CINXE.COM
Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia - High-Temperature Materials - Full-Text HTML - SCIEPublish
<!DOCTYPE html> <html class="no-js" lang="en"> <head> <meta charset="utf-8" /> <meta http-equiv="x-ua-compatible" content="ie=edge" /> <title>Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia - High-Temperature Materials - Full-Text HTML - SCIEPublish</title> <meta name="keywords" content="SCIE Publishing, SCIEPublish, open access, fast publication" /> <meta name="description" content="SCIEPublish is an international open-access journal publishing service provider run by SCIE Publishing Limited, dedicated to supporting and inspiring scientists or institutions/societies who aspire to publish high-quality journals." /> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1.0,maximum-scale=1.0,minimum-scale=1.0"> <meta name="title" content="Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia"> <link rel="image_src" href="https://www.sciepublish.com/uploads/2024/05/28/1716875096gmcg.jpg"> <meta name="dc.title" content="Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia"> <meta name="dc.creator" content="Somnath Mandal"> <meta name="dc.creator" content="Harshit Agrawal"> <meta name="dc.creator" content="Abhijeet Phatak"> <meta name="dc.creator" content="Prashant Gupta"> <meta name="dc.creator" content="Ilona Jastrzębska"> <meta name="dc.creator" content="Om Parkash"> <meta name="dc.creator" content="Devendra Kumar"> <meta name="dc.type" content="Article"> <meta name="dc.source" content="High-Temperature Materials 2024, Vol. 1, Page 10009"> <meta name="dc.date" content="2024-11-19"> <meta name="dc.identifier" content="10.70322/htm.2024.10009"> <meta name="dc.publisher" content="SCIEPublish"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/4.0/"> <meta name="dc.format" content="application/pdf"> <meta name="dc.language" content="en"> <meta name="dc.description" content="Fused zirconia-mullite (ZM) and zirconia-alumina (ZA) are expensive aggregates used in refractory formulations to enhance thermal shock tolerance and corrosion resistance, respectively. A cost-effective alternative approach was explored in this work to produce 37.4 wt% ZrO2 containing ZM utilizing conventional reaction sintering of siliceous clay, calcined alumina and monoclinic ZrO2. A series of chemical reactions ensued from 1200 °C, forming low quartz and cristobalite from the clay, in situ ZrSiO4, monoclinic ZrO2, α-Al2O3 and traces of leucite. 1600 °C was required to fully form mullite and monoclinic ZrO2 but it had 26.5% porosity even after firing at 1650 °C for 2 h. It consisted of small equiaxed primary mullite grains secondary mullite rods, and scattered and clustered, round ZrO2 grains. With 1.05% CaO addition, tetragonal ZrO2 formed, but 22.7% porosity remained despite the presence of 13.5% liquid phase having a low viscosity (0.6 Pa.s, from FactSage). With 2.11% CaO, porosity reduced to 10.7% but mullite partly dissolved, forming α-Al2O3 (ZMA aggregate). The added CaO mostly remained in the intergranular glassy phase rather than inside the ZrO2 grains but increased the thickness of the secondary mullite and the ZrO2 grains. Mullite was completely lost with 4.21% CaO doping but favorably formed cubic ZrO2 containing up to 0.26 at% Ca, interlinked α-Al2O3 rods and attained a low porosity of 0.2%. This ZA aggregate is limited to 1550 °C application temperature as excess liquid phase drained out beyond that. 7.37% CaO addition was detrimental as it formed an excessive anorthite-like liquid phase that percolated out at 1550 °C with 5.6% weight loss. Thus, in ZM-based calcium aluminate cement bonded refractory castables, the final CaO content should be restricted to below 2.1% to avoid partial dissolution of mullite."> <meta name="dc.subject" content="Alumina"> <meta name="dc.subject" content="Ceramic composites"> <meta name="dc.subject" content="Clay"> <meta name="dc.subject" content="Mullite"> <meta name="dc.subject" content="Refractory"> <meta name="dc.subject" content="Zirconia"> <meta name="prism.issn" content="3006-9971"> <meta name="prism.publicationName" content="High-Temperature Materials"> <meta name="prism.publicationDate" content="2024-11-19"> <meta name="prism.volume" content="1"> <meta name="prism.number" content="2"> <meta name="prism.section" content="Article"> <meta name="prism.startingPage" content="10009"> <meta name="citation_issn" content="3006-9971"> <meta name="citation_journal_title" content="High-Temperature Materials"> <meta name="citation_publisher" content="SCIEPublish"> <meta name="citation_title" content="Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia"> <meta name="citation_publication_date" content="2024/11"> <meta name="citation_online_date" content="2024/11/19"> <meta name="citation_volume" content="1"> <meta name="citation_issue" content="2"> <meta name="citation_firstpage" content="10009"> <meta name="citation_author" content="Mandal, Somnath"> <meta name="citation_author" content="Agrawal, Harshit"> <meta name="citation_author" content="Phatak, Abhijeet"> <meta name="citation_author" content="Gupta, Prashant"> <meta name="citation_author" content="Jastrzębska, Ilona"> <meta name="citation_author" content="Parkash, Om"> <meta name="citation_author" content="Kumar, Devendra"> <meta name="citation_doi" content="10.70322/htm.2024.10009"> <meta name="citation_abstract_html_url" content="https://www.sciepublish.com/article/pii/341"> <meta name="citation_pdf_url" content="https://www.sciepublish.com/index/article/view_full_text/id/341"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.sciepublish.com/index/article/view_full_text/id/341"> <meta name="fulltext_pdf" content="https://www.sciepublish.com/index/article/view_full_text/id/341"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.sciepublish.com/article/pii/341"> <meta name="citation_fulltext_html_url" content="https://www.sciepublish.com/article/pii/341"> <meta name="fulltext_html" content="https://www.sciepublish.com/article/pii/341"> <meta property="og:site_name" content="SCIEPUBLISH" /> <meta property="og:type" content="Article" /> <meta property="og:url" content="https://www.sciepublish.com/article/pii/341" /> <meta property="og:title" content="Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia" /> <meta property="og:description" content="Fused zirconia-mullite (ZM) and zirconia-alumina (ZA) are expensive aggregates used in refractory formulations to enhance thermal shock tolerance and corrosion resistance, respectively. A cost-effective alternative approach was explored in this work to produce 37.4 wt% ZrO2 containing ZM utilizing conventional reaction sintering of siliceous clay, calcined alumina and monoclinic ZrO2. A series of chemical reactions ensued from 1200 °C, forming low quartz and cristobalite from the clay, in situ ZrSiO4, monoclinic ZrO2, α-Al2O3 and traces of leucite. 1600 °C was required to fully form mullite and monoclinic ZrO2 but it had 26.5% porosity even after firing at 1650 °C for 2 h. It consisted of small equiaxed primary mullite grains secondary mullite rods, and scattered and clustered, round ZrO2 grains. With 1.05% CaO addition, tetragonal ZrO2 formed, but 22.7% porosity remained despite the presence of 13.5% liquid phase having a low viscosity (0.6 Pa.s, from FactSage). With 2.11% CaO, porosity reduced to 10.7% but mullite partly dissolved, forming α-Al2O3 (ZMA aggregate). The added CaO mostly remained in the intergranular glassy phase rather than inside the ZrO2 grains but increased the thickness of the secondary mullite and the ZrO2 grains. Mullite was completely lost with 4.21% CaO doping but favorably formed cubic ZrO2 containing up to 0.26 at% Ca, interlinked α-Al2O3 rods and attained a low porosity of 0.2%. This ZA aggregate is limited to 1550 °C application temperature as excess liquid phase drained out beyond that. 7.37% CaO addition was detrimental as it formed an excessive anorthite-like liquid phase that percolated out at 1550 °C with 5.6% weight loss. Thus, in ZM-based calcium aluminate cement bonded refractory castables, the final CaO content should be restricted to below 2.1% to avoid partial dissolution of mullite." /> <meta property="og:image" content="https://www.sciepublish.com/uploads/image/202411/19/8d7eea7da52f9de05f4fa1d20c771ec8.jpg" /> <meta property="og:image:secure_url" content="https://www.sciepublish.com/uploads/image/202411/19/8d7eea7da52f9de05f4fa1d20c771ec8.jpg" /> <meta name="twitter:site" content="@sciepublish"> <meta name="twitter:image" content="https://www.sciepublish.com/uploads/image/202411/19/8d7eea7da52f9de05f4fa1d20c771ec8.jpg" /> <meta name="twitter:card" content="summary_large_image"> <link rel="shortcut icon" type="image/x-icon" href="/favicon.ico" /> <link rel="stylesheet" href="/static/css/bootstrap.css" /> <link rel="stylesheet" href="/static/font/bootstrap-icons.css"> <link rel="stylesheet" href="/static/css/lightbox.css" /> <link rel="stylesheet" href="/static/css/theme.css?74" /> <link rel="stylesheet" href="/static/css/common.css?90" /> <link rel="stylesheet" href="/static/css/ckeditorStyle.css?2" /> <link rel="stylesheet" href="/static/css/select-mania.min.css" /> <script src="/static/js/jquery-3.7.1.min.js"></script> <script src="/static/js/lightbox.js"></script> <script src="/static/js/bootstrap.bundle.min.js"></script> <script src="/static/js/select-mania.js"></script> <link rel="stylesheet" href="/static/katex/katex.min.css"> <script src="/static/katex/katex.min.js"></script> <script src="/static/katex/contrib/auto-render.min.js"></script> <style> .katex{ font-size: 1.5rem!important; } .tooltip-inner{ /* min-width: 40rem; */ width: auto; max-width: 40rem; padding: 1rem; text-align: left; } .tooltip-inner .html-fig_img, .tooltip-inner .html-figpopup-table { padding: 1.5rem 1.5rem 1rem; background-color: #FFFeFa; border: 1px solid #e9ded8; border-radius: 5px; margin: 1.5rem 0 2rem; } .tooltip-inner .html-figpopup-table{margin-top:1rem;} .tooltip-inner .html-fig_img img, .tooltip-inner .html-figpopup-table img{ width: 100%; } .centered-div { max-width: 60%; position: fixed; top: 50%; left: 50%; transform: translate(-50%, -50%); z-index: 1000; background-color: rgba(255, 255, 255, 1); padding: 20px; border: 1px solid #ccc; box-shadow: 0 2px 5px rgba(0,0,0,0.2); } .topic-collection a{ display: block; font-size: .85rem; line-height: 1.5; } topic-collection h6.article-menu-collapse{ font-weight: 700; } .popover-content { width: 500px; } .popover { max-width:95%; } </style> </head> <body class="header-no-fixed"> <header> <nav class="navbar navbar-expand-lg navbar-light my-body-container"> <div class="navbar-left"> <a href="/" class="uk-navbar-item" alt="Back to the homepage"> <svg xmlns="http://www.w3.org/2000/svg" class="navbar-logo" xml:space="preserve" version="1.0" viewBox="0 0 5.08 1.933"> <path d="M1.021 1.245a.29.29 0 0 1-.211-.054l-.027-.023-.003-.003.056-.066.003.004a.3.3 0 0 0 .043.033.2.2 0 0 0 .128.027l.024-.007.019-.01a.07.07 0 0 0 .022-.032.1.1 0 0 0 0-.036l-.004-.014a.1.1 0 0 0-.016-.02.1.1 0 0 0-.027-.017L.994 1.01.919.98a.3.3 0 0 1-.076-.05.14.14 0 0 1-.034-.067.2.2 0 0 1 0-.06.13.13 0 0 1 .027-.056.2.2 0 0 1 .049-.041A.2.2 0 0 1 .95.683a.3.3 0 0 1 .07-.001.2.2 0 0 1 .06.017.3.3 0 0 1 .075.05l.003.003-.05.061L1.103.81a.2.2 0 0 0-.053-.034.2.2 0 0 0-.063-.013.1.1 0 0 0-.046.008L.925.78a.06.06 0 0 0-.023.047l.001.015.006.012a.1.1 0 0 0 .018.02.1.1 0 0 0 .027.017L.97.899l.016.006.074.032a.3.3 0 0 1 .058.033.14.14 0 0 1 .051.08.2.2 0 0 1 0 .07.15.15 0 0 1-.048.081.2.2 0 0 1-.062.035zm.527-.002a.24.24 0 0 1-.1 0 .23.23 0 0 1-.125-.069.2.2 0 0 1-.051-.089.3.3 0 0 1-.019-.119.4.4 0 0 1 .02-.12.3.3 0 0 1 .052-.09.23.23 0 0 1 .176-.076.3.3 0 0 1 .064.01.3.3 0 0 1 .053.025.2.2 0 0 1 .04.034l.002.003-.052.061L1.605.81A.2.2 0 0 0 1.56.776a.2.2 0 0 0-.037-.012.15.15 0 0 0-.082.013.13.13 0 0 0-.049.039l-.018.029a.2.2 0 0 0-.022.073.4.4 0 0 0 .002.104.2.2 0 0 0 .014.05.2.2 0 0 0 .023.04.14.14 0 0 0 .066.047.15.15 0 0 0 .107-.009l.028-.017.025-.023.003-.004.051.06-.002.003a.3.3 0 0 1-.076.059.2.2 0 0 1-.045.015m.314-.004h-.09V.69h.095v.549zm.485 0h-.331V.69h.328v.08H2.11v.141h.198v.082H2.11v.165h.242v.08zm.215 0h-.09V.69h.169a.4.4 0 0 1 .083.008L2.76.71l.031.016a.13.13 0 0 1 .044.053q.009.015.012.036a.22.22 0 0 1-.012.121l-.018.03a.176.176 0 0 1-.09.057.3.3 0 0 1-.084.011h-.076v.205zm.005-.472v.19h.068a.2.2 0 0 0 .056-.006.1.1 0 0 0 .038-.018.1.1 0 0 0 .022-.031.1.1 0 0 0 .007-.045l-.003-.03a.07.07 0 0 0-.028-.04L2.703.776 2.671.769 2.633.767zm.539.48a.2.2 0 0 1-.067-.003.1.1 0 0 1-.075-.07.3.3 0 0 1-.013-.09V.827h.093v.248a.3.3 0 0 0 .007.055l.008.017.012.012.016.007.02.002a.1.1 0 0 0 .033-.006.1.1 0 0 0 .03-.019.2.2 0 0 0 .03-.032V.826h.093v.413h-.078l-.006-.057a.2.2 0 0 1-.078.057zm.548-.002-.034.003-.03-.003-.029-.01A.2.2 0 0 1 3.51 1.2l-.007.039h-.075V.645h.093q0 .11-.002.219l.01-.008A.2.2 0 0 1 3.59.823a.2.2 0 0 1 .043-.007.2.2 0 0 1 .07.015.15.15 0 0 1 .07.074.2.2 0 0 1 .022.076.4.4 0 0 1 0 .095.3.3 0 0 1-.029.082.2.2 0 0 1-.079.075zm-.07-.077a.1.1 0 0 0 .046-.002.1.1 0 0 0 .043-.032l.015-.028a.2.2 0 0 0 .01-.036.3.3 0 0 0-.006-.114A.1.1 0 0 0 3.68.93.07.07 0 0 0 3.64.9.1.1 0 0 0 3.59.899l-.023.008-.023.015-.023.02v.193a.2.2 0 0 0 .043.027zm.424.08h-.015a.1.1 0 0 1-.051-.013l-.017-.016-.011-.022-.007-.026-.002-.031V.645h.093v.5L4 1.16l.003.004.003.003.008.002h.008l.005-.001h.004l.013.071-.004.002-.009.002zm.22-.01H4.14V.827h.093v.413zm-.026-.48L4.187.76q-.009 0-.016-.002L4.157.753a.05.05 0 0 1-.02-.02.1.1 0 0 1-.008-.027L4.13.69a.05.05 0 0 1 .027-.032L4.17.653a.07.07 0 0 1 .045.005.05.05 0 0 1 .03.048.1.1 0 0 1-.009.028.1.1 0 0 1-.02.019zm.315.488a.25.25 0 0 1-.19-.054l-.004-.003.045-.062.004.003a.3.3 0 0 0 .053.034.13.13 0 0 0 .058.012l.022-.002.016-.005.013-.008.009-.01a.05.05 0 0 0 .007-.025q0-.006-.002-.012l-.005-.01-.008-.009-.011-.008-.028-.014-.016-.006-.017-.007a.4.4 0 0 1-.079-.041.1.1 0 0 1-.028-.034L4.348.964 4.345.939a.12.12 0 0 1 .023-.07.1.1 0 0 1 .038-.033A.2.2 0 0 1 4.46.82a.2.2 0 0 1 .13.022l.037.024.003.003-.045.059-.003-.003A.2.2 0 0 0 4.54.9a.1.1 0 0 0-.065-.008.1.1 0 0 0-.027.012l-.007.01a.04.04 0 0 0-.007.022q0 .006.002.01l.005.01a.1.1 0 0 0 .017.015l.027.013.016.006.016.006.063.028.019.013a.1.1 0 0 1 .029.035l.008.023a.13.13 0 0 1-.008.077.1.1 0 0 1-.03.04.14.14 0 0 1-.05.027zm.307-.007h-.088V.645h.092q0 .115-.002.229a.3.3 0 0 1 .05-.038.2.2 0 0 1 .048-.017.2.2 0 0 1 .068.002.1.1 0 0 1 .057.038q.01.014.018.033A.314.314 0 0 1 5.08.98v.258h-.093V.99L4.985.96 4.98.936 4.97.92 4.96.907 4.943.9a.1.1 0 0 0-.037 0 .1.1 0 0 0-.03.011l-.016.01-.032.03v.288z" /> <path d="M1.844 1.377a.97.97 0 0 1-.878.563A.963.963 0 0 1 0 .974.964.964 0 0 1 .966.007a.96.96 0 0 1 .865.536l-.048.024A.92.92 0 0 0 .966.062a.91.91 0 0 0-.912.912.91.91 0 0 0 .912.912.91.91 0 0 0 .83-.532z" class="logo-circle" /> </svg> </a> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <div class="btn-menu"> <span></span> <span></span> <span></span> </div> </button> <div class="collapse navbar-collapse" id="navbarSupportedContent"> <div class="nav-form-search"> <form class="form-search" method="get" action="/index/search/index.html"> <input class="search-input" type="text" name="search" placeholder="What are you looking for?" autofocus /> <button type="submit">Search</button> </form> </div> <ul class="navbar-nav uk-navbar-nav"> <li class="nav-item "> <a class="nav-link" href="/">Home</a> </li> <li class="nav-item "> <a class="nav-link" href="/About_SCIEPublish">About</a> </li> <li class="nav-item uk-active"> <a class="nav-link" href="/index/journals/index">Journals</a> </li> <li class="nav-item "> <a class="nav-link" href="/news/list">News</a> </li> </ul> <a class="js-navbar-toggle sc-icon-button sc-transition" title="Search" href="#"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-search" viewBox="0 0 16 16"> <path d="M11.742 10.344a6.5 6.5 0 1 0-1.397 1.398h-.001c.03.04.062.078.098.115l3.85 3.85a1 1 0 0 0 1.415-1.414l-3.85-3.85a1.007 1.007 0 0 0-.115-.1zM12 6.5a5.5 5.5 0 1 1-11 0 5.5 5.5 0 0 1 11 0z"/> </svg> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"/> </svg> </a> <a class="uk-button sc-transition" href="/my/submitting">Publish with us</a> <a class="text-login" title="Sign in" href="/index/user/login.html"> Sign in </a> </div> </nav> </header> <section class="breadcrumbs pt-3"> <div class="my-body-container"> <nav aria-label="breadcrumb"> <ol class="breadcrumb p-0 mb-0"> <li class="breadcrumb-item" title="Home"> <a href="/">Home</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="Journals"> <a href="/index/journals/index">Journals</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="htm"> <a href="/journals/htm">htm</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="Volume 1"> <a href="/journals/htm/roll/1">Volume 1</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="Issue 2"> <a href="/journals/htm/roll/1/2">Issue 2</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item active" aria-current="page" title='10.70322/htm.2024.10009'>10.70322/htm.2024.10009</li> </ol> </nav> </div> </section> <section class="fixed-title"> <div class="my-body-container d-flex align-items-center border-bottom border-dark pt-2 pb-2"> <div class="item-img"> <a class="d-flex align-items-center" href="/journals/htm"> <div class="cover-img"> <img src="/uploads/2024/05/28/1716875096gmcg.jpg" alt="High-Temperature Materials-logo" /> </div> <h6 class="flex-grow-1 pl-2" title="High-Temperature Materials">High-Temperature Materials</h6> </a> </div> <h2 class="journals-text" title="Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia">Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia</h2> </div> </section> <section class="page-items mt-3"> <div class="d-flex my-body-container border-dark border-top pt-4 collapse show" id="rightCollapse"> <div class="left-items-260 mr-3"> <div class="left-content d-flex"> <div class="left-content-item"> <div class="item-img"> <a class="d-flex align-items-center" href="/journals/htm"> <div class="cover-img"> <img src="/uploads/2024/05/28/1716875096gmcg.jpg" alt="High-Temperature Materials-logo" /> </div> <h6 class="flex-grow-1 pl-2">High-Temperature Materials</h6> </a> </div> <div class="btn-bottom"> <a class="sc-btn-submit d-flex align-items-center justify-content-center mt-3" href="/my/submitting/journal/56"> Submit to HTM <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-double-right ml-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M3.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L9.293 8 3.646 2.354a.5.5 0 0 1 0-.708z"></path> <path fill-rule="evenodd" d="M7.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L13.293 8 7.646 2.354a.5.5 0 0 1 0-.708z"></path> </svg> </a> <a class="sc-cite-modal sc-btn-submit d-flex align-items-center justify-content-center mt-2" href="/index/article/download_article/id/341.html"> <span>Download PDF</span> </a> <!-- Modal --> <div class="sc-cite-modal sc-btn-submit d-flex align-items-center justify-content-center border-0 mt-2" data-toggle="modal" data-target="#citeModal"> Cite This Article </div> </div> <!-- collapse --> <div class="article-menu-collapse d-flex justify-content-between mt-2"> <h6 class="mb-0 d-flex align-items-center">Contents</h6> <div class="btn-collapse pt-2 pb-2 pl-2" data-toggle="collapse" data-target="#articleMenuCollapse" aria-expanded="true" aria-controls="articleMenuCollapse"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-chevron-up" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M7.646 4.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1-.708.708L8 5.707l-5.646 5.647a.5.5 0 0 1-.708-.708l6-6z"/> </svg> </div> </div> <div class="articleMenuCollapse-column p-0" id="articleMenuCollapse"> <div class="menu pt-2"> <div class="list-group" id="article-menu-float"> <a class="list-group-item list-group-item-action" href="#link-introduction">1. Introduction</a> <a class="list-group-item list-group-item-action" href="#link-materials-and-methods">2. Materials and Methods</a> <a class="list-group-item list-group-item-action" href="#link-theory-calculation">3. Results and Discussion</a> <a class="list-group-item list-group-item-action" href="#link-results">4. Conclusions</a> <a class="list-group-item list-group-item-action" href="#link-acknowledgments">Acknowledgments</a> <a class="list-group-item list-group-item-action" href="#link-author-contributions">Author Contributions</a> <a class="list-group-item list-group-item-action" href="#link-ethics-statement">Ethics Statement</a> <a class="list-group-item list-group-item-action" href="#link-informed-consent-statement">Informed Consent Statement</a> <a class="list-group-item list-group-item-action" href="#link-funding">Funding</a> <a class="list-group-item list-group-item-action" href="#link-declaration-competing-interest">Declaration of Competing Interest</a> <a class="list-group-item list-group-item-action" href="#html-references_list">References</a> </div> </div> </div> </div> <span class="btn-out" data-toggle="collapse" data-target="#rightCollapse" aria-expanded="true" aria-controls="rightCollapse"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="currentColor" class="bi bi-chevron-bar-left" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M11.854 3.646a.5.5 0 0 1 0 .708L8.207 8l3.647 3.646a.5.5 0 0 1-.708.708l-4-4a.5.5 0 0 1 0-.708l4-4a.5.5 0 0 1 .708 0zM4.5 1a.5.5 0 0 0-.5.5v13a.5.5 0 0 0 1 0v-13a.5.5 0 0 0-.5-.5z"/> </svg> </span> </div> </div> <div class="blog-detailss-wrap flex-grow-1"> <div class="details__content pb-30"> <div class="articlelei access-tags d-flex justify-content-between"> <p class="mb-0 d-flex align-items-center"> <span class="btn-text classdise mr-1">Article</span> <span class="btn-text textdise">Open Access</span> </p> <div class="share-buttons social-share d-flex align-items-center mb-2" data-initialized="true"> Share This Article: <a href="" class="share-btn social-share-icon twitter-btn icon-twitter d-flex align-items-center justify-content-center" title="Share on Twitter"> <svg t="1713929395475" class="icon" viewBox="0 0 1399 1024" fill="currentColor" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="8742" width="20" height="20"> <path d="M282.021569 119.281213l323.998199 433.216256-326.044203 352.222995h73.379441l285.451142-308.376452 230.636674 308.376452h249.713149l-342.227762-457.583832 303.479459-327.855419h-73.379441l-262.886398 284.008876-212.407111-284.008876h-249.713149z m107.909957 54.051408h114.71879l506.578928 677.328049h-114.718791l-506.578927-677.328049z" p-id="8743"></path> </svg> </a> <a href="" class="share-btn social-share-icon facebook-btn icon-facebook d-flex align-items-center justify-content-center" title="Share on Facebook"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-facebook" viewBox="0 0 16 16"> <path d="M16 8.049c0-4.446-3.582-8.05-8-8.05C3.58 0-.002 3.603-.002 8.05c0 4.017 2.926 7.347 6.75 7.951v-5.625h-2.03V8.05H6.75V6.275c0-2.017 1.195-3.131 3.022-3.131.876 0 1.791.157 1.791.157v1.98h-1.009c-.993 0-1.303.621-1.303 1.258v1.51h2.218l-.354 2.326H9.25V16c3.824-.604 6.75-3.934 6.75-7.951z"/> </svg> </a> <a href="mailto:?subject=Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia&body=https%3A%2F%2Fwww.sciepublish.com%2Farticle%2Fpii%2F341" class="share-btn social-share-icon email-btn icon-email d-flex align-items-center justify-content-center" id="email-share-btn" title="Share on Email"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-envelope-fill" viewBox="0 0 16 16"> <path d="M.05 3.555A2 2 0 0 1 2 2h12a2 2 0 0 1 1.95 1.555L8 8.414.05 3.555ZM0 4.697v7.104l5.803-3.558L0 4.697ZM6.761 8.83l-6.57 4.027A2 2 0 0 0 2 14h12a2 2 0 0 0 1.808-1.144l-6.57-4.027L8 9.586l-1.239-.757Zm3.436-.586L16 11.801V4.697l-5.803 3.546Z"/> </svg> </a> <a href="" class="share-btn social-share-icon LinkedIn-btn icon-linkedin d-flex align-items-center justify-content-center" id="email-LinkedIn-btn" title="Share on LinkedIn"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-linkedin" viewBox="0 0 16 16"> <path d="M0 1.146C0 .513.526 0 1.175 0h13.65C15.474 0 16 .513 16 1.146v13.708c0 .633-.526 1.146-1.175 1.146H1.175C.526 16 0 15.487 0 14.854V1.146zm4.943 12.248V6.169H2.542v7.225h2.401zm-1.2-8.212c.837 0 1.358-.554 1.358-1.248-.015-.709-.52-1.248-1.342-1.248-.822 0-1.359.54-1.359 1.248 0 .694.521 1.248 1.327 1.248h.016zm4.908 8.212V9.359c0-.216.016-.432.08-.586.173-.431.568-.878 1.232-.878.869 0 1.216.662 1.216 1.634v3.865h2.401V9.25c0-2.22-1.184-3.252-2.764-3.252-1.274 0-1.845.7-2.165 1.193v.025h-.016a5.54 5.54 0 0 1 .016-.025V6.169h-2.4c.03.678 0 7.225 0 7.225h2.4z"/> </svg> </a> <a href="" class="share-btn social-share-icon wechat-btn icon-wechat d-flex align-items-center justify-content-center" id="wechat-share-btn" title="Share on WeChat"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-wechat" viewBox="0 0 16 16"> <path d="M11.176 14.429c-2.665 0-4.826-1.8-4.826-4.018 0-2.22 2.159-4.02 4.824-4.02S16 8.191 16 10.411c0 1.21-.65 2.301-1.666 3.036a.324.324 0 0 0-.12.366l.218.81a.616.616 0 0 1 .029.117.166.166 0 0 1-.162.162.177.177 0 0 1-.092-.03l-1.057-.61a.519.519 0 0 0-.256-.074.509.509 0 0 0-.142.021 5.668 5.668 0 0 1-1.576.22ZM9.064 9.542a.647.647 0 1 0 .557-1 .645.645 0 0 0-.646.647.615.615 0 0 0 .09.353Zm3.232.001a.646.646 0 1 0 .546-1 .645.645 0 0 0-.644.644.627.627 0 0 0 .098.356Z"/> <path d="M0 6.826c0 1.455.781 2.765 2.001 3.656a.385.385 0 0 1 .143.439l-.161.6-.1.373a.499.499 0 0 0-.032.14.192.192 0 0 0 .193.193c.039 0 .077-.01.111-.029l1.268-.733a.622.622 0 0 1 .308-.088c.058 0 .116.009.171.025a6.83 6.83 0 0 0 1.625.26 4.45 4.45 0 0 1-.177-1.251c0-2.936 2.785-5.02 5.824-5.02.05 0 .1 0 .15.002C10.587 3.429 8.392 2 5.796 2 2.596 2 0 4.16 0 6.826Zm4.632-1.555a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Zm3.875 0a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Z"/> </svg> </a> </div> </div> <h1 class="mb-2 acquiesce-title">Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia</h1> <div class="affiliation mb-1"> <div class="affiliation_author"> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Somnath Mandal" target="_blank">Somnath Mandal</a> <sup>1,*,†</sup> <a href="mailto:somnath.mandal@vesuvius.com"> <sup><i class="bi bi-envelope-fill"></i></sup> </a> <a href="https://orcid.org/0000-0003-1021-8786" target="_blank" rel="noopener noreferrer"> <img src="/static/img/orcid.png" title="ORCID" style="position: relative; width: 13px; margin-left: 0px; max-width: 13px !important; height: auto; top: -7px;"> </a> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Harshit Agrawal" target="_blank">Harshit Agrawal</a> <sup>1,‡</sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Abhijeet Phatak" target="_blank">Abhijeet Phatak</a> <sup>1</sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Prashant Gupta" target="_blank">Prashant Gupta</a> <sup>1,§</sup> <a href="https://orcid.org/0009-0008-6291-9465" target="_blank" rel="noopener noreferrer"> <img src="/static/img/orcid.png" title="ORCID" style="position: relative; width: 13px; margin-left: 0px; max-width: 13px !important; height: auto; top: -7px;"> </a> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Ilona Jastrzębska" target="_blank">Ilona Jastrzębska</a> <sup>2</sup> <a href="https://orcid.org/0000-0002-9957-5933" target="_blank" rel="noopener noreferrer"> <img src="/static/img/orcid.png" title="ORCID" style="position: relative; width: 13px; margin-left: 0px; max-width: 13px !important; height: auto; top: -7px;"> </a> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Om Parkash" target="_blank">Om Parkash</a> <sup>1</sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Devendra Kumar" target="_blank">Devendra Kumar</a> <sup>1</sup> <a href="https://orcid.org/0000-0002-9084-8966" target="_blank" rel="noopener noreferrer"> <img src="/static/img/orcid.png" title="ORCID" style="position: relative; width: 13px; margin-left: 0px; max-width: 13px !important; height: auto; top: -7px;"> </a> </span> </div> </div> <div class="d-flex mb-1"> <div class="information-collapse mr-4"> Author Information </div> <!-- <div class="information-collapse articleInformation"> Article Information </div> --> </div> <div class="articledz"> <div class="affiliation_zt"> <div class="information-item affiliation_at collapse pl-2 pr-2 pb-2"> <div class="affiliation d-flex"> <div class="affiliation_sup mr-2"><sup>1</sup></div> <div class="affiliation_name flex-grow-1"> Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India </div> </div> <div class="affiliation d-flex"> <div class="affiliation_sup mr-2"><sup>2</sup></div> <div class="affiliation_name flex-grow-1"> Faculty of Materials Science and Ceramics, AGH University, al. Mickiewicza 30, 30-059 Kraków, Poland </div> </div> <div class="affiliation d-flex"> <div class="affiliation_sup mr-2"><sup>*</sup></div> <div class="affiliation_name flex-grow-1"> Authors to whom correspondence should be addressed. </div> </div> <div class="affiliation d-flex"> <div class="affiliation_sup mr-2"><sup>†</sup></div> <div class="affiliation_name flex-grow-1"> Present address: Steel Flow Control Group, Vesuvius Research, Pittsburgh, PA 15205, USA. </div> </div> <div class="affiliation d-flex"> <div class="affiliation_sup mr-2"><sup>‡</sup></div> <div class="affiliation_name flex-grow-1"> Present address: Cost and Productivity Reinvention, Accenture Strategy & Consulting, Gurugram 122002, India. </div> </div> <div class="affiliation d-flex"> <div class="affiliation_sup mr-2"><sup>§</sup></div> <div class="affiliation_name flex-grow-1"> Present address: Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA. </div> </div> </div> </div> <div class="d-flex align-items-center"> <div class="mr-2 d-flex align-items-center"><span>Views:</span><b class="ml-2">147</b></div> <div class="mr-2 d-flex align-items-center"><span>Downloads:</span><b class="ml-2">30</b></div> <a tabindex="0" class="mr-2 align-items-center cursor-pointer" style="display: none;" data-bind="popover1" data-container="body" data-toggle="popover" data-trigger="focus" data-placement="bottom"> <span>Citations:</span> <b class="ml-2">0</b> </a> </div> <div class="information-item pb-3"> <div class="articledoi"> <em>High-Temperature Materials</em> <b>2024</b>, <em>1</em> (2), 10009; <a href="https://doi.org/10.70322/htm.2024.10009" target="_blank">https://doi.org/10.70322/htm.2024.10009</a> </div> <p class="d-flex fal-title mb-0"> <i class="fal fa-calendar-alt"></i> <span class="mr-3">Received: 30 September 2024</span> <span class="mr-3">Accepted: 14 November 2024</span> <span class="mr-3">Published: 19 November 2024</span> </p> </div> <div class="articleneir pull-item d-flex"> <a href="http://creativecommons.org/licenses/by/4.0/" itemprop="license" rel="license" data-license="by" class="pull-left pt-1"> <img src="/style/image/iconby.png" alt="Creative Commons"> </a> <p class="flex-grow-1 ml-2"> © 2024 The authors. This is an open access article under the Creative Commons Attribution 4.0 International License (<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">https://creativecommons.org/licenses/by/4.0/</a>). </p> </div> <div class="meta-info text-break border-top border-dark pt-3 mt-3"> <div class="articleneir abstract"> <span>ABSTRACT:</span> Fused zirconia-mullite (ZM) and zirconia-alumina (ZA) are expensive aggregates used in refractory formulations to enhance thermal shock tolerance and corrosion resistance, respectively. A cost-effective alternative approach was explored in this work to produce 37.4 wt% ZrO<sub>2</sub> containing ZM utilizing conventional reaction sintering of siliceous clay, calcined alumina and monoclinic ZrO<sub>2</sub>. A series of chemical reactions ensued from 1200 °C, forming low quartz and cristobalite from the clay, in situ ZrSiO<sub>4</sub>, monoclinic ZrO<sub>2</sub>, α-Al<sub>2</sub>O<sub>3</sub> and traces of leucite. 1600 °C was required to fully form mullite and monoclinic ZrO<sub>2</sub> but it had 26.5% porosity even after firing at 1650 °C for 2 h. It consisted of small equiaxed primary mullite grains secondary mullite rods, and scattered and clustered, round ZrO<sub>2</sub> grains. With 1.05% CaO addition, tetragonal ZrO<sub>2</sub> formed, but 22.7% porosity remained despite the presence of 13.5% liquid phase having a low viscosity (0.6 Pa.s, from FactSage). With 2.11% CaO, porosity reduced to 10.7% but mullite partly dissolved, forming α-Al<sub>2</sub>O<sub>3</sub> (ZMA aggregate). The added CaO mostly remained in the intergranular glassy phase rather than inside the ZrO<sub>2</sub> grains but increased the thickness of the secondary mullite and the ZrO<sub>2</sub> grains. Mullite was completely lost with 4.21% CaO doping but favorably formed cubic ZrO<sub>2</sub> containing up to 0.26 at% Ca, interlinked α-Al<sub>2</sub>O<sub>3</sub> rods and attained a low porosity of 0.2%. This ZA aggregate is limited to 1550 °C application temperature as excess liquid phase drained out beyond that. 7.37% CaO addition was detrimental as it formed an excessive anorthite-like liquid phase that percolated out at 1550 °C with 5.6% weight loss. Thus, in ZM-based calcium aluminate cement bonded refractory castables, the final CaO content should be restricted to below 2.1% to avoid partial dissolution of mullite. </div> <div class="articleneir mt-2 keywords"> <span>Keywords:</span> Alumina; Ceramic composites; Clay; Mullite; Refractory; Zirconia </div> <div class="Keywords-img html-fig-wrap p-3 mt-3"> <div class="img-center html-figpopup-link pt-3 pb-3"> <img data-large="/uploads/image/202411/19/8d7eea7da52f9de05f4fa1d20c771ec8.jpg" src="/uploads/image/202411/19/8d7eea7da52f9de05f4fa1d20c771ec8.jpg"> <a class="html-expand html-figpopup" href="javaScript:void(0);"></a> </div> <p class="text-center mt-2 mb-0 font-weight-bold">Graphical Abstract</p> </div> <div class="article-item pt-4"> <h2 class="border-bottom"> <a id="link-introduction" class="anchor-66"></a> 1. Introduction </h2> <div class="link-introduction article-item-text pt-2">Zirconia-mullite (ZrO<sub>2</sub>-3Al<sub>2</sub>O<sub>3</sub>.SiO<sub>2</sub>, ZM) has diverse applications in engineering ceramics and refractories [<a href='#B1' class='html-bibr' title='1'>1</a>,<a href='#B2' class='html-bibr' title='2'>2</a>]. Mullite, having a very low thermal expansion coefficient (~5.5 × 10<sup>−6</sup> K<sup>−1</sup> at 25–1000 °C) [<a href='#B1' class='html-bibr' title='1'>1</a>] and high creep resistance, forms a strong matrix and often possesses a microstructure consisting of interlocked elongated or columnar grains. The zirconia phase has a high corrosion resistance, hardness and abrasion resistance [<a href='#B2' class='html-bibr' title='2'>2</a>]. Moreover, the presence of zirconia in ZM composites increases its fracture toughness [<a href='#B3' class='html-bibr' title='3'>3</a>] and enhances thermal shock resistance [<a href='#B4' class='html-bibr' title='4'>4</a>] due to microcrack toughening [<a href='#B5' class='html-bibr' title='5'>5</a>], which may be caused by the tetragonal to monoclinic polymorphic transformation-induced volume changes [<a href='#B1' class='html-bibr' title='1'>1</a>]. As a result, ZM composites exhibit a unique combination of superior tolerance to wear, thermal shock and high fracture toughness, along with good corrosion resistance [<a href='#B1' class='html-bibr' title='1'>1</a>]. Thus, sintered ZM is used to make wear- resistant components and analytical lab-wares [<a href='#B6' class='html-bibr' title='6'>6</a>]. Fused ZM aggregates are used to make ceramic pressure casting tubes, slide gate refractory (SGR) plates [<a href='#B7' class='html-bibr' title='7'>7</a>], submerged entry nozzles (SEN) and monoblock stoppers for continuous casting of steel [<a href='#B8' class='html-bibr' title='8'>8</a>], furnace charging holes, foundry coatings, ceramic rollers [<a href='#B9' class='html-bibr' title='9'>9</a>] and monolithic refractories used in the backup lining of the floor and side wall of glass melting furnaces [<a href='#B10' class='html-bibr' title='10'>10</a>,<a href='#B11' class='html-bibr' title='11'>11</a>,<a href='#B12' class='html-bibr' title='12'>12</a>]. Large fused ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> blocks with 33–40 wt% ZrO<sub>2</sub> are utilized as the hot face of glass melting tank furnaces [<a href='#B13' class='html-bibr' title='13'>13</a>,<a href='#B14' class='html-bibr' title='14'>14</a>]. Fused ZM aggregates that are used as raw materials for refractories applied in the glass and steel industries typically have 36–39 wt% ZrO<sub>2</sub> (with some HfO<sub>2</sub>), 44–45.8% Al<sub>2</sub>O<sub>3</sub>, 17.5–18% SiO<sub>2</sub>, 0.5–0.9% impurities (Na<sub>2</sub>O, K<sub>2</sub>O, Fe<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, CaO, MgO), 2.5–3% open porosity, 3.58–3.66 g/cm<sup>3</sup> bulk density [<a href='#B8' class='html-bibr' title='8'>8</a>,<a href='#B11' class='html-bibr' title='11'>11</a>,<a href='#B15' class='html-bibr' title='15'>15</a>] and are estimated to be composed of 59 wt% mullite, 36% monoclinic ZrO<sub>2</sub> and 5% glass. They are obtained by the electric arc furnace (EAF) fusion of zircon (ZrSiO<sub>4</sub>) sand and Bayer process alumina, and the microstructure consists of large needle-shaped mullite (100 µm thick), precipitated round and sometimes dendritic monoclinic zirconia, along with glass typically located adjacent to the mullite phase [<a href='#B11' class='html-bibr' title='11'>11</a>]. ZM is a relatively expensive ingredient in a refractory formulation compared to alumina, mullite and magnesia. However, it imparts corrosion resistance in the case of glass melting applications and provides high thermal shock resistance to steelmaking refractories due to its low and unique thermal expansion pattern caused by the monoclinic zirconia’s phase transformation that hinders crack propagation by microcrack toughening [<a href='#B7' class='html-bibr' title='7'>7</a>,<a href='#B8' class='html-bibr' title='8'>8</a>]. Fused calcia stabilized zirconia having 95% ZrO<sub>2</sub>+HfO<sub>2</sub>, 4% CaO, 0.8% impurities (SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, MgO), 68–85% cubic zirconia phase, 15–32% monoclinic zirconia, 5.8 g/cm<sup>3</sup> density is an even more expensive refractory raw material used for its high corrosion resistance in SEN, tundish nozzles, SGR plates, kiln furniture for electro-ceramics and coating for investment casting molds [<a href='#B16' class='html-bibr' title='16'>16</a>,<a href='#B17' class='html-bibr' title='17'>17</a>]. Fused zirconia-alumina (ZA) with 25–43 wt% ZrO<sub>2</sub> is another strategic raw material used in SGR to improve its thermal shock tolerance and corrosion resistance [<a href='#B7' class='html-bibr' title='7'>7</a>,<a href='#B18' class='html-bibr' title='18'>18</a>]. Apart from the commercial EAF process, dense ZM had been experimentally prepared from plasma arc fusion of natural sillimanite, zircon sand and refractory-grade calcined alumina [<a href='#B6' class='html-bibr' title='6'>6</a>], transferred arc plasma melting of zircon and bauxite [<a href='#B19' class='html-bibr' title='19'>19</a>], and thermal plasma fusion of zircon and alumina [<a href='#B20' class='html-bibr' title='20'>20</a>]. The phase evolution during the solidification of Al<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub>-SiO<sub>2</sub> melt and subsequent reheating was also deeply investigated [<a href='#B21' class='html-bibr' title='21'>21</a>]. Additionally, zircon-alumina mixtures had been plasma sprayed into powders and subsequently spark plasma sintered to prepare ZM composites [<a href='#B22' class='html-bibr' title='22'>22</a>]. Moreover, microwave sintering at 1500 °C for 1h had been successfully used to achieve 92% density in mullite-20 wt% ZrO<sub>2</sub>-1% MgO composition [<a href='#B23' class='html-bibr' title='23'>23</a>]. 0.2 µm mullite powder containing 5–80 vol% of 0.3 µm 3 mol% Y<sub>2</sub>O<sub>3</sub> stabilized ZrO<sub>2</sub> had been hot-pressed at 1600 °C for 45 min to 95–98% density [<a href='#B24' class='html-bibr' title='24'>24</a>]. Unfortunately, these advanced manufacturing technologies are cost-prohibitive for producing refractory raw materials. Pure mullite is difficult to fully sinter below 1700 °C [<a href='#B25' class='html-bibr' title='25'>25</a>] as even <1 µm preformed mullite powder could only attain 84% density after conventional sintering at 1610 °C for 6 h [<a href='#B5' class='html-bibr' title='5'>5</a>]. Hence, to prepare refractory-grade ZM without commercial EAF fusion or expensive advanced ceramic processing techniques, using only conventional sintering, one can: (i) reduce the starting particle size while being careful that below a d<sub>50</sub> of 3–5 µm milling becomes costly, (ii) use sintering aids without deteriorating thermomechanical and corrosion properties, and (iii) fire in two stages [<a href='#B26' class='html-bibr' title='26'>26</a>] to separate reaction accompanied by volume expansion from densification. The use of natural raw materials [<a href='#B27' class='html-bibr' title='27'>27</a>,<a href='#B28' class='html-bibr' title='28'>28</a>] in whole or in part can be a smart choice as the impurities can provide the required liquid phase sintering aids, as long as they are not too high so as to deteriorate the aggregate/matrix bonding and thereby hot strength [<a href='#B29' class='html-bibr' title='29'>29</a>]. Very fine, thermochemically treated clay-derived mullite precursor [<a href='#B3' class='html-bibr' title='3'>3</a>] with 250 m<sup>2</sup>/g surface area (for reference, common refractory grade calcined alumina with a d<sub>50</sub> of 8.9 µm has 0.9 m<sup>2</sup>/g) [<a href='#B30' class='html-bibr' title='30'>30</a>] combined with up to 20 vol% ZrO<sub>2</sub> were densified at 1570 °C for 2.5 h and attained higher density (99%) than pure mullite (97%) [<a href='#B3' class='html-bibr' title='3'>3</a>]. Dense ZM had been reaction sintered at 1600 °C for 4 h when 1 µm zircon and 0.5 µm α-Al<sub>2</sub>O<sub>3</sub> were used [<a href='#B4' class='html-bibr' title='4'>4</a>] or within 1520 °C when mixtures of 0.2 µm zirconia and 1.5 µm mullite, 0.7 µm zircon and 0.4 µm alumina, as well as zirconia, alumina and 12 nm fumed silica were used [<a href='#B31' class='html-bibr' title='31'>31</a>]. Zircon and alumina ball milled to a d<sub>50</sub> of 0.3 µm is known to achieve higher density (94%) after firing at 1600 °C for 2 h than mixtures of zircon and Al(OH)<sub>3</sub> calcined and ground to a d<sub>50</sub> of 3.8 µm, as well as zircon and Al(NO<sub>3</sub>)<sub>3</sub> heated and milled to 11.5 µm [<a href='#B32' class='html-bibr' title='32'>32</a>]. Unfortunately, many of the aforementioned powder sizes can be too expensive for a refractory. Due to the difficulty in sintering ZM of commonly available particle sizes (e.g., <75 µm), several additives had been explored to reduce the temperature for phase formation and densification. TiO<sub>2</sub>, when added to zircon-alumina mixture formed zirconia and mullite at a lower temperature, increased bulk density [<a href='#B33' class='html-bibr' title='33'>33</a>], reduced apparent porosity [<a href='#B34' class='html-bibr' title='34'>34</a>], and attained higher tetragonal zirconia phase content at 1400 °C [<a href='#B33' class='html-bibr' title='33'>33</a>]. For 7.5–10 wt% rutile TiO<sub>2</sub> doping, tialite (Al<sub>2</sub>TiO<sub>5</sub>) formed, but hot modulus of rupture (HMOR) and soda-lime-silica melt corrosion resistance were only better for the 2.5% TiO<sub>2</sub> doped ZM and reduced beyond that [<a href='#B34' class='html-bibr' title='34'>34</a>]. Oxides of rare earth elements (REEO) also proved to be effective dopants for ZM. Adding 1–3 mol% Y<sub>2</sub>O<sub>3</sub> to sol-gel derived mullite containing 15–20 vol% ZrO<sub>2</sub> partially stabilized the ZrO<sub>2</sub> in the tetragonal phase (6–34%) attaining full density [<a href='#B25' class='html-bibr' title='25'>25</a>]. 2–3 mol% Y<sub>2</sub>O<sub>3</sub> had been used to assist densification of sub-micron preformed mullite [<a href='#B5' class='html-bibr' title='5'>5</a>]. In ZM prepared from sillimanite-alumina-zirconia mixtures, Y<sub>2</sub>O<sub>3</sub> addition had steadily increased the tetragonal zirconia content, but 4–8 mol% Y<sub>2</sub>O<sub>3</sub> addition worsened apparent porosity at 1550–1600 °C and only the 2 mol% Y<sub>2</sub>O<sub>3</sub> added ZM had higher HMOR [<a href='#B35' class='html-bibr' title='35'>35</a>]. Up to 7 mol% (4.1 wt%) Y<sub>2</sub>O<sub>3</sub> addition to 2:3 molar zircon: alumina mixture (which would have formed one mole each of zirconia and mullite) improved densification at 1500 °C increased the tetragonal zirconia phase at 1550 °C (22.2% in undoped <i>vs.</i> 65.8%) as well as the flexural strength (154 <i>vs.</i> 256 MPa), and reduced the thermal expansion coefficient [<a href='#B36' class='html-bibr' title='36'>36</a>]. CeO<sub>2</sub> is also an effective REEO sintering aid for ZM [<a href='#B37' class='html-bibr' title='37'>37</a>]. CeO<sub>2</sub> addition to zircon-alumina mixture retards zircon dissociation and benefits by direct conversion into zirconia and mullite along with the formation of cerium aluminosilicate liquid phase and CeO<sub>2</sub>-ZrO<sub>2</sub> solid solution resulting in a higher yield of mullite and tetragonal zirconia [<a href='#B38' class='html-bibr' title='38'>38</a>]. 2.5–4.5 mol% Dy<sub>2</sub>O<sub>3</sub> addition to zircon-alumina mixture improved its densification by forming a liquid phase, increased tetragonal zirconia content from 11 (in undoped ZM) to ~26%, went into solid solution with both zirconia and mullite and reduced the thermal expansion coefficient from 4.9 to 3.5 × 10<sup>−6</sup> K<sup>−1</sup> (25–1400 °C) [<a href='#B39' class='html-bibr' title='39'>39</a>]. Using a liquid phase forming additive like 1.8 wt% MgO had successfully sintered ZM at 1500 °C [<a href='#B26' class='html-bibr' title='26'>26</a>]. However, 2.1 wt% MgO addition to ZM derived from sillimanite, alumina and zirconia was reported to reduce HMOR at 1250 °C [<a href='#B40' class='html-bibr' title='40'>40</a>]. During reaction sintering of zircon-alumina 20:80 wt% mixture, it had been observed that at 1550 °C for 5h, 10 wt% MgO addition caused corundum to be reduced from 64 to 57%, mullite increased from 20 to 25%, monoclinic zirconia reduced from 12 to 9% and no MgAl<sub>2</sub>O<sub>4</sub> spinel remained [<a href='#B41' class='html-bibr' title='41'>41</a>]. CaO is also an effective sintering aid for ZM [<a href='#B37' class='html-bibr' title='37'>37</a>]. For a 4.7 wt% CaO doped ZM with 41.2% ZrO<sub>2</sub>, it had been clarified that a transitory liquid phase appears at 1200 °C, but at 1450 °C, anorthite disappears, zircon dissociates appreciably, a permanent liquid forms and rapid sintering shrinkage occurs providing double the fracture toughness than pure mullite (4.3 <i>vs.</i> 2.0 MPa√m) [<a href='#B42' class='html-bibr' title='42'>42</a>]. Compared to MgO, whereas CaO attained higher densification, but 10 wt% CaO addition produced 64% corundum, unfortunately no mullite, 7% monoclinic zirconia, 9% hibonite (CaO.6Al<sub>2</sub>O<sub>3</sub>), 7% CaZrO<sub>3</sub> and 1% anorthite (CaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub> or CaO.Al<sub>2</sub>O<sub>3</sub>.2SiO<sub>2</sub>) [<a href='#B41' class='html-bibr' title='41'>41</a>]. Obtaining dense ZM aggregates by sintering below 1550 °C is possible using submicron powders, but such fine powders are costly and limited to application in engineering ceramics. High-volume consumers like the refractory industry need coarser, lower-price ingredients. Inspired by the expensive commercial fused ZM and CaO stabilized zirconia refractory raw materials, this study uniquely utilizes cost-effective, common Indian siliceous clay and commercial calcined alumina as mullite precursors. The high silica in the clay obviated the need for zircon,so monoclinic zirconia was used instead. The evolution of the phases was studied from 1200 °C to 1600 °C to reveal the reactions between the raw materials and to identify the temperature at which zirconia and mullite fully develop. The impact of the addition of ubiquitously available calcite (CaCO<sub>3</sub>) was studied, which provided CaO aimed to accelerate densification by generating a eutectic calcium aluminum silicate glassy phase and perhaps partially stabilize the zirconia [<a href='#B26' class='html-bibr' title='26'>26</a>,<a href='#B42' class='html-bibr' title='42'>42</a>,<a href='#B43' class='html-bibr' title='43'>43</a>]. The densification, phase and microstructure development were critically discussed and correlated with FactSage thermodynamic calculations. This research is intended to be useful for forming in situ ZM in a refractory brick matrix, understanding fused ZM-lime reactions in calcium aluminate cement bonded refractory castables [<a href='#B12' class='html-bibr' title='12'>12</a>] and developing wear-resistant ceramic tiles [<a href='#B6' class='html-bibr' title='6'>6</a>]. </div> <h2 class="border-bottom"> <a id="link-materials-and-methods" class="anchor-66"></a> 2. Materials and Methods </h2> <div class="link-materials-and-methods article-item-text">Low-cost, siliceous clay was sourced from Jharkhand, India. The raw clay had a weight loss on ignition (LOI) of 7.95%, which indicated that it was low in kaolinite (Al<sub>2</sub>O<sub>3</sub>.2SiO<sub>2</sub>.2H<sub>2</sub>O) as kaolinitic clays, often called flint clays by refractory makers, have an LOI of 13–15% when they don’t have much organics [<a href='#B44' class='html-bibr' title='44'>44</a>,<a href='#B45' class='html-bibr' title='45'>45</a>]. The composition of the calcined clay measured by X-ray fluorescence (XRF, Optim’X, Thermo ARL, Switzerland) was 61.66 wt% SiO<sub>2</sub>, 27.59% Al<sub>2</sub>O<sub>3</sub>, 0.90% Fe<sub>2</sub>O<sub>3</sub>, 0.89% TiO<sub>2</sub>, 0.10% Na<sub>2</sub>O and 0.91% K<sub>2</sub>O. This clay was silica-rich and alumina-deficient compared to flint clays that typically have 50–56% SiO<sub>2</sub> and 42–45% Al<sub>2</sub>O<sub>3</sub> after calcination [<a href='#B44' class='html-bibr' title='44'>44</a>,<a href='#B45' class='html-bibr' title='45'>45</a>,<a href='#B46' class='html-bibr' title='46'>46</a>]. Powder X-ray diffraction (XRD, Miniflex II, Desktop X-ray diffractometer, Rigaku corporation, Tokyo, Japan) was done in the range 10–80° 2θ with a 0.02° step size. At first, the raw XRD intensity of each sample was converted into relative intensity (%) followed by plotting in OriginPro 2022b software. Then each peak was manually listed in a Microsoft Excel spreadsheet and matched with fixed slit intensity tables in International Center for Diffraction Data Powder Diffraction Files (ICDD PDF) [<a href='#B47' class='html-bibr' title='47'>47</a>]. Low quartz or α-quartz (ICDD 00-046-1045, hexagonal crystal structure, space group P3221) was the major phase in the siliceous clay (<a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>a), closely matching with the 100% intensity peak (26.62° <i>vs.</i> 26.639°). The 15% intensity peak of the clay coincided with kaolinite (ICDD 00-089-6538, end-centered triclinic structure, space group C1) with excellent 2θ match (12.36° <i>vs.</i> 12.355°). Another kaolinite type, 1AA (ICDD 01-078-2110, triclinic structure, space group P1) was needed to index the remaining peaks, although it had slight shifts (e.g., 20.46° <i>vs.</i> 20.377°). It should be noted that all peaks of the first kaolinite overlapped with kaolinite-1AA, but the first one was closer to the experimental 2θ, while the second one helped in matching few extra peaks. Three peaks at 21.78°, 25.28° and 27.94° with up to 5.4% background subtracted intensity remained unidentified. Simultaneous differential thermal analysis and thermo-gravimetry (DTA-TG) of the as-received clay (89 mg sample) were done in a Netzsch instrument in simulated air atmosphere (N<sub>2</sub>:O<sub>2</sub> 4:1 flow rate) at a ramp of 10 K/min up to 1350 °C. At 105 °C (<a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>b), a broad endothermic peak concomitant with a small weight loss (0.1%) was seen due to the loss of free water (moisture). A tiny endothermic peak at 418 °C was seen with an associated change in slope of the TG curve and 0.9 wt% loss. This may be due to the burning of organic matter in the clay as this has been reported to occur at 447 °C which was corroborated by CO<sub>2</sub> detection [<a href='#B44' class='html-bibr' title='44'>44</a>]. At 528 °C (<a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>b), a major endothermic peak with simultaneous large weight loss was observed because of the de-hydroxylation of kaolinite resulting in the formation of amorphous metakaolinite (Al<sub>2</sub>O<sub>3</sub>.2SiO<sub>2</sub>), in line with literature reporting this at 507–516 °C [<a href='#B44' class='html-bibr' title='44'>44</a>]. The weight loss continued to about 700 °C after which it stabilized at 6.1%. Later, a sharp exothermic peak occurred at 995 °C without any weight loss and is ascribed to the formation of mullite crystals typically reported for kaolinitic clays at 986–989 °C [<a href='#B44' class='html-bibr' title='44'>44</a>]. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure1'><img data-large='/uploads/2024/11/19/7d543cb2f7c9a441aa1ad5f27691770c.png' data-original='/uploads/2024/11/19/7d543cb2f7c9a441aa1ad5f27691770c.png' src='/uploads/2024/11/19/7d543cb2f7c9a441aa1ad5f27691770c.png'><a class='html-expand html-figpopup' href='#Figure1'></a></div></div><div class='html-fig_description'><b><a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>. </b>(<b>a</b>) Powder XRD pattern and (<b>b</b>) DTA-TG curves of the siliceous clay.</div></div> To fully convert the siliceous clay into mullite, the required amount of refractory-grade calcined alumina (99.6% pure, described in [<a href='#B48' class='html-bibr' title='48'>48</a>]) was used. XRD (<a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>a) showed it contained mainly corundum (α-Al<sub>2</sub>O<sub>3</sub>, ICDD 00-046-1212, rhombohedral structure, space group R-3C) with a close match for the tallest peak (35.12° <i>vs.</i> 35.152°). A small amount of β-Al<sub>2</sub>O<sub>3</sub> or diaoyudaoite (Na<sub>2</sub>O.11Al<sub>2</sub>O<sub>3</sub>, ICDD 04-010-0578, hexagonal structure, P63/mmc space group) was found matching with the 8.4% intensity peak (15.66° <i>vs.</i> 15.723°) arising due to ~0.3% Na<sub>2</sub>O (+K<sub>2</sub>O) [<a href='#B48' class='html-bibr' title='48'>48</a>] from the Bayer process. The ZrO<sub>2</sub> source in ZM was lab-grade zirconia (Loba Chemie, Mumbai, India) with 99.5% ZrO<sub>2</sub>, 0.12% SiO<sub>2</sub>, 0.007% TiO<sub>2</sub>, 0.002% Fe<sub>2</sub>O<sub>3</sub>, 5.7 g/cm<sup>3</sup> pycnometric density and 11–39 µm particle size (d<sub>10</sub>–d<sub>90</sub>). <a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>b shows monoclinic ZrO<sub>2</sub> (ICDD 00-037-1484, space group P21/a) was its major phase (28.24° <i>vs.</i> 28.175° for the tallest peak) along with a small amount of tetragonal ZrO<sub>2</sub> (ICDD 00-050-1089, space group P42/nmc) matching the 18.9% intensity peak with good 2θ match (30.32° <i>vs.</i> 30.27°). Two peaks at 25.50° and 58.02° with 1.2% and 4.2% background subtracted intensity remained unidentified. The CaO mineralizer’s source was lab-grade calcite or calcium carbonate (Thomas Baker, Mumbai, India) of 99.5% purity with 0.03% Na, 0.005% K, 0.02% Mg, 0.001% Fe, 0.03% Ba, 0.10% NH<sub>4</sub><sup>+</sup>, 0.005% Cl<sup>−</sup>, 0.01% NO<sub>3</sub><sup>−</sup> and LOI of 44.0%. Siliceous clay lumps were crushed in an agate mortar and pestle, calcined at 700 °C for 2 h for de-hydroxylation of kaolinite (<a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>b) and sieved to obtain <75 µm. Calcined clay, alumina and zirconia were weighed per composition C0 shown in <a href='#Table1' class='html-table html-tablepopup'>Table 1</a>, such that the final reaction sintered product would have an estimated composition as provided in <a href='#Table2' class='html-table html-tablepopup'>Table 2</a>, which would mimic the chemistry of commercial fused ZM refractory aggregates [<a href='#B8' class='html-bibr' title='8'>8</a>,<a href='#B11' class='html-bibr' title='11'>11</a>]. To the base ZM composition, C0, the calculated amounts of CaCO<sub>3</sub> (considering its LOI) were added to synthesize C1, C2, C4 and C7 with 1.05, 2.11, 4.21 and 7.37 wt% CaO, respectively. A 3.85 wt% concentration aqueous solution of polyvinyl alcohol (PVA, Loba Chemie, India) was made on a hot plate with a magnetic stirrer at 84–96 °C for 2 h. 30 g batches were weighed and mixed in a mortar and pestle, then 5% (1.5 g) of the PVA binder solution was added. This was mixed and screened five times through a 500 µm sieve for granulation. The moist powder granules were then uniaxially pressed into pellets of diameter 15 mm and thickness 8 mm by dwelling at 44 MPa for 10 s (de-airing) and then at 152 MPa for 1 min. The pellets were then dried overnight in an oven at 120 °C. Finally, they were fired in an electrically heated alumina tube furnace (Electroheat, Naskar and Co., Howrah, India) in air at 5 K/min with a 2 h soaking at the maximum temperature followed by controlled cooling at 5 K/ min to 800 °C and natural cooling after that. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure2'><img data-large='/uploads/2024/11/19/85e66f43d22abbe641733826f6ff63c8.png' data-original='/uploads/2024/11/19/85e66f43d22abbe641733826f6ff63c8.png' src='/uploads/2024/11/19/85e66f43d22abbe641733826f6ff63c8.png'><a class='html-expand html-figpopup' href='#Figure2'></a></div></div><div class='html-fig_description'><b><a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>. </b>XRD pattern of raw materials (<b>a</b>) industrial calcined alumina and (<b>b</b>) lab-grade zirconia.</div></div> <div class='html-fig-wrap'><div class='html-table_wrap_discription'><b><a href='#Table1' class='html-table html-tablepopup'>Table 1</a>. </b>Batch composition (wt%).<div class='html-figpopup-table html-figpopup-link'><img data-large='/uploads/2024/11/19/d6ab857d1bb748c703dd5e73ff54e567.png' data-original='/uploads/2024/11/19/d6ab857d1bb748c703dd5e73ff54e567.png' src='/uploads/2024/11/19/d6ab857d1bb748c703dd5e73ff54e567.png'><a class='html-expand html-tablepopup' href='#Table1'></a></div></div></div> <div class='html-fig-wrap'><div class='html-table_wrap_discription'><b><a href='#Table2' class='html-table html-tablepopup'>Table 2</a>. </b>Expected composition (wt%) after sintering.<div class='html-figpopup-table html-figpopup-link'><img data-large='/uploads/2024/11/19/94916c39a47d0d72cbf6af878026bfb6.png' data-original='/uploads/2024/11/19/94916c39a47d0d72cbf6af878026bfb6.png' src='/uploads/2024/11/19/94916c39a47d0d72cbf6af878026bfb6.png'><a class='html-expand html-tablepopup' href='#Table2'></a></div></div></div> Densification of the fired composites was studied by measuring bulk density and apparent porosity using the Archimedes technique in boiling water for 2 h, similar to ASTM C20-00 standard [<a href='#B49' class='html-bibr' title='49'>49</a>]. Phase evolution of sintered samples was investigated by powder XRD, which was also supported by thermodynamic equilibrium calculations using FactSage software version 7.3 using its Equilib module and FactPS, FToxid and FTmisc databases. Some fired samples were ground and polished using different sizes of SiC powder with water on a rotating disc. Also, fracture surfaces of sintered samples were prepared for microstructural observation. After sputter coating with gold (Hummer sputtering system, LADD Research, USA), images were taken using a scanning electron microscope (SEM, Inspect S50, FEI, Magnetgatan, Sweden) operated at 12.5–17 kV. Chemical microanalysis was performed on polished surfaces using another SEM (Carl Zeiss Microscopy, EVO MA 15/18) that was equipped with an energy dispersive spectrometer (EDS, 51N1000, Oxford Instruments, UK) operated at 20 kV. Average grain size was measured on 7–39 grains of each phase per sample using Image J software (version 1.53e, National Institute of Health, Bethesda, MD, USA).</div> <h2 class="border-bottom"> <a id="link-theory-calculation" class="anchor-66"></a> 3. Results and Discussion </h2> <div class="link-theory-calculation article-item-text"><i>3.1. Phase Evolution of Undoped ZM Formulations</i> The major phase in C0, the undoped formulation that mimics commercial fused ZM, after firing at 1200 °C (<a href='#Figure3' class='html-fig html-figpopup'>Figure 3</a>a), was monoclinic ZrO<sub>2</sub> with a close match (e.g., 28.20° <i>vs.</i> 28.175°). A large amount of unreacted α-Al<sub>2</sub>O<sub>3</sub> remained, matching with the 62.0% intensity peak (35.16° <i>vs.</i> 35.152°). Several peaks of low quartz from clay remained with up to 43.0% intensity with a good match (26.60° <i>vs.</i> 26.639°). Cristobalite SiO<sub>2</sub> (ICDD 00-039-1425, tetragonal structure, space group P41212) with up to 13.1% intensity remained, which probably crystallized from the amorphous silica left after kaolinite decomposition, assisted by the impurities. The cristobalite peaks were slightly shifted (22.06° <i>vs.</i> 21.984°). Small peaks with up to 14.5% intensity of ZrSiO<sub>4</sub> (ICDD 00-006-0266, body-centered tetragonal structure, I41/amd space group) were found with reasonable match (e.g., 27.04° <i>vs.</i> 26.979°). ZrSiO<sub>4</sub> formed from the reaction of SiO<sub>2</sub> from the clay and the monoclinic ZrO<sub>2</sub> raw material. Finally, small peaks (12.5% intensity) of leucite, K<sub>2</sub>O.Al<sub>2</sub>O<sub>3</sub>.4SiO<sub>2</sub> or KAlSi<sub>2</sub>O<sub>6</sub> (ICDD 00-038-1423, tetragonal structure, I41/a space group) with shifted peaks (e.g., 27.38° <i>vs.</i> 27.28°) was found due to the reaction by the K<sub>2</sub>O impurity (0.91%) in the clay. Three small peaks at 18.34°, 22.90° and 23.66° remained unidentified with up to 2% background subtracted intensity. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure3'><img data-large='/uploads/2024/11/19/a053b46235cbfaeb261a9ef990b74487.jpg' data-original='/uploads/2024/11/19/a053b46235cbfaeb261a9ef990b74487.jpg' src='/uploads/2024/11/19/a053b46235cbfaeb261a9ef990b74487.jpg'><a class='html-expand html-figpopup' href='#Figure3'></a></div></div><div class='html-fig_description'><b><a href='#Figure3' class='html-fig html-figpopup'>Figure 3</a>. </b>XRD patterns of C0 composition after firing for 2 h at (<b>a</b>) 1200 °C, (<b>b</b>) 1300 °C, (<b>c</b>) 1400 °C, (<b>d</b>) 1500 °C and (<b>e</b>) 1600 °C.</div></div> Monoclinic ZrO<sub>2</sub> continued to remain as the major phase in C0 from 1300 °C to 1600 °C (<a href='#Figure3' class='html-fig html-figpopup'>Figure 3</a>b–e) with some variations in peak positions, e.g., 28.20°, 28.28°, 28.30° and 28.22°, respectively. From 1200 °C to 1300 °C, the intensities remained similar for α-Al<sub>2</sub>O<sub>3</sub> (62.0 <i>vs.</i> 64.3%), cristobalite (13.1 <i>vs.</i> 13.9%) and leucite (12.5 <i>vs.</i> 13.5%). However, a reduction in the intensities of low quartz (43.0 <i>vs.</i> 30.6%) with a simultaneous increase in ZrSiO<sub>4</sub> (14.5 to 39.3%) was observed. 11 small peaks remained unidentified in C0 fired at 1300 °C with up to 2.3% background subtracted intensity. At 1400 °C, the leucite phase disappeared and probably formed glass, while both low quartz and cristobalite were fully consumed to form a large amount of ZrSiO<sub>4</sub> (76.8% intensity) along with the desirable mullite phase (ICDD 00-015-0776, orthorhombic structure, Pbam space group) with 34.7% intensity and a good 2θ match (26.32° <i>vs.</i> 26.267°). On the contrary, the intensity of α-Al<sub>2</sub>O<sub>3</sub> decreased (64.3 <i>vs.</i> 55.1%). Three small unindexed peaks (≤2.9% background subtracted intensity) remained in C0 heated at 1400 °C. At 1500 °C, the ZrSiO<sub>4</sub> phase abruptly disappeared, which is in agreement with reports mentioning that the reaction of zircon and alumina to form zirconia and mullite progresses rapidly above 1500 °C according to Equation (1): [<a href='#B50' class='html-bibr' title='50'>50</a>] <div class='html-disp-formula-info'><div class='html_pics'>```latex2\mathrm{ZrSiO}_4+3\mathrm{Al}_2\mathrm{O}_3=2\mathrm{ZrO}_2+3\mathrm{Al}_2\mathrm{O}_3.2\mathrm{SiO}_2```</div><div class='formula'><label>(1)</label></div></div> This is an expansive reaction accompanied by de-densification [<a href='#B50' class='html-bibr' title='50'>50</a>]. Between 1400 °C and 1500 °C (<a href='#Figure3' class='html-fig html-figpopup'>Figure 3</a>c,d), mullite slightly increased from 34.7% intensity to 39.7%, while the tallest corundum peak overlapped with monoclinic ZrO<sub>2</sub> and mullite and had a smaller intensity (55.1% <i>vs.</i> 35.6%). No other phases were present at 1500 °C, but two unidentified peaks with ≤3.3% background subtracted intensity remained. It was only at 1600 °C that the desirable ZM phase composition was formed, with mullite having 44.1% intensity. Hence, the reaction sequence was as follows. From the starting monoclinic ZrO<sub>2</sub>-alumina-calcined clay mixture, the clay produced low quartz, cristobalite and leucite at 1200 °C. A small amount of ZrSiO<sub>4</sub> was formed due to the reaction between monoclinic ZrO<sub>2</sub>, quartz and cristobalite. As the temperature increased to 1400 °C, the amount of ZrSiO<sub>4</sub> reached the maximum at the expense of the full consumption of low quartz and cristobalite. Leucite probably formed a liquid phase at this point. Mullite first appeared at 1400 °C. At 1500 °C, ZrSiO<sub>4</sub> suddenly dissociated, relinquishing silica, which reacted with corundum such that mullite increased with a simultaneous reduction in alumina. 1600 °C was high enough to fully react the α-Al<sub>2</sub>O<sub>3</sub> to form mullite which remained stably with monoclinic ZrO<sub>2</sub>. This reaction sequence is in reasonable agreement with other publications [<a href='#B9' class='html-bibr' title='9'>9</a>,<a href='#B37' class='html-bibr' title='37'>37</a>,<a href='#B51' class='html-bibr' title='51'>51</a>]. <i>3.2. Phase Evolution of CaO Doped ZM Formulations</i> At the highest firing condition of 1650 °C for 2 h, C0 continued to be composed of monoclinic ZrO<sub>2</sub> and mullite (<a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>a). With 1.77% calcite addition, which is expected to add 1.05% CaO, the intensities of monoclinic zirconia and mullite remained the same (<a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>b). Still, partial stabilization of zirconia in tetragonal form with up to 7.7% intensity was found with a good match (e.g., 30.22° <i>vs.</i> 30.27°). Augmenting CaO to 2.11% (<a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>c) caused a slight increase in the intensity of tetragonal ZrO<sub>2</sub> (8.9%), but the mullite peak intensity reduced from 36.1% to 26.8%. Simultaneously, a significant amount of α-Al<sub>2</sub>O<sub>3</sub> appeared with 30.4% intensity. The added CaO seemed to react with mullite, leaching out its silica to form CaO-SiO<sub>2</sub> liquid phase and eutectic CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> phases [<a href='#B2' class='html-bibr' title='2'>2</a>]. As the low-melting phases anorthite (CaO.Al<sub>2</sub>O<sub>3</sub>.2SiO<sub>2</sub>) and gehlenite (2CaO.Al<sub>2</sub>O<sub>3</sub>.SiO<sub>2</sub>) have Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> ≤ 1, while mullite (3Al<sub>2</sub>O<sub>3</sub>.2SiO<sub>2</sub>) has 1.5, so, after reaction of mullite with CaO, the excess Al<sub>2</sub>O<sub>3</sub> would be released and precipitated as corundum. Increasing CaO to 4.21% (C4 in <a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>d) caused the complete dissolution of the silica in mullite, increasing α-Al<sub>2</sub>O<sub>3</sub> to 34.9% intensity. A small cubic ZrO<sub>2</sub> (ICDD 00-049-1642, Fm-3m space group) peak with 7.9% intensity and reasonable match (29.96° <i>vs.</i> 30.12°) was detected. When CaO was increased to 7.37% (<a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>e), the intensities of monoclinic ZrO<sub>2</sub>, α-Al<sub>2</sub>O<sub>3</sub> and cubic ZrO<sub>2</sub> remained consistent, and additionally, tetragonal ZrO<sub>2</sub> were also detected. Hence, C0 is ZM with monoclinic ZrO<sub>2</sub>, while C1 contained partially stabilized tetragonal ZrO<sub>2</sub> which might benefit its fracture toughness. [<a href='#B42' class='html-bibr' title='42'>42</a>] The ZrO<sub>2</sub> partial stabilization continued in C2, but it was ZMA (ZrO<sub>2</sub>-mullite-alumina) type aggregate. C4 and C7 were ZA aggregates with additional cubic ZrO<sub>2</sub> phases. The complete replacement of mullite by corundum in ZM compositions has also been reported when 10 wt% CaO is doped [<a href='#B41' class='html-bibr' title='41'>41</a>]. As corundum is harder than mullite, conversion of ZM into ZA may enhance its wear resistance [<a href='#B52' class='html-bibr' title='52'>52</a>], making it potentially suitable for producing wear-resistant tiles. Based on the estimated “after firing” compositions in <a href='#Table2' class='html-table html-tablepopup'>Table 2</a>, their phase evolution was further thermodynamically evaluated by FactSage simulations and shown in <a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>. The C0 composition at 1650 °C was predicted to contain 56.9 wt% mullite, 38.5% tetragonal ZrO<sub>2</sub> and 4.6% liquid phase arising mainly from the impurities in the clay. However, when this sample’s XRD was done at room temperature (<a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>a), in the absence of a stabilizer, the tetragonal ZrO<sub>2</sub> is expected to have transformed back to the monoclinic phase. Additionally, monoclinic ZrO<sub>2</sub> showed stronger XRD intensity than mullite despite being the secondary phase (per FactSage). Rietveld refinement (which was not available during the time of this study) would have corrected the intensity and provided a better XRD phase quantification. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure4'><img data-large='/uploads/2024/11/19/e55be90b5285a3e43e41c6e387c59b2f.jpg' data-original='/uploads/2024/11/19/e55be90b5285a3e43e41c6e387c59b2f.jpg' src='/uploads/2024/11/19/e55be90b5285a3e43e41c6e387c59b2f.jpg'><a class='html-expand html-figpopup' href='#Figure4'></a></div></div><div class='html-fig_description'><b><a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>. </b>XRD patterns of ZrO<sub>2</sub>-mullite formulations fired for 2 h at 1650 °C containing different amounts of CaO: (<b>a</b>) 0%, <b>(b</b>) 1.05%, (<b>c</b>) 2.11%, (<b>d</b>) 4.21% and (<b>e</b>) 7.37%.</div></div> <a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>a shows that the range of CaO additions (0–7.37 wt%) in this investigation on ZM covered the entire region of stability of the mullite phase which is eventually dissolved in the rapidly forming liquid phase. For C1, C2, C4 and C7, the mullite dramatically reduced to 49.2, 39.6, 15.3 and 0 wt%, while tetragonal ZrO<sub>2</sub> did not have sufficient solubility in the liquid phase and lowered slowly to 37.1, 35.6, 32.8 and 29.4 wt%, respectively. 0.2–0.8 wt% leucite was predicted by FactSage in C1 to C4, while it was only detected by XRD in C0 at 1200 and 1300 °C (<a href='#Figure3' class='html-fig html-figpopup'>Figure 3</a>a,b) arising from the K<sub>2</sub>O impurity in the clay. Whereas thermodynamic calculations simulated mullite to disappear only in C7, experimentally, XRD showed mullite was lost in both C4 and C7. Cubic ZrO<sub>2</sub> was also not predicted, but it was found at the higher CaO levels in C4 and C7. Differences between FactSage and experimental results can occur due to slow reaction kinetics caused by the use of relatively coarser particles, times not long enough to achieve equilibrium and slower cooling that can exsolve part of the solid solutions [<a href='#B29' class='html-bibr' title='29'>29</a>,<a href='#B48' class='html-bibr' title='48'>48</a>] like the stabilizer in ZrO<sub>2</sub>. Due to the dissolution of the mullite phase, corundum was produced, and its quantity predicted by FactSage in C2, C4 and C7 were 1.4, 9.9 and 11.1 wt%, which qualitatively matches the XRD results in <a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>c–e. Finally, it was observed that as the CaO content in ZM formulation increased from 0, 1.05, 2.11, 4.21 to 7.37%, the liquid phase content rose dramatically as 4.6, 13.5, 22.7, 41.5 and 59.4 wt%. This was concomitant with a drastic drop in the fluid viscosity from 6.3 Pa·s in C0 to 0.3–0.6 Pa.s in C1–C7 (<a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>b). Thus, moderate amounts of CaO doping in a ZM formulation produced copious amounts of a very fluid (watery) liquid phase that changes its phase assemblage towards ZA. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure5'><img data-large='/uploads/2024/11/19/e242f181d18e92f3d4bfc61e9b0e87f5.png' data-original='/uploads/2024/11/19/e242f181d18e92f3d4bfc61e9b0e87f5.png' src='/uploads/2024/11/19/e242f181d18e92f3d4bfc61e9b0e87f5.png'><a class='html-expand html-figpopup' href='#Figure5'></a></div></div><div class='html-fig_description'><b><a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>. </b>FactSage thermodynamic equilibrium calculations predicting (<b>a</b>) phases formed and (<b>b</b>) viscosity of the liquid phase in the compositions C0, C1, C2, C4 and C7 at the firing temperature of 1650 °C.</div></div> <i>3.3. Densification</i> The undoped ZM composition C0 had the least quantity and the highest viscosity of the liquid phase at 1650 °C (<a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>). Hence, at 1550 °C, it had hardly sintered and exhibited a low bulk density of 2.54 g/cm<sup>3</sup> and a high apparent porosity of 29.0% (<a href='#Figure6' class='html-fig html-figpopup'>Figure 6</a>). With increasing firing temperature to 1650 °C, C0 only slightly sintered and had an open porosity of 26.5%. This exemplifies the well-known difficulty in sintering zirconia-mullite compositions [<a href='#B25' class='html-bibr' title='25'>25</a>] with a particle size (e.g., <75 µm) common for the refractory brick matrix and for making refractory raw material aggregates which is coarser than the submicron sizes typically reported in the literature [<a href='#B3' class='html-bibr' title='3'>3</a>,<a href='#B4' class='html-bibr' title='4'>4</a>,<a href='#B31' class='html-bibr' title='31'>31</a>,<a href='#B32' class='html-bibr' title='32'>32</a>]. This motivates the need for a mineralizer in the current study. CaO incorporation into ZM assisted densification by liquid phase sintering up to 4.21% dopant level as the apparent porosity at 1550 °C dropped from 29% for C0 through 20% for C2 to 0.7% for C4. C4 also had the highest bulk density of 3.00 g/cm<sup>3</sup>. As only C0 and C1 had ZM phase composition after firing, while C2 formed monoclinic zirconia + mullite + corundum (ZMA), while C4 and C7 evolved into ZA, so the lowest porosity achieved in a ZM aggregate in this study was for C1 at 1650 °C (22.7%). As this is too high compared to ~3% open porosity for typical refractory aggregates [<a href='#B8' class='html-bibr' title='8'>8</a>,<a href='#B11' class='html-bibr' title='11'>11</a>,<a href='#B30' class='html-bibr' title='30'>30</a>], so no “true ZM” aggregate could be developed in this study that was dense enough. The optimally dense aggregate in this study was C4 fired at 1550 °C with a ZA phase composition, and it can be rated to a maximum application temperature of 1550 °C, as above that it showed detrimental effect from the liquid phase. Appropriate amount and viscosity of liquid phase benefits sintering and is manifested as increasing density with a rise in sintering temperature as in the case for C0, C1 and C2. However, for C4, as the temperature increased from 1550 °C to 1650 °C, the bulk density surprisingly reduced from 3.00 g/cm<sup>3</sup> to 2.89 g/cm<sup>3</sup>. It was found that the weight loss of the C4 pellets after firing at 1550, 1600 and 1650 °C were 3.8, 5.0 and 17.0%, respectively, which indicates that at the highest sintering temperature, the glassy phase drained out of the sample. As the apparent porosity stayed almost the same (0.2–0.3%) for C4 at 1600–1650 °C, excessive liquid phase formation likely caused a drop in its true specific gravity at first, which then oozed out and left behind closed porosity thereby reducing the bulk density. For C7, the liquid phase content was so high and had such low viscosity that it percolated out and left the solid ceramic grain structure at 1550 °C with a high open porosity (30.7%), which means that the temperature was not sufficiently high to sinter the remnant material. With increasing firing temperature, the glass-depleted C7 sintered to attain 3.9 and 0.5% open porosity for 1600 °C and 1650 °C, respectively. The weight losses of C7 pellets during firing between 1550–1650 °C were 5.6, 13.8 and 32.0%, which shows that the liquid phase became thinner, and its quantity increased at higher temperatures, seeped down the samples, and fortunately, the temperatures were appropriately high to densify the leftover zirconia and alumina. However, such kind of liquid phase loss is not suitable for industrial production of ceramics. Until the glassy phase stayed within the sample, it can be said that the phase changes in the samples influenced its densification, but it was the large amount and low viscosity of the glassy phase which likely dominated the overall sintering. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure6'><img data-large='/uploads/2024/11/19/e97ec9908e3b3f01909699261d398b8f.png' data-original='/uploads/2024/11/19/e97ec9908e3b3f01909699261d398b8f.png' src='/uploads/2024/11/19/e97ec9908e3b3f01909699261d398b8f.png'><a class='html-expand html-figpopup' href='#Figure6'></a></div></div><div class='html-fig_description'><b><a href='#Figure6' class='html-fig html-figpopup'>Figure 6</a>. </b>Impact of CaO doping on (<b>a</b>) bulk density and (<b>b</b>) open porosity of ZM formulations at three sintering temperatures.</div></div> <i>3.4. Microstructure</i> As C0 fired at 1650 °C for 2 h had 26.5% open porosity, its microstructure (<a href='#Figure7' class='html-fig html-figpopup'>Figure 7</a>) consisted of patches of pores. The fracture surface images (<a href='#Figure7' class='html-fig html-figpopup'>Figure 7</a>a,b) show that the darker mullite phase was present as groups of somewhat equiaxed, small grains, which are likely to be primary mullite [<a href='#B53' class='html-bibr' title='53'>53</a>,<a href='#B54' class='html-bibr' title='54'>54</a>] along with several interlocked elongated rod-like grains (0.9 ± 0.2 µm thickness) which are believed to be secondary mullite. The presence of two types of mullite morphology is common when the precursor is a kaolinite-alumina mixture [<a href='#B55' class='html-bibr' title='55'>55</a>]. The lighter small monoclinic ZrO<sub>2</sub> grains (2.5 ± 1.1 µm) were found to be scattered around the darker mullite phase, as well as occur as large clusters of direct bonded ZrO<sub>2</sub> grains (<a href='#Figure7' class='html-fig html-figpopup'>Figure 7</a>b). Such coalescence and clustering of the ZrO<sub>2</sub> grains were observed in ZM prepared by Wei et al. [<a href='#B37' class='html-bibr' title='37'>37</a>]. ZrO<sub>2</sub> grain clusters are also reported when ZM forms from the reaction of ZrSiO<sub>4</sub> and Al<sub>2</sub>O<sub>3</sub> [<a href='#B56' class='html-bibr' title='56'>56</a>], as in this study where in situ ZrSiO<sub>4</sub> is formed at intermediate firing temperatures. However, it was only with point EDS and elemental mapping of polished surfaces using the Zeiss SEM (<a href='#Figure7' class='html-fig html-figpopup'>Figure 7</a> c–f) that the phases could be identified with certainty. The round and oval ZrO<sub>2</sub> grains did not contain any other element, and in the absence of solid solution forming cations it remained as monoclinic ZrO<sub>2</sub> as earlier confirmed by XRD. Both the cuboidal primary mullite and the thin rod-like secondary mullite did not contain any Zr or Ca and had an average at% Al/Si ratio of 2.0 ± 0.4 compared to 3.0 for mullite (3Al<sub>2</sub>O<sub>3</sub>.2SiO<sub>2</sub>). The lack of ZrO<sub>2</sub> solid solution in mullite is reasonably expected as it has very little (1%) solubility [<a href='#B31' class='html-bibr' title='31'>31</a>,<a href='#B57' class='html-bibr' title='57'>57</a>]. The microstructure of C1 (<a href='#Figure8' class='html-fig html-figpopup'>Figure 8</a>) appeared denser than C0. The cuboidal primary mullite grains appeared larger and many grains had sharp edges. There was a slight increase in the size of the zirconia grains (3.5 ± 1.3 µm) and the thickness of the secondary mullite rods (1.7 ± 0.4 µm). The Ca elemental map coincided more with Si and Al than Zr, suggesting that the CaO dopant reacted more with the mullite-forming liquid phase than to stabilize the monoclinic ZrO<sub>2</sub>. Point EDS revealed that the round zirconia phase (Z) was devoid of Ca (stabilizer). The thin secondary mullite rods had an Al/Si at% ratio of 1.8 with 0.17 at% Ca. The microstructure of C2 (<a href='#Figure9' class='html-fig html-figpopup'>Figure 9</a>) appeared to be significantly denser, and the pores were smaller and more uniformly distributed. The cuboidal primary mullite appeared larger with sharp boundaries and sometimes had a rhombus morphology. The secondary mullite rods were significantly longer and thicker (2.8 ± 0.6 µm) than before and had sharp edges. A small number of thin mullite rods were also present. The alumina phase appeared both as tiny round grains and short, thick rods with rounded edges. The bright zirconia clusters had disintegrated, and dispersed grains (3.7 ± 1.0 µm) were seen with potentially glassy phases between them. Point EDS revealed that the zirconia grains contained no Ca, while the cuboidal primary mullite grains had an Al/Si at% ratio of 2.6 with 0.09 at% Ca. The thick secondary mullite rods had an Al/Si ratio of 2.1 with 0.59 at% Ca, suggesting its interaction with the liquid phase. The thick alumina rods were pure with only 0.01 at% Si. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure7'><img data-large='/uploads/2024/11/19/0d720f1556a917e1878c72596eadcd39.jpg' data-original='/uploads/2024/11/19/0d720f1556a917e1878c72596eadcd39.jpg' src='/uploads/2024/11/19/0d720f1556a917e1878c72596eadcd39.jpg'><a class='html-expand html-figpopup' href='#Figure7'></a></div></div><div class='html-fig_description'><b><a href='#Figure7' class='html-fig html-figpopup'>Figure 7</a>. </b>(<b>a</b>,<b>b</b>) Fracture surface secondary electron images captured by the FEI SEM and (<b>c</b>–<b>f</b>) polished surface images and elemental mapping using Zeiss SEM of C0 sintered at 1650 °C. The markers for zirconia (Z) and mullite (M) have been placed only where point EDS was done.</div></div> <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure8'><img data-large='/uploads/2024/11/19/aca3ba1abc65e57fd4ba3159d141a20c.jpg' data-original='/uploads/2024/11/19/aca3ba1abc65e57fd4ba3159d141a20c.jpg' src='/uploads/2024/11/19/aca3ba1abc65e57fd4ba3159d141a20c.jpg'><a class='html-expand html-figpopup' href='#Figure8'></a></div></div><div class='html-fig_description'><b><a href='#Figure8' class='html-fig html-figpopup'>Figure 8</a>. </b>(<b>a</b>) Fracture surface SEM image and (<b>b</b>) polished surface micrographs along with (<b>c</b>–<b>f</b>) elemental maps of C1 after sintering at 1650 °C. The markers for zirconia (Z), mullite (M) and alpha alumina (A) have been placed only where point EDS was done.</div></div> As C4 was characterized by the complete replacement of mullite by alumina (<a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>d), its microstructure did not have any long, thick mullite rods (<a href='#Figure10' class='html-fig html-figpopup'>Figure 10</a>). Instead, short, interlinked alumina rods of varying thicknesses (primarily 1.2 ± 0.3 μm, and occasionally 2.7 ± 0.7 μm) were observed, along with some tiny, round alumina grains. The pores were concentrated near alumina rods, confirming that the CaO-SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> liquid phase drained out of the composite at 1650 °C, leaving closed pores behind. The zirconia grains became larger in size (4.0 ± 1.7 µm) and were mostly separated by a glassy phase. The Ca elemental maps overlapped with both Zr, Si and Al, suggesting that it helped stabilize zirconia and formed liquid phase. The ZrO<sub>2</sub> grains had an average of 0.26 at% Ca and 0.40% Al. The Al<sub>2</sub>O<sub>3</sub> rods contained 0.08% Ca and 0.77% Si. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure9'><img data-large='/uploads/2024/11/19/bbf68b37943e2eff52f29a89adde5036.jpg' data-original='/uploads/2024/11/19/bbf68b37943e2eff52f29a89adde5036.jpg' src='/uploads/2024/11/19/bbf68b37943e2eff52f29a89adde5036.jpg'><a class='html-expand html-figpopup' href='#Figure9'></a></div></div><div class='html-fig_description'><b><a href='#Figure9' class='html-fig html-figpopup'>Figure 9</a>. </b>(<b>a</b>) Fracture surface SEM image and (<b>b</b>) polished surface micrographs along with (<b>c</b>–<b>f</b>) elemental maps of C2 after sintering at 1650 °C. The markers for zirconia (Z), mullite (M) and alpha alumina (A) have been placed only where point EDS was done.</div></div> <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure10'><img data-large='/uploads/2024/11/19/cc1a7b77d40aafb4414e1c9302b851eb.jpg' data-original='/uploads/2024/11/19/cc1a7b77d40aafb4414e1c9302b851eb.jpg' src='/uploads/2024/11/19/cc1a7b77d40aafb4414e1c9302b851eb.jpg'><a class='html-expand html-figpopup' href='#Figure10'></a></div></div><div class='html-fig_description'><b><a href='#Figure10' class='html-fig html-figpopup'>Figure 10</a>. </b>(<b>a</b>) Fracture surface SEM image and (<b>b</b>) polished surface micrographs along with (<b>c</b>–<b>f</b>) elemental maps of C4 after sintering at 1650 °C. The markers for zirconia (Z) and alpha alumina (A) have been placed only where point EDS was done.</div></div> The microstructure of C7 (<a href='#Figure11' class='html-fig html-figpopup'>Figure 11</a>) consisted of a smaller number of thin alumina rods (0.7 ± 0.1 µm) with a significant amount of glass with 13.0 at% Ca and an Al/Si ratio of 0.94 which is close to anorthite (1.0). Some thin rods with a similar composition to the anorthite-like glass had 6.9 at% Ca and an Al/Si ratio of 0.72. XRD did not detect Anorthite, but it is possible that its amount was so small that XRD could not detect it, but EDS found it. The ZrO<sub>2</sub> grains were the largest (6.5 ± 1.9 µm) and were abundantly surrounded by glass and had 0.07% Ca and 1.0% Si, which could be from the EDS X-ray interaction volume at 20 kV interacting with the adjacent glass. It had been observed in other studies also that in high CaO-doped compositions, the CaO rather reacts with Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>, forming anorthite and glassy phases, than going into a solid solution with ZrO<sub>2</sub> [<a href='#B43' class='html-bibr' title='43'>43</a>]. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure11'><img data-large='/uploads/2024/11/19/6e1d4dbe4a1630ad7a756deffaebea1a.jpg' data-original='/uploads/2024/11/19/6e1d4dbe4a1630ad7a756deffaebea1a.jpg' src='/uploads/2024/11/19/6e1d4dbe4a1630ad7a756deffaebea1a.jpg'><a class='html-expand html-figpopup' href='#Figure11'></a></div></div><div class='html-fig_description'><b><a href='#Figure11' class='html-fig html-figpopup'>Figure 11</a>. </b>(<b>a</b>) Polished surface micrographs along with (<b>b</b>–<b>e</b>) elemental maps of C7 after sintering at 1650 °C. The markers for zirconia (Z) and glass (G) have been placed only where point EDS was done.</div></div> </div> <h2 class="border-bottom"> <a id="link-results" class="anchor-66"></a> 4. Conclusions </h2> <div class="link-results article-item-text">The feasibility of preparing an alternative of fused zirconia mullite (37.4 wt% ZrO<sub>2</sub>) refractory aggregate or matrix was explored using conventional sintering and low-cost siliceous clay mixed with calcined alumina and monoclinic ZrO<sub>2</sub>. At 1200 °C, low quartz and cristobalite from the clay reacted with ZrO<sub>2</sub> to form ZrSiO<sub>4</sub>, which remained along with monoclinic ZrO<sub>2</sub>, α-Al<sub>2</sub>O<sub>3</sub> and traces of leucite. The amount of ZrSiO<sub>4</sub> peaked at 1400 °C, while at 1500 °C, it abruptly and completely dissociated, increasing the amount of mullite, while traces of unreacted α-Al<sub>2</sub>O<sub>3</sub> still remained. A minimum firing temperature of 1600 °C was necessary to obtain the desirable phase composition of mullite + monoclinic ZrO<sub>2</sub> (ZM). However, this contained a high open porosity (26.5%) after firing at 1650 °C for 2 h despite having 4.6 wt% liquid phase (from FactSage). Its microstructure consisted of small equiaxed primary mullite grains, rod-like secondary mullite (0.9 µm thick), and scattered and clustered ZrO<sub>2</sub> grains. In order to densify and attain partial stabilization of the monoclinic ZrO<sub>2</sub>, calcite was added. With 1.05% CaO, some tetragonal ZrO<sub>2</sub> formed, but still 22.7% open porosity remained after firing at 1650 °C for 2 h, although 13.5% liquid phase formed with a low viscosity (0.6 Pa·s) in this composite. With 2.11% CaO addition, mullite partly dissolved forming α-Al<sub>2</sub>O<sub>3</sub> (ZMA aggregate), which still had 10.7% apparent porosity, underscoring the difficulty in conventional sintering of ZM formulations with <75 µm particle size. CaO doping to this level also increased the thickness of the secondary mullite rods up to 2.8 µm and the enlargement of the ZrO<sub>2</sub> grains up to 3.7 µm. EDS revealed that CaO mostly remained in the intergranular glassy phase rather than inside the ZrO<sub>2</sub> grains. Mullite was unfortunately lost with 4.21% CaO doping but favorably formed some cubic ZrO<sub>2</sub> and attained a low porosity of 0.7% with 3.00 g/cm<sup>3</sup> bulk density after firing at 1550 °C for 2 h. This ZA aggregate is limited to 1550 °C application temperature as beyond that, the excess liquid phase drained out, forming closed pores and the aggregate lost bulk density. The α-Al<sub>2</sub>O<sub>3</sub> phase was present as interlinked rods, 1.2–2.7 µm thick, and the Ca reached 0.26 at% inside the ZrO<sub>2</sub> grains. 7.37% CaO addition was detrimental as it formed an excess liquid phase that drained out at 1550 °C with 5.6% weight loss. At 1650 °C, the weight loss was 32.0%, the alumina rods had become thinner (0.7 µm), and the glass composition was similar to anorthite with possibly some small, thin anorthite rods. The ZrO<sub>2</sub> phase exhibited steady grain growth to 6.5 µm. This work recommends that in refractory castables with ZM aggregates, the calcium aluminate cement binder content should be restricted to a final CaO content of under 2.1% to avoid partial dissolution of mullite. Overall, it can be inferred that out of the two main cost-effective stabilizers for ZrO<sub>2</sub> in ZrO<sub>2</sub>-mullite for refractories, neither CaO (in this study) nor MgO (ref. [<a href='#B40' class='html-bibr' title='40'>40</a>]) is truly suitable for simultaneously attaining stabilization and densification. </div> <div class="link-discussion article-item-text"></div> <div class="link-conclusions article-item-text"></div> <div class="link-supplementary-materials article-item-text"></div> <div class="link-appendix article-item-text"></div> <div class="link-appendix-b article-item-text"></div> <h2 class="border-bottom"> <a id="link-acknowledgments" class="anchor-66"></a> Acknowledgments </h2> <div class="link-acknowledgments article-item-text">The authors express sincere gratitude to A. S. K. Sinha for providing XRF analysis, Bhagmal Singh for operating XRD, Debarpita Paul (Oklahoma State University, USA) for assisting in XRD data analysis, Tristan Eisenbraun (Vesuvius Research) for processing sintering data, Ashish Tripathi and the staff at the Central Instrument Facility (IITBHU) for operating SEM-EDS. S.M. and H.A. are grateful to the Ministry of Human Resource Development, India, for providing scholarships during their Masters. The funds from The National Centre for Research and Development, grant no. LIDER/14/0086/L-12/20/NCBR/2021, and from the “Research project Excellence initiative—research university” from the AGH University grant ID9053 are acknowledged.</div> <h2 class="border-bottom"> <a id="link-author-contributions" class="anchor-66"></a> Author Contributions </h2> <div class="link-author-contributions article-item-text">Conceptualization, S.M. and D.K.; Methodology, S.M.; Software, S.M., I.J. and H.A.; Validation, S.M.; Formal Analysis, S.M.; Investigation, S.M., H.A., A.P. and P.G.; Resources, D.K. and O.P.; Data Curation, S.M. and H.A.; Writing—Original Draft Preparation, S.M.; Writing—Review & Editing, S.M., I.J., A.P. and H.A.; Visualization, S.M., I.J. and H.A. Supervision, S.M., D.K. and O.P.; Project Administration, D.K. and O.P.</div> <h2 class="border-bottom"> <a id="link-ethics-statement" class="anchor-66"></a> Ethics Statement </h2> <div class="link-ethics-statement article-item-text">Not applicable as this study did not involve humans or animals.</div> <h2 class="border-bottom"> <a id="link-informed-consent-statement" class="anchor-66"></a> Informed Consent Statement </h2> <div class="link-informed-consent-statement article-item-text">Not applicable as this study did not involve humans.</div> <h2 class="border-bottom"> <a id="link-funding" class="anchor-66"></a> Funding </h2> <div class="link-funding article-item-text">This research received no external funding.</div> <h2 class="border-bottom"> <a id="link-declaration-competing-interest" class="anchor-66"></a> Declaration of Competing Interest </h2> <div class="link-declaration-competing-interest article-item-text">The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</div> <h2 class="border-bottom"> <a id="html-references_list" class="anchor-66"></a> References </h2> <div class="references_zt"> <div class="references_at"> <div class="references html-x" id='B1'> <div class="references_sup">1.</div> <div class="references_name"> Schneider<i> </i>H,<i> </i>Komarneni<i> </i>S.<i> </i>(Eds.)<i> Mullite</i>;<i> </i>Wiley-VCH<i> </i>Verlag<i> </i>GmbH: Weinheim, Germany,<i> </i>2005.<i> </i>doi:10.1002/3527607358. </div> </div> <div class="references html-x" id='B2'> <div class="references_sup">2.</div> <div class="references_name"> Schacht<i> </i>CA.<i> Refractories Handbook</i>;<i> </i>Marcel<i> </i>Dekker:<i> </i>New<i> </i>York,<i> </i>NY, USA,<i> </i>2004.<i> </i>doi:10.1201/9780203026328. </div> </div> <div class="references html-x" id='B3'> <div class="references_sup">3.</div> <div class="references_name"> Moya JS, Osendi MI. <i> </i>Microstructure<i> </i>and<i> </i>Mechanical<i> </i>Properties<i> </i>of<i> </i>mullite/ZrO<sub>2</sub><i> </i>composites.<i> </i><i> J. Mater. Sci. </i><b> 1984</b>,<i> 19,</i> 2909–2914. doi:10.1007/BF01026966.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Microstructure<i> </i>and<i> </i>Mechanical<i> </i>Properties<i> </i>of<i> </i>mullite/ZrO<sub>2</sub><i> </i>composites.<i>&nbsp;</i>&publication_year=1984&author=Moya JS&author=Osendi MI." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B4'> <div class="references_sup">4.</div> <div class="references_name"> Torrecillas R, Moya JS, De Aza S, Gros H, Fantozzi G. <i> </i>Microstructure<i> </i>and<i> </i>mechanical<i> </i>properties<i> </i>of<i> </i>mullite-zirconia<i> </i>reaction-sintered<i> </i>composites.<i> </i><i> Acta Metall. Mater.</i><b> 1993</b>,<i> 41,</i> 1647–1652. doi:10.1016/0956-7151(93)90184-T.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i> </i>Microstructure<i> </i>and<i> </i>mechanical<i> </i>properties<i> </i>of<i> </i>mullite-zirconia<i> </i>reaction-sintered<i> </i>composites.<i> </i>&publication_year=1993&author=Torrecillas R&author=Moya JS&author=De Aza S&author=Gros H&author=Fantozzi G." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B5'> <div class="references_sup">5.</div> <div class="references_name"> Yuan Q-M, Tan J-Q, Jin Z-G. <i> </i>Preparation<i> </i>and<i> </i>Properties<i> </i>of<i> </i>Zirconia-Toughened<i> </i>Mullite<i> </i>Ceramics.<i> </i><i> J. Am. Ceram. Soc.</i><b> 1986</b>,<i> 69,</i> 265–267. doi:10.1111/j.1151-2916.1986.tb07422.x.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Preparation<i> </i>and<i> </i>Properties<i> </i>of<i> </i>Zirconia-Toughened<i> </i>Mullite<i> </i>Ceramics.<i>&nbsp;</i>&publication_year=1986&author=Yuan Q-M&author=Tan J-Q&author=Jin Z-G." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B6'> <div class="references_sup">6.</div> <div class="references_name"> Prusty S, Mishra DK, Mohapatra BK, Mishra G, Singh SK. <i> </i>Preparation<i> </i>of<i> </i>fused<i> </i>zirconia/mullite<i> </i>aggregates<i> </i>from<i> </i>sillimanite,<i> </i>zircon,<i> </i>and<i> </i>alumina<i> </i>mixtures<i> </i>via<i> </i>plasma.<i> </i><i> J. Am. Ceram. Soc. </i><b> 2012</b>,<i> 95,</i> 530–537. doi:10.1111/j.1551-2916.2011.04898.x.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Preparation<i> </i>of<i> </i>fused<i> </i>zirconia/mullite<i> </i>aggregates<i> </i>from<i> </i>sillimanite,<i> </i>zircon,<i> </i>and<i> </i>alumina<i> </i>mixtures<i> </i>via<i> </i>plasma.<i>&nbsp;</i>&publication_year=2012&author=Prusty S&author=Mishra DK&author=Mohapatra BK&author=Mishra G&author=Singh SK." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B7'> <div class="references_sup">7.</div> <div class="references_name"> Takenami<i> </i>M,<i> </i>Akamine<i> </i>K.<i> </i>Zirconia-Mullite<i> </i>Refractory<i> </i>Raw<i> </i>Material<i> </i>and<i> </i>a<i> </i>Plate<i> </i>Brick,<i> </i>US<i> </i>8,138,109<i> </i>B2,<i> </i>2009.<i> </i>Available online:<i> </i>https://patents.google.com/patent/US8138109B2/en (accessed on 4 August 2024). </div> </div> <div class="references html-x" id='B8'> <div class="references_sup">8.</div> <div class="references_name"> Imerys,<i> </i>ALODUR<i> </i>FZM<i> </i>by<i> </i>Imerys<i> </i>Refractory<i> </i>Minerals.<i> </i>Available online: https://www.imerys.com/product-ranges/alodur-refractories (accessed on 3 August 2024). </div> </div> <div class="references html-x" id='B9'> <div class="references_sup">9.</div> <div class="references_name"> Zanelli C, Dondi M, Raimondo M, Guarini G. Phase<i> </i>composition<i> </i>of<i> </i>alumina-mullite-zirconia<i> </i>refractory<i> </i>materials.<i> J. Eur. Ceram. Soc.</i><b> 2010</b>,<i> 30,</i> 29–35. doi:10.1016/j.jeurceramsoc.2009.07.016.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Phase<i> </i>composition<i> </i>of<i> </i>alumina-mullite-zirconia<i> </i>refractory<i> </i>materials.&publication_year=2010&author=Zanelli C&author=Dondi M&author=Raimondo M&author=Guarini G. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B10'> <div class="references_sup">10.</div> <div class="references_name"> Aksel C. The<i> </i>microstructural<i> </i>features<i> </i>of<i> </i>an<i> </i>alumina-mullite-zirconia<i> </i>refractory<i> </i>material<i> </i>corroded<i> </i>by<i> </i>molten<i> </i>glass.<i> </i><i> Ceram. Int.</i><b> 2003</b>,<i> 29,</i> 305–309. doi:10.1016/S0272-8842(02)00137-2.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=The<i> </i>microstructural<i> </i>features<i> </i>of<i> </i>an<i> </i>alumina-mullite-zirconia<i> </i>refractory<i> </i>material<i> </i>corroded<i> </i>by<i> </i>molten<i> </i>glass.<i>&nbsp;</i>&publication_year=2003&author=Aksel C." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B11'> <div class="references_sup">11.</div> <div class="references_name"> DURAMUL<i> </i>ZR<i> </i>from<i> </i>Washington<i> </i>Mills.<i> </i>Available online: https://www.washingtonmills.com/products/fused-mullite/duramul-zr<i> </i>(accessed on<i> </i>4<i> </i>August<i> </i>2024). </div> </div> <div class="references html-x" id='B12'> <div class="references_sup">12.</div> <div class="references_name"> Bigeard A, Vespa P, Leplay P, Mesnager C, Citti O, Bouvard D, et al. <i> </i>Thermomechanical<i> </i>behavior<i> </i>of<i> </i>an<i> </i>alumina-mullite-zirconia<i> </i>refractory<i> </i>ceramic:<i> </i>Sintering<i> </i>and<i> </i>thermally<i> </i>induced<i> </i>damage.<i> </i><i> J. Eur. Ceram. Soc. </i><b> 2024</b>,<i> 44,</i> 1256–1266. doi:10.1016/j.jeurceramsoc.2023.09.051.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Thermomechanical<i> </i>behavior<i> </i>of<i> </i>an<i> </i>alumina-mullite-zirconia<i> </i>refractory<i> </i>ceramic:<i> </i>Sintering<i> </i>and<i> </i>thermally<i> </i>induced<i> </i>damage.<i>&nbsp;</i>&publication_year=2024&author=Bigeard A&author=Vespa P&author=Leplay P&author=Mesnager C&author=Citti O&author=Bouvard D&author=et al." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B13'> <div class="references_sup">13.</div> <div class="references_name"> Manfredo LJ, McNally RN. The<i> </i>corrosion<i> </i>resistance<i> </i>of<i> </i>high<i> </i>ZrO<sub>2</sub><i> </i>fusion-cast<i> </i>Al<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub>-SiO<sub>2</sub><i> </i>glass<i> </i>refractories<i> </i>in<i> </i>soda<i> </i>lime<i> </i>glass.<i> </i><i> J. Mater. Sci. </i><b> 1984</b>,<i> 19,</i> 1272–1276. doi:10.1007/BF01120038.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=The<i> </i>corrosion<i> </i>resistance<i> </i>of<i> </i>high<i> </i>ZrO<sub>2</sub><i> </i>fusion-cast<i> </i>Al<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub>-SiO<sub>2</sub><i> </i>glass<i> </i>refractories<i> </i>in<i> </i>soda<i> </i>lime<i> </i>glass.<i>&nbsp;</i>&publication_year=1984&author=Manfredo LJ&author=McNally RN. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B14'> <div class="references_sup">14.</div> <div class="references_name"> Asokan T. <i> </i>Microstructural<i> </i>features<i> </i>of<i> </i>fusion<i> </i>cast<i> </i>Al<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub>-SiO<sub>2</sub><i> </i>refractories.<i> </i><i> J. Mater. Sci. Lett.</i><b> 1994</b>,<i> 13,</i> 343–345. doi:10.1007/BF00420793.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Microstructural<i> </i>features<i> </i>of<i> </i>fusion<i> </i>cast<i> </i>Al<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub>-SiO<sub>2</sub><i> </i>refractories.<i>&nbsp;</i>&publication_year=1994&author=Asokan T." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B15'> <div class="references_sup">15.</div> <div class="references_name"> Rendtorff N, Garrido L, Aglietti E. <i> </i>Mullite-zirconia-zircon<i> </i>composites:<i> </i>Properties<i> </i>and<i> </i>thermal<i> </i>shock<i> </i>resistance.<i> </i><i> Ceram. Int.</i><b> 2009</b>,<i> 35,</i> 779–786. doi:10.1016/j.ceramint.2008.02.015.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Mullite-zirconia-zircon<i> </i>composites:<i> </i>Properties<i> </i>and<i> </i>thermal<i> </i>shock<i> </i>resistance.<i>&nbsp;</i>&publication_year=2009&author=Rendtorff N&author=Garrido L&author=Aglietti E." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B16'> <div class="references_sup">16.</div> <div class="references_name"> DURAZON<i> </i>CSG<i> </i>from<i> </i>Washington<i> </i>Mills.<i> </i>Available online: https://www.washingtonmills.com/products/zirconia/durazon-csg<i> </i>(accessed on<i> </i>4 August<i> </i>2024). </div> </div> <div class="references html-x" id='B17'> <div class="references_sup">17.</div> <div class="references_name"> Calcia<i> </i>Stabilized<i> </i>Zirconia<i> </i>from<i> </i>Foskor<i> </i>Zirconia.<i> </i>Available online: https://www.foskor-zirconia.com/CalciaStabilizedZirconia.html (accessed on<i> </i>4<i> </i>August<i> </i>2024). </div> </div> <div class="references html-x" id='B18'> <div class="references_sup">18.</div> <div class="references_name"> Morris<i> </i>M,<i> </i>Wagner<i> </i>RJ.<i> </i>Alumina-Zirconia<i> </i>Refractory<i> </i>Material<i> </i>and<i> </i>Articles<i> </i>Made<i> </i>Therefrom,<i> </i>EP0755366A1,<i> </i>1995.<i> </i>Available online:<i> </i>https://patents.google.com/patent/EP0755366A1/en (accessed on 4 August 2024). </div> </div> <div class="references html-x" id='B19'> <div class="references_sup">19.</div> <div class="references_name"> Yugeswaran S, Selvarajan V, Dhanasekaran P, Lusvarghi L. Transferred<i> </i>arc<i> </i>plasma<i> </i>processing<i> </i>of<i> </i>mullite-zirconia<i> </i>composite<i> </i>from<i> </i>natural<i> </i>bauxite<i> </i>and<i> </i>zircon<i> </i>sand.<i> </i><i> Vacuum</i><b> 2009</b>,<i> 83,</i> 353–359. doi:10.1016/j.vacuum.2008.05.033.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Transferred<i> </i>arc<i> </i>plasma<i> </i>processing<i> </i>of<i> </i>mullite-zirconia<i> </i>composite<i> </i>from<i> </i>natural<i> </i>bauxite<i> </i>and<i> </i>zircon<i> </i>sand.<i>&nbsp;</i>&publication_year=2009&author=Yugeswaran S&author=Selvarajan V&author=Dhanasekaran P&author=Lusvarghi L. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B20'> <div class="references_sup">20.</div> <div class="references_name"> Bhattacharjee S, Singh SK, Galgali RK. <i> </i>Preparation<i> </i>of<i> </i>zirconia<i> </i>toughened<i> </i>mullite<i> </i>by<i> </i>thermal<i> </i>plasma.<i> </i><i> Mater. Lett. </i><b> 2000</b>,<i> 43,</i> 77–80. doi:10.1016/S0167-577X(99)00234-7.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Preparation<i> </i>of<i> </i>zirconia<i> </i>toughened<i> </i>mullite<i> </i>by<i> </i>thermal<i> </i>plasma.<i>&nbsp;</i>&publication_year=2000&author=Bhattacharjee S&author=Singh SK&author=Galgali RK." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B21'> <div class="references_sup">21.</div> <div class="references_name"> Yoshimura M, Kaneko M, Somiya S. Rapid<i> </i>quenching<i> </i>of<i> </i>melts<i> </i>in<i> </i>the<i> </i>system<i> </i>ZrO<sub>2</sub>-SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>.<i> </i><i> J. Phys. Colloq. </i><b> 1986</b>,<i> 47,</i> 473–477. doi:10.1051/jphyscol:1986171.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Rapid<i> </i>quenching<i> </i>of<i> </i>melts<i> </i>in<i> </i>the<i> </i>system<i> </i>ZrO<sub>2</sub>-SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>.<i>&nbsp;</i>&publication_year=1986&author=Yoshimura M&author=Kaneko M&author=Somiya S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B22'> <div class="references_sup">22.</div> <div class="references_name"> Khor KA, Yu LG, Li Y, Dong ZL, Munir ZA. Spark<i> </i>plasma<i> </i>reaction<i> </i>sintering<i> </i>of<i> </i>ZrO<sub>2</sub>-<i> </i>mullite<i> </i>composites<i> </i>from<i> </i>plasma<i> </i>spheroidized<i> </i>zircon/alumina<i> </i>powders.<i> </i><i> Mater. Sci. Eng. A </i><b> 2003</b>,<i> 339,</i> 286–296. doi:10.1016/S0921-5093(02)00151-X.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Spark<i> </i>plasma<i> </i>reaction<i> </i>sintering<i> </i>of<i> </i>ZrO<sub>2</sub>-<i> </i>mullite<i> </i>composites<i> </i>from<i> </i>plasma<i> </i>spheroidized<i> </i>zircon/alumina<i> </i>powders.<i>&nbsp;</i>&publication_year=2003&author=Khor KA&author=Yu LG&author=Li Y&author=Dong ZL&author=Munir ZA. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B23'> <div class="references_sup">23.</div> <div class="references_name"> Bodhak S, Bose S, Bandyopadhyay A. Densification<i> </i>study<i> </i>and<i> </i>mechanical<i> </i>properties<i> </i>of<i> </i>microwave-sintered<i> </i>mullite<i> </i>and<i> </i>mullite-zirconia<i> </i>composites.<i> </i><i> J. Am. Ceram. Soc.</i><b> 2011</b>,<i> 94,</i> 32–41. doi:10.1111/j.1551-2916.2010.04062.x.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Densification<i> </i>study<i> </i>and<i> </i>mechanical<i> </i>properties<i> </i>of<i> </i>microwave-sintered<i> </i>mullite<i> </i>and<i> </i>mullite-zirconia<i> </i>composites.<i>&nbsp;</i>&publication_year=2011&author=Bodhak S&author=Bose S&author=Bandyopadhyay A." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B24'> <div class="references_sup">24.</div> <div class="references_name"> Ko H-D, Lin C-C. Oxygen<i> </i>diffusivities<i> </i>in<i> </i>mullite/zirconia<i> </i>composites<i> </i>measured<i> </i>by<i> </i>18O/16O<i> </i>isotope<i> </i>exchange<i> </i>and<i> </i>secondary<i> </i>ion<i> </i>mass<i> </i>spectrometry.<i> </i><i> J. Mater. Res. </i><b> 2008</b>,<i> 23,</i> 353–358. doi:10.1557/jmr.2008.0073.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Oxygen<i> </i>diffusivities<i> </i>in<i> </i>mullite/zirconia<i> </i>composites<i> </i>measured<i> </i>by<i> </i>18O/16O<i> </i>isotope<i> </i>exchange<i> </i>and<i> </i>secondary<i> </i>ion<i> </i>mass<i> </i>spectrometry.<i>&nbsp;</i>&publication_year=2008&author=Ko H-D&author=Lin C-C. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B25'> <div class="references_sup">25.</div> <div class="references_name"> Yuan Q, Tan J, Shen J, Zhu X, Yang Z. Processing<i> </i>and<i> </i>Microstructure<i> </i>of<i> </i>Mullite-Zirconia<i> </i>Composites<i> </i>Prepared<i> </i>from<i> </i>Sol-Gel<i> </i>Powders.<i> </i><i> J. Am. Ceram. Soc. </i><b> 1986</b>,<i> 69,</i> 268–269. doi:10.1111/j.1151-2916.1986.tb07423.x.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Processing<i> </i>and<i> </i>Microstructure<i> </i>of<i> </i>Mullite-Zirconia<i> </i>Composites<i> </i>Prepared<i> </i>from<i> </i>Sol-Gel<i> </i>Powders.<i>&nbsp;</i>&publication_year=1986&author=Yuan Q&author=Tan J&author=Shen J&author=Zhu X&author=Yang Z." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B26'> <div class="references_sup">26.</div> <div class="references_name"> Orange G, Fantozzi G, Cambier F, Leblud C, Anseau MR, Leriche A. High<i> </i>temperature<i> </i>mechanical<i> </i>properties<i> </i>of<i> </i>reaction-sintered<i> </i>mullite/zirconia<i> </i>and<i> </i>mullite/alumina/zirconia<i> </i>composites.<i> J. Mater. Sci. </i><b> 1985</b>,<i> 20,</i> 2533–2540. doi:10.1007/BF00556085.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=High<i> </i>temperature<i> </i>mechanical<i> </i>properties<i> </i>of<i> </i>reaction-sintered<i> </i>mullite/zirconia<i> </i>and<i> </i>mullite/alumina/zirconia<i> </i>composites.&publication_year=1985&author=Orange G&author=Fantozzi G&author=Cambier F&author=Leblud C&author=Anseau MR&author=Leriche A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B27'> <div class="references_sup">27.</div> <div class="references_name"> Mandal S, Mondal S, Das K. <i> </i>Microstructure<i> </i>and<i> </i>phase<i> </i>evolution<i> </i>of<i> </i>Indian<i> </i>magnesite-derived<i> </i>MgAl<sub>2</sub>O<sub>4</sub><i> </i>as<i> </i>a<i> </i>function<i> </i>of<i> </i>stoichiometry<i> </i>and<i> </i>ZrO<sub>2</sub><i> </i>doping.<i> </i><i> Int. J. Appl. Ceram. Technol. </i><b> 2018</b>,<i> 15,</i> 161–170. doi:10.1111/ijac.12759.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Microstructure<i> </i>and<i> </i>phase<i> </i>evolution<i> </i>of<i> </i>Indian<i> </i>magnesite-derived<i> </i>MgAl<sub>2</sub>O<sub>4</sub><i> </i>as<i> </i>a<i> </i>function<i> </i>of<i> </i>stoichiometry<i> </i>and<i> </i>ZrO<sub>2</sub><i> </i>doping.<i>&nbsp;</i>&publication_year=2018&author=Mandal S&author=Mondal S&author=Das K." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B28'> <div class="references_sup">28.</div> <div class="references_name"> Mandal S, Mahapatra MK. <i> </i>Use<i> </i>of<i> </i>dilatometer<i> </i>to<i> </i>screen<i> </i>refractory<i> </i>raw<i> </i>materials.<i> </i><i> Int. J. Ceram. Eng. Sci.</i><b> 2022</b>,<i> 4,</i> 47–52. doi:10.1002/ces2.10113.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Use<i> </i>of<i> </i>dilatometer<i> </i>to<i> </i>screen<i> </i>refractory<i> </i>raw<i> </i>materials.<i>&nbsp;</i>&publication_year=2022&author=Mandal S&author=Mahapatra MK." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B29'> <div class="references_sup">29.</div> <div class="references_name"> Mandal S, Hemrick JG, Mahapatra MK. Impact<i> </i>on<i> </i>aggregate<i> </i>/<i> </i>matrix<i> </i>bonding<i> </i>when<i> </i>a<i> </i>refractory<i> </i>contains<i> </i>zinc<i> </i>aluminate<i> </i>instead<i> </i>of<i> </i>spinel<i> </i>and<i> </i>magnesia-chrome.<i> </i><i> J. Am. Ceram. Soc.</i><b> 2023</b>,<i> 106,</i> 5662–5678. doi:10.1111/jace.19214.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Impact<i> </i>on<i> </i>aggregate<i> </i>/<i> </i>matrix<i> </i>bonding<i> </i>when<i> </i>a<i> </i>refractory<i> </i>contains<i> </i>zinc<i> </i>aluminate<i> </i>instead<i> </i>of<i> </i>spinel<i> </i>and<i> </i>magnesia-chrome.<i>&nbsp;</i>&publication_year=2023&author=Mandal S&author=Hemrick JG&author=Mahapatra MK. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B30'> <div class="references_sup">30.</div> <div class="references_name"> Mandal S, Hemrick JG, Mahapatra MK. Zinc<i> </i>aluminate<i> </i>(ZnAl<sub>2</sub>O<sub>4</sub>)<i> </i>refractory<i> </i>aggregates:<i> </i>Dilatometric<i> </i>sintering<i> </i>studies<i> </i>and<i> </i>thermal<i> </i>expansion<i> </i>coefficient.<i> J. Eur. Ceram. Soc. </i><b> 2022</b>,<i> 42,</i> 6244–6254. doi:10.1016/j.jeurceramsoc.2022.06.058.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Zinc<i> </i>aluminate<i> </i>(ZnAl<sub>2</sub>O<sub>4</sub>)<i> </i>refractory<i> </i>aggregates:<i> </i>Dilatometric<i> </i>sintering<i> </i>studies<i> </i>and<i> </i>thermal<i> </i>expansion<i> </i>coefficient.&publication_year=2022&author=Mandal S&author=Hemrick JG&author=Mahapatra MK. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B31'> <div class="references_sup">31.</div> <div class="references_name"> Koyama T, Hayashi S, Yasumori A, Okada K. Preparation<i> </i>and<i> </i>characterization<i> </i>of<i> </i>mullite-zirconia<i> </i>composites<i> </i>from<i> </i>various<i> </i>starting<i> </i>materials.<i> </i><i> J. Eur. Ceram. Soc.</i><b> 1994</b>,<i> 14,</i> 295–302. doi:10.1016/0955-2219(94)90066-3.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Preparation<i> </i>and<i> </i>characterization<i> </i>of<i> </i>mullite-zirconia<i> </i>composites<i> </i>from<i> </i>various<i> </i>starting<i> </i>materials.<i>&nbsp;</i>&publication_year=1994&author=Koyama T&author=Hayashi S&author=Yasumori A&author=Okada K. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B32'> <div class="references_sup">32.</div> <div class="references_name"> Ebadzadeh T, Ghasemi E. <i> </i>Influence<i> </i>of<i> </i>starting<i> </i>materials<i> </i>on<i> </i>the<i> </i>reaction<i> </i>sintering<i> </i>of<i> </i>mullite-ZrO<sub>2</sub><i><sub> </sub></i>composites.<i> </i><i> Mater. Sci. Eng. A</i><b> 2000</b>,<i> 283,</i> 289–297. doi:10.1016/S0921-5093(99)00631-0.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Influence<i> </i>of<i> </i>starting<i> </i>materials<i> </i>on<i> </i>the<i> </i>reaction<i> </i>sintering<i> </i>of<i> </i>mullite-ZrO<sub>2</sub><i><sub> </sub></i>composites.<i>&nbsp;</i>&publication_year=2000&author=Ebadzadeh T&author=Ghasemi E." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B33'> <div class="references_sup">33.</div> <div class="references_name"> Ebadzadeh T, Ghasemi E. Effect<i> </i>of<i> </i>TiO<sub>2</sub><i> </i>addition<i> </i>on<i> </i>the<i> </i>stability<i> </i>of<i> </i>t-ZrO<sub>2</sub><i> </i>in<i> </i>mullite-ZrO<sub>2</sub><i> </i>composites<i> </i>prepared<i> </i>from<i> </i>various<i> </i>starting<i> </i>materials.<i> </i><i> Ceram. Int.</i><b> 2002</b>,<i> 28,</i> 447–450. doi:10.1016/S0272-8842(01)00117-1.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Effect<i> </i>of<i> </i>TiO<sub>2</sub><i> </i>addition<i> </i>on<i> </i>the<i> </i>stability<i> </i>of<i> </i>t-ZrO<sub>2</sub><i> </i>in<i> </i>mullite-ZrO<sub>2</sub><i> </i>composites<i> </i>prepared<i> </i>from<i> </i>various<i> </i>starting<i> </i>materials.<i>&nbsp;</i>&publication_year=2002&author=Ebadzadeh T&author=Ghasemi E. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B34'> <div class="references_sup">34.</div> <div class="references_name"> Chandra D, Das GC, Sengupta U, Maitra S. Studies<i> </i>on<i> </i>the<i> </i>reaction<i> </i>sintered<i> </i>zirconia-mullite-alumina<i> </i>composites<i> </i>with<i> </i>titania<i> </i>as<i> </i>additive.<i> </i><i> Ceramica </i><b> 2013</b>,<i> 59,</i> 487–494. doi:10.1590/S0366-69132013000300021.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Studies<i> </i>on<i> </i>the<i> </i>reaction<i> </i>sintered<i> </i>zirconia-mullite-alumina<i> </i>composites<i> </i>with<i> </i>titania<i> </i>as<i> </i>additive.<i>&nbsp;</i>&publication_year=2013&author=Chandra D&author=Das GC&author=Sengupta U&author=Maitra S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B35'> <div class="references_sup">35.</div> <div class="references_name"> Haldar MK, Pal TK, Banerjee G. Preparation<i> </i>and<i> </i>properties<i> </i>of<i> </i>Y<sub>2</sub>O<sub>3</sub><i> </i>containing<i> </i>zirconia-mullite<i> </i>composites<i> </i>derived<i> </i>from<i> </i>sillimanite<i> </i>beach<i> </i>sand.<i> </i><i> Ceram. Int. </i><b> 2002</b>,<i> 28,</i> 311–318. doi:10.1016/S0272-8842(01)00096-7.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Preparation<i> </i>and<i> </i>properties<i> </i>of<i> </i>Y<sub>2</sub>O<sub>3</sub><i> </i>containing<i> </i>zirconia-mullite<i> </i>composites<i> </i>derived<i> </i>from<i> </i>sillimanite<i> </i>beach<i> </i>sand.<i>&nbsp;</i>&publication_year=2002&author=Haldar MK&author=Pal TK&author=Banerjee G. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B36'> <div class="references_sup">36.</div> <div class="references_name"> Das K, Mukherjee B, Banerjee G. <i> </i>Effect<i> </i>of<i> </i>yttria<i> </i>on<i> </i>mechanical<i> </i>and<i> </i>microstructural<i> </i>properties<i> </i>of<i> </i>reaction<i> </i>sintered<i> </i>mullite-zirconia<i> </i>composites.<i> J. Eur. Ceram. Soc. </i><b> 1998</b>,<i> 18,</i> 1771–1777. doi:10.1016/s0955-2219(98)00095-8.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Effect<i> </i>of<i> </i>yttria<i> </i>on<i> </i>mechanical<i> </i>and<i> </i>microstructural<i> </i>properties<i> </i>of<i> </i>reaction<i> </i>sintered<i> </i>mullite-zirconia<i> </i>composites.&publication_year=1998&author=Das K&author=Mukherjee B&author=Banerjee G." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B37'> <div class="references_sup">37.</div> <div class="references_name"> Wei WCJ, Kao HC, Lo MH. <i> </i>Phase<i> </i>Transformation<i> </i>and<i> </i>Grain<i> </i>Coarsening<i> </i>of<i> </i>Zirconia/Mullite<i> </i>Composites.<i> J. Eur. Ceram. Soc.</i><b> 1996</b>,<i> 16,</i> 239–247. doi:10.1016/0955-2219(95)00157-3.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Phase<i> </i>Transformation<i> </i>and<i> </i>Grain<i> </i>Coarsening<i> </i>of<i> </i>Zirconia/Mullite<i> </i>Composites.&publication_year=1996&author=Wei WCJ&author=Kao HC&author=Lo MH." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B38'> <div class="references_sup">38.</div> <div class="references_name"> Wu JM, Lin CM. Effect<i> </i>of<i> </i>CeO<sub>2</sub><i> </i>on<i> </i>reaction-sintered<i> </i>mullite-ZrO<sub>2</sub><i> </i>ceramics.<i> </i><i> J. Mater. Sci. </i><b> 1991</b>,<i> 26,</i> 4631–4636. doi:10.1007/BF00612398.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Effect<i> </i>of<i> </i>CeO<sub>2</sub><i> </i>on<i> </i>reaction-sintered<i> </i>mullite-ZrO<sub>2</sub><i> </i>ceramics.<i>&nbsp;</i>&publication_year=1991&author=Wu JM&author=Lin CM. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B39'> <div class="references_sup">39.</div> <div class="references_name"> Das K, Banerjee G. Mechanical<i> </i>properties<i> </i>and<i> </i>microstructures<i> </i>of<i> </i>reaction<i> </i>sintered<i> </i>mullite-zirconia<i> </i>composites<i> </i>in<i> </i>the<i> </i>presence<i> </i>of<i> </i>an<i> </i>additive<b><i>—</i></b>Dysprosia.<i> </i><i> J. Eur. Ceram. Soc. </i><b> 2000</b>,<i> 20,</i> 153–157. doi:10.1016/S0955-2219(99)00147-8.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Mechanical<i> </i>properties<i> </i>and<i> </i>microstructures<i> </i>of<i> </i>reaction<i> </i>sintered<i> </i>mullite-zirconia<i> </i>composites<i> </i>in<i> </i>the<i> </i>presence<i> </i>of<i> </i>an<i> </i>additive<b><i>—</i></b>Dysprosia.<i>&nbsp;</i>&publication_year=2000&author=Das K&author=Banerjee G. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B40'> <div class="references_sup">40.</div> <div class="references_name"> Haldar MK. Effect<i> </i>of<i> </i>magnesia<i> </i>additions<i> </i>on<i> </i>the<i> </i>properties<i> </i>of<i> </i>zirconia-mullite<i> </i>composites<i> </i>derived<i> </i>from<i> </i>sillimanite<i> </i>beach<i> </i>sand.<i> </i><i> Ceram. Int.</i><b> 2003</b>,<i> 29,</i> 573–581. doi:10.1016/S0272-8842(02)00204-3.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Effect<i> </i>of<i> </i>magnesia<i> </i>additions<i> </i>on<i> </i>the<i> </i>properties<i> </i>of<i> </i>zirconia-mullite<i> </i>composites<i> </i>derived<i> </i>from<i> </i>sillimanite<i> </i>beach<i> </i>sand.<i>&nbsp;</i>&publication_year=2003&author=Haldar MK. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B41'> <div class="references_sup">41.</div> <div class="references_name"> Chandra D, Das G, Maitra S. <i> </i>Comparison<i> </i>of<i> </i>the<i> </i>Role<i> </i>of<i> </i>MgO<i> </i>and<i> </i>CaO<i> </i>Additives<i> </i>on<i> </i>the<i> </i>Microstructures<i> </i>of<i> </i>Reaction-Sintered<i> </i>Zirconia-Mullite<i> </i>Composite.<i> </i><i> Int. J. Appl. Ceram. Technol.</i><b> 2015</b>,<i> 12,</i> 771–782. doi:10.1111/ijac.12263.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Comparison<i> </i>of<i> </i>the<i> </i>Role<i> </i>of<i> </i>MgO<i> </i>and<i> </i>CaO<i> </i>Additives<i> </i>on<i> </i>the<i> </i>Microstructures<i> </i>of<i> </i>Reaction-Sintered<i> </i>Zirconia-Mullite<i> </i>Composite.<i>&nbsp;</i>&publication_year=2015&author=Chandra D&author=Das G&author=Maitra S." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B42'> <div class="references_sup">42.</div> <div class="references_name"> Pena P, Miranzo P, Moya JS, De Aza S. <i> </i>Multicomponent<i> </i>toughened<i> </i>ceramic<i> </i>materials<i> </i>obtained<i> </i>by<i> </i>reaction<i> </i>sintering<b><i>—</i></b>Part<i> </i>1<i> </i>ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-CaO<i> </i>system.<i> </i><i> J. Mater. Sci.</i><b> 1985</b>,<i> 20,</i> 2011–2022. doi:10.1007/BF01112284.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Multicomponent<i> </i>toughened<i> </i>ceramic<i> </i>materials<i> </i>obtained<i> </i>by<i> </i>reaction<i> </i>sintering<b><i>—</i></b>Part<i> </i>1<i> </i>ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-CaO<i> </i>system.<i>&nbsp;</i>&publication_year=1985&author=Pena P&author=Miranzo P&author=Moya JS&author=De Aza S." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B43'> <div class="references_sup">43.</div> <div class="references_name"> Miranzo P, Pena P, De Aza S, Moya JS, Rincon JM, Thomas G. TEM<i> </i>study<i> </i>of<i> </i>reaction-sintered<i> </i>zirconia-mullite<i> </i>composites<i> </i>with<i> </i>CaO<i> </i>and<i> </i>MgO<i> </i>additions.<i> </i><i> J. Mater. Sci.</i><b> 1987</b>,<i> 22,</i> 2987–2992. doi:10.1007/BF01086502.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=TEM<i> </i>study<i> </i>of<i> </i>reaction-sintered<i> </i>zirconia-mullite<i> </i>composites<i> </i>with<i> </i>CaO<i> </i>and<i> </i>MgO<i> </i>additions.<i>&nbsp;</i>&publication_year=1987&author=Miranzo P&author=Pena P&author=De Aza S&author=Moya JS&author=Rincon JM&author=Thomas G. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B44'> <div class="references_sup">44.</div> <div class="references_name"> Zhang A, Kang L, Zhang Y, Ding D, Zhang Y. Thermal<i> </i>behaviors<i> </i>and<i> </i>kinetic<i> </i>analysis<i> </i>of<i> </i>two<i> </i>natural<i> </i>kaolinite<i> </i>samples<i> </i>selected<i> </i>from<i> </i>Qingshuihe<i> </i>region<i> </i>in<i> </i>Inner<i> </i>Mongolia<i> </i>in<i> </i>China.<i> </i><i> J. Therm. Anal. Calorim. </i><b> 2021</b>,<i> 145,</i> 3281–3291. doi:10.1007/s10973-020-09869-4.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Thermal<i> </i>behaviors<i> </i>and<i> </i>kinetic<i> </i>analysis<i> </i>of<i> </i>two<i> </i>natural<i> </i>kaolinite<i> </i>samples<i> </i>selected<i> </i>from<i> </i>Qingshuihe<i> </i>region<i> </i>in<i> </i>Inner<i> </i>Mongolia<i> </i>in<i> </i>China.<i>&nbsp;</i>&publication_year=2021&author=Zhang A&author=Kang L&author=Zhang Y&author=Ding D&author=Zhang Y. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B45'> <div class="references_sup">45.</div> <div class="references_name"> Keller WD. The<i> </i>Sedimentology<i> </i>of<i> </i>Flint<i> </i>Clay.<i> </i><i> J. Sediment. Res.</i><b> 1981</b>,<i> 51,</i> 233–244. doi:10.1306/212F7C57-2B24-11D7-8648000102C1865D.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=The<i> </i>Sedimentology<i> </i>of<i> </i>Flint<i> </i>Clay.<i>&nbsp;</i>&publication_year=1981&author=Keller WD." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B46'> <div class="references_sup">46.</div> <div class="references_name"> Sahnoune F, Belhouchet H, Saheb N, Heraiz M, Chegaar M, Goeuriot P. <i> </i>Phase<i> </i>transformation<i> </i>and<i> </i>sintering<i> </i>behaviour<i> </i>of<i> </i>mullite<i> </i>and<i> </i>mullite-zirconia<i> </i>composite<i> </i>materials.<i> </i><i> Adv. Appl. Ceram. </i><b> 2011</b>,<i> 110,</i> 175–180. doi:10.1179/1743676111Y.0000000004.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Phase<i> </i>transformation<i> </i>and<i> </i>sintering<i> </i>behaviour<i> </i>of<i> </i>mullite<i> </i>and<i> </i>mullite-zirconia<i> </i>composite<i> </i>materials.<i>&nbsp;</i>&publication_year=2011&author=Sahnoune F&author=Belhouchet H&author=Saheb N&author=Heraiz M&author=Chegaar M&author=Goeuriot P." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B47'> <div class="references_sup">47.</div> <div class="references_name"> Jastrzębska I, Piwowarczyk A, Błachowski A, Mandal S. Influence<i> </i>of<i> </i>PbO/CuO<i> </i>ratio<i> </i>on<i> </i>phase<i> </i>composition,<i> </i>microstructure,<i> </i>melt<i> </i>wettability<i> </i>and<i> </i>recyclability<i> </i>of<i> </i>copper<i> </i>slag.<i> </i><i> Ceram. Int.</i><b> 2024</b>,<i> 50,</i> 23315–23330. doi:10.1016/j.ceramint.2024.04.055.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Influence<i> </i>of<i> </i>PbO/CuO<i> </i>ratio<i> </i>on<i> </i>phase<i> </i>composition,<i> </i>microstructure,<i> </i>melt<i> </i>wettability<i> </i>and<i> </i>recyclability<i> </i>of<i> </i>copper<i> </i>slag.<i>&nbsp;</i>&publication_year=2024&author=Jastrzębska I&author=Piwowarczyk A&author=Błachowski A&author=Mandal S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B48'> <div class="references_sup">48.</div> <div class="references_name"> Mandal S, Kumar CJD, Kumar D, Syed K, Van Ende MA, Jung IH, et al. Designing<i> </i>environment-friendly<i> </i>chromium-free<i> </i>Spinel-Periclase-Zirconia<i> </i>refractories<i> </i>for<i> </i>Ruhrstahl<i> </i>Heraeus<i> </i>degasser.<i> J. Am. Ceram. Soc.</i><b> 2020</b>,<i> 103,</i> 7095–7114. doi:10.1111/jace.17402.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Designing<i> </i>environment-friendly<i> </i>chromium-free<i> </i>Spinel-Periclase-Zirconia<i> </i>refractories<i> </i>for<i> </i>Ruhrstahl<i> </i>Heraeus<i> </i>degasser.&publication_year=2020&author=Mandal S&author=Kumar CJD&author=Kumar D&author=Syed K&author=Van Ende MA&author=Jung IH&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B49'> <div class="references_sup">49.</div> <div class="references_name"> ASTM<i> </i>International.<i> C20-00 Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water</i>;<i> </i>ASTM:<i> </i>West<i> </i>Conshohocken,<i> </i>PA, USA,<i> </i>2015.<i> </i>doi:10.1520/C0020-00R15. </div> </div> <div class="references html-x" id='B50'> <div class="references_sup">50.</div> <div class="references_name"> Claussen N, Jahn J. Mechanical<i> </i>properties<i> </i>of<i> </i>sintered,<i> </i>in<i> </i>situ-reacted<i> </i>mullite-zirconia<i> </i>composites.<i> </i><i> J. Am. Ceram. Soc.</i><b> 1980</b>,<i> 63,</i> 228–229. doi:10.1111/j.1151-2916.1980.tb10700.x.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Mechanical<i> </i>properties<i> </i>of<i> </i>sintered,<i> </i>in<i> </i>situ-reacted<i> </i>mullite-zirconia<i> </i>composites.<i>&nbsp;</i>&publication_year=1980&author=Claussen N&author=Jahn J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B51'> <div class="references_sup">51.</div> <div class="references_name"> Mecif A, Soro J, Harabi A, Bonnet JP. Preparation<i> </i>of<i> </i>mullite-<i> </i>and<i> </i>zircon-based<i> </i>ceramics<i> </i>using<i> </i>kaolinite<i> </i>and<i> </i>zirconium<i> </i>oxide:<i> </i>A<i> </i>sintering<i> </i>study.<i> </i><i> J. Am. Ceram. Soc.</i><b> 2010</b>,<i> 93,</i> 1306–1312. doi:10.1111/j.1551-2916.2009.03595.x.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Preparation<i> </i>of<i> </i>mullite-<i> </i>and<i> </i>zircon-based<i> </i>ceramics<i> </i>using<i> </i>kaolinite<i> </i>and<i> </i>zirconium<i> </i>oxide:<i> </i>A<i> </i>sintering<i> </i>study.<i>&nbsp;</i>&publication_year=2010&author=Mecif A&author=Soro J&author=Harabi A&author=Bonnet JP. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B52'> <div class="references_sup">52.</div> <div class="references_name"> Kong Y, Yang Z, Zhang G, Yuan Q. Sliding<i> </i>friction<i> </i>and<i> </i>wear<i> </i>of<i> </i>alumina-reinforced<i> </i>zirconia-toughened<i> </i>mullite<i> </i>composites.<i> </i><i> Wear</i><b> 2002</b>,<i> 252,</i> 607–613. doi:10.1016/S0043-1648(02)00018-2.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Sliding<i> </i>friction<i> </i>and<i> </i>wear<i> </i>of<i> </i>alumina-reinforced<i> </i>zirconia-toughened<i> </i>mullite<i> </i>composites.<i>&nbsp;</i>&publication_year=2002&author=Kong Y&author=Yang Z&author=Zhang G&author=Yuan Q. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B53'> <div class="references_sup">53.</div> <div class="references_name"> Lee WE, Jayaseelan DD, Zhang S. Solid-liquid<i> </i>interactions:<i> </i>The<i> </i>key<i> </i>to<i> </i>microstructural<i> </i>evolution<i> </i>in<i> </i>ceramics.<i> </i><i> J. Eur. Ceram. Soc. </i><b> 2008</b>,<i> 28,</i> 1517–1525. doi:10.1016/j.jeurceramsoc.2007.12.010.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Solid-liquid<i> </i>interactions:<i> </i>The<i> </i>key<i> </i>to<i> </i>microstructural<i> </i>evolution<i> </i>in<i> </i>ceramics.<i>&nbsp;</i>&publication_year=2008&author=Lee WE&author=Jayaseelan DD&author=Zhang S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B54'> <div class="references_sup">54.</div> <div class="references_name"> Lee WE, Souza GP, McConville CJ, Tarvornpanich T, Iqbal Y. <i> </i>Mullite<i> </i>formation<i> </i>in<i> </i>clays<i> </i>and<i> </i>clay-derived<i> </i>vitreous<i> </i>ceramics.<i> </i><i> J. Eur. Ceram. Soc.</i><b> 2008</b>,<i> 28,</i> 465–471. doi:10.1016/j.jeurceramsoc.2007.03.009.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Mullite<i> </i>formation<i> </i>in<i> </i>clays<i> </i>and<i> </i>clay-derived<i> </i>vitreous<i> </i>ceramics.<i>&nbsp;</i>&publication_year=2008&author=Lee WE&author=Souza GP&author=McConville CJ&author=Tarvornpanich T&author=Iqbal Y." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B55'> <div class="references_sup">55.</div> <div class="references_name"> Sainz MA, Serrano FJ, Amigo JM, Bastida J, Caballero A. XRD<i> </i>microstructural<i> </i>analysis<i> </i>of<i> </i>mullites<i> </i>obtained<i> </i>from<i> </i>kaolinite-alumina<i> </i>mixtures.<i> </i><i> J. Eur. Ceram. Soc.</i><b> 2000</b>,<i> 20,</i> 403–412. doi:10.1016/s0955-2219(99)00183-1.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=XRD<i> </i>microstructural<i> </i>analysis<i> </i>of<i> </i>mullites<i> </i>obtained<i> </i>from<i> </i>kaolinite-alumina<i> </i>mixtures.<i>&nbsp;</i>&publication_year=2000&author=Sainz MA&author=Serrano FJ&author=Amigo JM&author=Bastida J&author=Caballero A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B56'> <div class="references_sup">56.</div> <div class="references_name"> Bradecki A, Jonas S. Investigation<i> </i>of<i> </i>high-temperature<i> </i>reactions<i> </i>within<i> </i>the<i> </i>ZrSiO<sub>4</sub>-Al<sub>2</sub>O<sub>3</sub><i> </i>system.<i> </i><i> Ceram. Int.</i><b> 2010</b>,<i> 36,</i> 211–214. doi:10.1016/j.ceramint.2009.07.007.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Investigation<i> </i>of<i> </i>high-temperature<i> </i>reactions<i> </i>within<i> </i>the<i> </i>ZrSiO<sub>4</sub>-Al<sub>2</sub>O<sub>3</sub><i> </i>system.<i>&nbsp;</i>&publication_year=2010&author=Bradecki A&author=Jonas S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B57'> <div class="references_sup">57.</div> <div class="references_name"> Koyama T, Hayashi S, Yasumori A, Okada K, Schmucker M, Schneider H. <i> </i>Microstructure<i> </i>and<i> </i>Mechanical<i> </i>Properties<i> </i>of<i> </i>Mullite/Zirconia<i> </i>Composites<i> </i>Prepared<i> </i>from<i> </i>Alumina<i> </i>and<i> </i>Zircon<i> </i>under<i> </i>Various<i> </i>Firing<i> </i>Conditions.<i> </i><i> J. Eur. Ceram. Soc.</i><b> 1996</b>,<i> 16,</i> 231–237. doi:10.1016/0955-2219(95)00142-5.<span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=<i>&nbsp;</i>Microstructure<i> </i>and<i> </i>Mechanical<i> </i>Properties<i> </i>of<i> </i>Mullite/Zirconia<i> </i>Composites<i> </i>Prepared<i> </i>from<i> </i>Alumina<i> </i>and<i> </i>Zircon<i> </i>under<i> </i>Various<i> </i>Firing<i> </i>Conditions.<i>&nbsp;</i>&publication_year=1996&author=Koyama T&author=Hayashi S&author=Yasumori A&author=Okada K&author=Schmucker M&author=Schneider H." target="_blank">Google Scholar</a>]</span> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </section> <div class="modal fade cite-modal" id="citeModal" tabindex="-1" aria-labelledby="exampleModalLabel" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered"> <div class="modal-content border-0"> <div class="modal-body pt-5 pl-5 pr-5 pb-4"> <h3 class="pb-2 border-bottom border-dark">Cite This Article</h3> <h6 class="mt-4 d-flex justify-content-between"> SCIEPublish Style </h6> <p class="modal-text2 text-justify">Mandal S, Agrawal H, Phatak A, Gupta P, Jastrzębska I, Parkash O, et al. Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia. <i>High-Temperature Materials</i> <b>2024</b>, <i>1</i>, 10009. https://doi.org/10.70322/htm.2024.10009</p> <h6 class="mt-3 d-flex justify-content-between text-justify"> AMA Style </h6> <p class="modal-text2 text-justify">Mandal S, Agrawal H, Phatak A, Gupta P, Jastrzębska I, Parkash O, et al. Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia. <i>High-Temperature Materials</i>. 2024; 1(2):10009. https://doi.org/10.70322/htm.2024.10009</p> </div> <button type="button" class="btn btn-close" data-dismiss="modal"> <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"></path> </svg> </button> </div> </div> </div> <div class="modal modal-amplification-img" id="imgModal" tabindex="-1" aria-labelledby="imgModal" aria-hidden="true"> <div class="modal-dialog modal-xl modal-dialog-centered modal-dialog-scrollable modal-dialog-img"> <div class="modal-content"> <button type="button" class="btn btn-close" data-dismiss="modal"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"></path> </svg> </button> <div class="modal-body"> </div> </div> </div> </div> <link rel="stylesheet" href="/static/css/share.min.css?3" /> <script src="/static/js/social-share.min.js"></script> <script> var $config = { image:"https://www.sciepublish.com/uploads/image/202411/19/8d7eea7da52f9de05f4fa1d20c771ec8.jpg", origin:'', wechatQrcodeTitle: "WeChat Share", // WeChat QR code prompt text wechatQrcodeHelper: '<p>Scan QR code</p> <p>This article can be shared to your WeChat.</p>', }; socialShare('.social-share', $config); </script> <script> document.addEventListener("DOMContentLoaded", function() { /**/ var stopScroll = $(document).scrollTop(), column = $('.left-content'), fixedTitle = $('.fixed-title'), acquiesceTitle = $('.acquiesce-title'), acquiesceTitleTop = acquiesceTitle.offset().top; $(window).scroll(function(){ var scrollTop = $(this).scrollTop(); if(scrollTop > acquiesceTitleTop){ column.addClass('fixed'); fixedTitle.addClass('fixed'); }else{ column.removeClass('fixed'); fixedTitle.removeClass('fixed'); } }) if (stopScroll > acquiesceTitleTop ){ column.addClass('fixed'); fixedTitle.addClass('fixed'); } //Anchor navigation $('body').scrollspy({ target: '#article-menu-float' }) //tab switch $('.information-collapse').each(function(){ $(this).click(function(){ $(this).toggleClass('active').siblings().removeClass('active'); $(".information-item").eq($(this).index()).slideToggle().siblings().slideUp(); }) }) function markdownReplace(text) { // Replace the oblique body, bold it to HTML // /article/pii/21 text = text.replace(/</g, '<'); //article/pii/166 text = text.replace(/>/g, '>'); // text = text.replace(/\*\*(.+?)\*\*/g, "<b>$1</b>"); text = text.replace(/\*(.+?)\*/g, "<i>$1</i>"); // article/pii/18 text = text.replace(/&/g, '&');//* /article/pii/181#Figure5 中的* // text = text.replace(/\\\$/g, '$'); //article/pii/19 return text; } // Treatment of non -serial list function replaceConsecutiveBulletsWithList(text) { // Regular expression matching continuously with • starting line const regex = /^(?:•\s.*\n?)+/gm; // Replace the matching line, convert it to <ul> and <li> elements return text.replace(regex, (match) => { // Remove the • and the subsequent blank characters at the beginning of each line, and convert it to <li> element const listItems = match.split('\n').map(line => { return line.replace(/^•\s/, '').trim() ? `<li>${line.replace(/^•\s/, '').trim()}</li>` : ''; }).join(''); // If there is a list item, the package is wrapped in the <ul> label return `<ul>${listItems}</ul>`; }); } // Pre -predetermined formula rendering global indexes window.formula = {}; // Treatment to find a third -level and four -level title, sort out the P label that is not available in the text document.querySelectorAll('.article-item-text').forEach(element => { element.innerHTML = replaceConsecutiveBulletsWithList(element.innerHTML); // Forwards <em> 3.1. Serine Integrase-Mediated DNA Assembly Between Two Plasmids </em> element.innerHTML = element.innerHTML.replace(/(<h[1-6].+?>)/gi, '\r\n$1'); //TODO There is a change in the middle of the H tag to cause problems element.innerHTML = element.innerHTML.replace(/(<\/h[1-6]\s*>)/gi, '$1\r\n'); element.innerHTML = element.innerHTML.replace(/<(em|i)>(\d+\.\d+\..+?)<\/(em|i)>/gi, '\r\n<h4 class="value4">$2</h4>\r\n'); // Processing replacement of level 4 title element.innerHTML = element.innerHTML.replace(/>\s*(\d+\.\d+\.\d+\.\s*.*?)(?=\s*\n|$)/g, '>\r\n<h5 class="value5">$1</h5>\r\n'); element.innerHTML = element.innerHTML.replace(/^\s*(\d+\.\d+\.\d+\.\s*.*?)(?=\s*\n|$)/gm, '\r\n<h5 class="value5">$1</h5>\r\n'); // Processing replacement three -level title element.innerHTML = element.innerHTML.replace(/\*+(\d+\.\d+\..+?)\*+\s+/g, '\r\n<h4 class="value4">$1</h4>\r\n'); // Treatment P tag element.innerHTML = element.innerHTML.replace(/<p.+?>(.+?)<\/p>/gi, '\r\n$1\r\n'); let lastP = document.createElement('p'); Array.from(element.childNodes).forEach(node=> { if (node.childElementCount == 0 && node.textContent.trim().length == 0){ // Delete the empty node element.removeChild(node); } // Handle the title if (/H[1-6]/i.test(node.nodeName)){ if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ // Lastp is not an empty node. element.appendChild(lastP); lastP = document.createElement('p'); } element.appendChild(node); return; } // Check the HTML-Disp-Formula-Info node if (node.classList && node.classList.contains('html-disp-formula-info')){ if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); lastP = document.createElement('p'); } element.appendChild(node); // Treatment of the text formula in the chapter renderMathInElement(node, { delimiters: [ {left: '```latex', right: '```', display: true}, ], throwOnError : false }); const label = node.querySelector('.formula > label'); if (label === null){ return; } var numMatch = label.textContent.match(/\d+/g) if (!numMatch){ return; } const html_pics = node.querySelector('.html_pics') if (html_pics){ formula["Equation"+numMatch[0]]=html_pics.innerHTML; } return; } // Treatment textbooks if (node.nodeType === 3) { var lines = node.nodeValue.split(/\r?\n/); if (lines.length == 1){ // No change, it may be the content of the previous P tag if (node.nodeValue.trim().length > 0){ lastP.appendChild(node); } return; } lines.forEach((line, index)=> { if (index >0){ // Other changes may be the new P tag, the old P label is moved in if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); lastP = document.createElement('p'); } } if (line.trim().length > 0){ lastP.appendChild(document.createTextNode(line)); } }); element.removeChild(node); return; } if (node.classList.contains('html-fig-wrap')){ if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); lastP = document.createElement('p'); } } //Other situations are the content of the previous P tag lastP.appendChild(node); }); if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); } if (element.childElementCount == 0 && element.textContent.trim().length == 0){ // Delete the empty node element.parentNode.removeChild(element); } function capitalizeFirstLetter(str) { return str.charAt(0).toUpperCase() + str.slice(1); } // Find the picture form formula without setting the A tag, and give a tag element.innerHTML = element.innerHTML.replace(/(?<!<a.+?>\s*|[a-zA-Z])(Figure|Table|Scheme|Equation)\s+(\(([A-Z]?\d+)\)|([A-Z]?\d+))(?<!\s*<\/a>)/gi, function(match, $2,$3) { match = capitalizeFirstLetter(match); return '<a href="#'+ capitalizeFirstLetter($2) + $3.replace(/\(|\)/g,'') +'">'+ match +'</a>'; }); // Remove Markdown element.innerHTML = markdownReplace(element.innerHTML); // Find a super -text link without setting A tags, give a tagnk without setting A tags, give a tagnk without setting A tags, give a tag element.innerHTML = element.innerHTML.replace(/(?<!<a.+?>\s*)https?:\/\/[^\s\/]+(\/[^\s<.]*)*(?<!\s*<\/a>)/gi, function(match) { return '<a href="'+ match.replace(/[.,,。;\s]+$/, '') +'" target="_blank">'+ match +'</a>'; } ); // Add a box to the formula quotation element.querySelectorAll('a[href^="#Equation"]').forEach(auchor=>{ const id= auchor.getAttribute('href').slice(1); if (formula[id]){ $(auchor).tooltip({ html: true , delay: { "show": 200, "hide": 200 },title:$('<div class="formulaTip">').html(formula[id])}); } }); // Handling in -line formula renderMathInElement(element, { delimiters: [ {left: '$$', right: '$$', display: false}, ], throwOnError : false }); }); document.querySelectorAll("div.articleneir.abstract").forEach(element => { renderMathInElement(element, { delimiters: [ {left: '$$', right: '$$', display: false}, ], throwOnError : false }); }); // Processing reference document.querySelectorAll(".html-bibr").forEach(link => { link.removeAttribute('title'); const target = document.querySelector(link.getAttribute('href')+'.references > .references_name'); if (target){ $(link).tooltip({ html: true , delay: { "show": 200, "hide": 200 },title:target.innerHTML}); } }); document.querySelectorAll(".references").forEach(ref => { if (ref.id){ const a = document.createElement("a"); a.name=ref.id; a.classList.add("anchor-abs-66"); ref.removeAttribute("id"); ref.insertBefore(a, ref.firstChild); } }); // Treat the display area of the formula formula of the picture form, remove the A tag, set the anchor point document.querySelectorAll('.html-fig-wrap .html-fig_description,.html-fig-wrap .html-table_wrap_discription').forEach(element => { element.innerHTML = markdownReplace(element.innerHTML); const match = element.firstChild.textContent.match(/(Figure|Table|Scheme) [A-Z]?\d+/g); if (match){ element.firstChild.textContent = element.firstChild.textContent let id= match[0].replace(" ","") const target = document.createElement("a"); target.name=id; target.classList.add("anchor"); element.parentNode.insertBefore(target, element.parentNode.firstChild); document.querySelectorAll("a[href='#"+id+"']").forEach(auchor => { $(auchor).tooltip({ html: true , delay: { "show": 1000, "hide": 100 },title:$(element.parentNode).html()}); }); } }); // Processing keywords const keywordsContainer = document.querySelector('.keywords') if (keywordsContainer){ let title; while(child = keywordsContainer.firstChild){ // Take out the first non -empty element in Keywords if (child.textContent.trim().length>0){ title = child; title.appendChild(document.createTextNode(' ')); keywordsContainer.removeChild(child); break; } keywordsContainer.removeChild(child); } let listLinks = []; let link = document.createElement('a'); Array.from(keywordsContainer.childNodes).forEach(node=> { // Treatment text nodes if (node.nodeType === 3) { var ks = node.nodeValue.split(/(?<!&#(?:x[0-9a-fA-F]{1,5}|\d{1,6}))[;]|,/); if (ks.length == 1){ // There is no separatist, no new link is created if (link.lastChild && link.lastChild.nodeType === 3){ //Condented text nodes link.lastChild.nodeValue += ks[0]; }else{ link.appendChild(node); } return; }else{ ks.forEach((k, index)=> { if (index==0){ // In the first paragraph, do not create a new LINK, and the merger with the previous merger if (link.lastChild && link.lastChild.nodeType === 3){ //Condented text nodes link.lastChild.nodeValue += k; return; } }else{ // Means encounter; create a new link listLinks.push(link); link = document.createElement('a'); } link.appendChild(document.createTextNode(k.trim())); }); return; } }else{ link.appendChild(node); } }); if (link.innerText.trim().length>0){ listLinks.push(link); } keywordsContainer.innerHTML = ""; keywordsContainer.appendChild(title); listLinks.forEach((link, index, array)=> { link.href = "/index/search/index.html?search="+link.innerHTML.trim().replace(/ /g, '+');// TODO :Angle/lowering/small capitalization keywordsContainer.appendChild(link); if (index !== array.length - 1) { keywordsContainer.appendChild(document.createTextNode(', ')); } }); } // Treatment reference copy document.querySelectorAll('.cite-modal h6 ').forEach(h6 => { let a = document.createElement('a'); let h6Text = h6.textContent.trim(); h6.appendChild(a); a.href = "#"; a.textContent = "Copy"; a.onclick = function(e) { if (h6.nextElementSibling) { navigator.clipboard.writeText(h6.nextElementSibling.textContent.replace(/\r\n|\n|\r/g, '')).then(function() { $('#citeModal').modal('hide'); // showToast(h6Text + ' copied to clipboard!'); }, function() { showToast('Failed to copy '+h6Text+' to clipboard.'); }); } e.preventDefault(); }; }); //Picture amplification var $imgModal = $('#imgModal'), $imgModalBody = $imgModal.find('.modal-body'); $(".html-figpopup-link").each(function(){ var dataSrc = $(this).children('img').attr('data-large'); $(this).attr({ 'data-toggle': 'modal', 'data-target': '#imgModal' }) $(this).on('click', function () { $imgModalBody.append(`<img src="`+dataSrc+`" class="amplification-img">`); }) }); $imgModal.on('hidden.bs.modal', function (event) { $imgModalBody.children('img').remove(); }) //The picture is enlarged again $imgModal.on('shown.bs.modal', function (event) { $imgModalBody.children('img').on('click', function () { $(this).parent().parent().toggleClass('toggle-img'); }) }) // Process doi // Doi reference the magazine $.ajax({ type: 'GET', url: '/api/article/doi/id/341', dataType:"json", success: function(data){ var doiEL =""; $.each(data.doi_list, function(k, v) { doiEL += "<p>" + v.title + "." + " <em>" + v.source + "</em>" + " " + "<b>" + v.year + "</b>. " + "[" + "<a target='_blank' href='http://dx.doi.org/" + v.doi + "'>CrossRef</a>" + "]" +"</p>"; }) if (data.doi_count > 0) { $("[data-bind='popover1'] > b").text(data.doi_count); $("[data-bind='popover1']").addClass('d-flex'); $("[data-bind='popover1']").popover({ trigger: 'focus', html: true, delay: { "show": 100, "hide": 500 }, content: function(){ return doiEL; }, }); } }, timeout: 5000, error: function(jqXHR,textStatus){ } }) }) function showToast(message) { var toast = document.createElement('div'); toast.classList.add('toast', 'centered-div', 'show'); toast.setAttribute('role', 'alert'); toast.setAttribute('aria-live', 'assertive'); toast.setAttribute('aria-atomic', 'true'); var toastBody = document.createElement('div'); toastBody.classList.add('toast-body'); toastBody.textContent = message; toast.appendChild(toastBody); document.body.appendChild(toast); setTimeout(function () { toast.classList.remove('show'); toast.classList.add('hide'); setTimeout(function () { document.body.removeChild(toast); }, 500); }, 3000); } </script> <!-- Footer --> <footer class="mt-1"> <div class="my-body-container pt-4 pb-4"> <div class="fotter-top"> <div> <div class="item-text"> <h3>About</h3> <ul> <li> <a href="/About_SCIEPublish" title="About SClEPublish">About SClEPublish</a> </li> <li> <a href="/Management_Team" title="Management Team">Management Team</a> </li> <li> <a href="/Careers" title="Careers">Careers</a> </li> <li> <a href="/Contact" title="Contact">Contact</a> </li> </ul> </div> <div class="item-text"> <h3>Policies</h3> <ul> <li> <a href="/Peer_Review_Policy" title="Peer Review Policy">Peer Review Policy</a> </li> <li> <a href="/Open_Access_Policy" title="Open Access Policy">Open Access Policy</a> </li> <li> <a href="/Licensing_and_Copyright" title="Licensing and Copyright">Licensing and Copyright</a> </li> <li> <a href="/Editorial_Policy" title="Editorial Policy">Editorial Policy</a> </li> <li> <a href="/Advertising_Policy" title="Advertising Policy">Advertising Policy</a> </li> </ul> </div> <div class="item-text"> <h3>Information</h3> <ul> <li> <a href="/For_Authors" title="For Authors">For Authors</a> </li> <li> <a href="/For_Reviewers" title="For Reviewers">For Reviewers</a> </li> <li> <a href="/For_Editors" title="For Editors">For Editors</a> </li> </ul> </div> <div class="item-text item-text-membership"> <h3>A Member of</h3> <ul> <li class="membership-img1"> <a href="https://stm-assoc.org/" target="_blank" rel="nofollow"> <img src="/style/image/stm2024-logo.png"> </a> </li> <li class="membership-img2"> <a href="https://www.alpsp.org/" target="_blank" rel="nofollow" title=""> <img src="/style/image/alpsp-logo.png" alt=""> </a> </li> <!-- <li class="membership-img3"> <a href="https://publicationethics.org/publisher-membership-application-form-1" target="_blank" rel="nofollow" title=""> <img src="/style/image/cope-logo.png" alt=""> </a> </li> --> </ul> </div> </div> <div class="item-text item-text-right"> <h3> <svg xmlns="http://www.w3.org/2000/svg" class="navbar-logo" xml:space="preserve" version="1.0" viewBox="0 0 5.08 1.933"> <path d="M1.021 1.245a.29.29 0 0 1-.211-.054l-.027-.023-.003-.003.056-.066.003.004a.3.3 0 0 0 .043.033.2.2 0 0 0 .128.027l.024-.007.019-.01a.07.07 0 0 0 .022-.032.1.1 0 0 0 0-.036l-.004-.014a.1.1 0 0 0-.016-.02.1.1 0 0 0-.027-.017L.994 1.01.919.98a.3.3 0 0 1-.076-.05.14.14 0 0 1-.034-.067.2.2 0 0 1 0-.06.13.13 0 0 1 .027-.056.2.2 0 0 1 .049-.041A.2.2 0 0 1 .95.683a.3.3 0 0 1 .07-.001.2.2 0 0 1 .06.017.3.3 0 0 1 .075.05l.003.003-.05.061L1.103.81a.2.2 0 0 0-.053-.034.2.2 0 0 0-.063-.013.1.1 0 0 0-.046.008L.925.78a.06.06 0 0 0-.023.047l.001.015.006.012a.1.1 0 0 0 .018.02.1.1 0 0 0 .027.017L.97.899l.016.006.074.032a.3.3 0 0 1 .058.033.14.14 0 0 1 .051.08.2.2 0 0 1 0 .07.15.15 0 0 1-.048.081.2.2 0 0 1-.062.035zm.527-.002a.24.24 0 0 1-.1 0 .23.23 0 0 1-.125-.069.2.2 0 0 1-.051-.089.3.3 0 0 1-.019-.119.4.4 0 0 1 .02-.12.3.3 0 0 1 .052-.09.23.23 0 0 1 .176-.076.3.3 0 0 1 .064.01.3.3 0 0 1 .053.025.2.2 0 0 1 .04.034l.002.003-.052.061L1.605.81A.2.2 0 0 0 1.56.776a.2.2 0 0 0-.037-.012.15.15 0 0 0-.082.013.13.13 0 0 0-.049.039l-.018.029a.2.2 0 0 0-.022.073.4.4 0 0 0 .002.104.2.2 0 0 0 .014.05.2.2 0 0 0 .023.04.14.14 0 0 0 .066.047.15.15 0 0 0 .107-.009l.028-.017.025-.023.003-.004.051.06-.002.003a.3.3 0 0 1-.076.059.2.2 0 0 1-.045.015m.314-.004h-.09V.69h.095v.549zm.485 0h-.331V.69h.328v.08H2.11v.141h.198v.082H2.11v.165h.242v.08zm.215 0h-.09V.69h.169a.4.4 0 0 1 .083.008L2.76.71l.031.016a.13.13 0 0 1 .044.053q.009.015.012.036a.22.22 0 0 1-.012.121l-.018.03a.176.176 0 0 1-.09.057.3.3 0 0 1-.084.011h-.076v.205zm.005-.472v.19h.068a.2.2 0 0 0 .056-.006.1.1 0 0 0 .038-.018.1.1 0 0 0 .022-.031.1.1 0 0 0 .007-.045l-.003-.03a.07.07 0 0 0-.028-.04L2.703.776 2.671.769 2.633.767zm.539.48a.2.2 0 0 1-.067-.003.1.1 0 0 1-.075-.07.3.3 0 0 1-.013-.09V.827h.093v.248a.3.3 0 0 0 .007.055l.008.017.012.012.016.007.02.002a.1.1 0 0 0 .033-.006.1.1 0 0 0 .03-.019.2.2 0 0 0 .03-.032V.826h.093v.413h-.078l-.006-.057a.2.2 0 0 1-.078.057zm.548-.002-.034.003-.03-.003-.029-.01A.2.2 0 0 1 3.51 1.2l-.007.039h-.075V.645h.093q0 .11-.002.219l.01-.008A.2.2 0 0 1 3.59.823a.2.2 0 0 1 .043-.007.2.2 0 0 1 .07.015.15.15 0 0 1 .07.074.2.2 0 0 1 .022.076.4.4 0 0 1 0 .095.3.3 0 0 1-.029.082.2.2 0 0 1-.079.075zm-.07-.077a.1.1 0 0 0 .046-.002.1.1 0 0 0 .043-.032l.015-.028a.2.2 0 0 0 .01-.036.3.3 0 0 0-.006-.114A.1.1 0 0 0 3.68.93.07.07 0 0 0 3.64.9.1.1 0 0 0 3.59.899l-.023.008-.023.015-.023.02v.193a.2.2 0 0 0 .043.027zm.424.08h-.015a.1.1 0 0 1-.051-.013l-.017-.016-.011-.022-.007-.026-.002-.031V.645h.093v.5L4 1.16l.003.004.003.003.008.002h.008l.005-.001h.004l.013.071-.004.002-.009.002zm.22-.01H4.14V.827h.093v.413zm-.026-.48L4.187.76q-.009 0-.016-.002L4.157.753a.05.05 0 0 1-.02-.02.1.1 0 0 1-.008-.027L4.13.69a.05.05 0 0 1 .027-.032L4.17.653a.07.07 0 0 1 .045.005.05.05 0 0 1 .03.048.1.1 0 0 1-.009.028.1.1 0 0 1-.02.019zm.315.488a.25.25 0 0 1-.19-.054l-.004-.003.045-.062.004.003a.3.3 0 0 0 .053.034.13.13 0 0 0 .058.012l.022-.002.016-.005.013-.008.009-.01a.05.05 0 0 0 .007-.025q0-.006-.002-.012l-.005-.01-.008-.009-.011-.008-.028-.014-.016-.006-.017-.007a.4.4 0 0 1-.079-.041.1.1 0 0 1-.028-.034L4.348.964 4.345.939a.12.12 0 0 1 .023-.07.1.1 0 0 1 .038-.033A.2.2 0 0 1 4.46.82a.2.2 0 0 1 .13.022l.037.024.003.003-.045.059-.003-.003A.2.2 0 0 0 4.54.9a.1.1 0 0 0-.065-.008.1.1 0 0 0-.027.012l-.007.01a.04.04 0 0 0-.007.022q0 .006.002.01l.005.01a.1.1 0 0 0 .017.015l.027.013.016.006.016.006.063.028.019.013a.1.1 0 0 1 .029.035l.008.023a.13.13 0 0 1-.008.077.1.1 0 0 1-.03.04.14.14 0 0 1-.05.027zm.307-.007h-.088V.645h.092q0 .115-.002.229a.3.3 0 0 1 .05-.038.2.2 0 0 1 .048-.017.2.2 0 0 1 .068.002.1.1 0 0 1 .057.038q.01.014.018.033A.314.314 0 0 1 5.08.98v.258h-.093V.99L4.985.96 4.98.936 4.97.92 4.96.907 4.943.9a.1.1 0 0 0-.037 0 .1.1 0 0 0-.03.011l-.016.01-.032.03v.288z" /> <path d="M1.844 1.377a.97.97 0 0 1-.878.563A.963.963 0 0 1 0 .974.964.964 0 0 1 .966.007a.96.96 0 0 1 .865.536l-.048.024A.92.92 0 0 0 .966.062a.91.91 0 0 0-.912.912.91.91 0 0 0 .912.912.91.91 0 0 0 .83-.532z" class="logo-circle" /> </svg> </h3> <div class="text-share"> <a href="https://x.com/SCIEPublish" class="share-btn twitter-btn" title="Share on Twitter" target="_blank"> <svg t="1713929395475" class="icon" width="32" height="32" viewBox="0 0 1399 1024" fill="#000000" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="8742"> <path d="M282.021569 119.281213l323.998199 433.216256-326.044203 352.222995h73.379441l285.451142-308.376452 230.636674 308.376452h249.713149l-342.227762-457.583832 303.479459-327.855419h-73.379441l-262.886398 284.008876-212.407111-284.008876h-249.713149z m107.909957 54.051408h114.71879l506.578928 677.328049h-114.718791l-506.578927-677.328049z" p-id="8743"></path> </svg> </a> <a href="" class="share-btn LinkedIn-btn" id="email-LinkedIn-btn" title="Share on LinkedIn" target="_blank"> <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="#000000" class="bi bi-linkedin" viewBox="0 0 16 16"> <path d="M0 1.146C0 .513.526 0 1.175 0h13.65C15.474 0 16 .513 16 1.146v13.708c0 .633-.526 1.146-1.175 1.146H1.175C.526 16 0 15.487 0 14.854V1.146zm4.943 12.248V6.169H2.542v7.225h2.401zm-1.2-8.212c.837 0 1.358-.554 1.358-1.248-.015-.709-.52-1.248-1.342-1.248-.822 0-1.359.54-1.359 1.248 0 .694.521 1.248 1.327 1.248h.016zm4.908 8.212V9.359c0-.216.016-.432.08-.586.173-.431.568-.878 1.232-.878.869 0 1.216.662 1.216 1.634v3.865h2.401V9.25c0-2.22-1.184-3.252-2.764-3.252-1.274 0-1.845.7-2.165 1.193v.025h-.016a5.54 5.54 0 0 1 .016-.025V6.169h-2.4c.03.678 0 7.225 0 7.225h2.4z"/> </svg> </a> <a href="javaScript:void(0)" class="share-btn wechat-btn" id="wechat-share-btn"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="#000000" class="bi bi-wechat" viewBox="0 0 16 16"> <path d="M11.176 14.429c-2.665 0-4.826-1.8-4.826-4.018 0-2.22 2.159-4.02 4.824-4.02S16 8.191 16 10.411c0 1.21-.65 2.301-1.666 3.036a.324.324 0 0 0-.12.366l.218.81a.616.616 0 0 1 .029.117.166.166 0 0 1-.162.162.177.177 0 0 1-.092-.03l-1.057-.61a.519.519 0 0 0-.256-.074.509.509 0 0 0-.142.021 5.668 5.668 0 0 1-1.576.22ZM9.064 9.542a.647.647 0 1 0 .557-1 .645.645 0 0 0-.646.647.615.615 0 0 0 .09.353Zm3.232.001a.646.646 0 1 0 .546-1 .645.645 0 0 0-.644.644.627.627 0 0 0 .098.356Z"/> <path d="M0 6.826c0 1.455.781 2.765 2.001 3.656a.385.385 0 0 1 .143.439l-.161.6-.1.373a.499.499 0 0 0-.032.14.192.192 0 0 0 .193.193c.039 0 .077-.01.111-.029l1.268-.733a.622.622 0 0 1 .308-.088c.058 0 .116.009.171.025a6.83 6.83 0 0 0 1.625.26 4.45 4.45 0 0 1-.177-1.251c0-2.936 2.785-5.02 5.824-5.02.05 0 .1 0 .15.002C10.587 3.429 8.392 2 5.796 2 2.596 2 0 4.16 0 6.826Zm4.632-1.555a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Zm3.875 0a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Z"/> </svg> <div class="cord"> <div class="img"> <img src="/style/image/wechat.jpg" alt="SCIEPublish wechat" /> </div> </div> </a> <a href="mailto:office@sciepublish.org" class="share-btn email-btn" id="email-share-btn" title="Share on Email" target="_blank"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="#000000" class="bi bi-envelope-fill" viewBox="0 0 16 16"> <path d="M.05 3.555A2 2 0 0 1 2 2h12a2 2 0 0 1 1.95 1.555L8 8.414.05 3.555ZM0 4.697v7.104l5.803-3.558L0 4.697ZM6.761 8.83l-6.57 4.027A2 2 0 0 0 2 14h12a2 2 0 0 0 1.808-1.144l-6.57-4.027L8 9.586l-1.239-.757Zm3.436-.586L16 11.801V4.697l-5.803 3.546Z"/> </svg> </a> </div> </div> </div> <div class="copyright-box mt-4 mb-0 pt-3 pb-0"> <p class="text-left">Copyright © 2021-2024 SCIE Publishing Ltd. unless otherwise stated.</p> <p class="text-right"> <a href="/Privacy" title="Privacy">Privacy</a> <!-- <a href="" title="Cookies">Cookies</a> --> <a href="/Terms_of_Use" title="Terms of Use">Terms of Use</a> </p> </div> </div> </footer> <!-- Back-top --> <div class="back-top"> <div class="d-flex justify-content-center align-items-center flex-wrap"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-chevron-up" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M7.646 4.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1-.708.708L8 5.707l-5.646 5.647a.5.5 0 0 1-.708-.708l6-6z"/> </svg> <span>TOP</span> </div> </div> <!-- Toast --> <div class="toast-container"> <div class="toast" id="liveToast" role="alert" data-delay="3000" aria-live="assertive" aria-atomic="true"> <div class="toast-header"> <strong class="mr-auto">Message</strong> <button type="button" class="ml-2 mb-1 close" data-dismiss="toast" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="toast-body"> </div> </div> </div> <script> $(function () { $('.js-navbar-toggle').on('click', function () { $('header nav').toggleClass('nav-search-active'); }); var windowHeight = $(window).height(), header = $('header'), backTop = $('.back-top'); $(window).scroll(function(){ var scrollTop = $(this).scrollTop(); scrollTop > 0 ? header.addClass('fixed') : header.removeClass('fixed'); scrollTop > windowHeight ? backTop.addClass('fixed') : backTop.removeClass('fixed'); }) backTop.click(function(){ $("body,html").animate({scrollTop:0},300); }) $(".article-abseract.clamp").each(function () { $(this).click(function () { $(this).toggleClass("clamp-open"); }); }); //初始化select $('select.select-mania').selectMania(); }) $('.logout').click(function () { $.get('/index/user/login_out', function (res) { if (res.err == 0) { window.location.href = res.data layer.msg('exit successfully!') } else { layer.msg('Exit failed!') } }) }) </script> </body> </html>