CINXE.COM

Banach–Tarski paradox - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Banach–Tarski paradox - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ea620edc-1caf-4774-aa4e-c2633fea6136","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Banach–Tarski_paradox","wgTitle":"Banach–Tarski paradox","wgCurRevisionId":1252141479,"wgRevisionId":1252141479,"wgArticleId":19759220,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 French-language sources (fr)","Articles with short description","Short description is different from Wikidata","Articles containing French-language text","Commons category link is on Wikidata","Eponymous paradoxes","Group theory","Measure theory","Mathematical paradoxes","Theorems in the foundations of mathematics","Geometric dissection","1924 introductions","Paradoxes of infinity"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel": "wikitext","wgRelevantPageName":"Banach–Tarski_paradox","wgRelevantArticleId":19759220,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q737851","wgCheckUserClientHintsHeadersJsApi":["brands", "architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP", "ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Banach–Tarski paradox - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Banach%E2%80%93Tarski_paradox"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Banach%E2%80%93Tarski_paradox"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Banach–Tarski_paradox rootpage-Banach–Tarski_paradox skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Banach%E2%80%93Tarski+paradox" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Banach%E2%80%93Tarski+paradox" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Banach%E2%80%93Tarski+paradox" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Banach%E2%80%93Tarski+paradox" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Banach_and_Tarski_publication" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Banach_and_Tarski_publication"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Banach and Tarski publication</span> </div> </a> <ul id="toc-Banach_and_Tarski_publication-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formal_treatment" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formal_treatment"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Formal treatment</span> </div> </a> <ul id="toc-Formal_treatment-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Connection_with_earlier_work_and_the_role_of_the_axiom_of_choice" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Connection_with_earlier_work_and_the_role_of_the_axiom_of_choice"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Connection with earlier work and the role of the axiom of choice</span> </div> </a> <ul id="toc-Connection_with_earlier_work_and_the_role_of_the_axiom_of_choice-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_sketch_of_the_proof" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#A_sketch_of_the_proof"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>A sketch of the proof</span> </div> </a> <button aria-controls="toc-A_sketch_of_the_proof-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle A sketch of the proof subsection</span> </button> <ul id="toc-A_sketch_of_the_proof-sublist" class="vector-toc-list"> <li id="toc-Step_1" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Step_1"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Step 1</span> </div> </a> <ul id="toc-Step_1-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Step_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Step_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Step 2</span> </div> </a> <ul id="toc-Step_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Step_3" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Step_3"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Step 3</span> </div> </a> <ul id="toc-Step_3-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Step_4" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Step_4"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Step 4</span> </div> </a> <ul id="toc-Step_4-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Some_details,_fleshed_out" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Some_details,_fleshed_out"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Some details, fleshed out</span> </div> </a> <ul id="toc-Some_details,_fleshed_out-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Obtaining_infinitely_many_balls_from_one" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Obtaining_infinitely_many_balls_from_one"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Obtaining infinitely many balls from one</span> </div> </a> <ul id="toc-Obtaining_infinitely_many_balls_from_one-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Von_Neumann_paradox_in_the_Euclidean_plane" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Von_Neumann_paradox_in_the_Euclidean_plane"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Von Neumann paradox in the Euclidean plane</span> </div> </a> <button aria-controls="toc-Von_Neumann_paradox_in_the_Euclidean_plane-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Von Neumann paradox in the Euclidean plane subsection</span> </button> <ul id="toc-Von_Neumann_paradox_in_the_Euclidean_plane-sublist" class="vector-toc-list"> <li id="toc-Recent_progress" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Recent_progress"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Recent progress</span> </div> </a> <ul id="toc-Recent_progress-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Banach–Tarski paradox</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 31 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-31" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">31 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D9%81%D8%A7%D8%B1%D9%82%D8%A9_%D8%A8%D8%A7%D9%86%D8%A7%D8%AE_%D8%AA%D8%A7%D8%B1%D8%B3%D9%83%D9%8A" title="مفارقة باناخ تارسكي – Arabic" lang="ar" hreflang="ar" data-title="مفارقة باناخ تارسكي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D0%B0%D1%80%D0%B0%D0%B4%D0%BE%D0%BA%D1%81_%D0%BD%D0%B0_%D0%91%D0%B0%D0%BD%D0%B0%D1%85-%D0%A2%D0%B0%D1%80%D1%81%D0%BA%D0%B8" title="Парадокс на Банах-Тарски – Bulgarian" lang="bg" hreflang="bg" data-title="Парадокс на Банах-Тарски" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Paradoxa_de_Banach-Tarski" title="Paradoxa de Banach-Tarski – Catalan" lang="ca" hreflang="ca" data-title="Paradoxa de Banach-Tarski" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Banach%C5%AFv%E2%80%93Tarsk%C3%A9ho_paradox" title="Banachův–Tarského paradox – Czech" lang="cs" hreflang="cs" data-title="Banachův–Tarského paradox" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Banach-Tarski-Paradoxon" title="Banach-Tarski-Paradoxon – German" lang="de" hreflang="de" data-title="Banach-Tarski-Paradoxon" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Banachi-Tarski_paradoks" title="Banachi-Tarski paradoks – Estonian" lang="et" hreflang="et" data-title="Banachi-Tarski paradoks" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Paradoja_de_Banach-Tarski" title="Paradoja de Banach-Tarski – Spanish" lang="es" hreflang="es" data-title="Paradoja de Banach-Tarski" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%BE%D8%A7%D8%B1%D8%A7%D8%AF%D9%88%DA%A9%D8%B3_%D8%A8%D8%A7%D9%86%D8%A7%D8%AE%E2%80%93%D8%AA%D8%A7%D8%B1%D8%B3%DA%A9%DB%8C" title="پارادوکس باناخ–تارسکی – Persian" lang="fa" hreflang="fa" data-title="پارادوکس باناخ–تارسکی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Paradoxe_de_Banach-Tarski" title="Paradoxe de Banach-Tarski – French" lang="fr" hreflang="fr" data-title="Paradoxe de Banach-Tarski" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B0%94%EB%82%98%ED%9D%90-%ED%83%80%EB%A5%B4%EC%8A%A4%ED%82%A4_%EC%97%AD%EC%84%A4" title="바나흐-타르스키 역설 – Korean" lang="ko" hreflang="ko" data-title="바나흐-타르스키 역설" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Paradoks_Banacha_i_Tarskoga" title="Paradoks Banacha i Tarskoga – Croatian" lang="hr" hreflang="hr" data-title="Paradoks Banacha i Tarskoga" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Paradoks_Banach%E2%80%93Tarski" title="Paradoks Banach–Tarski – Indonesian" lang="id" hreflang="id" data-title="Paradoks Banach–Tarski" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Banach%E2%80%93Tarski_%C3%BEvers%C3%B6gnin" title="Banach–Tarski þversögnin – Icelandic" lang="is" hreflang="is" data-title="Banach–Tarski þversögnin" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Paradosso_di_Banach-Tarski" title="Paradosso di Banach-Tarski – Italian" lang="it" hreflang="it" data-title="Paradosso di Banach-Tarski" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%A4%D7%A8%D7%93%D7%95%D7%A7%D7%A1_%D7%A9%D7%9C_%D7%91%D7%A0%D7%9A-%D7%98%D7%A8%D7%A1%D7%A7%D7%99" title="הפרדוקס של בנך-טרסקי – Hebrew" lang="he" hreflang="he" data-title="הפרדוקס של בנך-טרסקי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%AC%E0%B2%BE%E0%B2%A8%E0%B2%BE%E0%B2%95%E0%B3%8D_%E0%B2%9F%E0%B2%BE%E0%B2%B0%E0%B3%8D%E0%B2%B8%E0%B3%8D%E0%B2%95%E0%B2%BF_%E0%B2%B5%E0%B2%BF%E0%B2%B0%E0%B3%8B%E0%B2%A7%E0%B2%BE%E0%B2%AD%E0%B2%BE%E0%B2%B8" title="ಬಾನಾಕ್ ಟಾರ್ಸ್ಕಿ ವಿರೋಧಾಭಾಸ – Kannada" lang="kn" hreflang="kn" data-title="ಬಾನಾಕ್ ಟಾರ್ಸ್ಕಿ ವಿರೋಧಾಭಾಸ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%91%E1%83%90%E1%83%9C%E1%83%90%E1%83%AE%E1%83%98%E1%83%A1-%E1%83%A2%E1%83%90%E1%83%A0%E1%83%A1%E1%83%99%E1%83%98%E1%83%A1_%E1%83%9E%E1%83%90%E1%83%A0%E1%83%90%E1%83%93%E1%83%9D%E1%83%A5%E1%83%A1%E1%83%98" title="ბანახის-ტარსკის პარადოქსი – Georgian" lang="ka" hreflang="ka" data-title="ბანახის-ტარსკის პარადოქსი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Paradoss_da_Banach-Tarski" title="Paradoss da Banach-Tarski – Lombard" lang="lmo" hreflang="lmo" data-title="Paradoss da Banach-Tarski" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Banach%E2%80%93Tarski-paradoxon" title="Banach–Tarski-paradoxon – Hungarian" lang="hu" hreflang="hu" data-title="Banach–Tarski-paradoxon" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Banach-tarskiparadox" title="Banach-tarskiparadox – Dutch" lang="nl" hreflang="nl" data-title="Banach-tarskiparadox" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%90%E3%83%8A%E3%83%83%E3%83%8F%EF%BC%9D%E3%82%BF%E3%83%AB%E3%82%B9%E3%82%AD%E3%83%BC%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9" title="バナッハ=タルスキーのパラドックス – Japanese" lang="ja" hreflang="ja" data-title="バナッハ=タルスキーのパラドックス" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Paradoks_Banacha-Tarskiego" title="Paradoks Banacha-Tarskiego – Polish" lang="pl" hreflang="pl" data-title="Paradoks Banacha-Tarskiego" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Paradoxo_de_Banach%E2%80%93Tarski" title="Paradoxo de Banach–Tarski – Portuguese" lang="pt" hreflang="pt" data-title="Paradoxo de Banach–Tarski" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D0%B0%D1%80%D0%B0%D0%B4%D0%BE%D0%BA%D1%81_%D0%91%D0%B0%D0%BD%D0%B0%D1%85%D0%B0_%E2%80%94_%D0%A2%D0%B0%D1%80%D1%81%D0%BA%D0%BE%D0%B3%D0%BE" title="Парадокс Банаха — Тарского – Russian" lang="ru" hreflang="ru" data-title="Парадокс Банаха — Тарского" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Banach%E2%80%93Tarski_paradox" title="Banach–Tarski paradox – Simple English" lang="en-simple" hreflang="en-simple" data-title="Banach–Tarski paradox" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%91%D0%B0%D0%BD%D0%B0%D1%85-%D0%A2%D0%B0%D1%80%D1%81%D0%BA%D0%B8_%D0%BF%D0%B0%D1%80%D0%B0%D0%B4%D0%BE%D0%BA%D1%81" title="Банах-Тарски парадокс – Serbian" lang="sr" hreflang="sr" data-title="Банах-Тарски парадокс" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Banachin%E2%80%93Tarskin_paradoksi" title="Banachin–Tarskin paradoksi – Finnish" lang="fi" hreflang="fi" data-title="Banachin–Tarskin paradoksi" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Banach-Tarskis_paradox" title="Banach-Tarskis paradox – Swedish" lang="sv" hreflang="sv" data-title="Banach-Tarskis paradox" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%B0%D1%80%D0%B0%D0%B4%D0%BE%D0%BA%D1%81_%D0%91%D0%B0%D0%BD%D0%B0%D1%85%D0%B0_%E2%80%94_%D0%A2%D0%B0%D1%80%D1%81%D1%8C%D0%BA%D0%BE%D0%B3%D0%BE" title="Парадокс Банаха — Тарського – Ukrainian" lang="uk" hreflang="uk" data-title="Парадокс Банаха — Тарського" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ngh%E1%BB%8Bch_l%C3%BD_Banach%E2%80%93Tarski" title="Nghịch lý Banach–Tarski – Vietnamese" lang="vi" hreflang="vi" data-title="Nghịch lý Banach–Tarski" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%B7%B4%E6%8B%BF%E8%B5%AB-%E5%A1%94%E6%96%AF%E5%9F%BA%E5%AE%9A%E7%90%86" title="巴拿赫-塔斯基定理 – Chinese" lang="zh" hreflang="zh" data-title="巴拿赫-塔斯基定理" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q737851#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Banach%E2%80%93Tarski_paradox" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Banach%E2%80%93Tarski_paradox" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Banach%E2%80%93Tarski_paradox"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Banach%E2%80%93Tarski_paradox"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Banach%E2%80%93Tarski_paradox" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Banach%E2%80%93Tarski_paradox" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;oldid=1252141479" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Banach%E2%80%93Tarski_paradox&amp;id=1252141479&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBanach%25E2%2580%2593Tarski_paradox"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBanach%25E2%2580%2593Tarski_paradox"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Banach%E2%80%93Tarski_paradox&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Banach-Tarski_paradox" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q737851" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Geometric theorem</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For the book about the paradox, see <a href="/wiki/The_Banach%E2%80%93Tarski_Paradox_(book)" title="The Banach–Tarski Paradox (book)">The Banach–Tarski Paradox (book)</a>.</div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Banach-Tarski_Paradox.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/Banach-Tarski_Paradox.svg/350px-Banach-Tarski_Paradox.svg.png" decoding="async" width="350" height="79" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/Banach-Tarski_Paradox.svg/525px-Banach-Tarski_Paradox.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/74/Banach-Tarski_Paradox.svg/700px-Banach-Tarski_Paradox.svg.png 2x" data-file-width="445" data-file-height="100" /></a><figcaption>"Can a ball be decomposed into a finite number of point sets and reassembled into two balls identical to the original?"</figcaption></figure> <p>The <b>Banach–Tarski paradox</b> is a <a href="/wiki/Theorem" title="Theorem">theorem</a> in <a href="/wiki/Set_theory" title="Set theory">set-theoretic</a> <a href="/wiki/Geometry" title="Geometry">geometry</a>, which states the following: Given a solid <a href="/wiki/Ball_(mathematics)" title="Ball (mathematics)">ball</a> in <a href="/wiki/Three-dimensional_space" title="Three-dimensional space">three-dimensional space</a>, <a href="/wiki/Existence_theorem" title="Existence theorem">there exists</a> a decomposition of the ball into a finite number of <a href="/wiki/Disjoint_sets" title="Disjoint sets">disjoint</a> <a href="/wiki/Subset" title="Subset">subsets</a>, which can then be put back together in a different way to yield two identical copies of the original ball. Indeed, the reassembly process involves only moving the pieces around and rotating them, without changing their original shape. However, the pieces themselves are not "solids" in the traditional sense, but infinite scatterings of <a href="/wiki/Point_(geometry)" title="Point (geometry)">points</a>. The reconstruction can work with as few as five pieces.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>An alternative form of the theorem states that given any two "reasonable" solid objects (such as a small ball and a huge ball), the cut pieces of either one can be reassembled into the other. This is often stated informally as "a pea can be chopped up and reassembled into the Sun" and called the "<b>pea and the Sun paradox</b>". </p><p>The theorem is called a <a href="/wiki/Paradox" title="Paradox">paradox</a> because it contradicts basic geometric intuition. "Doubling the ball" by dividing it into parts and moving them around by <a href="/wiki/Rotation" title="Rotation">rotations</a> and <a href="/wiki/Translation_(geometry)" title="Translation (geometry)">translations</a>, without any stretching, bending, or adding new points, seems to be impossible, since all these operations <i>ought</i>, intuitively speaking, to preserve the <a href="/wiki/Volume" title="Volume">volume</a>. The intuition that such operations preserve volumes is not mathematically absurd and it is even included in the formal definition of volumes. However, this is not applicable here because in this case it is impossible to define the volumes of the considered subsets. Reassembling them reproduces a set that has a volume, which happens to be different from the volume at the start. </p><p>Unlike most theorems in geometry, the <a href="/wiki/Mathematical_proof" title="Mathematical proof">mathematical proof</a> of this result depends on the choice of <a href="/wiki/Axioms_for_set_theory" class="mw-redirect" title="Axioms for set theory">axioms for set theory</a> in a critical way. It can be proven using the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a>, which allows for the construction of <a href="/wiki/Non-measurable_set" title="Non-measurable set">non-measurable sets</a>, i.e., collections of points that do not have a volume in the ordinary sense, and whose construction requires an <a href="/wiki/Uncountable_set" title="Uncountable set">uncountable</a> number of choices.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>It was shown in 2005 that the pieces in the decomposition can be chosen in such a way that they can be moved continuously into place without running into one another.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>As proved independently by Leroy<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> and Simpson,<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> the Banach–Tarski paradox does not violate volumes if one works with <a href="/wiki/Complete_Heyting_algebra" title="Complete Heyting algebra">locales</a> rather than topological spaces. In this abstract setting, it is possible to have subspaces without point but still nonempty. The parts of the paradoxical decomposition do intersect a lot in the sense of locales, so much that some of these intersections should be given a positive mass. Allowing for this hidden mass to be taken into account, the theory of locales permits all subsets (and even all sublocales) of the Euclidean space to be satisfactorily measured. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Banach_and_Tarski_publication">Banach and Tarski publication</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=1" title="Edit section: Banach and Tarski publication"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a paper published in 1924,<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Stefan_Banach" title="Stefan Banach">Stefan Banach</a> and <a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Alfred Tarski</a> gave a construction of such a <b>paradoxical decomposition</b>, based on <a href="/wiki/Vitali_set" title="Vitali set">earlier work</a> by <a href="/wiki/Giuseppe_Vitali" title="Giuseppe Vitali">Giuseppe Vitali</a> concerning the <a href="/wiki/Unit_interval" title="Unit interval">unit interval</a> and on the paradoxical decompositions of the sphere by <a href="/wiki/Felix_Hausdorff" title="Felix Hausdorff">Felix Hausdorff</a>, and discussed a number of related questions concerning decompositions of subsets of Euclidean spaces in various dimensions. They proved the following more general statement, the <b>strong form of the Banach–Tarski paradox</b>: </p> <dl><dd>Given any two <a href="/wiki/Bounded_set" title="Bounded set">bounded</a> subsets <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>B</i></span> of a Euclidean space in at least three dimensions, both of which have a nonempty <a href="/wiki/Interior_(topology)" title="Interior (topology)">interior</a>, there are partitions of <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>B</i></span> into a finite number of disjoint subsets, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=A_{1}\cup \cdots \cup A_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x222A;<!-- ∪ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x222A;<!-- ∪ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=A_{1}\cup \cdots \cup A_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb912f9f50bcc9f6e423b6f95f52500c6bb48d59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.359ex; height:2.509ex;" alt="{\displaystyle A=A_{1}\cup \cdots \cup A_{k}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=B_{1}\cup \cdots \cup B_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x222A;<!-- ∪ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x222A;<!-- ∪ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=B_{1}\cup \cdots \cup B_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ce29a1729561ba942a2b7eb55f010f876cee719" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.422ex; height:2.509ex;" alt="{\displaystyle B=B_{1}\cup \cdots \cup B_{k}}"></span> (for some integer <i>k</i>), such that for each (integer) <span class="texhtml"><i>i</i></span> between <span class="texhtml">1</span> and <span class="texhtml"><i>k</i></span>, the sets <span class="texhtml"><i>A</i><sub><i>i</i></sub></span> and <span class="texhtml"><i>B</i><sub><i>i</i></sub></span> are <a href="/wiki/Congruence_(geometry)" title="Congruence (geometry)">congruent</a>.</dd></dl> <p>Now let <span class="texhtml"><i>A</i></span> be the original ball and <span class="texhtml"><i>B</i></span> be the union of two translated copies of the original ball. Then the proposition means that the original ball <span class="texhtml"><i>A</i></span> can be divided into a certain number of pieces and then be rotated and translated in such a way that the result is the whole set <span class="texhtml"><i>B</i></span>, which contains two copies of <span class="texhtml"><i>A</i></span>. </p><p>The strong form of the Banach–Tarski paradox is false in dimensions one and two, but Banach and Tarski showed that an analogous statement remains true if <a href="/wiki/Countably_many" class="mw-redirect" title="Countably many">countably many</a> subsets are allowed. The difference between dimensions 1 and 2 on the one hand, and 3 and higher on the other hand, is due to the richer structure of the group <span class="texhtml"><i>E</i>(<i>n</i>)</span> of <a href="/wiki/Euclidean_motion" class="mw-redirect" title="Euclidean motion">Euclidean motions</a> in 3 dimensions. For <span class="texhtml"><i>n</i> = 1, 2</span> the group is <a href="/wiki/Solvable_group" title="Solvable group">solvable</a>, but for <span class="texhtml"><i>n</i> ≥ 3</span> it contains a <a href="/wiki/Free_group" title="Free group">free group</a> with two generators. <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a> studied the properties of the group of equivalences that make a paradoxical decomposition possible, and introduced the notion of <a href="/wiki/Amenable_group" title="Amenable group">amenable groups</a>. He also found a form of the paradox in the plane which uses area-preserving <a href="/wiki/Affine_transformation" title="Affine transformation">affine transformations</a> in place of the usual congruences. </p><p>Tarski proved that amenable groups are precisely those for which no paradoxical decompositions exist. Since only free subgroups are needed in the Banach–Tarski paradox, this led to the long-standing <a href="/wiki/Von_Neumann_conjecture" title="Von Neumann conjecture">von Neumann conjecture</a>, which was disproved in 1980. </p> <div class="mw-heading mw-heading2"><h2 id="Formal_treatment">Formal treatment</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=2" title="Edit section: Formal treatment"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Banach–Tarski paradox states that a ball in the ordinary Euclidean space can be doubled using only the operations of partitioning into subsets, replacing a set with a congruent set, and reassembling. Its mathematical structure is greatly elucidated by emphasizing the role played by the <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> of <a href="/wiki/Euclidean_motion" class="mw-redirect" title="Euclidean motion">Euclidean motions</a> and introducing the notions of <b>equidecomposable sets</b> and a <a href="/wiki/Paradoxical_set" title="Paradoxical set">paradoxical set</a>. Suppose that <span class="texhtml"><i>G</i></span> is a group <a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">acting</a> on a set <span class="texhtml"><i>X</i></span>. In the most important special case, <span class="texhtml"><i>X</i></span> is an <span class="texhtml"><i>n</i></span>-dimensional Euclidean space (for integral <i>n</i>), and <span class="texhtml"><i>G</i></span> consists of all <a href="/wiki/Isometry" title="Isometry">isometries</a> of <span class="texhtml"><i>X</i></span>, i.e. the transformations of <span class="texhtml"><i>X</i></span> into itself that preserve the distances, usually denoted <span class="texhtml"><i>E</i>(<i>n</i>)</span>. Two geometric figures that can be transformed into each other are called <a href="/wiki/Congruence_(geometry)" title="Congruence (geometry)">congruent</a>, and this terminology will be extended to the general <span class="texhtml"><i>G</i></span>-action. Two <a href="/wiki/Subset" title="Subset">subsets</a> <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>B</i></span> of <span class="texhtml"><i>X</i></span> are called <b><span class="texhtml"><i>G</i></span>-equidecomposable</b>, or <b>equidecomposable with respect to <span class="texhtml"><i>G</i></span></b>, if <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>B</i></span> can be partitioned into the same finite number of respectively <span class="texhtml"><i>G</i></span>-congruent pieces. This defines an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a> among all subsets of <span class="texhtml"><i>X</i></span>. Formally, if there exist non-empty sets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{1},\dots ,A_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{1},\dots ,A_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3957671cfc6460b7044b5563b789c9fb0670c32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.807ex; height:2.509ex;" alt="{\displaystyle A_{1},\dots ,A_{k}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{1},\dots ,B_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{1},\dots ,B_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feb1a1a46076cc8d5db9d135a1f853d22fa77882" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.849ex; height:2.509ex;" alt="{\displaystyle B_{1},\dots ,B_{k}}"></span> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\bigcup _{i=1}^{k}A_{i},\quad B=\bigcup _{i=1}^{k}B_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <munderover> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mi>B</mi> <mo>=</mo> <munderover> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\bigcup _{i=1}^{k}A_{i},\quad B=\bigcup _{i=1}^{k}B_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/149a42c8ccdf248a9e5b4e697bfb75093a468746" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.924ex; height:7.343ex;" alt="{\displaystyle A=\bigcup _{i=1}^{k}A_{i},\quad B=\bigcup _{i=1}^{k}B_{i},}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad A_{i}\cap A_{j}=B_{i}\cap B_{j}=\emptyset \quad {\text{for all }}1\leq i&lt;j\leq k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">&#x2205;<!-- ∅ --></mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for all&#xA0;</mtext> </mrow> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&lt;</mo> <mi>j</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad A_{i}\cap A_{j}=B_{i}\cap B_{j}=\emptyset \quad {\text{for all }}1\leq i&lt;j\leq k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24974909abfea2b82b52838a72defcf78161b51a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:48.083ex; height:3.009ex;" alt="{\displaystyle \quad A_{i}\cap A_{j}=B_{i}\cap B_{j}=\emptyset \quad {\text{for all }}1\leq i&lt;j\leq k,}"></span></dd></dl> <p>and there exist elements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{i}\in G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{i}\in G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be70e5659edf9525fa0913badcdc6d570b5e3d5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.576ex; height:2.509ex;" alt="{\displaystyle g_{i}\in G}"></span> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{i}(A_{i})=B_{i}{\text{ for all }}1\leq i\leq k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{i}(A_{i})=B_{i}{\text{ for all }}1\leq i\leq k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d29dea38c40dc8dcd4f8135592228b85d66dcaa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.927ex; height:2.843ex;" alt="{\displaystyle g_{i}(A_{i})=B_{i}{\text{ for all }}1\leq i\leq k,}"></span></dd></dl> <p>then it can be said that <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>B</i></span> are <span class="texhtml"><i>G</i></span>-equidecomposable using <span class="texhtml"><i>k</i></span> pieces. If a set <span class="texhtml"><i>E</i></span> has two disjoint subsets <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>B</i></span> such that <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>E</i></span>, as well as <span class="texhtml"><i>B</i></span> and <span class="texhtml"><i>E</i></span>, are <span class="texhtml"><i>G</i></span>-equidecomposable, then <span class="texhtml"><i>E</i></span> is called <b>paradoxical</b>. </p><p>Using this terminology, the Banach–Tarski paradox can be reformulated as follows: </p> <dl><dd>A three-dimensional Euclidean ball is equidecomposable with two copies of itself.</dd></dl> <p>In fact, there is a <a href="/wiki/Mathematical_jargon#sharp" class="mw-redirect" title="Mathematical jargon">sharp</a> result in this case, due to <a href="/wiki/Raphael_M._Robinson" title="Raphael M. Robinson">Raphael M. Robinson</a>:<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> doubling the ball can be accomplished with five pieces, and fewer than five pieces will not suffice. </p><p>The strong version of the paradox claims: </p> <dl><dd>Any two bounded subsets of 3-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> with non-<a href="/wiki/Empty_set" title="Empty set">empty</a> <a href="/wiki/Topological_interior" class="mw-redirect" title="Topological interior">interiors</a> are equidecomposable.</dd></dl> <p>While apparently more general, this statement is derived in a simple way from the doubling of a ball by using a generalization of the <a href="/wiki/Bernstein%E2%80%93Schroeder_theorem" class="mw-redirect" title="Bernstein–Schroeder theorem">Bernstein–Schroeder theorem</a> due to Banach that implies that if <span class="texhtml"><i>A</i></span> is equidecomposable with a subset of <span class="texhtml"><i>B</i></span> and <span class="texhtml"><i>B</i></span> is equidecomposable with a subset of <span class="texhtml"><i>A</i></span>, then <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>B</i></span> are equidecomposable. </p><p>The Banach–Tarski paradox can be put in context by pointing out that for two sets in the strong form of the paradox, there is always a <a href="/wiki/Bijective" class="mw-redirect" title="Bijective">bijective</a> function that can map the points in one shape into the other in a one-to-one fashion. In the language of <a href="/wiki/Georg_Cantor" title="Georg Cantor">Georg Cantor</a>'s <a href="/wiki/Set_theory" title="Set theory">set theory</a>, these two sets have equal <a href="/wiki/Cardinality" title="Cardinality">cardinality</a>. Thus, if one enlarges the group to allow arbitrary bijections of <span class="texhtml"><i>X</i></span>, then all sets with non-empty interior become congruent. Likewise, one ball can be made into a larger or smaller ball by stretching, or in other words, by applying <a href="/wiki/Similarity_(geometry)" title="Similarity (geometry)">similarity</a> transformations. Hence, if the group <span class="texhtml"><i>G</i></span> is large enough, <span class="texhtml"><i>G</i></span>-equidecomposable sets may be found whose "size"s vary. Moreover, since a <a href="/wiki/Countable_set" title="Countable set">countable set</a> can be made into two copies of itself, one might expect that using countably many pieces could somehow do the trick. </p><p>On the other hand, in the Banach–Tarski paradox, the number of pieces is finite and the allowed equivalences are Euclidean congruences, which preserve the volumes. Yet, somehow, they end up doubling the volume of the ball. While this is certainly surprising, some of the pieces used in the paradoxical decomposition are <a href="/wiki/Non-measurable_set" title="Non-measurable set">non-measurable sets</a>, so the notion of volume (more precisely, <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a>) is not defined for them, and the partitioning cannot be accomplished in a practical way. In fact, the Banach–Tarski paradox demonstrates that it is impossible to find a finitely-additive measure (or a <a href="/wiki/Banach_measure" title="Banach measure">Banach measure</a>) defined on all subsets of a Euclidean space of three (and greater) dimensions that is invariant with respect to Euclidean motions and takes the value one on a unit cube. In his later work, Tarski showed that, conversely, non-existence of paradoxical decompositions of this type implies the existence of a finitely-additive invariant measure. </p><p>The heart of the proof of the "doubling the ball" form of the paradox presented below is the remarkable fact that by a Euclidean isometry (and renaming of elements), one can divide a certain set (essentially, the surface of a unit sphere) into four parts, then rotate one of them to become itself plus two of the other parts. This follows rather easily from a <span class="texhtml"><i>F</i><sub>2</sub></span>-paradoxical decomposition of <span class="texhtml"><i>F</i><sub>2</sub></span>, the <a href="/wiki/Free_group" title="Free group">free group</a> with two generators. Banach and Tarski's proof relied on an analogous fact discovered by Hausdorff some years earlier: the surface of a unit sphere in space is a disjoint union of three sets <span class="texhtml"><i>B</i>, <i>C</i>, <i>D</i></span> and a countable set <span class="texhtml"><i>E</i></span> such that, on the one hand, <span class="texhtml"><i>B</i>, <i>C</i>, <i>D</i></span> are pairwise congruent, and on the other hand, <span class="texhtml"><i>B</i></span> is congruent with the union of <span class="texhtml"><i>C</i></span> and <span class="texhtml"><i>D</i></span>. This is often called the <a href="/wiki/Hausdorff_paradox" title="Hausdorff paradox">Hausdorff paradox</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Connection_with_earlier_work_and_the_role_of_the_axiom_of_choice">Connection with earlier work and the role of the axiom of choice</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=3" title="Edit section: Connection with earlier work and the role of the axiom of choice"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Banach and Tarski explicitly acknowledge <a href="/wiki/Giuseppe_Vitali" title="Giuseppe Vitali">Giuseppe Vitali</a>'s 1905 construction of the <a href="/wiki/Vitali_set" title="Vitali set">set bearing his name</a>, Hausdorff's paradox (1914), and an earlier (1923) paper of Banach as the precursors to their work. Vitali's and Hausdorff's constructions depend on <a href="/wiki/Zermelo" class="mw-redirect" title="Zermelo">Zermelo</a>'s <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a> ("<b>AC</b>"), which is also crucial to the Banach–Tarski paper, both for proving their paradox and for the proof of another result: </p> <dl><dd>Two Euclidean <a href="/wiki/Polygon" title="Polygon">polygons</a>, one of which strictly contains the other, are not <a href="/wiki/Equidecomposable" class="mw-redirect" title="Equidecomposable">equidecomposable</a>.</dd></dl> <p>They remark: </p> <dl><dd><span title="French-language text"><i lang="fr">Le rôle que joue cet axiome dans nos raisonnements nous semble mériter l'attention</i></span></dd> <dd>(The role this axiom plays in our reasoning seems to us to deserve attention)</dd></dl> <p>They point out that while the second result fully agrees with geometric intuition, its proof uses <b>AC</b> in an even more substantial way than the proof of the paradox. Thus Banach and Tarski imply that <b>AC</b> should not be rejected solely because it produces a paradoxical decomposition, for such an argument also undermines proofs of geometrically intuitive statements. </p><p>However, in 1949, A. P. Morse showed that the statement about Euclidean polygons can be proved in <a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory"><b>ZF</b> set theory</a> and thus does not require the axiom of choice. In 1964, <a href="/wiki/Paul_Cohen_(mathematician)" class="mw-redirect" title="Paul Cohen (mathematician)">Paul Cohen</a> proved that the axiom of choice is independent from <b>ZF</b> – that is, choice cannot be proved from <b>ZF</b>. A weaker version of an axiom of choice is the <a href="/wiki/Axiom_of_dependent_choice" title="Axiom of dependent choice">axiom of dependent choice</a>, <b>DC</b>, and it has been shown that <b>DC</b> is <em>not</em> sufficient for proving the Banach–Tarski paradox, that is, </p> <dl><dd>The Banach–Tarski paradox is not a theorem of <b>ZF</b>, nor of <b>ZF</b>+<b>DC</b>, assuming their consistency.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>Large amounts of mathematics use <b>AC</b>. As <a href="/wiki/Stan_Wagon" title="Stan Wagon">Stan Wagon</a> points out at the end of his monograph, the Banach–Tarski paradox has been more significant for its role in pure mathematics than for foundational questions: it motivated a fruitful new direction for research, the amenability of groups, which has nothing to do with the foundational questions. </p><p><span class="anchor" id="Banach–Tarski_and_Hahn–Banach"></span><span class="anchor" id="Hahn–Banach_theorem"></span> In 1991, using then-recent results by <a href="/wiki/Matthew_Foreman" title="Matthew Foreman">Matthew Foreman</a> and Friedrich Wehrung,<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Janusz Pawlikowski proved that the Banach–Tarski paradox follows from <b>ZF</b> plus the <a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach theorem</a>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> The Hahn–Banach theorem does not rely on the full axiom of choice but can be proved using a weaker version of <b>AC</b> called the <a href="/wiki/Ultrafilter_lemma" class="mw-redirect" title="Ultrafilter lemma">ultrafilter lemma</a>. </p> <div class="mw-heading mw-heading2"><h2 id="A_sketch_of_the_proof">A sketch of the proof</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=4" title="Edit section: A sketch of the proof"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Here a proof is sketched which is similar but not identical to that given by Banach and Tarski. Essentially, the paradoxical decomposition of the ball is achieved in four steps: </p> <ol><li>Find a paradoxical decomposition of the <a href="/wiki/Free_group" title="Free group">free group</a> in two <a href="/wiki/Generating_set_of_a_group" title="Generating set of a group">generators</a>.</li> <li>Find a group of rotations in 3-d space <a href="/wiki/Group_isomorphism" title="Group isomorphism">isomorphic</a> to the free group in two generators.</li> <li>Use the paradoxical decomposition of that group and the axiom of choice to produce a paradoxical decomposition of the hollow unit sphere.</li> <li>Extend this decomposition of the sphere to a decomposition of the solid unit ball.</li></ol> <p>These steps are discussed in more detail below. </p> <div class="mw-heading mw-heading3"><h3 id="Step_1">Step 1</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=5" title="Edit section: Step 1"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Paradoxical_decomposition_F_2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Paradoxical_decomposition_F_2.svg/250px-Paradoxical_decomposition_F_2.svg.png" decoding="async" width="250" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Paradoxical_decomposition_F_2.svg/375px-Paradoxical_decomposition_F_2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Paradoxical_decomposition_F_2.svg/500px-Paradoxical_decomposition_F_2.svg.png 2x" data-file-width="679" data-file-height="679" /></a><figcaption><a href="/wiki/Cayley_graph" title="Cayley graph">Cayley graph</a> of <i>F</i><sub>2</sub>, showing decomposition into the sets <i>S</i>(<i>a</i>) and <i>aS</i>(<i>a</i><sup>&#8722;1</sup>). Traversing a horizontal edge of the graph in the rightward direction represents left multiplication of an element of <i>F</i><sub>2</sub> by <i>a</i>; traversing a vertical edge of the graph in the upward direction represents left multiplication of an element of <i>F</i><sub>2</sub> by <i>b</i>. Elements of the set <i>S</i>(<i>a</i>) are green dots; elements of the set <i>aS</i>(<i>a</i><sup>&#8722;1</sup>) are blue dots or red dots with blue border. Red dots with blue border are elements of <i>S</i>(<i>a</i><sup>&#8722;1</sup>), which is a subset of <i>aS</i>(<i>a</i><sup>&#8722;1</sup>).</figcaption></figure> <p>The free group with two <a href="/wiki/Generating_set_of_a_group" title="Generating set of a group">generators</a> <i>a</i> and <i>b</i> consists of all finite strings that can be formed from the four symbols <i>a</i>, <i>a</i><sup>&#8722;1</sup>, <i>b</i> and <i>b</i><sup>&#8722;1</sup> such that no <i>a</i> appears directly next to an <i>a</i><sup>&#8722;1</sup> and no <i>b</i> appears directly next to a <i>b</i><sup>&#8722;1</sup>. Two such strings can be concatenated and converted into a string of this type by repeatedly replacing the "forbidden" substrings with the empty string. For instance: <i>abab</i><sup>&#8722;1</sup><i>a</i><sup>&#8722;1</sup> concatenated with <i>abab</i><sup>&#8722;1</sup><i>a</i> yields <i>abab</i><sup>&#8722;1</sup><i>a</i><sup>&#8722;1</sup><i>abab</i><sup>&#8722;1</sup><i>a</i>, which contains the substring <i>a</i><sup>&#8722;1</sup><i>a</i>, and so gets reduced to <i>abab</i><sup>&#8722;1</sup><i>bab</i><sup>&#8722;1</sup><i>a</i>, which contains the substring <i>b</i><sup>&#8722;1</sup><i>b</i>, which gets reduced to <i>abaab</i><sup>&#8722;1</sup><i>a</i>. One can check that the set of those strings with this operation forms a group with <a href="/wiki/Identity_element" title="Identity element">identity element</a> the empty string <i>e</i>. This group may be called <i>F</i><sub>2</sub>. </p><p>The group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fd17e0779153d765b40ebef91533489b87b2e37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.549ex; height:2.509ex;" alt="{\displaystyle F_{2}}"></span> can be "paradoxically decomposed" as follows: Let <i>S</i>(<i>a</i>) be the subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fd17e0779153d765b40ebef91533489b87b2e37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.549ex; height:2.509ex;" alt="{\displaystyle F_{2}}"></span> consisting of all strings that start with <i>a</i>, and define <i>S</i>(<i>a</i><sup>&#8722;1</sup>), <i>S</i>(<i>b</i>) and <i>S</i>(<i>b</i><sup>&#8722;1</sup>) similarly. Clearly, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2}=\{e\}\cup S(a)\cup S(a^{-1})\cup S(b)\cup S(b^{-1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>e</mi> <mo fence="false" stretchy="false">}</mo> <mo>&#x222A;<!-- ∪ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>&#x222A;<!-- ∪ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x222A;<!-- ∪ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x222A;<!-- ∪ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2}=\{e\}\cup S(a)\cup S(a^{-1})\cup S(b)\cup S(b^{-1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26eacea45d13b54c8ec12101244cf3e0060d4d23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.74ex; height:3.176ex;" alt="{\displaystyle F_{2}=\{e\}\cup S(a)\cup S(a^{-1})\cup S(b)\cup S(b^{-1})}"></span></dd></dl> <p>but also </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2}=aS(a^{-1})\cup S(a),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mi>S</mi> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x222A;<!-- ∪ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2}=aS(a^{-1})\cup S(a),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be25c67cf2a32c19046daee25bb029670d277cf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.516ex; height:3.176ex;" alt="{\displaystyle F_{2}=aS(a^{-1})\cup S(a),}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2}=bS(b^{-1})\cup S(b),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>b</mi> <mi>S</mi> <mo stretchy="false">(</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x222A;<!-- ∪ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2}=bS(b^{-1})\cup S(b),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e06cde1789275d023f98b3c2e890280814e8f92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.819ex; height:3.176ex;" alt="{\displaystyle F_{2}=bS(b^{-1})\cup S(b),}"></span></dd></dl> <p>where the notation <i>aS</i>(<i>a</i><sup>&#8722;1</sup>) means take all the strings in <i>S</i>(<i>a</i><sup>&#8722;1</sup>) and <a href="/wiki/Concatenate" class="mw-redirect" title="Concatenate">concatenate</a> them on the left with <i>a</i>. </p><p>This is at the core of the proof. For example, there may be a string <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle aa^{-1}b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle aa^{-1}b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14ba5b52d8dd7f8012f1f31ad0aa3312d7e531d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.79ex; height:2.676ex;" alt="{\displaystyle aa^{-1}b}"></span> in the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle aS(a^{-1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>S</mi> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle aS(a^{-1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c1c32bbeae19816fccb6dc5fac26fe642804e2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.101ex; height:3.176ex;" alt="{\displaystyle aS(a^{-1})}"></span> which, because of the rule that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> must not appear next to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f5709c8d86f7fec8fb86069bf5d15a9eabe564e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.563ex; height:2.676ex;" alt="{\displaystyle a^{-1}}"></span>, reduces to the string <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>. Similarly, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle aS(a^{-1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>S</mi> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle aS(a^{-1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c1c32bbeae19816fccb6dc5fac26fe642804e2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.101ex; height:3.176ex;" alt="{\displaystyle aS(a^{-1})}"></span> contains all the strings that start with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f5709c8d86f7fec8fb86069bf5d15a9eabe564e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.563ex; height:2.676ex;" alt="{\displaystyle a^{-1}}"></span> (for example, the string <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle aa^{-1}a^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle aa^{-1}a^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d08efc5f9a97b0c6a28a1a436e1b78bd824c8f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.355ex; height:2.676ex;" alt="{\displaystyle aa^{-1}a^{-1}}"></span> which reduces to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f5709c8d86f7fec8fb86069bf5d15a9eabe564e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.563ex; height:2.676ex;" alt="{\displaystyle a^{-1}}"></span>). In this way, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle aS(a^{-1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>S</mi> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle aS(a^{-1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c1c32bbeae19816fccb6dc5fac26fe642804e2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.101ex; height:3.176ex;" alt="{\displaystyle aS(a^{-1})}"></span> contains all the strings that start with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bd13a08ad908dbc733a2137cb105f45a54962b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.33ex; height:2.676ex;" alt="{\displaystyle b^{-1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f5709c8d86f7fec8fb86069bf5d15a9eabe564e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.563ex; height:2.676ex;" alt="{\displaystyle a^{-1}}"></span>, as well as the empty string <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd253103f0876afc68ebead27a5aa9867d927467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle e}"></span>. </p><p>Group <i>F</i><sub>2</sub> has been cut into four pieces (plus the singleton {<i>e</i>}), then two of them "shifted" by multiplying with <i>a</i> or <i>b</i>, then "reassembled" as two pieces to make one copy of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fd17e0779153d765b40ebef91533489b87b2e37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.549ex; height:2.509ex;" alt="{\displaystyle F_{2}}"></span> and the other two to make another copy of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fd17e0779153d765b40ebef91533489b87b2e37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.549ex; height:2.509ex;" alt="{\displaystyle F_{2}}"></span>. That is exactly what is intended to do to the ball. </p> <div class="mw-heading mw-heading3"><h3 id="Step_2">Step 2</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=6" title="Edit section: Step 2"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In order to find a <a href="/wiki/Free_group" title="Free group">free group</a> of rotations of 3D space, i.e. that behaves just like (or "is <a href="/wiki/Isomorphism" title="Isomorphism">isomorphic</a> to") the free group <i>F</i><sub>2</sub>, two orthogonal axes are taken (e.g. the <i>x</i> and <i>z</i> axes). Then, <i>A</i> is taken to be a rotation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \theta =\arccos \left({\frac {1}{3}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mi>arccos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \theta =\arccos \left({\frac {1}{3}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fae9983ab46a7e56d5da2fd949ff3d8701da9c35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.84ex; height:4.843ex;" alt="{\textstyle \theta =\arccos \left({\frac {1}{3}}\right)}"></span> about the <i>x</i> axis, and <i>B</i> to be a rotation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> about the <i>z</i> axis (there are many other suitable pairs of irrational multiples of π that could be used here as well).<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>The group of rotations generated by <i>A</i> and <i>B</i> will be called <b>H</b>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> be an element of <b>H</b> that starts with a positive rotation about the <i>z</i> axis, that is, an element of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =\ldots b^{k_{3}}a^{k_{2}}b^{k_{1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <mo>&#x2026;<!-- … --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =\ldots b^{k_{3}}a^{k_{2}}b^{k_{1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd9e7d57178b76602ed79a60301d298464e4e0cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:16.64ex; height:2.676ex;" alt="{\displaystyle \omega =\ldots b^{k_{3}}a^{k_{2}}b^{k_{1}}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{1}&gt;0,\ k_{2},k_{3},\ldots ,k_{n}\neq 0,\ n\geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{1}&gt;0,\ k_{2},k_{3},\ldots ,k_{n}\neq 0,\ n\geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c1142fbca5b6c6fcc7cdb3e4562520ebb858557" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.845ex; height:2.676ex;" alt="{\displaystyle k_{1}&gt;0,\ k_{2},k_{3},\ldots ,k_{n}\neq 0,\ n\geq 1}"></span>. It can be shown by induction that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> maps the point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1,0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1,0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ea6e8ece35797224448db97fa0ea17544a7f756" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.365ex; height:2.843ex;" alt="{\displaystyle (1,0,0)}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\frac {k}{3^{N}}},{\frac {l{\sqrt {2}}}{3^{N}}},{\frac {m}{3^{N}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\frac {k}{3^{N}}},{\frac {l{\sqrt {2}}}{3^{N}}},{\frac {m}{3^{N}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6b127a76260e14139d2a040f944272db9be5a09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.375ex; height:4.843ex;" alt="{\textstyle \left({\frac {k}{3^{N}}},{\frac {l{\sqrt {2}}}{3^{N}}},{\frac {m}{3^{N}}}\right)}"></span>, for some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k,l,m\in \mathbb {Z} ,N\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>,</mo> <mi>l</mi> <mo>,</mo> <mi>m</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> <mi>N</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k,l,m\in \mathbb {Z} ,N\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93a554aa94045a05bfbee97907bd35c146456699" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.02ex; height:2.509ex;" alt="{\displaystyle k,l,m\in \mathbb {Z} ,N\in \mathbb {N} }"></span>. Analyzing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k,l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>,</mo> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k,l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01c0bdae1938dc76ab1ae862a313c26d57ef0b07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.938ex; height:2.509ex;" alt="{\displaystyle k,l}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> modulo 3, one can show that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a10d3efece67b4c745a2e283d3fbbda9cad0515" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.954ex; height:2.676ex;" alt="{\displaystyle l\neq 0}"></span>. The same argument repeated (by symmetry of the problem) is valid when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> starts with a negative rotation about the <i>z</i> axis, or a rotation about the <i>x</i> axis. This shows that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> is given by a non-trivial word in <i>A</i> and <i>B</i>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \neq e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \neq e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd60a18b15e7ecc6de72d2fec0a5ded8323b54da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.628ex; height:2.676ex;" alt="{\displaystyle \omega \neq e}"></span>. Therefore, the group <b>H</b> is a free group, isomorphic to <i>F</i><sub>2</sub>. </p><p>The two rotations behave just like the elements <i>a</i> and <i>b</i> in the group <i>F</i><sub>2</sub>: there is now a paradoxical decomposition of <b>H</b>. </p><p>This step cannot be performed in two dimensions since it involves rotations in three dimensions. If two nontrivial rotations are taken about the same axis, the resulting group is either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> (if the ratio between the two angles is rational) or the free <i>abelian</i> group over two elements; either way, it does not have the property required in step 1. </p><p>An alternative arithmetic proof of the existence of free groups in some special orthogonal groups using integral quaternions leads to paradoxical decompositions of the <a href="/wiki/Rotation_group_SO(3)" class="mw-redirect" title="Rotation group SO(3)">rotation group</a>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Step_3">Step 3</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=7" title="Edit section: Step 3"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Unit_sphere" title="Unit sphere">unit sphere</a> <i>S</i><sup>2</sup> is partitioned into <a href="/wiki/Orbit_(group_theory)" class="mw-redirect" title="Orbit (group theory)">orbits</a> by the <a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">action</a> of our group <b>H</b>: two points belong to the same orbit <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> there is a rotation in <b>H</b> which moves the first point into the second. (Note that the orbit of a point is a <a href="/wiki/Dense_set" title="Dense set">dense set</a> in <i>S</i><sup>2</sup>.) The <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a> can be used to pick exactly one point from every orbit; collect these points into a set <i>M</i>. The action of <b>H</b> on a given orbit is <a href="/wiki/Transitive_action" class="mw-redirect" title="Transitive action">free and transitive</a> and so each orbit can be identified with <b>H</b>. In other words, every point in <i>S</i><sup>2</sup> can be reached in exactly one way by applying the proper rotation from <b>H</b> to the proper element from <i>M</i>. Because of this, the <a href="/wiki/Paradoxical_decomposition" class="mw-redirect" title="Paradoxical decomposition">paradoxical decomposition</a> of <b>H</b> yields a paradoxical decomposition of <i>S</i><sup>2</sup> into four pieces <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, <i>A</i><sub>3</sub>, <i>A</i><sub>4</sub> as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{1}=S(a)M\cup M\cup B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>M</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>M</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{1}=S(a)M\cup M\cup B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11d330ee3a572773acdf7f259474e1b431139fbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.248ex; height:2.843ex;" alt="{\displaystyle A_{1}=S(a)M\cup M\cup B}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{2}=S(a^{-1})M\setminus B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mi>M</mi> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{2}=S(a^{-1})M\setminus B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a5ce4437fd5e3441a435c05b2ac4af6ffdc506" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.168ex; height:3.176ex;" alt="{\displaystyle A_{2}=S(a^{-1})M\setminus B}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle A_{3}=S(b)M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mi>M</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle A_{3}=S(b)M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a85211a6ab567d750eca2e3d2abb71a7afa1322" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.644ex; height:2.843ex;" alt="{\displaystyle \displaystyle A_{3}=S(b)M}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle A_{4}=S(b^{-1})M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mi>M</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle A_{4}=S(b^{-1})M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/480252f3d13cc1976e3ca2b1a09a325a9f85ef6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.977ex; height:3.176ex;" alt="{\displaystyle \displaystyle A_{4}=S(b^{-1})M}"></span></dd></dl> <p>where we define </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(a)M=\{s(x)|s\in S(a),x\in M\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>M</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>s</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>M</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(a)M=\{s(x)|s\in S(a),x\in M\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b53f6d087471eeef997af58b22c1e94c02f33d74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.396ex; height:2.843ex;" alt="{\displaystyle S(a)M=\{s(x)|s\in S(a),x\in M\}}"></span></dd></dl> <p>and likewise for the other sets, and where we define </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=a^{-1}M\cup a^{-2}M\cup \dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>M</mi> <mo>&#x222A;<!-- ∪ --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mi>M</mi> <mo>&#x222A;<!-- ∪ --></mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=a^{-1}M\cup a^{-2}M\cup \dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff317356b4f5c8cfc6c071903391498017cebba3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:24.76ex; height:2.676ex;" alt="{\displaystyle B=a^{-1}M\cup a^{-2}M\cup \dots }"></span></dd></dl> <p>(The five "paradoxical" parts of <i>F<sub>2</sub></i> were not used directly, as they would leave <i>M</i> as an extra piece after doubling, owing to the presence of the singleton {<i>e</i>}.) </p><p>The (majority of the) sphere has now been divided into four sets (each one dense on the sphere), and when two of these are rotated, the result is double of what was had before: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle aA_{2}=A_{2}\cup A_{3}\cup A_{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x222A;<!-- ∪ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x222A;<!-- ∪ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle aA_{2}=A_{2}\cup A_{3}\cup A_{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e2feeedb61da6ffb42a99ddc3a6a24c83f1e96e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.683ex; height:2.509ex;" alt="{\displaystyle aA_{2}=A_{2}\cup A_{3}\cup A_{4}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle bA_{4}=A_{1}\cup A_{2}\cup A_{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x222A;<!-- ∪ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x222A;<!-- ∪ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle bA_{4}=A_{1}\cup A_{2}\cup A_{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24fb32fef039ac77121ba8db9deab02630870328" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.451ex; height:2.509ex;" alt="{\displaystyle bA_{4}=A_{1}\cup A_{2}\cup A_{4}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Step_4">Step 4</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=8" title="Edit section: Step 4"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Finally, connect every point on <i>S</i><sup>2</sup> with a half-open segment to the origin; the paradoxical decomposition of <i>S</i><sup>2</sup> then yields a paradoxical decomposition of the solid unit ball minus the point at the ball's center. (This center point needs a bit more care; see below.) </p><p><i><a href="/wiki/Nota_Bene" class="mw-redirect" title="Nota Bene">N.B.</a></i> This sketch glosses over some details. One has to be careful about the set of points on the sphere which happen to lie on the axis of some rotation in <b>H</b>. However, there are only countably many such points, and like the case of the point at the center of the ball, it is possible to patch the proof to account for them all. (See below.) </p> <div class="mw-heading mw-heading3"><h3 id="Some_details,_fleshed_out"><span id="Some_details.2C_fleshed_out"></span>Some details, fleshed out</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=9" title="Edit section: Some details, fleshed out"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In Step 3, the sphere was partitioned into orbits of our group <b>H</b>. To streamline the proof, the discussion of points that are fixed by some rotation was omitted; since the paradoxical decomposition of <i>F</i><sub>2</sub> relies on shifting certain subsets, the fact that some points are fixed might cause some trouble. Since any rotation of <i>S</i><sup>2</sup> (other than the null rotation) has exactly two <a href="/wiki/Fixed_point_(mathematics)" title="Fixed point (mathematics)">fixed points</a>, and since <b>H</b>, which is isomorphic to <i>F</i><sub>2</sub>, is <a href="/wiki/Countable" class="mw-redirect" title="Countable">countable</a>, there are countably many points of <i>S</i><sup>2</sup> that are fixed by some rotation in <b>H</b>. Denote this set of fixed points as <i>D</i>. Step 3 proves that <i>S</i><sup>2</sup> − <i>D</i> admits a paradoxical decomposition. </p><p>What remains to be shown is the <b>Claim</b>: <i>S</i><sup>2</sup> − <i>D</i> is equidecomposable with <i>S</i><sup>2</sup>. </p><p><i>Proof.</i> Let λ be some line through the origin that does not intersect any point in <i>D</i>. This is possible since <i>D</i> is countable. Let <i>J</i> be the set of angles, α, such that for some <a href="/wiki/Natural_number" title="Natural number">natural number</a> <i>n</i>, and some <i>P</i> in <i>D</i>, <b>r</b>(<i>n</i>α)P is also in <i>D</i>, where <b>r</b>(<i>n</i>α) is a rotation about λ of <i>n</i>α. Then <i>J</i> is countable. So there exists an angle θ not in <i>J</i>. Let ρ be the rotation about λ by θ. Then ρ acts on <i>S</i><sup>2</sup> with no <a href="/wiki/Fixed_point_(mathematics)" title="Fixed point (mathematics)">fixed points</a> in <i>D</i>, i.e., ρ<sup><i>n</i></sup>(<i>D</i>) is <a href="/wiki/Disjoint_sets" title="Disjoint sets">disjoint</a> from <i>D</i>, and for natural <i>m</i>&lt;<i>n</i>, ρ<sup><i>n</i></sup>(<i>D</i>) is disjoint from ρ<sup><i>m</i></sup>(<i>D</i>). Let <i>E</i> be the <a href="/wiki/Disjoint_union" title="Disjoint union">disjoint union</a> of ρ<sup><i>n</i></sup>(<i>D</i>) over <i>n</i> = 0, 1, 2, ... . Then <i>S</i><sup>2</sup> = <i>E</i> ∪ (<i>S</i><sup>2</sup> − <i>E</i>) ~ ρ(<i>E</i>) ∪ (<i>S</i><sup>2</sup> − <i>E</i>) = (<i>E</i> − <i>D</i>) ∪ (<i>S</i><sup>2</sup> − <i>E</i>) = <i>S</i><sup>2</sup> − <i>D</i>, where ~ denotes "is equidecomposable to". </p><p>For step 4, it has already been shown that the ball minus a point admits a paradoxical decomposition; it remains to be shown that the ball minus a point is equidecomposable with the ball. Consider a circle within the ball, containing the point at the center of the ball. Using an argument like that used to prove the Claim, one can see that the full circle is equidecomposable with the circle minus the point at the ball's center. (Basically, a countable set of points on the circle can be rotated to give itself plus one more point.) Note that this involves the rotation about a point other than the origin, so the Banach–Tarski paradox involves isometries of Euclidean 3-space rather than just <a href="/wiki/SO(3)" class="mw-redirect" title="SO(3)">SO(3)</a>. </p><p>Use is made of the fact that if <i>A</i> ~ <i>B</i> and <i>B</i> ~ <i>C</i>, then <i>A</i> ~ <i>C</i>. The decomposition of <i>A</i> into <i>C</i> can be done using number of pieces equal to the product of the numbers needed for taking <i>A</i> into <i>B</i> and for taking <i>B</i> into <i>C</i>. </p><p>The proof sketched above requires 2 × 4 × 2&#160;+&#160;8&#160;=&#160;24 pieces - a factor of 2 to remove fixed points, a factor 4 from step 1, a factor 2 to recreate fixed points, and 8 for the center point of the second ball. But in step 1 when moving {<i>e</i>} and all strings of the form <i>a<sup>n</sup></i> into <i>S</i>(<i>a</i><sup>−1</sup>), do this to all orbits except one. Move {<i>e</i>} of this last orbit to the center point of the second ball. This brings the total down to 16&#160;+&#160;1 pieces. With more algebra, one can also decompose fixed orbits into 4 sets as in step 1. This gives 5 pieces and is the best possible. </p> <div class="mw-heading mw-heading2"><h2 id="Obtaining_infinitely_many_balls_from_one">Obtaining infinitely many balls from one</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=10" title="Edit section: Obtaining infinitely many balls from one"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Using the Banach–Tarski paradox, it is possible to obtain <i>k</i> copies of a ball in the Euclidean <i>n</i>-space from one, for any integers <i>n</i> ≥ 3 and <i>k</i> ≥ 1, i.e. a ball can be cut into <i>k</i> pieces so that each of them is equidecomposable to a ball of the same size as the original. Using the fact that the <a href="/wiki/Free_group" title="Free group">free group</a> <i>F</i><sub>2</sub> of rank 2 admits a free subgroup of <a href="/wiki/Countably_infinite" class="mw-redirect" title="Countably infinite">countably infinite</a> rank, a similar proof yields that the unit sphere <i>S</i><sup><i>n</i>−1</sup> can be partitioned into countably infinitely many pieces, each of which is equidecomposable (with two pieces) to the <i>S</i><sup><i>n</i>−1</sup> using rotations. By using analytic properties of the rotation group <a href="/wiki/SO(n)" class="mw-redirect" title="SO(n)">SO(<i>n</i>)</a>, which is a <a href="/wiki/Connected_space" title="Connected space">connected</a> analytic <a href="/wiki/Lie_group" title="Lie group">Lie group</a>, one can further prove that the sphere <i>S</i><sup><i>n</i>−1</sup> can be partitioned into as many pieces as there are real numbers (that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\aleph _{0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\aleph _{0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/779da5db4ed54fa334dd92089cdf1c284e45febb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.231ex; height:2.676ex;" alt="{\displaystyle 2^{\aleph _{0}}}"></span> pieces), so that each piece is equidecomposable with two pieces to <i>S</i><sup><i>n</i>−1</sup> using rotations. These results then extend to the unit ball deprived of the origin. A 2010 article by Valeriy Churkin gives a new proof of the continuous version of the Banach–Tarski paradox.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Von_Neumann_paradox_in_the_Euclidean_plane">Von Neumann paradox in the Euclidean plane</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=11" title="Edit section: Von Neumann paradox in the Euclidean plane"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Von_Neumann_paradox" title="Von Neumann paradox">Von Neumann paradox</a></div> <p>In the <a href="/wiki/Euclidean_plane" title="Euclidean plane">Euclidean plane</a>, two figures that are equidecomposable with respect to the group of <a href="/wiki/Euclidean_motion" class="mw-redirect" title="Euclidean motion">Euclidean motions</a> are necessarily of the same area, and therefore, a paradoxical decomposition of a square or disk of Banach–Tarski type that uses only Euclidean congruences is impossible. A conceptual explanation of the distinction between the planar and higher-dimensional cases was given by <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a>: unlike the group <a href="/wiki/SO(3)" class="mw-redirect" title="SO(3)">SO(3)</a> of rotations in three dimensions, the group <i>E</i>(2) of Euclidean motions of the plane is <a href="/wiki/Solvable_group" title="Solvable group">solvable</a>, which implies the existence of a finitely-additive measure on <i>E</i>(2) and <b>R</b><sup>2</sup> which is invariant under translations and rotations, and rules out paradoxical decompositions of non-negligible sets. Von Neumann then posed the following question: can such a paradoxical decomposition be constructed if one allows a larger group of equivalences? </p><p>It is clear that if one permits <a href="/wiki/Similarity_(geometry)" title="Similarity (geometry)">similarities</a>, any two squares in the plane become equivalent even without further subdivision. This motivates restricting one's attention to the group <i>SA</i><sub>2</sub> of <a href="/wiki/Special_affine_group" class="mw-redirect" title="Special affine group">area-preserving affine transformations</a>. Since the area is preserved, any paradoxical decomposition of a square with respect to this group would be counterintuitive for the same reasons as the Banach–Tarski decomposition of a ball. In fact, the group <i>SA</i><sub>2</sub> contains as a subgroup the special linear group <a href="/wiki/SL2(R)" title="SL2(R)"><i>SL</i>(2,<b>R</b>)</a>, which in its turn contains the <a href="/wiki/Free_group" title="Free group">free group</a> <i>F</i><sub>2</sub> with two generators as a subgroup. This makes it plausible that the proof of Banach–Tarski paradox can be imitated in the plane. The main difficulty here lies in the fact that the unit square is not invariant under the action of the linear group <i>SL</i>(2, <b>R</b>), hence one cannot simply transfer a paradoxical decomposition from the group to the square, as in the third step of the above proof of the Banach–Tarski paradox. Moreover, the fixed points of the group present difficulties (for example, the origin is fixed under all linear transformations). This is why von Neumann used the larger group <i>SA</i><sub>2</sub> including the translations, and he constructed a paradoxical decomposition of the unit square with respect to the enlarged group (in 1929). Applying the Banach–Tarski method, the paradox for the square can be strengthened as follows: </p> <dl><dd>Any two bounded subsets of the Euclidean plane with non-empty interiors are equidecomposable with respect to the area-preserving affine maps.</dd></dl> <p>As von Neumann notes:<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd>"Infolgedessen gibt es bereits in der Ebene kein nichtnegatives additives Maß (wo das Einheitsquadrat das Maß 1 hat), das gegenüber allen Abbildungen von <i>A</i><sub>2</sub> invariant wäre."</dd></dl> <dl><dd>"In accordance with this, already in the plane there is no non-negative additive measure (for which the unit square has a measure of 1), which is invariant with respect to all transformations belonging to <i>A</i><sub>2</sub> [the group of area-preserving affine transformations]."</dd></dl> <p>To explain further, the question of whether a finitely additive measure (that is preserved under certain transformations) exists or not depends on what transformations are allowed. The <a href="/wiki/Banach_measure" title="Banach measure">Banach measure</a> of sets in the plane, which is preserved by translations and rotations, is not preserved by non-isometric transformations even when they do preserve the area of polygons. The points of the plane (other than the origin) can be divided into two <a href="/wiki/Dense_set" title="Dense set">dense sets</a> which may be called <i>A</i> and <i>B</i>. If the <i>A</i> points of a given polygon are transformed by a certain area-preserving transformation and the <i>B</i> points by another, both sets can become subsets of the <i>A</i> points in two new polygons. The new polygons have the same area as the old polygon, but the two transformed sets cannot have the same measure as before (since they contain only part of the <i>A</i> points), and therefore there is no measure that "works". </p><p>The class of groups isolated by von Neumann in the course of study of Banach–Tarski phenomenon turned out to be very important for many areas of Mathematics: these are <a href="/wiki/Amenable_group" title="Amenable group">amenable groups</a>, or groups with an invariant mean, and include all finite and all solvable groups. Generally speaking, paradoxical decompositions arise when the group used for equivalences in the definition of equidecomposability is <i>not</i> amenable. </p> <div class="mw-heading mw-heading3"><h3 id="Recent_progress">Recent progress</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=12" title="Edit section: Recent progress"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>2000: Von Neumann's paper left open the possibility of a paradoxical decomposition of the interior of the unit square with respect to the linear group <i>SL</i>(2,<b>R</b>) (Wagon, Question 7.4). In 2000, <a href="/wiki/Mikl%C3%B3s_Laczkovich" title="Miklós Laczkovich">Miklós Laczkovich</a> proved that such a decomposition exists.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> More precisely, let <i>A</i> be the family of all bounded subsets of the plane with non-empty interior and at a positive distance from the origin, and <i>B</i> the family of all planar sets with the property that a union of finitely many translates under some elements of <i>SL</i>(2, <b>R</b>) contains a punctured neighborhood of the origin. Then all sets in the family <i>A</i> are SL(2, <b>R</b>)-equidecomposable, and likewise for the sets in <i>B</i>. It follows that both families consist of paradoxical sets.</li> <li>2003: It had been known for a long time that the full plane was paradoxical with respect to <i>SA</i><sub>2</sub>, and that the minimal number of pieces would equal four provided that there exists a locally commutative free subgroup of <i>SA</i><sub>2</sub>. In 2003 <a href="/w/index.php?title=Kenzi_Sat%C3%B4&amp;action=edit&amp;redlink=1" class="new" title="Kenzi Satô (page does not exist)">Kenzi Satô</a> constructed such a subgroup, confirming that four pieces suffice.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup></li> <li>2011: Laczkovich's paper<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> left open the possibility that there exists a free group F of piecewise linear transformations acting on the punctured disk <i>D</i> \ {(0,0)} without fixed points. Grzegorz Tomkowicz constructed such a group,<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> showing that the system of congruences <i>A</i> ≈ <i>B</i> ≈ <i>C</i> ≈ <i>B</i> U <i>C</i> can be realized by means of <i>F</i> and <i>D</i> \ {(0,0)}.</li> <li>2017: It has been known for a long time that there exists in the hyperbolic plane <b>H</b><sup>2</sup> a set <i>E</i> that is a third, a fourth and ... and a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\aleph _{0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\aleph _{0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/779da5db4ed54fa334dd92089cdf1c284e45febb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.231ex; height:2.676ex;" alt="{\displaystyle 2^{\aleph _{0}}}"></span>-th part of <b>H</b><sup>2</sup>. The requirement was satisfied by orientation-preserving isometries of <b>H</b><sup>2</sup>. Analogous results were obtained by <a href="/wiki/John_Frank_Adams" class="mw-redirect" title="John Frank Adams">John Frank Adams</a><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Jan_Mycielski" title="Jan Mycielski">Jan Mycielski</a><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> who showed that the unit sphere <b>S</b><sup>2</sup> contains a set <i>E</i> that is a half, a third, a fourth and ... and a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\aleph _{0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\aleph _{0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/779da5db4ed54fa334dd92089cdf1c284e45febb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.231ex; height:2.676ex;" alt="{\displaystyle 2^{\aleph _{0}}}"></span>-th part of <b>S</b><sup>2</sup>. Grzegorz Tomkowicz<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> showed that Adams and Mycielski construction can be generalized to obtain a set <i>E</i> of <b>H</b><sup>2</sup> with the same properties as in <b>S</b><sup>2</sup>.</li> <li>2017: Von Neumann's paradox concerns the Euclidean plane, but there are also other classical spaces where the paradoxes are possible. For example, one can ask if there is a Banach–Tarski paradox in the hyperbolic plane <b>H</b><sup>2</sup>. This was shown by Jan Mycielski and Grzegorz Tomkowicz.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> Tomkowicz<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> proved also that most of the classical paradoxes are an easy consequence of a graph theoretical result and the fact that the groups in question are rich enough.</li> <li>2018: In 1984, Jan Mycielski and Stan Wagon <sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> constructed a paradoxical decomposition of the hyperbolic plane <b>H</b><sup>2</sup> that uses Borel sets. The paradox depends on the existence of a <a href="/wiki/Properly_discontinuous" class="mw-redirect" title="Properly discontinuous">properly discontinuous</a> subgroup of the group of isometries of <b>H</b><sup>2</sup>. A similar paradox was obtained in 2018 by Grzegorz Tomkowicz,<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> who constructed a free properly discontinuous subgroup G of the affine group <i>SA</i>(3,<b>Z</b>). The existence of such a group implies the existence of a subset E of <b>Z</b><sup>3</sup> such that for any finite F of <b>Z</b><sup>3</sup> there exists an element <span class="texhtml"><i>g</i></span> of <span class="texhtml"><i>G</i></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(E)=E\triangle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>E</mi> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(E)=E\triangle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b5e1a4d2f2e7d2618129f530551d236d49d2412" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.382ex; height:2.843ex;" alt="{\displaystyle g(E)=E\triangle F}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\,\triangle \,F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> <mspace width="thinmathspace" /> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\,\triangle \,F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b21950942d9e9efedb0b9a0c07dfd8df155f314" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.357ex; height:2.176ex;" alt="{\displaystyle E\,\triangle \,F}"></span> denotes the symmetric difference of <span class="texhtml"><i>E</i></span> and <span class="texhtml"><i>F</i></span>.</li> <li>2019: Banach–Tarski paradox uses finitely many pieces in the duplication. In the case of countably many pieces, any two sets with non-empty interiors are equidecomposable using translations. But allowing only Lebesgue measurable pieces one obtains: If A and B are subsets of <b>R</b><sup>n</sup> with non-empty interiors, then they have equal Lebesgue measures if and only if they are countably equidecomposable using Lebesgue measurable pieces. Jan Mycielski and Grzegorz Tomkowicz <sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> extended this result to finite dimensional <a href="/wiki/Lie_group" title="Lie group">Lie groups</a> and second countable locally compact topological groups that are totally disconnected or have countably many connected components.</li> <li>2024: Robert Samuel Simon and Grzegorz Tomkowicz <sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> introduced a colouring rule of points in a Cantor space that links paradoxical decompositions with optimisation. This allows one to find an application of paradoxical decompositions in economics.</li> <li>2024: Grzegorz Tomkowicz <sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> proved that in the case of non-supramenable connected Lie groups <span class="texhtml"><i>G</i></span> acting continuously and transitively on a metric space, bounded <span class="texhtml"><i>G</i></span> paradoxical sets are generic.</li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=13" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Hausdorff_paradox" title="Hausdorff paradox">Hausdorff paradox</a>&#160;– Paradox in mathematics</li> <li><a href="/wiki/Nikodym_set" title="Nikodym set">Nikodym set</a></li> <li><a href="/wiki/Paradoxes_of_set_theory" title="Paradoxes of set theory">Paradoxes of set theory</a></li> <li><a href="/wiki/Tarski%27s_circle-squaring_problem" title="Tarski&#39;s circle-squaring problem">Tarski's circle-squaring problem</a>&#160;– Problem of cutting and reassembling a disk into a square</li> <li><a href="/wiki/Von_Neumann_paradox" title="Von Neumann paradox">Von Neumann paradox</a>&#160;– Geometric theorem</li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=14" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFTao2011" class="citation book cs1"><a href="/wiki/Terence_Tao" title="Terence Tao">Tao, Terence</a> (2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210506132554/https://terrytao.files.wordpress.com/2011/01/measure-book1.pdf"><i>An introduction to measure theory</i></a> <span class="cs1-format">(PDF)</span>. p.&#160;3. Archived from <a rel="nofollow" class="external text" href="https://terrytao.files.wordpress.com/2012/12/gsm-126-tao5-measure-book.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 6 May 2021.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+introduction+to+measure+theory&amp;rft.pages=3&amp;rft.date=2011&amp;rft.aulast=Tao&amp;rft.aufirst=Terence&amp;rft_id=https%3A%2F%2Fterrytao.files.wordpress.com%2F2012%2F12%2Fgsm-126-tao5-measure-book.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Wagon, Corollary 13.3</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilson2005" class="citation journal cs1">Wilson, Trevor M. (September 2005). "A continuous movement version of the Banach–Tarski paradox: A solution to De Groot's problem". <i>Journal of Symbolic Logic</i>. <b>70</b> (3): 946–952. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.502.6600">10.1.1.502.6600</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2178%2Fjsl%2F1122038921">10.2178/jsl/1122038921</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/27588401">27588401</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15825008">15825008</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Symbolic+Logic&amp;rft.atitle=A+continuous+movement+version+of+the+Banach%E2%80%93Tarski+paradox%3A+A+solution+to+De+Groot%27s+problem&amp;rft.volume=70&amp;rft.issue=3&amp;rft.pages=946-952&amp;rft.date=2005-09&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.502.6600%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15825008%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F27588401%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2178%2Fjsl%2F1122038921&amp;rft.aulast=Wilson&amp;rft.aufirst=Trevor+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOlivier1995" class="citation report cs1">Olivier, Leroy (1995). <a rel="nofollow" class="external text" href="https://hal.archives-ouvertes.fr/hal-00741126">Théorie de la mesure dans les lieux réguliers. ou&#160;: Les intersections cachées dans le paradoxe de Banach-Tarski</a> (Report). <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1303.5631">1303.5631</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=report&amp;rft.btitle=Th%C3%A9orie+de+la+mesure+dans+les+lieux+r%C3%A9guliers.+ou+%3A+Les+intersections+cach%C3%A9es+dans+le+paradoxe+de+Banach-Tarski&amp;rft.date=1995&amp;rft_id=info%3Aarxiv%2F1303.5631&amp;rft.aulast=Olivier&amp;rft.aufirst=Leroy&amp;rft_id=https%3A%2F%2Fhal.archives-ouvertes.fr%2Fhal-00741126&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimpson2012" class="citation journal cs1">Simpson, Alex (1 November 2012). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.apal.2011.12.014">"Measure, randomness and sublocales"</a>. <i>Annals of Pure and Applied Logic</i>. <b>163</b> (11): 1642–1659. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.apal.2011.12.014">10.1016/j.apal.2011.12.014</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/20.500.11820%2F47f5df74-8a53-452a-88c0-d5489ee5d659">20.500.11820/47f5df74-8a53-452a-88c0-d5489ee5d659</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Pure+and+Applied+Logic&amp;rft.atitle=Measure%2C+randomness+and+sublocales&amp;rft.volume=163&amp;rft.issue=11&amp;rft.pages=1642-1659&amp;rft.date=2012-11-01&amp;rft_id=info%3Ahdl%2F20.500.11820%2F47f5df74-8a53-452a-88c0-d5489ee5d659&amp;rft_id=info%3Adoi%2F10.1016%2Fj.apal.2011.12.014&amp;rft.aulast=Simpson&amp;rft.aufirst=Alex&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.apal.2011.12.014&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBanachTarski1924" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Stefan_Banach" title="Stefan Banach">Banach, Stefan</a>; <a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Tarski, Alfred</a> (1924). <a rel="nofollow" class="external text" href="http://matwbn.icm.edu.pl/ksiazki/fm/fm6/fm6127.pdf">"Sur la décomposition des ensembles de points en parties respectivement congruentes"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Fundamenta_Mathematicae" title="Fundamenta Mathematicae">Fundamenta Mathematicae</a></i> (in French). <b>6</b>: 244–277. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-6-1-244-277">10.4064/fm-6-1-244-277</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fundamenta+Mathematicae&amp;rft.atitle=Sur+la+d%C3%A9composition+des+ensembles+de+points+en+parties+respectivement+congruentes&amp;rft.volume=6&amp;rft.pages=244-277&amp;rft.date=1924&amp;rft_id=info%3Adoi%2F10.4064%2Ffm-6-1-244-277&amp;rft.aulast=Banach&amp;rft.aufirst=Stefan&amp;rft.au=Tarski%2C+Alfred&amp;rft_id=http%3A%2F%2Fmatwbn.icm.edu.pl%2Fksiazki%2Ffm%2Ffm6%2Ffm6127.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobinson1947" class="citation journal cs1"><a href="/wiki/Raphael_M._Robinson" title="Raphael M. Robinson">Robinson, Raphael M.</a> (1947). <a rel="nofollow" class="external text" href="https://eudml.org/doc/213130">"On the Decomposition of Spheres"</a>. <i>Fund. Math</i>. <b>34</b>: 246–260. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-34-1-246-260">10.4064/fm-34-1-246-260</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fund.+Math.&amp;rft.atitle=On+the+Decomposition+of+Spheres&amp;rft.volume=34&amp;rft.pages=246-260&amp;rft.date=1947&amp;rft_id=info%3Adoi%2F10.4064%2Ffm-34-1-246-260&amp;rft.aulast=Robinson&amp;rft.aufirst=Raphael+M.&amp;rft_id=https%3A%2F%2Feudml.org%2Fdoc%2F213130&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span> This article, based on an analysis of the <a href="/wiki/Hausdorff_paradox" title="Hausdorff paradox">Hausdorff paradox</a>, settled a question put forth by von Neumann in 1929:</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Wagon, Corollary 13.3</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFForemanWehrung1991" class="citation journal cs1">Foreman, M.; Wehrung, F. (1991). <a rel="nofollow" class="external text" href="http://matwbn.icm.edu.pl/ksiazki/fm/fm138/fm13812.pdf">"The Hahn–Banach theorem implies the existence of a non-Lebesgue measurable set"</a> <span class="cs1-format">(PDF)</span>. <i>Fundamenta Mathematicae</i>. <b>138</b>: 13–19. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-138-1-13-19">10.4064/fm-138-1-13-19</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fundamenta+Mathematicae&amp;rft.atitle=The+Hahn%E2%80%93Banach+theorem+implies+the+existence+of+a+non-Lebesgue+measurable+set&amp;rft.volume=138&amp;rft.pages=13-19&amp;rft.date=1991&amp;rft_id=info%3Adoi%2F10.4064%2Ffm-138-1-13-19&amp;rft.aulast=Foreman&amp;rft.aufirst=M.&amp;rft.au=Wehrung%2C+F.&amp;rft_id=http%3A%2F%2Fmatwbn.icm.edu.pl%2Fksiazki%2Ffm%2Ffm138%2Ffm13812.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPawlikowski1991" class="citation journal cs1">Pawlikowski, Janusz (1991). <a rel="nofollow" class="external text" href="http://matwbn.icm.edu.pl/ksiazki/fm/fm138/fm13813.pdf">"The Hahn–Banach theorem implies the Banach–Tarski paradox"</a> <span class="cs1-format">(PDF)</span>. <i>Fundamenta Mathematicae</i>. <b>138</b>: 21–22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-138-1-21-22">10.4064/fm-138-1-21-22</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fundamenta+Mathematicae&amp;rft.atitle=The+Hahn%E2%80%93Banach+theorem+implies+the+Banach%E2%80%93Tarski+paradox&amp;rft.volume=138&amp;rft.pages=21-22&amp;rft.date=1991&amp;rft_id=info%3Adoi%2F10.4064%2Ffm-138-1-21-22&amp;rft.aulast=Pawlikowski&amp;rft.aufirst=Janusz&amp;rft_id=http%3A%2F%2Fmatwbn.icm.edu.pl%2Fksiazki%2Ffm%2Ffm138%2Ffm13813.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Wagon, p. 16.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">INVARIANT MEASURES, EXPANDERS AND PROPERTY T MAXIME BERGERON</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChurkin2010" class="citation journal cs1">Churkin, V. A. (2010). "A continuous version of the Hausdorff–Banach–Tarski paradox". <i><a href="/wiki/Algebra_and_Logic" class="mw-redirect" title="Algebra and Logic">Algebra and Logic</a></i>. <b>49</b> (1): 81–89. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10469-010-9080-y">10.1007/s10469-010-9080-y</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122711859">122711859</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Algebra+and+Logic&amp;rft.atitle=A+continuous+version+of+the+Hausdorff%E2%80%93Banach%E2%80%93Tarski+paradox&amp;rft.volume=49&amp;rft.issue=1&amp;rft.pages=81-89&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1007%2Fs10469-010-9080-y&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122711859%23id-name%3DS2CID&amp;rft.aulast=Churkin&amp;rft.aufirst=V.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span> Full text in Russian is available from the <a rel="nofollow" class="external text" href="https://www.mathnet.ru/php/archive.phtml?wshow=paper&amp;jrnid=al&amp;paperid=431&amp;option_lang=eng">Mathnet.ru page</a>.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">On p. 85. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeumann1929" class="citation journal cs1">Neumann, J. v. (1929). <a rel="nofollow" class="external text" href="http://matwbn.icm.edu.pl/ksiazki/fm/fm13/fm1316.pdf">"Zur allgemeinen Theorie des Masses"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Fundamenta_Mathematicae" title="Fundamenta Mathematicae">Fundamenta Mathematicae</a></i>. <b>13</b>: 73–116. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-13-1-73-116">10.4064/fm-13-1-73-116</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fundamenta+Mathematicae&amp;rft.atitle=Zur+allgemeinen+Theorie+des+Masses&amp;rft.volume=13&amp;rft.pages=73-116&amp;rft.date=1929&amp;rft_id=info%3Adoi%2F10.4064%2Ffm-13-1-73-116&amp;rft.aulast=Neumann&amp;rft.aufirst=J.+v.&amp;rft_id=http%3A%2F%2Fmatwbn.icm.edu.pl%2Fksiazki%2Ffm%2Ffm13%2Ffm1316.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaczkovich1999" class="citation journal cs1">Laczkovich, Miklós (1999). "Paradoxical sets under <i>SL</i><sub>2</sub>(<b>R</b>)". <i>Ann. Univ. Sci. Budapest. Eötvös Sect. Math</i>. <b>42</b>: 141–145.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ann.+Univ.+Sci.+Budapest.+E%C3%B6tv%C3%B6s+Sect.+Math.&amp;rft.atitle=Paradoxical+sets+under+SL%3Csub%3E2%3C%2Fsub%3E%28R%29&amp;rft.volume=42&amp;rft.pages=141-145&amp;rft.date=1999&amp;rft.aulast=Laczkovich&amp;rft.aufirst=Mikl%C3%B3s&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSatô2003" class="citation journal cs1">Satô, Kenzi (2003). <a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm180-1-3">"A locally commutative free group acting on the plane"</a>. <i>Fundamenta Mathematicae</i>. <b>180</b> (1): 25–34. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm180-1-3">10.4064/fm180-1-3</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fundamenta+Mathematicae&amp;rft.atitle=A+locally+commutative+free+group+acting+on+the+plane&amp;rft.volume=180&amp;rft.issue=1&amp;rft.pages=25-34&amp;rft.date=2003&amp;rft_id=info%3Adoi%2F10.4064%2Ffm180-1-3&amp;rft.aulast=Sat%C3%B4&amp;rft.aufirst=Kenzi&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4064%252Ffm180-1-3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaczkovich1999" class="citation journal cs1">Laczkovich, Miklós (1999). "Paradoxical sets under <i>SL</i><sub>2</sub>(<b>R</b>)". <i>Ann. Univ. Sci. Budapest. Eötvös Sect. Math</i>. <b>42</b>: 141–145.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ann.+Univ.+Sci.+Budapest.+E%C3%B6tv%C3%B6s+Sect.+Math.&amp;rft.atitle=Paradoxical+sets+under+SL%3Csub%3E2%3C%2Fsub%3E%28R%29&amp;rft.volume=42&amp;rft.pages=141-145&amp;rft.date=1999&amp;rft.aulast=Laczkovich&amp;rft.aufirst=Mikl%C3%B3s&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTomkowicz2011" class="citation journal cs1">Tomkowicz, Grzegorz (2011). <a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Fcm125-2-1">"A free group of piecewise linear transformations"</a>. <i>Colloquium Mathematicum</i>. <b>125</b> (2): 141–146. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Fcm125-2-1">10.4064/cm125-2-1</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Colloquium+Mathematicum&amp;rft.atitle=A+free+group+of+piecewise+linear+transformations&amp;rft.volume=125&amp;rft.issue=2&amp;rft.pages=141-146&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.4064%2Fcm125-2-1&amp;rft.aulast=Tomkowicz&amp;rft.aufirst=Grzegorz&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4064%252Fcm125-2-1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdams1954" class="citation journal cs1">Adams, John Frank (1954). "On decompositions of the sphere". <i>J. London Math. Soc</i>. <b>29</b>: 96–99. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fjlms%2Fs1-29.1.96">10.1112/jlms/s1-29.1.96</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+London+Math.+Soc.&amp;rft.atitle=On+decompositions+of+the+sphere&amp;rft.volume=29&amp;rft.pages=96-99&amp;rft.date=1954&amp;rft_id=info%3Adoi%2F10.1112%2Fjlms%2Fs1-29.1.96&amp;rft.aulast=Adams&amp;rft.aufirst=John+Frank&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMycielski1955" class="citation journal cs1">Mycielski, Jan (1955). <a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-42-2-348-355">"On the paradox of the sphere"</a>. <i>Fund. Math</i>. <b>42</b> (2): 348–355. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-42-2-348-355">10.4064/fm-42-2-348-355</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fund.+Math.&amp;rft.atitle=On+the+paradox+of+the+sphere&amp;rft.volume=42&amp;rft.issue=2&amp;rft.pages=348-355&amp;rft.date=1955&amp;rft_id=info%3Adoi%2F10.4064%2Ffm-42-2-348-355&amp;rft.aulast=Mycielski&amp;rft.aufirst=Jan&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4064%252Ffm-42-2-348-355&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTomkowicz2017" class="citation journal cs1">Tomkowicz, Grzegorz (2017). "On decompositions of the hyperbolic plane satisfying many congruences". <i>Bulletin of the London Mathematical Society</i>. <b>49</b>: 133–140. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fblms.12024">10.1112/blms.12024</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125603157">125603157</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+the+London+Mathematical+Society&amp;rft.atitle=On+decompositions+of+the+hyperbolic+plane+satisfying+many+congruences&amp;rft.volume=49&amp;rft.pages=133-140&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.1112%2Fblms.12024&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125603157%23id-name%3DS2CID&amp;rft.aulast=Tomkowicz&amp;rft.aufirst=Grzegorz&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMycielski1989" class="citation journal cs1">Mycielski, Jan (1989). <a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-132-2-143-149">"The Banach-Tarski paradox for the hyperbolic plane"</a>. <i>Fund. Math</i>. <b>132</b> (2): 143–149. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-132-2-143-149">10.4064/fm-132-2-143-149</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fund.+Math.&amp;rft.atitle=The+Banach-Tarski+paradox+for+the+hyperbolic+plane&amp;rft.volume=132&amp;rft.issue=2&amp;rft.pages=143-149&amp;rft.date=1989&amp;rft_id=info%3Adoi%2F10.4064%2Ffm-132-2-143-149&amp;rft.aulast=Mycielski&amp;rft.aufirst=Jan&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4064%252Ffm-132-2-143-149&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMycielskiTomkowicz2013" class="citation journal cs1">Mycielski, Jan; Tomkowicz, Grzegorz (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm222-3-5">"The Banach-Tarski paradox for the hyperbolic plane (II)"</a>. <i>Fund. Math</i>. <b>222</b> (3): 289–290. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm222-3-5">10.4064/fm222-3-5</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fund.+Math.&amp;rft.atitle=The+Banach-Tarski+paradox+for+the+hyperbolic+plane+%28II%29&amp;rft.volume=222&amp;rft.issue=3&amp;rft.pages=289-290&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.4064%2Ffm222-3-5&amp;rft.aulast=Mycielski&amp;rft.aufirst=Jan&amp;rft.au=Tomkowicz%2C+Grzegorz&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4064%252Ffm222-3-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTomkowicz2017" class="citation journal cs1">Tomkowicz, Grzegorz (2017). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fproc%2F13657">"Banach-Tarski paradox in some complete manifolds"</a>. <i>Proc. Amer. Math. Soc</i>. <b>145</b> (12): 5359–5362. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fproc%2F13657">10.1090/proc/13657</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proc.+Amer.+Math.+Soc.&amp;rft.atitle=Banach-Tarski+paradox+in+some+complete+manifolds&amp;rft.volume=145&amp;rft.issue=12&amp;rft.pages=5359-5362&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.1090%2Fproc%2F13657&amp;rft.aulast=Tomkowicz&amp;rft.aufirst=Grzegorz&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252Fproc%252F13657&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMycielskiWagon1984" class="citation journal cs1">Mycielski, Jan; Wagon, Stan (1984). "Large free groups of isometries and their geometrical". <i>Ens. Math</i>. <b>30</b>: 247–267.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ens.+Math.&amp;rft.atitle=Large+free+groups+of+isometries+and+their+geometrical&amp;rft.volume=30&amp;rft.pages=247-267&amp;rft.date=1984&amp;rft.aulast=Mycielski&amp;rft.aufirst=Jan&amp;rft.au=Wagon%2C+Stan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTomkowicz2018" class="citation journal cs1">Tomkowicz, Grzegorz (2018). "A properly discontinuous free group of affine transformations". <i>Geom. Dedicata</i>. <b>197</b>: 91–95. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10711-018-0320-y">10.1007/s10711-018-0320-y</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:126151042">126151042</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Geom.+Dedicata&amp;rft.atitle=A+properly+discontinuous+free+group+of+affine+transformations&amp;rft.volume=197&amp;rft.pages=91-95&amp;rft.date=2018&amp;rft_id=info%3Adoi%2F10.1007%2Fs10711-018-0320-y&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A126151042%23id-name%3DS2CID&amp;rft.aulast=Tomkowicz&amp;rft.aufirst=Grzegorz&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMycielskiTomkowicz2019" class="citation journal cs1">Mycielski, Jan; Tomkowicz, Grzegorz (2019). "On the equivalence of sets of equal measures by countable decomposition". <i>Bulletin of the London Mathematical Society</i>. <b>51</b>: 961–966. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fblms.12289">10.1112/blms.12289</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:209936338">209936338</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+the+London+Mathematical+Society&amp;rft.atitle=On+the+equivalence+of+sets+of+equal+measures+by+countable+decomposition&amp;rft.volume=51&amp;rft.pages=961-966&amp;rft.date=2019&amp;rft_id=info%3Adoi%2F10.1112%2Fblms.12289&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A209936338%23id-name%3DS2CID&amp;rft.aulast=Mycielski&amp;rft.aufirst=Jan&amp;rft.au=Tomkowicz%2C+Grzegorz&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimonTomkowicz2024" class="citation journal cs1">Simon, Robert; Tomkowicz, Grzegorz (2024). "A measure theoretic paradox from a continuous colouring rule". <i>Math. Ann</i>. <b>389</b> (2): 1441–1462. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2203.11158">2203.11158</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00208-023-02644-4">10.1007/s00208-023-02644-4</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Math.+Ann.&amp;rft.atitle=A+measure+theoretic+paradox+from+a+continuous+colouring+rule&amp;rft.volume=389&amp;rft.issue=2&amp;rft.pages=1441-1462&amp;rft.date=2024&amp;rft_id=info%3Aarxiv%2F2203.11158&amp;rft_id=info%3Adoi%2F10.1007%2Fs00208-023-02644-4&amp;rft.aulast=Simon&amp;rft.aufirst=Robert&amp;rft.au=Tomkowicz%2C+Grzegorz&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTomkowicz2024" class="citation journal cs1">Tomkowicz, Grzegorz (2024). "On bounded paradoxical sets and Lie groups". <i>Geom. Dedicata</i>. <b>218</b> (3) 72. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10711-024-00923-1">10.1007/s10711-024-00923-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Geom.+Dedicata&amp;rft.atitle=On+bounded+paradoxical+sets+and+Lie+groups&amp;rft.volume=218&amp;rft.issue=3&amp;rft.artnum=72&amp;rft.date=2024&amp;rft_id=info%3Adoi%2F10.1007%2Fs10711-024-00923-1&amp;rft.aulast=Tomkowicz&amp;rft.aufirst=Grzegorz&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=15" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBanachTarski1924" class="citation journal cs1"><a href="/wiki/Stefan_Banach" title="Stefan Banach">Banach, Stefan</a>; <a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Tarski, Alfred</a> (1924). <a rel="nofollow" class="external text" href="http://matwbn.icm.edu.pl/ksiazki/fm/fm6/fm6127.pdf">"Sur la décomposition des ensembles de points en parties respectivement congruentes"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Fundamenta_Mathematicae" title="Fundamenta Mathematicae">Fundamenta Mathematicae</a></i>. <b>6</b>: 244–277. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-6-1-244-277">10.4064/fm-6-1-244-277</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fundamenta+Mathematicae&amp;rft.atitle=Sur+la+d%C3%A9composition+des+ensembles+de+points+en+parties+respectivement+congruentes&amp;rft.volume=6&amp;rft.pages=244-277&amp;rft.date=1924&amp;rft_id=info%3Adoi%2F10.4064%2Ffm-6-1-244-277&amp;rft.aulast=Banach&amp;rft.aufirst=Stefan&amp;rft.au=Tarski%2C+Alfred&amp;rft_id=http%3A%2F%2Fmatwbn.icm.edu.pl%2Fksiazki%2Ffm%2Ffm6%2Ffm6127.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChurkin2010" class="citation journal cs1">Churkin, V. A. (2010). "A continuous version of the Hausdorff–Banach–Tarski paradox". <i>Algebra and Logic</i>. <b>49</b> (1): 91–98. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10469-010-9080-y">10.1007/s10469-010-9080-y</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122711859">122711859</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Algebra+and+Logic&amp;rft.atitle=A+continuous+version+of+the+Hausdorff%E2%80%93Banach%E2%80%93Tarski+paradox&amp;rft.volume=49&amp;rft.issue=1&amp;rft.pages=91-98&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1007%2Fs10469-010-9080-y&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122711859%23id-name%3DS2CID&amp;rft.aulast=Churkin&amp;rft.aufirst=V.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></li> <li>Edward Kasner &amp; James Newman (1940) <a href="/wiki/Mathematics_and_the_Imagination" title="Mathematics and the Imagination">Mathematics and the Imagination</a>, pp 205–7, <a href="/wiki/Simon_%26_Schuster" title="Simon &amp; Schuster">Simon &amp; Schuster</a>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStromberg1979" class="citation journal cs1">Stromberg, Karl (March 1979). "The Banach–Tarski paradox". <i>The American Mathematical Monthly</i>. <b>86</b> (3). Mathematical Association of America: 151–161. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2321514">10.2307/2321514</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2321514">2321514</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=The+Banach%E2%80%93Tarski+paradox&amp;rft.volume=86&amp;rft.issue=3&amp;rft.pages=151-161&amp;rft.date=1979-03&amp;rft_id=info%3Adoi%2F10.2307%2F2321514&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2321514%23id-name%3DJSTOR&amp;rft.aulast=Stromberg&amp;rft.aufirst=Karl&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSu" class="citation web cs1"><a href="/wiki/Francis_Su" title="Francis Su">Su, Francis E.</a> <a rel="nofollow" class="external text" href="https://math.hmc.edu/su/wp-content/uploads/sites/10/2019/06/The-Banach-Tarski-Paradox.pdf">"The Banach–Tarski Paradox"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Banach%E2%80%93Tarski+Paradox&amp;rft.aulast=Su&amp;rft.aufirst=Francis+E.&amp;rft_id=https%3A%2F%2Fmath.hmc.edu%2Fsu%2Fwp-content%2Fuploads%2Fsites%2F10%2F2019%2F06%2FThe-Banach-Tarski-Paradox.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Neumann1929" class="citation journal cs1"><a href="/wiki/John_von_Neumann" title="John von Neumann">von Neumann, John</a> (1929). <a rel="nofollow" class="external text" href="http://matwbn.icm.edu.pl/ksiazki/fm/fm13/fm1316.pdf">"Zur allgemeinen Theorie des Masses"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Fundamenta_Mathematicae" title="Fundamenta Mathematicae">Fundamenta Mathematicae</a></i>. <b>13</b>: 73–116. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-13-1-73-116">10.4064/fm-13-1-73-116</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fundamenta+Mathematicae&amp;rft.atitle=Zur+allgemeinen+Theorie+des+Masses&amp;rft.volume=13&amp;rft.pages=73-116&amp;rft.date=1929&amp;rft_id=info%3Adoi%2F10.4064%2Ffm-13-1-73-116&amp;rft.aulast=von+Neumann&amp;rft.aufirst=John&amp;rft_id=http%3A%2F%2Fmatwbn.icm.edu.pl%2Fksiazki%2Ffm%2Ffm13%2Ffm1316.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWagon1994" class="citation book cs1"><a href="/wiki/Stan_Wagon" title="Stan Wagon">Wagon, Stan</a> (1994). <a href="/wiki/The_Banach%E2%80%93Tarski_Paradox_(book)" title="The Banach–Tarski Paradox (book)"><i>The Banach–Tarski Paradox</i></a>. Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-45704-1" title="Special:BookSources/0-521-45704-1"><bdi>0-521-45704-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Banach%E2%80%93Tarski+Paradox&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1994&amp;rft.isbn=0-521-45704-1&amp;rft.aulast=Wagon&amp;rft.aufirst=Stan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWapner2005" class="citation book cs1">Wapner, Leonard M. (2005). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/peasunmathematic0000wapn"><i>The Pea and the Sun: A Mathematical Paradox</i></a></span>. Wellesley, Massachusetts: A.K. Peters. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-56881-213-2" title="Special:BookSources/1-56881-213-2"><bdi>1-56881-213-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Pea+and+the+Sun%3A+A+Mathematical+Paradox&amp;rft.place=Wellesley%2C+Massachusetts&amp;rft.pub=A.K.+Peters&amp;rft.date=2005&amp;rft.isbn=1-56881-213-2&amp;rft.aulast=Wapner&amp;rft.aufirst=Leonard+M.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fpeasunmathematic0000wapn&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTomkowiczWagon,_Stan2016" class="citation book cs1"><a href="/w/index.php?title=Grzegorz_Tomkowicz&amp;action=edit&amp;redlink=1" class="new" title="Grzegorz Tomkowicz (page does not exist)">Tomkowicz, Grzegorz</a>; <a href="/wiki/Stan_Wagon" title="Stan Wagon">Wagon, Stan</a> (2016). <i>The Banach–Tarski Paradox 2nd Edition</i>. Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781107042599" title="Special:BookSources/9781107042599"><bdi>9781107042599</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Banach%E2%80%93Tarski+Paradox+2nd+Edition&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2016&amp;rft.isbn=9781107042599&amp;rft.aulast=Tomkowicz&amp;rft.aufirst=Grzegorz&amp;rft.au=Wagon%2C+Stan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;action=edit&amp;section=16" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Banach-Tarski_paradox" class="extiw" title="commons:Category:Banach-Tarski paradox">Banach-Tarski paradox</a></span>.</div></div> </div> <ul><li><a href="//www.proofwiki.org/wiki/Banach-Tarski_Paradox" class="extiw" title="proofwiki:Banach-Tarski Paradox">Banach–Tarski paradox</a> at ProofWiki</li> <li><a rel="nofollow" class="external text" href="http://demonstrations.wolfram.com/TheBanachTarskiParadox/">The Banach-Tarski Paradox</a> by Stan Wagon (<a href="/wiki/Macalester_College" title="Macalester College">Macalester College</a>), the <a href="/wiki/Wolfram_Demonstrations_Project" title="Wolfram Demonstrations Project">Wolfram Demonstrations Project</a>.</li> <li><a rel="nofollow" class="external text" href="http://www.irregularwebcomic.net/2339.html">Irregular Webcomic! #2339</a> by David Morgan-Mar provides a non-technical explanation of the paradox. It includes a step-by-step demonstration of how to create two spheres from one.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVsauce2015" class="citation web cs1">Vsauce (31 July 2015). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=s86-Z-CbaHA&amp;list=PLZRRxQcaEjA5WaVaMtEB86yVXSH-XZ8eT&amp;index=9">"The Banach–Tarski Paradox"</a> &#8211; via <a href="/wiki/YouTube" title="YouTube">YouTube</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Banach%E2%80%93Tarski+Paradox&amp;rft.date=2015-07-31&amp;rft.au=Vsauce&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Ds86-Z-CbaHA%26list%3DPLZRRxQcaEjA5WaVaMtEB86yVXSH-XZ8eT%26index%3D9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABanach%E2%80%93Tarski+paradox" class="Z3988"></span> gives an overview on the fundamental basics of the paradox.</li> <li><a rel="nofollow" class="external text" href="https://www.quantamagazine.org/how-a-mathematical-paradox-allows-infinite-cloning-20210826/">Banach-Tarski and the Paradox of Infinite Cloning</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q737851#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q737851#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q737851#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">International</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/826394/">FAST</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4143975-2">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85011446">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb12285988c">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb12285988c">BnF data</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007282589105171">Israel</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.idref.fr/031692982">IdRef</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.canary‐67c44fb794‐tmjtt Cached time: 20241128020708 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.704 seconds Real time usage: 0.872 seconds Preprocessor visited node count: 6416/1000000 Post‐expand include size: 85650/2097152 bytes Template argument size: 5771/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 120608/5000000 bytes Lua time usage: 0.435/10.000 seconds Lua memory usage: 16108480/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 666.487 1 -total 32.96% 219.659 1 Template:Reflist 19.39% 129.226 27 Template:Cite_journal 13.08% 87.150 4 Template:Cite_book 12.82% 85.418 1 Template:Lang 10.76% 71.739 1 Template:Authority_control 9.54% 63.553 71 Template:Math 9.32% 62.112 1 Template:Short_description 6.12% 40.798 2 Template:Pagetype 5.69% 37.931 5 Template:Annotated_link --> <!-- Saved in parser cache with key enwiki:pcache:19759220:|#|:idhash:canonical and timestamp 20241128020708 and revision id 1252141479. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Banach–Tarski_paradox&amp;oldid=1252141479">https://en.wikipedia.org/w/index.php?title=Banach–Tarski_paradox&amp;oldid=1252141479</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Eponymous_paradoxes" title="Category:Eponymous paradoxes">Eponymous paradoxes</a></li><li><a href="/wiki/Category:Group_theory" title="Category:Group theory">Group theory</a></li><li><a href="/wiki/Category:Measure_theory" title="Category:Measure theory">Measure theory</a></li><li><a href="/wiki/Category:Mathematical_paradoxes" title="Category:Mathematical paradoxes">Mathematical paradoxes</a></li><li><a href="/wiki/Category:Theorems_in_the_foundations_of_mathematics" title="Category:Theorems in the foundations of mathematics">Theorems in the foundations of mathematics</a></li><li><a href="/wiki/Category:Geometric_dissection" title="Category:Geometric dissection">Geometric dissection</a></li><li><a href="/wiki/Category:1924_introductions" title="Category:1924 introductions">1924 introductions</a></li><li><a href="/wiki/Category:Paradoxes_of_infinity" title="Category:Paradoxes of infinity">Paradoxes of infinity</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_containing_French-language_text" title="Category:Articles containing French-language text">Articles containing French-language text</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 20 October 2024, at 00:26<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Banach%E2%80%93Tarski_paradox&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-57488d5c7d-cnhg5","wgBackendResponseTime":147,"wgPageParseReport":{"limitreport":{"cputime":"0.704","walltime":"0.872","ppvisitednodes":{"value":6416,"limit":1000000},"postexpandincludesize":{"value":85650,"limit":2097152},"templateargumentsize":{"value":5771,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":120608,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 666.487 1 -total"," 32.96% 219.659 1 Template:Reflist"," 19.39% 129.226 27 Template:Cite_journal"," 13.08% 87.150 4 Template:Cite_book"," 12.82% 85.418 1 Template:Lang"," 10.76% 71.739 1 Template:Authority_control"," 9.54% 63.553 71 Template:Math"," 9.32% 62.112 1 Template:Short_description"," 6.12% 40.798 2 Template:Pagetype"," 5.69% 37.931 5 Template:Annotated_link"]},"scribunto":{"limitreport-timeusage":{"value":"0.435","limit":"10.000"},"limitreport-memusage":{"value":16108480,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.canary-67c44fb794-tmjtt","timestamp":"20241128020708","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Banach\u2013Tarski paradox","url":"https:\/\/en.wikipedia.org\/wiki\/Banach%E2%80%93Tarski_paradox","sameAs":"http:\/\/www.wikidata.org\/entity\/Q737851","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q737851","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-09-30T16:34:41Z","dateModified":"2024-10-20T00:26:37Z","headline":"idea of taking apart an object and constructing two identical copies of it"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10