CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–34 of 34 results for author: <span class="mathjax">Yang, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Yang%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yang, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yang%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yang, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09331">arXiv:2410.09331</a> <span> [<a href="https://arxiv.org/pdf/2410.09331">pdf</a>, <a href="https://arxiv.org/ps/2410.09331">ps</a>, <a href="https://arxiv.org/format/2410.09331">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Minutes-scale Schr{枚}dinger-cat state of spin-5/2 atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Y+A">Y. A. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+W+-">W. -T. Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+J+-">J. -L. Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+S+-">S. -Z. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zou%2C+C">Chang-Ling Zou</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+T">T. Xia</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Z+-">Z. -T. Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09331v1-abstract-short" style="display: inline;"> Quantum metrology with nonclassical states offers a promising route to improved precision in physical measurements. The quantum effects of Schr{枚}dinger-cat superpositions or entanglements allow measurement uncertainties to reach below the standard quantum limit. However, the challenge in keeping a long coherence time for such nonclassical states often prevents full exploitation of the quantum adv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09331v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09331v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09331v1-abstract-full" style="display: none;"> Quantum metrology with nonclassical states offers a promising route to improved precision in physical measurements. The quantum effects of Schr{枚}dinger-cat superpositions or entanglements allow measurement uncertainties to reach below the standard quantum limit. However, the challenge in keeping a long coherence time for such nonclassical states often prevents full exploitation of the quantum advantage in metrology. Here we demonstrate a long-lived Schr{枚}dinger-cat state of optically trapped $^{173}$Yb (\textit{I}\ =\ 5/2) atoms. The cat state, a superposition of two oppositely-directed and furthest-apart spin states, is generated by a non-linear spin rotation. Protected in a decoherence-free subspace against inhomogeneous light shifts of an optical lattice, the cat state achieves a coherence time of $1.4(1)\times 10^3$ s. A magnetic field is measured with Ramsey interferometry, demonstrating a scheme of Heisenberg-limited metrology for atomic magnetometry, quantum information processing, and searching for new physics beyond the Standard Model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09331v1-abstract-full').style.display = 'none'; document.getElementById('2410.09331v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09028">arXiv:2410.09028</a> <span> [<a href="https://arxiv.org/pdf/2410.09028">pdf</a>, <a href="https://arxiv.org/format/2410.09028">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Anomalously extended Floquet prethermal lifetimes and applications to long-time quantum sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Harkins%2C+K+A">Kieren A. Harkins</a>, <a href="/search/quant-ph?searchtype=author&query=Selco%2C+C">Cooper Selco</a>, <a href="/search/quant-ph?searchtype=author&query=Bengs%2C+C">Christian Bengs</a>, <a href="/search/quant-ph?searchtype=author&query=Marchiori%2C+D">David Marchiori</a>, <a href="/search/quant-ph?searchtype=author&query=Moon%2C+L+J+I">Leo Joon Il Moon</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Z">Zhuo-Rui Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Aristotle Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Singh%2C+A">Angad Singh</a>, <a href="/search/quant-ph?searchtype=author&query=Druga%2C+E">Emanuel Druga</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+Y">Yi-Qiao Song</a>, <a href="/search/quant-ph?searchtype=author&query=Ajoy%2C+A">Ashok Ajoy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09028v1-abstract-short" style="display: inline;"> Floquet prethermalization is observed in periodically driven quantum many-body systems where the system avoids heating and maintains a stable, non-equilibrium state, for extended periods. Here we introduce a novel quantum control method using off-resonance and short-angle excitation to significantly extend Floquet prethermal lifetimes. This is demonstrated on randomly positioned, dipolar-coupled,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09028v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09028v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09028v1-abstract-full" style="display: none;"> Floquet prethermalization is observed in periodically driven quantum many-body systems where the system avoids heating and maintains a stable, non-equilibrium state, for extended periods. Here we introduce a novel quantum control method using off-resonance and short-angle excitation to significantly extend Floquet prethermal lifetimes. This is demonstrated on randomly positioned, dipolar-coupled, 13C nuclear spins in diamond, but the methodology is broadly applicable. We achieve a lifetime $T_2'~800 s at 100 K while tracking the transition to the prethermal state quasi-continuously. This corresponds to a >533,000-fold extension over the bare spin lifetime without prethermalization, and constitutes a new record both in terms of absolute lifetime as well as the total number of Floquet pulses applied (here exceeding 7 million). Using Laplace inversion, we develop a new form of noise spectroscopy that provides insights into the origin of the lifetime extension. Finally, we demonstrate applications of these extended lifetimes in long-time, reinitialization-free quantum sensing of time-varying magnetic fields continuously for ~10 minutes at room temperature. Our work facilitates new opportunities for stabilizing driven quantum systems through Floquet control, and opens novel applications for continuously interrogated, long-time responsive quantum sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09028v1-abstract-full').style.display = 'none'; document.getElementById('2410.09028v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07626">arXiv:2406.07626</a> <span> [<a href="https://arxiv.org/pdf/2406.07626">pdf</a>, <a href="https://arxiv.org/format/2406.07626">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Tailoring Bound State Geometry in High-Dimensional Non-Hermitian Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ao Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Fang%2C+Z">Zixi Fang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Fang%2C+C">Chen Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07626v1-abstract-short" style="display: inline;"> It is generally believed that the non-Hermitian effect (NHSE), due to its non-reciprocal nature, creates barriers for the appearance of impurity bound states. In this paper, we find that in two and higher dimensions, the presence of geometry-dependent skin effect eliminates this barrier such that even an infinitesimal impurity potential can confine bound states in this type of non-Hermitian system… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07626v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07626v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07626v1-abstract-full" style="display: none;"> It is generally believed that the non-Hermitian effect (NHSE), due to its non-reciprocal nature, creates barriers for the appearance of impurity bound states. In this paper, we find that in two and higher dimensions, the presence of geometry-dependent skin effect eliminates this barrier such that even an infinitesimal impurity potential can confine bound states in this type of non-Hermitian systems. By examining bound states around Bloch saddle points, we find that non-Hermiticity can disrupt the isotropy of bound states, resulting in concave dumbbell-shaped bound states. Our work reveals a geometry transition of bound state between concavity and convexity in high-dimensional non-Hermitian systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07626v1-abstract-full').style.display = 'none'; document.getElementById('2406.07626v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07346">arXiv:2406.07346</a> <span> [<a href="https://arxiv.org/pdf/2406.07346">pdf</a>, <a href="https://arxiv.org/format/2406.07346">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Few-Body Quantum Chaos, Localization, and Multi-Photon Entanglement in Optical Synthetic Frequency Dimension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Junlin Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+L">Luojia Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+J">Jinlou Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ang Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Yuan%2C+L">Luqi Yuan</a>, <a href="/search/quant-ph?searchtype=author&query=Ying%2C+L">Lei Ying</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07346v1-abstract-short" style="display: inline;"> Generation and control of entanglement are fundamental tasks in quantum information processing. In this paper, we propose a novel approach to generate controllable frequency-entangled photons by using the concept of synthetic frequency dimension in an optical system. Such a system consists of a ring resonator made by a tailored third-order nonlinear media to induce photon-photon interactions and a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07346v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07346v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07346v1-abstract-full" style="display: none;"> Generation and control of entanglement are fundamental tasks in quantum information processing. In this paper, we propose a novel approach to generate controllable frequency-entangled photons by using the concept of synthetic frequency dimension in an optical system. Such a system consists of a ring resonator made by a tailored third-order nonlinear media to induce photon-photon interactions and a periodic modulator to manipulate coupling between different frequency modes. We show this system provides a unique platform for the exploration of distinct few- or many-body quantum phases including chaos, localization, and integrability in a highly integrable photonics platform. In particular, we develop the potential experimental method to calculate the spectral form factor, which characterizes the degree of chaos in the system and differentiates between these phases based on observable measurements. Interestingly, the transition signatures of each phase can lead to an efficient generation of frequency-entangled multi photons. This work is the first to explore rich and controllable quantum phases beyond single particle in a synthetic dimension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07346v1-abstract-full').style.display = 'none'; document.getElementById('2406.07346v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02630">arXiv:2405.02630</a> <span> [<a href="https://arxiv.org/pdf/2405.02630">pdf</a>, <a href="https://arxiv.org/format/2405.02630">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> cuTN-QSVM: cuTensorNet-accelerated Quantum Support Vector Machine with cuQuantum SDK </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+K">Kuan-Cheng Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+T">Tai-Yue Li</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yun-Yuan Wang</a>, <a href="/search/quant-ph?searchtype=author&query=See%2C+S">Simon See</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C">Chun-Chieh Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wille%2C+R">Robert Wille</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+N">Nan-Yow Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">An-Cheng Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+C">Chun-Yu Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02630v2-abstract-short" style="display: inline;"> This paper investigates the application of Quantum Support Vector Machines (QSVMs) with an emphasis on the computational advancements enabled by NVIDIA's cuQuantum SDK, especially leveraging the cuTensorNet library. We present a simulation workflow that substantially diminishes computational overhead, as evidenced by our experiments, from exponential to quadratic cost. While state vector simulatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02630v2-abstract-full').style.display = 'inline'; document.getElementById('2405.02630v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02630v2-abstract-full" style="display: none;"> This paper investigates the application of Quantum Support Vector Machines (QSVMs) with an emphasis on the computational advancements enabled by NVIDIA's cuQuantum SDK, especially leveraging the cuTensorNet library. We present a simulation workflow that substantially diminishes computational overhead, as evidenced by our experiments, from exponential to quadratic cost. While state vector simulations become infeasible for qubit counts over 50, our evaluation demonstrates that cuTensorNet speeds up simulations to be completed within seconds on the NVIDIA A100 GPU, even for qubit counts approaching 784. By employing multi-GPU processing with Message Passing Interface (MPI), we document a marked decrease in computation times, effectively demonstrating the strong linear speedup of our approach for increasing data sizes. This enables QSVMs to operate efficiently on High-Performance Computing (HPC) systems, thereby opening a new window for researchers to explore complex quantum algorithms that have not yet been investigated. In accuracy assessments, our QSVM achieves up to 95\% on challenging classifications within the MNIST dataset for training sets larger than 100 instances, surpassing the capabilities of classical SVMs. These advancements position cuTensorNet within the cuQuantum SDK as a pivotal tool for scaling quantum machine learning simulations and potentially signpost the seamless integration of such computational strategies as pivotal within the Quantum-HPC ecosystem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02630v2-abstract-full').style.display = 'none'; document.getElementById('2405.02630v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17912">arXiv:2403.17912</a> <span> [<a href="https://arxiv.org/pdf/2403.17912">pdf</a>, <a href="https://arxiv.org/format/2403.17912">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Emergent Anomalous Hydrodynamics at Infinite Temperature in a Long-Range XXZ Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ang Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+J">Jinlou Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Ying%2C+L">Lei Ying</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17912v1-abstract-short" style="display: inline;"> The conventional wisdom suggests that transports of conserved quantities in non-integrable quantum many-body systems at high temperatures are diffusive. However, we discover a counterexample of this paradigm by uncovering anomalous hydrodynamics in a spin-1/2 XXZ chain with power-law couplings. This model, classified as non-integrable due to its Wigner-Dyson level-spacing statistics in the random… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17912v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17912v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17912v1-abstract-full" style="display: none;"> The conventional wisdom suggests that transports of conserved quantities in non-integrable quantum many-body systems at high temperatures are diffusive. However, we discover a counterexample of this paradigm by uncovering anomalous hydrodynamics in a spin-1/2 XXZ chain with power-law couplings. This model, classified as non-integrable due to its Wigner-Dyson level-spacing statistics in the random matrix theory, exhibits a surprising superdiffusive-ballistic-superdiffusive transport transition by varying the power-law exponent of couplings for a fixed anisotropy. Our findings are verified by multiple observables, including the spin-spin autocorrelator, mean-square displacement, and spin conductivity. Interestingly, we further quantify the degree of quantum chaos using the Kullback-Leibler divergence between the entanglement entropy distributions of the model's eigenstates and a random state. Remarkably, an observed local maximum in the divergence near the transition boundary suggests a link between anomalous hydrodynamics and a suppression of quantum chaos. This work offers another deep understanding of emergent anomalous transport phenomena in a wider range of non-integrable quantum many-body systems <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17912v1-abstract-full').style.display = 'none'; document.getElementById('2403.17912v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13880">arXiv:2312.13880</a> <span> [<a href="https://arxiv.org/pdf/2312.13880">pdf</a>, <a href="https://arxiv.org/format/2312.13880">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of many-body dynamical localization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Guo%2C+Y">Yanliang Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Dhar%2C+S">Sudipta Dhar</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ang Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Z">Zekai Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Yao%2C+H">Hepeng Yao</a>, <a href="/search/quant-ph?searchtype=author&query=Horvath%2C+M">Milena Horvath</a>, <a href="/search/quant-ph?searchtype=author&query=Ying%2C+L">Lei Ying</a>, <a href="/search/quant-ph?searchtype=author&query=Landini%2C+M">Manuele Landini</a>, <a href="/search/quant-ph?searchtype=author&query=N%C3%A4gerl%2C+H">Hanns-Christoph N盲gerl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13880v1-abstract-short" style="display: inline;"> The quantum kicked rotor is a paradigmatic model system in quantum physics. As a driven quantum system, it is used to study the transition from the classical to the quantum world and to elucidate the emergence of chaos and diffusion. In contrast to its classical counterpart, it features dynamical localization, specifically Anderson localization in momentum space. The interacting many-body kicked r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13880v1-abstract-full').style.display = 'inline'; document.getElementById('2312.13880v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13880v1-abstract-full" style="display: none;"> The quantum kicked rotor is a paradigmatic model system in quantum physics. As a driven quantum system, it is used to study the transition from the classical to the quantum world and to elucidate the emergence of chaos and diffusion. In contrast to its classical counterpart, it features dynamical localization, specifically Anderson localization in momentum space. The interacting many-body kicked rotor is believed to break localization, as recent experiments suggest. Here, we present evidence for many-body dynamical localization for the Lieb-Liniger version of the many-body quantum kicked rotor. After some initial evolution, the momentum distribution of interacting quantum-degenerate bosonic atoms in one-dimensional geometry, kicked hundreds of times by means of a pulsed sinusoidal potential, stops spreading. We quantify the arrested evolution by analysing the energy and the information entropy of the system as the interaction strength is tuned. In the limiting cases of vanishing and strong interactions, the first-order correlation function exhibits a very different decay behavior. Our results shed light on the boundary between the classical, chaotic world and the realm of quantum physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13880v1-abstract-full').style.display = 'none'; document.getElementById('2312.13880v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13297">arXiv:2307.13297</a> <span> [<a href="https://arxiv.org/pdf/2307.13297">pdf</a>, <a href="https://arxiv.org/format/2307.13297">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Origin of Hilbert space quantum scars in unconstrained models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Guo%2C+Z">Zexian Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+B">Bobo Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ang Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Junlin Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+J">Jinlou Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Ying%2C+L">Lei Ying</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13297v1-abstract-short" style="display: inline;"> Quantum many-body scar is a recently discovered phenomenon weakly violating eigenstate thermalization hypothesis, and it has been extensively studied across various models. However, experimental realizations are mainly based on constrained models such as the $PXP$ model. Inspired by recent experimental observations on the superconducting platform in Refs.~[Nat. Phys. 19, 120 (2022)] and [arXiv:221… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13297v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13297v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13297v1-abstract-full" style="display: none;"> Quantum many-body scar is a recently discovered phenomenon weakly violating eigenstate thermalization hypothesis, and it has been extensively studied across various models. However, experimental realizations are mainly based on constrained models such as the $PXP$ model. Inspired by recent experimental observations on the superconducting platform in Refs.~[Nat. Phys. 19, 120 (2022)] and [arXiv:2211.05803], we study a distinct class of quantum many-body scars based on a half-filling hard-core Bose-Hubbard model, which is generic to describe in many experimental platforms. It is the so-called Hilbert space quantum scar as it originates from a subspace with a hypercube geometry weakly connecting to other thermalization regions in Hilbert space. Within the hypercube, a pair of collective Fock states do not directly connect to the thermalization region, resulting in slow thermalization dynamics with remarkable fidelity revivals with distinct differences from dynamics of other initial states. This mechanism is generic in various real-space lattice configurations, including one-dimensional Su-Schrieffer-Heeger chain, comb lattice, and even random dimer clusters consisting of dimers. In addition, we develop a toy model based on Hilbert hypercube decay approximation, to explain the spectrum overlap between the collective states and all eigenstates. Furthermore, we explore the Hilbert space quantum scar in two- and three-dimensional Su-Schrieffer-Heeger many-body systems, consisting of tetramers or octamers, respectively. This study makes quantum many-body scar state more realistic in applications such as quantum sensing and quantum metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13297v1-abstract-full').style.display = 'none'; document.getElementById('2307.13297v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.05838">arXiv:2212.05838</a> <span> [<a href="https://arxiv.org/pdf/2212.05838">pdf</a>, <a href="https://arxiv.org/ps/2212.05838">ps</a>, <a href="https://arxiv.org/format/2212.05838">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/acab26">10.1088/1367-2630/acab26 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vortex-ring quantum droplets in a radially-periodic potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+B">Bin Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y+x">Yi xi Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A+w">Ao wei Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Cai%2C+X+y">Xiao yan Cai</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Y">Yan Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+Z+h">Zhi huan Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+X+z">Xi zhou Qin</a>, <a href="/search/quant-ph?searchtype=author&query=da+Jiang%2C+X">Xun da Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y+y">Yong yao Li</a>, <a href="/search/quant-ph?searchtype=author&query=Malomed%2C+B+A">Boris A. Malomed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.05838v1-abstract-short" style="display: inline;"> We establish stability and characteristics of two-dimensional (2D) vortex ring-shaped quantum droplets (QDs) formed by binary Bose-Einstein condensates (BECs). The system is modeled by the Gross-Pitaevskii (GP) equation with the cubic term multiplied by a logarithmic factor (as produced by the Lee-Huang-Yang correction to the mean-field theory) and a potential which is a periodic function of the r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05838v1-abstract-full').style.display = 'inline'; document.getElementById('2212.05838v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.05838v1-abstract-full" style="display: none;"> We establish stability and characteristics of two-dimensional (2D) vortex ring-shaped quantum droplets (QDs) formed by binary Bose-Einstein condensates (BECs). The system is modeled by the Gross-Pitaevskii (GP) equation with the cubic term multiplied by a logarithmic factor (as produced by the Lee-Huang-Yang correction to the mean-field theory) and a potential which is a periodic function of the radial coordinate. Narrow vortex rings with high values of the topological charge, trapped in particular circular troughs of the radial potential, are produced. These results suggest an experimentally relevant method for the creation of vortical QDs (thus far, only zero-vorticity ones have been reported). The 2D GP equation for the narrow rings is approximately reduced to the 1D form, which makes it possible to study the modulational stability of the rings against azimuthal perturbations. Full stability areas are delineated for these modes. The trapping capacity of the circular troughs is identified for the vortex rings with different winding numbers (WNs). Stable compound states in the form of mutually nested concentric multiple rings are constructed too, including ones with opposite signs of the WNs. Other robust compound states combine a modulationally stable narrow ring in one circular potential trough and an azimuthal soliton performing orbital motion in an adjacent one. The results may be used to design a device employing coexisting ring-shaped modes with different WNs for data storage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05838v1-abstract-full').style.display = 'none'; document.getElementById('2212.05838v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures,to be published in New Journal of Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02977">arXiv:2210.02977</a> <span> [<a href="https://arxiv.org/pdf/2210.02977">pdf</a>, <a href="https://arxiv.org/format/2210.02977">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Simulation of Preferred Tautomeric State Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Shee%2C+Y">Yu Shee</a>, <a href="/search/quant-ph?searchtype=author&query=Yeh%2C+T">Tzu-Lan Yeh</a>, <a href="/search/quant-ph?searchtype=author&query=Hsiao%2C+J">Jen-Yueh Hsiao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ann Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+Y">Yen-Chu Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Hsieh%2C+M">Min-Hsiu Hsieh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02977v1-abstract-short" style="display: inline;"> Prediction of tautomers plays an essential role in computer-aided drug discovery. However, it remains a challenging task nowadays to accurately predict the canonical tautomeric form of a given drug-like molecule. Lack of extensive tautomer databases, most likely due to the difficulty in experimental studies, hampers the development of effective empirical methods for tautomer predictions. A more ac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02977v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02977v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02977v1-abstract-full" style="display: none;"> Prediction of tautomers plays an essential role in computer-aided drug discovery. However, it remains a challenging task nowadays to accurately predict the canonical tautomeric form of a given drug-like molecule. Lack of extensive tautomer databases, most likely due to the difficulty in experimental studies, hampers the development of effective empirical methods for tautomer predictions. A more accurate estimation of the stable tautomeric form can be achieved by quantum chemistry calculations. Yet, the computational cost required prevents quantum chemistry calculation as a standard tool for tautomer prediction in computer-aided drug discovery. In this paper we propose a hybrid quantum chemistry-quantum computation workflow to efficiently predict the dominant tautomeric form. Specifically, we select active-space molecular orbitals based on quantum chemistry methods. Then we utilize efficient encoding methods to map the Hamiltonian onto quantum devices to reduce the qubit resources and circuit depth. Finally, variational quantum eigensolver (VQE) algorithms are employed for ground state estimation where hardware-efficient ansatz circuits are used. To demonstrate the applicability of our methodology, we perform experiments on two tautomeric systems: acetone and Edaravone, each having 52 and 150 spin-orbitals in the STO-3G basis set, respectively. Our numerical results show that their tautomeric state prediction agrees with the CCSD benchmarks. Moreover, the required quantum resources are efficient: in the example of Edaravone, we could achieve chemical accuracy with only eight qubits and 80 two-qubit gates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02977v1-abstract-full').style.display = 'none'; document.getElementById('2210.02977v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08218">arXiv:2209.08218</a> <span> [<a href="https://arxiv.org/pdf/2209.08218">pdf</a>, <a href="https://arxiv.org/ps/2209.08218">ps</a>, <a href="https://arxiv.org/format/2209.08218">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Non-Demolition Measurement on the Spin Precession of Laser-Trapped $^{171}$Yb Atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Y+A">Y. A. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+T+A">T. A. Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+S+-">S. -Z. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W+-">W. -K. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Zou%2C+C">Chang-Ling Zou</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+T">T. Xia</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Z+-">Z. -T. Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08218v1-abstract-short" style="display: inline;"> Quantum non-demolition (QND) measurement enhances the detection efficiency and measurement fidelity, and is highly desired for its applications in precision measurements and quantum information processing. We propose and demonstrate a QND measurement scheme for the spin states of laser-trapped atoms. On $^{171}$Yb atoms held in an optical dipole trap, a transition that is simultaneously cycling, s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08218v1-abstract-full').style.display = 'inline'; document.getElementById('2209.08218v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08218v1-abstract-full" style="display: none;"> Quantum non-demolition (QND) measurement enhances the detection efficiency and measurement fidelity, and is highly desired for its applications in precision measurements and quantum information processing. We propose and demonstrate a QND measurement scheme for the spin states of laser-trapped atoms. On $^{171}$Yb atoms held in an optical dipole trap, a transition that is simultaneously cycling, spin-state selective, and spin-state preserving is created by introducing a circularly polarized beam of control laser to optically dress the spin states in the excited level, while leaving the spin states in the ground level unperturbed. We measure the phase of spin precession of $5\times10^{4}$ atoms in a bias magnetic field of 20 mG. This QND approach reduces the optical absorption detection noise by $\sim$19 dB, to a level of 2.3 dB below the atomic quantum projection noise. In addition to providing a general approach for efficient spin-state readout, this all-optical technique allows quick switching and real-time programming for quantum sensing and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08218v1-abstract-full').style.display = 'none'; document.getElementById('2209.08218v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.12467">arXiv:2208.12467</a> <span> [<a href="https://arxiv.org/pdf/2208.12467">pdf</a>, <a href="https://arxiv.org/format/2208.12467">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.125102">10.1103/PhysRevB.106.125102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Periodic Clifford symmetry algebras on flux lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Huang%2C+Y">Yue-Xin Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Z+Y">Z. Y. Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Feng%2C+X">Xiaolong Feng</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+S+A">Shengyuan A. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+Y+X">Y. X. Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.12467v1-abstract-short" style="display: inline;"> Real Clifford algebras play a fundamental role in the eight real Altland-Zirnbauer symmetry classes and the classification tables of topological phases. Here, we present another elegant realization of real Clifford algebras in the $d$-dimensional spinless rectangular lattices with $蟺$ flux per plaquette. Due to the $T$-invariant flux configuration, real Clifford algebras are realized as projective… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12467v1-abstract-full').style.display = 'inline'; document.getElementById('2208.12467v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.12467v1-abstract-full" style="display: none;"> Real Clifford algebras play a fundamental role in the eight real Altland-Zirnbauer symmetry classes and the classification tables of topological phases. Here, we present another elegant realization of real Clifford algebras in the $d$-dimensional spinless rectangular lattices with $蟺$ flux per plaquette. Due to the $T$-invariant flux configuration, real Clifford algebras are realized as projective symmetry algebras of lattice symmetries. Remarkably, $d$ mod $8$ exactly corresponds to the eight Morita equivalence classes of real Clifford algebras with eightfold Bott periodicity, resembling the eight real Altland-Zirnbauer classes. The representation theory of Clifford algebras determines the degree of degeneracy of band structures, both at generic $k$ points and at high-symmetry points of the Brillouin zone. Particularly, we demonstrate that the large degeneracy at high-symmetry points offers a rich resource for forming novel topological states by various dimerization patterns, including a $3$D higher-order semimetal state with double-charged bulk nodal loops and hinge modes, a $4$D nodal surface semimetal with $3$D surface solid-ball zero modes, and $4$D M枚bius topological insulators with a eightfold surface nodal point or a fourfold surface nodal ring. Our theory can be experimentally realized in artificial crystals by their engineerable $\mathbb{Z}_2$ gauge fields and capability to simulate higher dimensional systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12467v1-abstract-full').style.display = 'none'; document.getElementById('2208.12467v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08140">arXiv:2207.08140</a> <span> [<a href="https://arxiv.org/pdf/2207.08140">pdf</a>, <a href="https://arxiv.org/ps/2207.08140">ps</a>, <a href="https://arxiv.org/format/2207.08140">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.083001">10.1103/PhysRevLett.129.083001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Electric Dipole Moment of $^{171}$Yb Atoms in an Optical Dipole Trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+T+A">T. A. Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Y+A">Y. A. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+S+-">S. -Z. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Singh%2C+J+T">J. T. Singh</a>, <a href="/search/quant-ph?searchtype=author&query=Xiong%2C+Z+-">Z. -X. Xiong</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+T">T. Xia</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Z+-">Z. -T. Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08140v1-abstract-short" style="display: inline;"> The permanent electric dipole moment (EDM) of the $^{171}$Yb $(I=1/2)$ atom is measured with atoms held in an optical dipole trap (ODT). By enabling a cycling transition that is simultaneously spin-selective and spin-preserving, a quantum non-demolition measurement with a spin-detection efficiency of 50$\%$ is realized. A systematic effect due to parity mixing induced by a static E field is observ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08140v1-abstract-full').style.display = 'inline'; document.getElementById('2207.08140v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08140v1-abstract-full" style="display: none;"> The permanent electric dipole moment (EDM) of the $^{171}$Yb $(I=1/2)$ atom is measured with atoms held in an optical dipole trap (ODT). By enabling a cycling transition that is simultaneously spin-selective and spin-preserving, a quantum non-demolition measurement with a spin-detection efficiency of 50$\%$ is realized. A systematic effect due to parity mixing induced by a static E field is observed, and is suppressed by averaging between measurements with ODTs in opposite directions. The coherent spin precession time is found to be much longer than 300 s. The EDM is determined to be $d({\rm^{171}Yb})={\color{black}(-6.8\pm5.1_{\rm stat}\pm1.2_{\rm syst})\times10^{-27}\ e\ \rm cm}$, leading to an upper limit of $|d({\rm^{171}Yb})|<{\color{black}1.5\times10^{-26}\ e\ \rm cm}$ ($95\%$ C.L.). These measurement techniques can be adapted to search for the EDM of $^{225}$Ra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08140v1-abstract-full').style.display = 'none'; document.getElementById('2207.08140v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05398">arXiv:2202.05398</a> <span> [<a href="https://arxiv.org/pdf/2202.05398">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c04756">10.1021/acs.nanolett.1c04756 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonreciprocal transport in a bilayer of MnBi2Te4 and Pt </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ye%2C+C">Chen Ye</a>, <a href="/search/quant-ph?searchtype=author&query=Xie%2C+X">Xiangnan Xie</a>, <a href="/search/quant-ph?searchtype=author&query=Lv3%2C+W">Wenxing Lv3</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+K">Ke Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A+J">Allen Jian Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+S">Sicong Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+X">Xue Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+D">Dapeng Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/quant-ph?searchtype=author&query=Tong%2C+M">Mingyu Tong</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+T">Tong Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Hsu%2C+C">Chuang-Han Hsu</a>, <a href="/search/quant-ph?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+P">Peisen Li</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+K">Kesong Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+T">Tian Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X+R">Xiao Renshaw Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05398v1-abstract-short" style="display: inline;"> MnBi2Te4 (MBT) is the first intrinsic magnetic topological insulator with the interaction of spin-momentum locked surface electrons and intrinsic magnetism, and it exhibits novel magnetic and topological phenomena. Recent studies suggested that the interaction of electrons and magnetism can be affected by the Mn-doped Bi2Te3 phase at the surface due to inevitable structural defects. Here we report… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05398v1-abstract-full').style.display = 'inline'; document.getElementById('2202.05398v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05398v1-abstract-full" style="display: none;"> MnBi2Te4 (MBT) is the first intrinsic magnetic topological insulator with the interaction of spin-momentum locked surface electrons and intrinsic magnetism, and it exhibits novel magnetic and topological phenomena. Recent studies suggested that the interaction of electrons and magnetism can be affected by the Mn-doped Bi2Te3 phase at the surface due to inevitable structural defects. Here we report an observation of nonreciprocal transport, i.e. current-direction-dependent resistance, in a bilayer composed of antiferromagnetic MBT and nonmagnetic Pt. The emergence of the nonreciprocal response below the N茅el temperature confirms a correlation between nonreciprocity and intrinsic magnetism in the surface state of MBT. The angular dependence of the nonreciprocal transport indicates that nonreciprocal response originates from the asymmetry scattering of electrons at the surface of MBT mediated by magnon. Our work provides an insight into nonreciprocity arising from the correlation between magnetism and Dirac surface electrons in intrinsic magnetic topological insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05398v1-abstract-full').style.display = 'none'; document.getElementById('2202.05398v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 22, 3 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.00575">arXiv:2007.00575</a> <span> [<a href="https://arxiv.org/pdf/2007.00575">pdf</a>, <a href="https://arxiv.org/format/2007.00575">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.161117">10.1103/PhysRevB.102.161117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $\mathbb{Z}_2$-projective translational symmetry protected topological phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+Y+X">Y. X. Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+Y">Yue-Xin Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+S+A">Shengyuan A. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.00575v3-abstract-short" style="display: inline;"> Symmetry is fundamental to topological phases. In the presence of a gauge field, spatial symmetries will be projectively represented, which may alter their algebraic structure and generate novel topological phases. We show that the $\mathbb{Z}_2$ projectively represented translational symmetry operators adopt a distinct commutation relation, and become momentum dependent analogous to twofold nonsy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00575v3-abstract-full').style.display = 'inline'; document.getElementById('2007.00575v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.00575v3-abstract-full" style="display: none;"> Symmetry is fundamental to topological phases. In the presence of a gauge field, spatial symmetries will be projectively represented, which may alter their algebraic structure and generate novel topological phases. We show that the $\mathbb{Z}_2$ projectively represented translational symmetry operators adopt a distinct commutation relation, and become momentum dependent analogous to twofold nonsymmorphic symmetries. Combined with other internal or external symmetries, they give rise to many exotic band topology, such as the degeneracy over the whole boundary of the Brillouin zone, the single fourfold Dirac point pinned at the Brillouin zone corner, and the Kramers degeneracy at every momentum point. Intriguingly, the Dirac point criticality can be lifted by breaking one primitive translation, resulting in a topological insulator phase, where the edge bands have a M枚bius twist. Our work opens a new arena of research for exploring topological phases protected by projectively represented space groups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00575v3-abstract-full').style.display = 'none'; document.getElementById('2007.00575v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 161117 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.00062">arXiv:1905.00062</a> <span> [<a href="https://arxiv.org/pdf/1905.00062">pdf</a>, <a href="https://arxiv.org/format/1905.00062">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental Quantum-enhanced Cryptographic Remote Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Pang%2C+X">Xiao-Ling Pang</a>, <a href="/search/quant-ph?searchtype=author&query=Qiao%2C+L">Lu-Feng Qiao</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+K">Ke Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.00062v1-abstract-short" style="display: inline;"> The Internet of Things (IoT), as a cutting-edge integrated cross-technology, promises to informationize people's daily lives, while being threatened by continuous challenges of eavesdropping and tampering. The emerging quantum cryptography, harnessing the random nature of quantum mechanics, may also enable unconditionally secure control network, beyond the applications in secure communications. He… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00062v1-abstract-full').style.display = 'inline'; document.getElementById('1905.00062v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.00062v1-abstract-full" style="display: none;"> The Internet of Things (IoT), as a cutting-edge integrated cross-technology, promises to informationize people's daily lives, while being threatened by continuous challenges of eavesdropping and tampering. The emerging quantum cryptography, harnessing the random nature of quantum mechanics, may also enable unconditionally secure control network, beyond the applications in secure communications. Here, we present a quantum-enhanced cryptographic remote control scheme that combines quantum randomness and one-time pad algorithm for delivering commands remotely. We experimentally demonstrate this on an unmanned aircraft vehicle (UAV) control system. We precharge quantum random number (QRN) into controller and controlee before launching UAV, instead of distributing QRN like standard quantum communication during flight. We statistically verify the randomness of both quantum keys and the converted ciphertexts to check the security capability. All commands in the air are found to be completely chaotic after encryption, and only matched keys on UAV can decipher those commands precisely. In addition, the controlee does not response to the commands that are not or incorrectly encrypted, showing the immunity against interference and decoy. Our work adds true randomness and quantum enhancement into the realm of secure control algorithm in a straightforward and practical fashion, providing a promoted solution for the security of artificial intelligence and IoT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00062v1-abstract-full').style.display = 'none'; document.getElementById('1905.00062v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.10423">arXiv:1902.10423</a> <span> [<a href="https://arxiv.org/pdf/1902.10423">pdf</a>, <a href="https://arxiv.org/format/1902.10423">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.13.034008">10.1103/PhysRevApplied.13.034008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hacking Quantum Key Distribution via Injection Locking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Pang%2C+X">Xiao-Ling Pang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Chao-Ni Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Dou%2C+J">Jian-Peng Dou</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+H">Hang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.10423v3-abstract-short" style="display: inline;"> Unconditionally secure communication, being pursued for thousands of years, however, hasn't been reached yet due to continuous competitions between encryption and hacking. Quantum key distribution (QKD), harnessing the quantum mechanical nature of superposition and non-cloning, may promise unconditional security by incorporating the one-time pad algorithm rigorously proved by Claude Shannon. Massi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10423v3-abstract-full').style.display = 'inline'; document.getElementById('1902.10423v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.10423v3-abstract-full" style="display: none;"> Unconditionally secure communication, being pursued for thousands of years, however, hasn't been reached yet due to continuous competitions between encryption and hacking. Quantum key distribution (QKD), harnessing the quantum mechanical nature of superposition and non-cloning, may promise unconditional security by incorporating the one-time pad algorithm rigorously proved by Claude Shannon. Massive efforts have been made in building practical and commercial QKD systems, in particular, decoy states are employed to detect photon-number splitting attack against single-photon source loophole, and measurement-device-independent (MDI) QKD has further closed all loopholes in detection side, which leads to a seemingly real-life application. Here, we propose and experimentally demonstrate an MDI-QKD hacking strategy on the trusted source assumption by using injection locking technique. Eve injects near off-resonance photons in randomly chosen polarization into sender's laser, where injection locking in a shifted frequency can happen only when Eve's choice matches with sender's state. By setting a shifted window and switching the frequency of photons back afterwards, Eve in principle can obtain all the keys without terminating the real-time QKD. We observe the dynamics of a semiconductor laser with injected photons, and obtain a hacking success rate reaching 60.0% of raw keys. Our results suggest that the spear-and-shield competitions on unconditional security may continue until all potential loopholes are discovered and closed ultimately. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10423v3-abstract-full').style.display = 'none'; document.getElementById('1902.10423v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 13, 034008 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.07574">arXiv:1901.07574</a> <span> [<a href="https://arxiv.org/pdf/1901.07574">pdf</a>, <a href="https://arxiv.org/format/1901.07574">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.11.044009">10.1103/PhysRevApplied.11.044009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photonic Newton's Cradle for Remote Energy Transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Feng%2C+Z">Zhen Feng</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+Z">Zhen-Wei Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+L">Lian-Ao Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+K">Ke Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C">Cheng-Qiu Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zhan-Ming Li</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X">Xiao-Wei Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yuan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+E">En-Ze Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Jiao%2C+Z">Zhi-Qiang Jiao</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Yun Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.07574v1-abstract-short" style="display: inline;"> Energy transport is of central importance in understanding a wide variety of transitions of physical states in nature. Recently, the coherence and noise have been identified for their existence and key roles in energy transport processes, for instance, in a photosynthesis complex, DNA, and odor sensing etc, of which one may have to reveal the inner mechanics in the quantum regime. Here we present… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.07574v1-abstract-full').style.display = 'inline'; document.getElementById('1901.07574v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.07574v1-abstract-full" style="display: none;"> Energy transport is of central importance in understanding a wide variety of transitions of physical states in nature. Recently, the coherence and noise have been identified for their existence and key roles in energy transport processes, for instance, in a photosynthesis complex, DNA, and odor sensing etc, of which one may have to reveal the inner mechanics in the quantum regime. Here we present an analog of Newton's cradle by manipulating a boundary-controlled chain on a photonic chip. Long-range interactions can be mediated by a long chain composed of 21 strongly coupled sites, where single-photon excitations are transferred between two remote sites via simultaneous control of inter-site weak and strong couplings. We observe a high retrieval efficiency in both uniform and defect-doped chain structures. Our results may offer a flexible approach to Hamiltonian engineering beyond geometric limitation, enabling the design and construction of quantum simulators on demand. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.07574v1-abstract-full').style.display = 'none'; document.getElementById('1901.07574v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 11, 044009 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.11176">arXiv:1811.11176</a> <span> [<a href="https://arxiv.org/pdf/1811.11176">pdf</a>, <a href="https://arxiv.org/format/1811.11176">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Transmission of Photonic Polarization States through 55-meter Water: Towards Air-to-sea Quantum Communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C">Cheng-Qiu Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+Z">Zeng-Quan Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Jiao%2C+Z">Zhi-Qiang Jiao</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zhan-Ming Li</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+W">Wei-Guan Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yuan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Ren%2C+R">Ruo-Jing Ren</a>, <a href="/search/quant-ph?searchtype=author&query=Qiao%2C+L">Lu-Feng Qiao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.11176v1-abstract-short" style="display: inline;"> Quantum communication has been rapidly developed due to its unconditional security and successfully implemented through optical fibers and free-space air in experiment. To build a complete quantum communication network involving satellites in space and submersibles in ocean, underwater quantum channel has been investigated in both theory and experiment. However, the question of whether the polariz… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11176v1-abstract-full').style.display = 'inline'; document.getElementById('1811.11176v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.11176v1-abstract-full" style="display: none;"> Quantum communication has been rapidly developed due to its unconditional security and successfully implemented through optical fibers and free-space air in experiment. To build a complete quantum communication network involving satellites in space and submersibles in ocean, underwater quantum channel has been investigated in both theory and experiment. However, the question of whether the polarization encoded qubit can survive through a long-distance and high-loss underwater channel, which is considered as the restricted area for satellite-borne radio waves, still remains. Here, we experimentally demonstrate the transmission of blue-green photonic polarization states through 55-meter-long water. We prepare six universal quantum states at single photon level and observe their faithful transmission in a large marine test platform. We obtain the complete information of the channel by quantum process tomography. The distance demonstrated in this work reaches a region allowing potential real applications, representing a step further towards air-to-sea quantum communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11176v1-abstract-full').style.display = 'none'; document.getElementById('1811.11176v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.10838">arXiv:1803.10838</a> <span> [<a href="https://arxiv.org/pdf/1803.10838">pdf</a>, <a href="https://arxiv.org/format/1803.10838">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.013903">10.1103/PhysRevLett.122.013903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parity-Induced Thermalization Gap in Disordered Ring Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Pang%2C+X">Xiao-Ling Pang</a>, <a href="/search/quant-ph?searchtype=author&query=Jiao%2C+Z">Zhi-Qiang Jiao</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yuan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Qiao%2C+L">Lu-Feng Qiao</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+Z">Zhen-Wei Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Dou%2C+J">Jian-Peng Dou</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.10838v2-abstract-short" style="display: inline;"> The gaps separating two different states widely exist in various physical systems: from the electrons in periodic lattices to the analogs in photonic, phononic, plasmonic systems, and even quasicrystals. Recently, a thermalization gap, an inaccessible range of photon statistics, was proposed for light in disordered structures [Nat. Phys. 11, 930 (2015)], which is intrinsically induced by the disor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10838v2-abstract-full').style.display = 'inline'; document.getElementById('1803.10838v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.10838v2-abstract-full" style="display: none;"> The gaps separating two different states widely exist in various physical systems: from the electrons in periodic lattices to the analogs in photonic, phononic, plasmonic systems, and even quasicrystals. Recently, a thermalization gap, an inaccessible range of photon statistics, was proposed for light in disordered structures [Nat. Phys. 11, 930 (2015)], which is intrinsically induced by the disorder-immune chiral symmetry and can be reflected by the photon statistics. The lattice topology was further identified as a decisive role in determining the photon statistics when the chiral symmetry is satisfied. Being very distinct from one-dimensional lattices, the photon statistics in ring lattices are dictated by its parity, i.e, odd or even sited. Here, we for the first time experimentally observe a parity-induced thermalization gap in strongly disordered ring photonic structures. In a limited scale, though the light tends to be localized, we are still able to find clear evidence of the parity-dependent disorder-immune chiral symmetry and the resulting thermalization gap by measuring photon statistics, while strong disorder-induced Anderson localization overwhelms such a phenomenon in larger-scale structures. Our results shed new light on the relation among symmetry, disorder, and localization, and may inspire new resources and artificial devices for information processing and quantum control on a photonic chip. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10838v2-abstract-full').style.display = 'none'; document.getElementById('1803.10838v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 013903 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.07122">arXiv:1803.07122</a> <span> [<a href="https://arxiv.org/pdf/1803.07122">pdf</a>, <a href="https://arxiv.org/format/1803.07122">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.aax1425">10.1126/sciadv.aax1425 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Hybrid Quantum Memory Enabled Network at Room Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Pang%2C+X">Xiao-Ling Pang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Dou%2C+J">Jian-Peng Dou</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+H">Hang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Chao-Ni Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Poem%2C+E">Eilon Poem</a>, <a href="/search/quant-ph?searchtype=author&query=Saunders%2C+D+J">Dylan J. Saunders</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Nunn%2C+J">Joshua Nunn</a>, <a href="/search/quant-ph?searchtype=author&query=Walmsley%2C+I+A">Ian A. Walmsley</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.07122v2-abstract-short" style="display: inline;"> Quantum memory capable of storage and retrieval of flying photons on demand is crucial for developing quantum information technologies. However, the devices needed for long-distance links are quite different from those envisioned for local processing. Here, we present the first hybrid quantum memory enabled network by demonstrating the interconnection and simultaneous operation of two types of qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07122v2-abstract-full').style.display = 'inline'; document.getElementById('1803.07122v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.07122v2-abstract-full" style="display: none;"> Quantum memory capable of storage and retrieval of flying photons on demand is crucial for developing quantum information technologies. However, the devices needed for long-distance links are quite different from those envisioned for local processing. Here, we present the first hybrid quantum memory enabled network by demonstrating the interconnection and simultaneous operation of two types of quantum memory: an atomic-ensemble-based memory and an all-optical loop memory. The former generates and stores single atomic excitations that can then be converted to single photons; and the latter maps incoming photons in and out on demand, at room-temperature and with a broad acceptance bandwidth. Interfacing these two types of quantum memories, we observe a well-preserved quantum cross-correlation, reaching a value of 22, and a violation of the Cauchy-Schwarz inequality up to 549 standard deviations. Furthermore, we demonstrate the creation and storage of a fully operable heralded photon chain state that can achieve memory-built-in combining, swapping, splitting, tuning and chopping single photons in a chain temporally. Such a quantum network allows atomic excitations to be generated, stored, and converted to broadband photons, which are then transferred to the next node, stored, and faithfully retrieved, all at high speed and in a programmable fashion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07122v2-abstract-full').style.display = 'none'; document.getElementById('1803.07122v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 6, eaax1425 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.04898">arXiv:1802.04898</a> <span> [<a href="https://arxiv.org/pdf/1802.04898">pdf</a>, <a href="https://arxiv.org/format/1802.04898">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-018-0083-1">10.1038/s41534-018-0083-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Observation of Broadband Nonclassical States in a Room-temperature Light-matter Interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Dou%2C+J">Jian-Peng Dou</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Du%2C+M">Mu-Yan Du</a>, <a href="/search/quant-ph?searchtype=author&query=Lao%2C+D">Di Lao</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+H">Hang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Pang%2C+X">Xiao-Ling Pang</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Qiao%2C+L">Lu-Feng Qiao</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.04898v2-abstract-short" style="display: inline;"> Nonclassical state is an essential resource for quantum-enhanced communication, computing and metrology to outperform their classical counterpart. The nonclassical states that can operate at high bandwidth and room temperature while being compatible with quantum memory are highly desirable to enable the scalability of quantum technologies. Here, we present a direct observation of broadband nonclas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.04898v2-abstract-full').style.display = 'inline'; document.getElementById('1802.04898v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.04898v2-abstract-full" style="display: none;"> Nonclassical state is an essential resource for quantum-enhanced communication, computing and metrology to outperform their classical counterpart. The nonclassical states that can operate at high bandwidth and room temperature while being compatible with quantum memory are highly desirable to enable the scalability of quantum technologies. Here, we present a direct observation of broadband nonclasscal states in a room-temperature light-matter interface, where the atoms can also be controlled to store and interfere with photons. With a single coupling pulse and far off-resonance configuration, we are able to induce a multi-field interference between light and atoms to create the desired nonclassical states by spectrally selecting the two correlated photons out of seven possible emissions. We explicitly confirm the nonclassicality by observing a cross correlation up to 17 and a violation of Cauchy-Schwarz inequality with 568 standard deviations. Our results demonstrate the potential of a state-built-in, broadband and room-temperature light-matter interface for scalable quantum information networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.04898v2-abstract-full').style.display = 'none'; document.getElementById('1802.04898v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Information 4, 31 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.00456">arXiv:1712.00456</a> <span> [<a href="https://arxiv.org/pdf/1712.00456">pdf</a>, <a href="https://arxiv.org/format/1712.00456">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.240501">10.1103/PhysRevLett.120.240501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Machine Learning of Quantum States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Qiao%2C+L">Lu-Feng Qiao</a>, <a href="/search/quant-ph?searchtype=author&query=Jiao%2C+Z">Zhi-Qiang Jiao</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+Y">Yue-Chi Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C">Cheng-Qiu Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Ren%2C+R">Ruo-Jing Ren</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Yung%2C+M">Man-Hong Yung</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.00456v2-abstract-short" style="display: inline;"> Quantum information technologies provide promising applications in communication and computation, while machine learning has become a powerful technique for extracting meaningful structures in 'big data'. A crossover between quantum information and machine learning represents a new interdisciplinary area stimulating progresses in both fields. Traditionally, a quantum state is characterized by quan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00456v2-abstract-full').style.display = 'inline'; document.getElementById('1712.00456v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.00456v2-abstract-full" style="display: none;"> Quantum information technologies provide promising applications in communication and computation, while machine learning has become a powerful technique for extracting meaningful structures in 'big data'. A crossover between quantum information and machine learning represents a new interdisciplinary area stimulating progresses in both fields. Traditionally, a quantum state is characterized by quantum state tomography, which is a resource-consuming process when scaled up. Here we experimentally demonstrate a machine-learning approach to construct a quantum-state classifier for identifying the separability of quantum states. We show that it is possible to experimentally train an artificial neural network to efficiently learn and classify quantum states, without the need of obtaining the full information of the states. We also show how adding a hidden layer of neurons to the neural network can significantly boost the performance of the state classifier. These results shed new light on how classification of quantum states can be achieved with limited resources, and represent a step towards machine-learning-based applications in quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00456v2-abstract-full').style.display = 'none'; document.getElementById('1712.00456v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 240501 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.04447">arXiv:1710.04447</a> <span> [<a href="https://arxiv.org/pdf/1710.04447">pdf</a>, <a href="https://arxiv.org/format/1710.04447">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.052351">10.1103/PhysRevA.98.052351 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Activation of entanglement from quantum coherence and superposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qiao%2C+L">Lu-Feng Qiao</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Streltsov%2C+A">Alexander Streltsov</a>, <a href="/search/quant-ph?searchtype=author&query=Rana%2C+S">Swapan Rana</a>, <a href="/search/quant-ph?searchtype=author&query=Ren%2C+R">Ruo-Jing Ren</a>, <a href="/search/quant-ph?searchtype=author&query=Jiao%2C+Z">Zhi-Qiang Jiao</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C">Cheng-Qiu Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Yun Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C">Ci-Yu Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+Z">Zhi-Hao Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.04447v2-abstract-short" style="display: inline;"> Quantum entanglement and coherence are two fundamental features of nature, arising from the superposition principle of quantum mechanics. While considered as puzzling phenomena in the early days of quantum theory, it is only very recently that entanglement and coherence have been recognized as resources for the emerging quantum technologies, including quantum metrology, quantum communication, and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04447v2-abstract-full').style.display = 'inline'; document.getElementById('1710.04447v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.04447v2-abstract-full" style="display: none;"> Quantum entanglement and coherence are two fundamental features of nature, arising from the superposition principle of quantum mechanics. While considered as puzzling phenomena in the early days of quantum theory, it is only very recently that entanglement and coherence have been recognized as resources for the emerging quantum technologies, including quantum metrology, quantum communication, and quantum computing. In this work we study the limitations for the interconversion between coherence and entanglement. We prove a fundamental no-go theorem, stating that a general resource theory of superposition does not allow for entanglement activation. By constructing a CNOT gate as a free operation, we experimentally show that such activation is possible within the more constrained framework of quantum coherence. Our results provide new insights into the interplay between coherence and entanglement, representing a substantial step forward for solving longstanding open questions in quantum information science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04447v2-abstract-full').style.display = 'none'; document.getElementById('1710.04447v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, Submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 052351 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.08242">arXiv:1704.08242</a> <span> [<a href="https://arxiv.org/pdf/1704.08242">pdf</a>, <a href="https://arxiv.org/format/1704.08242">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.aat3174">10.1126/sciadv.aat3174 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Two-dimensional Quantum Walk on a Photonic Chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+X">Xiao-Feng Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Feng%2C+Z">Zhen Feng</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+J">Jing-Yuan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+K">Ke Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C">Chao-Yue Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Lai%2C+P">Peng-Cheng Lai</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Yun Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Qiao%2C+L">Lu-Feng Qiao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.08242v2-abstract-short" style="display: inline;"> Quantum walks, in virtue of the coherent superposition and quantum interference, possess exponential superiority over its classical counterpart in applications of quantum searching and quantum simulation. The quantum enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the form… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08242v2-abstract-full').style.display = 'inline'; document.getElementById('1704.08242v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.08242v2-abstract-full" style="display: none;"> Quantum walks, in virtue of the coherent superposition and quantum interference, possess exponential superiority over its classical counterpart in applications of quantum searching and quantum simulation. The quantum enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. Here we demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure which forms a two-dimensional lattice with up to 49X49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single-photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a walk to freely evolve in all directions and a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08242v2-abstract-full').style.display = 'none'; document.getElementById('1704.08242v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. The experiment has been performed again with heralded single photons instead of the coherent light</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 4, eaat317 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.06309">arXiv:1704.06309</a> <span> [<a href="https://arxiv.org/pdf/1704.06309">pdf</a>, <a href="https://arxiv.org/format/1704.06309">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-018-0057-9">10.1038/s42005-018-0057-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Broadband DLCZ Quantum Memory in Room-Temperature Atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Dou%2C+J">Jian-Peng Dou</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Du%2C+M">Mu-Yan Du</a>, <a href="/search/quant-ph?searchtype=author&query=Lao%2C+D">Di Lao</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Qiao%2C+L">Lu-Feng Qiao</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+H">Hang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Pang%2C+X">Xiao-Ling Pang</a>, <a href="/search/quant-ph?searchtype=author&query=Feng%2C+Z">Zhen Feng</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.06309v2-abstract-short" style="display: inline;"> Quantum memory capable of stopping flying photons and storing their quantum coherence is essential for scalable quantum technologies. A room-temperature broadband quantum memory will enable the implementation of large-scale quantum systems for real-life applications. Due to either intrinsic high noises or short lifetime, it is still challenging to find a room-temperature broadband quantum memory b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06309v2-abstract-full').style.display = 'inline'; document.getElementById('1704.06309v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.06309v2-abstract-full" style="display: none;"> Quantum memory capable of stopping flying photons and storing their quantum coherence is essential for scalable quantum technologies. A room-temperature broadband quantum memory will enable the implementation of large-scale quantum systems for real-life applications. Due to either intrinsic high noises or short lifetime, it is still challenging to find a room-temperature broadband quantum memory beyond conceptual demonstration. Here, we present a far-off-resonance Duan-Lukin-Cirac-Zoller (FORD) protocol and demonstrate the broadband quantum memory in room-temperature atoms. We observe a low unconditional noise level of $10^{-4}$ and a cross-correlation up to 28. A strong violation of Cauchy-Schwarz inequality indicates high-fidelity generation and preservation of non-classical correlation. Furthermore, the achieved cross-correlation in room-temperature atoms exceeds the key boundary of 6 above which quantum correlation is able to violate Bell's inequality. Our results open up the door to an entirely new realm of memory-enabled quantum applications at ambient conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06309v2-abstract-full').style.display = 'none'; document.getElementById('1704.06309v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics 1, 55 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.07787">arXiv:1606.07787</a> <span> [<a href="https://arxiv.org/pdf/1606.07787">pdf</a>, <a href="https://arxiv.org/format/1606.07787">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep28527">10.1038/srep28527 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Invisibility Cloak Printed on a Photonic Chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Feng%2C+Z">Zhen Feng</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+B">Bing-Hong Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+Y">Yu-Xi Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Qiao%2C+L">Lu-Feng Qiao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+X">Xiao-Feng Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.07787v1-abstract-short" style="display: inline;"> Invisibility cloak capable of hiding an object can be achieved by properly manipulating electromagnetic field. Such a remarkable ability has been shown in transformation and ray optics. Alternatively, it may be realistic to create a spatial cloak by means of confining electromagnetic field in three-dimensional arrayed waveguides and introducing appropriate collective curvature surrounding an objec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07787v1-abstract-full').style.display = 'inline'; document.getElementById('1606.07787v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.07787v1-abstract-full" style="display: none;"> Invisibility cloak capable of hiding an object can be achieved by properly manipulating electromagnetic field. Such a remarkable ability has been shown in transformation and ray optics. Alternatively, it may be realistic to create a spatial cloak by means of confining electromagnetic field in three-dimensional arrayed waveguides and introducing appropriate collective curvature surrounding an object. We realize the artificial structure in borosilicate by femtosecond laser direct writing, where we prototype up to 5000 waveguides to conceal millimeter-scale volume. We characterize the performance of the cloak by normalized cross correlation, tomography analysis and continuous three-dimensional viewing angle scan. Our results show invisibility cloak can be achieved in waveguide optics. Furthermore, directly printed invisibility cloak on a photonic chip may enable controllable study and novel applications in classical and quantum integrated photonics, such as invisualising a coupling or swapping operation with on-chip circuits of their own. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07787v1-abstract-full').style.display = 'none'; document.getElementById('1606.07787v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 6, 28527 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.05159">arXiv:1603.05159</a> <span> [<a href="https://arxiv.org/pdf/1603.05159">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Polarization preservation of partially coherent Hermite-Gaussian beams for multiple-degrees-of-freedom free-space communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ji%2C+L">Ling Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+X">Xiao-Feng Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.05159v1-abstract-short" style="display: inline;"> Multiple-degrees-of-freedom free-space communication combining polarization and high-order spatial modes promises high-capacity communication channel. While high-order spatial modes have been widely exploited for dense coding and high-dimensional quantum information processing, the properties of polarization preservation of high-order spatial beams propagating in turbulent atmosphere have not been… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05159v1-abstract-full').style.display = 'inline'; document.getElementById('1603.05159v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.05159v1-abstract-full" style="display: none;"> Multiple-degrees-of-freedom free-space communication combining polarization and high-order spatial modes promises high-capacity communication channel. While high-order spatial modes have been widely exploited for dense coding and high-dimensional quantum information processing, the properties of polarization preservation of high-order spatial beams propagating in turbulent atmosphere have not been comprehensively investigated yet. Here we focus on the properties of polarization preservation of partially coherent Hermite-Gaussian beams propagating along different atmospheric turbulence paths. The analytical expressions for the polarization of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence along different paths have been derived. It is shown that the larger the coherence length is, and the larger the beam order m, n are, the less the polarization is changed. We find that the evolution properties of the polarization in slant-down paths through turbulent atmosphere are similar to the case in free space if the condition zenith angle 尉<蟺/4 is satisfied. While at a long propagation distance, evolution properties of polarization in horizontal paths of turbulent atmosphere differs much from that in free space and in slant paths. The results may allow one to choose the optimal propagation path in terms of specific applications, which is helpful for future experimental implementation of multiple-degrees-of-freedom free-space communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05159v1-abstract-full').style.display = 'none'; document.getElementById('1603.05159v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.05047">arXiv:1602.05047</a> <span> [<a href="https://arxiv.org/pdf/1602.05047">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.25.019795">10.1364/OE.25.019795 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards Quantum Communication in Free-Space Seawater </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ji%2C+L">Ling Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Ai-Lin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Feng%2C+Z">Zhen Feng</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+X">Xiao-Feng Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+H">Hong-Gen Li</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.05047v2-abstract-short" style="display: inline;"> Long-distance quantum channels capable of transferring quantum states faithfully for unconditionally secure quantum communication have been so far confirmed feasible in both fiber and free-space air. However, it remains unclear whether seawater, which covers more than 70% of the earth, can also be utilized, leaving global quantum communication incomplete. Here we experimentally demonstrate that po… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.05047v2-abstract-full').style.display = 'inline'; document.getElementById('1602.05047v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.05047v2-abstract-full" style="display: none;"> Long-distance quantum channels capable of transferring quantum states faithfully for unconditionally secure quantum communication have been so far confirmed feasible in both fiber and free-space air. However, it remains unclear whether seawater, which covers more than 70% of the earth, can also be utilized, leaving global quantum communication incomplete. Here we experimentally demonstrate that polarization quantum states including general qubits and entangled states can well survive after travelling through seawater. We performed experiments in a 3.3-meter-long tube filled with seawater samples collected in a range of 36 kilometers in Yellow sea, which conforms to Jerlov water type I. For single photons at 405 nm in blue-green window, we obtained average process fidelity above 98%. For entangled photons at 810 nm, even with high loss, we observe violation of Bell inequality with 33 standard deviations. This work confirms feasibility of seawater quantum channel, representing the first step towards underwater quantum communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.05047v2-abstract-full').style.display = 'none'; document.getElementById('1602.05047v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures, 1 table, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.1979">arXiv:1301.1979</a> <span> [<a href="https://arxiv.org/pdf/1301.1979">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.2.041019">10.1103/PhysRevX.2.041019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid high-temperature superconductor-semiconductor tunnel diode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hayat%2C+A">Alex Hayat</a>, <a href="/search/quant-ph?searchtype=author&query=Zareapour%2C+P">Parisa Zareapour</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+S+Y+F">Shu Yang F. Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Jain%2C+A">Achint Jain</a>, <a href="/search/quant-ph?searchtype=author&query=Savelyev%2C+I+G">Igor G. Savelyev</a>, <a href="/search/quant-ph?searchtype=author&query=Blumin%2C+M">Marina Blumin</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhijun Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Alina Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/quant-ph?searchtype=author&query=Ruda%2C+H+E">Harry E. Ruda</a>, <a href="/search/quant-ph?searchtype=author&query=Jia%2C+S">Shuang Jia</a>, <a href="/search/quant-ph?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a>, <a href="/search/quant-ph?searchtype=author&query=Steinberg%2C+A+M">Aephraim M. Steinberg</a>, <a href="/search/quant-ph?searchtype=author&query=Burch%2C+K+S">Kenneth S. Burch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.1979v1-abstract-short" style="display: inline;"> We report the demonstration of hybrid high-Tc-superconductor-semiconductor tunnel junctions, enabling new interdisciplinary directions in condensed matter research. The devices were fabricated by our newly-developed mechanical bonding technique, resulting in high-Tc-semiconductor planar junctions acting as superconducting tunnel diodes. Tunneling-spectra characterization of the hybrid junctions of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.1979v1-abstract-full').style.display = 'inline'; document.getElementById('1301.1979v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.1979v1-abstract-full" style="display: none;"> We report the demonstration of hybrid high-Tc-superconductor-semiconductor tunnel junctions, enabling new interdisciplinary directions in condensed matter research. The devices were fabricated by our newly-developed mechanical bonding technique, resulting in high-Tc-semiconductor planar junctions acting as superconducting tunnel diodes. Tunneling-spectra characterization of the hybrid junctions of Bi2Sr2CaCu2O8+未 combined with bulk GaAs, or a GaAs/AlGaAs quantum well, exhibits excess voltage and nonlinearity - in good agreement with theoretical predictions for a d-wave superconductor-normal material junction, and similar to spectra obtained in scanning tunneling microscopy. Additional junctions are demonstrated using Bi2Sr2CaCu2O8+未 combined with graphite or Bi2Te3. Our results pave the way for new methods in unconventional superconductivity studies, novel materials and quantum technology applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.1979v1-abstract-full').style.display = 'none'; document.getElementById('1301.1979v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 2, 041019 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.5830">arXiv:1209.5830</a> <span> [<a href="https://arxiv.org/pdf/1209.5830">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms2701">10.1038/ncomms2701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry Protected Josephson Supercurrents in Three-Dimensional Topological Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cho%2C+S">Sungjae Cho</a>, <a href="/search/quant-ph?searchtype=author&query=Dellabetta%2C+B">Brian Dellabetta</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">Alina Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Schneeloch%2C+J">John Schneeloch</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhijun Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/quant-ph?searchtype=author&query=Gu%2C+G">Genda Gu</a>, <a href="/search/quant-ph?searchtype=author&query=Gilbert%2C+M+J">Matthew J. Gilbert</a>, <a href="/search/quant-ph?searchtype=author&query=Mason%2C+N">Nadya Mason</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.5830v2-abstract-short" style="display: inline;"> Coupling the surface state of a topological insulator (TI) to an s-wave superconductor is predicted to produce the long-sought Majorana quasiparticle excitations. However, superconductivity has not been measured in surface states when the bulk charge carriers are fully depleted, i.e., in the true topological regime that is relevant for investigating Majorana modes. Here, we report measurements of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.5830v2-abstract-full').style.display = 'inline'; document.getElementById('1209.5830v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.5830v2-abstract-full" style="display: none;"> Coupling the surface state of a topological insulator (TI) to an s-wave superconductor is predicted to produce the long-sought Majorana quasiparticle excitations. However, superconductivity has not been measured in surface states when the bulk charge carriers are fully depleted, i.e., in the true topological regime that is relevant for investigating Majorana modes. Here, we report measurements of DC Josephson effects in TI-superconductor junctions as the chemical potential is moved from the bulk bands into the band gap, or through the true topological regime characterized by the presence of only surface currents. We examine the relative behavior of the system at different bulk/surface ratios, determining the effects of strong bulk/surface mixing, disorder, and magnetic field. We compare our results to 3D quantum transport simulations to conclude that the supercurrent is largely carried by surface states, due to the inherent topology of the bands, and that it is robust against disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.5830v2-abstract-full').style.display = 'none'; document.getElementById('1209.5830v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.2621">arXiv:1112.2621</a> <span> [<a href="https://arxiv.org/pdf/1112.2621">pdf</a>, <a href="https://arxiv.org/ps/1112.2621">ps</a>, <a href="https://arxiv.org/format/1112.2621">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.108.230509">10.1103/PhysRevLett.108.230509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of Quasiparticle Tunneling Dynamics in a Bandgap-Engineered Transmon Qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+L">L. Sun</a>, <a href="/search/quant-ph?searchtype=author&query=DiCarlo%2C+L">L. DiCarlo</a>, <a href="/search/quant-ph?searchtype=author&query=Reed%2C+M+D">M. D. Reed</a>, <a href="/search/quant-ph?searchtype=author&query=Catelani%2C+G">G. Catelani</a>, <a href="/search/quant-ph?searchtype=author&query=Bishop%2C+L+S">Lev S. Bishop</a>, <a href="/search/quant-ph?searchtype=author&query=Schuster%2C+D+I">D. I. Schuster</a>, <a href="/search/quant-ph?searchtype=author&query=Johnson%2C+B+R">B. R. Johnson</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+G+A">Ge A. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Frunzio%2C+L">L. Frunzio</a>, <a href="/search/quant-ph?searchtype=author&query=Glazman%2C+L+I">L. I. Glazman</a>, <a href="/search/quant-ph?searchtype=author&query=Devoret%2C+M+H">M. H. Devoret</a>, <a href="/search/quant-ph?searchtype=author&query=Schoelkopf%2C+R+J">R. J. Schoelkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.2621v1-abstract-short" style="display: inline;"> We have engineered the bandgap profile of transmon qubits by combining oxygen-doped Al for tunnel junction electrodes and clean Al as quasiparticle traps to investigate energy relaxation due to quasiparticle tunneling. The relaxation time $T_1$ of the qubits is shown to be insensitive to this bandgap engineering. Operating at relatively low $E_J/E_C$ makes the transmon transition frequency distinc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.2621v1-abstract-full').style.display = 'inline'; document.getElementById('1112.2621v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.2621v1-abstract-full" style="display: none;"> We have engineered the bandgap profile of transmon qubits by combining oxygen-doped Al for tunnel junction electrodes and clean Al as quasiparticle traps to investigate energy relaxation due to quasiparticle tunneling. The relaxation time $T_1$ of the qubits is shown to be insensitive to this bandgap engineering. Operating at relatively low $E_J/E_C$ makes the transmon transition frequency distinctly dependent on the charge parity, allowing us to detect the quasiparticles tunneling across the qubit junction. Quasiparticle kinetics have been studied by monitoring the frequency switching due to even/odd parity change in real time. It shows the switching time is faster than 10 $渭$s, indicating quasiparticle-induced relaxation has to be reduced to achieve $T_1$ much longer than 100 $渭$s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.2621v1-abstract-full').style.display = 'none'; document.getElementById('1112.2621v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 108, 230509 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.6003">arXiv:1009.6003</a> <span> [<a href="https://arxiv.org/pdf/1009.6003">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3577614">10.1063/1.3577614 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optically detected NMR of optically hyperpolarized 31P neutral donors in 28Si </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Steger%2C+M">M. Steger</a>, <a href="/search/quant-ph?searchtype=author&query=Sekiguchi%2C+T">T. Sekiguchi</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">A. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Saeedi%2C+K">K. Saeedi</a>, <a href="/search/quant-ph?searchtype=author&query=Hayden%2C+M+E">M. E. Hayden</a>, <a href="/search/quant-ph?searchtype=author&query=Thewalt%2C+M+L+W">M. L. W. Thewalt</a>, <a href="/search/quant-ph?searchtype=author&query=Itoh%2C+K+M">K. M. Itoh</a>, <a href="/search/quant-ph?searchtype=author&query=Riemann%2C+H">H. Riemann</a>, <a href="/search/quant-ph?searchtype=author&query=Abrosimov%2C+N+V">N. V. Abrosimov</a>, <a href="/search/quant-ph?searchtype=author&query=Becker%2C+P">P. Becker</a>, <a href="/search/quant-ph?searchtype=author&query=Pohl%2C+H+-">H. -J. Pohl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.6003v3-abstract-short" style="display: inline;"> The electron and nuclear spins of the shallow donor 31P are promising qubit candidates invoked in many proposed Si-based quantum computing schemes. We have recently shown that the near-elimination of inhomogeneous broadening in highly isotopically enriched 28Si enables an optical readout of both the donor electron and nuclear spins by resolving the donor hyperfine splitting in the near-gap donor b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.6003v3-abstract-full').style.display = 'inline'; document.getElementById('1009.6003v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.6003v3-abstract-full" style="display: none;"> The electron and nuclear spins of the shallow donor 31P are promising qubit candidates invoked in many proposed Si-based quantum computing schemes. We have recently shown that the near-elimination of inhomogeneous broadening in highly isotopically enriched 28Si enables an optical readout of both the donor electron and nuclear spins by resolving the donor hyperfine splitting in the near-gap donor bound exciton transitions. We have also shown that pumping these same transitions can very quickly produce large electron and nuclear hyperpolarizations at low magnetic fields, where the equilibrium electron and nuclear polarizations are very small. Here we show preliminary results of the measurement of 31P neutral donor NMR parameters using this optical nuclear hyperpolarization mechanism for preparation of the 31P nuclear spin system, followed by optical readout of the resulting nuclear spin population after manipulation with NMR pulse sequences. This allows for the observation of single-shot NMR signals with very high signal to noise ratio under conditions where conventional NMR is not possible, due to the low concentration of 31P and the small equilibrium polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.6003v3-abstract-full').style.display = 'none'; document.getElementById('1009.6003v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited Presentation at ICPS-30 (2010), Seoul, Korea</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Appl. Phys. 109, 102411 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.1634">arXiv:0903.1634</a> <span> [<a href="https://arxiv.org/pdf/0903.1634">pdf</a>, <a href="https://arxiv.org/ps/0903.1634">ps</a>, <a href="https://arxiv.org/format/0903.1634">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.102.257401">10.1103/PhysRevLett.102.257401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simultaneous sub-second hyperpolarization of the nuclear and electron spins of phosphorus in silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+A">A. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Steger%2C+M">M. Steger</a>, <a href="/search/quant-ph?searchtype=author&query=Sekiguchi%2C+T">T. Sekiguchi</a>, <a href="/search/quant-ph?searchtype=author&query=Thewalt%2C+M+L+W">M. L. W. Thewalt</a>, <a href="/search/quant-ph?searchtype=author&query=Ladd%2C+T+D">T. D. Ladd</a>, <a href="/search/quant-ph?searchtype=author&query=Itoh%2C+K+M">K. M. Itoh</a>, <a href="/search/quant-ph?searchtype=author&query=Riemann%2C+H">H. Riemann</a>, <a href="/search/quant-ph?searchtype=author&query=Abrosimov%2C+N+V">N. V. Abrosimov</a>, <a href="/search/quant-ph?searchtype=author&query=Becker%2C+P">P. Becker</a>, <a href="/search/quant-ph?searchtype=author&query=Pohl%2C+H+-">H. -J. Pohl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.1634v2-abstract-short" style="display: inline;"> We demonstrate a method which can hyperpolarize both the electron and nuclear spins of 31P donors in Si at low field, where both would be essentially unpolarized in equilibrium. It is based on the selective ionization of donors in a specific hyperfine state by optically pumping donor bound exciton hyperfine transitions, which can be spectrally resolved in 28Si. Electron and nuclear polarizations… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.1634v2-abstract-full').style.display = 'inline'; document.getElementById('0903.1634v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.1634v2-abstract-full" style="display: none;"> We demonstrate a method which can hyperpolarize both the electron and nuclear spins of 31P donors in Si at low field, where both would be essentially unpolarized in equilibrium. It is based on the selective ionization of donors in a specific hyperfine state by optically pumping donor bound exciton hyperfine transitions, which can be spectrally resolved in 28Si. Electron and nuclear polarizations of 90% and 76%, respectively, are obtained in less than a second, providing an initialization mechanism for qubits based on these spins, and enabling further ESR and NMR studies on dilute 31P in 28Si. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.1634v2-abstract-full').style.display = 'none'; document.getElementById('0903.1634v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 102, 257401 (2009) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>