CINXE.COM

Reactive oxygen species - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Reactive oxygen species - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"6d24f022-8153-48f2-877a-f005a9088d23","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Reactive_oxygen_species","wgTitle":"Reactive oxygen species","wgCurRevisionId":1259380648,"wgRevisionId":1259380648,"wgArticleId":640697,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: date and year","Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from September 2024","Articles with unsourced statements from February 2019","Articles with unsourced statements from May 2009","Webarchive template wayback links","Articles containing video clips","Pages that use a deprecated format of the chem tags","Reactive oxygen species", "Free radicals","Senescence","Carcinogenesis","Cancer"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Reactive_oxygen_species","wgRelevantArticleId":640697,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":70000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader": true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q424361","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc", "skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Reactive_oxygen_species_%28ROS%29_%E2%80%93_some_examples_with_Lewis_structures.png/1200px-Reactive_oxygen_species_%28ROS%29_%E2%80%93_some_examples_with_Lewis_structures.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="766"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Reactive_oxygen_species_%28ROS%29_%E2%80%93_some_examples_with_Lewis_structures.png/800px-Reactive_oxygen_species_%28ROS%29_%E2%80%93_some_examples_with_Lewis_structures.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="511"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Reactive_oxygen_species_%28ROS%29_%E2%80%93_some_examples_with_Lewis_structures.png/640px-Reactive_oxygen_species_%28ROS%29_%E2%80%93_some_examples_with_Lewis_structures.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="409"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Reactive oxygen species - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Reactive_oxygen_species"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Reactive_oxygen_species"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Reactive_oxygen_species rootpage-Reactive_oxygen_species skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Reactive+oxygen+species" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Reactive+oxygen+species" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Reactive+oxygen+species" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Reactive+oxygen+species" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Inventory_of_ROS" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Inventory_of_ROS"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Inventory of ROS</span> </div> </a> <ul id="toc-Inventory_of_ROS-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Biological_function" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Biological_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Biological function</span> </div> </a> <ul id="toc-Biological_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources_of_ROS_production" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sources_of_ROS_production"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Sources of ROS production</span> </div> </a> <button aria-controls="toc-Sources_of_ROS_production-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Sources of ROS production subsection</span> </button> <ul id="toc-Sources_of_ROS_production-sublist" class="vector-toc-list"> <li id="toc-Endogenous_sources" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Endogenous_sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Endogenous sources</span> </div> </a> <ul id="toc-Endogenous_sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Exogenous_sources" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exogenous_sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Exogenous sources</span> </div> </a> <ul id="toc-Exogenous_sources-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Antioxidant_enzymes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Antioxidant_enzymes"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Antioxidant enzymes</span> </div> </a> <button aria-controls="toc-Antioxidant_enzymes-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Antioxidant enzymes subsection</span> </button> <ul id="toc-Antioxidant_enzymes-sublist" class="vector-toc-list"> <li id="toc-Superoxide_dismutase" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Superoxide_dismutase"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Superoxide dismutase</span> </div> </a> <ul id="toc-Superoxide_dismutase-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Damaging_effects" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Damaging_effects"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Damaging effects</span> </div> </a> <button aria-controls="toc-Damaging_effects-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Damaging effects subsection</span> </button> <ul id="toc-Damaging_effects-sublist" class="vector-toc-list"> <li id="toc-Pathogen_response" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pathogen_response"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Pathogen response</span> </div> </a> <ul id="toc-Pathogen_response-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Oxidative_damage" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Oxidative_damage"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Oxidative damage</span> </div> </a> <ul id="toc-Oxidative_damage-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Impairment_of_cognitive_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Impairment_of_cognitive_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Impairment of cognitive function</span> </div> </a> <ul id="toc-Impairment_of_cognitive_function-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Cause_of_aging" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Cause_of_aging"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Cause of aging</span> </div> </a> <ul id="toc-Cause_of_aging-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cancer" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Cancer"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Cancer</span> </div> </a> <button aria-controls="toc-Cancer-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Cancer subsection</span> </button> <ul id="toc-Cancer-sublist" class="vector-toc-list"> <li id="toc-Carcinogenesis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Carcinogenesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Carcinogenesis</span> </div> </a> <ul id="toc-Carcinogenesis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cell_proliferation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cell_proliferation"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Cell proliferation</span> </div> </a> <ul id="toc-Cell_proliferation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cell_death" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cell_death"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Cell death</span> </div> </a> <ul id="toc-Cell_death-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tumor_cell_invasion,_angiogenesis_and_metastasis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tumor_cell_invasion,_angiogenesis_and_metastasis"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Tumor cell invasion, angiogenesis and metastasis</span> </div> </a> <ul id="toc-Tumor_cell_invasion,_angiogenesis_and_metastasis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Chronic_inflammation_and_cancer" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Chronic_inflammation_and_cancer"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5</span> <span>Chronic inflammation and cancer</span> </div> </a> <ul id="toc-Chronic_inflammation_and_cancer-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cancer_therapy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cancer_therapy"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.6</span> <span>Cancer therapy</span> </div> </a> <ul id="toc-Cancer_therapy-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Positive_role_of_ROS_in_memory" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Positive_role_of_ROS_in_memory"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Positive role of ROS in memory</span> </div> </a> <ul id="toc-Positive_role_of_ROS_in_memory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Reactive oxygen species</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 28 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-28" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">28 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Reaktiewe_suurstofkomponent" title="Reaktiewe suurstofkomponent – Afrikaans" lang="af" hreflang="af" data-title="Reaktiewe suurstofkomponent" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B1%D9%83%D8%A8%D8%A7%D8%AA_%D8%A7%D9%84%D8%A3%D9%83%D8%B3%D8%AC%D9%8A%D9%86_%D8%A7%D9%84%D8%AA%D9%81%D8%A7%D8%B9%D9%84%D9%8A%D8%A9" title="مركبات الأكسجين التفاعلية – Arabic" lang="ar" hreflang="ar" data-title="مركبات الأكسجين التفاعلية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Reaktivne_vrste_kisika" title="Reaktivne vrste kisika – Bosnian" lang="bs" hreflang="bs" data-title="Reaktivne vrste kisika" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Esp%C3%A8cies_reactives_de_l%27oxigen" title="Espècies reactives de l&#039;oxigen – Catalan" lang="ca" hreflang="ca" data-title="Espècies reactives de l&#039;oxigen" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Reaktive_Sauerstoffspezies" title="Reaktive Sauerstoffspezies – German" lang="de" hreflang="de" data-title="Reaktive Sauerstoffspezies" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Hapnikku_sisaldavad_reaktiivsed_osakesed" title="Hapnikku sisaldavad reaktiivsed osakesed – Estonian" lang="et" hreflang="et" data-title="Hapnikku sisaldavad reaktiivsed osakesed" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%94%CF%81%CE%B1%CF%83%CF%84%CE%B9%CE%BA%CE%AD%CF%82_%CE%BC%CE%BF%CF%81%CF%86%CE%AD%CF%82_%CE%BF%CE%BE%CF%85%CE%B3%CF%8C%CE%BD%CE%BF%CF%85" title="Δραστικές μορφές οξυγόνου – Greek" lang="el" hreflang="el" data-title="Δραστικές μορφές οξυγόνου" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Especie_reactiva_de_ox%C3%ADgeno" title="Especie reactiva de oxígeno – Spanish" lang="es" hreflang="es" data-title="Especie reactiva de oxígeno" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/D%C3%A9riv%C3%A9_r%C3%A9actif_de_l%27oxyg%C3%A8ne" title="Dérivé réactif de l&#039;oxygène – French" lang="fr" hreflang="fr" data-title="Dérivé réactif de l&#039;oxygène" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Especie_reactiva_do_os%C3%ADxeno" title="Especie reactiva do osíxeno – Galician" lang="gl" hreflang="gl" data-title="Especie reactiva do osíxeno" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%99%9C%EC%84%B1_%EC%82%B0%EC%86%8C" title="활성 산소 – Korean" lang="ko" hreflang="ko" data-title="활성 산소" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Spesi_oksigen_reaktif" title="Spesi oksigen reaktif – Indonesian" lang="id" hreflang="id" data-title="Spesi oksigen reaktif" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Specie_reattive_all%27ossigeno" title="Specie reattive all&#039;ossigeno – Italian" lang="it" hreflang="it" data-title="Specie reattive all&#039;ossigeno" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B1%E0%B4%BF%E0%B4%AF%E0%B4%BE%E0%B4%95%E0%B5%8D%E0%B4%9F%E0%B5%80%E0%B4%B5%E0%B5%8D_%E0%B4%93%E0%B4%95%E0%B5%8D%E0%B4%B8%E0%B4%BF%E0%B4%9C%E0%B5%BB_%E0%B4%B8%E0%B5%8D%E0%B4%AA%E0%B5%80%E0%B4%B7%E0%B5%80%E0%B4%B8%E0%B5%8D" title="റിയാക്ടീവ് ഓക്സിജൻ സ്പീഷീസ് – Malayalam" lang="ml" hreflang="ml" data-title="റിയാക്ടീവ് ഓക്സിജൻ സ്പീഷീസ്" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Spesies_oksigen_reaktif" title="Spesies oksigen reaktif – Malay" lang="ms" hreflang="ms" data-title="Spesies oksigen reaktif" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Reactieve_zuurstofcomponent" title="Reactieve zuurstofcomponent – Dutch" lang="nl" hreflang="nl" data-title="Reactieve zuurstofcomponent" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%B4%BB%E6%80%A7%E9%85%B8%E7%B4%A0" title="活性酸素 – Japanese" lang="ja" hreflang="ja" data-title="活性酸素" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Frie_radikaler" title="Frie radikaler – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Frie radikaler" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Reaktywne_formy_tlenu" title="Reaktywne formy tlenu – Polish" lang="pl" hreflang="pl" data-title="Reaktywne formy tlenu" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Esp%C3%A9cie_reactiva_de_oxig%C3%A9nio" title="Espécie reactiva de oxigénio – Portuguese" lang="pt" hreflang="pt" data-title="Espécie reactiva de oxigénio" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Specie_reactiv%C4%83_de_oxigen" title="Specie reactivă de oxigen – Romanian" lang="ro" hreflang="ro" data-title="Specie reactivă de oxigen" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%90%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D1%8B%D0%B5_%D1%84%D0%BE%D1%80%D0%BC%D1%8B_%D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D1%80%D0%BE%D0%B4%D0%B0" title="Активные формы кислорода – Russian" lang="ru" hreflang="ru" data-title="Активные формы кислорода" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Reaktivna_kisikova_spojina" title="Reaktivna kisikova spojina – Slovenian" lang="sl" hreflang="sl" data-title="Reaktivna kisikova spojina" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%B5_%D0%B2%D1%80%D1%81%D1%82%D0%B5_%D0%BA%D0%B8%D1%81%D0%B5%D0%BE%D0%BD%D0%B8%D0%BA%D0%B0" title="Реактивне врсте кисеоника – Serbian" lang="sr" hreflang="sr" data-title="Реактивне врсте кисеоника" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Reaktiva_syref%C3%B6reningar" title="Reaktiva syreföreningar – Swedish" lang="sv" hreflang="sv" data-title="Reaktiva syreföreningar" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Reactive_oxygen_species" title="Reactive oxygen species – Tagalog" lang="tl" hreflang="tl" data-title="Reactive oxygen species" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%90%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D1%96_%D1%84%D0%BE%D1%80%D0%BC%D0%B8_%D0%BA%D0%B8%D1%81%D0%BD%D1%8E" title="Активні форми кисню – Ukrainian" lang="uk" hreflang="uk" data-title="Активні форми кисню" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%B4%BB%E6%80%A7%E6%B0%A7%E7%B1%BB" title="活性氧类 – Chinese" lang="zh" hreflang="zh" data-title="活性氧类" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q424361#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Reactive_oxygen_species" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Reactive_oxygen_species" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Reactive_oxygen_species"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Reactive_oxygen_species"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Reactive_oxygen_species" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Reactive_oxygen_species" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Reactive_oxygen_species&amp;oldid=1259380648" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Reactive_oxygen_species&amp;id=1259380648&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FReactive_oxygen_species"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FReactive_oxygen_species"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Reactive_oxygen_species&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Reactive_oxygen_species&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q424361" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Highly reactive molecules formed from diatomic oxygen (O₂)</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Reactive_oxygen_species_(ROS)_%E2%80%93_some_examples_with_Lewis_structures.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Reactive_oxygen_species_%28ROS%29_%E2%80%93_some_examples_with_Lewis_structures.png/220px-Reactive_oxygen_species_%28ROS%29_%E2%80%93_some_examples_with_Lewis_structures.png" decoding="async" width="220" height="140" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Reactive_oxygen_species_%28ROS%29_%E2%80%93_some_examples_with_Lewis_structures.png/330px-Reactive_oxygen_species_%28ROS%29_%E2%80%93_some_examples_with_Lewis_structures.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Reactive_oxygen_species_%28ROS%29_%E2%80%93_some_examples_with_Lewis_structures.png/440px-Reactive_oxygen_species_%28ROS%29_%E2%80%93_some_examples_with_Lewis_structures.png 2x" data-file-width="1668" data-file-height="1065" /></a><figcaption><a href="/wiki/Lewis_structure" title="Lewis structure">Lewis structure</a> of some of the reactive oxygen species. <br /><b>A</b>: hydroxyl radical (<style data-mw-deduplicate="TemplateStyles:r1123817410">.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}</style><span class="chemf nowrap">HO<sup class="template-chem2-sup">•</sup></span>); <br /><b>B</b>: hydroxide ion (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">HO<sup class="template-chem2-sup">−</sup></span>); <br /><b>C</b>: singlet oxygen (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap"><sup class="template-chem2-sup">1</sup>O<sub class="template-chem2-sub">2</sub></span>); <br /><b>D</b>: superoxide anion (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">O<sub class="template-chem2-sub">2</sub><sup class="template-chem2-sup">•−</sup></span>); <br /><b>E</b>: peroxide ion (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">O<span class="template-chem2-su"><span>2−</span><span>2</span></span></span>); <br /><b>F</b>: hydrogen peroxide (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">H<sub class="template-chem2-sub">2</sub>O<sub class="template-chem2-sub">2</sub></span>); <br /><b>G</b>: nitric oxide (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">NO<sup class="template-chem2-sup">•</sup></span>)</figcaption></figure> <p>In <a href="/wiki/Chemistry" title="Chemistry">chemistry</a> and <a href="/wiki/Biology" title="Biology">biology</a>, <b>reactive oxygen species</b> (<b>ROS</b>) are highly <a href="/wiki/Reactivity_(chemistry)" title="Reactivity (chemistry)">reactive</a> chemicals formed from diatomic <a href="/wiki/Oxygen" title="Oxygen">oxygen</a> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">O<sub class="template-chem2-sub">2</sub></span>), <a href="/wiki/Water" title="Water">water</a>, and <a href="/wiki/Hydrogen_peroxide" title="Hydrogen peroxide">hydrogen peroxide</a>. Some prominent ROS are <a href="/wiki/Hydroperoxide" title="Hydroperoxide">hydroperoxide</a> (O<sub>2</sub>H), <a href="/wiki/Superoxide" title="Superoxide">superoxide</a> (O<sub>2</sub><sup>-</sup>),<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Hydroxyl_radical" title="Hydroxyl radical">hydroxyl radical</a> (OH<sup>.</sup>), and <a href="/wiki/Singlet_oxygen" title="Singlet oxygen">singlet oxygen</a>.<sup id="cite_ref-Halliwell2021_2-0" class="reference"><a href="#cite_note-Halliwell2021-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> ROS are pervasive because they are readily produced from O<sub>2</sub>, which is abundant. ROS are important in many ways, both beneficial and otherwise. ROS function as signals, that turn on and off biological functions. They are intermediates in the redox behavior of O<sub>2</sub>, which is central to <a href="/wiki/Fuel_cell" title="Fuel cell">fuel cells</a>. ROS are central to the photodegradation of organic pollutants in the atmosphere. Most often however, ROS are discussed in a biological context, ranging from their effects on aging and their role in causing dangerous genetic mutations. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Inventory_of_ROS">Inventory of ROS</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=1" title="Edit section: Inventory of ROS"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>ROS are not uniformly defined. All sources include superoxide, singlet oxygen, and hydroxyl radical. Hydrogen peroxide is not nearly as reactive as these species, but is readily activated and is thus included.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Peroxynitrite and <a href="/wiki/Nitric_oxide" title="Nitric oxide">nitric oxide</a> are reactive oxygen-containing species as well. </p> <ul><li><a href="/wiki/Hydroxyl_radical" title="Hydroxyl radical">Hydroxyl radical</a> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">HO&#183;</span>) is generated by <a href="/wiki/Fenton_reaction" class="mw-redirect" title="Fenton reaction">Fenton reaction</a> of hydrogen peroxide with ferrous compounds and related reducing agents:</li></ul> <dl><dd><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">Fe(II) + H<sub class="template-chem2-sub">2</sub>O<sub class="template-chem2-sub">2</sub> → Fe(III)OH + HO&#183;</span></dd></dl> <p>In its fleeting existence, the hydroxyl radical reacts rapidly irreversibly with all organic compounds. </p> <ul><li><a href="/wiki/Superoxide" title="Superoxide">superoxide</a> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">O<span class="template-chem2-su"><span>−</span><span>2</span></span></span>) is produced by reduction of O<sub>2</sub>.<sup id="cite_ref-Turrens_2003_4-0" class="reference"><a href="#cite_note-Turrens_2003-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Several grams are produced per day in the human body within the mitochondria.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></li></ul> <dl><dd><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">O<sub class="template-chem2-sub">2</sub> + e<sup class="template-chem2-sup">−</sup> → O<span class="template-chem2-su"><span>−</span><span>2</span></span></span></dd></dl> <p>Competing with its formation, superoxide is destroyed by the action of <a href="/wiki/Superoxide_dismutase" title="Superoxide dismutase">superoxide dismutases</a>, enzymes that catalyze its disproportionation: </p> <dl><dd><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">2 O<span class="template-chem2-su"><span>−</span><span>2</span></span> + 2H<sup class="template-chem2-sup">+</sup> → O<sub class="template-chem2-sub">2</sub> + H<sub class="template-chem2-sub">2</sub>O<sub class="template-chem2-sub">2</sub></span></dd></dl> <ul><li><a href="/wiki/Hydrogen_peroxide" title="Hydrogen peroxide">hydrogen peroxide</a> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">H<sub class="template-chem2-sub">2</sub>O<sub class="template-chem2-sub">2</sub></span>) is also produced as a side product of respiration.<sup id="cite_ref-Turrens_2003_4-1" class="reference"><a href="#cite_note-Turrens_2003-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Peroxynitrite" title="Peroxynitrite">Peroxynitrite</a> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">ONO<span class="template-chem2-su"><span>−</span><span>2</span></span></span>) results from the reaction of <a href="/wiki/Superoxide" title="Superoxide">superoxide</a> and <a href="/wiki/Nitric_oxide" title="Nitric oxide">nitric oxide</a>.</li> <li><a href="/wiki/Singlet_oxygen" title="Singlet oxygen">Singlet oxygen</a> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap"><sup class="template-chem2-sup">1</sup>O<sub class="template-chem2-sub">2</sub></span>) is sometimes included as an ROS. <a href="/wiki/Photosensitizer" title="Photosensitizer">Photosensitizers</a> such as <a href="/wiki/Chlorophyll" title="Chlorophyll">chlorophyll</a> may convert <a href="/wiki/Triplet_oxygen" title="Triplet oxygen">triplet</a> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap"><sup class="template-chem2-sup">3</sup>O<sub class="template-chem2-sub">2</sub></span>) to singlet oxygen:<sup id="cite_ref-Laloi_2015_6-0" class="reference"><a href="#cite_note-Laloi_2015-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> Singlet oxygen is highly reactive with unsaturated organic compounds. <a href="/wiki/Carotenoid" title="Carotenoid">Carotenoids</a>, <a href="/wiki/Tocopherol" title="Tocopherol">tocopherols</a>, and <a href="/wiki/Plastoquinone" title="Plastoquinone">plastoquinones</a> contained in chloroplasts quench singlet oxygen and protect against its toxic effects. Oxidized products of <a href="/wiki/%CE%92-carotene" class="mw-redirect" title="Β-carotene">β-carotene</a> arising from the presence of singlet oxygen act as <a href="/wiki/Second_messenger_system" title="Second messenger system">second messengers</a> that can either protect against singlet oxygen induced toxicity or initiate programmed cell death. Levels of <a href="/wiki/Jasmonate" title="Jasmonate">jasmonate</a> play a key role in the decision between cell acclimation or cell death in response to elevated levels of this reactive oxygen species.<sup id="cite_ref-Laloi_2015_6-1" class="reference"><a href="#cite_note-Laloi_2015-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Biological_function">Biological function</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=2" title="Edit section: Biological function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a biological context, ROS are byproducts of the normal metabolism of <a href="/wiki/Oxygen" title="Oxygen">oxygen</a>. ROS have roles in <a href="/wiki/Cell_signaling" title="Cell signaling">cell signaling</a> and <a href="/wiki/Homeostasis" title="Homeostasis">homeostasis</a>.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Devasagayam_2004_796_9-0" class="reference"><a href="#cite_note-Devasagayam_2004_796-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> ROS are intrinsic to cellular functioning, and are present at low and stationary levels in normal cells.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> In plants, ROS are involved in metabolic processes related to photoprotection and tolerance to various types of stress.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> However, ROS can cause irreversible damage to DNA as they oxidize and modify some cellular components and prevent them from performing their original functions. This suggests that ROS has a dual role; whether they will act as harmful, protective or signaling factors depends on the balance between ROS production and disposal at the right time and place.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-auto_15-0" class="reference"><a href="#cite_note-auto-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> In other words, oxygen toxicity can arise both from uncontrolled production and from the inefficient elimination of ROS by the antioxidant system. ROS were also demonstrated to modify the visual appearance of <a href="/wiki/Fish" title="Fish">fish</a>.<sup id="cite_ref-FishInteguments_16-0" class="reference"><a href="#cite_note-FishInteguments-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> This potentially affects their behavior and ecology, such as their temperature control, their visual communication, their reproduction and survival. During times of environmental stress (e.g., <a href="/wiki/Ultraviolet_light" class="mw-redirect" title="Ultraviolet light">UV</a> or heat exposure), ROS levels can increase dramatically.<sup id="cite_ref-Devasagayam_2004_796_9-1" class="reference"><a href="#cite_note-Devasagayam_2004_796-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> This may result in significant damage to cell structures. Cumulatively, this is known as <a href="/wiki/Oxidative_stress" title="Oxidative stress">oxidative stress</a>. The production of ROS is strongly influenced by stress factor responses in plants, these factors that increase ROS production include drought, salinity, chilling, defense of pathogens, nutrient deficiency, metal toxicity and <a href="/wiki/UV-B" class="mw-redirect" title="UV-B">UV-B</a> radiation. ROS are also generated by exogenous sources such as <a href="/wiki/Ionizing_radiation" title="Ionizing radiation">ionizing radiation</a><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> generating irreversible effects in the development of tissues in both animals and plants.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Sources_of_ROS_production">Sources of ROS production</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=3" title="Edit section: Sources of ROS production"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Major_cellular_sources_of_Reactive_Oxygen_Species_in_living_cells.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Major_cellular_sources_of_Reactive_Oxygen_Species_in_living_cells.jpg/220px-Major_cellular_sources_of_Reactive_Oxygen_Species_in_living_cells.jpg" decoding="async" width="220" height="293" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Major_cellular_sources_of_Reactive_Oxygen_Species_in_living_cells.jpg/330px-Major_cellular_sources_of_Reactive_Oxygen_Species_in_living_cells.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Major_cellular_sources_of_Reactive_Oxygen_Species_in_living_cells.jpg/440px-Major_cellular_sources_of_Reactive_Oxygen_Species_in_living_cells.jpg 2x" data-file-width="1200" data-file-height="1600" /></a><figcaption>Major cellular sources of ROS in living non-<a href="/wiki/Photosynthesis" title="Photosynthesis">photosynthetic</a> cells. From a review by Novo and Parola, 2008.<sup id="cite_ref-pmid19014652_19-0" class="reference"><a href="#cite_note-pmid19014652-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Nachiappan_20-0" class="reference"><a href="#cite_note-Nachiappan-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Endogenous_sources">Endogenous sources</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=4" title="Edit section: Endogenous sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>ROS are produced during the processes of respiration and photosynthesis in organelles such as <a href="/wiki/Mitochondria" class="mw-redirect" title="Mitochondria">mitochondria</a>, <a href="/wiki/Peroxisomes" class="mw-redirect" title="Peroxisomes">peroxisomes</a> and <a href="/wiki/Chloroplasts" class="mw-redirect" title="Chloroplasts">chloroplasts</a>.<sup id="cite_ref-auto_15-1" class="reference"><a href="#cite_note-auto-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Muller2000_22-0" class="reference"><a href="#cite_note-Muller2000-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-pmid11139407_23-0" class="reference"><a href="#cite_note-pmid11139407-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> During the respiration process the mitochondria convert energy for the cell into a usable form, <a href="/wiki/Adenosine_triphosphate" title="Adenosine triphosphate">adenosine triphosphate</a> (ATP). The process of ATP production in the mitochondria, called <a href="/wiki/Oxidative_phosphorylation" title="Oxidative phosphorylation">oxidative phosphorylation</a>, involves the transport of <a href="/wiki/Protons" class="mw-redirect" title="Protons">protons</a> (hydrogen ions) across the inner mitochondrial membrane by means of the <a href="/wiki/Electron_transport_chain" title="Electron transport chain">electron transport chain</a>. In the electron transport chain, electrons are passed through a series of <a href="/wiki/Protein" title="Protein">proteins</a> via oxidation-reduction reactions, with each acceptor <a href="/wiki/Protein" title="Protein">protein</a> along the chain having a greater reduction potential than the previous. The last destination for an electron along this chain is an oxygen molecule. In normal conditions, the oxygen is reduced to produce water; however, in about 0.1–2% of electrons passing through the chain (this number derives from studies in isolated mitochondria, though the exact rate in live organisms is yet to be fully agreed upon), oxygen is instead prematurely and incompletely reduced to give the <a href="/wiki/Superoxide_radical" class="mw-redirect" title="Superoxide radical">superoxide radical</a> (<sup>•</sup><span class="chemf nowrap">O<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>), most well documented for <a href="/wiki/Complex_I" class="mw-redirect" title="Complex I">Complex I</a> and <a href="/wiki/Complex_III" class="mw-redirect" title="Complex III">Complex III</a>.<sup id="cite_ref-pmid23442817_24-0" class="reference"><a href="#cite_note-pmid23442817-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p><p>Another source of ROS production in animal cells is the electron transfer reactions catalyzed by the mitochondrial <a href="/wiki/P450" class="mw-redirect" title="P450">P450</a> systems in <a href="/wiki/Steroidogenic" class="mw-redirect" title="Steroidogenic">steroidogenic</a> tissues.<sup id="cite_ref-1993-Hanukoglu_25-0" class="reference"><a href="#cite_note-1993-Hanukoglu-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> These P450 systems are dependent on the transfer of electrons from <a href="/wiki/NADPH" class="mw-redirect" title="NADPH">NADPH</a> to P450. During this process, some electrons "leak" and react with O<sub>2</sub> producing superoxide. To cope with this natural source of ROS, the steroidogenic tissues, ovary and testis, have a large concentration of <a href="/wiki/Antioxidant" title="Antioxidant">antioxidants</a> such as <a href="/wiki/Vitamin_C" title="Vitamin C">vitamin C</a> (ascorbate) and <a href="/wiki/%CE%92-carotene" class="mw-redirect" title="Β-carotene">β-carotene</a> and anti-oxidant enzymes.<sup id="cite_ref-2006-Hanukoglu_26-0" class="reference"><a href="#cite_note-2006-Hanukoglu-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p><p>If too much damage is present in mitochondria, a cell undergoes <a href="/wiki/Apoptosis" title="Apoptosis">apoptosis</a> or programmed cell death.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p><p>In addition, ROS are produced in immune cell signaling via the <a href="/wiki/NADPH_oxidase" title="NADPH oxidase">NOX</a> pathway. Phagocytic cells such as <a href="/wiki/Neutrophils" class="mw-redirect" title="Neutrophils">neutrophils</a>, <a href="/wiki/Eosinophils" class="mw-redirect" title="Eosinophils">eosinophils</a>, and mononuclear <a href="/wiki/Phagocyte" title="Phagocyte">phagocytes</a> produce ROS when stimulated.<sup id="cite_ref-Functions_of_ROS_in_Macrophages_and_29-0" class="reference"><a href="#cite_note-Functions_of_ROS_in_Macrophages_and-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p><p>In <a href="/wiki/Chloroplasts" class="mw-redirect" title="Chloroplasts">chloroplasts</a>, the <a href="/wiki/Carboxylation" title="Carboxylation">carboxylation</a> and oxygenation reactions catalyzed by <a href="/wiki/Rubisco" class="mw-redirect" title="Rubisco">rubisco</a> ensure that the functioning of the electron transport chain (ETC) occurs in an environment rich in O<sub>2</sub>. The leakage of electrons in the ETC will inevitably produce ROS within the chloroplasts.<sup id="cite_ref-auto_15-2" class="reference"><a href="#cite_note-auto-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> ETC in photosystem I (PSI) was once believed to be the only source of ROS in chloroplasts. The flow of electrons from the excited reaction centers is directed to the <a href="/wiki/NADP" class="mw-redirect" title="NADP">NADP</a> and these are reduced to NADPH, and then they enter the <a href="/wiki/Calvin_cycle" title="Calvin cycle">Calvin cycle</a> and reduce the final electron acceptor, CO<sub>2</sub>.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> In cases where there is an ETC overload, part of the electron flow is diverted from <a href="/wiki/Ferredoxin" title="Ferredoxin">ferredoxin</a> to O<sub>2</sub>, forming the superoxide free radical (by the <a href="/wiki/Mehler_reaction" title="Mehler reaction">Mehler reaction</a>). In addition, electron leakage to O<sub>2</sub> can also occur from the 2Fe-2S and 4Fe-4S clusters in the PSI ETC. However, PSII also provides electron leakage locations (QA, QB) for O<sub>2</sub>-producing O<sub>2</sub>-.<sup id="cite_ref-auto2_32-0" class="reference"><a href="#cite_note-auto2-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> Superoxide (O<sub>2</sub>-) is generated from PSII, instead of PSI; QB is shown as the location for the generation of O<sub>2</sub>•-.<sup id="cite_ref-auto2_32-1" class="reference"><a href="#cite_note-auto2-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Exogenous_sources">Exogenous sources</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=5" title="Edit section: Exogenous sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The formation of ROS can be stimulated by a variety of agents such as pollutants, <a href="/wiki/Heavy_metals" class="mw-redirect" title="Heavy metals">heavy metals</a>,<sup id="cite_ref-Nachiappan_20-1" class="reference"><a href="#cite_note-Nachiappan-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Tobacco" title="Tobacco">tobacco</a>, smoke, drugs, <a href="/wiki/Xenobiotics" class="mw-redirect" title="Xenobiotics">xenobiotics</a>, <a href="/wiki/Microplastics" title="Microplastics">microplastics</a>, or radiation. In plants, in addition to the action of dry <a href="/wiki/Abiotic_factor" class="mw-redirect" title="Abiotic factor">abiotic factors</a>, high temperature, interaction with other living beings can influence the production of ROS.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (September 2024)">citation needed</span></a></i>&#93;</sup> </p><p>Ionizing radiation can generate damaging intermediates through the interaction with water, a process termed <a href="/wiki/Radiolysis" title="Radiolysis">radiolysis</a>. Since water comprises 55–60% of the human body, the probability of radiolysis is quite high under the presence of ionizing radiation. In the process, water loses an electron and becomes highly reactive. Then through a three-step chain reaction, water is sequentially converted to <a href="/wiki/Hydroxyl_radical" title="Hydroxyl radical">hydroxyl radical</a> (<sup>•</sup>OH), <a href="/wiki/Hydrogen_peroxide" title="Hydrogen peroxide">hydrogen peroxide</a> (H<sub>2</sub>O<sub>2</sub>), <a href="/wiki/Superoxide_radical" class="mw-redirect" title="Superoxide radical">superoxide radical</a> (<sup>•</sup><span class="chemf nowrap">O<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>), and ultimately <a href="/wiki/Oxygen" title="Oxygen">oxygen</a> (O<sub>2</sub>).<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (September 2024)">citation needed</span></a></i>&#93;</sup> </p><p>The <a href="/wiki/Hydroxyl_radical" title="Hydroxyl radical">hydroxyl radical</a> is extremely reactive and immediately removes electrons from any molecule in its path, turning that molecule into a free radical and thus propagating a chain reaction. However, <a href="/wiki/Hydrogen_peroxide" title="Hydrogen peroxide">hydrogen peroxide</a> is actually more damaging to DNA than the hydroxyl radical, since the lower reactivity of hydrogen peroxide provides enough time for the molecule to travel into the nucleus of the cell, subsequently reacting with macromolecules such as DNA.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2019)">citation needed</span></a></i>&#93;</sup> </p><p>In plants, the production of ROS occurs during events of abiotic stress that lead to a reduction or interruption of metabolic activity. For example, the increase in temperature, drought are factors that limit the availability of CO<sub>2</sub> due to <a href="/wiki/Stomata" class="mw-redirect" title="Stomata">stomatal</a> closure, increasing the production of ROS, such as O<sub>2</sub>·- and <sup>1</sup>O<sub>2</sub> in chloroplasts.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-auto1_35-0" class="reference"><a href="#cite_note-auto1-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> The production of <sup>1</sup>O<sub>2</sub> in chloroplasts can cause reprogramming of the expression of nucleus genes leading to <a href="/wiki/Chlorosis" title="Chlorosis">chlorosis</a> and <a href="/wiki/Apoptosis" title="Apoptosis">programmed cell death</a>.<sup id="cite_ref-auto1_35-1" class="reference"><a href="#cite_note-auto1-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> In cases of biotic stress, the generation of ROS occurs quickly and weakly initially and then becomes more solid and lasting.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> The first phase of ROS accumulation is associated with plant infection and is probably independent of the synthesis of new ROS-generating <a href="/wiki/Enzyme" title="Enzyme">enzymes</a>. However, the second phase of ROS accumulation is associated only with infection by non-virulent pathogens and is an induced response dependent on increased <a href="/wiki/MRNA" class="mw-redirect" title="MRNA">mRNA</a> transcription encoding enzymes. </p> <div class="mw-heading mw-heading2"><h2 id="Antioxidant_enzymes">Antioxidant enzymes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=6" title="Edit section: Antioxidant enzymes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Superoxide_dismutase">Superoxide dismutase</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=7" title="Edit section: Superoxide dismutase"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Superoxide_dismutase" title="Superoxide dismutase">Superoxide dismutase</a></div> <p><a href="/wiki/Superoxide_dismutase" title="Superoxide dismutase">Superoxide dismutases</a> (SOD) are a class of enzymes that catalyzes the dismutation of superoxide into oxygen and hydrogen peroxide. As such, they are an important <a href="/wiki/Antioxidant" title="Antioxidant">antioxidant</a> defense in nearly all cells exposed to oxygen. In mammals and most chordates, three forms of superoxide dismutase are present. SOD1 is located primarily in the cytoplasm, SOD2 in the mitochondria and SOD3 is extracellular. The first is a dimer (consists of two units), while the others are tetramers (four subunits). SOD1 and SOD3 contain copper and zinc ions, while SOD2 has a manganese ion in its reactive centre. The genes are located on chromosomes 21, 6, and 4, respectively (21q22.1, 6q25.3 and 4p15.3-p15.1).<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (September 2024)">citation needed</span></a></i>&#93;</sup> </p><p>The SOD-catalysed <a href="/wiki/Dismutation" class="mw-redirect" title="Dismutation">dismutation</a> of <a href="/wiki/Superoxide" title="Superoxide">superoxide</a> may be written with the following half-reactions: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\ce {M}}^{(n+1)+}+{\ce {O2- -&gt;[SOD]}}\ {\ce {M}}^{n+}+{\ce {O2}}\\&amp;{\ce {M}}^{n+}+{\ce {O2- + 2H+ -&gt;[] [SOD]}}\ {\ce {M}}^{(n+1)+}+{\ce {H2O2}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>M</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mtext>O</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msubsup> <mrow class="MJX-TeXAtom-REL"> <mover> <mo>&#x2192;</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mi>S</mi> <mi>O</mi> <mi>D</mi> </mpadded> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>M</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mtext>O</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>M</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mtext>O</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msubsup> <mo>+</mo> <mn>2</mn> <mspace width="thinmathspace" /> <msup> <mtext>H</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">&#x27F6;<!-- ⟶ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mtext>SOD</mtext> <mo stretchy="false">]</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>M</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mtext>H</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <msubsup> <mtext>O</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\ce {M}}^{(n+1)+}+{\ce {O2- -&gt;[SOD]}}\ {\ce {M}}^{n+}+{\ce {O2}}\\&amp;{\ce {M}}^{n+}+{\ce {O2- + 2H+ -&gt;[] [SOD]}}\ {\ce {M}}^{(n+1)+}+{\ce {H2O2}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbfbaf04f7e7f9d30462802e9722ec06e07e20dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.102ex; margin-top: -0.408ex; margin-bottom: -0.236ex; width:47.537ex; height:8.009ex;" alt="{\displaystyle {\begin{aligned}&amp;{\ce {M}}^{(n+1)+}+{\ce {O2- -&gt;[SOD]}}\ {\ce {M}}^{n+}+{\ce {O2}}\\&amp;{\ce {M}}^{n+}+{\ce {O2- + 2H+ -&gt;[] [SOD]}}\ {\ce {M}}^{(n+1)+}+{\ce {H2O2}}\end{aligned}}}"></span></dd></dl> <p>where M&#160;=&#160;<a href="/wiki/Copper" title="Copper">Cu</a> (<span class="texhtml"><i>n</i> = 1</span>); <a href="/wiki/Manganese" title="Manganese">Mn</a> (<span class="texhtml"><i>n</i> = 2</span>); <a href="/wiki/Iron" title="Iron">Fe</a> (<span class="texhtml"><i>n</i> = 2</span>); <a href="/wiki/Nickel" title="Nickel">Ni</a> (<span class="texhtml"><i>n</i> = 2</span>). In this reaction the <a href="/wiki/Oxidation_state" title="Oxidation state">oxidation state</a> of the metal cation oscillates between <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml"><i>n</i> + 1</span>. </p><p><a href="/wiki/Catalase" title="Catalase">Catalase</a>, which is concentrated in <a href="/wiki/Peroxisomes" class="mw-redirect" title="Peroxisomes">peroxisomes</a> located next to mitochondria, reacts with the hydrogen peroxide to catalyze the formation of water and oxygen. <a href="/wiki/Glutathione_peroxidase" title="Glutathione peroxidase">Glutathione peroxidase</a> reduces hydrogen peroxide by transferring the energy of the reactive peroxides to a sulfur-containing <a href="/wiki/Tripeptide" title="Tripeptide">tripeptide</a> called <a href="/wiki/Glutathione" title="Glutathione">glutathione</a>. The sulfur contained in these enzymes acts as the reactive center, carrying reactive electrons from the peroxide to the glutathione. <a href="/wiki/Peroxiredoxins" class="mw-redirect" title="Peroxiredoxins">Peroxiredoxins</a> also degrade <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">H<sub class="template-chem2-sub">2</sub>O<sub class="template-chem2-sub">2</sub></span>, within the mitochondria, cytosol, and nucleus. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\ce {2H2O2-&gt;[{\text{catalase}}]2H2O{}+O2}}\\&amp;{\ce {2GSH{}+H2O2-&gt;[][{\text{glutathione}} \atop {\text{peroxidase}}]GS-SG{}+2H2O}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mspace width="thinmathspace" /> <msubsup> <mtext>H</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <msubsup> <mtext>O</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mrow class="MJX-TeXAtom-REL"> <mover> <mo>&#x2192;</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mrow class="MJX-TeXAtom-ORD"> <mtext>catalase</mtext> </mrow> </mpadded> </mover> </mrow> <mn>2</mn> <mspace width="thinmathspace" /> <msubsup> <mtext>H</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mtext>O</mtext> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <msubsup> <mtext>O</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mspace width="thinmathspace" /> <mtext>GSH</mtext> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <msubsup> <mtext>H</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <msubsup> <mtext>O</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mrow class="MJX-TeXAtom-REL"> <munderover> <mo>&#x2192;</mo> <mpadded width="+0.611em" lspace="0.278em" voffset="-.24em"> <mfrac linethickness="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>glutathione</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>peroxidase</mtext> </mrow> </mfrac> </mpadded> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em" /> </munderover> </mrow> <mtext>GS</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> <mtext>SG</mtext> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mn>2</mn> <mspace width="thinmathspace" /> <msubsup> <mtext>H</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mtext>O</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\ce {2H2O2-&gt;[{\text{catalase}}]2H2O{}+O2}}\\&amp;{\ce {2GSH{}+H2O2-&gt;[][{\text{glutathione}} \atop {\text{peroxidase}}]GS-SG{}+2H2O}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/699aacd6aea04d8ae2454398770976661e745d19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.311ex; margin-top: -0.365ex; margin-bottom: -0.527ex; width:42.472ex; height:10.676ex;" alt="{\displaystyle {\begin{aligned}&amp;{\ce {2H2O2-&gt;[{\text{catalase}}]2H2O{}+O2}}\\&amp;{\ce {2GSH{}+H2O2-&gt;[][{\text{glutathione}} \atop {\text{peroxidase}}]GS-SG{}+2H2O}}\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Damaging_effects">Damaging effects</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=8" title="Edit section: Damaging effects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Frame"><a href="/wiki/File:Free_Radical_Toxicity.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Free_Radical_Toxicity.svg/603px-Free_Radical_Toxicity.svg.png" decoding="async" width="603" height="652" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Free_Radical_Toxicity.svg/905px-Free_Radical_Toxicity.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Free_Radical_Toxicity.svg/1206px-Free_Radical_Toxicity.svg.png 2x" data-file-width="603" data-file-height="652" /></a><figcaption>Free radical mechanisms in tissue injury. Free radical toxicity induced by xenobiotics and the subsequent detoxification by cellular enzymes (termination).</figcaption></figure> <p>Effects of ROS on cell metabolism are well documented in a variety of species.<sup id="cite_ref-Nachiappan_20-2" class="reference"><a href="#cite_note-Nachiappan-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> These include not only roles in <a href="/wiki/Apoptosis" title="Apoptosis">apoptosis</a> (programmed cell death) but also positive effects such as the induction of host defence<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Genes" class="mw-redirect" title="Genes">genes</a> and mobilization of <a href="/wiki/Ion_transporter" title="Ion transporter">ion transporters</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2009)">citation needed</span></a></i>&#93;</sup> This implicates them in control of cellular function. In particular, <a href="/wiki/Platelets" class="mw-redirect" title="Platelets">platelets</a> involved in <a href="/wiki/Wound" title="Wound">wound</a> repair and <a href="/wiki/Blood" title="Blood">blood</a> <a href="/wiki/Homeostasis" title="Homeostasis">homeostasis</a> release ROS to recruit additional platelets to sites of <a href="/wiki/Injury" title="Injury">injury</a>. These also provide a link to the adaptive <a href="/wiki/Immune_system" title="Immune system">immune system</a> via the recruitment of <a href="/wiki/Leukocyte" class="mw-redirect" title="Leukocyte">leukocytes</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2009)">citation needed</span></a></i>&#93;</sup> </p><p>Reactive oxygen species are implicated in cellular activity to a variety of inflammatory responses including <a href="/wiki/Cardiovascular_disease" title="Cardiovascular disease">cardiovascular disease</a>. They may also be involved in <a href="/wiki/Hearing_impairment" class="mw-redirect" title="Hearing impairment">hearing impairment</a> via <a href="/wiki/Cochlea" title="Cochlea">cochlear</a> damage induced by <a href="/wiki/Noise_health_effects" class="mw-redirect" title="Noise health effects">elevated sound levels</a>, in <a href="/wiki/Ototoxicity" title="Ototoxicity">ototoxicity</a> of drugs such as <a href="/wiki/Cisplatin" title="Cisplatin">cisplatin</a>, and in congenital deafness in both animals and humans.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2009)">citation needed</span></a></i>&#93;</sup> ROS are also implicated in mediation of <a href="/wiki/Apoptosis" title="Apoptosis">apoptosis</a> or programmed cell death and <a href="/wiki/Ischaemic" class="mw-redirect" title="Ischaemic">ischaemic</a> injury. Specific examples include <a href="/wiki/Stroke" title="Stroke">stroke</a> and <a href="/wiki/Myocardial_infarction" title="Myocardial infarction">heart attack</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2009)">citation needed</span></a></i>&#93;</sup> </p><p>In general, the harmful effects of reactive oxygen species on the cell are the damage of DNA or RNA, oxidation of polyunsaturated fatty acids in lipids (<a href="/wiki/Lipid_peroxidation" title="Lipid peroxidation">lipid peroxidation</a>), oxidation of amino acids in proteins, and oxidative deactivation of specific enzymes by oxidation co-factors.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Pathogen_response">Pathogen response</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=9" title="Edit section: Pathogen response"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When a plant recognizes an attacking pathogen, one of the first induced reactions is to rapidly produce <a href="/wiki/Superoxide" title="Superoxide">superoxide</a> (<span class="chemf nowrap">O<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>) or <a href="/wiki/Hydrogen_peroxide" title="Hydrogen peroxide">hydrogen peroxide</a> (<span class="chemf nowrap">H<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>O<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>) to strengthen the cell wall. This prevents the spread of the pathogen to other parts of the plant, essentially forming a net around the pathogen to restrict movement and reproduction. </p><p>In the mammalian host, ROS is induced as an antimicrobial defense.<sup id="cite_ref-Functions_of_ROS_in_Macrophages_and_29-1" class="reference"><a href="#cite_note-Functions_of_ROS_in_Macrophages_and-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> To highlight the importance of this defense, individuals with <a href="/wiki/Chronic_granulomatous_disease" title="Chronic granulomatous disease">chronic granulomatous disease</a> who have deficiencies in generating ROS, are highly susceptible to infection by a broad range of microbes including <i><a href="/wiki/Salmonella_enterica" title="Salmonella enterica">Salmonella enterica</a></i>, <i><a href="/wiki/Staphylococcus_aureus" title="Staphylococcus aureus">Staphylococcus aureus</a></i>, <i><a href="/wiki/Serratia_marcescens" title="Serratia marcescens">Serratia marcescens</a></i>, and <i><a href="/wiki/Aspergillus" title="Aspergillus">Aspergillus</a></i> spp. </p><p>Studies on the <a href="/wiki/Homeostasis" title="Homeostasis">homeostasis</a> of the <i><a href="/wiki/Drosophila_melanogaster" title="Drosophila melanogaster">Drosophila melanogaster</a>'</i>s intestines have shown the production of ROS as a key component of the immune response in the gut of the fly. ROS acts both as a bactericide, damaging the bacterial DNA, RNA and proteins, as well as a signalling molecule that induces repair mechanisms of the <a href="/wiki/Epithelium" title="Epithelium">epithelium</a>.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Uracil" title="Uracil">uracil</a> released by microorganism triggers the production and activity of DUOX, the ROS-producing enzyme in the intestine. DUOX activity is induced according to the level of uracil in the gut; under basal conditions, it is down-regulated by the protein kinase <a href="/wiki/Mitogen-activated_protein_kinase" title="Mitogen-activated protein kinase">MkP3</a>. The tight regulation of DUOX avoids excessive production of ROS and facilitates differentiation between benign and damage-inducing microorganisms in the gut.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p><p>The manner in which ROS defends the host from invading microbe is not fully understood. One of the more likely modes of defense is damage to microbial DNA. Studies using <i>Salmonella</i> demonstrated that DNA repair mechanisms were required to resist killing by ROS. A role for ROS in antiviral defense mechanisms has been demonstrated via Rig-like helicase-1 and mitochondrial antiviral signaling protein. Increased levels of ROS potentiate signaling through this mitochondria-associated antiviral receptor to activate interferon regulatory factor (IRF)-3, IRF-7, and nuclear factor kappa B (NF-κB), resulting in an antiviral state.<sup id="cite_ref-pmid21597473_42-0" class="reference"><a href="#cite_note-pmid21597473-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> Respiratory epithelial cells induce mitochondrial ROS in response to influenza infection. This induction of ROS led to the induction of type III interferon and the induction of an antiviral state, limiting viral replication.<sup id="cite_ref-pmid23786562_43-0" class="reference"><a href="#cite_note-pmid23786562-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> In host defense against mycobacteria, ROS play a role, although direct killing is likely not the key mechanism; rather, ROS likely affect ROS-dependent signalling controls, such as cytokine production, autophagy, and granuloma formation.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> </p><p>Reactive oxygen species are also implicated in activation, <a href="/wiki/Clonal_anergy" title="Clonal anergy">anergy</a> and apoptosis of <a href="/wiki/T_cells" class="mw-redirect" title="T cells">T cells</a>.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Oxidative_damage">Oxidative damage</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=10" title="Edit section: Oxidative damage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Aerobic_organism" title="Aerobic organism">aerobic organisms</a> the energy needed to fuel biological functions is produced in the <a href="/wiki/Mitochondria" class="mw-redirect" title="Mitochondria">mitochondria</a> via the <a href="/wiki/Electron_transport_chain" title="Electron transport chain">electron transport chain</a>. Reactive oxygen species (ROS) with the potential to cause <a href="/wiki/Cell_(biology)" title="Cell (biology)">cellular</a> damage are produced along with the release of energy. ROS can damage lipids, <a href="/wiki/DNA" title="DNA">DNA</a>, <a href="/wiki/RNA" title="RNA">RNA</a>, and proteins, which, in theory, contributes to the <a href="/wiki/Physiology" title="Physiology">physiology</a> of <a href="/wiki/Aging" class="mw-redirect" title="Aging">aging</a>. </p><p>ROS are produced as a normal product of <a href="/wiki/Cellular_metabolism" class="mw-redirect" title="Cellular metabolism">cellular metabolism</a>. In particular, one major contributor to oxidative damage is <a href="/wiki/Hydrogen_peroxide" title="Hydrogen peroxide">hydrogen peroxide</a> (H<sub>2</sub>O<sub>2</sub>), which is converted from <a href="/wiki/Superoxide" title="Superoxide">superoxide</a> that leaks from the mitochondria. <a href="/wiki/Catalase" title="Catalase">Catalase</a> and <a href="/wiki/Superoxide_dismutase" title="Superoxide dismutase">superoxide dismutase</a> ameliorate the damaging effects of hydrogen peroxide and superoxide, respectively, by converting these compounds into <a href="/wiki/Oxygen" title="Oxygen">oxygen</a> and <a href="/wiki/Hydrogen_peroxide" title="Hydrogen peroxide">hydrogen peroxide</a> (which is later converted to water), resulting in the production of <a href="/wiki/Benign" class="mw-redirect" title="Benign">benign</a> <a href="/wiki/Molecule" title="Molecule">molecules</a>. However, this conversion is not 100% efficient, and residual peroxides persist in the cell. While ROS are produced as a product of normal cellular functioning, excessive amounts can cause deleterious effects.<sup id="cite_ref-isbn0-8247-1723-6_47-0" class="reference"><a href="#cite_note-isbn0-8247-1723-6-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Impairment_of_cognitive_function">Impairment of cognitive function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=11" title="Edit section: Impairment of cognitive function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Memory capabilities decline with age, evident in human degenerative diseases such as <a href="/wiki/Alzheimer%27s_disease" title="Alzheimer&#39;s disease">Alzheimer's disease</a>, which is accompanied by an accumulation of oxidative damage. Current studies demonstrate that the accumulation of ROS can decrease an organism's <a href="/wiki/Physical_fitness" title="Physical fitness">fitness</a> because oxidative damage is a contributor to senescence. In particular, the accumulation of oxidative damage may lead to cognitive dysfunction, as demonstrated in a study in which old rats were given mitochondrial <a href="/wiki/Metabolite" title="Metabolite">metabolites</a> and then given <a href="/wiki/Cognitive_tests" class="mw-redirect" title="Cognitive tests">cognitive tests</a>. Results showed that the <a href="/wiki/Rat" title="Rat">rats</a> performed better after receiving the metabolites, suggesting that the metabolites reduced oxidative damage and improved mitochondrial function.<sup id="cite_ref-pmid11854529_48-0" class="reference"><a href="#cite_note-pmid11854529-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> Accumulating oxidative damage can then affect the efficiency of mitochondria and further increase the rate of ROS production.<sup id="cite_ref-pmid1355616_49-0" class="reference"><a href="#cite_note-pmid1355616-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> The accumulation of oxidative damage and its implications for aging depends on the particular <a href="/wiki/Tissue_(biology)" title="Tissue (biology)">tissue</a> type where the damage is occurring. Additional experimental results suggest that oxidative damage is responsible for age-related decline in <a href="/wiki/Brain" title="Brain">brain</a> functioning. Older <a href="/wiki/Gerbil" class="mw-redirect" title="Gerbil">gerbils</a> were found to have higher levels of oxidized protein in comparison to younger gerbils. Treatment of old and young <a href="/wiki/Mice" class="mw-redirect" title="Mice">mice</a> with a <a href="/wiki/Spin_trapping" title="Spin trapping">spin trapping</a> compound caused a decrease in the level of oxidized proteins in older gerbils but did not have an effect on younger gerbils. In addition, older gerbils performed cognitive tasks better during treatment but ceased functional capacity when treatment was discontinued, causing oxidized protein levels to increase. This led researchers to conclude that oxidation of cellular proteins is potentially important for brain function.<sup id="cite_ref-CarneyStarke-Reed1991_50-0" class="reference"><a href="#cite_note-CarneyStarke-Reed1991-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Cause_of_aging">Cause of aging</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=12" title="Edit section: Cause of aging"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>According to the <a href="/wiki/Free_radical_theory_of_aging" class="mw-redirect" title="Free radical theory of aging">free radical theory of aging</a>, oxidative damage initiated by reactive oxygen species is a major contributor to the functional decline that is characteristic of aging. While studies in invertebrate models indicate that animals genetically engineered to lack specific antioxidant enzymes (such as SOD), in general, show a shortened lifespan (as one would expect from the theory), the converse manipulation, increasing the levels of antioxidant enzymes, has yielded inconsistent effects on lifespan (though some studies in <i><a href="/wiki/Drosophila" title="Drosophila">Drosophila</a></i> do show that lifespan can be increased by the overexpression of MnSOD or glutathione biosynthesizing enzymes). Also contrary to this theory, deletion of <a href="/wiki/SOD2" title="SOD2">mitochondrial SOD2</a> can extend lifespan in <i><a href="/wiki/Caenorhabditis_elegans" title="Caenorhabditis elegans">Caenorhabditis elegans</a></i>.<sup id="cite_ref-pmid19197346_51-0" class="reference"><a href="#cite_note-pmid19197346-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p><p>In mice, the story is somewhat similar. Deleting antioxidant enzymes, in general, yields shorter lifespan, although overexpression studies have not (with some exceptions) consistently extended lifespan.<sup id="cite_ref-pmid17640558_52-0" class="reference"><a href="#cite_note-pmid17640558-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> Study of a rat model of premature <a href="/wiki/Ageing" title="Ageing">aging</a> found increased <a href="/wiki/Oxidative_stress" title="Oxidative stress">oxidative stress</a>, reduced <a href="/wiki/Antioxidant" title="Antioxidant">antioxidant</a> enzyme activity and substantially greater <a href="/wiki/DNA_damage_(naturally_occurring)" title="DNA damage (naturally occurring)">DNA damage</a> in the brain <a href="/wiki/Neocortex" title="Neocortex">neocortex</a> and <a href="/wiki/Hippocampus" title="Hippocampus">hippocampus</a> of the prematurely aged rats than in normally aging control rats.<sup id="cite_ref-pmid24709042_53-0" class="reference"><a href="#cite_note-pmid24709042-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> The DNA damage <a href="/wiki/8-Oxo-2%27-deoxyguanosine" title="8-Oxo-2&#39;-deoxyguanosine">8-OHdG</a> is a product of ROS interaction with DNA. Numerous studies have shown that <a href="/wiki/8-Oxo-2%27-deoxyguanosine" title="8-Oxo-2&#39;-deoxyguanosine">8-OHdG</a> increases with age<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> (see <a href="/wiki/DNA_damage_theory_of_aging" title="DNA damage theory of aging">DNA damage theory of aging</a>). </p> <div class="mw-heading mw-heading2"><h2 id="Cancer">Cancer</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=13" title="Edit section: Cancer"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>ROS are constantly generated and eliminated in the biological system and are required to drive regulatory pathways.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> Under normal physiological conditions, cells control ROS levels by balancing the generation of ROS with their elimination by scavenging systems. But under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids and DNA, leading to fatal lesions in the cell that contribute to carcinogenesis. </p><p>Cancer cells exhibit greater ROS stress than normal cells do, partly due to oncogenic stimulation, increased metabolic activity and mitochondrial malfunction. ROS is a double-edged sword. On one hand, at low levels, ROS facilitates cancer cell survival since cell-cycle progression driven by growth factors and receptor tyrosine kinases (RTK) require ROS for activation<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> and chronic inflammation, a major mediator of cancer, is regulated by ROS. On the other hand, a high level of ROS can suppress tumor growth through the sustained activation of cell-cycle inhibitor<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> and induction of cell death as well as senescence by damaging macromolecules. In fact, most of the chemotherapeutic and radiotherapeutic agents kill cancer cells by augmenting ROS stress.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> The ability of cancer cells to distinguish between ROS as a survival or apoptotic signal is controlled by the dosage, duration, type, and site of ROS production. Modest levels of ROS are required for cancer cells to survive, whereas excessive levels kill them. </p><p>Metabolic adaptation in tumours balances the cells' need for energy with equally important need for macromolecular building blocks and tighter control of redox balance. As a result, production of <a href="/wiki/NADPH" class="mw-redirect" title="NADPH">NADPH</a> is greatly enhanced, which functions as a cofactor to provide reducing power in many enzymatic reactions for macromolecular biosynthesis and at the same time rescuing the cells from excessive ROS produced during rapid proliferation. Cells counterbalance the detrimental effects of ROS by producing antioxidant molecules, such as reduced glutathione (GSH) and thioredoxin (TRX), which rely on the reducing power of NADPH to maintain their activities.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> </p><p>Most risk factors associated with cancer interact with cells through the generation of ROS. ROS then activate various transcription factors such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein-1 (AP-1), hypoxia-inducible factor-1α and signal transducer and activator of transcription 3 (STAT3), leading to expression of proteins that control inflammation; cellular transformation; tumor cell survival; tumor cell proliferation; and invasion, angiogenesis as well as metastasis. And ROS also control the expression of various tumor suppressor genes such as p53, retinoblastoma gene (Rb), and phosphatase and tensin homolog (PTEN).<sup id="cite_ref-pmid22117137_62-0" class="reference"><a href="#cite_note-pmid22117137-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Carcinogenesis">Carcinogenesis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=14" title="Edit section: Carcinogenesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>ROS-related oxidation of DNA is one of the main causes of mutations, which can produce several types of DNA damage, including non-bulky (8-oxoguanine and formamidopyrimidine) and bulky (cyclopurine and etheno adducts) base modifications, abasic sites, non-conventional single-strand breaks, protein-DNA adducts, and intra/interstrand DNA crosslinks.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> It has been estimated that endogenous ROS produced via normal cell metabolism modify approximately 20,000 bases of DNA per day in a single cell. 8-oxoguanine is the most abundant among various oxidized nitrogeneous bases observed. During DNA replication, DNA polymerase mispairs 8-oxoguanine with adenine, leading to a G→T transversion mutation. The resulting genomic instability directly contributes to carcinogenesis. Cellular transformation leads to cancer and interaction of atypical PKC-ζ isoform with p47phox controls ROS production and transformation from apoptotic cancer stem cells through <a href="/wiki/Blebbishield_emergency_program" title="Blebbishield emergency program">blebbishield emergency program</a>.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Cell_proliferation">Cell proliferation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=15" title="Edit section: Cell proliferation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Uncontrolled proliferation is a hallmark of cancer cells. Both exogenous and endogenous ROS have been shown to enhance proliferation of cancer cells. The role of ROS in promoting tumor proliferation is further supported by the observation that agents with potential to inhibit ROS generation can also inhibit cancer cell proliferation.<sup id="cite_ref-pmid22117137_62-1" class="reference"><a href="#cite_note-pmid22117137-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> Although ROS can promote tumor cell proliferation, a great increase in ROS has been associated with reduced cancer cell proliferation by induction of G2/M cell cycle arrest; increased phosphorylation of <a href="/wiki/ATM_serine/threonine_kinase" title="ATM serine/threonine kinase">ataxia telangiectasia mutated</a> (ATM), checkpoint kinase 1 (Chk 1), Chk 2; and reduced cell division cycle 25 homolog c (CDC25).<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Cell_death">Cell death</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=16" title="Edit section: Cell death"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A cancer cell can die in three ways: <a href="/wiki/Apoptosis" title="Apoptosis">apoptosis</a>, <a href="/wiki/Necrosis" title="Necrosis">necrosis</a>, and <a href="/wiki/Autophagy" title="Autophagy">autophagy</a>. Excessive ROS can induce apoptosis through both the extrinsic and intrinsic pathways.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> In the extrinsic pathway of apoptosis, ROS are generated by Fas ligand as an upstream event for Fas activation via phosphorylation, which is necessary for subsequent recruitment of Fas-associated protein with death domain and caspase 8 as well as apoptosis induction.<sup id="cite_ref-pmid22117137_62-2" class="reference"><a href="#cite_note-pmid22117137-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> In the intrinsic pathway, ROS function to facilitate cytochrome c release by activating pore-stabilizing proteins (Bcl-2 and Bcl-xL) as well as inhibiting pore-destabilizing proteins (Bcl-2-associated X protein, Bcl-2 homologous antagonist/killer).<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> The intrinsic pathway is also known as the caspase cascade and is induced through mitochondrial damage which triggers the release of cytochrome c. DNA damage, oxidative stress, and loss of mitochondrial membrane potential lead to the release of the pro-apoptotic proteins mentioned above stimulating apoptosis.<sup id="cite_ref-pmid17717517_69-0" class="reference"><a href="#cite_note-pmid17717517-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> Mitochondrial damage is closely linked to apoptosis and since mitochondria are easily targeted there is potential for cancer therapy.<sup id="cite_ref-pmid20467424_70-0" class="reference"><a href="#cite_note-pmid20467424-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> </p><p>The cytotoxic nature of ROS is a driving force behind apoptosis, but in even higher amounts, ROS can result in both apoptosis and necrosis, a form of uncontrolled cell death, in cancer cells.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> </p><p>Numerous studies have shown the pathways and associations between ROS levels and apoptosis, but a newer line of study has connected ROS levels and autophagy.<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> ROS can also induce cell death through autophagy, which is a self-catabolic process involving sequestration of cytoplasmic contents (exhausted or damaged organelles and protein aggregates) for degradation in lysosomes.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> Therefore, autophagy can also regulate the cell's health in times of oxidative stress. Autophagy can be induced by ROS levels through many pathways in the cell in an attempt to dispose of harmful organelles and prevent damage, such as carcinogens, without inducing apoptosis.<sup id="cite_ref-sciencedirect.com_74-0" class="reference"><a href="#cite_note-sciencedirect.com-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> Autophagic cell death can be prompted by the over expression of autophagy where the cell digests too much of itself in an attempt to minimize the damage and can no longer survive. When this type of cell death occurs, an increase or loss of control of autophagy regulating genes is commonly co-observed.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> Thus, once a more in-depth understanding of autophagic cell death is attained and its relation to ROS, this form of programmed cell death may serve as a future cancer therapy. Autophagy and apoptosis are distinct mechanisms for cell death brought on by high levels of ROS. Aautophagy and apoptosis, however, rarely act through strictly independent pathways. There is a clear connection between ROS and autophagy and a correlation seen between excessive amounts of ROS leading to apoptosis.<sup id="cite_ref-sciencedirect.com_74-1" class="reference"><a href="#cite_note-sciencedirect.com-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> The depolarization of the mitochondrial membrane is also characteristic of the initiation of autophagy. When mitochondria are damaged and begin to release ROS, autophagy is initiated to dispose of the damaging organelle. If a drug targets mitochondria and creates ROS, autophagy may dispose of so many mitochondria and other damaged organelles that the cell is no longer viable. The extensive amount of ROS and mitochondrial damage may also signal for apoptosis. The balance of autophagy within the cell and the crosstalk between autophagy and apoptosis mediated by ROS is crucial for a cell's survival. This crosstalk and connection between autophagy and apoptosis could be a mechanism targeted by cancer therapies or used in combination therapies for highly resistant cancers. </p> <div class="mw-heading mw-heading3"><h3 id="Tumor_cell_invasion,_angiogenesis_and_metastasis"><span id="Tumor_cell_invasion.2C_angiogenesis_and_metastasis"></span>Tumor cell invasion, angiogenesis and metastasis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=17" title="Edit section: Tumor cell invasion, angiogenesis and metastasis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>After growth factor stimulation of RTKs, ROS can trigger activation of signaling pathways involved in cell migration and invasion such as members of the mitogen activated protein kinase (MAPK) family – extracellular regulated kinase (ERK), c-jun NH-2 terminal kinase (JNK) and p38 MAPK. ROS can also promote migration by augmenting phosphorylation of the focal adhesion kinase (FAK) p130Cas and paxilin.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> </p><p>Both in vitro and in vivo, ROS have been shown to induce transcription factors and modulate signaling molecules involved in angiogenesis (MMP, VEGF) and metastasis (upregulation of AP-1, CXCR4, AKT and downregulation of PTEN).<sup id="cite_ref-pmid22117137_62-3" class="reference"><a href="#cite_note-pmid22117137-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Chronic_inflammation_and_cancer">Chronic inflammation and cancer</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=18" title="Edit section: Chronic inflammation and cancer"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Experimental and epidemiologic research over the past several years has indicated close associations among ROS, chronic inflammation, and cancer.<sup id="cite_ref-pmid22117137_62-4" class="reference"><a href="#cite_note-pmid22117137-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> ROS induces chronic inflammation by the induction of COX-2, inflammatory cytokines (TNFα, interleukin 1 (IL-1), IL-6), chemokines (IL-8, CXCR4) and pro-inflammatory transcription factors (NF-κB).<sup id="cite_ref-pmid22117137_62-5" class="reference"><a href="#cite_note-pmid22117137-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> These chemokines and chemokine receptors, in turn, promote invasion and metastasis of various tumor types. </p> <div class="mw-heading mw-heading3"><h3 id="Cancer_therapy">Cancer therapy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=19" title="Edit section: Cancer therapy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Open_source_and_reduced_expenditure_ROS_generation_strategy.pdf" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Open_source_and_reduced_expenditure_ROS_generation_strategy.pdf/page1-220px-Open_source_and_reduced_expenditure_ROS_generation_strategy.pdf.jpg" decoding="async" width="220" height="174" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Open_source_and_reduced_expenditure_ROS_generation_strategy.pdf/page1-330px-Open_source_and_reduced_expenditure_ROS_generation_strategy.pdf.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Open_source_and_reduced_expenditure_ROS_generation_strategy.pdf/page1-440px-Open_source_and_reduced_expenditure_ROS_generation_strategy.pdf.jpg 2x" data-file-width="900" data-file-height="712" /></a><figcaption>The scheme of fabrication process and therapeutic mechanism of thermo-responsive (MSNs@CaO2-ICG)@LA NPs for synergistic CDT/PDT with H2O2/O2 self-supply and GSH depletion</figcaption></figure> <p>Both ROS-elevating and ROS-eliminating strategies have been developed with the former being predominantly used. Cancer cells with elevated ROS levels depend heavily on the antioxidant defense system. ROS-elevating drugs further increase cellular ROS stress level, either by direct ROS-generation (e.g. motexafin gadolinium, elesclomol) or by agents that abrogate the inherent antioxidant system such as SOD inhibitor (e.g. ATN-224, 2-methoxyestradiol) and GSH inhibitor (e.g. PEITC, buthionine sulfoximine (BSO)). The result is an overall increase in endogenous ROS, which when above a cellular tolerability threshold, may induce cell death.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> On the other hand, normal cells appear to have, under lower basal stress and reserve, a higher capacity to cope with additional ROS-generating insults than cancer cells do.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> Therefore, the elevation of ROS in all cells can be used to achieve the selective killing of cancer cells. </p><p>Radiotherapy also relies on ROS toxicity to eradicate tumor cells. Radiotherapy uses X-rays, γ-rays as well as heavy particle radiation such as protons and neutrons to induce ROS-mediated cell death and mitotic failure.<sup id="cite_ref-pmid22117137_62-6" class="reference"><a href="#cite_note-pmid22117137-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </p><p>Due to the dual role of ROS, both prooxidant and antioxidant-based anticancer agents have been developed. However, modulation of ROS signaling alone seems not to be an ideal approach due to adaptation of cancer cells to ROS stress, redundant pathways for supporting cancer growth and toxicity from ROS-generating anticancer drugs. Combinations of ROS-generating drugs with pharmaceuticals that can break the redox adaptation could be a better strategy for enhancing cancer cell cytotoxicity.<sup id="cite_ref-pmid22117137_62-7" class="reference"><a href="#cite_note-pmid22117137-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/James_Watson" title="James Watson">James Watson</a><sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> and others<sup id="cite_ref-ReferenceA_80-0" class="reference"><a href="#cite_note-ReferenceA-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> have proposed that lack of intracellular ROS due to a lack of physical exercise may contribute to the malignant progression of cancer, because spikes of ROS are needed to correctly fold proteins in the endoplasmatic reticulum and low ROS levels may thus aspecifically hamper the formation of tumor suppressor proteins.<sup id="cite_ref-ReferenceA_80-1" class="reference"><a href="#cite_note-ReferenceA-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> Since physical exercise induces temporary spikes of ROS, this may explain why physical exercise is beneficial for cancer patient prognosis.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> Moreover, high inducers of ROS such as 2-deoxy-D-glucose and carbohydrate-based inducers of cellular stress induce cancer cell death more potently because they exploit the cancer cell's high avidity for sugars.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> </p><p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="Positive_role_of_ROS_in_memory">Positive role of ROS in memory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=20" title="Edit section: Positive role of ROS in memory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Initiation_of_DNA_demethylation_at_a_CpG_site.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/07/Initiation_of_DNA_demethylation_at_a_CpG_site.svg/400px-Initiation_of_DNA_demethylation_at_a_CpG_site.svg.png" decoding="async" width="400" height="460" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/07/Initiation_of_DNA_demethylation_at_a_CpG_site.svg/600px-Initiation_of_DNA_demethylation_at_a_CpG_site.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/07/Initiation_of_DNA_demethylation_at_a_CpG_site.svg/800px-Initiation_of_DNA_demethylation_at_a_CpG_site.svg.png 2x" data-file-width="643" data-file-height="739" /></a><figcaption>Initiation of <a href="/wiki/DNA_demethylation" title="DNA demethylation">DNA demethylation</a> at a <a href="/wiki/CpG_site" title="CpG site">CpG site</a>. In adult somatic cells DNA methylation typically occurs in the context of CpG dinucleotides (<a href="/wiki/CpG_sites" class="mw-redirect" title="CpG sites">CpG sites</a>), forming <a href="/wiki/5-methylcytosine" class="mw-redirect" title="5-methylcytosine">5-methylcytosine</a>-pG, or 5mCpG. Reactive oxygen species (ROS) may attack guanine at the dinucleotide site, forming <a href="/wiki/8-oxo-2%27-deoxyguanosine" class="mw-redirect" title="8-oxo-2&#39;-deoxyguanosine">8-hydroxy-2'-deoxyguanosine</a> (8-OHdG), and resulting in a 5mCp-8-OHdG dinucleotide site. The <a href="/wiki/Base_excision_repair" title="Base excision repair">base excision repair</a> enzyme <a href="/wiki/Oxoguanine_glycosylase" title="Oxoguanine glycosylase">OGG1</a> targets 8-OHdG and binds to the lesion without immediate excision. OGG1, present at a 5mCp-8-OHdG site recruits <a href="/wiki/Tet_methylcytosine_dioxygenase_1" title="Tet methylcytosine dioxygenase 1">TET1</a> and TET1 oxidizes the 5mC adjacent to the 8-OHdG. This initiates demethylation of 5mC.<sup id="cite_ref-Zhou_83-0" class="reference"><a href="#cite_note-Zhou-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Demethylation_of_5-methylcytosine.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Demethylation_of_5-methylcytosine.svg/400px-Demethylation_of_5-methylcytosine.svg.png" decoding="async" width="400" height="518" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Demethylation_of_5-methylcytosine.svg/600px-Demethylation_of_5-methylcytosine.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Demethylation_of_5-methylcytosine.svg/800px-Demethylation_of_5-methylcytosine.svg.png 2x" data-file-width="816" data-file-height="1056" /></a><figcaption>Demethylation of <a href="/wiki/5-Methylcytosine" title="5-Methylcytosine">5-Methylcytosine</a> (5mC) in neuron DNA. As reviewed in 2018,<sup id="cite_ref-pmid29875631_84-0" class="reference"><a href="#cite_note-pmid29875631-84"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> in brain neurons, 5mC is oxidized by the ten-eleven translocation (TET) family of dioxygenases (<a href="/wiki/Tet_methylcytosine_dioxygenase_1" title="Tet methylcytosine dioxygenase 1">TET1</a>, <a href="/wiki/Tet_methylcytosine_dioxygenase_2" title="Tet methylcytosine dioxygenase 2">TET2</a>, <a href="/wiki/Tet_methylcytosine_dioxygenase_3" title="Tet methylcytosine dioxygenase 3">TET3</a>) to generate <a href="/wiki/5-hydroxymethylcytosine" class="mw-redirect" title="5-hydroxymethylcytosine">5-hydroxymethylcytosine</a> (5hmC). In successive steps TET enzymes further hydroxylate 5hmC to generate 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). <a href="/wiki/Thymine-DNA_glycosylase" title="Thymine-DNA glycosylase">Thymine-DNA glycosylase</a> (TDG) recognizes the intermediate bases 5fC and 5caC and excises the <a href="/wiki/Glycosidic_bond" title="Glycosidic bond">glycosidic bond</a> resulting in an apyrimidinic site (<a href="/wiki/AP_site" title="AP site">AP site</a>). In an alternative oxidative deamination pathway, 5hmC can be oxidatively deaminated by activity-induced cytidine deaminase/apolipoprotein B mRNA editing complex <a href="/wiki/APOBEC3G" title="APOBEC3G">(AID/APOBEC)</a> deaminases to form 5-hydroxymethyluracil (5hmU) or 5mC can be converted to <a href="/wiki/Thymine" title="Thymine">thymine</a> (Thy). 5hmU can be cleaved by TDG, single-strand-selective monofunctional uracil-DNA glycosylase 1 (<a href="/wiki/SMUG1" title="SMUG1">SMUG1</a>), Nei-Like DNA Glycosylase 1 (<a href="/wiki/NEIL1" title="NEIL1">NEIL1</a>), or methyl-CpG binding protein 4 (<a href="/wiki/MBD4" title="MBD4">MBD4</a>). AP sites and T:G mismatches are then repaired by base excision repair (BER) enzymes to yield <a href="/wiki/Cytosine" title="Cytosine">cytosine</a> (Cyt).</figcaption></figure> <p>ROS are critical in <a href="/wiki/Memory" title="Memory">memory</a> formation.<sup id="cite_ref-pmid20649473_85-0" class="reference"><a href="#cite_note-pmid20649473-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-pmid27625575_86-0" class="reference"><a href="#cite_note-pmid27625575-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> ROS also have a central role in epigenetic <a href="/wiki/DNA_demethylation" title="DNA demethylation">DNA demethylation</a>, which is relevant to <a href="/wiki/Epigenetics_in_learning_and_memory" title="Epigenetics in learning and memory">learning and memory</a><sup id="cite_ref-pmid21116250_87-0" class="reference"><a href="#cite_note-pmid21116250-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-pmid26875778_88-0" class="reference"><a href="#cite_note-pmid26875778-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> </p><p>In mammalian nuclear DNA, a methyl group can be added, by a <a href="/wiki/DNA_methyltransferase" title="DNA methyltransferase">DNA methyltransferase</a>, to the 5th carbon of cytosine to form 5mC (see red methyl group added to form 5mC near the top of the first figure). The DNA methyltransferases most often form 5mC within the dinucleotide sequence "cytosine-phosphate-guanine" to form 5mCpG. This addition is a major type of epigenetic alteration and it can <a href="/wiki/Regulation_of_gene_expression#Chemical" title="Regulation of gene expression">silence gene expression</a>. Methylated cytosine can also be <a href="/wiki/DNA_demethylation" title="DNA demethylation">demethylated</a>, an epigenetic alteration that can increase the expression of a gene. A major enzyme involved in demethylating 5mCpG is <a href="/wiki/Tet_methylcytosine_dioxygenase_1" title="Tet methylcytosine dioxygenase 1">TET1</a>. However, TET1 is only able to act on 5mCpG if an ROS has first acted on the guanine to form <a href="/wiki/8-oxo-2%27-deoxyguanosine" class="mw-redirect" title="8-oxo-2&#39;-deoxyguanosine">8-hydroxy-2'-deoxyguanosine</a> (8-OHdG), resulting in a 5mCp-8-OHdG dinucleotide .<sup id="cite_ref-Zhou_83-1" class="reference"><a href="#cite_note-Zhou-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> However, TET1 is only able to act on the 5mC part of the dinucleotide when the <a href="/wiki/Base_excision_repair" title="Base excision repair">base excision repair</a> enzyme <a href="/wiki/Oxoguanine_glycosylase" title="Oxoguanine glycosylase">OGG1</a> binds to the 8-OHdG lesion without immediate excision. Adherence of OGG1 to the 5mCp-8-OHdG site recruits <a href="/wiki/Tet_methylcytosine_dioxygenase_1" title="Tet methylcytosine dioxygenase 1">TET1</a> and TET1 then oxidizes the 5mC adjacent to 8-OHdG, as shown in the first figure, initiating a demethylation pathway shown in the second figure. </p><p>The thousands of CpG sites being demethylated during memory formation depend on ROS in an initial step. The altered protein expression in neurons, controlled in part by ROS-dependent demethylation of CpG sites in gene promoters within neuron DNA, are central to memory formation.<sup id="cite_ref-pmid20975755_89-0" class="reference"><a href="#cite_note-pmid20975755-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=21" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Antioxidant_effect_of_polyphenols_and_natural_phenols" title="Antioxidant effect of polyphenols and natural phenols">Antioxidant effect of polyphenols and natural phenols</a></li> <li><a href="/wiki/Iodide" title="Iodide">Iodide</a></li> <li><a href="/wiki/Melanin" title="Melanin">Melanin</a></li> <li><a href="/wiki/Mitohormesis" class="mw-redirect" title="Mitohormesis">Mitohormesis</a></li> <li><a href="/wiki/Oxidative_stress" title="Oxidative stress">Oxidative stress</a></li> <li><a href="/wiki/Oxygen_toxicity" title="Oxygen toxicity">Oxygen toxicity</a></li> <li><a href="/wiki/Pro-oxidant" title="Pro-oxidant">Pro-oxidant</a></li> <li><a href="/wiki/Reactive_nitrogen_species" title="Reactive nitrogen species">Reactive nitrogen species</a></li> <li><a href="/wiki/Reactive_sulfur_species" title="Reactive sulfur species">Reactive sulfur species</a></li> <li><a href="/wiki/Reactive_carbonyl_species" title="Reactive carbonyl species">Reactive carbonyl species</a></li> <li><a href="/wiki/Reactive_oxygen_species_production_in_marine_microalgae" title="Reactive oxygen species production in marine microalgae">Reactive oxygen species production in marine microalgae</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=22" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 32em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHayyanHashimAlNashef2016" class="citation journal cs1">Hayyan M, Hashim MA, AlNashef IM (March 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.chemrev.5b00407">"Superoxide Ion: Generation and Chemical Implications"</a>. <i>Chemical Reviews</i>. <b>116</b> (5): 3029–3085. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.chemrev.5b00407">10.1021/acs.chemrev.5b00407</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26875845">26875845</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Reviews&amp;rft.atitle=Superoxide+Ion%3A+Generation+and+Chemical+Implications&amp;rft.volume=116&amp;rft.issue=5&amp;rft.pages=3029-3085&amp;rft.date=2016-03&amp;rft_id=info%3Adoi%2F10.1021%2Facs.chemrev.5b00407&amp;rft_id=info%3Apmid%2F26875845&amp;rft.aulast=Hayyan&amp;rft.aufirst=M&amp;rft.au=Hashim%2C+MA&amp;rft.au=AlNashef%2C+IM&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1021%252Facs.chemrev.5b00407&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-Halliwell2021-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Halliwell2021_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalliwellAdhikaryDingfelderDizdaroglu2021" class="citation journal cs1">Halliwell B, Adhikary A, Dingfelder M, Dizdaroglu M (August 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328964">"Hydroxyl radical is a significant player in oxidative DNA damage in vivo"</a>. <i>Chemical Society Reviews</i>. <b>50</b> (15): 8355–8360. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2Fd1cs00044f">10.1039/d1cs00044f</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328964">8328964</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34128512">34128512</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Society+Reviews&amp;rft.atitle=Hydroxyl+radical+is+a+significant+player+in+oxidative+DNA+damage+in+vivo&amp;rft.volume=50&amp;rft.issue=15&amp;rft.pages=8355-8360&amp;rft.date=2021-08&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8328964%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F34128512&amp;rft_id=info%3Adoi%2F10.1039%2Fd1cs00044f&amp;rft.aulast=Halliwell&amp;rft.aufirst=B&amp;rft.au=Adhikary%2C+A&amp;rft.au=Dingfelder%2C+M&amp;rft.au=Dizdaroglu%2C+M&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8328964&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNosakaNosaka2017" class="citation journal cs1">Nosaka Y, Nosaka AY (September 2017). "Generation and Detection of Reactive Oxygen Species in Photocatalysis". <i>Chemical Reviews</i>. <b>117</b> (17): 11302–11336. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.chemrev.7b00161">10.1021/acs.chemrev.7b00161</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28777548">28777548</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Reviews&amp;rft.atitle=Generation+and+Detection+of+Reactive+Oxygen+Species+in+Photocatalysis&amp;rft.volume=117&amp;rft.issue=17&amp;rft.pages=11302-11336&amp;rft.date=2017-09&amp;rft_id=info%3Adoi%2F10.1021%2Facs.chemrev.7b00161&amp;rft_id=info%3Apmid%2F28777548&amp;rft.aulast=Nosaka&amp;rft.aufirst=Y&amp;rft.au=Nosaka%2C+AY&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-Turrens_2003-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-Turrens_2003_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Turrens_2003_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTurrens2003" class="citation journal cs1">Turrens JF (October 2003). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2343396">"Mitochondrial formation of reactive oxygen species"</a>. <i>The Journal of Physiology</i>. <b>552</b> (Pt 2): 335–44. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.2003.049478">10.1113/jphysiol.2003.049478</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2343396">2343396</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14561818">14561818</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=Mitochondrial+formation+of+reactive+oxygen+species&amp;rft.volume=552&amp;rft.issue=Pt+2&amp;rft.pages=335-44&amp;rft.date=2003-10&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2343396%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F14561818&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.2003.049478&amp;rft.aulast=Turrens&amp;rft.aufirst=JF&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2343396&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHayyanHashimAlNashef2016" class="citation journal cs1">Hayyan, M.; Hashim, M.A.; AlNashef, I.M. (2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.chemrev.5b00407">"Superoxide Ion: Generation and Chemical Implications"</a>. <i>Chem. Rev</i>. <b>116</b> (5): 3029–3085. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.chemrev.5b00407">10.1021/acs.chemrev.5b00407</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26875845">26875845</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chem.+Rev.&amp;rft.atitle=Superoxide+Ion%3A+Generation+and+Chemical+Implications&amp;rft.volume=116&amp;rft.issue=5&amp;rft.pages=3029-3085&amp;rft.date=2016&amp;rft_id=info%3Adoi%2F10.1021%2Facs.chemrev.5b00407&amp;rft_id=info%3Apmid%2F26875845&amp;rft.aulast=Hayyan&amp;rft.aufirst=M.&amp;rft.au=Hashim%2C+M.A.&amp;rft.au=AlNashef%2C+I.M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1021%252Facs.chemrev.5b00407&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-Laloi_2015-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Laloi_2015_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Laloi_2015_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaloiHavaux2015" class="citation journal cs1">Laloi C, Havaux M (2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4316694">"Key players of singlet oxygen-induced cell death in plants"</a>. <i>Frontiers in Plant Science</i>. <b>6</b>: 39. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffpls.2015.00039">10.3389/fpls.2015.00039</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4316694">4316694</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25699067">25699067</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Plant+Science&amp;rft.atitle=Key+players+of+singlet+oxygen-induced+cell+death+in+plants&amp;rft.volume=6&amp;rft.pages=39&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4316694%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F25699067&amp;rft_id=info%3Adoi%2F10.3389%2Ffpls.2015.00039&amp;rft.aulast=Laloi&amp;rft.aufirst=C&amp;rft.au=Havaux%2C+M&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4316694&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApelHirt2004" class="citation journal cs1">Apel, Klaus; Hirt, Heribert (2004). "Reactive Oxygen Specues: Metabolism, Oxidative Stress, and Signal Transduction". <i>Annual Review of Plant Biology</i>. <b>55</b>: 373–399. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev.arplant.55.031903.141701">10.1146/annurev.arplant.55.031903.141701</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15377225">15377225</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annual+Review+of+Plant+Biology&amp;rft.atitle=Reactive+Oxygen+Specues%3A+Metabolism%2C+Oxidative+Stress%2C+and+Signal+Transduction&amp;rft.volume=55&amp;rft.pages=373-399&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1146%2Fannurev.arplant.55.031903.141701&amp;rft_id=info%3Apmid%2F15377225&amp;rft.aulast=Apel&amp;rft.aufirst=Klaus&amp;rft.au=Hirt%2C+Heribert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaszczakCarmodyKangasjärvi2018" class="citation journal cs1">Waszczak C, Carmody M, Kangasjärvi J (April 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev-arplant-042817-040322">"Reactive Oxygen Species in Plant Signaling"</a>. <i>Annual Review of Plant Biology</i>. <b>69</b> (1): 209–236. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev-arplant-042817-040322">10.1146/annurev-arplant-042817-040322</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29489394">29489394</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annual+Review+of+Plant+Biology&amp;rft.atitle=Reactive+Oxygen+Species+in+Plant+Signaling&amp;rft.volume=69&amp;rft.issue=1&amp;rft.pages=209-236&amp;rft.date=2018-04&amp;rft_id=info%3Adoi%2F10.1146%2Fannurev-arplant-042817-040322&amp;rft_id=info%3Apmid%2F29489394&amp;rft.aulast=Waszczak&amp;rft.aufirst=C&amp;rft.au=Carmody%2C+M&amp;rft.au=Kangasj%C3%A4rvi%2C+J&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1146%252Fannurev-arplant-042817-040322&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-Devasagayam_2004_796-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Devasagayam_2004_796_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Devasagayam_2004_796_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDevasagayamTilakBoloorSane2004" class="citation journal cs1">Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD (October 2004). "Free radicals and antioxidants in human health: current status and future prospects". <i>The Journal of the Association of Physicians of India</i>. <b>52</b>: 794–804. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15909857">15909857</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+the+Association+of+Physicians+of+India&amp;rft.atitle=Free+radicals+and+antioxidants+in+human+health%3A+current+status+and+future+prospects&amp;rft.volume=52&amp;rft.pages=794-804&amp;rft.date=2004-10&amp;rft_id=info%3Apmid%2F15909857&amp;rft.aulast=Devasagayam&amp;rft.aufirst=TP&amp;rft.au=Tilak%2C+JC&amp;rft.au=Boloor%2C+KK&amp;rft.au=Sane%2C+KS&amp;rft.au=Ghaskadbi%2C+SS&amp;rft.au=Lele%2C+RD&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdreva2005" class="citation journal cs1">Edreva A (2 April 2005). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0167880904002889">"Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach"</a>. <i>Agriculture, Ecosystems &amp; Environment</i>. <b>106</b> (2): 119–133. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005AgEE..106..119E">2005AgEE..106..119E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.agee.2004.10.022">10.1016/j.agee.2004.10.022</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0167-8809">0167-8809</a><span class="reference-accessdate">. Retrieved <span class="nowrap">3 November</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Agriculture%2C+Ecosystems+%26+Environment&amp;rft.atitle=Generation+and+scavenging+of+reactive+oxygen+species+in+chloroplasts%3A+a+submolecular+approach&amp;rft.volume=106&amp;rft.issue=2&amp;rft.pages=119-133&amp;rft.date=2005-04-02&amp;rft.issn=0167-8809&amp;rft_id=info%3Adoi%2F10.1016%2Fj.agee.2004.10.022&amp;rft_id=info%3Abibcode%2F2005AgEE..106..119E&amp;rft.aulast=Edreva&amp;rft.aufirst=A&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0167880904002889&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerbGluschkoSchramm2021" class="citation journal cs1">Herb M, Gluschko A, Schramm M (September 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452931">"Reactive Oxygen Species: Not Omnipresent but Important in Many Locations"</a>. <i>Frontiers in Cell and Developmental Biology</i>. <b>9</b> (716406): 716406. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffcell.2021.716406">10.3389/fcell.2021.716406</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452931">8452931</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34557488">34557488</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Cell+and+Developmental+Biology&amp;rft.atitle=Reactive+Oxygen+Species%3A+Not+Omnipresent+but+Important+in+Many+Locations&amp;rft.volume=9&amp;rft.issue=716406&amp;rft.pages=716406&amp;rft.date=2021-09&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8452931%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F34557488&amp;rft_id=info%3Adoi%2F10.3389%2Ffcell.2021.716406&amp;rft.aulast=Herb&amp;rft.aufirst=M&amp;rft.au=Gluschko%2C+A&amp;rft.au=Schramm%2C+M&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8452931&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrantLoake2000" class="citation journal cs1">Grant JJ, Loake GJ (September 2000). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539275">"Role of reactive oxygen intermediates and cognate redox signaling in disease resistance"</a>. <i>Plant Physiology</i>. <b>124</b> (1): 21–29. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1104%2Fpp.124.1.21">10.1104/pp.124.1.21</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539275">1539275</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10982418">10982418</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Plant+Physiology&amp;rft.atitle=Role+of+reactive+oxygen+intermediates+and+cognate+redox+signaling+in+disease+resistance&amp;rft.volume=124&amp;rft.issue=1&amp;rft.pages=21-29&amp;rft.date=2000-09&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1539275%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F10982418&amp;rft_id=info%3Adoi%2F10.1104%2Fpp.124.1.21&amp;rft.aulast=Grant&amp;rft.aufirst=JJ&amp;rft.au=Loake%2C+GJ&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1539275&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerbGluschkoSchramm2021" class="citation journal cs1">Herb M, Gluschko A, Schramm M (September 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452931">"Reactive Oxygen Species: Not Omnipresent but Important in Many Locations"</a>. <i>Frontiers in Cell and Developmental Biology</i>. <b>9</b>: 716406. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffcell.2021.716406">10.3389/fcell.2021.716406</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452931">8452931</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34557488">34557488</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Cell+and+Developmental+Biology&amp;rft.atitle=Reactive+Oxygen+Species%3A+Not+Omnipresent+but+Important+in+Many+Locations&amp;rft.volume=9&amp;rft.pages=716406&amp;rft.date=2021-09&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8452931%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F34557488&amp;rft_id=info%3Adoi%2F10.3389%2Ffcell.2021.716406&amp;rft.aulast=Herb&amp;rft.aufirst=M&amp;rft.au=Gluschko%2C+A&amp;rft.au=Schramm%2C+M&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8452931&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaszczakCarmodyKangasjärvi2018" class="citation journal cs1">Waszczak C, Carmody M, Kangasjärvi J (April 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev-arplant-042817-040322">"Reactive Oxygen Species in Plant Signaling"</a>. <i>Annual Review of Plant Biology</i>. <b>69</b> (1): 209–236. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev-arplant-042817-040322">10.1146/annurev-arplant-042817-040322</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29489394">29489394</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annual+Review+of+Plant+Biology&amp;rft.atitle=Reactive+Oxygen+Species+in+Plant+Signaling&amp;rft.volume=69&amp;rft.issue=1&amp;rft.pages=209-236&amp;rft.date=2018-04&amp;rft_id=info%3Adoi%2F10.1146%2Fannurev-arplant-042817-040322&amp;rft_id=info%3Apmid%2F29489394&amp;rft.aulast=Waszczak&amp;rft.aufirst=C&amp;rft.au=Carmody%2C+M&amp;rft.au=Kangasj%C3%A4rvi%2C+J&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1146%252Fannurev-arplant-042817-040322&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-auto-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-auto_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-auto_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-auto_15-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdreva2005" class="citation journal cs1">Edreva A (2 April 2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1016/j.agee.2004.10.022">"Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach"</a>. <i>Agriculture, Ecosystems &amp; Environment</i>. <b>106</b> (2): 119–133. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005AgEE..106..119E">2005AgEE..106..119E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.agee.2004.10.022">10.1016/j.agee.2004.10.022</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0167-8809">0167-8809</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Agriculture%2C+Ecosystems+%26+Environment&amp;rft.atitle=Generation+and+scavenging+of+reactive+oxygen+species+in+chloroplasts%3A+a+submolecular+approach&amp;rft.volume=106&amp;rft.issue=2&amp;rft.pages=119-133&amp;rft.date=2005-04-02&amp;rft.issn=0167-8809&amp;rft_id=info%3Adoi%2F10.1016%2Fj.agee.2004.10.022&amp;rft_id=info%3Abibcode%2F2005AgEE..106..119E&amp;rft.aulast=Edreva&amp;rft.aufirst=A&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%2Fj.agee.2004.10.022&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-FishInteguments-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-FishInteguments_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMouchetCortesiBokicLazovic2023" class="citation journal cs1">Mouchet SR, Cortesi F, Bokic B, Lazovic V, Vukusic P, Marshall NJ, Kolaric B (November 2023). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fopt4040041">"Morphological and Optical Modification of Melanosomes in Fish Integuments upon Oxidation"</a>. <i>Optics</i>. <b>4</b> (4): 563–562. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fopt4040041">10.3390/opt4040041</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Optics&amp;rft.atitle=Morphological+and+Optical+Modification+of+Melanosomes+in+Fish+Integuments+upon+Oxidation&amp;rft.volume=4&amp;rft.issue=4&amp;rft.pages=563-562&amp;rft.date=2023-11&amp;rft_id=info%3Adoi%2F10.3390%2Fopt4040041&amp;rft.aulast=Mouchet&amp;rft.aufirst=SR&amp;rft.au=Cortesi%2C+F&amp;rft.au=Bokic%2C+B&amp;rft.au=Lazovic%2C+V&amp;rft.au=Vukusic%2C+P&amp;rft.au=Marshall%2C+NJ&amp;rft.au=Kolaric%2C+B&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fopt4040041&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: date and year (<a href="/wiki/Category:CS1_maint:_date_and_year" title="Category:CS1 maint: date and year">link</a>)</span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSosa_TorresSaucedo-VázquezKroneck2015" class="citation book cs1">Sosa Torres ME, Saucedo-Vázquez JP, Kroneck P (2015). "Chapter 1, Section 3 <i>The dark side of dioxygen</i>". In Kroneck PM, Torres ME (eds.). <i>Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases</i>. Metal Ions in Life Sciences. Vol.&#160;15. Springer. pp.&#160;1–12. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-12415-5_1">10.1007/978-3-319-12415-5_1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-12414-8" title="Special:BookSources/978-3-319-12414-8"><bdi>978-3-319-12414-8</bdi></a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25707464">25707464</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+1%2C+Section+3+The+dark+side+of+dioxygen&amp;rft.btitle=Sustaining+Life+on+Planet+Earth%3A+Metalloenzymes+Mastering+Dioxygen+and+Other+Chewy+Gases&amp;rft.series=Metal+Ions+in+Life+Sciences&amp;rft.pages=1-12&amp;rft.pub=Springer&amp;rft.date=2015&amp;rft_id=info%3Apmid%2F25707464&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-319-12415-5_1&amp;rft.isbn=978-3-319-12414-8&amp;rft.aulast=Sosa+Torres&amp;rft.aufirst=ME&amp;rft.au=Saucedo-V%C3%A1zquez%2C+JP&amp;rft.au=Kroneck%2C+P&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMittler2017" class="citation journal cs1">Mittler R (January 2017). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tplants.2016.08.002">"ROS Are Good"</a>. <i>Trends in Plant Science</i>. <b>22</b> (1): 11–19. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017TPS....22...11M">2017TPS....22...11M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tplants.2016.08.002">10.1016/j.tplants.2016.08.002</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27666517">27666517</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Trends+in+Plant+Science&amp;rft.atitle=ROS+Are+Good&amp;rft.volume=22&amp;rft.issue=1&amp;rft.pages=11-19&amp;rft.date=2017-01&amp;rft_id=info%3Apmid%2F27666517&amp;rft_id=info%3Adoi%2F10.1016%2Fj.tplants.2016.08.002&amp;rft_id=info%3Abibcode%2F2017TPS....22...11M&amp;rft.aulast=Mittler&amp;rft.aufirst=R&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.tplants.2016.08.002&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid19014652-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid19014652_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNovoParola2008" class="citation journal cs1">Novo E, Parola M (October 2008). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584013">"Redox mechanisms in hepatic chronic wound healing and fibrogenesis"</a>. <i>Fibrogenesis &amp; Tissue Repair</i>. <b>1</b> (1): 5. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2F1755-1536-1-5">10.1186/1755-1536-1-5</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584013">2584013</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19014652">19014652</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fibrogenesis+%26+Tissue+Repair&amp;rft.atitle=Redox+mechanisms+in+hepatic+chronic+wound+healing+and+fibrogenesis&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=5&amp;rft.date=2008-10&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2584013%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F19014652&amp;rft_id=info%3Adoi%2F10.1186%2F1755-1536-1-5&amp;rft.aulast=Novo&amp;rft.aufirst=E&amp;rft.au=Parola%2C+M&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2584013&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-Nachiappan-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Nachiappan_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Nachiappan_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Nachiappan_20-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMuthukumarNachiappan2010" class="citation journal cs1">Muthukumar K, Nachiappan V (December 2010). <a rel="nofollow" class="external text" href="http://nopr.niscair.res.in/handle/123456789/10863">"Cadmium-induced oxidative stress in Saccharomyces cerevisiae"</a>. <i>Indian Journal of Biochemistry &amp; Biophysics</i>. <b>47</b> (6): 383–387. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21355423">21355423</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Indian+Journal+of+Biochemistry+%26+Biophysics&amp;rft.atitle=Cadmium-induced+oxidative+stress+in+Saccharomyces+cerevisiae&amp;rft.volume=47&amp;rft.issue=6&amp;rft.pages=383-387&amp;rft.date=2010-12&amp;rft_id=info%3Apmid%2F21355423&amp;rft.aulast=Muthukumar&amp;rft.aufirst=K&amp;rft.au=Nachiappan%2C+V&amp;rft_id=http%3A%2F%2Fnopr.niscair.res.in%2Fhandle%2F123456789%2F10863&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDietz2016" class="citation journal cs1">Dietz KJ (January 2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749869">"Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast?"</a>. <i>Molecules and Cells</i>. <b>39</b> (1): 20–25. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.14348%2Fmolcells.2016.2324">10.14348/molcells.2016.2324</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749869">4749869</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26810073">26810073</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Molecules+and+Cells&amp;rft.atitle=Thiol-Based+Peroxidases+and+Ascorbate+Peroxidases%3A+Why+Plants+Rely+on+Multiple+Peroxidase+Systems+in+the+Photosynthesizing+Chloroplast%3F&amp;rft.volume=39&amp;rft.issue=1&amp;rft.pages=20-25&amp;rft.date=2016-01&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4749869%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F26810073&amp;rft_id=info%3Adoi%2F10.14348%2Fmolcells.2016.2324&amp;rft.aulast=Dietz&amp;rft.aufirst=KJ&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4749869&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-Muller2000-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-Muller2000_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMuller2000" class="citation journal cs1">Muller F (October 2000). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3455268">"The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging"</a>. <i>Journal of the American Aging Association</i>. <b>23</b> (4): 227–253. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11357-000-0022-9">10.1007/s11357-000-0022-9</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3455268">3455268</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23604868">23604868</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Aging+Association&amp;rft.atitle=The+nature+and+mechanism+of+superoxide+production+by+the+electron+transport+chain%3A+Its+relevance+to+aging&amp;rft.volume=23&amp;rft.issue=4&amp;rft.pages=227-253&amp;rft.date=2000-10&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3455268%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F23604868&amp;rft_id=info%3Adoi%2F10.1007%2Fs11357-000-0022-9&amp;rft.aulast=Muller&amp;rft.aufirst=F&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3455268&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid11139407-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid11139407_23-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHanWilliamsCadenas2001" class="citation journal cs1">Han D, Williams E, Cadenas E (January 2001). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221585">"Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space"</a>. <i>The Biochemical Journal</i>. <b>353</b> (Pt 2): 411–416. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1042%2F0264-6021%3A3530411">10.1042/0264-6021:3530411</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221585">1221585</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11139407">11139407</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Biochemical+Journal&amp;rft.atitle=Mitochondrial+respiratory+chain-dependent+generation+of+superoxide+anion+and+its+release+into+the+intermembrane+space&amp;rft.volume=353&amp;rft.issue=Pt+2&amp;rft.pages=411-416&amp;rft.date=2001-01&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1221585%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F11139407&amp;rft_id=info%3Adoi%2F10.1042%2F0264-6021%3A3530411&amp;rft.aulast=Han&amp;rft.aufirst=D&amp;rft.au=Williams%2C+E&amp;rft.au=Cadenas%2C+E&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1221585&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid23442817-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid23442817_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiFangMaiChoi2013" class="citation journal cs1">Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (February 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599349">"Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers"</a>. <i>Journal of Hematology &amp; Oncology</i>. <b>6</b> (19): 19. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2F1756-8722-6-19">10.1186/1756-8722-6-19</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599349">3599349</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23442817">23442817</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Hematology+%26+Oncology&amp;rft.atitle=Targeting+mitochondrial+reactive+oxygen+species+as+novel+therapy+for+inflammatory+diseases+and+cancers&amp;rft.volume=6&amp;rft.issue=19&amp;rft.pages=19&amp;rft.date=2013-02&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3599349%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F23442817&amp;rft_id=info%3Adoi%2F10.1186%2F1756-8722-6-19&amp;rft.aulast=Li&amp;rft.aufirst=X&amp;rft.au=Fang%2C+P&amp;rft.au=Mai%2C+J&amp;rft.au=Choi%2C+ET&amp;rft.au=Wang%2C+H&amp;rft.au=Yang%2C+XF&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3599349&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-1993-Hanukoglu-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-1993-Hanukoglu_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHanukogluRapoportWeinerSklan1993" class="citation journal cs1">Hanukoglu I, Rapoport R, Weiner L, Sklan D (September 1993). <a rel="nofollow" class="external text" href="https://zenodo.org/record/890721">"Electron leakage from the mitochondrial NADPH-adrenodoxin reductase-adrenodoxin-P450scc (cholesterol side chain cleavage) system"</a>. <i>Archives of Biochemistry and Biophysics</i>. <b>305</b> (2): 489–498. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fabbi.1993.1452">10.1006/abbi.1993.1452</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/8396893">8396893</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archives+of+Biochemistry+and+Biophysics&amp;rft.atitle=Electron+leakage+from+the+mitochondrial+NADPH-adrenodoxin+reductase-adrenodoxin-P450scc+%28cholesterol+side+chain+cleavage%29+system&amp;rft.volume=305&amp;rft.issue=2&amp;rft.pages=489-498&amp;rft.date=1993-09&amp;rft_id=info%3Adoi%2F10.1006%2Fabbi.1993.1452&amp;rft_id=info%3Apmid%2F8396893&amp;rft.aulast=Hanukoglu&amp;rft.aufirst=I&amp;rft.au=Rapoport%2C+R&amp;rft.au=Weiner%2C+L&amp;rft.au=Sklan%2C+D&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F890721&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-2006-Hanukoglu-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-2006-Hanukoglu_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHanukoglu2006" class="citation journal cs1">Hanukoglu I (2006). <a rel="nofollow" class="external text" href="https://zenodo.org/record/890701">"Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells"</a>. <i>Drug Metabolism Reviews</i>. <b>38</b> (1–2): 171–196. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F03602530600570040">10.1080/03602530600570040</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16684656">16684656</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10766948">10766948</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Drug+Metabolism+Reviews&amp;rft.atitle=Antioxidant+protective+mechanisms+against+reactive+oxygen+species+%28ROS%29+generated+by+mitochondrial+P450+systems+in+steroidogenic+cells&amp;rft.volume=38&amp;rft.issue=1%E2%80%932&amp;rft.pages=171-196&amp;rft.date=2006&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10766948%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F16684656&amp;rft_id=info%3Adoi%2F10.1080%2F03602530600570040&amp;rft.aulast=Hanukoglu&amp;rft.aufirst=I&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F890701&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCurtinDonovanCotter2002" class="citation journal cs1">Curtin JF, Donovan M, Cotter TG (July 2002). <a rel="nofollow" class="external text" href="https://arrow.dit.ie/cgi/viewcontent.cgi?article=1039&amp;context=scschbioart">"Regulation and measurement of oxidative stress in apoptosis"</a>. <i>Journal of Immunological Methods</i>. <b>265</b> (1–2): 49–72. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0022-1759%2802%2900070-4">10.1016/s0022-1759(02)00070-4</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12072178">12072178</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Immunological+Methods&amp;rft.atitle=Regulation+and+measurement+of+oxidative+stress+in+apoptosis&amp;rft.volume=265&amp;rft.issue=1%E2%80%932&amp;rft.pages=49-72&amp;rft.date=2002-07&amp;rft_id=info%3Adoi%2F10.1016%2Fs0022-1759%2802%2900070-4&amp;rft_id=info%3Apmid%2F12072178&amp;rft.aulast=Curtin&amp;rft.aufirst=JF&amp;rft.au=Donovan%2C+M&amp;rft.au=Cotter%2C+TG&amp;rft_id=https%3A%2F%2Farrow.dit.ie%2Fcgi%2Fviewcontent.cgi%3Farticle%3D1039%26context%3Dscschbioart&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlbertsJohnsonLewisMorgan2014" class="citation book cs1">Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014). <i>Molecular Biology of the Cell</i> (6th&#160;ed.). New York: Garland Science. p.&#160;1025. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8153-4432-2" title="Special:BookSources/978-0-8153-4432-2"><bdi>978-0-8153-4432-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Molecular+Biology+of+the+Cell&amp;rft.place=New+York&amp;rft.pages=1025&amp;rft.edition=6th&amp;rft.pub=Garland+Science&amp;rft.date=2014&amp;rft.isbn=978-0-8153-4432-2&amp;rft.aulast=Alberts&amp;rft.aufirst=B&amp;rft.au=Johnson%2C+A&amp;rft.au=Lewis%2C+J&amp;rft.au=Morgan%2C+D&amp;rft.au=Raff%2C+M&amp;rft.au=Roberts%2C+K&amp;rft.au=Walter%2C+P&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-Functions_of_ROS_in_Macrophages_and-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-Functions_of_ROS_in_Macrophages_and_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Functions_of_ROS_in_Macrophages_and_29-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerbSchramm2021" class="citation journal cs1">Herb M, Schramm M (February 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923022">"Functions of ROS in Macrophages and Antimicrobial Immunity"</a>. <i>Antioxidants</i>. <b>10</b> (2): 313. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fantiox10020313">10.3390/antiox10020313</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923022">7923022</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33669824">33669824</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Antioxidants&amp;rft.atitle=Functions+of+ROS+in+Macrophages+and+Antimicrobial+Immunity&amp;rft.volume=10&amp;rft.issue=2&amp;rft.pages=313&amp;rft.date=2021-02&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7923022%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F33669824&amp;rft_id=info%3Adoi%2F10.3390%2Fantiox10020313&amp;rft.aulast=Herb&amp;rft.aufirst=M&amp;rft.au=Schramm%2C+M&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7923022&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenSongZhangZhang2016" class="citation journal cs1">Chen X, Song M, Zhang B, Zhang Y (July 28, 2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980531">"Reactive Oxygen Species Regulate T Cell Immune Response in the Tumor Microenvironment"</a>. <i>Oxidative Medicine and Cellular Longevity</i>. <b>2016</b>: 1580967. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2016%2F1580967">10.1155/2016/1580967</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980531">4980531</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27547291">27547291</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Oxidative+Medicine+and+Cellular+Longevity&amp;rft.atitle=Reactive+Oxygen+Species+Regulate+T+Cell+Immune+Response+in+the+Tumor+Microenvironment&amp;rft.volume=2016&amp;rft.pages=1580967&amp;rft.date=2016-07-28&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4980531%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F27547291&amp;rft_id=info%3Adoi%2F10.1155%2F2016%2F1580967&amp;rft.aulast=Chen&amp;rft.aufirst=X&amp;rft.au=Song%2C+M&amp;rft.au=Zhang%2C+B&amp;rft.au=Zhang%2C+Y&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4980531&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuangUllahZhouYi2019" class="citation journal cs1">Huang H, Ullah F, Zhou DX, Yi M, Zhao Y (2019). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603150">"Mechanisms of ROS Regulation of Plant Development and Stress Responses"</a>. <i>Frontiers in Plant Science</i>. <b>10</b>: 800. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffpls.2019.00800">10.3389/fpls.2019.00800</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603150">6603150</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31293607">31293607</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Plant+Science&amp;rft.atitle=Mechanisms+of+ROS+Regulation+of+Plant+Development+and+Stress+Responses&amp;rft.volume=10&amp;rft.pages=800&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6603150%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F31293607&amp;rft_id=info%3Adoi%2F10.3389%2Ffpls.2019.00800&amp;rft.aulast=Huang&amp;rft.aufirst=H&amp;rft.au=Ullah%2C+F&amp;rft.au=Zhou%2C+DX&amp;rft.au=Yi%2C+M&amp;rft.au=Zhao%2C+Y&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6603150&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-auto2-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-auto2_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-auto2_32-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangWengPanTu2003" class="citation journal cs1">Zhang S, Weng J, Pan J, Tu T, Yao S, Xu C (1 January 2003). "Study on the photo-generation of superoxide radicals in Photosystem II with EPR spin trapping techniques". <i>Photosynthesis Research</i>. <b>75</b> (1): 41–48. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003PhoRe..75...41Z">2003PhoRe..75...41Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1022439009587">10.1023/A:1022439009587</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16245092">16245092</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11724647">11724647</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Photosynthesis+Research&amp;rft.atitle=Study+on+the+photo-generation+of+superoxide+radicals+in+Photosystem+II+with+EPR+spin+trapping+techniques&amp;rft.volume=75&amp;rft.issue=1&amp;rft.pages=41-48&amp;rft.date=2003-01-01&amp;rft_id=info%3Adoi%2F10.1023%2FA%3A1022439009587&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11724647%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F16245092&amp;rft_id=info%3Abibcode%2F2003PhoRe..75...41Z&amp;rft.aulast=Zhang&amp;rft.aufirst=S&amp;rft.au=Weng%2C+J&amp;rft.au=Pan%2C+J&amp;rft.au=Tu%2C+T&amp;rft.au=Yao%2C+S&amp;rft.au=Xu%2C+C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClelandGrace1999" class="citation journal cs1">Cleland RE, Grace SC (September 1999). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0014-5793%2899%2901067-4">"Voltammetric detection of superoxide production by photosystem II"</a>. <i>FEBS Letters</i>. <b>457</b> (3): 348–352. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999FEBSL.457..348C">1999FEBSL.457..348C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0014-5793%2899%2901067-4">10.1016/S0014-5793(99)01067-4</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10471806">10471806</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1122939">1122939</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=FEBS+Letters&amp;rft.atitle=Voltammetric+detection+of+superoxide+production+by+photosystem+II&amp;rft.volume=457&amp;rft.issue=3&amp;rft.pages=348-352&amp;rft.date=1999-09&amp;rft_id=info%3Adoi%2F10.1016%2FS0014-5793%2899%2901067-4&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1122939%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F10471806&amp;rft_id=info%3Abibcode%2F1999FEBSL.457..348C&amp;rft.aulast=Cleland&amp;rft.aufirst=RE&amp;rft.au=Grace%2C+SC&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS0014-5793%252899%252901067-4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaniulisHasanStoflethCramer2013" class="citation journal cs1">Baniulis D, Hasan SS, Stofleth JT, Cramer WA (December 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4037229">"Mechanism of enhanced superoxide production in the cytochrome b(6)f complex of oxygenic photosynthesis"</a>. <i>Biochemistry</i>. <b>52</b> (50): 8975–8983. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fbi4013534">10.1021/bi4013534</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4037229">4037229</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24298890">24298890</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biochemistry&amp;rft.atitle=Mechanism+of+enhanced+superoxide+production+in+the+cytochrome+b%286%29f+complex+of+oxygenic+photosynthesis&amp;rft.volume=52&amp;rft.issue=50&amp;rft.pages=8975-8983&amp;rft.date=2013-12&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4037229%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F24298890&amp;rft_id=info%3Adoi%2F10.1021%2Fbi4013534&amp;rft.aulast=Baniulis&amp;rft.aufirst=D&amp;rft.au=Hasan%2C+SS&amp;rft.au=Stofleth%2C+JT&amp;rft.au=Cramer%2C+WA&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4037229&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-auto1-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-auto1_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-auto1_35-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleineLeister2016" class="citation journal cs1">Kleine T, Leister D (August 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.bbabio.2016.03.017">"Retrograde signaling: Organelles go networking"</a>. <i>Biochimica et Biophysica Acta (BBA) - Bioenergetics</i>. <b>1857</b> (8): 1313–1325. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.bbabio.2016.03.017">10.1016/j.bbabio.2016.03.017</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26997501">26997501</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biochimica+et+Biophysica+Acta+%28BBA%29+-+Bioenergetics&amp;rft.atitle=Retrograde+signaling%3A+Organelles+go+networking&amp;rft.volume=1857&amp;rft.issue=8&amp;rft.pages=1313-1325&amp;rft.date=2016-08&amp;rft_id=info%3Adoi%2F10.1016%2Fj.bbabio.2016.03.017&amp;rft_id=info%3Apmid%2F26997501&amp;rft.aulast=Kleine&amp;rft.aufirst=T&amp;rft.au=Leister%2C+D&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.bbabio.2016.03.017&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrantLoake2000" class="citation journal cs1">Grant JJ, Loake GJ (September 2000). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539275">"Role of reactive oxygen intermediates and cognate redox signaling in disease resistance"</a>. <i>Plant Physiology</i>. <b>124</b> (1): 21–29. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1104%2Fpp.124.1.21">10.1104/pp.124.1.21</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539275">1539275</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10982418">10982418</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Plant+Physiology&amp;rft.atitle=Role+of+reactive+oxygen+intermediates+and+cognate+redox+signaling+in+disease+resistance&amp;rft.volume=124&amp;rft.issue=1&amp;rft.pages=21-29&amp;rft.date=2000-09&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1539275%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F10982418&amp;rft_id=info%3Adoi%2F10.1104%2Fpp.124.1.21&amp;rft.aulast=Grant&amp;rft.aufirst=JJ&amp;rft.au=Loake%2C+GJ&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1539275&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRadaLeto2008" class="citation book cs1">Rada B, Leto TL (2008). "Oxidative innate immune defenses by Nox/Duox family NADPH oxidases". In Egesten A, Schmidt A, Herwald H (eds.). <i>Trends in Innate Immunity</i>. Contributions to Microbiology. Vol.&#160;15. Basel: Karger. pp.&#160;164–87. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1159%2F000136357">10.1159/000136357</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-8055-8548-4" title="Special:BookSources/978-3-8055-8548-4"><bdi>978-3-8055-8548-4</bdi></a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776633">2776633</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18511861">18511861</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Oxidative+innate+immune+defenses+by+Nox%2FDuox+family+NADPH+oxidases&amp;rft.btitle=Trends+in+Innate+Immunity&amp;rft.place=Basel&amp;rft.series=Contributions+to+Microbiology&amp;rft.pages=164-87&amp;rft.pub=Karger&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2776633%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F18511861&amp;rft_id=info%3Adoi%2F10.1159%2F000136357&amp;rft.isbn=978-3-8055-8548-4&amp;rft.aulast=Rada&amp;rft.aufirst=B&amp;rft.au=Leto%2C+TL&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span> — Review</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConnerSalatheForteza2002" class="citation journal cs1">Conner GE, Salathe M, Forteza R (December 2002). "Lactoperoxidase and hydrogen peroxide metabolism in the airway". <i>American Journal of Respiratory and Critical Care Medicine</i>. <b>166</b> (12 Pt 2): S57–S61. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1164%2Frccm.2206018">10.1164/rccm.2206018</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12471090">12471090</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Respiratory+and+Critical+Care+Medicine&amp;rft.atitle=Lactoperoxidase+and+hydrogen+peroxide+metabolism+in+the+airway&amp;rft.volume=166&amp;rft.issue=12+Pt+2&amp;rft.pages=S57-S61&amp;rft.date=2002-12&amp;rft_id=info%3Adoi%2F10.1164%2Frccm.2206018&amp;rft_id=info%3Apmid%2F12471090&amp;rft.aulast=Conner&amp;rft.aufirst=GE&amp;rft.au=Salathe%2C+M&amp;rft.au=Forteza%2C+R&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrooker2011" class="citation book cs1">Brooker RJ (2011). <i>Genetics: analysis and principles</i> (4th&#160;ed.). McGraw-Hill Science. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-352528-0" title="Special:BookSources/978-0-07-352528-0"><bdi>978-0-07-352528-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Genetics%3A+analysis+and+principles&amp;rft.edition=4th&amp;rft.pub=McGraw-Hill+Science&amp;rft.date=2011&amp;rft.isbn=978-0-07-352528-0&amp;rft.aulast=Brooker&amp;rft.aufirst=RJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuchonBroderickLemaitre2013" class="citation journal cs1">Buchon N, Broderick NA, Lemaitre B (September 2013). <a rel="nofollow" class="external text" href="http://infoscience.epfl.ch/record/189299">"Gut homeostasis in a microbial world: insights from Drosophila melanogaster"</a>. <i>Nature Reviews. Microbiology</i>. <b>11</b> (9): 615–626. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrmicro3074">10.1038/nrmicro3074</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23893105">23893105</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8129204">8129204</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Reviews.+Microbiology&amp;rft.atitle=Gut+homeostasis+in+a+microbial+world%3A+insights+from+Drosophila+melanogaster&amp;rft.volume=11&amp;rft.issue=9&amp;rft.pages=615-626&amp;rft.date=2013-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8129204%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F23893105&amp;rft_id=info%3Adoi%2F10.1038%2Fnrmicro3074&amp;rft.aulast=Buchon&amp;rft.aufirst=N&amp;rft.au=Broderick%2C+NA&amp;rft.au=Lemaitre%2C+B&amp;rft_id=http%3A%2F%2Finfoscience.epfl.ch%2Frecord%2F189299&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeKimKimHa2013" class="citation journal cs1">Lee KA, Kim SH, Kim EK, Ha EM, You H, Kim B, et&#160;al. (May 2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2013.04.009">"Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila"</a>. <i>Cell</i>. <b>153</b> (4): 797–811. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2013.04.009">10.1016/j.cell.2013.04.009</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23663779">23663779</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cell&amp;rft.atitle=Bacterial-derived+uracil+as+a+modulator+of+mucosal+immunity+and+gut-microbe+homeostasis+in+Drosophila&amp;rft.volume=153&amp;rft.issue=4&amp;rft.pages=797-811&amp;rft.date=2013-05&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cell.2013.04.009&amp;rft_id=info%3Apmid%2F23663779&amp;rft.aulast=Lee&amp;rft.aufirst=KA&amp;rft.au=Kim%2C+SH&amp;rft.au=Kim%2C+EK&amp;rft.au=Ha%2C+EM&amp;rft.au=You%2C+H&amp;rft.au=Kim%2C+B&amp;rft.au=Kim%2C+MJ&amp;rft.au=Kwon%2C+Y&amp;rft.au=Ryu%2C+JH&amp;rft.au=Lee%2C+WJ&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.cell.2013.04.009&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid21597473-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid21597473_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWestShadelGhosh2011" class="citation journal cs1">West AP, Shadel GS, Ghosh S (June 2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281487">"Mitochondria in innate immune responses"</a>. <i>Nature Reviews. Immunology</i>. <b>11</b> (6): 389–402. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnri2975">10.1038/nri2975</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281487">4281487</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21597473">21597473</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Reviews.+Immunology&amp;rft.atitle=Mitochondria+in+innate+immune+responses&amp;rft.volume=11&amp;rft.issue=6&amp;rft.pages=389-402&amp;rft.date=2011-06&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4281487%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F21597473&amp;rft_id=info%3Adoi%2F10.1038%2Fnri2975&amp;rft.aulast=West&amp;rft.aufirst=AP&amp;rft.au=Shadel%2C+GS&amp;rft.au=Ghosh%2C+S&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4281487&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid23786562-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid23786562_43-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKimKimRyuKim2013" class="citation journal cs1">Kim HJ, Kim CH, Ryu JH, Kim MJ, Park CY, Lee JM, et&#160;al. (November 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455605">"Reactive oxygen species induce antiviral innate immune response through IFN-λ regulation in human nasal epithelial cells"</a>. <i>American Journal of Respiratory Cell and Molecular Biology</i>. <b>49</b> (5): 855–865. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1165%2Frcmb.2013-0003OC">10.1165/rcmb.2013-0003OC</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455605">5455605</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23786562">23786562</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Respiratory+Cell+and+Molecular+Biology&amp;rft.atitle=Reactive+oxygen+species+induce+antiviral+innate+immune+response+through+IFN-%CE%BB+regulation+in+human+nasal+epithelial+cells&amp;rft.volume=49&amp;rft.issue=5&amp;rft.pages=855-865&amp;rft.date=2013-11&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5455605%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F23786562&amp;rft_id=info%3Adoi%2F10.1165%2Frcmb.2013-0003OC&amp;rft.aulast=Kim&amp;rft.aufirst=HJ&amp;rft.au=Kim%2C+CH&amp;rft.au=Ryu%2C+JH&amp;rft.au=Kim%2C+MJ&amp;rft.au=Park%2C+CY&amp;rft.au=Lee%2C+JM&amp;rft.au=Holtzman%2C+MJ&amp;rft.au=Yoon%2C+JH&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5455605&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerbGluschkoWiegmannFarid2019" class="citation journal cs1">Herb M, Gluschko A, Wiegmann K, Farid A, Wolf A, Utermöhlen O, et&#160;al. (February 2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscisignal.aar5926">"Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO"</a>. <i>Science Signaling</i>. <b>12</b> (568): eaar5926. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscisignal.aar5926">10.1126/scisignal.aar5926</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30755476">30755476</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science+Signaling&amp;rft.atitle=Mitochondrial+reactive+oxygen+species+enable+proinflammatory+signaling+through+disulfide+linkage+of+NEMO&amp;rft.volume=12&amp;rft.issue=568&amp;rft.pages=eaar5926&amp;rft.date=2019-02&amp;rft_id=info%3Adoi%2F10.1126%2Fscisignal.aar5926&amp;rft_id=info%3Apmid%2F30755476&amp;rft.aulast=Herb&amp;rft.aufirst=M&amp;rft.au=Gluschko%2C+A&amp;rft.au=Wiegmann%2C+K&amp;rft.au=Farid%2C+A&amp;rft.au=Wolf%2C+A&amp;rft.au=Uterm%C3%B6hlen%2C+O&amp;rft.au=Krut%2C+O&amp;rft.au=Kr%C3%B6nke%2C+M&amp;rft.au=Schramm%2C+M&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1126%252Fscisignal.aar5926&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeffertCachatKrause2014" class="citation journal cs1">Deffert C, Cachat J, Krause KH (August 2014). <a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fcmi.12322">"Phagocyte NADPH oxidase, chronic granulomatous disease and mycobacterial infections"</a>. <i>Cellular Microbiology</i>. <b>16</b> (8): 1168–1178. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fcmi.12322">10.1111/cmi.12322</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24916152">24916152</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3489742">3489742</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cellular+Microbiology&amp;rft.atitle=Phagocyte+NADPH+oxidase%2C+chronic+granulomatous+disease+and+mycobacterial+infections&amp;rft.volume=16&amp;rft.issue=8&amp;rft.pages=1168-1178&amp;rft.date=2014-08&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3489742%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F24916152&amp;rft_id=info%3Adoi%2F10.1111%2Fcmi.12322&amp;rft.aulast=Deffert&amp;rft.aufirst=C&amp;rft.au=Cachat%2C+J&amp;rft.au=Krause%2C+KH&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1111%252Fcmi.12322&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBelikovSchravenSimeoni2015" class="citation journal cs1">Belikov AV, Schraven B, Simeoni L (October 2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608155">"T cells and reactive oxygen species"</a>. <i>Journal of Biomedical Science</i>. <b>22</b>: 85. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs12929-015-0194-3">10.1186/s12929-015-0194-3</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608155">4608155</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26471060">26471060</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Biomedical+Science&amp;rft.atitle=T+cells+and+reactive+oxygen+species&amp;rft.volume=22&amp;rft.pages=85&amp;rft.date=2015-10&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4608155%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F26471060&amp;rft_id=info%3Adoi%2F10.1186%2Fs12929-015-0194-3&amp;rft.aulast=Belikov&amp;rft.aufirst=AV&amp;rft.au=Schraven%2C+B&amp;rft.au=Simeoni%2C+L&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4608155&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-isbn0-8247-1723-6-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-isbn0-8247-1723-6_47-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPatelT_CornwellDarley-Usmar1999" class="citation book cs1">Patel RP, T Cornwell T, Darley-Usmar VM (1999). "The biochemistry of nitric oxide and peroxynitrite: implications for mitochondrial function". In Packer L, Cadenas E (eds.). <i>Understanding the process of aging: the roles of mitochondria, free radicals, and antioxidants</i>. New York, NY: Marcel Dekker. pp.&#160;39–56. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8247-1723-6" title="Special:BookSources/0-8247-1723-6"><bdi>0-8247-1723-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+biochemistry+of+nitric+oxide+and+peroxynitrite%3A+implications+for+mitochondrial+function&amp;rft.btitle=Understanding+the+process+of+aging%3A+the+roles+of+mitochondria%2C+free+radicals%2C+and+antioxidants&amp;rft.place=New+York%2C+NY&amp;rft.pages=39-56&amp;rft.pub=Marcel+Dekker&amp;rft.date=1999&amp;rft.isbn=0-8247-1723-6&amp;rft.aulast=Patel&amp;rft.aufirst=RP&amp;rft.au=T+Cornwell%2C+T&amp;rft.au=Darley-Usmar%2C+VM&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid11854529-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid11854529_48-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuHeadGharibYuan2002" class="citation journal cs1">Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, et&#160;al. (February 2002). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122369">"Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha -lipoic acid"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>99</b> (4): 2356–2361. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002PNAS...99.2356L">2002PNAS...99.2356L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.261709299">10.1073/pnas.261709299</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122369">122369</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11854529">11854529</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&amp;rft.atitle=Memory+loss+in+old+rats+is+associated+with+brain+mitochondrial+decay+and+RNA%2FDNA+oxidation%3A+partial+reversal+by+feeding+acetyl-L-carnitine+and%2For+R-alpha+-lipoic+acid&amp;rft.volume=99&amp;rft.issue=4&amp;rft.pages=2356-2361&amp;rft.date=2002-02&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC122369%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F11854529&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.261709299&amp;rft_id=info%3Abibcode%2F2002PNAS...99.2356L&amp;rft.aulast=Liu&amp;rft.aufirst=J&amp;rft.au=Head%2C+E&amp;rft.au=Gharib%2C+AM&amp;rft.au=Yuan%2C+W&amp;rft.au=Ingersoll%2C+RT&amp;rft.au=Hagen%2C+TM&amp;rft.au=Cotman%2C+CW&amp;rft.au=Ames%2C+BN&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC122369&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid1355616-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid1355616_49-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStadtman1992" class="citation journal cs1">Stadtman ER (August 1992). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1230934">"Protein oxidation and aging"</a>. <i>Science</i>. <b>257</b> (5074): 1220–1224. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992Sci...257.1220S">1992Sci...257.1220S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1355616">10.1126/science.1355616</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1355616">1355616</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Protein+oxidation+and+aging&amp;rft.volume=257&amp;rft.issue=5074&amp;rft.pages=1220-1224&amp;rft.date=1992-08&amp;rft_id=info%3Apmid%2F1355616&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1355616&amp;rft_id=info%3Abibcode%2F1992Sci...257.1220S&amp;rft.aulast=Stadtman&amp;rft.aufirst=ER&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1230934&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-CarneyStarke-Reed1991-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-CarneyStarke-Reed1991_50-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarneyStarke-ReedOliverLandum1991" class="citation journal cs1">Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS, Wu JF, Floyd RA (May 1991). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC51506">"Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>88</b> (9): 3633–3636. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1991PNAS...88.3633C">1991PNAS...88.3633C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.88.9.3633">10.1073/pnas.88.9.3633</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC51506">51506</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1673789">1673789</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&amp;rft.atitle=Reversal+of+age-related+increase+in+brain+protein+oxidation%2C+decrease+in+enzyme+activity%2C+and+loss+in+temporal+and+spatial+memory+by+chronic+administration+of+the+spin-trapping+compound+N-tert-butyl-alpha-phenylnitrone&amp;rft.volume=88&amp;rft.issue=9&amp;rft.pages=3633-3636&amp;rft.date=1991-05&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC51506%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F1673789&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.88.9.3633&amp;rft_id=info%3Abibcode%2F1991PNAS...88.3633C&amp;rft.aulast=Carney&amp;rft.aufirst=JM&amp;rft.au=Starke-Reed%2C+PE&amp;rft.au=Oliver%2C+CN&amp;rft.au=Landum%2C+RW&amp;rft.au=Cheng%2C+MS&amp;rft.au=Wu%2C+JF&amp;rft.au=Floyd%2C+RA&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC51506&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid19197346-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid19197346_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_RaamsdonkHekimi2009" class="citation journal cs1">Van Raamsdonk JM, Hekimi S (February 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628729">"Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans"</a>. <i>PLOS Genetics</i>. <b>5</b> (2): e1000361. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pgen.1000361">10.1371/journal.pgen.1000361</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628729">2628729</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19197346">19197346</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=PLOS+Genetics&amp;rft.atitle=Deletion+of+the+mitochondrial+superoxide+dismutase+sod-2+extends+lifespan+in+Caenorhabditis+elegans&amp;rft.volume=5&amp;rft.issue=2&amp;rft.pages=e1000361&amp;rft.date=2009-02&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2628729%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F19197346&amp;rft_id=info%3Adoi%2F10.1371%2Fjournal.pgen.1000361&amp;rft.aulast=Van+Raamsdonk&amp;rft.aufirst=JM&amp;rft.au=Hekimi%2C+S&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2628729&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid17640558-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid17640558_52-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMullerLustgartenJangRichardson2007" class="citation journal cs1">Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (August 2007). "Trends in oxidative aging theories". <i>Free Radical Biology &amp; Medicine</i>. <b>43</b> (4): 477–503. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.freeradbiomed.2007.03.034">10.1016/j.freeradbiomed.2007.03.034</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17640558">17640558</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Free+Radical+Biology+%26+Medicine&amp;rft.atitle=Trends+in+oxidative+aging+theories&amp;rft.volume=43&amp;rft.issue=4&amp;rft.pages=477-503&amp;rft.date=2007-08&amp;rft_id=info%3Adoi%2F10.1016%2Fj.freeradbiomed.2007.03.034&amp;rft_id=info%3Apmid%2F17640558&amp;rft.aulast=Muller&amp;rft.aufirst=FL&amp;rft.au=Lustgarten%2C+MS&amp;rft.au=Jang%2C+Y&amp;rft.au=Richardson%2C+A&amp;rft.au=Van+Remmen%2C+H&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid24709042-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid24709042_53-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSinhaGhoshSwainGiridharan2014" class="citation journal cs1">Sinha JK, Ghosh S, Swain U, Giridharan NV, Raghunath M (June 2014). "Increased macromolecular damage due to oxidative stress in the neocortex and hippocampus of WNIN/Ob, a novel rat model of premature aging". <i>Neuroscience</i>. <b>269</b>: 256–264. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.neuroscience.2014.03.040">10.1016/j.neuroscience.2014.03.040</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24709042">24709042</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9934178">9934178</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Neuroscience&amp;rft.atitle=Increased+macromolecular+damage+due+to+oxidative+stress+in+the+neocortex+and+hippocampus+of+WNIN%2FOb%2C+a+novel+rat+model+of+premature+aging&amp;rft.volume=269&amp;rft.pages=256-264&amp;rft.date=2014-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9934178%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F24709042&amp;rft_id=info%3Adoi%2F10.1016%2Fj.neuroscience.2014.03.040&amp;rft.aulast=Sinha&amp;rft.aufirst=JK&amp;rft.au=Ghosh%2C+S&amp;rft.au=Swain%2C+U&amp;rft.au=Giridharan%2C+NV&amp;rft.au=Raghunath%2C+M&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernsteinPayneBernsteinGarewal2008" class="citation book cs1">Bernstein H, Payne CM, Bernstein C, Garewal H, Dvorak K (2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20141025091740/https://www.novapublishers.com/catalog/product_info.php?products_id=43247">"Chapter 1: Cancer and aging as consequences of un-repaired DNA damage."</a>. In Kimura H, Suzuki A (eds.). <i>New Research on DNA Damages</i>. New York: <a href="/wiki/Nova_Science_Publishers,_Inc." class="mw-redirect" title="Nova Science Publishers, Inc.">Nova Science Publishers, Inc.</a> pp.&#160;1–47. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-60456-581-2" title="Special:BookSources/978-1-60456-581-2"><bdi>978-1-60456-581-2</bdi></a>. Archived from <a rel="nofollow" class="external text" href="https://www.novapublishers.com/catalog/product_info.php?products_id=43247">the original</a> on 2014-10-25<span class="reference-accessdate">. Retrieved <span class="nowrap">2018-03-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+1%3A+Cancer+and+aging+as+consequences+of+un-repaired+DNA+damage.&amp;rft.btitle=New+Research+on+DNA+Damages&amp;rft.place=New+York&amp;rft.pages=1-47&amp;rft.pub=Nova+Science+Publishers%2C+Inc.&amp;rft.date=2008&amp;rft.isbn=978-1-60456-581-2&amp;rft.aulast=Bernstein&amp;rft.aufirst=H&amp;rft.au=Payne%2C+CM&amp;rft.au=Bernstein%2C+C&amp;rft.au=Garewal%2C+H&amp;rft.au=Dvorak%2C+K&amp;rft_id=https%3A%2F%2Fwww.novapublishers.com%2Fcatalog%2Fproduct_info.php%3Fproducts_id%3D43247&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span><span style="position:relative; top: -2px;"><span typeof="mw:File"><a href="/wiki/Open_access" title="open access publication – free to read"><img alt="Open access icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/9px-Open_Access_logo_PLoS_transparent.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/14px-Open_Access_logo_PLoS_transparent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/18px-Open_Access_logo_PLoS_transparent.svg.png 2x" data-file-width="640" data-file-height="1000" /></a></span></span>, but read only.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDickinsonChang2011" class="citation journal cs1">Dickinson BC, Chang CJ (July 2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390228">"Chemistry and biology of reactive oxygen species in signaling or stress responses"</a>. <i>Nature Chemical Biology</i>. <b>7</b> (8): 504–511. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnchembio.607">10.1038/nchembio.607</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390228">3390228</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21769097">21769097</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Chemical+Biology&amp;rft.atitle=Chemistry+and+biology+of+reactive+oxygen+species+in+signaling+or+stress+responses&amp;rft.volume=7&amp;rft.issue=8&amp;rft.pages=504-511&amp;rft.date=2011-07&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3390228%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F21769097&amp;rft_id=info%3Adoi%2F10.1038%2Fnchembio.607&amp;rft.aulast=Dickinson&amp;rft.aufirst=BC&amp;rft.au=Chang%2C+CJ&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3390228&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIraniXiaZweierSollott1997" class="citation journal cs1">Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, et&#160;al. (March 1997). "Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts". <i>Science</i>. <b>275</b> (5306): 1649–1652. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.275.5306.1649">10.1126/science.275.5306.1649</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9054359">9054359</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:19733670">19733670</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Mitogenic+signaling+mediated+by+oxidants+in+Ras-transformed+fibroblasts&amp;rft.volume=275&amp;rft.issue=5306&amp;rft.pages=1649-1652&amp;rft.date=1997-03&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A19733670%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F9054359&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.275.5306.1649&amp;rft.aulast=Irani&amp;rft.aufirst=K&amp;rft.au=Xia%2C+Y&amp;rft.au=Zweier%2C+JL&amp;rft.au=Sollott%2C+SJ&amp;rft.au=Der%2C+CJ&amp;rft.au=Fearon%2C+ER&amp;rft.au=Sundaresan%2C+M&amp;rft.au=Finkel%2C+T&amp;rft.au=Goldschmidt-Clermont%2C+PJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRamseySharpless2006" class="citation journal cs1">Ramsey MR, Sharpless NE (November 2006). "ROS as a tumour suppressor?". <i>Nature Cell Biology</i>. <b>8</b> (11): 1213–1215. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncb1106-1213">10.1038/ncb1106-1213</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17077852">17077852</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:21104991">21104991</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Cell+Biology&amp;rft.atitle=ROS+as+a+tumour+suppressor%3F&amp;rft.volume=8&amp;rft.issue=11&amp;rft.pages=1213-1215&amp;rft.date=2006-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A21104991%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17077852&amp;rft_id=info%3Adoi%2F10.1038%2Fncb1106-1213&amp;rft.aulast=Ramsey&amp;rft.aufirst=MR&amp;rft.au=Sharpless%2C+NE&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTakahashiOhtaniYamakoshiIida2006" class="citation journal cs1">Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K, et&#160;al. (November 2006). "Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence". <i>Nature Cell Biology</i>. <b>8</b> (11): 1291–1297. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncb1491">10.1038/ncb1491</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17028578">17028578</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8686894">8686894</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Cell+Biology&amp;rft.atitle=Mitogenic+signalling+and+the+p16INK4a-Rb+pathway+cooperate+to+enforce+irreversible+cellular+senescence&amp;rft.volume=8&amp;rft.issue=11&amp;rft.pages=1291-1297&amp;rft.date=2006-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8686894%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17028578&amp;rft_id=info%3Adoi%2F10.1038%2Fncb1491&amp;rft.aulast=Takahashi&amp;rft.aufirst=A&amp;rft.au=Ohtani%2C+N&amp;rft.au=Yamakoshi%2C+K&amp;rft.au=Iida%2C+S&amp;rft.au=Tahara%2C+H&amp;rft.au=Nakayama%2C+K&amp;rft.au=Nakayama%2C+KI&amp;rft.au=Ide%2C+T&amp;rft.au=Saya%2C+H&amp;rft.au=Hara%2C+E&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRenschler2004" class="citation journal cs1">Renschler MF (September 2004). "The emerging role of reactive oxygen species in cancer therapy". <i>European Journal of Cancer</i>. <b>40</b> (13): 1934–1940. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ejca.2004.02.031">10.1016/j.ejca.2004.02.031</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15315800">15315800</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=European+Journal+of+Cancer&amp;rft.atitle=The+emerging+role+of+reactive+oxygen+species+in+cancer+therapy&amp;rft.volume=40&amp;rft.issue=13&amp;rft.pages=1934-1940&amp;rft.date=2004-09&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ejca.2004.02.031&amp;rft_id=info%3Apmid%2F15315800&amp;rft.aulast=Renschler&amp;rft.aufirst=MF&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTolerNoeSharma2006" class="citation journal cs1">Toler SM, Noe D, Sharma A (December 2006). <a rel="nofollow" class="external text" href="https://doi.org/10.3171%2Ffoc.2006.21.6.1">"Selective enhancement of cellular oxidative stress by chloroquine: implications for the treatment of glioblastoma multiforme"</a>. <i>Neurosurgical Focus</i>. <b>21</b> (6): E10. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3171%2Ffoc.2006.21.6.1">10.3171/foc.2006.21.6.1</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17341043">17341043</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Neurosurgical+Focus&amp;rft.atitle=Selective+enhancement+of+cellular+oxidative+stress+by+chloroquine%3A+implications+for+the+treatment+of+glioblastoma+multiforme&amp;rft.volume=21&amp;rft.issue=6&amp;rft.pages=E10&amp;rft.date=2006-12&amp;rft_id=info%3Adoi%2F10.3171%2Ffoc.2006.21.6.1&amp;rft_id=info%3Apmid%2F17341043&amp;rft.aulast=Toler&amp;rft.aufirst=SM&amp;rft.au=Noe%2C+D&amp;rft.au=Sharma%2C+A&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3171%252Ffoc.2006.21.6.1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCairnsHarrisMak2011" class="citation journal cs1">Cairns RA, Harris IS, Mak TW (February 2011). "Regulation of cancer cell metabolism". <i>Nature Reviews. Cancer</i>. <b>11</b> (2): 85–95. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrc2981">10.1038/nrc2981</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21258394">21258394</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8891526">8891526</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Reviews.+Cancer&amp;rft.atitle=Regulation+of+cancer+cell+metabolism&amp;rft.volume=11&amp;rft.issue=2&amp;rft.pages=85-95&amp;rft.date=2011-02&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8891526%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F21258394&amp;rft_id=info%3Adoi%2F10.1038%2Fnrc2981&amp;rft.aulast=Cairns&amp;rft.aufirst=RA&amp;rft.au=Harris%2C+IS&amp;rft.au=Mak%2C+TW&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid22117137-62"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid22117137_62-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid22117137_62-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-pmid22117137_62-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-pmid22117137_62-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-pmid22117137_62-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-pmid22117137_62-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-pmid22117137_62-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-pmid22117137_62-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuptaHeviaPatchvaPark2012" class="citation journal cs1">Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB (June 2012). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324815">"Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy"</a>. <i>Antioxidants &amp; Redox Signaling</i>. <b>16</b> (11): 1295–1322. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1089%2Fars.2011.4414">10.1089/ars.2011.4414</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324815">3324815</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22117137">22117137</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Antioxidants+%26+Redox+Signaling&amp;rft.atitle=Upsides+and+downsides+of+reactive+oxygen+species+for+cancer%3A+the+roles+of+reactive+oxygen+species+in+tumorigenesis%2C+prevention%2C+and+therapy&amp;rft.volume=16&amp;rft.issue=11&amp;rft.pages=1295-1322&amp;rft.date=2012-06&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3324815%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F22117137&amp;rft_id=info%3Adoi%2F10.1089%2Fars.2011.4414&amp;rft.aulast=Gupta&amp;rft.aufirst=SC&amp;rft.au=Hevia%2C+D&amp;rft.au=Patchva%2C+S&amp;rft.au=Park%2C+B&amp;rft.au=Koh%2C+W&amp;rft.au=Aggarwal%2C+BB&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3324815&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWarisAhsan2006" class="citation journal cs1">Waris G, Ahsan H (May 2006). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1479806">"Reactive oxygen species: role in the development of cancer and various chronic conditions"</a>. <i>Journal of Carcinogenesis</i>. <b>5</b>: 14. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2F1477-3163-5-14">10.1186/1477-3163-5-14</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1479806">1479806</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16689993">16689993</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Carcinogenesis&amp;rft.atitle=Reactive+oxygen+species%3A+role+in+the+development+of+cancer+and+various+chronic+conditions&amp;rft.volume=5&amp;rft.pages=14&amp;rft.date=2006-05&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1479806%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F16689993&amp;rft_id=info%3Adoi%2F10.1186%2F1477-3163-5-14&amp;rft.aulast=Waris&amp;rft.aufirst=G&amp;rft.au=Ahsan%2C+H&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1479806&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJineshTaokaZhangGorantla2016" class="citation journal cs1">Jinesh GG, Taoka R, Zhang Q, Gorantla S, Kamat AM (April 2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819220">"Novel PKC-ζ to p47 phox interaction is necessary for transformation from blebbishields"</a>. <i>Scientific Reports</i>. <b>6</b>: 23965. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016NatSR...623965J">2016NatSR...623965J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep23965">10.1038/srep23965</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819220">4819220</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27040869">27040869</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=Novel+PKC-%CE%B6+to+p47+phox+interaction+is+necessary+for+transformation+from+blebbishields&amp;rft.volume=6&amp;rft.pages=23965&amp;rft.date=2016-04&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4819220%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F27040869&amp;rft_id=info%3Adoi%2F10.1038%2Fsrep23965&amp;rft_id=info%3Abibcode%2F2016NatSR...623965J&amp;rft.aulast=Jinesh&amp;rft.aufirst=GG&amp;rft.au=Taoka%2C+R&amp;rft.au=Zhang%2C+Q&amp;rft.au=Gorantla%2C+S&amp;rft.au=Kamat%2C+AM&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4819220&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text">Jinesh GG, Kamat AM. <a rel="nofollow" class="external text" href="http://www.nature.com/cdd/journal/vaop/ncurrent/full/cdd201626a.html">Blebbishield emergency program: an apoptotic route to cellular transformation</a>. Cell Death Differ. 2016 In Press.</span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAmes1983" class="citation journal cs1">Ames BN (September 1983). "Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases". <i>Science</i>. <b>221</b> (4617): 1256–1264. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1983Sci...221.1256A">1983Sci...221.1256A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.6351251">10.1126/science.6351251</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/6351251">6351251</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Dietary+carcinogens+and+anticarcinogens.+Oxygen+radicals+and+degenerative+diseases&amp;rft.volume=221&amp;rft.issue=4617&amp;rft.pages=1256-1264&amp;rft.date=1983-09&amp;rft_id=info%3Apmid%2F6351251&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.6351251&amp;rft_id=info%3Abibcode%2F1983Sci...221.1256A&amp;rft.aulast=Ames&amp;rft.aufirst=BN&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOzben2007" class="citation journal cs1">Ozben T (September 2007). "Oxidative stress and apoptosis: impact on cancer therapy". <i>Journal of Pharmaceutical Sciences</i>. <b>96</b> (9): 2181–2196. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjps.20874">10.1002/jps.20874</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17593552">17593552</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Pharmaceutical+Sciences&amp;rft.atitle=Oxidative+stress+and+apoptosis%3A+impact+on+cancer+therapy&amp;rft.volume=96&amp;rft.issue=9&amp;rft.pages=2181-2196&amp;rft.date=2007-09&amp;rft_id=info%3Adoi%2F10.1002%2Fjps.20874&amp;rft_id=info%3Apmid%2F17593552&amp;rft.aulast=Ozben&amp;rft.aufirst=T&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartindaleHolbrook2002" class="citation journal cs1">Martindale JL, Holbrook NJ (July 2002). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjcp.10119">"Cellular response to oxidative stress: signaling for suicide and survival"</a>. <i>Journal of Cellular Physiology</i>. <b>192</b> (1): 1–15. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjcp.10119">10.1002/jcp.10119</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12115731">12115731</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Cellular+Physiology&amp;rft.atitle=Cellular+response+to+oxidative+stress%3A+signaling+for+suicide+and+survival&amp;rft.volume=192&amp;rft.issue=1&amp;rft.pages=1-15&amp;rft.date=2002-07&amp;rft_id=info%3Adoi%2F10.1002%2Fjcp.10119&amp;rft_id=info%3Apmid%2F12115731&amp;rft.aulast=Martindale&amp;rft.aufirst=JL&amp;rft.au=Holbrook%2C+NJ&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fjcp.10119&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid17717517-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid17717517_69-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaiuriZalckvarKimchiKroemer2007" class="citation journal cs1">Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (September 2007). "Self-eating and self-killing: crosstalk between autophagy and apoptosis". <i>Nature Reviews. Molecular Cell Biology</i>. <b>8</b> (9): 741–752. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrm2239">10.1038/nrm2239</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17717517">17717517</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3912801">3912801</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Reviews.+Molecular+Cell+Biology&amp;rft.atitle=Self-eating+and+self-killing%3A+crosstalk+between+autophagy+and+apoptosis&amp;rft.volume=8&amp;rft.issue=9&amp;rft.pages=741-752&amp;rft.date=2007-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3912801%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17717517&amp;rft_id=info%3Adoi%2F10.1038%2Fnrm2239&amp;rft.aulast=Maiuri&amp;rft.aufirst=MC&amp;rft.au=Zalckvar%2C+E&amp;rft.au=Kimchi%2C+A&amp;rft.au=Kroemer%2C+G&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid20467424-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid20467424_70-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFuldaGalluzziKroemer2010" class="citation journal cs1">Fulda S, Galluzzi L, Kroemer G (June 2010). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrd3137">"Targeting mitochondria for cancer therapy"</a>. <i>Nature Reviews. Drug Discovery</i>. <b>9</b> (6): 447–464. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrd3137">10.1038/nrd3137</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20467424">20467424</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14643750">14643750</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Reviews.+Drug+Discovery&amp;rft.atitle=Targeting+mitochondria+for+cancer+therapy&amp;rft.volume=9&amp;rft.issue=6&amp;rft.pages=447-464&amp;rft.date=2010-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14643750%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F20467424&amp;rft_id=info%3Adoi%2F10.1038%2Fnrd3137&amp;rft.aulast=Fulda&amp;rft.aufirst=S&amp;rft.au=Galluzzi%2C+L&amp;rft.au=Kroemer%2C+G&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fnrd3137&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamptonOrrenius1997" class="citation journal cs1">Hampton MB, Orrenius S (September 1997). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0014-5793%2897%2901068-5">"Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis"</a>. <i>FEBS Letters</i>. <b>414</b> (3): 552–556. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997FEBSL.414..552H">1997FEBSL.414..552H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0014-5793%2897%2901068-5">10.1016/s0014-5793(97)01068-5</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9323034">9323034</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:41952954">41952954</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=FEBS+Letters&amp;rft.atitle=Dual+regulation+of+caspase+activity+by+hydrogen+peroxide%3A+implications+for+apoptosis&amp;rft.volume=414&amp;rft.issue=3&amp;rft.pages=552-556&amp;rft.date=1997-09&amp;rft_id=info%3Adoi%2F10.1016%2Fs0014-5793%2897%2901068-5&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A41952954%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F9323034&amp;rft_id=info%3Abibcode%2F1997FEBSL.414..552H&amp;rft.aulast=Hampton&amp;rft.aufirst=MB&amp;rft.au=Orrenius%2C+S&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fs0014-5793%252897%252901068-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGibson2010" class="citation journal cs1">Gibson SB (October 2010). <a rel="nofollow" class="external text" href="https://doi.org/10.4161%2Fauto.6.7.13335">"A matter of balance between life and death: targeting reactive oxygen species (ROS)-induced autophagy for cancer therapy"</a>. <i>Autophagy</i>. <b>6</b> (7): 835–837. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4161%2Fauto.6.7.13335">10.4161/auto.6.7.13335</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20818163">20818163</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Autophagy&amp;rft.atitle=A+matter+of+balance+between+life+and+death%3A+targeting+reactive+oxygen+species+%28ROS%29-induced+autophagy+for+cancer+therapy&amp;rft.volume=6&amp;rft.issue=7&amp;rft.pages=835-837&amp;rft.date=2010-10&amp;rft_id=info%3Adoi%2F10.4161%2Fauto.6.7.13335&amp;rft_id=info%3Apmid%2F20818163&amp;rft.aulast=Gibson&amp;rft.aufirst=SB&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4161%252Fauto.6.7.13335&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShrivastavaKuzontkoskiGroopmanPrasad2011" class="citation journal cs1">Shrivastava A, Kuzontkoski PM, Groopman JE, Prasad A (July 2011). <a rel="nofollow" class="external text" href="https://doi.org/10.1158%2F1535-7163.MCT-10-1100">"Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy"</a>. <i>Molecular Cancer Therapeutics</i>. <b>10</b> (7): 1161–1172. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1158%2F1535-7163.MCT-10-1100">10.1158/1535-7163.MCT-10-1100</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21566064">21566064</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Molecular+Cancer+Therapeutics&amp;rft.atitle=Cannabidiol+induces+programmed+cell+death+in+breast+cancer+cells+by+coordinating+the+cross-talk+between+apoptosis+and+autophagy&amp;rft.volume=10&amp;rft.issue=7&amp;rft.pages=1161-1172&amp;rft.date=2011-07&amp;rft_id=info%3Adoi%2F10.1158%2F1535-7163.MCT-10-1100&amp;rft_id=info%3Apmid%2F21566064&amp;rft.aulast=Shrivastava&amp;rft.aufirst=A&amp;rft.au=Kuzontkoski%2C+PM&amp;rft.au=Groopman%2C+JE&amp;rft.au=Prasad%2C+A&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1158%252F1535-7163.MCT-10-1100&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-sciencedirect.com-74"><span class="mw-cite-backlink">^ <a href="#cite_ref-sciencedirect.com_74-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-sciencedirect.com_74-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScherz-ShouvalElazar2007" class="citation journal cs1">Scherz-Shouval R, Elazar Z (September 2007). "ROS, mitochondria and the regulation of autophagy". <i>Trends in Cell Biology</i>. <b>17</b> (9): 422–427. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tcb.2007.07.009">10.1016/j.tcb.2007.07.009</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17804237">17804237</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Trends+in+Cell+Biology&amp;rft.atitle=ROS%2C+mitochondria+and+the+regulation+of+autophagy&amp;rft.volume=17&amp;rft.issue=9&amp;rft.pages=422-427&amp;rft.date=2007-09&amp;rft_id=info%3Adoi%2F10.1016%2Fj.tcb.2007.07.009&amp;rft_id=info%3Apmid%2F17804237&amp;rft.aulast=Scherz-Shouval&amp;rft.aufirst=R&amp;rft.au=Elazar%2C+Z&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXieKlionsky2007" class="citation journal cs1">Xie Z, Klionsky DJ (October 2007). "Autophagosome formation: core machinery and adaptations". <i>Nature Cell Biology</i>. <b>9</b> (10): 1102–1109. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncb1007-1102">10.1038/ncb1007-1102</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17909521">17909521</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:26402002">26402002</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Cell+Biology&amp;rft.atitle=Autophagosome+formation%3A+core+machinery+and+adaptations&amp;rft.volume=9&amp;rft.issue=10&amp;rft.pages=1102-1109&amp;rft.date=2007-10&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A26402002%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17909521&amp;rft_id=info%3Adoi%2F10.1038%2Fncb1007-1102&amp;rft.aulast=Xie&amp;rft.aufirst=Z&amp;rft.au=Klionsky%2C+DJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTochhawngDengPervaizYap2013" class="citation journal cs1">Tochhawng L, Deng S, Pervaiz S, Yap CT (May 2013). "Redox regulation of cancer cell migration and invasion". <i>Mitochondrion</i>. <b>13</b> (3): 246–253. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mito.2012.08.002">10.1016/j.mito.2012.08.002</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22960576">22960576</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mitochondrion&amp;rft.atitle=Redox+regulation+of+cancer+cell+migration+and+invasion&amp;rft.volume=13&amp;rft.issue=3&amp;rft.pages=246-253&amp;rft.date=2013-05&amp;rft_id=info%3Adoi%2F10.1016%2Fj.mito.2012.08.002&amp;rft_id=info%3Apmid%2F22960576&amp;rft.aulast=Tochhawng&amp;rft.aufirst=L&amp;rft.au=Deng%2C+S&amp;rft.au=Pervaiz%2C+S&amp;rft.au=Yap%2C+CT&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchumacker2006" class="citation journal cs1">Schumacker PT (September 2006). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ccr.2006.08.015">"Reactive oxygen species in cancer cells: live by the sword, die by the sword"</a>. <i>Cancer Cell</i>. <b>10</b> (3): 175–176. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ccr.2006.08.015">10.1016/j.ccr.2006.08.015</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16959608">16959608</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cancer+Cell&amp;rft.atitle=Reactive+oxygen+species+in+cancer+cells%3A+live+by+the+sword%2C+die+by+the+sword&amp;rft.volume=10&amp;rft.issue=3&amp;rft.pages=175-176&amp;rft.date=2006-09&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ccr.2006.08.015&amp;rft_id=info%3Apmid%2F16959608&amp;rft.aulast=Schumacker&amp;rft.aufirst=PT&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.ccr.2006.08.015&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrachoothamAlexandreHuang2009" class="citation journal cs1">Trachootham D, Alexandre J, Huang P (July 2009). "Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?". <i>Nature Reviews. Drug Discovery</i>. <b>8</b> (7): 579–591. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrd2803">10.1038/nrd2803</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19478820">19478820</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20697221">20697221</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Reviews.+Drug+Discovery&amp;rft.atitle=Targeting+cancer+cells+by+ROS-mediated+mechanisms%3A+a+radical+therapeutic+approach%3F&amp;rft.volume=8&amp;rft.issue=7&amp;rft.pages=579-591&amp;rft.date=2009-07&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20697221%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F19478820&amp;rft_id=info%3Adoi%2F10.1038%2Fnrd2803&amp;rft.aulast=Trachootham&amp;rft.aufirst=D&amp;rft.au=Alexandre%2C+J&amp;rft.au=Huang%2C+P&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWatson2014" class="citation journal cs1">Watson JD (March 2014). "Type 2 diabetes as a redox disease". <i>Lancet</i>. <b>383</b> (9919): 841–843. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0140-6736%2813%2962365-x">10.1016/s0140-6736(13)62365-x</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24581668">24581668</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1076963">1076963</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Lancet&amp;rft.atitle=Type+2+diabetes+as+a+redox+disease&amp;rft.volume=383&amp;rft.issue=9919&amp;rft.pages=841-843&amp;rft.date=2014-03&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1076963%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F24581668&amp;rft_id=info%3Adoi%2F10.1016%2Fs0140-6736%2813%2962365-x&amp;rft.aulast=Watson&amp;rft.aufirst=JD&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-ReferenceA-80"><span class="mw-cite-backlink">^ <a href="#cite_ref-ReferenceA_80-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ReferenceA_80-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMolenaarvan_Noorden2014" class="citation journal cs1">Molenaar RJ, van Noorden CJ (September 2014). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0140-6736%2814%2961485-9">"Type 2 diabetes and cancer as redox diseases?"</a>. <i>Lancet</i>. <b>384</b> (9946): 853. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0140-6736%2814%2961485-9">10.1016/s0140-6736(14)61485-9</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25209484">25209484</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:28902284">28902284</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Lancet&amp;rft.atitle=Type+2+diabetes+and+cancer+as+redox+diseases%3F&amp;rft.volume=384&amp;rft.issue=9946&amp;rft.pages=853&amp;rft.date=2014-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A28902284%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F25209484&amp;rft_id=info%3Adoi%2F10.1016%2Fs0140-6736%2814%2961485-9&amp;rft.aulast=Molenaar&amp;rft.aufirst=RJ&amp;rft.au=van+Noorden%2C+CJ&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fs0140-6736%252814%252961485-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIrwinSmithMcTiernanBallard-Barbash2008" class="citation journal cs1">Irwin ML, Smith AW, McTiernan A, Ballard-Barbash R, Cronin K, Gilliland FD, et&#160;al. (August 2008). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654316">"Influence of pre- and postdiagnosis physical activity on mortality in breast cancer survivors: the health, eating, activity, and lifestyle study"</a>. <i>Journal of Clinical Oncology</i>. <b>26</b> (24): 3958–3964. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1200%2Fjco.2007.15.9822">10.1200/jco.2007.15.9822</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654316">2654316</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18711185">18711185</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Clinical+Oncology&amp;rft.atitle=Influence+of+pre-+and+postdiagnosis+physical+activity+on+mortality+in+breast+cancer+survivors%3A+the+health%2C+eating%2C+activity%2C+and+lifestyle+study&amp;rft.volume=26&amp;rft.issue=24&amp;rft.pages=3958-3964&amp;rft.date=2008-08&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2654316%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F18711185&amp;rft_id=info%3Adoi%2F10.1200%2Fjco.2007.15.9822&amp;rft.aulast=Irwin&amp;rft.aufirst=ML&amp;rft.au=Smith%2C+AW&amp;rft.au=McTiernan%2C+A&amp;rft.au=Ballard-Barbash%2C+R&amp;rft.au=Cronin%2C+K&amp;rft.au=Gilliland%2C+FD&amp;rft.au=Baumgartner%2C+RN&amp;rft.au=Baumgartner%2C+KB&amp;rft.au=Bernstein%2C+L&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2654316&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNdomberaVanHeckeNagiAhn2016" class="citation journal cs1">Ndombera FT, VanHecke GC, Nagi S, Ahn YH (March 2016). "Carbohydrate-based inducers of cellular stress for targeting cancer cells". <i>Bioorganic &amp; Medicinal Chemistry Letters</i>. <b>26</b> (5): 1452–1456. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.bmcl.2016.01.063">10.1016/j.bmcl.2016.01.063</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26832785">26832785</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bioorganic+%26+Medicinal+Chemistry+Letters&amp;rft.atitle=Carbohydrate-based+inducers+of+cellular+stress+for+targeting+cancer+cells&amp;rft.volume=26&amp;rft.issue=5&amp;rft.pages=1452-1456&amp;rft.date=2016-03&amp;rft_id=info%3Adoi%2F10.1016%2Fj.bmcl.2016.01.063&amp;rft_id=info%3Apmid%2F26832785&amp;rft.aulast=Ndombera&amp;rft.aufirst=FT&amp;rft.au=VanHecke%2C+GC&amp;rft.au=Nagi%2C+S&amp;rft.au=Ahn%2C+YH&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-Zhou-83"><span class="mw-cite-backlink">^ <a href="#cite_ref-Zhou_83-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Zhou_83-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhouZhuangWangHe2016" class="citation journal cs1">Zhou X, Zhuang Z, Wang W, He L, Wu H, Cao Y, et&#160;al. (September 2016). "OGG1 is essential in oxidative stress induced DNA demethylation". <i>Cellular Signalling</i>. <b>28</b> (9): 1163–1171. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cellsig.2016.05.021">10.1016/j.cellsig.2016.05.021</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27251462">27251462</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cellular+Signalling&amp;rft.atitle=OGG1+is+essential+in+oxidative+stress+induced+DNA+demethylation&amp;rft.volume=28&amp;rft.issue=9&amp;rft.pages=1163-1171&amp;rft.date=2016-09&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cellsig.2016.05.021&amp;rft_id=info%3Apmid%2F27251462&amp;rft.aulast=Zhou&amp;rft.aufirst=X&amp;rft.au=Zhuang%2C+Z&amp;rft.au=Wang%2C+W&amp;rft.au=He%2C+L&amp;rft.au=Wu%2C+H&amp;rft.au=Cao%2C+Y&amp;rft.au=Pan%2C+F&amp;rft.au=Zhao%2C+J&amp;rft.au=Hu%2C+Z&amp;rft.au=Sekhar%2C+C&amp;rft.au=Guo%2C+Z&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid29875631-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid29875631_84-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBayraktarKreutz2018" class="citation journal cs1">Bayraktar G, Kreutz MR (2018). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5975432">"The Role of Activity-Dependent DNA Demethylation in the Adult Brain and in Neurological Disorders"</a>. <i>Frontiers in Molecular Neuroscience</i>. <b>11</b>: 169. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffnmol.2018.00169">10.3389/fnmol.2018.00169</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5975432">5975432</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29875631">29875631</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Molecular+Neuroscience&amp;rft.atitle=The+Role+of+Activity-Dependent+DNA+Demethylation+in+the+Adult+Brain+and+in+Neurological+Disorders&amp;rft.volume=11&amp;rft.pages=169&amp;rft.date=2018&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5975432%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F29875631&amp;rft_id=info%3Adoi%2F10.3389%2Ffnmol.2018.00169&amp;rft.aulast=Bayraktar&amp;rft.aufirst=G&amp;rft.au=Kreutz%2C+MR&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5975432&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid20649473-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid20649473_85-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMassaadKlann2011" class="citation journal cs1">Massaad CA, Klann E (May 2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078504">"Reactive oxygen species in the regulation of synaptic plasticity and memory"</a>. <i>Antioxidants &amp; Redox Signaling</i>. <b>14</b> (10): 2013–2054. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1089%2Fars.2010.3208">10.1089/ars.2010.3208</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078504">3078504</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20649473">20649473</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Antioxidants+%26+Redox+Signaling&amp;rft.atitle=Reactive+oxygen+species+in+the+regulation+of+synaptic+plasticity+and+memory&amp;rft.volume=14&amp;rft.issue=10&amp;rft.pages=2013-2054&amp;rft.date=2011-05&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3078504%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F20649473&amp;rft_id=info%3Adoi%2F10.1089%2Fars.2010.3208&amp;rft.aulast=Massaad&amp;rft.aufirst=CA&amp;rft.au=Klann%2C+E&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3078504&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid27625575-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid27625575_86-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeckhauserFrancis-OliveiraDe_Pasquale2016" class="citation journal cs1">Beckhauser TF, Francis-Oliveira J, De Pasquale R (2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012454">"Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity"</a>. <i>Journal of Experimental Neuroscience</i>. <b>10</b> (Suppl 1): 23–48. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4137%2FJEN.S39887">10.4137/JEN.S39887</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012454">5012454</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27625575">27625575</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Experimental+Neuroscience&amp;rft.atitle=Reactive+Oxygen+Species%3A+Physiological+and+Physiopathological+Effects+on+Synaptic+Plasticity&amp;rft.volume=10&amp;rft.issue=Suppl+1&amp;rft.pages=23-48&amp;rft.date=2016&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5012454%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F27625575&amp;rft_id=info%3Adoi%2F10.4137%2FJEN.S39887&amp;rft.aulast=Beckhauser&amp;rft.aufirst=TF&amp;rft.au=Francis-Oliveira%2C+J&amp;rft.au=De+Pasquale%2C+R&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5012454&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid21116250-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid21116250_87-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaySweatt2011" class="citation journal cs1">Day JJ, Sweatt JD (January 2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055499">"Epigenetic modifications in neurons are essential for formation and storage of behavioral memory"</a>. <i>Neuropsychopharmacology</i>. <b>36</b> (1): 357–358. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnpp.2010.125">10.1038/npp.2010.125</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055499">3055499</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21116250">21116250</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Neuropsychopharmacology&amp;rft.atitle=Epigenetic+modifications+in+neurons+are+essential+for+formation+and+storage+of+behavioral+memory&amp;rft.volume=36&amp;rft.issue=1&amp;rft.pages=357-358&amp;rft.date=2011-01&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3055499%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F21116250&amp;rft_id=info%3Adoi%2F10.1038%2Fnpp.2010.125&amp;rft.aulast=Day&amp;rft.aufirst=JJ&amp;rft.au=Sweatt%2C+JD&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3055499&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid26875778-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid26875778_88-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSweatt2016" class="citation journal cs1">Sweatt JD (October 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fjnc.13580">"Neural plasticity and behavior - sixty years of conceptual advances"</a>. <i>Journal of Neurochemistry</i>. <b>139</b> (Suppl 2): 179–199. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fjnc.13580">10.1111/jnc.13580</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26875778">26875778</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Neurochemistry&amp;rft.atitle=Neural+plasticity+and+behavior+-+sixty+years+of+conceptual+advances&amp;rft.volume=139&amp;rft.issue=Suppl+2&amp;rft.pages=179-199&amp;rft.date=2016-10&amp;rft_id=info%3Adoi%2F10.1111%2Fjnc.13580&amp;rft_id=info%3Apmid%2F26875778&amp;rft.aulast=Sweatt&amp;rft.aufirst=JD&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1111%252Fjnc.13580&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> <li id="cite_note-pmid20975755-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid20975755_89-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaySweatt2010" class="citation journal cs1">Day JJ, Sweatt JD (November 2010). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130618">"DNA methylation and memory formation"</a>. <i>Nature Neuroscience</i>. <b>13</b> (11): 1319–1323. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnn.2666">10.1038/nn.2666</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130618">3130618</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20975755">20975755</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Neuroscience&amp;rft.atitle=DNA+methylation+and+memory+formation&amp;rft.volume=13&amp;rft.issue=11&amp;rft.pages=1319-1323&amp;rft.date=2010-11&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3130618%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F20975755&amp;rft_id=info%3Adoi%2F10.1038%2Fnn.2666&amp;rft.aulast=Day&amp;rft.aufirst=JJ&amp;rft.au=Sweatt%2C+JD&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3130618&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=23" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 32em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSen2003" class="citation journal cs1">Sen CK (2003). "The general case for redox control of wound repair". <i>Wound Repair and Regeneration</i>. <b>11</b> (6): 431–438. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1046%2Fj.1524-475X.2003.11607.x">10.1046/j.1524-475X.2003.11607.x</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14617282">14617282</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:40770160">40770160</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Wound+Repair+and+Regeneration&amp;rft.atitle=The+general+case+for+redox+control+of+wound+repair&amp;rft.volume=11&amp;rft.issue=6&amp;rft.pages=431-438&amp;rft.date=2003&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A40770160%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F14617282&amp;rft_id=info%3Adoi%2F10.1046%2Fj.1524-475X.2003.11607.x&amp;rft.aulast=Sen&amp;rft.aufirst=CK&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrötzSohnGloeZahler2002" class="citation journal cs1">Krötz F, Sohn HY, Gloe T, Zahler S, Riexinger T, Schiele TM, et&#160;al. (August 2002). <a rel="nofollow" class="external text" href="https://doi.org/10.1182%2Fblood.V100.3.917">"NAD(P)H oxidase-dependent platelet superoxide anion release increases platelet recruitment"</a>. <i>Blood</i>. <b>100</b> (3): 917–924. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1182%2Fblood.V100.3.917">10.1182/blood.V100.3.917</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12130503">12130503</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Blood&amp;rft.atitle=NAD%28P%29H+oxidase-dependent+platelet+superoxide+anion+release+increases+platelet+recruitment&amp;rft.volume=100&amp;rft.issue=3&amp;rft.pages=917-924&amp;rft.date=2002-08&amp;rft_id=info%3Adoi%2F10.1182%2Fblood.V100.3.917&amp;rft_id=info%3Apmid%2F12130503&amp;rft.aulast=Kr%C3%B6tz&amp;rft.aufirst=F&amp;rft.au=Sohn%2C+HY&amp;rft.au=Gloe%2C+T&amp;rft.au=Zahler%2C+S&amp;rft.au=Riexinger%2C+T&amp;rft.au=Schiele%2C+TM&amp;rft.au=Becker%2C+BF&amp;rft.au=Theisen%2C+K&amp;rft.au=Klauss%2C+V&amp;rft.au=Pohl%2C+U&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1182%252Fblood.V100.3.917&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPignatelliPulcinelliLentiGazzaniga1998" class="citation journal cs1">Pignatelli P, Pulcinelli FM, Lenti L, Gazzaniga PP, Violi F (January 1998). <a rel="nofollow" class="external text" href="https://doi.org/10.1182%2Fblood.V91.2.484">"Hydrogen peroxide is involved in collagen-induced platelet activation"</a>. <i>Blood</i>. <b>91</b> (2): 484–490. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1182%2Fblood.V91.2.484">10.1182/blood.V91.2.484</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9427701">9427701</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Blood&amp;rft.atitle=Hydrogen+peroxide+is+involved+in+collagen-induced+platelet+activation&amp;rft.volume=91&amp;rft.issue=2&amp;rft.pages=484-490&amp;rft.date=1998-01&amp;rft_id=info%3Adoi%2F10.1182%2Fblood.V91.2.484&amp;rft_id=info%3Apmid%2F9427701&amp;rft.aulast=Pignatelli&amp;rft.aufirst=P&amp;rft.au=Pulcinelli%2C+FM&amp;rft.au=Lenti%2C+L&amp;rft.au=Gazzaniga%2C+PP&amp;rft.au=Violi%2C+F&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1182%252Fblood.V91.2.484&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuzikKorbutAdamek-Guzik2003" class="citation journal cs1">Guzik TJ, Korbut R, Adamek-Guzik T (December 2003). "Nitric oxide and superoxide in inflammation and immune regulation". <i>Journal of Physiology and Pharmacology</i>. <b>54</b> (4): 469–487. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14726604">14726604</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Physiology+and+Pharmacology&amp;rft.atitle=Nitric+oxide+and+superoxide+in+inflammation+and+immune+regulation&amp;rft.volume=54&amp;rft.issue=4&amp;rft.pages=469-487&amp;rft.date=2003-12&amp;rft_id=info%3Apmid%2F14726604&amp;rft.aulast=Guzik&amp;rft.aufirst=TJ&amp;rft.au=Korbut%2C+R&amp;rft.au=Adamek-Guzik%2C+T&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReactive+oxygen+species" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Reactive_oxygen_species&amp;action=edit&amp;section=24" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.cshl.edu/Article-Page/nobel-laureate-james-watson-publishes-novel-hypothesis-on-curing-late-stage-cancers">Nobel laureate James Watson's novel hypothesis</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130601193118/http://www.cshl.edu/Article-Page/nobel-laureate-james-watson-publishes-novel-hypothesis-on-curing-late-stage-cancers">Archived</a> 2013-06-01 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><a rel="nofollow" class="external text" href="http://www.slate.com/articles/health_and_science/medical_examiner/2011/08/the_doctor_and_the_pomegranate.html">Antioxidants don't work, but no one wants to hear it.</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q424361#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00576850">Japan</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐7556f8b5dd‐6vdtd Cached time: 20241124212450 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.009 seconds Real time usage: 1.347 seconds Preprocessor visited node count: 8445/1000000 Post‐expand include size: 283978/2097152 bytes Template argument size: 8828/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 383020/5000000 bytes Lua time usage: 0.607/10.000 seconds Lua memory usage: 6618224/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 976.512 1 -total 55.54% 542.375 1 Template:Reflist 45.33% 442.623 86 Template:Cite_journal 10.24% 100.026 1 Template:Authority_control 7.45% 72.715 1 Template:Short_description 6.91% 67.519 8 Template:Fix 5.03% 49.112 3 Template:Cn 4.94% 48.259 18 Template:Chem2 4.81% 46.983 2 Template:Pagetype 3.48% 33.954 16 Template:Category_handler --> <!-- Saved in parser cache with key enwiki:pcache:idhash:640697-0!canonical and timestamp 20241124212457 and revision id 1259380648. Rendering was triggered because: edit-page --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Reactive_oxygen_species&amp;oldid=1259380648">https://en.wikipedia.org/w/index.php?title=Reactive_oxygen_species&amp;oldid=1259380648</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Reactive_oxygen_species" title="Category:Reactive oxygen species">Reactive oxygen species</a></li><li><a href="/wiki/Category:Free_radicals" title="Category:Free radicals">Free radicals</a></li><li><a href="/wiki/Category:Senescence" title="Category:Senescence">Senescence</a></li><li><a href="/wiki/Category:Carcinogenesis" title="Category:Carcinogenesis">Carcinogenesis</a></li><li><a href="/wiki/Category:Cancer" title="Category:Cancer">Cancer</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_date_and_year" title="Category:CS1 maint: date and year">CS1 maint: date and year</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_September_2024" title="Category:Articles with unsourced statements from September 2024">Articles with unsourced statements from September 2024</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_February_2019" title="Category:Articles with unsourced statements from February 2019">Articles with unsourced statements from February 2019</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2009" title="Category:Articles with unsourced statements from May 2009">Articles with unsourced statements from May 2009</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_containing_video_clips" title="Category:Articles containing video clips">Articles containing video clips</a></li><li><a href="/wiki/Category:Pages_that_use_a_deprecated_format_of_the_chem_tags" title="Category:Pages that use a deprecated format of the chem tags">Pages that use a deprecated format of the chem tags</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 24 November 2024, at 21:24<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Reactive_oxygen_species&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-ffqzr","wgBackendResponseTime":159,"wgPageParseReport":{"limitreport":{"cputime":"1.009","walltime":"1.347","ppvisitednodes":{"value":8445,"limit":1000000},"postexpandincludesize":{"value":283978,"limit":2097152},"templateargumentsize":{"value":8828,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":383020,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 976.512 1 -total"," 55.54% 542.375 1 Template:Reflist"," 45.33% 442.623 86 Template:Cite_journal"," 10.24% 100.026 1 Template:Authority_control"," 7.45% 72.715 1 Template:Short_description"," 6.91% 67.519 8 Template:Fix"," 5.03% 49.112 3 Template:Cn"," 4.94% 48.259 18 Template:Chem2"," 4.81% 46.983 2 Template:Pagetype"," 3.48% 33.954 16 Template:Category_handler"]},"scribunto":{"limitreport-timeusage":{"value":"0.607","limit":"10.000"},"limitreport-memusage":{"value":6618224,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.codfw.main-7556f8b5dd-6vdtd","timestamp":"20241124212450","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Reactive oxygen species","url":"https:\/\/en.wikipedia.org\/wiki\/Reactive_oxygen_species","sameAs":"http:\/\/www.wikidata.org\/entity\/Q424361","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q424361","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-05-07T15:41:14Z","dateModified":"2024-11-24T21:24:49Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/e\/e3\/Reactive_oxygen_species_%28ROS%29_%E2%80%93_some_examples_with_Lewis_structures.png","headline":"highly reactive chemicals formed from oxygen"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10