CINXE.COM

Search results for: swirling flow

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: swirling flow</title> <meta name="description" content="Search results for: swirling flow"> <meta name="keywords" content="swirling flow"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="swirling flow" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="swirling flow"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4768</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: swirling flow</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4768</span> Comparison on Electrode and Ground Arrangements Effect on Heat Transfer under Electric Force in a Channel and a Cavity Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suwimon%20Saneewong%20Na%20Ayuttaya">Suwimon Saneewong Na Ayuttaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Chainarong%20Chaktranond"> Chainarong Chaktranond</a>, <a href="https://publications.waset.org/abstracts/search?q=Phadungsak%20Rattanadecho"> Phadungsak Rattanadecho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study numerically investigates the effects of Electrohydrodynamic on flow patterns and heat transfer enhancement within a cavity which is on the lower wall of channel. In this simulation, effects of using ground wire and ground plate on the flow patterns are compared. Moreover, the positions of electrode wire respecting with ground are tested in the range of angles θ = 0 - 180°. High electrical voltage exposes to air is 20 kV. Bulk mean velocity and temperature of inlet air are controlled at 0.1 m/s and 60°C, respectively. The result shows when electric field is applied, swirling flow is appeared in the channel. In addition, swirling flow patterns in the main flow of using ground plate are widely spreader than that of using ground wire. Moreover, direction of swirling flow also affects the flow pattern and heat transfer in a cavity. These cause the using ground wire to give the maximum temperature and heat transfer higher than using ground plate. Furthermore, when the angle is at θ = 60°, high shear flow effect is obtained. This results show high strength of swirling flow and effective heat transfer enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirling%20flow" title="swirling flow">swirling flow</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamic" title=" electrohydrodynamic"> electrohydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/9317/comparison-on-electrode-and-ground-arrangements-effect-on-heat-transfer-under-electric-force-in-a-channel-and-a-cavity-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4767</span> An Axisymmetric Finite Element Method for Compressible Swirling Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Zanella">Raphael Zanella</a>, <a href="https://publications.waset.org/abstracts/search?q=Todd%20A.%20Oliver"> Todd A. Oliver</a>, <a href="https://publications.waset.org/abstracts/search?q=Karl%20W.%20Schulz"> Karl W. Schulz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work deals with the finite element approximation of axisymmetric compressible flows with swirl velocity. We are interested in problems where the flow, while weakly dependent on the azimuthal coordinate, may have a strong azimuthal velocity component. We describe the approximation of the compressible Navier-Stokes equations with H1-conformal spaces of axisymmetric functions. The weak formulation is implemented in a C++ solver with explicit time marching. The code is first verified with a convergence test on a manufactured solution. The verification is completed by comparing the numerical and analytical solutions in a Poiseuille flow case and a Taylor-Couette flow case. The code is finally applied to the problem of a swirling subsonic air flow in a plasma torch geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axisymmetric%20problem" title="axisymmetric problem">axisymmetric problem</a>, <a href="https://publications.waset.org/abstracts/search?q=compressible%20Navier-Stokes%20equations" title=" compressible Navier-Stokes equations"> compressible Navier-Stokes equations</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20finite%20elements" title=" continuous finite elements"> continuous finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=swirling%20flow" title=" swirling flow"> swirling flow</a> </p> <a href="https://publications.waset.org/abstracts/143638/an-axisymmetric-finite-element-method-for-compressible-swirling-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4766</span> Bifurcations of the Rotations in the Thermocapillary Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Batishchev">V. Batishchev</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Getman"> V. Getman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the self-similar fluid flows in the Marangoni layers with the axial symmetry. Such flows are induced by the radial gradients of the temperatures whose distributions along the free boundary obey some power law. The self-similar solutions describe thermo-capillar flows both in the thin layers and in the case of infinite thickness. We consider both positive and negative temperature gradients. In the former case the cooling of free boundary nearby the axis of symmetry gives rise to the rotation of fluid. The rotating flow concentrates itself inside the Marangoni layer while outside of it the fluid does not revolve. In the latter case we observe no rotating flows at all. In the layers of infinite thickness the separation of the rotating flow creates two zones where the flows are directed oppositely. Both the longitudinal velocity and the temperature have exactly one critical point inside the boundary layer. It is worth to note that the profiles are monotonic in the case of non-swirling flows. We describe the flow outside the boundary layer with the use of self-similar solution of the Euler equations. This flow is slow and non-swirling. The introducing of an outer flow gives rise to the branching of swirling flows from the non-swirling ones. There is such the critical velocity of the outer flow that a non-swirling flow exists for supercritical velocities and cannot be extended to the sub-critical velocities. For the positive temperature gradients there are two non-swirling flows. For the negative temperature gradients the non-swirling flow is unique. We determine the critical velocity of the outer flow for which the branching of the swirling flows happens. In the case of a thin layer confined within free boundaries we show that the cooling of the free boundaries near the axis of symmetry leads to the separating of the layer and creates two sub-layers with opposite rotations inside. This makes sharp contrast with the case of infinite thickness. We show that such rotation arises provided the thickness of the layer exceed some critical value. In the case of a thin layer confined within free and rigid boundaries we construct the branching equation and the asymptotic approximation for the secondary swirling flows near the bifurcation point. It turns out that the bifurcation gives rise to one pair of the secondary swirling flows with different directions of swirl. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20surface" title="free surface">free surface</a>, <a href="https://publications.waset.org/abstracts/search?q=rotation" title=" rotation"> rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title=" fluid flow"> fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation" title=" bifurcation"> bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=Marangoni%20layer" title=" Marangoni layer"> Marangoni layer</a> </p> <a href="https://publications.waset.org/abstracts/5323/bifurcations-of-the-rotations-in-the-thermocapillary-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4765</span> Numerical Analysis of Swirling Chamber Using Improved Delayed Detached Eddy Simulation Turbulence Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamad%20M.%20Alhajeri">Hamad M. Alhajeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Swirling chamber is a promising cooling method for heavily thermally loaded parts like turbine blades due to the additional circumferential velocity and therefore improved turbulent mixing of the fluid. This paper investigates numerically the effect of turbulence model on the heat convection of the swirling chamber. Grid independence analysis is conducted to obtain the proper grid dimension. The work validated with experimental data available in the literature. Flow analysis using improved delayed detached eddy simulation turbulence model and Reynolds averaged Navier-Stokes k-ɛ turbulence model is carried. The flow characteristic near the exit is reformed when improved delayed detached eddy simulation model used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20characteristics" title=" flow characteristics"> flow characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/104037/numerical-analysis-of-swirling-chamber-using-improved-delayed-detached-eddy-simulation-turbulence-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4764</span> Experimental Study of Unconfined and Confined Isothermal Swirling Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Sharma">Rohit Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Cozzi"> Fabio Cozzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 3C-2D PIV technique was applied to investigate the swirling flow generated by an axial plus tangential type swirl generator. This work is focused on the near-exit region of an isothermal swirling jet to characterize the effect of swirl on the flow field and to identify the large coherent structures both in unconfined and confined conditions for geometrical swirl number, S<sub>g </sub>= 4.6. Effects of the Reynolds number on the flow structure were also studied. The experimental results show significant effects of the confinement on the mean velocity fields and its fluctuations. The size of the recirculation zone was significantly enlarged upon confinement compared to the free swirling jet. Increasing in the Reynolds number further enhanced the recirculation zone. The frequency characteristics have been measured with a capacitive microphone which indicates the presence of periodic oscillation related to the existence of precessing vortex core, PVC. Proper orthogonal decomposition of the jet velocity field was carried out, enabling the identification of coherent structures. The time coefficients of the first two most energetic POD modes were used to reconstruct the phase-averaged velocity field of the oscillatory motion in the swirling flow. The instantaneous minima of negative swirl strength values calculated from the instantaneous velocity field revealed the presence of two helical structures located in the inner and outer shear layers and this structure fade out at an axial location of approximately z/D = 1.5 for unconfined case and z/D = 1.2 for confined case. By phase averaging the instantaneous swirling strength maps, the 3D helical vortex structure was reconstructed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20probes" title="acoustic probes">acoustic probes</a>, <a href="https://publications.waset.org/abstracts/search?q=3C-2D%20particle%20image%20velocimetry%20%28PIV%29" title=" 3C-2D particle image velocimetry (PIV)"> 3C-2D particle image velocimetry (PIV)</a>, <a href="https://publications.waset.org/abstracts/search?q=precessing%20vortex%20core%20%28PVC%29" title=" precessing vortex core (PVC)"> precessing vortex core (PVC)</a>, <a href="https://publications.waset.org/abstracts/search?q=recirculation%20zone%20%28RZ%29" title=" recirculation zone (RZ)"> recirculation zone (RZ)</a> </p> <a href="https://publications.waset.org/abstracts/65660/experimental-study-of-unconfined-and-confined-isothermal-swirling-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4763</span> Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suwimon%20Saneewong%20Na%20Ayuttaya">Suwimon Saneewong Na Ayuttaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 <sup>o</sup>C, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamics%20%28EHD%29" title="electrohydrodynamics (EHD)">electrohydrodynamics (EHD)</a>, <a href="https://publications.waset.org/abstracts/search?q=swirling%20flow" title=" swirling flow"> swirling flow</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20transfer" title=" convective heat transfer"> convective heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20sample" title=" solid sample"> solid sample</a> </p> <a href="https://publications.waset.org/abstracts/47905/numerical-investigation-of-electrohydrodynamics-enhanced-heat-transfer-in-a-solid-sample" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4762</span> Analysis of Vortical Structures Generated by the Swirler of Combustion Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladislav%20A.%20Nazukin">Vladislav A. Nazukin</a>, <a href="https://publications.waset.org/abstracts/search?q=Valery%20G.%20Avgustinovich"> Valery G. Avgustinovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakhtang%20V.%20Tsatiashvili"> Vakhtang V. Tsatiashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most important part of modern lean low NOx combustors is a premixer where swirlers are often used for intensification of mixing processes and further formation of required flow pattern in combustor liner. Swirling flow leads to formation of complex eddy structures causing flow perturbations. It is able to cause combustion instability. Therefore, at design phase, it is necessary to pay great attention to aerodynamics of premixers. Analysis based on unsteady CFD modeling of swirling flow in production combustor swirler showed presence of large number of different eddy structures that can be conditionally divided into three types relative to its location of origin and a propagation path. Further, features of each eddy type were subsequently defined. Comparison of calculated and experimental pressure fluctuations spectrums verified correctness of computations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DES%20simulation" title="DES simulation">DES simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=swirler" title=" swirler"> swirler</a>, <a href="https://publications.waset.org/abstracts/search?q=vortical%20structures" title=" vortical structures"> vortical structures</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20chamber" title=" combustion chamber"> combustion chamber</a> </p> <a href="https://publications.waset.org/abstracts/15056/analysis-of-vortical-structures-generated-by-the-swirler-of-combustion-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4761</span> The Effect of Swirl on the Flow Distribution in Automotive Exhaust Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20J.%20Skusiewicz">Piotr J. Skusiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnathan%20Saul"> Johnathan Saul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ijhar%20Rusli"> Ijhar Rusli</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Aleksandrova"> Svetlana Aleksandrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen.%20F.%20Benjamin"> Stephen. F. Benjamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslaw%20Gall"> Miroslaw Gall</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Pierson"> Steve Pierson</a>, <a href="https://publications.waset.org/abstracts/search?q=Carol%20A.%20Roberts"> Carol A. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of turbocharging in automotive engines leads to swirling flow entering the catalyst. The behaviour of this type of flow within the catalyst has yet to be adequately documented. This work discusses the effect of swirling flow on the flow distribution in automotive exhaust catalysts. Compressed air supplied to a moving-block swirl generator allowed for swirling flow with variable intensities to be generated. Swirl intensities were measured at the swirl generator outlet using single-sensor hot-wire probes. The swirling flow was fed into diffusers with total angles of 10°, 30° and 180°. Downstream of the diffusers, a wash-coated diesel oxidation catalyst (DOC) of length 143.8 mm, diameter 76.2 mm and nominal cell density of 400 cpsi was fitted. Velocity profiles were measured at the outlet sleeve about 30 mm downstream of the monolith outlet using single-sensor hot-wire probes. Wall static pressure was recorded using a multi-tube manometer connected to pressure taps positioned along the diffuser walls. The results show that as swirl is increased, more of the flow is directed towards the diffuser walls. The velocity decreases around the centre-line and maximum velocities are observed close to the outer radius of the monolith for all flow rates. At the maximum swirl intensity, reversed flow was recorded near the centre of the monolith. Wall static pressure measurements in the 180° diffuser indicated no pressure recovery as the flow enters the diffuser. This is indicative of flow separation at the inlet to the diffuser. To gain insight into the flow structure, CFD simulations have been performed for the 180° diffuser for a flow rate of 63 g/s. The geometry of the model consists of the complete assembly from the upstream swirl generator to the outlet sleeve. Modelling of the flow in the monolith was achieved using the porous medium approach, where the monolith with parallel flow channels is modelled as a porous medium that resists the flow. A reasonably good agreement was achieved between the experimental and CFD results downstream of the monolith. The CFD simulations allowed visualisation of the separation zones and central toroidal recirculation zones that occur within the expansion region at certain swirl intensities which are highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuser" title=" diffuser"> diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-wire%20anemometry" title=" hot-wire anemometry"> hot-wire anemometry</a>, <a href="https://publications.waset.org/abstracts/search?q=swirling%20flow" title=" swirling flow"> swirling flow</a> </p> <a href="https://publications.waset.org/abstracts/58060/the-effect-of-swirl-on-the-flow-distribution-in-automotive-exhaust-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4760</span> Effect of Swirling Mixer on the Exhaust Flow in a Diesel SCR Aftertreatment System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doo%20Ki%20Lee">Doo Ki Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumaresh%20Selvakumar"> Kumaresh Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Jae%20Song"> In Jae Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The widespread utilization of mixer in selective catalytic reduction (SCR) system marks a remarkable advantage in diesel engines. In the automotive selective catalytic reduction (SCR) system, the de-NOX efficiency can be improved by highly uniform flow with effective turbulent mixing. In this paper, the exhaust pipe is complemented with the swirling mixers of three different vane angles installed at the upstream of the SCR reactor. The attributes of the mixer are established by the variation in flow behavior followed by the drawback owing to the absence of mixer. In particular, the information pertaining to the selection of proper static mixer is provided based on the correlation between the uniformity index (UI) and the pressure drop. The uniform distribution of the flow at the entrance of the SCR reactor aids to determine the configuration which gives high mixing performance and comprehend the function of the mixer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title="pressure drop">pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20catalytic%20reduction" title=" selective catalytic reduction"> selective catalytic reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20mixer" title=" static mixer"> static mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20mixing" title=" turbulent mixing"> turbulent mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=uniformity%20index" title=" uniformity index"> uniformity index</a> </p> <a href="https://publications.waset.org/abstracts/64041/effect-of-swirling-mixer-on-the-exhaust-flow-in-a-diesel-scr-aftertreatment-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">935</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4759</span> Combustion and Emission Characteristics in a Can-Type Combustion Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selvakuma%20Kumaresh">Selvakuma Kumaresh</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combustion phenomenon will be accomplished effectively by the development of low emission combustor. One of the significant factors influencing the entire Combustion process is the mixing between a swirling angular jet (Primary Air) and the non-swirling inner jet (fuel). To study this fundamental flow, the chamber had to be designed in such a manner that the combustion process to sustain itself in a continuous manner and the temperature of the products is sufficiently below the maximum working temperature in the turbine. This study is used to develop the effective combustion with low unburned combustion products by adopting the concept of high swirl flow and motility of holes in the secondary chamber. The proper selection of a swirler is needed to reduce emission which can be concluded from the emission of Nox and CO2. The capture of CO2 is necessary to mitigate CO2 emissions from natural gas. Thus the suppression of unburned gases is a meaningful objective for the development of high performance combustor without affecting turbine blade temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion" title="combustion">combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a>, <a href="https://publications.waset.org/abstracts/search?q=can-type%20combustion%20chamber" title=" can-type combustion chamber"> can-type combustion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=motility%20of%20holes" title=" motility of holes"> motility of holes</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20flow" title=" swirl flow"> swirl flow</a> </p> <a href="https://publications.waset.org/abstracts/11885/combustion-and-emission-characteristics-in-a-can-type-combustion-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4758</span> Experimental and Numerical Investigation of Fluid Flow inside Concentric Heat Exchanger Using Different Inlet Geometry Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20Abo%20Elazm">Mohamed M. Abo Elazm</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20I.%20Shehata"> Ali I. Shehata</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20Khairat%20Dawood"> Mohamed M. Khairat Dawood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computational fluid dynamics (CFD) program FLUENT has been used to predict the fluid flow and heat transfer distribution within concentric heat exchangers. The effect of inlet inclination angle has been investigated with Reynolds number range (3000 – 4000) and Pr=0.71. The heat exchanger is fabricated from copper concentric inner tube with a length of 750 mm. The effects of hot to cold inlet flow rate ratio (MH/MC), Reynolds's number and of inlet inclination angle of 30°, 45°, 60° and 90° are considered. The results showed that the numerical prediction shows a good agreement with experimental measurement. The results present an efficient design of concentric tube heat exchanger to enhance the heat transfer by increasing the swirling effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=swirling%20effect" title=" swirling effect"> swirling effect</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=inclination%20angle" title=" inclination angle"> inclination angle</a>, <a href="https://publications.waset.org/abstracts/search?q=concentric%20tube%20heat%20exchange" title=" concentric tube heat exchange"> concentric tube heat exchange</a> </p> <a href="https://publications.waset.org/abstracts/71387/experimental-and-numerical-investigation-of-fluid-flow-inside-concentric-heat-exchanger-using-different-inlet-geometry-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4757</span> Numerical Study of the Dynamic Behavior of an Air Conditioning with a Muti Confined Swirling Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Roudane">Mohamed Roudane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to know the dynamic behavior of a multi swirling jet used for air conditioning inside a room. To conduct this study, we designed a facility to ensure proper conditions of confinement in which we placed five air blowing devices with adjustable vanes, providing multiple swirling turbulent jets. The jets were issued in the same direction and the same spacing defined between them. This study concerned the numerical simulation of the dynamic mixing of confined swirling multi-jets, and examined the influence of important parameters of a swirl diffuser system on the dynamic performance characteristics. The CFD investigations are carried out by a hybrid mesh to discretize the computational domain. In this work, the simulations have been performed using the finite volume method and FLUENT solver, in which the standard k-ε RNG turbulence model was used for turbulence computations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20behavior" title=" dynamic behavior"> dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl" title=" swirl"> swirl</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20jet" title=" turbulent jet"> turbulent jet</a> </p> <a href="https://publications.waset.org/abstracts/38034/numerical-study-of-the-dynamic-behavior-of-an-air-conditioning-with-a-muti-confined-swirling-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4756</span> Steady and Oscillatory States of Swirling Flows under an Axial Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Mahfoud">Brahim Mahfoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Bessa%C3%AFh"> Rachid Bessaïh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a numerical study of steady and oscillatory flows with heat transfer submitted to an axial magnetic field is studied. The governing Navier-Stokes, energy, and potential equations along with appropriate boundary conditions are solved by using the finite-volume method. The flow and temperature fields are presented by stream function and isotherms, respectively. The flow between counter-rotating end disks is very unstable and reveals a great richness of structures. The results are presented for various values of the Hartmann number, Ha=5, 10, 20, and 30, and Richardson numbers , Ri=0, 0.5, 1, 2, and 4, in order to see their effects on the value of the critical Reynolds number, Recr. Stability diagrams are established according to the numerical results of this investigation. These diagrams put in evidence the dependence of Recr with the increase of Ha for various values of Ri. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirling" title="swirling">swirling</a>, <a href="https://publications.waset.org/abstracts/search?q=counter-rotating%20end%20disks" title=" counter-rotating end disks"> counter-rotating end disks</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatory" title=" oscillatory"> oscillatory</a>, <a href="https://publications.waset.org/abstracts/search?q=cylinder" title=" cylinder"> cylinder</a> </p> <a href="https://publications.waset.org/abstracts/33523/steady-and-oscillatory-states-of-swirling-flows-under-an-axial-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4755</span> Thermal Performance of Dual Flame Impinging Normally on to a Flat Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satpal%20Singh">Satpal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhash%20Chander"> Subhash Chander</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study has been conducted to evaluate the thermal performance of the CNG/air dual flame impinging normally on to a flat surface. The stability limits for the dual flame under both impinging and free conditions have been evaluated to select experimental operating range. Dual flame shape and structure have been explained with direct flame image and schematic diagram indicating modification in recirculation zone in presence of inner flame. Effects of various operating parameters like H/Dh, Re(o), Φ(o), and θ(o) on heat transfer characteristics have been discussed. Inner non-swirling flame Reynolds number (Re(i)) and equivalence ratio (Φ(i)) were kept constant. Heating patterns in the impingement region around the stagnation point have been altered significantly with change in the values of H/Dh, Re(o), Φ(o), and θ(o). The axial flow of inner flame has been notably effected with increase in Re(o). Heating was most favorable near stoichiometeric conditions of the outer swirling flame. However, the effect of change in swirl intensity (expressed in terms of θ(o)) on overall heat transfer efficiency was not as significant as in the case of other parameters. It has been inferred that best performance (higher uniformity and efficiency) of the dual flame impinging on a flat surface can be achieved at moderate value of separation distance (H/Dh of 2-3) and outer swirling flame Reynolds number (Re(o) of 7000-9000) under stoichiometeric conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20flame" title="dual flame">dual flame</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=impingement" title=" impingement"> impingement</a>, <a href="https://publications.waset.org/abstracts/search?q=swirling%20insert" title=" swirling insert"> swirling insert</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20efficiency" title=" transmission efficiency"> transmission efficiency</a> </p> <a href="https://publications.waset.org/abstracts/34923/thermal-performance-of-dual-flame-impinging-normally-on-to-a-flat-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4754</span> Turbulence Modeling of Source and Sink Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Israt%20Jahan%20Eshita">Israt Jahan Eshita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flows developed between two parallel disks have many engineering applications. Two types of non-swirling flows can be generated in such a domain. One is purely source flow in disc type domain (outward flow). Other is purely sink flow in disc type domain (inward flow). This situation often appears in some turbo machinery components such as air bearings, heat exchanger, radial diffuser, vortex gyroscope, disc valves, and viscosity meters. The main goal of this paper is to show the mesh convergence, because mesh convergence saves time, and economical to run and increase the efficiency of modeling for both sink and source flow. Then flow field is resolved using a very fine mesh near-wall, using enhanced wall treatment. After that we are going to compare this flow using standard k-epsilon, RNG k-epsilon turbulence models. Lastly compare some experimental data with numerical solution for sink flow. The good agreement of numerical solution with the experimental works validates the current modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20diameter" title="hydraulic diameter">hydraulic diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=k-epsilon%20model" title=" k-epsilon model"> k-epsilon model</a>, <a href="https://publications.waset.org/abstracts/search?q=meshes%20convergence" title=" meshes convergence"> meshes convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=RNG%20model" title=" RNG model"> RNG model</a>, <a href="https://publications.waset.org/abstracts/search?q=sink%20flow" title=" sink flow"> sink flow</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20flow" title=" source flow"> source flow</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20y%2B" title=" wall y+"> wall y+</a> </p> <a href="https://publications.waset.org/abstracts/9060/turbulence-modeling-of-source-and-sink-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4753</span> Analysis of Aerodynamic Forces Acting on a Train Passing Through a Tornado</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Suzuki">Masahiro Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuyuki%20Okura"> Nobuyuki Okura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crosswind effect on ground transportations has been extensively investigated for decades. The effect of tornado, however, has been hardly studied in spite of the fact that even heavy ground vehicles, namely, trains were overturned by tornadoes with casualties in the past. Therefore, aerodynamic effects of the tornado on the train were studied by several approaches in this study. First, an experimental facility was developed to clarify aerodynamic forces acting on a vehicle running through a tornado. Our experimental set-up consists of two apparatus. One is a tornado simulator, and the other is a moving model rig. PIV measurements showed that the tornado simulator can generate a swirling-flow field similar to those of the natural tornadoes. The flow field has the maximum tangential velocity of 7.4 m/s and the vortex core radius of 96 mm. The moving model rig makes a 1/40 scale model train of single-car/three-car unit run thorough the swirling flow with the maximum speed of 4.3 m/s. The model car has 72 pressure ports on its surface to estimate the aerodynamic forces. The experimental results show that the aerodynamic forces vary its magnitude and direction depends on the location of the vehicle in the flow field. Second, the aerodynamic forces on the train were estimated by using Rankin vortex model. The Rankin vortex model is a simple tornado model which widely used in the field of civil engineering. The estimated aerodynamic forces on the middle car were fairly good agreement with the experimental results. Effects of the vortex core radius and the path of the train on the aerodynamic forces were investigated using the Rankin vortex model. The results shows that the side and lift forces increases as the vortex core radius increases, while the yawing moment is maximum when the core radius is 0.3875 times of the car length. Third, a computational simulation was conducted to clarify the flow field around the train. The simulated results qualitatively agreed with the experimental ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20force" title="aerodynamic force">aerodynamic force</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20method" title=" experimental method"> experimental method</a>, <a href="https://publications.waset.org/abstracts/search?q=tornado" title=" tornado"> tornado</a>, <a href="https://publications.waset.org/abstracts/search?q=train" title=" train"> train</a> </p> <a href="https://publications.waset.org/abstracts/56105/analysis-of-aerodynamic-forces-acting-on-a-train-passing-through-a-tornado" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4752</span> Analysis of Syngas Combustion Characteristics in Can-Type Combustor using CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norhaslina%20Mat%20Zian">Norhaslina Mat Zian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasril%20Hasini"> Hasril Hasini</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Irmawati%20Om"> Nur Irmawati Om</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the flow and combustion behavior inside gas turbine combustor used in thermal power plant. The combustion process takes place using synthetic gas and the baseline solution was made on gas turbine combustor firing natural gas (100% Methane) as the main source of fuel. Attention is given to the effect of the H2/CO ratio on the variation of the flame profile, temperature distribution, and emissions. The H2/CO ratio varies in the range of 10-80 % and the CH4 values are fixed 10% for each case. While keeping constant the mass flow rate and operating pressure, the preliminary result shows that the flow inside the can-combustor is highly swirling which indicates good mixing of fuel and air prior to the entrance of the mixture to the main combustion zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cfd" title="cfd">cfd</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=flame" title=" flame"> flame</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a> </p> <a href="https://publications.waset.org/abstracts/31198/analysis-of-syngas-combustion-characteristics-in-can-type-combustor-using-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4751</span> Numerical Simulation of Von Karman Swirling Bioconvection Nanofluid Flow from a Deformable Rotating Disk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kadir">Ali Kadir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Mishra"> S. R. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shamshuddin"> M. Shamshuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Anwar%20Beg"> O. Anwar Beg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motivation- Rotating disk bio-reactors are fundamental to numerous medical/biochemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has embraced new phenomena including bioconvection of micro-organisms (photo-tactic, oxy-tactic, gyrotactic etc). The proven thermal performance superiority of nanofluids i.e. base fluids doped with engineered nanoparticles has also stimulated immense implementation in biomedical designs. Motivated by these emerging applications, we present a numerical thermofluid dynamic simulation of the transport phenomena in bioconvection nanofluid rotating disk bioreactor flow. Methodology- We study analytically and computationally the time-dependent three-dimensional viscous gyrotactic bioconvection in swirling nanofluid flow from a rotating disk configuration. The disk is also deformable i.e. able to extend (stretch) in the radial direction. Stefan blowing is included. The Buongiorno dilute nanofluid model is adopted wherein Brownian motion and thermophoresis are the dominant nanoscale effects. The primitive conservation equations for mass, radial, tangential and axial momentum, heat (energy), nanoparticle concentration and micro-organism density function are formulated in a cylindrical polar coordinate system with appropriate wall and free stream boundary conditions. A mass convective condition is also incorporated at the disk surface. Forced convection is considered i.e. buoyancy forces are neglected. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical Von Karman and other transformations to render the boundary value problem (BVP) into an ordinary differential system which is solved with the efficient Adomian decomposition method (ADM). Validation with earlier Runge-Kutta shooting computations in the literature is also conducted. Extensive computations are presented (with the aid of MATLAB symbolic software) for radial and circumferential velocity components, temperature, nanoparticle concentration, micro-organism density number and gradients of these functions at the disk surface (radial local skin friction, local circumferential skin friction, Local Nusselt number, Local Sherwood number, motile microorganism mass transfer rate). Main Findings- Increasing radial stretching parameter decreases radial velocity and radial skin friction, reduces azimuthal velocity and skin friction, decreases local Nusselt number and motile micro-organism mass wall flux whereas it increases nano-particle local Sherwood number. Disk deceleration accelerates the radial flow, damps the azimuthal flow, decreases temperatures and thermal boundary layer thickness, depletes the nano-particle concentration magnitudes (and associated nano-particle species boundary layer thickness) and furthermore decreases the micro-organism density number and gyrotactic micro-organism species boundary layer thickness. Increasing Stefan blowing accelerates the radial flow and azimuthal (circumferential flow), elevates temperatures of the nanofluid, boosts nano-particle concentration (volume fraction) and gyrotactic micro-organism density number magnitudes whereas suction generates the reverse effects. Increasing suction effect reduces radial skin friction and azimuthal skin friction, local Nusselt number, and motile micro-organism wall mass flux whereas it enhances the nano-particle species local Sherwood number. Conclusions - Important transport characteristics are identified of relevance to real bioreactor nanotechnological systems not discussed in previous works. ADM is shown to achieve very rapid convergence and highly accurate solutions and shows excellent promise in simulating swirling multi-physical nano-bioconvection fluid dynamics problems. Furthermore, it provides an excellent complement to more general commercial computational fluid dynamics simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-nanofluids" title="bio-nanofluids">bio-nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk%20bioreactors" title=" rotating disk bioreactors"> rotating disk bioreactors</a>, <a href="https://publications.waset.org/abstracts/search?q=Von%20Karman%20swirling%20flow" title=" Von Karman swirling flow"> Von Karman swirling flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solutions" title=" numerical solutions"> numerical solutions</a> </p> <a href="https://publications.waset.org/abstracts/97804/numerical-simulation-of-von-karman-swirling-bioconvection-nanofluid-flow-from-a-deformable-rotating-disk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4750</span> Magnetohydrodynamics Flow and Heat Transfer in a Non-Newtonian Power-Law Fluid due to a Rotating Disk with Velocity Slip and Temperature Jump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Dayana%20Khairunnisa%20Rosli">Nur Dayana Khairunnisa Rosli</a>, <a href="https://publications.waset.org/abstracts/search?q=Seripah%20Awang%20Kechil"> Seripah Awang Kechil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Swirling flows with velocity slip are important in nature and industrial processes. The present work considers the effects of velocity slip, temperature jump and suction/injection on the flow and heat transfer of power-law fluids due to a rotating disk in the presence of magnetic field. The system of the partial differential equations is highly non-linear. The number of independent variables is reduced by transforming the system into a system of coupled non-linear ordinary differential equations using similarity transformations. The effects of suction/injection, velocity slip and temperature jump on the flow rates are investigated for various cases of shear thinning and shear thickening power law fluids. The thermal and velocity jump strongly reduce the heat transfer rate and skin friction coefficient. Suction decreases the radial and tangential skin friction coefficient and the rate of heat transfer. It is also observed that the effects are more pronounced in the case of shear thinning fluids as compared to shear thickening fluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=power-law%20fluids" title=" power-law fluids"> power-law fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk" title=" rotating disk"> rotating disk</a>, <a href="https://publications.waset.org/abstracts/search?q=suction%20or%20injection" title=" suction or injection"> suction or injection</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20jump" title=" temperature jump"> temperature jump</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20slip" title=" velocity slip"> velocity slip</a> </p> <a href="https://publications.waset.org/abstracts/53534/magnetohydrodynamics-flow-and-heat-transfer-in-a-non-newtonian-power-law-fluid-due-to-a-rotating-disk-with-velocity-slip-and-temperature-jump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4749</span> Free Convection from a Perforated Spinning Cone with Heat Generation, Temperature-Dependent Viscosity and Partial Slip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gilbert%20Makanda">Gilbert Makanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of free convection from a perforated spinning cone with viscous dissipation, temperature-dependent viscosity, and partial slip was studied. The boundary layer velocity and temperature profiles were numerically computed for different values of the spin, viscosity variation, inertia drag force, Eckert, suction/blowing parameters. The partial differential equations were transformed into a system of ordinary differential equations which were solved using the fourth-order Runge-Kutta method. This paper considered the effect of partial slip and spin parameters on the swirling velocity profiles which are rarely reported in the literature. The results obtained by this method was compared to those in the literature and found to be in agreement. Increasing the viscosity variation parameter, spin, partial slip, Eckert number, Darcian drag force parameters reduce swirling velocity profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20convection" title="free convection">free convection</a>, <a href="https://publications.waset.org/abstracts/search?q=suction%2Finjection" title=" suction/injection"> suction/injection</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20slip" title=" partial slip"> partial slip</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dissipation" title=" viscous dissipation"> viscous dissipation</a> </p> <a href="https://publications.waset.org/abstracts/74530/free-convection-from-a-perforated-spinning-cone-with-heat-generation-temperature-dependent-viscosity-and-partial-slip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4748</span> Flow Duration Curve Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Fuladipanah">Mehdi Fuladipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Jorabloo"> Mehdi Jorabloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of river ecosystem. Then, it is very serious to determine ecosystem flow requirement. In this paper, flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude were determined as 1-day, 3-day, 7-day, and 30 day. According the second method, hydraulic alteration indices often had low and medium range. In order to maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m3.s-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ardabil" title="ardabil">ardabil</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20flow" title=" environmental flow"> environmental flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20duration%20curve" title=" flow duration curve"> flow duration curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Gharasou%20river" title=" Gharasou river"> Gharasou river</a> </p> <a href="https://publications.waset.org/abstracts/22653/flow-duration-curve-method-to-evaluate-environmental-flow-case-study-of-gharasou-river-ardabil-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">683</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4747</span> Investigation Effect of External Flow to Exhaust Gas Flow at Heavy Commercial Vehicle with CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Kanta%C5%9F">F. Kantaş</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Boyac%C4%B1"> D. Boyacı</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Din%C3%A7"> C. Dinç </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exhaust systems plays an important role in thermal heat management. Exhaust manifold picks burned gas from engine and exhaust pipes transmit exhaust gas to muffler, exhaust gas is reacted chemically to avoid noxious gas and sound is reduced in muffler then gas is threw out with tail pipe from muffler. Exhaust gas flows out from tail pipe and this hot gas flows to many parts that available around tail pipe and muffler, like spare tire, transmission, pipes etc. These parts are heated by hot exhaust gas. Also vehicle on ride, external flow effects exhaust gas flow and exhaust gas behavior is changed. It's impossible to understand which parts are heated by hot exhaust gas in tests. To understand this phenomena, exhaust gas flow is solved in CFD also external flow due to vehicle movement must be solved with exhaust gas flow. Because external flow effects exhaust gas flow behavior with many parameters. This paper investigates external flow effects exhaust gas flow behavior and other critical parameters effect exhaust gas flow behavior, like different tail pipe design, exhaust gas mass flow in critic vehicle driving situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust" title="exhaust">exhaust</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20flow" title=" gas flow"> gas flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow" title=" external flow "> external flow </a> </p> <a href="https://publications.waset.org/abstracts/17975/investigation-effect-of-external-flow-to-exhaust-gas-flow-at-heavy-commercial-vehicle-with-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4746</span> Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Hazwan%20bin%20Yusof">Mohd Hazwan bin Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Katanoda"> Hiroshi Katanoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75 mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization" title="flow visualization">flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20measurement" title=" pressure measurement"> pressure measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20flow" title=" reverse flow"> reverse flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20tube" title=" vortex tube"> vortex tube</a> </p> <a href="https://publications.waset.org/abstracts/10289/measurement-of-reverse-flow-generated-at-cold-exit-of-vortex-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4745</span> Estimation and Forecasting Debris Flow Phenomena on the Highway of the &#039;TRACECA&#039; Corridor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Levan%20Tsulukidze">Levan Tsulukidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper considers debris flow phenomena and forecasting of them in the corridor of ‘TRACECA’ on the example of river Naokhrevistkali, as well as the debris flow -type channel passing between the villages of Vale-2 and Naokhrevi. As a result of expeditionary and reconnaissance investigations, as well as using empiric dependencies, the debris flow expenditure has been estimated in case of different debris flow provisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=debris%20flow" title="debris flow">debris flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Traceca%20corridor" title=" Traceca corridor"> Traceca corridor</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20Naokhrevistkali" title=" river Naokhrevistkali"> river Naokhrevistkali</a> </p> <a href="https://publications.waset.org/abstracts/47669/estimation-and-forecasting-debris-flow-phenomena-on-the-highway-of-the-traceca-corridor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4744</span> Numerical Solution of 1-D Shallow Water Equations at Junction for Sub-Critical and Super-Critical Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elshobaki">Mohamed Elshobaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Valiani"> Alessandro Valiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Valerio%20Caleffi"> Valerio Caleffi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we solve 1-D shallow water equation for sub-critical and super-critical water flow at junction. The water flow at junction has been studied for the last 50 years from the physical-hydraulic point of views and for numerical computations need more attention. For numerical simulation, we need to establish an inner boundary condition at the junction to avoid an oscillation which rise from the waves interactions at the junction. Indeed, we introduce a new boundary condition at the junction based on the mass conservation, total head, and the admissible wave relations between the flow parameters in the three branches to predict the water depths and discharges at the junction. These boundary conditions are valid for sub-critical flow and super-critical flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=junction%20flow" title=" junction flow"> junction flow</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-critical%20flow" title=" sub-critical flow"> sub-critical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=super-critical%20flow" title=" super-critical flow"> super-critical flow</a> </p> <a href="https://publications.waset.org/abstracts/44090/numerical-solution-of-1-d-shallow-water-equations-at-junction-for-sub-critical-and-super-critical-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4743</span> Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Nazari">A. J. Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Honma"> S. Honma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21<sup>st</sup>, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20flow" title="fractional flow">fractional flow</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20displacement" title=" oil displacement"> oil displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneously%20flow" title=" simultaneously flow"> simultaneously flow</a> </p> <a href="https://publications.waset.org/abstracts/59190/oil-displacement-by-water-in-hauterivian-sandstone-reservoir-of-kashkari-oil-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4742</span> Swirling Flows with Heat Transfer in a Cylindrical under Axial Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Mahfoud">B. Mahfoud</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Harouz"> R. Harouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work examine numerically the effect of axial magnetic field on mixed convection through a cylindrical cavity, filled with a liquid metal and having a rotating top and bottom disks. Effects of Richardson number (Ri = 0, 0.5, 1, and 2) and Hartman number (Ha = 0, 5, 10, and 20) on temperature and flow fields were analyzed. The basic state of this system is steady and axisymmetric, when the counter-rotation is sufficiently large, producing a free shear layer. This shear layer is unstable and different complex flows appear successively: steady states with an azimuthal wavenumber of 1; travelling waves and steady states with an azimuthal wavenumber of 2. Mixed modes and azimuthal wavenumber of 3 are also found with increasing Hartmann number. The stability diagram (Recr-Ha) corresponding to the axisymmetric-three-dimensional transition for increasing values of the axial magnetic field is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axisymmetric" title="axisymmetric">axisymmetric</a>, <a href="https://publications.waset.org/abstracts/search?q=counter-rotating" title=" counter-rotating"> counter-rotating</a>, <a href="https://publications.waset.org/abstracts/search?q=instabilities" title=" instabilities"> instabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic" title=" magnetohydrodynamic"> magnetohydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=wavenumber" title=" wavenumber"> wavenumber</a> </p> <a href="https://publications.waset.org/abstracts/16995/swirling-flows-with-heat-transfer-in-a-cylindrical-under-axial-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4741</span> Numerical Simulations for Nitrogen Flow in Piezoelectric Valve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Flaszynski">Pawel Flaszynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Doerffer"> Piotr Doerffer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Holnicki-Szulc"> Jan Holnicki-Szulc</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Mikulowski"> Grzegorz Mikulowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Results of numerical simulations for transonic flow in a piezoelectric valve are presented. The valve is the main part of an adaptive pneumatic shock absorber. Flow structure in the valve domain and the influence of the flow non-uniformity in the valve on a mass flow rate is investigated. Numerical simulation results are compared with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pneumatic%20valve" title="pneumatic valve">pneumatic valve</a>, <a href="https://publications.waset.org/abstracts/search?q=transonic%20flow" title=" transonic flow"> transonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20valve" title=" piezoelectric valve"> piezoelectric valve</a> </p> <a href="https://publications.waset.org/abstracts/29877/numerical-simulations-for-nitrogen-flow-in-piezoelectric-valve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4740</span> Studying Roughness Effects on Flow Regimes in Offshore Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sadegh%20Narges">Mohammad Sadegh Narges</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ghadampour"> Zahra Ghadampour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the specific condition, offshore pipelines are given careful consideration and care in both design and operation. Most of the offshore pipeline flows are multi-phase. Multi-phase flows construct different pattern or flow regimes (in simultaneous gas-liquid flow, flow regimes like slug flow, wave and …) under different circumstances. One of the influencing factors on the flow regime is the pipeline roughness value. So far, roughness value influences and the sensitivity of the present models to this parameter have not been taken into consideration. Therefore, roughness value influences on the flow regimes in offshore pipelines are discussed in this paper. Results showed that geometry, absolute pipeline roughness value (materials that the pipeline is made of) and flow phases prevailing the system are of the influential parameters on the flow regimes prevailing multi-phase pipelines in a way that a change in any of these parameters results in a change in flow regimes in all or part of the pipeline system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absolute%20roughness" title="absolute roughness">absolute roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20regime" title=" flow regime"> flow regime</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20flow" title=" multi-phase flow"> multi-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20pipelines" title=" offshore pipelines"> offshore pipelines</a> </p> <a href="https://publications.waset.org/abstracts/63642/studying-roughness-effects-on-flow-regimes-in-offshore-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4739</span> Flow Behavior and Performances of Centrifugal Compressor Stage Vaneless Diffusers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.Galerkin">Y.Galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Solovieva"> O. Solovieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow parameters are calculated in vaneless diffusers with relative width 0,014 – 0,10 constant along radii. Inlet flow angles and similarity criteria were varied. Information about flow structure is presented – meridian streamlines configuration, information on flow full development, flow separation. Polytrophic efficiency, loss and recovery coefficient are used to compare diffusers’ effectiveness. The sample of narrow diffuser optimization by conical walls application is presented. Three tampered variants of a wide diffuser are compared too. The work is made in the R&D laboratory “Gas dynamics of turbo machines” of the TU SPb. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vaneless%20diffuser" title="vaneless diffuser">vaneless diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20width" title=" relative width"> relative width</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20angle" title=" flow angle"> flow angle</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20separation" title=" flow separation"> flow separation</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20coefficient" title=" loss coefficient"> loss coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20criteria" title=" similarity criteria"> similarity criteria</a> </p> <a href="https://publications.waset.org/abstracts/15996/flow-behavior-and-performances-of-centrifugal-compressor-stage-vaneless-diffusers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirling%20flow&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirling%20flow&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirling%20flow&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirling%20flow&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirling%20flow&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirling%20flow&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirling%20flow&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirling%20flow&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirling%20flow&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirling%20flow&amp;page=158">158</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirling%20flow&amp;page=159">159</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirling%20flow&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10