CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 119 results for author: <span class="mathjax">Zhou, H D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Zhou%2C+H+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhou, H D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhou%2C+H+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhou, H D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhou%2C+H+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+H+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+H+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+H+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11167">arXiv:2407.11167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11167">pdf</a>, <a href="https://arxiv.org/ps/2407.11167">ps</a>, <a href="https://arxiv.org/format/2407.11167">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.134401">10.1103/PhysRevB.110.134401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ising-type quantum spin liquid state in PrMgAl$_{11}$O$_{19}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rutherford%2C+A">A. Rutherford</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+Y">Y. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+H">H. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z+J">Z. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">W. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11167v2-abstract-short" style="display: inline;"> We have grown single crystals of PrMgAl$_{11}$O$_{19}$, an ideal triangular-lattice antiferromagnet, and performed magnetic susceptibility, specific heat and thermal conductivity measurements at low temperatures. The main results are as follows: (i) The temperature-dependent susceptibility shows a negligible in-plane response and the isothermal magnetization curves confirm the easy axis along the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11167v2-abstract-full').style.display = 'inline'; document.getElementById('2407.11167v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11167v2-abstract-full" style="display: none;"> We have grown single crystals of PrMgAl$_{11}$O$_{19}$, an ideal triangular-lattice antiferromagnet, and performed magnetic susceptibility, specific heat and thermal conductivity measurements at low temperatures. The main results are as follows: (i) The temperature-dependent susceptibility shows a negligible in-plane response and the isothermal magnetization curves confirm the easy axis along the $c$ axis. (ii) The specific heat measurements reveal the absence of long-range magnetic order down to 60 mK, and the power-law temperature dependence indicates the existence of the gapless magnetic excitations in system. (iii) The ultralow-temperature thermal conductivity exhibits negligibly small residual term ($魏_0/T$) and strong spin-phonon scattering effect, suggesting that the spin excitations are also involved. Our results further demonstrate that PrMgAl$_{11}$O$_{19}$ is a rare quantum spin liquid candidate with Ising-like anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11167v2-abstract-full').style.display = 'none'; document.getElementById('2407.11167v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 134401 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17773">arXiv:2406.17773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17773">pdf</a>, <a href="https://arxiv.org/format/2406.17773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spectrum and low-energy gap in triangular quantum spin liquid NaYbSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A+O">A. O. Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">Minseong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kevin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laurell%2C+P">P. Laurell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pajerowski%2C+D">D. Pajerowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sangyun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ajeesh%2C+M+O">M. O. Ajeesh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+A">Ao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zapf%2C+V+S">Vivien S. Zapf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heyl%2C+M">M. Heyl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+D">C. D. Batista</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagotto%2C+E">E. Dagotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+J+E">J. E. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17773v1-abstract-short" style="display: inline;"> We report neutron scattering, pressure-dependent AC calorimetry, and AC magnetic susceptibility measurements of triangular lattice NaYbSe$_2$. We observe a continuum of scattering, which is reproduced by matrix product simulations, and no phase transition is detected in any bulk measurements. Comparison to heat capacity simulations suggest the material is within the Heisenberg spin liquid phase. A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17773v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17773v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17773v1-abstract-full" style="display: none;"> We report neutron scattering, pressure-dependent AC calorimetry, and AC magnetic susceptibility measurements of triangular lattice NaYbSe$_2$. We observe a continuum of scattering, which is reproduced by matrix product simulations, and no phase transition is detected in any bulk measurements. Comparison to heat capacity simulations suggest the material is within the Heisenberg spin liquid phase. AC Susceptibility shows a significant 23~mK downturn, indicating a gap in the magnetic spectrum. The combination of a gap with no detectable magnetic order, comparison to theoretical models, and comparison to other $A$YbSe$_2$ compounds all strongly indicate NaYbSe$_2$ is within the quantum spin liquid phase. The gap also allows us to rule out a gapless Dirac spin liquid, with a gapped $\mathbb{Z}_2$ liquid the most natural explanation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17773v1-abstract-full').style.display = 'none'; document.getElementById('2406.17773v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures; 7 pages and 13 figures supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13628">arXiv:2405.13628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.13628">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spinons in a new Shastry-Sutherland lattice magnet Pr$_2$Ga$_2$BeO$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brassington%2C+A">A. Brassington</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+M+F">M. F. Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+Y">Y. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+H">H. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baker%2C+P+J">P. J. Baker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kikuchi%2C+H">H. Kikuchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Masuda%2C+T">T. Masuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+G">G. Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">C. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">W. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R">R. Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">R. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13628v1-abstract-short" style="display: inline;"> Identifying the elusive spinon excitations in quantum spin liquid (QSL) materials is what scientists have long sought for. Recently, thermal conductivity ($魏$) has emerged to be a decisive probe because the fermionic nature of spinons leads to a characteristic nonzero linear $魏_0/T$ term while approaching zero Kelvin. So far, only a few systems have been reported to exhibit such term. Here, we rep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13628v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13628v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13628v1-abstract-full" style="display: none;"> Identifying the elusive spinon excitations in quantum spin liquid (QSL) materials is what scientists have long sought for. Recently, thermal conductivity ($魏$) has emerged to be a decisive probe because the fermionic nature of spinons leads to a characteristic nonzero linear $魏_0/T$ term while approaching zero Kelvin. So far, only a few systems have been reported to exhibit such term. Here, we report a $魏_0/T \approx$ 0.01 WK$^{-2}$m$^{-1}$, the largest $魏_0/T$ value ever observed in magnetic oxide QSL candidates, in a new quantum magnet Pr$_2$Ga$_2$BeO$_7$ with a Shastry-Sutherland lattice (SSL). Its QSL nature is further supported by the power-law temperature dependence of the specific heat, a plateau of muon spin relaxation rate, and gapless inelastic neutron spectra. Our theoretical analysis reveals that the introduction of XY spin anisotropy is the key for Pr$_2$Ga$_2$BeO$_7$ to be the first QSL realized on the SSL, after more than four decades of extensive studies on this celebrated magnetically frustrated lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13628v1-abstract-full').style.display = 'none'; document.getElementById('2405.13628v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures, with Supplementary Information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08230">arXiv:2405.08230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08230">pdf</a>, <a href="https://arxiv.org/format/2405.08230">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Magnetic properties of the quasi-XY Shastry-Sutherland magnet Er$_2$Be$_2$SiO$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Brassington%2C+A">A. Brassington</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+1+Q">1 Q. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+G">G. Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolesnikov%2C+A+I">A. I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taddei%2C+K+M">K. M. Taddei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Y. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">W. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08230v1-abstract-short" style="display: inline;"> Polycrystalline and single crystal samples of the insulating Shastry-Sutherland compound Er$_2$Be$_2$SiO$_7$ were synthesized via a solid-state reaction and the floating zone method respectively. The crystal structure, Er single ion anisotropy, zero-field magnetic ground state, and magnetic phase diagrams along high-symmetry crystallographic directions were investigated by bulk measurement techniq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08230v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08230v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08230v1-abstract-full" style="display: none;"> Polycrystalline and single crystal samples of the insulating Shastry-Sutherland compound Er$_2$Be$_2$SiO$_7$ were synthesized via a solid-state reaction and the floating zone method respectively. The crystal structure, Er single ion anisotropy, zero-field magnetic ground state, and magnetic phase diagrams along high-symmetry crystallographic directions were investigated by bulk measurement techniques, x-ray and neutron diffraction, and neutron spectroscopy. We establish that Er$_2$Be$_2$SiO$_7$ crystallizes in a tetragonal space group with planes of orthogonal Er dimers and a strong preference for the Er moments to lie in the local plane perpendicular to each dimer bond. We also find that this system has a non-collinear ordered ground state in zero field with a transition temperature of 0.841 K consisting of antiferromagnetic dimers and in-plane moments. Finally, we mapped out the $H-T$ phase diagrams for Er$_2$Be$_2$SiO$_7$ along the directions $H \parallel$ [001], [100], and [110]. While an increasing in-plane field simply induces a phase transition to a field-polarized phase, we identify three metamagnetic transitions before the field-polarized phase is established in the $H \parallel$ [001] case. This complex behavior establishes insulating Er$_2$Be$_2$SiO$_7$ and other isostructural family members as promising candidates for uncovering exotic magnetic properties and phenomena that can be readily compared to theoretical predictions of the exactly soluble Shastry-Sutherland model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08230v1-abstract-full').style.display = 'none'; document.getElementById('2405.08230v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07914">arXiv:2211.07914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.07914">pdf</a>, <a href="https://arxiv.org/ps/2211.07914">ps</a>, <a href="https://arxiv.org/format/2211.07914">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.184423">10.1103/PhysRevB.107.184423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal Transport of Fractionalized Antiferromagnetic and Field Induced States in the Kitaev Material Na$_2$Co$_2$TeO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guang%2C+S+K">S. K. Guang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+R+L">R. L. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+Y">Y. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+X+Y">X. Y. Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+K">K. Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">G. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07914v1-abstract-short" style="display: inline;"> We report an in-plane thermal transport study of the honeycomb Kitaev material Na$_2$Co$_2$TeO$_6$ at subKelvin temperatures. In zero field, the $魏(T)$ displays a rather weak $T$-dependence but has a non-zero residual term $魏_0/T$, indicating strong phonon scattering by magnetic excitation and the possibility of itinerant spinon-like excitations coexisting with an antiferromagnetic order below 27&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07914v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07914v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07914v1-abstract-full" style="display: none;"> We report an in-plane thermal transport study of the honeycomb Kitaev material Na$_2$Co$_2$TeO$_6$ at subKelvin temperatures. In zero field, the $魏(T)$ displays a rather weak $T$-dependence but has a non-zero residual term $魏_0/T$, indicating strong phonon scattering by magnetic excitation and the possibility of itinerant spinon-like excitations coexisting with an antiferromagnetic order below 27 K. We propose the zero-field ground state is a novel fractionalized antiferromagnetic (AF*) state with both magnetic order and fractionalized excitations. With both the heat current and external field along the $a*$ (Co-Co bond) direction, the $魏_{a*}$ exhibits two sharp minima at 7.5 T and 10 T, and its value at 8.5 T is almost the same as the pure phononic transport for the high-field polarized state. This confirms the phase boundaries of the reported field-induced intermediate state and suggest its gapless continuum excitations possibly transport heat. No such intermediate phase was found in the $魏_a$ for the current and field along the $a$ (zigzag chain) direction. Finally, Na$_2$Co$_2$TeO$_6$ displays a strongly anisotropic magneto-thermal conductivity since the in-plane (out-of-plane) field strongly enhances (suppresses) the $魏_{a*}$ and $魏_a$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07914v1-abstract-full').style.display = 'none'; document.getElementById('2211.07914v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 184423 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.12311">arXiv:2207.12311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.12311">pdf</a>, <a href="https://arxiv.org/ps/2207.12311">ps</a>, <a href="https://arxiv.org/format/2207.12311">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.014416">10.1103/PhysRevB.106.014416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-temperature transport properties of intermetallic compound HoAgGe with kagome spin ice state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+X+Y">X. Y. Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guang%2C+S+K">S. K. Guang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+K">K. Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+Y">Y. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.12311v1-abstract-short" style="display: inline;"> We study the magnetic susceptibility, magnetization, resistivity and thermal conductivity of intermetallic HoAgGe single crystals at low temperatures and in magnetic fields along the $a$ and $c$ axis, while the electric and heat currents are along the $c$ axis. The magnetization curves show a series of metamagnetic transitions and small hysteresis at low field for $B \parallel a$, and a weak metam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12311v1-abstract-full').style.display = 'inline'; document.getElementById('2207.12311v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.12311v1-abstract-full" style="display: none;"> We study the magnetic susceptibility, magnetization, resistivity and thermal conductivity of intermetallic HoAgGe single crystals at low temperatures and in magnetic fields along the $a$ and $c$ axis, while the electric and heat currents are along the $c$ axis. The magnetization curves show a series of metamagnetic transitions and small hysteresis at low field for $B \parallel a$, and a weak metamagnetic transition for $B \parallel c$, respectively. Both the magnetic susceptibility and $蟻(T)$ curve show anomalies at the antiferromagnetic transition ($T\rm_N \sim$ 11.3 K) and spin reorientation transition ($\sim$ 7 K). In zero field and at very low temperatures, the electrons are found to be the main heat carriers. For $B \parallel a$, the $蟻(B)$ curves display large and positive transverse magnetoresistance (MR) with extraordinary field dependence between $B^2$ and $B$-linear, accompanied with anomalies at the metamagnetic transitions and low-field hysteresis; meanwhile, the $魏(B)$ mainly decrease with increasing field and display some anomalies at the metamagnetic transitions. For $B \parallel c$, there is weak and negative longitudinal MR while the $魏(B)$ show rather strong field dependence, indicating the role of phonon heat transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12311v1-abstract-full').style.display = 'none'; document.getElementById('2207.12311v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 014416 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01764">arXiv:2205.01764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01764">pdf</a>, <a href="https://arxiv.org/ps/2205.01764">ps</a>, <a href="https://arxiv.org/format/2205.01764">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.6.054410">10.1103/PhysRevMaterials.6.054410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature-induced valence-state transition in double perovskite Ba2-xSrxTbIrO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">S. Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Z+Z">Z. Z. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">M. A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J+-">J. -Q. Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01764v1-abstract-short" style="display: inline;"> In this work, a temperature-induced valence-state transition is studied in a narrow composition range of Ba$_{2-x}$Sr$_x$TbIrO$_6$. The valence-state transition involves an electron transfer between Tb and Ir leading to the valence-state change between Tb$^{3+}$/Ir$^{5+}$ and Tb$^{4+}$/Ir$^{4+}$ phases. This first-order transition has a dramatic effect on the lattice, transport properties, and the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01764v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01764v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01764v1-abstract-full" style="display: none;"> In this work, a temperature-induced valence-state transition is studied in a narrow composition range of Ba$_{2-x}$Sr$_x$TbIrO$_6$. The valence-state transition involves an electron transfer between Tb and Ir leading to the valence-state change between Tb$^{3+}$/Ir$^{5+}$ and Tb$^{4+}$/Ir$^{4+}$ phases. This first-order transition has a dramatic effect on the lattice, transport properties, and the long-range magnetic order at low temperatures for both Tb and Ir ions. Ir$^{5+}$ ion has an electronic configuration of 5$d^4$ ($J\rm_{eff}$ = 0) which is expected to be nonmagnetic. In contrast, Ir$^{4+}$ ion with a configuration of 5$d^5$($J\rm_{eff}$ = 1/2) favors a long-range magnetic order. For $x$ = 0.1 with Tb$^{3+}$/Ir$^{5+}$ configuration to the lowest temperature (2 K) investigated in this work, a spin-glass behavior is observed around 5 K indicating Ir$^{5+}$ ($J\rm_{eff}$ = 0) ions act as a spacer reducing the magnetic interactions between Tb$^{3+}$ ions. For $x$ = 0.5 with Tb$^{4+}$/Ir$^{4+}$ configuration below the highest temperature 400 K of this work, a long-range antiferromagnetic order at $T\rm_N$ = 40 K is observed highlighting the importance of Ir$^{4+}$ ($J\rm_{eff}$ = 1/2) ions in promoting the long-range magnetic order of both Tb and Ir ions. For 0.2 $\leqslant x \leqslant$ 0.375, a temperature-induced valence-state transition from high-temperature Tb$^{3+}$/Ir$^{5+}$ phase to low-temperature Tb$^{4+}$/Ir$^{4+}$ phase occurs in the temperature range 180 K $\leqslant T \leqslant$ 325 K and the transition temperature increases with $x$. The compositional dependence demonstrates the ability to tune the the valence state for a critical region of $x$ that leads to a concurrent change in magnetism and structure. This tuning ability could be employed with suitable strain in thin films to act as a switch as the magnetism is manipulated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01764v1-abstract-full').style.display = 'none'; document.getElementById('2205.01764v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 6, 054410 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.09176">arXiv:2204.09176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.09176">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.027203">10.1103/PhysRevLett.129.027203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controllable emergent spatial spin modulation in Sr2IrO4 by in situ shear strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pandey%2C+S">S. Pandey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=May%2C+A+F">A. F. May</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez%2C+J">J. Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J+-">J. -H. Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J+W">J. W. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryan%2C+P+J">P. J. Ryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">J. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.09176v1-abstract-short" style="display: inline;"> Symmetric anisotropic interaction can be ferromagnetic and antiferromagnetic at the same time but for different crystallographic axes. We show that inducing competition of anisotropic interactions of orthogonal irreducible representations represents a general route to obtain new exotic magnetic states. We demonstrate it here by observing the emergence of a continuously tunable 12-layer spatial spi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09176v1-abstract-full').style.display = 'inline'; document.getElementById('2204.09176v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.09176v1-abstract-full" style="display: none;"> Symmetric anisotropic interaction can be ferromagnetic and antiferromagnetic at the same time but for different crystallographic axes. We show that inducing competition of anisotropic interactions of orthogonal irreducible representations represents a general route to obtain new exotic magnetic states. We demonstrate it here by observing the emergence of a continuously tunable 12-layer spatial spin modulation when distorting the square lattice planes in the quasi-2D antiferromagnetic Sr2IrO4 under in situ shear strain. This translation-symmetry-breaking phase is a result of an unusual strain activated anisotropic interaction which is at the 4th order and competing with the inherent quadratic anisotropic interaction. Such a mechanism of competing anisotropy is distinct from that among the ferromagnetic, antiferromagnetic, and/or the Dzyaloshinskii-Moriya interactions, and it could be widely applicable and highly controllable in low dimensional magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09176v1-abstract-full').style.display = 'none'; document.getElementById('2204.09176v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.05384">arXiv:2204.05384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.05384">pdf</a>, <a href="https://arxiv.org/format/2204.05384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin-orbit coupling controlled ground states in the double perovskite iridates A2BIrO6 (A = Ba, Sr; B = Lu, Sc) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Q. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clancy%2C+J+P">J. P. Clancy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cruz%2C+C+d">C. dela Cruz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reig-i-Plessis%2C+D">D. Reig-i-Plessis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacDougall%2C+G+J">G. J. MacDougall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pollock%2C+C+J">C. J. Pollock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Upton%2C+M+H">M. H. Upton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+T+J">T. J. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LaManna%2C+N">N. LaManna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carlo%2C+J+P">J. P. Carlo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beare%2C+J">J. Beare</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luke%2C+G+M">G. M. Luke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.05384v2-abstract-short" style="display: inline;"> Iridates with the 5$d^4$ electronic configuration have attracted recent interest due to reports of magnetically-ordered ground states despite longstanding expectations that their strong spin-orbit coupling would generate a $J = 0$ electronic ground state for each Ir$^{5+}$ ion. The major focus of prior research has been on the double perovskite iridates Ba$_2$YIrO$_6$ and Sr$_2$YIrO$_6$, where the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05384v2-abstract-full').style.display = 'inline'; document.getElementById('2204.05384v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.05384v2-abstract-full" style="display: none;"> Iridates with the 5$d^4$ electronic configuration have attracted recent interest due to reports of magnetically-ordered ground states despite longstanding expectations that their strong spin-orbit coupling would generate a $J = 0$ electronic ground state for each Ir$^{5+}$ ion. The major focus of prior research has been on the double perovskite iridates Ba$_2$YIrO$_6$ and Sr$_2$YIrO$_6$, where the nature of the ground states (i.e. ordered vs non-magnetic) is still controversial. Here we present neutron powder diffraction, high energy resolution fluorescence detected x-ray absorption spectroscopy (HERFD-XAS), resonant inelastic x-ray scattering (RIXS), magnetic susceptibility, and muon spin relaxation data on the related double perovskite iridates Ba$_2$LuIrO$_6$, Sr$_2$LuIrO$_6$, Ba$_2$ScIrO$_6$, and Sr$_2$ScIrO$_6$ that enable us to gain a general understanding of the electronic and magnetic properties for this family of materials. Our HERFD-XAS and RIXS measurements establish $J = 0$ electronic ground states for the Ir$^{5+}$ ions in all cases, with similar values for Hund&#39;s coupling $J_{\rm H}$ and the spin-orbit coupling constant $位_{\rm SOC}$. Our bulk susceptibility and muon spin relaxation data find no evidence for long-range magnetic order or spin freezing, but they do reveal weak magnetic signals that are consistent with extrinsic local moments. Our results indicate that the large $位_{\rm SOC}$ is the key driving force behind the electronic and magnetic ground states realized in the 5$d^4$ double perovskite iridates, which agrees well with conventional wisdom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05384v2-abstract-full').style.display = 'none'; document.getElementById('2204.05384v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, accepted for publication by PRM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.05377">arXiv:2204.05377</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.05377">pdf</a>, <a href="https://arxiv.org/format/2204.05377">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic order and spin liquid behavior in [Mo3+]^{11+} triangular magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Q. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinclair%2C+R">R. Sinclair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akbari-Sharbaf%2C+A">A. Akbari-Sharbaf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dun%2C+Z">Z. Dun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mourigal%2C+M">M. Mourigal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verrier%2C+A">A. Verrier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rouane%2C+R">R. Rouane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bazier-Matte%2C+X">X. Bazier-Matte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quilliam%2C+J+A">J. A. Quilliam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.05377v1-abstract-short" style="display: inline;"> Molecular magnets based on [Mo$_3$]$^{11+}$ units with one unpaired electron per trimer have attracted recent interest due to the identification of quantum spin liquid candidacy in some family members. Here, we present comprehensive measurements on polycrystalline samples of ZnScMo$_3$O$_8$, MgScMo$_3$O$_8$, and Na$_3$Sc$_2$Mo$_5$O$_{16}$ with the same Mo$_3$O$_{13}$ magnetic building blocks. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05377v1-abstract-full').style.display = 'inline'; document.getElementById('2204.05377v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.05377v1-abstract-full" style="display: none;"> Molecular magnets based on [Mo$_3$]$^{11+}$ units with one unpaired electron per trimer have attracted recent interest due to the identification of quantum spin liquid candidacy in some family members. Here, we present comprehensive measurements on polycrystalline samples of ZnScMo$_3$O$_8$, MgScMo$_3$O$_8$, and Na$_3$Sc$_2$Mo$_5$O$_{16}$ with the same Mo$_3$O$_{13}$ magnetic building blocks. The crystal structures are characterized with x-ray or neutron powder diffraction and the magnetic ground states are determined by performing ac and dc susceptibility, specific heat, neutron powder diffraction, and $渭$SR measurements. Our work indicates that ZnScMo$_3$O$_8$ and MgScMo$_3$O$_8$ have ferromagnetic Curie-Weiss temperatures of 18.5 K and 11.9 K, ordered ground states with net moments (low-moment ferromagnetism or canted antiferromagnetism), and zero field ordering temperatures of $T_c =$ 6 K and $&lt;$ 2 K respectively. On the other hand, Na$_3$Sc$_2$Mo$_5$O$_{16}$ hosts a dynamical magnetic ground state with no evidence for magnetic ordering or spin freezing down to 20 mK despite an antiferromagnetic Curie-Weiss temperature of -36.2 K, and therefore is a candidate for quantum spin liquid behavior. By comparing the present results to past work on the same family of materials, we construct a phase diagram which illustrates that the magnetic ground states of these Mo-based molecular magnets are very sensitive to small changes in the nearest neighbor Mo-Mo distance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05377v1-abstract-full').style.display = 'none'; document.getElementById('2204.05377v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures, accepted for publication in Physical Review Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.11396">arXiv:2201.11396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.11396">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnon-Polaron Driven Thermal Hall Effect in a Heisenberg-Kitaev Antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neumann%2C+R+R">R. R. Neumann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guang%2C+S+K">S. K. Guang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">J. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+K">K. Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+X+Y">X. Y. Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+Y">Y. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+J">J. Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Z. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mook%2C+A">A. Mook</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henk%2C+J">J. Henk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mertig%2C+I">I. Mertig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.11396v2-abstract-short" style="display: inline;"> The thermal Hall effect, defined as a heat current response transversal to an applied temperature gradient, is a central experimental probe of exotic electrically insulating phases of matter. A key question is how the interplay between magnetic and structural degrees of freedom gives rise to a nonzero thermal Hall conductivity (THC). Here, we present evidence for an intrinsic thermal Hall effect i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11396v2-abstract-full').style.display = 'inline'; document.getElementById('2201.11396v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.11396v2-abstract-full" style="display: none;"> The thermal Hall effect, defined as a heat current response transversal to an applied temperature gradient, is a central experimental probe of exotic electrically insulating phases of matter. A key question is how the interplay between magnetic and structural degrees of freedom gives rise to a nonzero thermal Hall conductivity (THC). Here, we present evidence for an intrinsic thermal Hall effect in the Heisenberg-Kitaev antiferromagnet and spin-liquid candidate Na$_2$Co$_2$TeO$_6$ brought about by the quantum-geometric Berry curvature of so-called magnon polarons, resulting from magnon-phonon hybridization. At low temperatures, our field- and temperature-dependent measurements show a negative THC for magnetic fields below 10 T and a sign change to positive THC above. Theoretically, the sign and the order of magnitude of the THC cannot be solely explained with magnetic excitations. We demonstrate that, by incorporating spin-lattice coupling into our theoretical calculations, the Berry curvature of magnon polarons counteracts the purely magnonic contribution, reverses the overall sign of the THC, and increases its magnitude, which significantly improves agreement with experimental data. Our work highlights the crucial role of spin-lattice coupling in the thermal Hall effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11396v2-abstract-full').style.display = 'none'; document.getElementById('2201.11396v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06182">arXiv:2112.06182</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.06182">pdf</a>, <a href="https://arxiv.org/ps/2112.06182">ps</a>, <a href="https://arxiv.org/format/2112.06182">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.014431">10.1103/PhysRevB.105.014431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-field magnetic structure of the triangular antiferromagnet RbFe(MoO4)2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sakhratov%2C+Y+A">Yu. A. Sakhratov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokhnenko%2C+O">O. Prokhnenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shapiro%2C+A+Y">A. Ya. Shapiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svistov%2C+L+E">L. E. Svistov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyes%2C+A+P">A. P. Reyes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrenko%2C+O+A">O. A. Petrenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06182v1-abstract-short" style="display: inline;"> The magnetic H - T phase diagram of a quasi-two-dimensional antiferromagnet RbFe(MoO4)2 with an equilateral triangular lattice structure is studied with 87Rb NMR and neutron diffraction techniques. This combination of experimental techniques allows us to determine the ordered components of the magnetic moments on the Fe3+ ions within various high-field phases - the Y, UUD, V, and fan structures, s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06182v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06182v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06182v1-abstract-full" style="display: none;"> The magnetic H - T phase diagram of a quasi-two-dimensional antiferromagnet RbFe(MoO4)2 with an equilateral triangular lattice structure is studied with 87Rb NMR and neutron diffraction techniques. This combination of experimental techniques allows us to determine the ordered components of the magnetic moments on the Fe3+ ions within various high-field phases - the Y, UUD, V, and fan structures, stabilized in the compound by the in-plane magnetic field. It is also established that the transition from the V to the fan phase is of first-order, whereas the transition from the fan phase to the polarized paramagnetic phase is continuous. An analysis of the NMR spectra shows that the high-field fan phase of RbFe(MoO4)2 can be successfully described by a periodic commensurate oscillation of the magnetic moments around the field direction in each Fe layer combined with an incommensurate modulation of the magnetic structure perpendicular to the layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06182v1-abstract-full').style.display = 'none'; document.getElementById('2112.06182v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.08893">arXiv:2108.08893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.08893">pdf</a>, <a href="https://arxiv.org/format/2108.08893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ac5703">10.1088/1361-648X/ac5703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-magnetic ion site disorder effects on the quantum magnetism of a spin-1/2 equilateral triangular lattice antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rawl%2C+R">R. Rawl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W+W">W. W. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+E+S">E. S. Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zapf%2C+V+S">V. S. Zapf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X+X">X. X. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mauws%2C+C">C. Mauws</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiebe%2C+C+R">C. R. Wiebe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+E+X">E. X. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H+B">H. B. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Y">Y. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butch%2C+N">N. Butch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.08893v1-abstract-short" style="display: inline;"> With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba3CoSb2O9, a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutron scattering measurements on single crystalline samples of Ba2.87Sr0.13CoSb2O9 with Sr doping on non-magnetic Ba2+ ion sites. The results show that Ba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08893v1-abstract-full').style.display = 'inline'; document.getElementById('2108.08893v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.08893v1-abstract-full" style="display: none;"> With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba3CoSb2O9, a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutron scattering measurements on single crystalline samples of Ba2.87Sr0.13CoSb2O9 with Sr doping on non-magnetic Ba2+ ion sites. The results show that Ba2.87Sr0.13CoSb2O9 exhibits (i) a two-step magnetic transition at 2.7 K and 3.3 K, respectively; (ii) a possible canted 120-degree spin structure at zero field with reduced ordered moment as 1.24渭B/Co; (iii) a series of spin state transitions for both H // ab-plane and H // c-axis. For H // ab-plane, the magnetization plateau feature related to the up-up-down phase is significantly suppressed; (iv) an inelastic neutron scattering spectrum with only one gapped mode at zero field, which splits to one gapless and one gapped mode at 9 T. All these features are distinctly different from those observed for the parent compound Ba3CoSb2O9, which demonstrates that the non-magnetic ion site disorder (the Sr doping) plays a complex role on the magnetic properties beyond the conventionally expected randomization of the exchange interactions. We propose the additional effects including the enhancement of quantum spin fluctuations and introduction of a possible spatial anisotropy through the local structural distortions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08893v1-abstract-full').style.display = 'none'; document.getElementById('2108.08893v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12748">arXiv:2107.12748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.12748">pdf</a>, <a href="https://arxiv.org/format/2107.12748">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-022-1855-5">10.1007/s11433-022-1855-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extremely low-energy collective modes in a quasi-one-dimensional system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z+X">Z. X. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y+L">Y. L. Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+L">L. Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Z. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">H. Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+J">J. Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12748v1-abstract-short" style="display: inline;"> We have investigated the quasiparticle dynamics and collective excitations in the quasi-one-dimensional material ZrTe$_5$ using ultrafast optical pump-probe spectroscopy. Our time-domain results reveal two coherent oscillations having extremely low energies of $\hbar蠅_1\sim$0.33 meV (0.08 THz) and $\hbar蠅_2\sim$1.9 meV (0.45 THz), which are softened as the temperature approaches two different crit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12748v1-abstract-full').style.display = 'inline'; document.getElementById('2107.12748v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12748v1-abstract-full" style="display: none;"> We have investigated the quasiparticle dynamics and collective excitations in the quasi-one-dimensional material ZrTe$_5$ using ultrafast optical pump-probe spectroscopy. Our time-domain results reveal two coherent oscillations having extremely low energies of $\hbar蠅_1\sim$0.33 meV (0.08 THz) and $\hbar蠅_2\sim$1.9 meV (0.45 THz), which are softened as the temperature approaches two different critical temperatures ($\sim$54 K and $\sim$135 K). We attribute these two collective excitations to the amplitude mode of charge density wave instabilities in ZrTe$_5$ with tremendously small nesting wave vectors. Furthermore, scattering with the $\hbar蠅_2$ mode may result in a peculiar quasiparticle decay process with a timescale of $\sim$1-2 ps below the transition temperature $T^*$ ($\sim$135 K). Our findings provide pivotal information for studying the fluctuating order parameters and their associated quasiparticle dynamics in various low-dimensional topological systems and other materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12748v1-abstract-full').style.display = 'none'; document.getElementById('2107.12748v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science China - Physics, Mechanics &amp; Astronomy, 65 , 257012 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.01585">arXiv:2107.01585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.01585">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-25247-6">10.1038/s41467-021-25247-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Survival of itinerant excitations and quantum spin state transitions in YbMgGaO$_4$ with chemical disorder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+X">X. Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+G">G. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+W+J">W. J. Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dun%2C+Z">Z. Dun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asaba%2C+T">T. Asaba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">L. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+X+Y">X. Y. Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N+N">N. N. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J+-">J. -G. Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y+H">Y. H. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Y. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">J. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">G. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.01585v1-abstract-short" style="display: inline;"> A recent focus of quantum spin liquid (QSL) studies is how disorder/randomness in a QSL candidate affects its true magnetic ground state. The ultimate question is whether the QSL survives disorder or the disorder leads to a &#34;spin-liquid-like&#34; state, such as the proposed random-singlet (RS) state. Since disorder is a standard feature of most QSL candidates, this question represents a major challeng&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01585v1-abstract-full').style.display = 'inline'; document.getElementById('2107.01585v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.01585v1-abstract-full" style="display: none;"> A recent focus of quantum spin liquid (QSL) studies is how disorder/randomness in a QSL candidate affects its true magnetic ground state. The ultimate question is whether the QSL survives disorder or the disorder leads to a &#34;spin-liquid-like&#34; state, such as the proposed random-singlet (RS) state. Since disorder is a standard feature of most QSL candidates, this question represents a major challenge for QSL candidates. YbMgGaO$_4$, a triangular lattice antiferromagnet with effective spin-1/2 Yb$^{3+}$ ions, is an ideal system to address this question, since it shows no long-range magnetic ordering with Mg/Ga site disorder. Despite the intensive study, it remains unresolved as to whether YbMgGaO$_4$ is a QSL or in the RS state. Here, through ultralow-temperature thermal conductivity and magnetic torque measurements, plus specific heat and DC magnetization data, we observed a residual $魏_0/T$ term and series of quantum spin state transitions in the zero temperature limit for YbMgGaO$_4$. These observations strongly suggest that a QSL state with itinerant excitations and quantum spin fluctuations survives disorder in YbMgGaO$_4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01585v1-abstract-full').style.display = 'none'; document.getElementById('2107.01585v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 12, 4949 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.00303">arXiv:2107.00303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.00303">pdf</a>, <a href="https://arxiv.org/ps/2107.00303">ps</a>, <a href="https://arxiv.org/format/2107.00303">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.104403">10.1103/PhysRevB.104.104403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum spin state transitions in spin-1 equilateral triangular lattice antiferromagnet Na$_2$BaNi(PO$_4$)$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brassington%2C+A">A. Brassington</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+X+Y">X. Y. Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+W+J">W. J. Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guang%2C+S+K">S. K. Guang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+H">X. H. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+P">P. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+E+X">E. X. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H+B">H. B. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.00303v2-abstract-short" style="display: inline;"> We have grown single crystals of Na$_2$BaNi(PO$_4$)$_2$, a new spin-1 equilateral triangular lattice antiferromagnet (ETLAF), and performed magnetic susceptibility, specific heat and thermal conductivity measurements at ultralow temperatures. The main results are (i) at zero magnetic field, Na$_2$BaNi(PO$_4$)$_2$ exhibits a magnetic ordering at 430 mK with a weak ferromagnetic moment along the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00303v2-abstract-full').style.display = 'inline'; document.getElementById('2107.00303v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.00303v2-abstract-full" style="display: none;"> We have grown single crystals of Na$_2$BaNi(PO$_4$)$_2$, a new spin-1 equilateral triangular lattice antiferromagnet (ETLAF), and performed magnetic susceptibility, specific heat and thermal conductivity measurements at ultralow temperatures. The main results are (i) at zero magnetic field, Na$_2$BaNi(PO$_4$)$_2$ exhibits a magnetic ordering at 430 mK with a weak ferromagnetic moment along the $c$ axis. This suggests a canted 120$^\circ$ spin structure, which is in a plane including the crystallographic $c$ axis due to the existence of an easy-axis anisotropy and ferromagnetically stacked along the $c$ axis; (ii) with increasing field along the $c$ axis, a 1/3 magnetization plateau is observed which means the canted 120$^\circ$ spin structure is transformed to a up up down (UUD) spin structure. With even higher fields, the UUD phase further evolves to possible V and V&#39; phases; (iii) with increasing field along the $a$ axis, the canted 120$^\circ$ spin structure is possibly transformed to a umbrella phase and a V phase. Therefore, Na$_2$BaNi(PO$_4$)$_2$ is a rare example of spin-1 ETLAF with single crystalline form to exhibit easy-axis spin anisotropy and series of quantum spin state transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00303v2-abstract-full').style.display = 'none'; document.getElementById('2107.00303v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 104403 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.13030">arXiv:2012.13030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.13030">pdf</a>, <a href="https://arxiv.org/format/2012.13030">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.184425">10.1103/PhysRevB.103.184425 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of magnetic-field-induced ordering in the layered structure quantum Heisenberg triangular-lattice antiferromagnet Ba$_3$CoSb$_2$O$_9$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fortune%2C+N+A">N. A. Fortune</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+T">T. Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hannahs%2C+S+T">S. T. Hannahs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takano%2C+Y">Y. Takano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.13030v2-abstract-short" style="display: inline;"> Quantum fluctuations in the effective spin one-half layered structure triangular-lattice quantum Heisenberg antiferromagnet Ba$_3$CoSb$_2$O$_9$ lift the classical degeneracy of the antiferromagnetic ground state in magnetic field, producing a series of novel spin structures for magnetic fields applied within the crystallographic ab plane. Theoretically unresolved, however, are the effects of inter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.13030v2-abstract-full').style.display = 'inline'; document.getElementById('2012.13030v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.13030v2-abstract-full" style="display: none;"> Quantum fluctuations in the effective spin one-half layered structure triangular-lattice quantum Heisenberg antiferromagnet Ba$_3$CoSb$_2$O$_9$ lift the classical degeneracy of the antiferromagnetic ground state in magnetic field, producing a series of novel spin structures for magnetic fields applied within the crystallographic ab plane. Theoretically unresolved, however, are the effects of interlayer antferromagnetic coupling and transverse magnetic fields on the ground states of this system. To address these issues, we have used specific heat, neutron diffraction, thermal conductivity, and magnetic torque measurements to map out the phase diagram as a function of magnetic field intensity and orientation relative to the crystallographic ab plane. For H parallel to the ab plane, we have discovered an additional, previously unreported magnetic-field-induced phase transition at low temperature and an unexpected tetracritical point in the high field phase diagram, which - coupled with the apparent second-order nature of the phase transitions - eliminates several theoretically proposed spin structures for the high field phases. Our calorimetric measurements as a function of magnetic field orientation are in general agreement with theory for field-orientation angles close to plane parallel but diverge at angles near plane perpendicular; a predicted convergence of two phase boundaries at finite angle and a corresponding change in the order of the field induced phase transition is not observed experimentally. Our results emphasize the role of interlayer coupling in selecting and stabilizing field-induced phases, provide new guidance into the nature of the magnetic order in each phase, and reveal the need for new physics to account for the nature of magnetic ordering in this archetypal 2D spin one-half triangular lattice quantum Heisenberg antiferromagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.13030v2-abstract-full').style.display = 'none'; document.getElementById('2012.13030v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 184425 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.14970">arXiv:2011.14970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.14970">pdf</a>, <a href="https://arxiv.org/format/2011.14970">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202101402">10.1002/advs.202101402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Domain wall patterning and giant response functions in ferrimagnetic spinels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kish%2C+L+L">L. L. Kish</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thaler%2C+A">A. Thaler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">M. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zakrzewski%2C+A+V">A. V. Zakrzewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reig-i-Plessis%2C+D">D. Reig-i-Plessis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolin%2C+B">B. Wolin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Littrell%2C+K+C">K. C. Littrell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Budakian%2C+R">R. Budakian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zapf%2C+V+S">V. S. Zapf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeBeer-Schmitt%2C+L">L. DeBeer-Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacDougall%2C+G+J">G. J. MacDougall</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.14970v1-abstract-short" style="display: inline;"> The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential has not yet been realized in the field of magnetism. We show that mechanically strained samples of Mn$_3$O$_4$ and MnV$_2$O$_4$ exhibit a stripe-like patterning of the bulk magnetization below known magnetostructural transitions,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14970v1-abstract-full').style.display = 'inline'; document.getElementById('2011.14970v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.14970v1-abstract-full" style="display: none;"> The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential has not yet been realized in the field of magnetism. We show that mechanically strained samples of Mn$_3$O$_4$ and MnV$_2$O$_4$ exhibit a stripe-like patterning of the bulk magnetization below known magnetostructural transitions, similar to the structural domains reported in ferroelectric materials. Building off our previous magnetic force microscopy data, we use small angle neutron scattering to show that these patterns extend to the bulk, and demonstrate an ability to manipulate the domain walls via applied magnetic field and mechanical stress. We then connect these domains back to the anomalously large magnetoelastic and magnetodielectric response functions reported in these materials, directly correlating local and macroscopic measurements on the same crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14970v1-abstract-full').style.display = 'none'; document.getElementById('2011.14970v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Sci. 2021, 8, 2101402 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09048">arXiv:2011.09048</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.09048">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-36886-2">10.1038/s41467-023-36886-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous Magnetoresistance by Breaking Ice Rule in Bi2Ir2O7/Dy2Ti2O7 Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+C+K">C. K. Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noordhoek%2C+K">K. Noordhoek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+T+H">T. H. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hor%C3%A1k%2C+L">L. Hor谩k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+L">L. Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pandey%2C+S">S. Pandey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagotto%2C+E">E. Dagotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Z. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J+H">J. H. Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xin%2C+Y">Y. Xin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">J. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09048v2-abstract-short" style="display: inline;"> While geometrically frustrated quantum magnets are known for a variety of exotic spin states that are of great interests of understanding emergent phenomena as well as enabling revolutionary quantum technologies, most of them are necessarily good insulators which are difficult to be integrated with modern electrical circuit that relies on moving charge carriers. The grand challenge of converting f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09048v2-abstract-full').style.display = 'inline'; document.getElementById('2011.09048v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09048v2-abstract-full" style="display: none;"> While geometrically frustrated quantum magnets are known for a variety of exotic spin states that are of great interests of understanding emergent phenomena as well as enabling revolutionary quantum technologies, most of them are necessarily good insulators which are difficult to be integrated with modern electrical circuit that relies on moving charge carriers. The grand challenge of converting fluctuations and excitations of frustrated moments into electronic responses is finding ways to introduce charge carriers that interact with the localized spins without destroying the spin states. Here, we show that, by designing a Bi2Ir2O7/Dy2Ti2O7 heterostructure, the breaking of the spin ice rule in insulating Dy2Ti2O7 can lead to a charge response in the Bi2Ir2O7 conducting layer that can be detected as anomalous magnetoresistance. These results demonstrate a novel and feasible interfacial approach for electronically probing exotic spin states in insulating magnets, laying out a blueprint for the metallization of frustrated quantum magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09048v2-abstract-full').style.display = 'none'; document.getElementById('2011.09048v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 14, 1404 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02802">arXiv:2010.02802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02802">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Orbital competition of Mn3+ and V3+ ions in Mn1+xV2-xO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+J+L">J. L. Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H+P">H. P. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">W. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">G. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Q">Q. Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinclair%2C+R">R. Sinclair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+G+T">G. T. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huq%2C+A">A. Huq</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">H. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M+Z">M. Z. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02802v1-abstract-short" style="display: inline;"> The structure and magnetic properties of Mn1+xV2-xO4 (0&lt;x&lt;=1), a complex frustrated system, were investigated by heat capacity, magnetization, x-ray diffraction, and neutron diffraction measurements. For x&lt;=0.3, a cubic-to-tetragonal (c &gt; a) phase transition was observed. For x &gt; 0.3, the system maintained the tetragonal lattice. The collinear and noncollinear magnetic transition was also observed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02802v1-abstract-full').style.display = 'inline'; document.getElementById('2010.02802v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02802v1-abstract-full" style="display: none;"> The structure and magnetic properties of Mn1+xV2-xO4 (0&lt;x&lt;=1), a complex frustrated system, were investigated by heat capacity, magnetization, x-ray diffraction, and neutron diffraction measurements. For x&lt;=0.3, a cubic-to-tetragonal (c &gt; a) phase transition was observed. For x &gt; 0.3, the system maintained the tetragonal lattice. The collinear and noncollinear magnetic transition was also observed for all compositions. To reveal the dynamics of the ground state, first principle simulation was applied to not only analyze the orbital effects of Mn2+, Mn3+, and V3+ ions, but also the related exchange energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02802v1-abstract-full').style.display = 'none'; document.getElementById('2010.02802v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14288">arXiv:2009.14288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14288">pdf</a>, <a href="https://arxiv.org/format/2009.14288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.186402">10.1103/PhysRevLett.126.186402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dual Orbital Degeneracy Lifting in a Strongly Correlated Electron System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Koch%2C+R+J">R. J. Koch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinclair%2C+R">R. Sinclair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McDonnell%2C+M+T">M. T. McDonnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">R. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abeykoon%2C+M">M. Abeykoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tucker%2C+M+G">M. G. Tucker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsvelik%2C+A+M">A. M. Tsvelik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Billinge%2C+S+J+L">S. J. L. Billinge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+W+-">W. -G. Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bozin%2C+E+S">E. S. Bozin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14288v1-abstract-short" style="display: inline;"> The local structure of NaTiSi$_{2}$O$_{6}$ is examined across its Ti-dimerization orbital-assisted Peierls transition at 210 K. An atomic pair distribution function approach evidences local symmetry breaking preexisting far above the transition. The analysis unravels that on warming the dimers evolve into a short range orbital degeneracy lifted (ODL) state of dual orbital character, persisting up&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14288v1-abstract-full').style.display = 'inline'; document.getElementById('2009.14288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14288v1-abstract-full" style="display: none;"> The local structure of NaTiSi$_{2}$O$_{6}$ is examined across its Ti-dimerization orbital-assisted Peierls transition at 210 K. An atomic pair distribution function approach evidences local symmetry breaking preexisting far above the transition. The analysis unravels that on warming the dimers evolve into a short range orbital degeneracy lifted (ODL) state of dual orbital character, persisting up to at least 490 K. The ODL state is correlated over the length scale spanning $\sim$6 sites of the Ti zigzag chains. Results imply that the ODL phenomenology extends to strongly correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14288v1-abstract-full').style.display = 'none'; document.getElementById('2009.14288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 186402 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11960">arXiv:2009.11960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.11960">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.134421">10.1103/PhysRevB.102.134421 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Field Induced Phase Transition in Spinel GeNi2O4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Basu%2C+T">T. Basu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+T">T. Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dun%2C+Z">Z. Dun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C+Q">C. Q. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cruz%2C+C+R+D">C. R. Dela Cruz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+T">Tao Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H+B">H. B. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taddei%2C+K+M">K. M. Taddei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+X">X. Ke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11960v1-abstract-short" style="display: inline;"> Cubic spinel GeNi2O4 exhibits intriguing magnetic properties with two successive antiferromagnetic phase transitions (TN1 12.1 and TN2 11.4 K) with the absence of any structural transition. We have performed detailed heat capacity and magnetic measurements in different crystallographic orientations. A new magnetic phase in presence of magnetic field (H &gt; 4 T) along the [111] direction is revealed,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11960v1-abstract-full').style.display = 'inline'; document.getElementById('2009.11960v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11960v1-abstract-full" style="display: none;"> Cubic spinel GeNi2O4 exhibits intriguing magnetic properties with two successive antiferromagnetic phase transitions (TN1 12.1 and TN2 11.4 K) with the absence of any structural transition. We have performed detailed heat capacity and magnetic measurements in different crystallographic orientations. A new magnetic phase in presence of magnetic field (H &gt; 4 T) along the [111] direction is revealed, which is not observed when the magnetic field is applied along the [100] and [110] directions. High field neutron powder diffraction measurements confirm such a change in magnetic phase, which could be ascribed to a spin reorientation in the presence of magnetic field. A strong magnetic anisotropy and competing magnetic interactions play a crucial role on the complex magnetic behavior in this cubic system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11960v1-abstract-full').style.display = 'none'; document.getElementById('2009.11960v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in PRB</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.04391">arXiv:2009.04391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.04391">pdf</a>, <a href="https://arxiv.org/format/2009.04391">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.124407">10.1103/PhysRevMaterials.4.124407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural, electronic, and magnetic properties of nearly-ideal $J_{\rm eff}$ $=$ 1/2 iridium halides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Reig-i-Plessis%2C+D">D. Reig-i-Plessis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+T+A">T. A. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+K">K. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Q. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruff%2C+J+P+C">J. P. C. Ruff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Upton%2C+M+H">M. H. Upton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+T+J">T. J. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">S. Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clancy%2C+J+P">J. P. Clancy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacDougall%2C+G+J">G. J. MacDougall</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.04391v1-abstract-short" style="display: inline;"> Heavy transition metal magnets with $J_{\rm eff}$ $=$ 1/2 electronic ground states have attracted recent interest due to their penchant for hosting new classes of quantum spin liquids and superconductors. Unfortunately, model systems with ideal $J_{\rm eff}$ $=$ 1/2 states are scarce due to the importance of non-cubic local distortions in most candidate materials. In this work, we identify a famil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.04391v1-abstract-full').style.display = 'inline'; document.getElementById('2009.04391v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.04391v1-abstract-full" style="display: none;"> Heavy transition metal magnets with $J_{\rm eff}$ $=$ 1/2 electronic ground states have attracted recent interest due to their penchant for hosting new classes of quantum spin liquids and superconductors. Unfortunately, model systems with ideal $J_{\rm eff}$ $=$ 1/2 states are scarce due to the importance of non-cubic local distortions in most candidate materials. In this work, we identify a family of iridium halide systems [i.e. K$_2$IrCl$_6$, K$_2$IrBr$_6$, (NH$_4$)$_2$IrCl$_6$, and Na$_2$IrCl$_6 \cdotp $ 6(H$_2$O)] with Ir$^{4+}$ electronic ground states in extremely close proximity to the ideal $J_{\rm eff}$ $=$ 1/2 limit, despite a variation in the low-temperature global crystal structures. We also find ordered magnetic ground states for the three anhydrous systems, with single crystal neutron diffraction on K$_2$IrBr$_6$ revealing Type-I antiferromagnetism. This spin configuration is consistent with expectations for significant Kitaev exchange in a face-centered-cubic magnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.04391v1-abstract-full').style.display = 'none'; document.getElementById('2009.04391v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 124407 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.04274">arXiv:2007.04274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.04274">pdf</a>, <a href="https://arxiv.org/format/2007.04274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.094411">10.1103/PhysRevMaterials.4.094411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetoelectric effect arising from a field-induced pseudo Jahn-Teller distortion in a rare earth magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">Minseong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Q. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">Eun Sang Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ling%2C+L">Langsheng Ling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+Z">Zhe Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G+H">G. H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.04274v1-abstract-short" style="display: inline;"> Magnetoelectric materials are attractive for several applications, including actuators, switches, and magnetic field sensors. Typical mechanisms for achieving a strong magnetoelectric coupling are rooted in transition metal magnetism. In sharp contrast, here we identify CsEr(MoO4)2 as a magnetoelectric material without magnetic transition metal ions, thus ensuring that the Er ions play a key role&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04274v1-abstract-full').style.display = 'inline'; document.getElementById('2007.04274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.04274v1-abstract-full" style="display: none;"> Magnetoelectric materials are attractive for several applications, including actuators, switches, and magnetic field sensors. Typical mechanisms for achieving a strong magnetoelectric coupling are rooted in transition metal magnetism. In sharp contrast, here we identify CsEr(MoO4)2 as a magnetoelectric material without magnetic transition metal ions, thus ensuring that the Er ions play a key role in achieving this interesting property. Our detailed study includes measurements of the structural, magnetic, and electric properties of this material. Bulk characterization and neutron powder diffraction show no evidence for structural phase transitions down to 0.3 K and therefore CsEr(MoO4)2 maintains the room temperature P2/c space group over a wide temperature range without external magnetic field. These same measurements also identify collinear antiferromagnetic ordering of the Er3+ moments below TN = 0.87 K. Complementary dielectric constant and pyroelectric current measurements reveal that a ferroelectric phase (P ~ 0.5 nC/cm2) emerges when applying a modest external magnetic field, which indicates that this material has a strong magnetoelectric coupling. We argue that the magnetoelectric coupling in this system arises from a pseudo Jahn-Teller distortion induced by the magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04274v1-abstract-full').style.display = 'none'; document.getElementById('2007.04274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, under revision for resubmission</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 094411 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.11265">arXiv:2004.11265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.11265">pdf</a>, <a href="https://arxiv.org/ps/2004.11265">ps</a>, <a href="https://arxiv.org/format/2004.11265">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.054406">10.1103/PhysRevMaterials.4.054406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of long-range order in an $XY$ pyrochlore antiferromagnet Er$_2$AlSbO$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+H+L">H. L. Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+X">X. Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+L+G">L. G. Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+W+J">W. J. Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+P">P. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+X+Y">X. Y. Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Y. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y+Y">Y. Y. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Z+Z">Z. Z. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.11265v1-abstract-short" style="display: inline;"> Rare-earth pyrochlores are known to exhibit exotic magnetic phenomena. We report a study of crystal growth and characterizations of a new rare-earth compound Er$_2$AlSbO$_7$, in which Al$^{3+}$ and Sb$^{5+}$ ions share the same positions with a random distribution. The magnetism are studied by magnetic susceptibility, specific heat and thermal conductivity measurements at low temperatures down to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11265v1-abstract-full').style.display = 'inline'; document.getElementById('2004.11265v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.11265v1-abstract-full" style="display: none;"> Rare-earth pyrochlores are known to exhibit exotic magnetic phenomena. We report a study of crystal growth and characterizations of a new rare-earth compound Er$_2$AlSbO$_7$, in which Al$^{3+}$ and Sb$^{5+}$ ions share the same positions with a random distribution. The magnetism are studied by magnetic susceptibility, specific heat and thermal conductivity measurements at low temperatures down to several tens of milli-kelvin. Different from the other reported Er-based pyrochlores exhibiting distinct magnetically ordered states, a spin-freezing transition is detected in Er$_2$AlSbO$_7$ below 0.37 K, which is primarily ascribed to the inherent structural disorder. A cluster spin-glass state is proposed in view of the frequency dependence of the peak position in the ac susceptibility. In addition, the temperature and field dependence of thermal conductivity indicates rather strong spin fluctuations which is probably due to the phase competition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11265v1-abstract-full').style.display = 'none'; document.getElementById('2004.11265v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures, accepted for publication Phys. Rev. Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 054406 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.00661">arXiv:2004.00661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.00661">pdf</a>, <a href="https://arxiv.org/format/2004.00661">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.064409">10.1103/PhysRevMaterials.4.064409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Realization of the orbital-selective Mott state at the molecular level in Ba$_3$LaRu$_2$O$_9$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Q. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verrier%2C+A">A. Verrier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ziat%2C+D">D. Ziat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clune%2C+A+J">A. J. Clune</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rouane%2C+R">R. Rouane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bazier-Matte%2C+X">X. Bazier-Matte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">G. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">S. Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taddei%2C+K+M">K. M. Taddei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cruz%2C+C+R+d">C. R. dela Cruz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolesnikov%2C+A+I">A. I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J+-">J. -G. Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quilliam%2C+J+A">J. A. Quilliam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Musfeldt%2C+J+L">J. L. Musfeldt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.00661v1-abstract-short" style="display: inline;"> Molecular magnets based on heavy transition metals have recently attracted significant interest in the quest for novel magnetic properties. For systems with an odd number of valence electrons per molecule, high or low molecular spin states are typically expected in the double exchange or quasi-molecular orbital limits respectively. In this work, we use bulk characterization, muon spin relaxation,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00661v1-abstract-full').style.display = 'inline'; document.getElementById('2004.00661v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.00661v1-abstract-full" style="display: none;"> Molecular magnets based on heavy transition metals have recently attracted significant interest in the quest for novel magnetic properties. For systems with an odd number of valence electrons per molecule, high or low molecular spin states are typically expected in the double exchange or quasi-molecular orbital limits respectively. In this work, we use bulk characterization, muon spin relaxation, neutron diffraction, and inelastic neutron scattering to identify a rare intermediate spin-3/2 per dimer state in the 6H-perovskite Ba$_3$LaRu$_2$O$_9$ that cannot be understood in a double exchange or quasi-molecular orbital picture and instead arises from orbital-selective Mott insulating behavior at the molecular level. Our measurements are also indicative of collinear stripe magnetic order below $T_N$ = 26(1) K for these molecular spin-3/2 degrees-of-freedom, which is consistent with expectations for an ideal triangular lattice with significant next nearest neighbor in-plane exchange. Finally, we present neutron diffraction and Raman scattering data under applied pressure that reveal low-lying structural and spin state transitions at modest pressures P $\le$ 1 GPa, which highlights the delicate balance between competing energy scales in this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00661v1-abstract-full').style.display = 'none'; document.getElementById('2004.00661v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 064409 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.13500">arXiv:2003.13500</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.13500">pdf</a>, <a href="https://arxiv.org/format/2003.13500">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.046403">10.1103/PhysRevLett.125.046403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unraveling the Topological Phase of ZrTe$_5$ via Magneto-infrared Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+T">T. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dun%2C+Z+L">Z. L. Dun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X+S">X. S. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mourigal%2C+M">M. Mourigal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+W">W. Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">D. Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Z. Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.13500v2-abstract-short" style="display: inline;"> For materials near the phase boundary between weak and strong topological insulators (TIs), their band topology depends on the band alignment, with the inverted (normal) band corresponding to the strong (weak) TI phase. Here, taking the anisotropic transition-metal pentatelluride ZrTe$_5$ as an example, we show that the band inversion manifests itself as a second extremum (band gap) in the layer s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13500v2-abstract-full').style.display = 'inline'; document.getElementById('2003.13500v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.13500v2-abstract-full" style="display: none;"> For materials near the phase boundary between weak and strong topological insulators (TIs), their band topology depends on the band alignment, with the inverted (normal) band corresponding to the strong (weak) TI phase. Here, taking the anisotropic transition-metal pentatelluride ZrTe$_5$ as an example, we show that the band inversion manifests itself as a second extremum (band gap) in the layer stacking direction, which can be probed experimentally via magneto-infrared spectroscopy. Specifically, we find that the band anisotropy of ZrTe$_5$ features a slow dispersion in the layer stacking direction, along with an additional set of optical transitions from a band gap away from the Brillouin zone center. Our work identifies ZrTe5 as a strong TI at liquid helium temperature and provides a new perspective in determining band inversion in layered topological materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13500v2-abstract-full').style.display = 'none'; document.getElementById('2003.13500v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">with supplemental materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 046403 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.10844">arXiv:2001.10844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.10844">pdf</a>, <a href="https://arxiv.org/format/2001.10844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.224416">10.1103/PhysRevB.101.224416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extremely slow non-equilibrium monopole dynamics in classical spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%B6ter%2C+T">T. St枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doerr%2C+M">M. Doerr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granovsky%2C+S">S. Granovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotter%2C+M">M. Rotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goennenwein%2C+S+T+B">S. T. B. Goennenwein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zherlitsyn%2C+S">S. Zherlitsyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrenko%2C+O+A">O. A. Petrenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wosnitza%2C+J">J. Wosnitza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.10844v1-abstract-short" style="display: inline;"> We report on the non-equilibrium monopole dynamics in the classical spin ice Dy$_2$Ti$_2$O$_7$ detected by means of high-resolution magnetostriction measurements. Significant lattice changes occur at the transition from the kagome-ice to the saturated-ice phase, visible in the longitudinal and transverse magnetostriction. A hysteresis opening at temperatures below 0.6 K suggests a first-order tran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.10844v1-abstract-full').style.display = 'inline'; document.getElementById('2001.10844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.10844v1-abstract-full" style="display: none;"> We report on the non-equilibrium monopole dynamics in the classical spin ice Dy$_2$Ti$_2$O$_7$ detected by means of high-resolution magnetostriction measurements. Significant lattice changes occur at the transition from the kagome-ice to the saturated-ice phase, visible in the longitudinal and transverse magnetostriction. A hysteresis opening at temperatures below 0.6 K suggests a first-order transition between the kagome and saturated state. Extremely slow lattice relaxations, triggered by changes of the magnetic field, were observed. These lattice-relaxation effects result from non-equilibrium monopole formation or annihilation processes. The relaxation times extracted from our experiment are in good agreement with theoretical predictions with decay constants of the order of $10{^4}$ s at 0.3 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.10844v1-abstract-full').style.display = 'none'; document.getElementById('2001.10844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 224416 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.11107">arXiv:1911.11107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.11107">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-18041-3">10.1038/s41467-020-18041-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Possible itinerant excitations and quantum spin state transitions in the effective spin-1/2 triangular-lattice antiferromagnet Na$_2$BaCo(PO$_4$)$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+X+Y">X. Y. Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+W+J">W. J. Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Q. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.11107v2-abstract-short" style="display: inline;"> The most fascinating feature of certain two-dimensional (2D) gapless quantum spin liquid (QSL) is that their spinon excitations behave like the fermionic carriers of a paramagnetic metal. The spinon Fermi surface is then expected to produce a linear increase of the thermal conductivity with temperature that should manifest via a residual value ($魏_0/T$) in the zero-temperature limit. However, this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11107v2-abstract-full').style.display = 'inline'; document.getElementById('1911.11107v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.11107v2-abstract-full" style="display: none;"> The most fascinating feature of certain two-dimensional (2D) gapless quantum spin liquid (QSL) is that their spinon excitations behave like the fermionic carriers of a paramagnetic metal. The spinon Fermi surface is then expected to produce a linear increase of the thermal conductivity with temperature that should manifest via a residual value ($魏_0/T$) in the zero-temperature limit. However, this linear in T behavior has been reported for very few QSL candidates. Here, we studied the ultralow-temperature thermal conductivity of an effective spin-1/2 triangular QSL candidate Na$_2$BaCo(PO$_4$)$_2$, which has an antiferromagnetic order at very low temperature ($T_N \sim$ 148 mK), and observed a finite $魏_0/T$ extrapolated from the data above $T_N$. Moreover, while approaching zero temperature, it exhibits series of quantum spin state transitions with applied field along the $c$ axis. These observations indicate that Na$_2$BaCo(PO$_4$)$_2$ possibly behaves as a gapless QSL with itinerant spin excitations above $T_N$ and its strong quantum spin fluctuations persist below $T_N$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11107v2-abstract-full').style.display = 'none'; document.getElementById('1911.11107v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures, with Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Commun. 11, 4216 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.09504">arXiv:1911.09504</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.09504">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202002451">10.1002/adma.202002451 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comprehensive Control of Metamagnetic Transition of Antiferromagnetic Mott Insulator Sr2IrO4 by in-situ Anisotropic Strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+L">L. Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mutch%2C+J">J. Mutch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noordhoek%2C+K">K. Noordhoek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=May%2C+A+F">A. F. May</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J+-">J. -H. Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J+W">J. W. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryan%2C+P+J">P. J. Ryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jian Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.09504v2-abstract-short" style="display: inline;"> Metamagnetism in antiferromagnets exhibits distinct critical behaviors and dynamics when invoking spin reversal and rotation. Here we show a 0.05% anisotropic strain suffices to in-situ modulate the metamagnetic critical field of the Mott insulator Sr2IrO4 by over 50%, enabling electrical switching of the transition. Resonant x-ray scattering and model simulation reveal that the transition is comp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09504v2-abstract-full').style.display = 'inline'; document.getElementById('1911.09504v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.09504v2-abstract-full" style="display: none;"> Metamagnetism in antiferromagnets exhibits distinct critical behaviors and dynamics when invoking spin reversal and rotation. Here we show a 0.05% anisotropic strain suffices to in-situ modulate the metamagnetic critical field of the Mott insulator Sr2IrO4 by over 50%, enabling electrical switching of the transition. Resonant x-ray scattering and model simulation reveal that the transition is completely tuned from the spin-flop to spin-flip type as the strain introduces C4-symmetry-breaking magnetic anisotropy. Simultaneous transport study indicates the metamagnetic responses are reflected in the large elasto- and magnetoconductance, highlighting the active charge degree of freedom in the spin-orbit-coupled Mott state and its potential for spin-electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09504v2-abstract-full').style.display = 'none'; document.getElementById('1911.09504v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. (2020) 02451 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.10763">arXiv:1906.10763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.10763">pdf</a>, <a href="https://arxiv.org/format/1906.10763">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic Ordering in the Ising Antiferromagnetic Pyrochlore Nd2ScNbO7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mauws%2C+C">Cole Mauws</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hiebert%2C+N">Nathaniel Hiebert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rutherford%2C+M">Megan Rutherford</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">Haidong D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Qing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">Matthew B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butch%2C+N+P">Nicholas P. Butch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Yixi Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">Eun Sang Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamani%2C+Z">Zahra Yamani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiebe%2C+C+R">Christopher R. Wiebe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.10763v2-abstract-short" style="display: inline;"> The question of structural disorder and its effects on magnetism is relevant to a number of spin liquid candidate materials. Although commonly thought of as a route to spin glass behavior, here we describe a system in which the structural disorder results in long-range antiferromagnetic order due to local symmetry breaking. Nd$_2$ScNbO$_7$ is shown to have a dispersionless gapped excitation observ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.10763v2-abstract-full').style.display = 'inline'; document.getElementById('1906.10763v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.10763v2-abstract-full" style="display: none;"> The question of structural disorder and its effects on magnetism is relevant to a number of spin liquid candidate materials. Although commonly thought of as a route to spin glass behavior, here we describe a system in which the structural disorder results in long-range antiferromagnetic order due to local symmetry breaking. Nd$_2$ScNbO$_7$ is shown to have a dispersionless gapped excitation observed in other neodymium pyrochlores below T$_N$ = 0.37 K through polarized and inelastic neutron scattering. However the dispersing spin waves are not observed. This excited mode is shown to occur in only 14(2) \% of the neodymium ions through spectroscopy and is consistent with total scattering measurements as well as the magnitude of the dynamic moment 0.26(2) $渭_B$. The remaining magnetic species order completely into the all-in all-out Ising antiferromagnetic structure. This can be seen as a result of local symmetry breaking due disordered Sc$^{+3}$ and Nb$^{+5}$ ions about the A-site. From this work, it has been established that B-site disorder restores the dipole-like behaviour of the Nd$^{+3}$ ions compared to the Nd$_2$B$_2$O$_7$ parent series. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.10763v2-abstract-full').style.display = 'none'; document.getElementById('1906.10763v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.09365">arXiv:1905.09365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.09365">pdf</a>, <a href="https://arxiv.org/format/1905.09365">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.074405">10.1103/PhysRevMaterials.3.074405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic order in single crystals of Na3Co2SbO6 with a honeycomb arrangement of 3d$^7$ Co$^{2+}$ ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J+-">J. -Q. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+S">S. Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Y. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Q">Q. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H+B">H. B. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">M. A. McGuire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.09365v1-abstract-short" style="display: inline;"> We have synthesized single crystals of Na$_3$Co$_2$SbO$_6$ and characterized the structure and magnetic order by measuring anisotropic magnetic properties, heat capacity, x-ray and neutron single crystal diffraction. Magnetic properties and specific heat of polycrystalline Na$_3$Co$_2$SbO$_6$ were also measured for comparison. Na$_3$Co$_2$SbO$_6$ crystallizes in a monoclinic structure (space group&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.09365v1-abstract-full').style.display = 'inline'; document.getElementById('1905.09365v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.09365v1-abstract-full" style="display: none;"> We have synthesized single crystals of Na$_3$Co$_2$SbO$_6$ and characterized the structure and magnetic order by measuring anisotropic magnetic properties, heat capacity, x-ray and neutron single crystal diffraction. Magnetic properties and specific heat of polycrystalline Na$_3$Co$_2$SbO$_6$ were also measured for comparison. Na$_3$Co$_2$SbO$_6$ crystallizes in a monoclinic structure (space group $C2/m$) with [Co$_2$SbO$_6$]$^{3-}$ layers separated by Na$^+$ ions. The temperature dependence of magnetic susceptibility shows significant anisotropic behavior in the whole temperature range 2\,K-350\,K investigated in this work. An effective moment of about 5.5\,$渭_B$/Co$^{2+}$ from a Curie-Weiss fitting of the magnetic susceptibility is larger than the spin only value and signals significant orbital contribution. Na$_3$Co$_2$SbO$_6$ single crystal undergoes a transition into a long-range antiferromagnetically ordered state below $T_N$=5\,K. Neutron single crystal diffraction confirmed the zigzag magnetic structure with a propagation vector k\,=\,(0.5, 0.5, 0). The ordered moment is found to be 0.9\,$渭_B$ at 4\,K and align along the crystallographic \textit{b}-axis. Density functional theory calculations suggest that the experimentally observed zigzag order is energetically competing with the Neel order. It is also found that the covalency between Co $d$ and O $p$ is quite strong and competes with the local spin-orbit coupling, suggesting a $J_{eff}$=1/2 ground state may not be realized in this compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.09365v1-abstract-full').style.display = 'none'; document.getElementById('1905.09365v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 074405 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.01049">arXiv:1905.01049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.01049">pdf</a>, <a href="https://arxiv.org/format/1905.01049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.054412">10.1103/PhysRevMaterials.3.054412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ba8MnNb6O24: a model two-dimensional spin-5/2 triangular lattice antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rawl%2C+R">R. Rawl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+L">L. Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Z. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evenson%2C+Z">Z. Evenson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cruz%2C+C+R+D">C. R. Dela Cruz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">M. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mourigal%2C+M">M. Mourigal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.01049v2-abstract-short" style="display: inline;"> We successfully synthesized and characterized the triangular lattice anitferromagnet Ba$_8$MnNb$_6$O$_{24}$, which comprises equilateral spin-5/2 Mn$^{2+}$ triangular layers separated by six non-magnetic Nb$^{5+}$ layers. The detailed susceptibility, specific heat, elastic and inelastic neutron scattering measurements, and spin wave theory simulation on this system reveal that it has a 120 degree&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.01049v2-abstract-full').style.display = 'inline'; document.getElementById('1905.01049v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.01049v2-abstract-full" style="display: none;"> We successfully synthesized and characterized the triangular lattice anitferromagnet Ba$_8$MnNb$_6$O$_{24}$, which comprises equilateral spin-5/2 Mn$^{2+}$ triangular layers separated by six non-magnetic Nb$^{5+}$ layers. The detailed susceptibility, specific heat, elastic and inelastic neutron scattering measurements, and spin wave theory simulation on this system reveal that it has a 120 degree ordering ground state below T$_N$ = 1.45 K with in-plane nearest-neighbor exchange interaction ~0.11 meV. While the large separation 18.9 A between magnetic layers makes the inter-layer exchange interaction virtually zero, our results suggest that a weak easy-plane anisotropy is the driving force for the k$_m$ = (1/3 1/3 0) magnetic ordering. The magnetic properties of Ba$_8$MnNb$_6$O$_{24}$, along with its classical excitation spectra, contrast with the related triple perovskite Ba$_3$MnNb$_2$O$_9$, which shows easy-axis anisotropy, and the iso-structural compound Ba$_8$CoNb$_6$O$_{24}$, in which the effective spin-1/2 Co$^{2+}$ spins do not order down to 60 mK and in which the spin dynamics shows sign of strong quantum effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.01049v2-abstract-full').style.display = 'none'; document.getElementById('1905.01049v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Figures, sentences, and references are updated</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Materials 3, 054412 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.02296">arXiv:1903.02296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.02296">pdf</a>, <a href="https://arxiv.org/ps/1903.02296">ps</a>, <a href="https://arxiv.org/format/1903.02296">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.104419">10.1103/PhysRevB.99.104419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetism study on a frustration-free spatially anisotropic $S$ = 1 square lattice antiferromagnet Ni[SC(NH$_2$)$_2$]$_6$Br$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L+M">L. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+X">X. Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+H+L">H. L. Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+L+G">L. G. Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ling%2C+L+S">L. S. Ling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J+F">J. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.02296v1-abstract-short" style="display: inline;"> Magnetism of the $S$ = 1 Heisenberg antiferromagnets on the spatially anisotropic square lattice has been scarcely explored. Here we report a study of the magnetism, specific heat, and thermal conductivity on Ni[SC(NH$_2$)$_2$]$_6$Br$_2$ (DHN) single crystals. Ni$^{2+}$ ions feature an $S$ = 1 rectangular lattice in the $bc$ plane, which can be viewed as an unfrustrated spatially anisotropic squar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.02296v1-abstract-full').style.display = 'inline'; document.getElementById('1903.02296v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.02296v1-abstract-full" style="display: none;"> Magnetism of the $S$ = 1 Heisenberg antiferromagnets on the spatially anisotropic square lattice has been scarcely explored. Here we report a study of the magnetism, specific heat, and thermal conductivity on Ni[SC(NH$_2$)$_2$]$_6$Br$_2$ (DHN) single crystals. Ni$^{2+}$ ions feature an $S$ = 1 rectangular lattice in the $bc$ plane, which can be viewed as an unfrustrated spatially anisotropic square lattice. A long-range antiferromagnetic order is developed at $T \rm_N =$ 2.23 K. Below $T\rm_N$, an upturn is observed in the $b$-axis magnetic susceptibility and the resultant minimum might be an indication for the $XY$ anisotropy in the ordered state. A gapped spin-wave dispersion is confirmed from the temperature dependence of the magnetic specific heat. Anisotropic temperature-field phase diagrams are mapped out and possible magnetic structures are proposed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.02296v1-abstract-full').style.display = 'none'; document.getElementById('1903.02296v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 104419 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.00399">arXiv:1903.00399</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.00399">pdf</a>, <a href="https://arxiv.org/format/1903.00399">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-019-0148-1">10.1038/s41535-019-0148-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of metallic and nonmetallic properties in the pyrochlore Lu$_2$Rh$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hallas%2C+A+M">Alannah M. Hallas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+A+Z">Arzoo Z. Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mauws%2C+C">Cole Mauws</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">Haidong D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+C">Cui Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+Z">Zizhou Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tachibana%2C+M">Makoto Tachibana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarte%2C+P+M">Paul M. Sarte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Attfield%2C+J+P">J. Paul Attfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luke%2C+G+M">Graeme M. Luke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiebe%2C+C+R">Christopher R. Wiebe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.00399v1-abstract-short" style="display: inline;"> Transition metal oxides of the $4d$ and $5d$ block have recently become the targets of materials discovery, largely due to their strong spin-orbit coupling that can generate exotic magnetic and electronic states. Here we report the high pressure synthesis of Lu$_2$Rh$_2$O$_7$, a new cubic pyrochlore oxide based on $4d^5$ Rh$^{4+}$ and characterizations via thermodynamic, electrical transport, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00399v1-abstract-full').style.display = 'inline'; document.getElementById('1903.00399v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.00399v1-abstract-full" style="display: none;"> Transition metal oxides of the $4d$ and $5d$ block have recently become the targets of materials discovery, largely due to their strong spin-orbit coupling that can generate exotic magnetic and electronic states. Here we report the high pressure synthesis of Lu$_2$Rh$_2$O$_7$, a new cubic pyrochlore oxide based on $4d^5$ Rh$^{4+}$ and characterizations via thermodynamic, electrical transport, and muon spin relaxation measurements. Magnetic susceptibility measurements reveal a large temperature-independent Pauli paramagnetic contribution, while heat capacity shows an enhanced Sommerfeld coefficient, $纬$ = 21.8(1) mJ/mol-Rh K$^2$. Muon spin relaxation measurements confirm that Lu$_2$Rh$_2$O$_7$ remains paramagnetic down to 2 K. Taken in combination, these three measurements suggest that Lu$_2$Rh$_2$O$_7$ is a correlated paramagnetic metal with a Wilson ratio of $R_W = 2.5$. However, electric transport measurements present a striking contradiction as the resistivity of Lu$_2$Rh$_2$O$_7$ is observed to monotonically increase with decreasing temperature, indicative of a nonmetallic state. Furthermore, although the magnitude of the resistivity is that of a semiconductor, the temperature dependence does not obey any conventional form. Thus, we propose that Lu$_2$Rh$_2$O$_7$ may belong to the same novel class of non-Fermi liquids as the nonmetallic metal FeCrAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00399v1-abstract-full').style.display = 'none'; document.getElementById('1903.00399v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials, Volume 4, Article number: 9 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.07924">arXiv:1902.07924</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.07924">pdf</a>, <a href="https://arxiv.org/format/1902.07924">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2019.06.025">10.1016/j.scib.2019.06.025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Asymmetric Ferromagnetic Criticality in Pyrochlore Ferromagnet Lu$_2$V$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+N">N. Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F+-">F. -Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Y+Y">Y. Y. Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+Y">Z. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J+P">J. P. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+S">B. S. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sui%2C+Y">Y. Sui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">G. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J+-">J. -G. Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.07924v1-abstract-short" style="display: inline;"> Critical phenomenon at the phase transition reveals the universal and long-distance properties of the criticality. We study the ferromagnetic criticality of the pyrochlore magnet Lu$_2$V$_2$O$_7$ at the ferromagnetic transition ${T_\text{c}\approx 70\, \text{K}}$ from the isotherms of magnetization $M(H)$ via an iteration process and the Kouvel-Fisher method. The critical exponents associated with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07924v1-abstract-full').style.display = 'inline'; document.getElementById('1902.07924v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.07924v1-abstract-full" style="display: none;"> Critical phenomenon at the phase transition reveals the universal and long-distance properties of the criticality. We study the ferromagnetic criticality of the pyrochlore magnet Lu$_2$V$_2$O$_7$ at the ferromagnetic transition ${T_\text{c}\approx 70\, \text{K}}$ from the isotherms of magnetization $M(H)$ via an iteration process and the Kouvel-Fisher method. The critical exponents associated with the transition are determined as ${尾= 0.32(1)}$, ${纬= 1.41(1)}$, and ${未= 5.38}$. The validity of these critical exponents is further verified by scaling all the $M(H)$ data in the vicinity of $T_\text{c}$ onto two universal curves in the plot of $M/|\varepsilon|^尾$ versus $H/|\varepsilon|^{尾+纬}$, where ${\varepsilon = T/T_\text{c} -1}$. The obtained $尾$ and $纬$ values show asymmetric behaviors on the ${T &lt; T_\text{c}}$ and the ${T &gt; T_\text{c}}$ sides, and are consistent with the predicted values of 3D Ising and cubic universality classes, respectively. This makes Lu$_2$V$_2$O$_7$ a rare example in which the critical behaviors associated with a ferromagnetic transition belong to different universality classes. We describe the observed criticality from the Ginzburg-Landau theory with the quartic cubic anisotropy that microscopically originates from the anti-symmetric Dzyaloshinskii-Moriya interaction as revealed by recent magnon thermal Hall effect and theoretical investigations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07924v1-abstract-full').style.display = 'none'; document.getElementById('1902.07924v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, submit on the behalf of Dr. J-G Cheng. First two authors contributed equally</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Bulletin 64 (17), 1222-1227 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.08146">arXiv:1901.08146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.08146">pdf</a>, <a href="https://arxiv.org/format/1901.08146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.134417">10.1103/PhysRevB.99.134417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revisiting the Kitaev material candidacy of Ir4+ double perovskite iridates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clancy%2C+J+P">J. P. Clancy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Q. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reig-i-Plessis%2C+D">D. Reig-i-Plessis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacDougall%2C+G+J">G. J. MacDougall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruff%2C+J+P+C">J. P. C. Ruff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Upton%2C+M+H">M. H. Upton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+Z">Z. Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+T+J">T. J. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">S. Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J+-">J. -Q. Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.08146v2-abstract-short" style="display: inline;"> Quantum magnets with significant bond-directional Ising interactions, so-called Kitaev materials, have attracted tremendous attention recently in the search for exotic spin liquid states. Here we present a comprehensive set of measurements that enables us to investigate the crystal structures, Ir$^{4+}$ single ion properties, and magnetic ground states of the double perovskite iridates La$_2B$IrO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08146v2-abstract-full').style.display = 'inline'; document.getElementById('1901.08146v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.08146v2-abstract-full" style="display: none;"> Quantum magnets with significant bond-directional Ising interactions, so-called Kitaev materials, have attracted tremendous attention recently in the search for exotic spin liquid states. Here we present a comprehensive set of measurements that enables us to investigate the crystal structures, Ir$^{4+}$ single ion properties, and magnetic ground states of the double perovskite iridates La$_2B$IrO$_6$ ($B$ $=$ Mg, Zn) and $A_2$CeIrO$_6$ ($A$ $=$ Ba, Sr) with a large nearest neighbor distance $&gt;$ 5 Angstroms between Ir$^{4+}$ ions. Our neutron powder diffraction data on Ba$_2$CeIrO$_6$ can be refined in the cubic space group Fm$\bar{3}$m, while the other three systems are characterized by weak monoclinic structural distortions. Despite the variance in the non-cubic crystal field experienced by the Ir$^{4+}$ ions in these materials, X-ray absorption spectroscopy and resonant inelastic x-ray scattering are consistent with $J_{\rm eff}$ $=$ 1/2 moments in all cases. Furthermore, neutron scattering and resonant magnetic x-ray scattering show that these systems host A-type antiferromagnetic order. These electronic and magnetic ground states are consistent with expectations for face-centered-cubic magnets with significant antiferromagnetic Kitaev exchange, which indicates that spacing magnetic ions far apart may be a promising design principle for uncovering additional Kitaev materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08146v2-abstract-full').style.display = 'none'; document.getElementById('1901.08146v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 134417 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.03709">arXiv:1811.03709</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.03709">pdf</a>, <a href="https://arxiv.org/format/1811.03709">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.8b03418">10.1021/acs.nanolett.8b03418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Landau quantization in coupled Weyl points: a case study of semimetal NbP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dun%2C+Z+L">Z. L. Dun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moon%2C+S">S. Moon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koshino%2C+M">M. Koshino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">D. Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Z. Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.03709v1-abstract-short" style="display: inline;"> Weyl semimetal (WSM) is a newly discovered quantum phase of matter that exhibits topologically protected states characterized by two separated Weyl points with linear dispersion in all directions. Here, via combining theoretical analysis and magneto-infrared spectroscopy of an archetypal Weyl semimetal, niobium phosphide, we demonstrate that the coupling between Weyl points can significantly modif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.03709v1-abstract-full').style.display = 'inline'; document.getElementById('1811.03709v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.03709v1-abstract-full" style="display: none;"> Weyl semimetal (WSM) is a newly discovered quantum phase of matter that exhibits topologically protected states characterized by two separated Weyl points with linear dispersion in all directions. Here, via combining theoretical analysis and magneto-infrared spectroscopy of an archetypal Weyl semimetal, niobium phosphide, we demonstrate that the coupling between Weyl points can significantly modify the electronic structure of a WSM and provide a new twist to the protected states. These findings suggest that the coupled Weyl points should be considered as the basis for analysis of realistic WSMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.03709v1-abstract-full').style.display = 'none'; document.getElementById('1811.03709v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Nano Lett</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.06883">arXiv:1807.06883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.06883">pdf</a>, <a href="https://arxiv.org/format/1807.06883">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.035131">10.1103/PhysRevB.100.035131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Properties of the low dimensional BaM$_2$Si$_2$O$_7$(M= Cu, Co, Mn) system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G+H">G. H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C+Y">C. Y. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H+B">H. B. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+T">T. Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Q+Y">Q. Y. Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J+Q">J. Q. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+W+D">W. D. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+D">D. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.06883v1-abstract-short" style="display: inline;"> We performed susceptibility, magnetization, specific heat, and single crystal neutron diffraction measurements on single crystalline BaMn$_2$Si$_2$O$_7$. Based on the results, we revisited its spin structure with a more accurate solution and constructed a magnetic phase diagram with applied field along the $b$-axis, which contains a spin flop transition around 6 T. We also used susceptibility, mag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06883v1-abstract-full').style.display = 'inline'; document.getElementById('1807.06883v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.06883v1-abstract-full" style="display: none;"> We performed susceptibility, magnetization, specific heat, and single crystal neutron diffraction measurements on single crystalline BaMn$_2$Si$_2$O$_7$. Based on the results, we revisited its spin structure with a more accurate solution and constructed a magnetic phase diagram with applied field along the $b$-axis, which contains a spin flop transition around 6 T. We also used susceptibility, magnetization, and specific heat results confirmed the ferrimagnetic-like magnetism in polycrystalline BaCo$_2$Si$_2$O$_7$. Furthermore, we performed LSDA + U calculations for the BaM$_2$Si$_2$O$_7$ (M = Cu, Co, and Mn) system. Our discussions based on the comparison among the obtained magnetic exchange interactions suggest the different structures and electronic configurations are the reasons for the different magnetic properties among the system members. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06883v1-abstract-full').style.display = 'none'; document.getElementById('1807.06883v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 035131 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.03148">arXiv:1806.03148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.03148">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.2.064407">10.1103/PhysRevMaterials.2.064407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Real-Space Magnetic Imaging of the Multiferroic Spinels MnV2O4 and Mn3O4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wolin%2C+B">B. Wolin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naibert%2C+T">T. Naibert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gleason%2C+S+L">S. L. Gleason</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacDougall%2C+G+J">G. J. MacDougall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cooper%2C+S+L">S. L. Cooper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Budakian%2C+R">R. Budakian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.03148v1-abstract-short" style="display: inline;"> Controlling multiferroic behavior in materials will enable the development of a wide variety of technological applications. However, the exact mechanisms driving multiferroic behavior are not well understood in most materials. Two such materials are the spinels MnV2O4 and Mn3O4, where mechanical strain is thought to play a role in determining magnetic behavior. Bulk studies of MnV2O4 have yielded&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.03148v1-abstract-full').style.display = 'inline'; document.getElementById('1806.03148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.03148v1-abstract-full" style="display: none;"> Controlling multiferroic behavior in materials will enable the development of a wide variety of technological applications. However, the exact mechanisms driving multiferroic behavior are not well understood in most materials. Two such materials are the spinels MnV2O4 and Mn3O4, where mechanical strain is thought to play a role in determining magnetic behavior. Bulk studies of MnV2O4 have yielded conflicting and inconclusive results, due in part to the presence of mesoscale magnetic inhomogeneity, which complicates the interpretation of bulk measurements. To study the sub-micron-scale magnetic properties of Mn-based spinel materials, we performed magnetic force microscopy (MFM) on MnV2O4 samples subject to different levels of mechanical strain. We also used a crystal grain mapping technique to perform spatially registered MFM on Mn3O4. These local investigations revealed 100-nm-scale &#34;stripe&#34; modulations in the magnetic structure of both materials. In MnV2O4, the magnetization of these stripes is estimated to be Mz $\approx$ 105 A/m, which is on the order of the saturation magnetization reported previously. Cooling in a strong magnetic field eliminated the stripe patterning only in the low-strain sample of MnV2O4. The discovery of nanoscale magnetostructural inhomogeneity that is highly susceptible to magnetic field control in these materials necessitates both a revision of theoretical proposals and a reinterpretation of experimental data regarding the low-temperature phases and magnetic-field-tunable properties of these Mn-based spinels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.03148v1-abstract-full').style.display = 'none'; document.getElementById('1806.03148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures, To be published in Physical Review Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 2, 064407 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.09472">arXiv:1805.09472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.09472">pdf</a>, <a href="https://arxiv.org/format/1805.09472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.100401">10.1103/PhysRevB.98.100401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dipolar-Octupolar Ising Antiferromagnetism in Sm$_2$Ti$_2$O$_7$: A Moment Fragmentation Candidate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mauws%2C+C">C. Mauws</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallas%2C+A+M">A. M. Hallas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+G">G. Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarte%2C+P+M">P. M. Sarte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaudet%2C+J">J. Gaudet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ziat%2C+D">D. Ziat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quilliam%2C+J+A">J. A. Quilliam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lussier%2C+J+A">J. A. Lussier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bieringer%2C+M">M. Bieringer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">A. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">M. B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abernathy%2C+D">D. Abernathy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luke%2C+G+M">G. M. Luke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaulin%2C+B+D">B. D. Gaulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiebe%2C+C+R">C. R. Wiebe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.09472v1-abstract-short" style="display: inline;"> Over the past two decades, the magnetic ground states of all rare earth titanate pyrochlores have been extensively studied, with the exception of Sm$_2$Ti$_2$O$_7$. This is, in large part, due to the very high absorption cross-section of naturally-occurring samarium, which renders neutron scattering infeasible. To combat this, we have grown a large, isotopically-enriched single crystal of Sm$_2$Ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.09472v1-abstract-full').style.display = 'inline'; document.getElementById('1805.09472v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.09472v1-abstract-full" style="display: none;"> Over the past two decades, the magnetic ground states of all rare earth titanate pyrochlores have been extensively studied, with the exception of Sm$_2$Ti$_2$O$_7$. This is, in large part, due to the very high absorption cross-section of naturally-occurring samarium, which renders neutron scattering infeasible. To combat this, we have grown a large, isotopically-enriched single crystal of Sm$_2$Ti$_2$O$_7$. Using inelastic neutron scattering, we determine that the crystal field ground state for Sm$^{3+}$ is a dipolar-octupolar doublet with Ising anisotropy. Neutron diffraction experiments reveal that Sm$_2$Ti$_2$O$_7$ orders into the all-in, all-out magnetic structure with an ordered moment of 0.44(7) $渭_B$ below $T_N=0.35$ K, consistent with expectations for antiferromagnetically-coupled Ising spins on the pyrochlore lattice. Zero-field muon spin relaxation measurements reveal an absence of spontaneous oscillations and persistent spin fluctuations down to 0.03 K. The combination of the dipolar-octupolar nature of the Sm$^{3+}$ moment, the all-in, all-out ordered state, and the low-temperature persistent spin dynamics make this material an intriguing candidate for moment fragmentation physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.09472v1-abstract-full').style.display = 'none'; document.getElementById('1805.09472v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. Supplemental Material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 100401 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.03986">arXiv:1805.03986</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.03986">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.094412">10.1103/PhysRevB.98.094412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice distortion effects on the frustrated spin-1 triangular-antiferromagnet A3NiNb2O9 (A = Ba, Sr and Ca) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Z. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+L">L. Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">G. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Russina%2C+M">M. Russina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guenther%2C+G">G. Guenther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cruz%2C+C+R+d">C. R. dela Cruz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinclair%2C+R">R. Sinclair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.03986v1-abstract-short" style="display: inline;"> In the geometrically frustrated materials with the low-dimensional and small spin moment, the quantum fluctuation could interfere with the complicated interplay of the spin, electron, lattice and orbital interactions, and host exotic ground states such as nematic spin-state and chiral liquid phase. While the quantum phases of the one-dimensional chain and S - 1/2 two-dimensional triangular-lattice&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03986v1-abstract-full').style.display = 'inline'; document.getElementById('1805.03986v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.03986v1-abstract-full" style="display: none;"> In the geometrically frustrated materials with the low-dimensional and small spin moment, the quantum fluctuation could interfere with the complicated interplay of the spin, electron, lattice and orbital interactions, and host exotic ground states such as nematic spin-state and chiral liquid phase. While the quantum phases of the one-dimensional chain and S - 1/2 two-dimensional triangular-lattice antiferromagnet (TLAF) had been more thoroughly investigated by both theorists and experimentalists, the work on S = 1 TLAF has been limited. We induced the lattice distortion into the TLAFs, A3NiNb2O9 (A = Ba, Sr, and Ca) with S (Ni2+) = 1, and applied the thermodynamic, magnetic and neutron scattering measurements. Although A3NiNb2O9 kept the non-collinear 120掳 antiferromagnetic phase as the ground state, the Ni2+-lattice changed from the equilateral triangle (A = Ba) into isosceles triangle (A = Sr and Ca). The inelastic neutron scattering data were simulated by the linear spin-wave theory, and the competition between the single-ion anisotropy and the exchange anisotropy from the distorted lattice was discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03986v1-abstract-full').style.display = 'none'; document.getElementById('1805.03986v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 094412 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.05163">arXiv:1803.05163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.05163">pdf</a>, <a href="https://arxiv.org/ps/1803.05163">ps</a>, <a href="https://arxiv.org/format/1803.05163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.147204">10.1103/PhysRevLett.120.147204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field Driven Quantum Criticality in the Spinel Magnet ZnCr$_2$Se$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+C+C">C. C. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+L">X. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">M. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y+Y">Y. Y. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ling%2C+L+S">L. S. Ling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+L">L. Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y+H">Y. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">G. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z+R">Z. R. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.05163v1-abstract-short" style="display: inline;"> We report detailed dc and ac magnetic susceptibilities, specific heat, and thermal conductivity measurements on the frustrated magnet ZnCr$_2$Se$_4$. At low temperatures, with increasing magnetic field, this spinel material goes through a series of spin state transitions from the helix spin state to the spiral spin state and then to the fully polarized state. Our results indicate a direct quantum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.05163v1-abstract-full').style.display = 'inline'; document.getElementById('1803.05163v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.05163v1-abstract-full" style="display: none;"> We report detailed dc and ac magnetic susceptibilities, specific heat, and thermal conductivity measurements on the frustrated magnet ZnCr$_2$Se$_4$. At low temperatures, with increasing magnetic field, this spinel material goes through a series of spin state transitions from the helix spin state to the spiral spin state and then to the fully polarized state. Our results indicate a direct quantum phase transition from the spiral spin state to the fully polarized state. As the system approaches the quantum criticality, we find strong quantum fluctuations of the spins with the behaviors such as an unconventional $T^2$-dependent specific heat and temperature independent mean free path for the thermal transport. We complete the full phase diagram of ZnCr$_2$Se$_4$ under the external magnetic field and propose the possibility of frustrated quantum criticality with extended densities of critical modes to account for the unusual low-energy excitations in the vicinity of the criticality. Our results reveal that ZnCr$_2$Se$_4$ is a rare example of 3D magnet exhibiting a field-driven quantum criticality with unconventional properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.05163v1-abstract-full').style.display = 'none'; document.getElementById('1803.05163v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures + supplementary: 2 pages, 1 figure; accepted for publication in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 147204 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.02608">arXiv:1803.02608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.02608">pdf</a>, <a href="https://arxiv.org/ps/1803.02608">ps</a>, <a href="https://arxiv.org/format/1803.02608">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Multiferroicity of CuCrO2 tested by ESR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gotovko%2C+S+K">S. K. Gotovko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soldatov%2C+T+A">T. A. Soldatov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svistov%2C+L+E">L. E. Svistov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.02608v1-abstract-short" style="display: inline;"> We have carried out the ESR study of the multiferroic triangular antiferromagnet CuCrO2 in the presence of an electric field. The shift of ESR spectra by the electric field was observed; the observed value of the shift exceeds that one in materials with linear magnetoelectric coupling. It was shown that the low-frequency dynamics of magnetically ordered CuCrO2 is defined by joint oscillations of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.02608v1-abstract-full').style.display = 'inline'; document.getElementById('1803.02608v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.02608v1-abstract-full" style="display: none;"> We have carried out the ESR study of the multiferroic triangular antiferromagnet CuCrO2 in the presence of an electric field. The shift of ESR spectra by the electric field was observed; the observed value of the shift exceeds that one in materials with linear magnetoelectric coupling. It was shown that the low-frequency dynamics of magnetically ordered CuCrO2 is defined by joint oscillations of the spin plane and electric polarization. The results demonstrate qualitative and quantitative agreement with theoretical expectations of a phenomenological model (V.I. Marchenko (2014)). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.02608v1-abstract-full').style.display = 'none'; document.getElementById('1803.02608v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 PAGES, 11 FIGURES</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.08648">arXiv:1802.08648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.08648">pdf</a>, <a href="https://arxiv.org/ps/1802.08648">ps</a>, <a href="https://arxiv.org/format/1802.08648">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/aaa3b0">10.1088/1361-648X/aaa3b0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for negative thermal expansion in the superconducting precursor phase SmFeAsO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarte%2C+P+M">P. M. Sarte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conner%2C+B+S">B. S. Conner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">L. Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiebe%2C+C+R">C. R. Wiebe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+H">X. H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">T. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+G">G. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R+H">R. H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+D+F">D. F. Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.08648v1-abstract-short" style="display: inline;"> The fluorine-doped rare-earth iron oxypnictide series SmFeAsO$_{1-x}$F$_x$ (0 $\leq x \leq$ 0.10) was investigated with high resolution powder x-ray scattering. In agreement with previous studies, the parent compound SmFeAsO exhibits a tetragonal-to-orthorhombic structural distortion at T$\rm{_{S}}$~=~130~K which is rapidly suppressed by $x \simeq$ 0.10 deep within the superconducting dome. The ch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08648v1-abstract-full').style.display = 'inline'; document.getElementById('1802.08648v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.08648v1-abstract-full" style="display: none;"> The fluorine-doped rare-earth iron oxypnictide series SmFeAsO$_{1-x}$F$_x$ (0 $\leq x \leq$ 0.10) was investigated with high resolution powder x-ray scattering. In agreement with previous studies, the parent compound SmFeAsO exhibits a tetragonal-to-orthorhombic structural distortion at T$\rm{_{S}}$~=~130~K which is rapidly suppressed by $x \simeq$ 0.10 deep within the superconducting dome. The change in unit cell symmetry is followed by a previously unreported magnetoelastic distortion at 120~K. The temperature dependence of the thermal expansion coefficient $伪_{V}$ reveals a rich phase diagram for SmFeAsO: (i) a global minimum at 125 K corresponds to the opening of a spin-density wave instability as measured by pump-probe femtosecond spectroscopy whilst (ii) a global maximum at 110 K corresponds to magnetic ordering of the Sm and Fe sublattices as measured by magnetic x-ray scattering. At much lower temperatures than T$\rm{_{N}}$, SmFeAsO exhibits a significant negative thermal expansion on the order of -40~ppm~$\cdot$~K$^{-1}$ in contrast to the behavior of other rare-earth oxypnictides such as PrFeAsO and the actinide oxypnictide NpFeAsO where the onset of $伪&lt;$ 0 only appears in the vicinity of magnetic ordering. Correlating this feature with the temperature and doping dependence of the resistivity and the unit cell parameters, we interpret the negative thermal expansion as being indicative of the possible condensation of itinerant electrons accompanying the opening of a SDW gap, consistent with transport measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08648v1-abstract-full').style.display = 'none'; document.getElementById('1802.08648v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> H D Zhou et al. 2018 J. Phys.: Condens. Matter 30 095601 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.00458">arXiv:1801.00458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.00458">pdf</a>, <a href="https://arxiv.org/ps/1801.00458">ps</a>, <a href="https://arxiv.org/format/1801.00458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.094409">10.1103/PhysRevB.97.094409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for a nematic phase in quasi-2D antiferromagnet CuCrO2 by NMR in electric field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sakhratov%2C+Y+A">Yu. A. Sakhratov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kweon%2C+J+J">J. J. Kweon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svistov%2C+L+E">L. E. Svistov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyes%2C+A+P">A. P. Reyes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.00458v2-abstract-short" style="display: inline;"> The magnetic phase diagram of CuCrO2 was studied with a novel method of simultaneous Cu NMR and electric polarization techniques with the primary goal of demonstrating that regardless of cooling history of the sample the magnetic phase with specific helmet-shaped NMR spectra associated with interplanar disorder possesses electric polarization. Our result unequivocally confirms the assumption of Sa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.00458v2-abstract-full').style.display = 'inline'; document.getElementById('1801.00458v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.00458v2-abstract-full" style="display: none;"> The magnetic phase diagram of CuCrO2 was studied with a novel method of simultaneous Cu NMR and electric polarization techniques with the primary goal of demonstrating that regardless of cooling history of the sample the magnetic phase with specific helmet-shaped NMR spectra associated with interplanar disorder possesses electric polarization. Our result unequivocally confirms the assumption of Sakhratov et al. Phys. Rev. B \bf{94}, 094410 (2016) that the high-field low-temperature phase is in fact a 3D-polar phase characterised by a 3D magnetic order with tensor order parameter. In comparison with the results obtained in pulsed fields, a modified phase diagram is introduced defining the upper boundary of the first-order transition from the 3D-spiral to the 3D-polar phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.00458v2-abstract-full').style.display = 'none'; document.getElementById('1801.00458v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4pages,5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 094409 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.00050">arXiv:1801.00050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.00050">pdf</a>, <a href="https://arxiv.org/format/1801.00050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.174515">10.1103/PhysRevB.97.174515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of Local Fluctuating Dimers in Superconducting Ir$_{1-x}$(Pt,Rh)$_x$Te$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">R. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+S">S. Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">H. Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinclair%2C+R">R. Sinclair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abeykoon%2C+M">M. Abeykoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrovic%2C+C">C. Petrovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bozin%2C+E+S">E. S. Bozin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.00050v1-abstract-short" style="display: inline;"> The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.00050v1-abstract-full').style.display = 'inline'; document.getElementById('1801.00050v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.00050v1-abstract-full" style="display: none;"> The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correlations and demonstrate their absence. X-ray pair distribution function approach reveals that the local structure of Ir0.95Pt0.05Te2 and Ir0.8Rh0.2Te2 dichalcogenide superconductors with compositions just past the dimer/superconductor boundary is explained well by a dimer-free model down to 10 K, ruling out the possibility of there being nanoscale dimer fluctuations in this regime. This is inconsistent with the proposed quantum-critical-point-like interplay of the dimer state and <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.00050v1-abstract-full').style.display = 'none'; document.getElementById('1801.00050v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 174515 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.10337">arXiv:1710.10337</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.10337">pdf</a>, <a href="https://arxiv.org/format/1710.10337">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/aa8ec2">10.1088/1361-648X/aa8ec2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for the Confinement of Magnetic Monopoles in Quantum Spin Ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sarte%2C+P+M">P. M. Sarte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehlers%2C+G">G. Ehlers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stock%2C+C">C. Stock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaulin%2C+B+D">B. D. Gaulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mauws%2C+C">C. Mauws</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">M. B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">S. Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">S. E. Nagler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hollett%2C+J+W">J. W. Hollett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gardner%2C+J+S">J. S. Gardner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Attfield%2C+J+P">J. P. Attfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiebe%2C+C+R">C. R. Wiebe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.10337v1-abstract-short" style="display: inline;"> Magnetic monopoles are hypothesised elementary particles connected by Dirac strings that behave like infinitely thin solenoids. Despite decades of searches, free magnetic monopoles and their Dirac strings have eluded experimental detection, although there is substantial evidence for deconfined magnetic monopole quasiparticles in spin ice materials. Here we report the detection of a hierarchy of un&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10337v1-abstract-full').style.display = 'inline'; document.getElementById('1710.10337v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.10337v1-abstract-full" style="display: none;"> Magnetic monopoles are hypothesised elementary particles connected by Dirac strings that behave like infinitely thin solenoids. Despite decades of searches, free magnetic monopoles and their Dirac strings have eluded experimental detection, although there is substantial evidence for deconfined magnetic monopole quasiparticles in spin ice materials. Here we report the detection of a hierarchy of unequally-spaced magnetic excitations \emph{via} high resolution inelastic neutron spectroscopic measurements on the quantum spin ice candidate Pr$_{2}$Sn$_{2}$O$_{7}$. These excitations are well-described by a simple model of monopole pairs bound by a linear potential with an effective tension of 0.642(8) K~$\cdot$脜$^{-1}$ at 1.65~K. The success of the linear potential model suggests that these low energy magnetic excitations are direct spectroscopic evidence for the confinement of magnetic monopole quasiparticles in the quantum spin ice candidate Pr$_{2}$Sn$_{2}$O$_{7}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10337v1-abstract-full').style.display = 'none'; document.getElementById('1710.10337v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2017 J. Phys.: Condens. Matter 29 45LT01 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.03493">arXiv:1709.03493</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.03493">pdf</a>, <a href="https://arxiv.org/format/1709.03493">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.174410">10.1103/PhysRevB.95.174410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic ground states and magnetodielectric effect in $R$Cr(BO$_3$)$_2$ ($R$ = Y and Ho) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sinclair%2C+R">R. Sinclair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">M. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+T">T. Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">S. Calder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.03493v1-abstract-short" style="display: inline;"> The layered perovskites $R$Cr(BO$_3$)$_2$ ($R$ = Y and Ho) with magnetic triangular lattices were studied by performing ac/dc susceptibility, specific heat, elastic and inelastic neutron scattering, and dielectric constant measurements. The results show (i) both samples&#39; Cr$^{3+}$ spins order in a canted antiferromagnetic structure with $T_N$ around 8-9 K, while the Ho$^{3+}$ ions do not order dow&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.03493v1-abstract-full').style.display = 'inline'; document.getElementById('1709.03493v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.03493v1-abstract-full" style="display: none;"> The layered perovskites $R$Cr(BO$_3$)$_2$ ($R$ = Y and Ho) with magnetic triangular lattices were studied by performing ac/dc susceptibility, specific heat, elastic and inelastic neutron scattering, and dielectric constant measurements. The results show (i) both samples&#39; Cr$^{3+}$ spins order in a canted antiferromagnetic structure with $T_N$ around 8-9 K, while the Ho$^{3+}$ ions do not order down to $T$ = 1.5 K in HoCr(BO$_3$)$_2$; (ii) when a critical magnetic field H$_{C}$ around 2-3 T is applied below $T_{N}$, the Cr$^{3+}$ spins in the Y-compound and both the Cr$^{3+}$ and Ho$^{3+}$ spins in the Ho-compound order in a ferromagnetic state; (iii) both samples exhibit dielectric constant anomalies around the transition temperature and critical field, but the Ho-compound displays a much stronger magnetodielectric response. We speculate that this is due to the magnetostriction which depends on both of the Cr$^{3+}$ and the Ho$^{3+}$ ions&#39; ordering in the Ho-compound. Moreover, by using linear spin wave theory to simulate the inelastic neutron scattering data, we estimated the Y-compound&#39;s intralayer and interlayer exchange strengths as ferromagnetic J$_{1}$ = -0.12 meV and antiferromagnetic J$_{2}$ = 0.014 meV, respectively. The competition between different kinds of superexchange interactions results in the ferromagnetic intralayer interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.03493v1-abstract-full').style.display = 'none'; document.getElementById('1709.03493v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 174410 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.01904">arXiv:1709.01904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.01904">pdf</a>, <a href="https://arxiv.org/format/1709.01904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.227201">10.1103/PhysRevLett.120.227201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable quantum spin liquidity in the 1/6th-filled breathing kagome lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Akbari-Sharbaf%2C+A">A. Akbari-Sharbaf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinclair%2C+R">R. Sinclair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verrier%2C+A">A. Verrier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ziat%2C+D">D. Ziat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quilliam%2C+J+A">J. A. Quilliam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.01904v3-abstract-short" style="display: inline;"> We present measurements on a series of materials, Li$_2$In$_{1-x}$Sc$_x$Mo$_3$O$_8$, that can be described as a 1/6th-filled breathing kagome lattice. Substituting Sc for In generates chemical pressure which alters the breathing parameter non-monotonically. $渭$SR experiments show that this chemical pressure tunes the system from antiferromagnetic long range order to a quantum spin liquid phase. A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01904v3-abstract-full').style.display = 'inline'; document.getElementById('1709.01904v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.01904v3-abstract-full" style="display: none;"> We present measurements on a series of materials, Li$_2$In$_{1-x}$Sc$_x$Mo$_3$O$_8$, that can be described as a 1/6th-filled breathing kagome lattice. Substituting Sc for In generates chemical pressure which alters the breathing parameter non-monotonically. $渭$SR experiments show that this chemical pressure tunes the system from antiferromagnetic long range order to a quantum spin liquid phase. A strong correlation with the breathing parameter implies that it is the dominant parameter controlling the level of magnetic frustration, with increased kagome symmetry generating the quantum spin liquid phase. Magnetic susceptibility measurements suggest that this is related to distinct types of charge order induced by changes in lattice symmetry, in line with the theory of Chen et al. [Phys. Rev. B 93, 245134 (2016)]. The specific heat for samples at intermediate Sc concentration and with minimal breathing parameter, show consistency with the predicted $U(1)$ quantum spin liquid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01904v3-abstract-full').style.display = 'none'; document.getElementById('1709.01904v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 227201 (2018) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhou%2C+H+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+H+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+H+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+H+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10