flexible organic se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10881v1-abstract-full').style.display = 'inline'; document.getElementById('2301.10881v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.10881v1-abstract-full" style="display: none;"> We develop a machine-learning method for coarse-graining condensed-phase molecular systems using anisotropic particles. The method extends currently available high-dimensional neural network potentials by addressing molecular anisotropy. We demonstrate the flexibility of the method by parametrizing single-site coarse-grained models of a rigid small molecule (benzene) and a semi-flexible organic semiconductor (sexithiophene), attaining structural accuracy close to the all-atom models for both molecules at considerably lower computational expense. The machine-learning method of constructing the coarse-grained potential is shown to be straightforward and sufficiently robust to capture anisotropic interactions and many-body effects. The method is validated through its ability to reproduce the structural properties of the small molecule's liquid phase and the phase transitions of the semi-flexible molecule over a wide temperature range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10881v1-abstract-full').style.display = 'none'; document.getElementById('2301.10881v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages + 8 pages supplementary material, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 159, 024110 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07933">arXiv:2301.07933</a> <span> [<a href="https://arxiv.org/pdf/2301.07933">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38749-2">10.1038/s41467-023-38749-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polarization patterning in ferroelectric nematic liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sebasti%C3%A1n%2C+N">Nerea Sebasti谩n</a>, <a href="/search/cond-mat?searchtype=author&query=Lov%C5%A1in%2C+M">Matija Lov拧in</a>, <a href="/search/cond-mat?searchtype=author&query=Berteloot%2C+B">Brecth Berteloot</a>, <a href="/search/cond-mat?searchtype=author&query=Osterman%2C+N">Natan Osterman</a>, <a href="/search/cond-mat?searchtype=author&query=Petelin%2C+A">Andrej Petelin</a>, <a href="/search/cond-mat?searchtype=author&query=Mandle%2C+R+J">Richard J. Mandle</a>, <a href="/search/cond-mat?searchtype=author&query=Aya%2C+S">Satoshi Aya</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mingjun Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Dreven%C5%A1ek-Olenik%2C+I">Irena Dreven拧ek-Olenik</a>, <a href="/search/cond-mat?searchtype=author&query=Neyts%2C+K">Kristiaan Neyts</a>, <a href="/search/cond-mat?searchtype=author&query=Mertelj%2C+A">Alenka Mertelj</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07933v1-abstract-short" style="display: inline;"> The recently discovered ferroelectric nematic liquids incorporate to the functional combination of fluidity, processability and anisotropic optical properties of nematic liquids, an astonishing range of physical properties derived from the phase polarity. Among them, the remarkably large values of second order optical susceptibility encourage to exploit these new materials for non-linear photonic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07933v1-abstract-full').style.display = 'inline'; document.getElementById('2301.07933v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07933v1-abstract-full" style="display: none;"> The recently discovered ferroelectric nematic liquids incorporate to the functional combination of fluidity, processability and anisotropic optical properties of nematic liquids, an astonishing range of physical properties derived from the phase polarity. Among them, the remarkably large values of second order optical susceptibility encourage to exploit these new materials for non-linear photonic applications. Here we show that photopatterning of the alignment layer can be used to structure polarization patterns. To do so, we take advantage of the flexoelectric effect and design splay structures that geometrically define the polarization direction. We demonstrate the creation of periodic polarization structures and the possibility of guiding polarization by embedding splay structures in uniform backgrounds. The demonstrated capabilities of polarization patterning, open a promising new route for the design of ferroelectric nematic based photonic structures and their exploitation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07933v1-abstract-full').style.display = 'none'; document.getElementById('2301.07933v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages manuscript, 7 Figures, 36 pages Supplementary Information, 25 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.02025">arXiv:2301.02025</a> <span> [<a href="https://arxiv.org/pdf/2301.02025">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Unconventional ferroelectricity in half-filling states of antiparallel stacking of twisted WSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=An%2C+L">Liheng An</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Z">Zishu Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+X">Xuemeng Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meizhen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+X">Xiangbin Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+P">Pei Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+X">Xi Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jingdi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+W">Wang Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.02025v1-abstract-short" style="display: inline;"> Abstract: We report on emergence of an abnormal electronic polarization in twisted double bilayer WSe2 in antiparallel interface stacking geometry, where local centrosymmetry of atomic registries at the twist interface does not favor the spontaneous electronic polarizations as recently observed in the parallel interface stacking geometry. The unconventional ferroelectric behaviors probed by electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02025v1-abstract-full').style.display = 'inline'; document.getElementById('2301.02025v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.02025v1-abstract-full" style="display: none;"> Abstract: We report on emergence of an abnormal electronic polarization in twisted double bilayer WSe2 in antiparallel interface stacking geometry, where local centrosymmetry of atomic registries at the twist interface does not favor the spontaneous electronic polarizations as recently observed in the parallel interface stacking geometry. The unconventional ferroelectric behaviors probed by electronic transport measurement occur at half filling insulating states at 1.5 K and gradually disappear at about 40 K. Single band Hubbard model based on the triangular moir茅 lattice and the interlayer charge transfer controlled by insulating phase transition are proposed to interpret the formation of electronic polarization states near half filling in twisted WSe2 devices. Our work highlights the prominent role of many-body electronic interaction in fostering novel quantum states in moir茅-structured systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02025v1-abstract-full').style.display = 'none'; document.getElementById('2301.02025v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12666">arXiv:2212.12666</a> <span> [<a href="https://arxiv.org/pdf/2212.12666">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.066301">10.1103/PhysRevLett.131.066301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic nonlinear Hall effect and gate-switchable Berry curvature sliding in twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meizhen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Zefei Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+X">Xuemeng Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Z">Zishu Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+C">Chun Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12666v2-abstract-short" style="display: inline;"> Though the observation of the quantum anomalous Hall effect and nonlocal transport response reveals nontrivial band topology governed by the Berry curvature in twisted bilayer graphene, some recent works reported nonlinear Hall signals in graphene superlattices that are caused by the extrinsic disorder scattering rather than the intrinsic Berry curvature dipole moment. In this work, we report a Be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12666v2-abstract-full').style.display = 'inline'; document.getElementById('2212.12666v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12666v2-abstract-full" style="display: none;"> Though the observation of the quantum anomalous Hall effect and nonlocal transport response reveals nontrivial band topology governed by the Berry curvature in twisted bilayer graphene, some recent works reported nonlinear Hall signals in graphene superlattices that are caused by the extrinsic disorder scattering rather than the intrinsic Berry curvature dipole moment. In this work, we report a Berry curvature dipole induced intrinsic nonlinear Hall effect in high-quality twisted bilayer graphene devices. We also find that the application of the displacement field substantially changes the direction and amplitude of the nonlinear Hall voltages, as a result of a field-induced sliding of the Berry curvature hotspots. Our work not only proves that the Berry curvature dipole could play a dominant role in generating the intrinsic nonlinear Hall signal in graphene superlattices with low disorder densities, but also demonstrates twisted bilayer graphene to be a sensitive and fine-tunable platform for second harmonic generation and rectification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12666v2-abstract-full').style.display = 'none'; document.getElementById('2212.12666v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 066301 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02926">arXiv:2212.02926</a> <span> [<a href="https://arxiv.org/pdf/2212.02926">pdf</a>, <a href="https://arxiv.org/format/2212.02926">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Krylov Complexity in Calabi-Yau Quantum Mechanics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Du%2C+B">Bao-ning Du</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Min-xin Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02926v2-abstract-short" style="display: inline;"> Recently, a novel measure for the complexity of operator growth is proposed based on Lanczos algorithm and Krylov recursion method. We study this Krylov complexity in quantum mechanical systems derived from some well-known local toric Calabi-Yau geometries, as well as some non-relativistic models. We find that for the Calabi-Yau models, the Lanczos coefficients grow slower than linearly for small… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02926v2-abstract-full').style.display = 'inline'; document.getElementById('2212.02926v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02926v2-abstract-full" style="display: none;"> Recently, a novel measure for the complexity of operator growth is proposed based on Lanczos algorithm and Krylov recursion method. We study this Krylov complexity in quantum mechanical systems derived from some well-known local toric Calabi-Yau geometries, as well as some non-relativistic models. We find that for the Calabi-Yau models, the Lanczos coefficients grow slower than linearly for small $n$'s, consistent with the behavior of integrable models. On the other hand, for the non-relativistic models, the Lanczos coefficients initially grow linearly for small $n$'s, then reach a plateau. Although this looks like the behavior of a chaotic system, it is mostly likely due to saddle-dominated scrambling effects instead, as argued in the literature. In our cases, the slopes of linearly growing Lanczos coefficients almost saturate a bound by the temperature. During our study, we also provide an alternative general derivation of the bound for the slope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02926v2-abstract-full').style.display = 'none'; document.getElementById('2212.02926v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 26 figures. v2: some significant improvements on numerical calculations, conclusions modified, references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> USTC-ICTS/PCFT-22-32 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04692">arXiv:2211.04692</a> <span> [<a href="https://arxiv.org/pdf/2211.04692">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-35443-7">10.1038/s41467-022-35443-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous electric-polarization topology in confined ferroelectric nematics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jidan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yu Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+W">Wentao Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jinxing Li</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mingjun Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Aya%2C+S">Satoshi Aya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04692v1-abstract-short" style="display: inline;"> Topological spin and polar textures have fascinated people in different areas of physics and technologies. However, the observations are limited in magnetic and solid-state ferroelectric systems. Ferroelectric nematic is the first liquid-state ferroelectric that would carry many possibilities of spatially distributed polarization fields. Contrary to traditional magnetic or crystalline systems, ani… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04692v1-abstract-full').style.display = 'inline'; document.getElementById('2211.04692v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04692v1-abstract-full" style="display: none;"> Topological spin and polar textures have fascinated people in different areas of physics and technologies. However, the observations are limited in magnetic and solid-state ferroelectric systems. Ferroelectric nematic is the first liquid-state ferroelectric that would carry many possibilities of spatially distributed polarization fields. Contrary to traditional magnetic or crystalline systems, anisotropic liquid crystal interactions can compete with the polarization counterparts, thereby setting a challenge in understating their interplays and the resultant topologies. Here, we discover chiral polarization meron-like structures during the emergence and growth of quasi-2D ferroelectric nematic domains, which are visualized by fluorescence confocal polarizing microscopy and second harmonic generation microscopies. Such micrometre-scale polarization textures are the modified electric variants of the magnetic merons. Unlike the conventional liquid crystal textures driven solely by the elasticity, the polarization field puts additional topological constraints, e.g., head-to-tail asymmetry, to the systems and results in a variety of previously unidentified polar topological patterns. The chirality can emerge spontaneously in polar textures and can be additionally biased by introducing chiral dopants. An extended mean-field modelling for the ferroelectric nematics reveals that the polarization strength of systems plays a dedicated role in determining polarization topology, providing a guide for exploring diverse polar textures in strongly-polarized liquid crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04692v1-abstract-full').style.display = 'none'; document.getElementById('2211.04692v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03371">arXiv:2210.03371</a> <span> [<a href="https://arxiv.org/pdf/2210.03371">pdf</a>, <a href="https://arxiv.org/format/2210.03371">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.200404">10.1103/PhysRevLett.130.200404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superfluid signatures in a dissipative quantum point contact </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Meng-Zi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Mohan%2C+J">Jeffrey Mohan</a>, <a href="/search/cond-mat?searchtype=author&query=Visuri%2C+A">Anne-Maria Visuri</a>, <a href="/search/cond-mat?searchtype=author&query=Fabritius%2C+P">Philipp Fabritius</a>, <a href="/search/cond-mat?searchtype=author&query=Talebi%2C+M">Mohsen Talebi</a>, <a href="/search/cond-mat?searchtype=author&query=Wili%2C+S">Simon Wili</a>, <a href="/search/cond-mat?searchtype=author&query=Uchino%2C+S">Shun Uchino</a>, <a href="/search/cond-mat?searchtype=author&query=Giamarchi%2C+T">Thierry Giamarchi</a>, <a href="/search/cond-mat?searchtype=author&query=Esslinger%2C+T">Tilman Esslinger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03371v2-abstract-short" style="display: inline;"> We measure superfluid transport of strongly interacting fermionic lithium atoms through a quantum point contact with local, spin-dependent particle loss. We observe that the characteristic non-Ohmic superfluid transport enabled by high-order multiple Andreev reflections transitions into an excess Ohmic current as the dissipation strength exceeds the superfluid gap. We develop a model with mean-fie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03371v2-abstract-full').style.display = 'inline'; document.getElementById('2210.03371v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03371v2-abstract-full" style="display: none;"> We measure superfluid transport of strongly interacting fermionic lithium atoms through a quantum point contact with local, spin-dependent particle loss. We observe that the characteristic non-Ohmic superfluid transport enabled by high-order multiple Andreev reflections transitions into an excess Ohmic current as the dissipation strength exceeds the superfluid gap. We develop a model with mean-field reservoirs connected via tunneling to a dissipative site. Our calculations in the Keldysh formalism reproduce the observed nonequilibrium particle current, yet do not fully explain the observed loss rate or spin current. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03371v2-abstract-full').style.display = 'none'; document.getElementById('2210.03371v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures. Meng-Zi Huang and Jeffrey Mohan contributed equally to this work</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 200404 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.01586">arXiv:2210.01586</a> <span> [<a href="https://arxiv.org/pdf/2210.01586">pdf</a>, <a href="https://arxiv.org/format/2210.01586">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Mirror symmetry breaking of superradiance in a dipolar BEC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Seo%2C+B">Bojeong Seo</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mingchen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Ziting Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Parit%2C+M+K">Mithilesh K. Parit</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yifei He</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+P">Peng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Jo%2C+G">Gyu-Boong Jo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.01586v4-abstract-short" style="display: inline;"> Dicke superradiance occurs when two or more emitters cooperatively interact via the electromagnetic field. This collective light scattering process has been extensively studied across various platforms, from atoms to quantum dots and organic molecules. Despite extensive research, the precise role of direct interactions between emitters in superradiance remains elusive, particularly in many-body sy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01586v4-abstract-full').style.display = 'inline'; document.getElementById('2210.01586v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.01586v4-abstract-full" style="display: none;"> Dicke superradiance occurs when two or more emitters cooperatively interact via the electromagnetic field. This collective light scattering process has been extensively studied across various platforms, from atoms to quantum dots and organic molecules. Despite extensive research, the precise role of direct interactions between emitters in superradiance remains elusive, particularly in many-body systems where the complexity of interactions poses significant challenges. In this study, we investigate the effect of dipole-dipole interaction between 18,000 atoms in dipolar Bose-Einstein condensates (BECs) on the superradiance process. In dipolar BECs, we simplify the complex effect of anisotropic magnetic dipole-dipole interaction with Bogoliubov transformation. We observe that anisotropic Bogoliubov excitation breaks the mirror symmetry in decay modes of superradiance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01586v4-abstract-full').style.display = 'none'; document.getElementById('2210.01586v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.05140">arXiv:2209.05140</a> <span> [<a href="https://arxiv.org/pdf/2209.05140">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Running streams of a ferroelectric nematic liquid crystal on a lithium niobate surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cmok%2C+L">Luka Cmok</a>, <a href="/search/cond-mat?searchtype=author&query=Coda%2C+V">Virginie Coda</a>, <a href="/search/cond-mat?searchtype=author&query=Sebasti%C3%A1n%2C+N">Nerea Sebasti谩n</a>, <a href="/search/cond-mat?searchtype=author&query=Mertelj%2C+A">Alenka Mertelj</a>, <a href="/search/cond-mat?searchtype=author&query=Zgonik%2C+M">Marko Zgonik</a>, <a href="/search/cond-mat?searchtype=author&query=Aya%2C+S">Satoshi Aya</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mingjun Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Montemezzani%2C+G">Germano Montemezzani</a>, <a href="/search/cond-mat?searchtype=author&query=Dreven%C5%A1ek-Olenik%2C+I">Irena Dreven拧ek-Olenik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.05140v1-abstract-short" style="display: inline;"> Sessile droplets of a ferroelectric nematic liquid crystalline material were exposed to surface electric fields produced by pyroelectric and photogalvanic (photovoltaic) effects in X-cut iron-doped lithium niobate crystals. The resulting dynamic processes were monitored by polarization optical (video)microscopy (POM). During heating/cooling cycles, at first, the droplets change their shape from sp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05140v1-abstract-full').style.display = 'inline'; document.getElementById('2209.05140v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.05140v1-abstract-full" style="display: none;"> Sessile droplets of a ferroelectric nematic liquid crystalline material were exposed to surface electric fields produced by pyroelectric and photogalvanic (photovoltaic) effects in X-cut iron-doped lithium niobate crystals. The resulting dynamic processes were monitored by polarization optical (video)microscopy (POM). During heating/cooling cycles, at first, the droplets change their shape from spherical to extended ellipsoidal. Then they start to move rapidly along the surface electric field, i.e., along the crystal's polar axis (c-axis). During this motion, several droplets merge into running streams (tendrils) extending towards the edges of the top surface area. Finally, practically all liquid crystalline material is transported from the top surface to the side surfaces of the crystal. At stabilized temperature, laser illumination of the assembly causes dynamic processes that are localized to the illuminated area. Also, in this case, the LC droplets merge into several tendril-like formations that are preferentially oriented along the c-axis of the crystal. The pattern of tendrils fluctuates with time, but it persists as long as the illumination is present. In this case, the LC material is transported between the central and the edge region of the illuminated area. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05140v1-abstract-full').style.display = 'none'; document.getElementById('2209.05140v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures. arXiv admin note: text overlap with arXiv:2208.02318</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Huang%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Huang%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+M&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>