CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 103 results for author: <span class="mathjax">Golubev, D S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Golubev, D S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Golubev%2C+D+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Golubev, D S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Golubev%2C+D+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Golubev%2C+D+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Golubev%2C+D+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Golubev%2C+D+S&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18691">arXiv:2404.18691</a> <span> [<a href="https://arxiv.org/pdf/2404.18691">pdf</a>, <a href="https://arxiv.org/format/2404.18691">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient Random Phase Approximation for Diradicals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Shirazi%2C+R+G">Reza G. Shirazi</a>, <a href="/search/?searchtype=author&query=Rybkin%2C+V+V">Vladimir V. Rybkin</a>, <a href="/search/?searchtype=author&query=Marthaler%2C+M">Michael Marthaler</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18691v1-abstract-short" style="display: inline;"> We apply the analytically solvable model of two electrons in two orbitals to diradical molecules, characterized by two unpaired electrons. The effect of the doubly occupied and empty orbitals is taken into account by means of random phase approximation (RPA). We show that in the static limit the direct RPA leads to the renormalization of the parameters of the two-orbital model. We test our model b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18691v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18691v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18691v1-abstract-full" style="display: none;"> We apply the analytically solvable model of two electrons in two orbitals to diradical molecules, characterized by two unpaired electrons. The effect of the doubly occupied and empty orbitals is taken into account by means of random phase approximation (RPA). We show that in the static limit the direct RPA leads to the renormalization of the parameters of the two-orbital model. We test our model by comparing its predictions for the singlet-triplet splitting with the results from multi-reference CASSCF and NEVPT2 simulations for a set of ten molecules. We find that, for the whole set, the average relative difference between the singlet-triplet gaps predicted by the RPA-corrected two-orbital model and by NEVPT2 is about 40%. For the five molecules with the smallest singlet-triplet splitting the accuracy is better than 20%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18691v1-abstract-full').style.display = 'none'; document.getElementById('2404.18691v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00799">arXiv:2304.00799</a> <span> [<a href="https://arxiv.org/pdf/2304.00799">pdf</a>, <a href="https://arxiv.org/format/2304.00799">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-44908-w">10.1038/s41467-024-44908-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microwave quantum diode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Upadhyay%2C+R">Rishabh Upadhyay</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Chang%2C+Y">Yu-Cheng Chang</a>, <a href="/search/?searchtype=author&query=Thomas%2C+G">George Thomas</a>, <a href="/search/?searchtype=author&query=Guthrie%2C+A">Andrew Guthrie</a>, <a href="/search/?searchtype=author&query=Peltonen%2C+J+T">Joonas T. Peltonen</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00799v1-abstract-short" style="display: inline;"> The fragile nature of quantum circuits is a major bottleneck to scalable quantum applications. Operating at cryogenic temperatures, quantum circuits are highly vulnerable to amplifier backaction and external noise. Non-reciprocal microwave devices such as circulators and isolators are used for this purpose. These devices have a considerable footprint in cryostats, limiting the scalability of quant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00799v1-abstract-full').style.display = 'inline'; document.getElementById('2304.00799v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00799v1-abstract-full" style="display: none;"> The fragile nature of quantum circuits is a major bottleneck to scalable quantum applications. Operating at cryogenic temperatures, quantum circuits are highly vulnerable to amplifier backaction and external noise. Non-reciprocal microwave devices such as circulators and isolators are used for this purpose. These devices have a considerable footprint in cryostats, limiting the scalability of quantum circuits. We present a compact microwave diode architecture, which exploits the non-linearity of a superconducting flux qubit. At the qubit degeneracy point we experimentally demonstrate a significant difference between the power levels transmitted in opposite directions. The observations align with the proposed theoretical model. At -99 dBm input power, and near the qubit-resonator avoided crossing region, we report the transmission rectification ratio exceeding 90% for a 50 MHz wide frequency range from 6.81 GHz to 6.86 GHz, and over 60% for the 250 MHz range from 6.67 GHz to 6.91 GHz. The presented architecture is compact, and easily scalable towards multiple readout channels, potentially opening up diverse opportunities in quantum information, microwave read-out and optomechanics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00799v1-abstract-full').style.display = 'none'; document.getElementById('2304.00799v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.14953">arXiv:2210.14953</a> <span> [<a href="https://arxiv.org/pdf/2210.14953">pdf</a>, <a href="https://arxiv.org/format/2210.14953">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-43668-3">10.1038/s41467-023-43668-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bolometric detection of Josephson inductance in a highly resistive environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Subero%2C+D">Diego Subero</a>, <a href="/search/?searchtype=author&query=Maillet%2C+O">Olivier Maillet</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Thomas%2C+G">George Thomas</a>, <a href="/search/?searchtype=author&query=Peltonen%2C+J+T">Joonas T. Peltonen</a>, <a href="/search/?searchtype=author&query=Karimi%2C+B">Bayan Karimi</a>, <a href="/search/?searchtype=author&query=Mar%C3%ADn-Su%C3%A1rez%2C+M">Marco Mar铆n-Su谩rez</a>, <a href="/search/?searchtype=author&query=Yeyati%2C+A+L">Alfredo Levy Yeyati</a>, <a href="/search/?searchtype=author&query=S%C3%A1nchez%2C+R">Rafael S谩nchez</a>, <a href="/search/?searchtype=author&query=Park%2C+S">Sunghun Park</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.14953v4-abstract-short" style="display: inline;"> The Josephson junction is a building block of quantum circuits. Its behavior, well understood when treated as an isolated entity, is strongly affected by coupling to an electromagnetic environment. In 1983, Schmid predicted that a Josephson junction shunted by a resistance exceeding the resistance quantum $\mathbf{\textit{R}}_\mathrm{Q} = h/4e^2 \approx 6.45$ k$\mathbf惟$ for Cooper pairs would bec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14953v4-abstract-full').style.display = 'inline'; document.getElementById('2210.14953v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.14953v4-abstract-full" style="display: none;"> The Josephson junction is a building block of quantum circuits. Its behavior, well understood when treated as an isolated entity, is strongly affected by coupling to an electromagnetic environment. In 1983, Schmid predicted that a Josephson junction shunted by a resistance exceeding the resistance quantum $\mathbf{\textit{R}}_\mathrm{Q} = h/4e^2 \approx 6.45$ k$\mathbf惟$ for Cooper pairs would become insulating since the phase fluctuations would destroy the coherent Josephson coupling. However, recent microwave measurements have questioned this interpretation. Here, we insert a small Josephson junction in a Johnson-Nyquist-type setup where it is driven by weak current noise arising from thermal fluctuations. Our heat probe minimally perturbs the junction's equilibrium, shedding light on features not visible in charge transport. We find that the Josephson critical current completely vanishes in DC charge transport measurement, and the junction demonstrates Coulomb blockade in agreement with the theory. Surprisingly, thermal transport measurements show that the Josephson junction acts as an inductor at high frequencies, unambiguously demonstrating that a supercurrent survives despite the Coulomb blockade observed in DC measurements. The discrepancy between these two measurements highlights the difference between the low and the high frequency response of a junction and calls for further theoretical and experimental inputs on the dynamics of Josephson junctions \textcolor{black}{operating at high frequencies in highly resistive environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14953v4-abstract-full').style.display = 'none'; document.getElementById('2210.14953v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 14, 7924 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05811">arXiv:2208.05811</a> <span> [<a href="https://arxiv.org/pdf/2208.05811">pdf</a>, <a href="https://arxiv.org/format/2208.05811">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04947-z">10.1038/s41586-022-04947-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantized current steps due to the a.c. coherent quantum phase-slip effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Shaikhaidarov%2C+R+S">R. S. Shaikhaidarov</a>, <a href="/search/?searchtype=author&query=Kim%2C+K+H">K. H. Kim</a>, <a href="/search/?searchtype=author&query=Dunstan%2C+J+W">J. W. Dunstan</a>, <a href="/search/?searchtype=author&query=Antonov%2C+I+V">I. V. Antonov</a>, <a href="/search/?searchtype=author&query=Linzen%2C+S">S. Linzen</a>, <a href="/search/?searchtype=author&query=Ziegler%2C+M">M. Ziegler</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Antonov%2C+V+N">V. N. Antonov</a>, <a href="/search/?searchtype=author&query=Il%27ichev%2C+E">E. Il'ichev</a>, <a href="/search/?searchtype=author&query=Astafiev%2C+O+V">O. V. Astafiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05811v2-abstract-short" style="display: inline;"> The AC Josephson effect predicted in 1962 and observed experimentally in 1963 as quantised voltage steps (the Shapiro steps) from photon assisted tunnelling of Cooper pairs is among the most fundamental phenomena of quantum mechanics and is vital for metrological quantum voltage standards. The physically dual effect, the AC coherent quantum phase slip (CQPS), photon assisted tunnelling of magnetic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05811v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05811v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05811v2-abstract-full" style="display: none;"> The AC Josephson effect predicted in 1962 and observed experimentally in 1963 as quantised voltage steps (the Shapiro steps) from photon assisted tunnelling of Cooper pairs is among the most fundamental phenomena of quantum mechanics and is vital for metrological quantum voltage standards. The physically dual effect, the AC coherent quantum phase slip (CQPS), photon assisted tunnelling of magnetic fluxes through a superconducting nanowire, is envisaged to reveal itself as quantised current steps. The basic physical significance of the AC CQPS is also complemented by practical importance in future current standards; a missing element for closing the Quantum Metrology Triangle. In 2012, the CQPS was demonstrated as superposition of magnetic flux quanta in superconducting nanowires. However the direct sharp current steps in superconductors; the only unavailable basic effect of superconductivity to date, was unattainable due to lack of appropriate materials and challenges in circuit engineering. Here we report the direct observation of the dual Shapiro steps in a superconducting nanowire. The sharp steps are clear up to 26 GHz frequency with current values 8.3 nA and limited by the present setup bandwidth. The current steps have been theoretically predicted in small Josephson junctions (JJs) 30 years ago. However, broadening unavoidable in JJs prevents their direct experimental observation. We solve this problem by placing a thin NbN nanowire in an inductive environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05811v2-abstract-full').style.display = 'none'; document.getElementById('2208.05811v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 608, 45-49 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05586">arXiv:2207.05586</a> <span> [<a href="https://arxiv.org/pdf/2207.05586">pdf</a>, <a href="https://arxiv.org/format/2207.05586">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.104518">10.1103/PhysRevB.107.104518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photonic heat transport from weak to strong coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Tam%2C+M">Minh Tam</a>, <a href="/search/?searchtype=author&query=Thomas%2C+G">George Thomas</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05586v1-abstract-short" style="display: inline;"> Superconducting circuits provide a favorable platform for quantum thermodynamic experiments. An important component for such experiments is a heat valve, i.e. a device which allows one to control the heat power flowing through the system. Here we theoretically study the heat valve based on a superconducting quantum interference device (SQUID) coupled to two heat baths via two resonators. The heat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05586v1-abstract-full').style.display = 'inline'; document.getElementById('2207.05586v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05586v1-abstract-full" style="display: none;"> Superconducting circuits provide a favorable platform for quantum thermodynamic experiments. An important component for such experiments is a heat valve, i.e. a device which allows one to control the heat power flowing through the system. Here we theoretically study the heat valve based on a superconducting quantum interference device (SQUID) coupled to two heat baths via two resonators. The heat current in such system can be tuned by magnetic flux. We investigate how does the heat current modulation depend on the coupling strength g between the SQUID and the resonators. In the weak coupling regime the heat current modulation grows as g2, but, surprisingly, at the intermediate coupling it can be strongly suppressed. This effect is linked to the resonant nature of the heat transport at weak coupling, where the heat current dependence on the magnetic flux is a periodic set of narrow peaks. At the intermediate coupling, the peaks become broader and overlap, thus reducing the heat modulation. At very strong coupling the heat modulation grows again and finally saturates at a constant value. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05586v1-abstract-full').style.display = 'none'; document.getElementById('2207.05586v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.13109">arXiv:2201.13109</a> <span> [<a href="https://arxiv.org/pdf/2201.13109">pdf</a>, <a href="https://arxiv.org/format/2201.13109">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.207703">10.1103/PhysRevLett.129.207703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local and non-local two-electron tunneling processes in a Cooper pair splitter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Ranni%2C+A">Antti Ranni</a>, <a href="/search/?searchtype=author&query=Mannila%2C+E+T">Elsa T. Mannila</a>, <a href="/search/?searchtype=author&query=Eriksson%2C+A">Axel Eriksson</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a>, <a href="/search/?searchtype=author&query=Maisi%2C+V+F">Ville F. Maisi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.13109v1-abstract-short" style="display: inline;"> We measure the tunneling rates and coupling coefficients for local Andreev, non-local Andreev and elastic cotunneling processes. The non-local Andreev process, giving rise to Cooper pair splitting, exhibits the same coupling coefficient as the elastic co-tunneling whereas the local Andreev process is more than two orders of magnitude stronger than the corresponding non-local one. Theory estimates… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.13109v1-abstract-full').style.display = 'inline'; document.getElementById('2201.13109v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.13109v1-abstract-full" style="display: none;"> We measure the tunneling rates and coupling coefficients for local Andreev, non-local Andreev and elastic cotunneling processes. The non-local Andreev process, giving rise to Cooper pair splitting, exhibits the same coupling coefficient as the elastic co-tunneling whereas the local Andreev process is more than two orders of magnitude stronger than the corresponding non-local one. Theory estimates describe the findings and explain the large difference in the non-local and local coupling arising from competition between electron diffusion in the superconductor and tunnel junction transparency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.13109v1-abstract-full').style.display = 'none'; document.getElementById('2201.13109v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09224">arXiv:2112.09224</a> <span> [<a href="https://arxiv.org/pdf/2112.09224">pdf</a>, <a href="https://arxiv.org/format/2112.09224">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-29078-x">10.1038/s41467-022-29078-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photonic heat transport in three terminal superconducting circuit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Gubaydullin%2C+A">Azat Gubaydullin</a>, <a href="/search/?searchtype=author&query=Thomas%2C+G">George Thomas</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Lvov%2C+D">Dmitrii Lvov</a>, <a href="/search/?searchtype=author&query=Peltonen%2C+J+T">Joonas T. Peltonen</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09224v1-abstract-short" style="display: inline;"> Quantum heat transport devices are currently intensively studied in theory. Experimental realization of quantum heat transport devices is a challenging task. So far, they have been mostly investigated in experiments with ultra-cold atoms and single atomic traps. Experiments with superconducting qubits have also been carried out and heat transport and heat rectification has been studied in two term… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09224v1-abstract-full').style.display = 'inline'; document.getElementById('2112.09224v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09224v1-abstract-full" style="display: none;"> Quantum heat transport devices are currently intensively studied in theory. Experimental realization of quantum heat transport devices is a challenging task. So far, they have been mostly investigated in experiments with ultra-cold atoms and single atomic traps. Experiments with superconducting qubits have also been carried out and heat transport and heat rectification has been studied in two terminal devices. The structures with three independent terminals offer additional opportunities for realization of heat transistors, heat switches, on-chip masers and even more complicated devices. Here we report an experimental realization of a three-terminal photonic heat transport device based on a superconducting quantum circuit. Its central element is a flux qubit made of a superconducting loop containing three Josephson junctions, which is connected to three resonators terminated by resistors. By heating one of the resistors and monitoring the temperatures of the other two, we determine photonic heat currents in the system and demonstrate their tunability by magnetic field at the level of 1 aW. We determine system parameters by performing microwave transmission measurements on a separate nominally identical sample and, in this way, demonstrate clear correlation between the level splitting of the qubit and the heat currents flowing through it. Our experiment is an important step in the development of on-chip quantum heat transport devices. On the one hand, such devices are of great interest for fundamental science because they allow one to investigate the effect of quantum interference and entanglement on the transport of heat. On the other hand, they also have great practical importance for the rapidly developing field of quantum computing, in which management of heat generated by qubits is a problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09224v1-abstract-full').style.display = 'none'; document.getElementById('2112.09224v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 1552 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.11135">arXiv:2107.11135</a> <span> [<a href="https://arxiv.org/pdf/2107.11135">pdf</a>, <a href="https://arxiv.org/format/2107.11135">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.16.044045">10.1103/PhysRevApplied.16.044045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust strong coupling architecture in circuit quantum electrodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Upadhyay%2C+R">Rishabh Upadhyay</a>, <a href="/search/?searchtype=author&query=Thomas%2C+G">George Thomas</a>, <a href="/search/?searchtype=author&query=Chang%2C+Y">Yu-Cheng Chang</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Guthrie%2C+A">Andrew Guthrie</a>, <a href="/search/?searchtype=author&query=Gubaydullin%2C+A">Azat Gubaydullin</a>, <a href="/search/?searchtype=author&query=Peltonen%2C+J+T">Joonas T. Peltonen</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.11135v2-abstract-short" style="display: inline;"> We report on a robust method to achieve strong coupling between a superconducting flux qubit and a high-quality quarter-wavelength coplanar waveguide resonator. We demonstrate the progression from the strong to ultrastrong coupling regime by varying the length of a shared inductive coupling element, ultimately achieving a qubit-resonator coupling strength of 655 MHz, $10\%$ of the resonator freque… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11135v2-abstract-full').style.display = 'inline'; document.getElementById('2107.11135v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.11135v2-abstract-full" style="display: none;"> We report on a robust method to achieve strong coupling between a superconducting flux qubit and a high-quality quarter-wavelength coplanar waveguide resonator. We demonstrate the progression from the strong to ultrastrong coupling regime by varying the length of a shared inductive coupling element, ultimately achieving a qubit-resonator coupling strength of 655 MHz, $10\%$ of the resonator frequency. We derive an analytical expression for the coupling strength in terms of circuit parameters and also discuss the maximum achievable coupling within this framework. We experimentally characterize flux qubits coupled to superconducting resonators using one and two-tone spectroscopy methods, demonstrating excellent agreement with the proposed theoretical model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11135v2-abstract-full').style.display = 'none'; document.getElementById('2107.11135v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 16, 044045 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10725">arXiv:2107.10725</a> <span> [<a href="https://arxiv.org/pdf/2107.10725">pdf</a>, <a href="https://arxiv.org/ps/2107.10725">ps</a>, <a href="https://arxiv.org/format/2107.10725">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-021-01053-5">10.1038/s41565-021-01053-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frequency to power conversion by an electron turnstile </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Mar%C3%ADn-Su%C3%A1rez%2C+M">Marco Mar铆n-Su谩rez</a>, <a href="/search/?searchtype=author&query=Peltonen%2C+J+T">Joonas T. Peltonen</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10725v2-abstract-short" style="display: inline;"> Direct frequency to power conversion (FPC), to be presented here, links both quantities through a known energy, like single-electron transport relates an operation frequency $f$ to the emitted current $I$ through the electron charge $e$ as $I=ef$. FPC is a natural candidate for a power standard resorting to the most basic definition of the watt -- energy, which is traceable to Planck's constant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10725v2-abstract-full').style.display = 'inline'; document.getElementById('2107.10725v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10725v2-abstract-full" style="display: none;"> Direct frequency to power conversion (FPC), to be presented here, links both quantities through a known energy, like single-electron transport relates an operation frequency $f$ to the emitted current $I$ through the electron charge $e$ as $I=ef$. FPC is a natural candidate for a power standard resorting to the most basic definition of the watt -- energy, which is traceable to Planck's constant $h$, emitted per unit of time. This time is in turn traceable to the unperturbed ground state hyperfine transition frequency of the caesium 133 atom $螖谓_\mathrm{Cs}$; hence, FPC comprises a simple and elegant way to realize the watt. In this spirit, single-photon emission and detection at known rates have been proposed and experimented as radiometric standard. However, nowadays power standards are only traceable to electrical units, i.e., volt and ohm. In this letter, we demonstrate the feasibility of an alternative proposal based on solid-state direct FPC using a SINIS (S = superconductor, N = normal metal, I = insulator) single-electron transistor (SET) accurately injecting $N$ (integer) quasiparticles (qps) per cycle to both leads with discrete energies close to their superconducting gap $螖$, even at zero drain-source voltage. Furthermore, the bias voltage plays an important role in the distribution of the power among the two leads, allowing for an almost equal injection $N螖f$ to the two. We estimate that under appropriate conditions errors can be well below $1\%$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10725v2-abstract-full').style.display = 'none'; document.getElementById('2107.10725v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Includes supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Nanotechnol. 17, 239-243 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08113">arXiv:2107.08113</a> <span> [<a href="https://arxiv.org/pdf/2107.08113">pdf</a>, <a href="https://arxiv.org/format/2107.08113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.16.014025">10.1103/PhysRevApplied.16.014025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-photon detection with a Josephson junction coupled to a resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Ilichev%2C+E+V">Evgeni V. Ilichev</a>, <a href="/search/?searchtype=author&query=Kuzmin%2C+L+S">Leonid S. Kuzmin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08113v1-abstract-short" style="display: inline;"> We use semiclassical formalism to optimize a microwave single photon detector based on switching events of a current biased Josephson junction coupled to a resonator. In order to detect very rare events, the average time between dark counts $蟿_{\rm dark}$ should be maximized taking into account that the switching time $蟿_{\rm sw}$ should be sufficiently small. We demonstrate that these times can b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08113v1-abstract-full').style.display = 'inline'; document.getElementById('2107.08113v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08113v1-abstract-full" style="display: none;"> We use semiclassical formalism to optimize a microwave single photon detector based on switching events of a current biased Josephson junction coupled to a resonator. In order to detect very rare events, the average time between dark counts $蟿_{\rm dark}$ should be maximized taking into account that the switching time $蟿_{\rm sw}$ should be sufficiently small. We demonstrate that these times can be tuned in the wide range by changing the junction parameters, and the ratios $蟿_{\rm dark}/蟿_{\rm sw} \sim 10^9$ can be achieved. Therefore, a junction-resonator arrangement can be used for detecting extremely low photon fluxes, for instance for searching galactic axions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08113v1-abstract-full').style.display = 'none'; document.getElementById('2107.08113v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Appl. 16, 014025 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.07503">arXiv:2106.07503</a> <span> [<a href="https://arxiv.org/pdf/2106.07503">pdf</a>, <a href="https://arxiv.org/format/2106.07503">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.134513">10.1103/PhysRevB.104.134513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Joule heating effects in high transparency Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Tomi%2C+M">Matti Tomi</a>, <a href="/search/?searchtype=author&query=Samatov%2C+M+R">Mikhail R. Samatov</a>, <a href="/search/?searchtype=author&query=Vasenko%2C+A+S">Andrey S. Vasenko</a>, <a href="/search/?searchtype=author&query=Laitinen%2C+A">Antti Laitinen</a>, <a href="/search/?searchtype=author&query=Hakonen%2C+P">Pertti Hakonen</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.07503v2-abstract-short" style="display: inline;"> We study, both theoretically and experimentally, the features on the current-voltage characteristic of a highly transparent Josephson junction caused by transition of the superconducting leads to the normal state. These features appear due to the suppression of the Andreev excess current. We show that by tracing the dependence of the voltage, at which the transition occurs, on the bath temperature… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07503v2-abstract-full').style.display = 'inline'; document.getElementById('2106.07503v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.07503v2-abstract-full" style="display: none;"> We study, both theoretically and experimentally, the features on the current-voltage characteristic of a highly transparent Josephson junction caused by transition of the superconducting leads to the normal state. These features appear due to the suppression of the Andreev excess current. We show that by tracing the dependence of the voltage, at which the transition occurs, on the bath temperature and by analyzing the suppression of the excess current by the bias voltage one can recover the temperature dependence of the heat flow out of the junction. We verify theory predictions by fabricating two highly transparent superconductor-graphene-superconductor (SGS) Josephson junctions with suspended and non-suspended graphene as a non-superconducting section between Al leads. Applying the above mentioned technique we show that the cooling power of the suspended junction depends on the bath temperature as $\propto T_{\rm bath}^{3.1}$ close to the superconducting critical temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07503v2-abstract-full').style.display = 'none'; document.getElementById('2106.07503v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 134513 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.02997">arXiv:2011.02997</a> <span> [<a href="https://arxiv.org/pdf/2011.02997">pdf</a>, <a href="https://arxiv.org/format/2011.02997">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.134502">10.1103/PhysRevB.102.134502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconducting phase transition in inhomogeneous chains of superconducting islands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Ilin%2C+E">Eduard Ilin</a>, <a href="/search/?searchtype=author&query=Burkova%2C+I">Irina Burkova</a>, <a href="/search/?searchtype=author&query=Song%2C+X">Xiangyu Song</a>, <a href="/search/?searchtype=author&query=Pak%2C+M">Michael Pak</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitri S. Golubev</a>, <a href="/search/?searchtype=author&query=Bezryadin%2C+A">Alexey Bezryadin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.02997v1-abstract-short" style="display: inline;"> We study one dimensional chains of superconducting islands with a particular emphasis on the regime in which every second island is switched into its normal state, thus forming a superconductor-insulator-normal metal (S-I-N) repetition pattern. As is known since Giaever tunneling experiments, tunneling charge transport between a superconductor and a normal metal becomes exponentially suppressed, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02997v1-abstract-full').style.display = 'inline'; document.getElementById('2011.02997v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.02997v1-abstract-full" style="display: none;"> We study one dimensional chains of superconducting islands with a particular emphasis on the regime in which every second island is switched into its normal state, thus forming a superconductor-insulator-normal metal (S-I-N) repetition pattern. As is known since Giaever tunneling experiments, tunneling charge transport between a superconductor and a normal metal becomes exponentially suppressed, and zero-bias resistance diverges, as the temperature is reduced and the energy gap of the superconductor grows larger than the thermal energy. Here we demonstrate that this physical phenomenon strongly impacts transport properties of inhomogeneous superconductors made of weakly coupled islands with fluctuating values of the critical temperature. We observe a non-monotonous dependence of the chain resistance on both temperature and magnetic field, with a pronounced resistance peak at temperatures at which some but not all islands are superconducting. We explain this phenomenon by the inhomogeneity of the chains, in which neighboring superconducting islands have slightly different critical temperatures. We argue that the Giaever's resistance divergence can also occur in the zero-temperature limit. Such quantum transition can occur if the magnetic field is tuned such that it suppresses superconductivity in the islands with the weaker critical field, while the islands with stronger energy gap remain superconducting. In such a field, the system acts as a chain of S-I-N junctions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02997v1-abstract-full').style.display = 'none'; document.getElementById('2011.02997v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 102, 134502 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.13286">arXiv:2005.13286</a> <span> [<a href="https://arxiv.org/pdf/2005.13286">pdf</a>, <a href="https://arxiv.org/format/2005.13286">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Thermoelectric current in a graphene Cooper pair splitter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Tan%2C+Z+B">Z. B. Tan</a>, <a href="/search/?searchtype=author&query=Laitinen%2C+A">A. Laitinen</a>, <a href="/search/?searchtype=author&query=Kirsanov%2C+N+S">N. S. Kirsanov</a>, <a href="/search/?searchtype=author&query=Galda%2C+A">A. Galda</a>, <a href="/search/?searchtype=author&query=Haque%2C+M">M. Haque</a>, <a href="/search/?searchtype=author&query=Savin%2C+A">A. Savin</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Vinokur%2C+V+M">V. M. Vinokur</a>, <a href="/search/?searchtype=author&query=Lesovik%2C+G+B">G. B. Lesovik</a>, <a href="/search/?searchtype=author&query=Hakonen%2C+P+J">P. J. Hakonen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.13286v2-abstract-short" style="display: inline;"> Thermoelectric effect generating electricity from thermal gradient and vice versa appears in numerous generic applications. Recently, an original prospect of thermoelectricity arising from the nonlocal Cooper pair splitting (CPS) and the elastic co-tunneling (EC) in hybrid normal metal-superconductor-normal metal (NSN) structures was foreseen. Here we demonstrate experimentally the existence of no… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13286v2-abstract-full').style.display = 'inline'; document.getElementById('2005.13286v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.13286v2-abstract-full" style="display: none;"> Thermoelectric effect generating electricity from thermal gradient and vice versa appears in numerous generic applications. Recently, an original prospect of thermoelectricity arising from the nonlocal Cooper pair splitting (CPS) and the elastic co-tunneling (EC) in hybrid normal metal-superconductor-normal metal (NSN) structures was foreseen. Here we demonstrate experimentally the existence of non-local Seebeck effect in a graphene-based CPS device comprising two quantum dots connected to an aluminum superconductor and theoretically validate the observations. This non-local Seebeck effect offers an efficient tool for producing entangled electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13286v2-abstract-full').style.display = 'none'; document.getElementById('2005.13286v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages (main text: 6 pages; supplement: 21 pages), 15 figures (main text: 4 figures; supplement: 11 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.12199">arXiv:2003.12199</a> <span> [<a href="https://arxiv.org/pdf/2003.12199">pdf</a>, <a href="https://arxiv.org/format/2003.12199">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.104503">10.1103/PhysRevB.102.104503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermally pumped on-chip maser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Thomas%2C+G">George Thomas</a>, <a href="/search/?searchtype=author&query=Gubaydullin%2C+A">Azat Gubaydullin</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.12199v2-abstract-short" style="display: inline;"> We present a theoretical model of an on-chip three-level maser in a superconducting circuit based on a single artificial atom and pumped by a temperature gradient between thermal baths coupled to different interlevel transitions. We show that maser powers of the order of a few femtowatts, well exceeding the resolution of the sensitive bolometry, can be achieved with typical circuit parameters. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12199v2-abstract-full').style.display = 'inline'; document.getElementById('2003.12199v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.12199v2-abstract-full" style="display: none;"> We present a theoretical model of an on-chip three-level maser in a superconducting circuit based on a single artificial atom and pumped by a temperature gradient between thermal baths coupled to different interlevel transitions. We show that maser powers of the order of a few femtowatts, well exceeding the resolution of the sensitive bolometry, can be achieved with typical circuit parameters. We also demonstrate that population inversion in the artificial atom can be detected without measuring coherent radiation output of the maser. For that purpose, the system should operate as a three-terminal heat transport device. The hallmark of population inversion is the influx of heat power into the weakly coupled output terminal even though its temperature exceeds the temperatures of the two other terminals. The proposed method of on-chip conversion of heat into microwave radiation and control of energy-level populations by heating provide additional useful tools for circuit quantum electrodynamics experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12199v2-abstract-full').style.display = 'none'; document.getElementById('2003.12199v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 104503 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.11591">arXiv:2002.11591</a> <span> [<a href="https://arxiv.org/pdf/2002.11591">pdf</a>, <a href="https://arxiv.org/format/2002.11591">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-18163-8">10.1038/s41467-020-18163-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric field control of radiative heat transfer in a superconducting circuit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Maillet%2C+O">Olivier Maillet</a>, <a href="/search/?searchtype=author&query=Subero%2C+D">Diego Subero</a>, <a href="/search/?searchtype=author&query=Peltonen%2C+J+T">Joonas T. Peltonen</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.11591v3-abstract-short" style="display: inline;"> Heat is detrimental for the operation of quantum systems, yet it fundamentally behaves according to quantum mechanics, being phase coherent and universally quantum-limited regardless of its carriers. Due to their robustness, superconducting circuits integrating dissipative elements are ideal candidates to emulate many-body phenomena in quantum heat transport, hitherto scarcely explored experimenta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.11591v3-abstract-full').style.display = 'inline'; document.getElementById('2002.11591v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.11591v3-abstract-full" style="display: none;"> Heat is detrimental for the operation of quantum systems, yet it fundamentally behaves according to quantum mechanics, being phase coherent and universally quantum-limited regardless of its carriers. Due to their robustness, superconducting circuits integrating dissipative elements are ideal candidates to emulate many-body phenomena in quantum heat transport, hitherto scarcely explored experimentally. However, their ability to tackle the underlying full physical richness is severely hindered by the exclusive use of a magnetic flux as a control parameter and requires complementary approaches. Here, we introduce a dual, magnetic field-free circuit where charge quantization in a superconducting island enables thorough electric field control. We thus tune the thermal conductance, close to its quantum limit, of a single photonic channel between two mesoscopic reservoirs. We observe heat flow oscillations originating from the competition between Cooper-pair tunnelling and Coulomb repulsion in the island, well captured by a simple model. Our results demonstrate that the duality between charge and flux extends to heat transport, with promising applications in thermal management of quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.11591v3-abstract-full').style.display = 'none'; document.getElementById('2002.11591v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final version, SI included, 15 pages and 10 figures in total</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 11, 4326 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.09448">arXiv:1910.09448</a> <span> [<a href="https://arxiv.org/pdf/1910.09448">pdf</a>, <a href="https://arxiv.org/format/1910.09448">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Dynamic thermal relaxation in metallic films at sub-kelvin temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Wang%2C+L+B">L. B. Wang</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Galperin%2C+Y+M">Y. M. Galperin</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">J. P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.09448v4-abstract-short" style="display: inline;"> The performance of low temperature detectors utilizing thermal effects is determined by their energy relaxation properties. Usually, heat transport experiments in mesoscopic structures are carried out in the steady-state, where temperature gradients do not change in time. Here, we present an experimental study of dynamic thermal relaxation in a mesoscopic system -- thin metallic film. We find that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09448v4-abstract-full').style.display = 'inline'; document.getElementById('1910.09448v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.09448v4-abstract-full" style="display: none;"> The performance of low temperature detectors utilizing thermal effects is determined by their energy relaxation properties. Usually, heat transport experiments in mesoscopic structures are carried out in the steady-state, where temperature gradients do not change in time. Here, we present an experimental study of dynamic thermal relaxation in a mesoscopic system -- thin metallic film. We find that the thermal relaxation of hot electrons in copper and silver films is characterized by several time constants, and that the annealing of the films changes them. In most cases, two time constants are observed, and we can model the system by introducing an additional thermal reservoir coupled to the film electrons. We determine the specific heat of this reservoir and its coupling to the electrons. The experiments point at the importance of grain structure on the thermal relaxation of electrons in metallic films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09448v4-abstract-full').style.display = 'none'; document.getElementById('1910.09448v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.05045">arXiv:1909.05045</a> <span> [<a href="https://arxiv.org/pdf/1909.05045">pdf</a>, <a href="https://arxiv.org/format/1909.05045">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.235433">10.1103/PhysRevB.100.235433 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hanbury Brown and Twiss Exchange Correlations in Graphene Box </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Elo%2C+T">Teemu Elo</a>, <a href="/search/?searchtype=author&query=Tan%2C+Z">Zhenbing Tan</a>, <a href="/search/?searchtype=author&query=Padurariu%2C+C">Ciprian Padurariu</a>, <a href="/search/?searchtype=author&query=Duerr%2C+F">Fabian Duerr</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Lesovik%2C+G+B">Gordey B. Lesovik</a>, <a href="/search/?searchtype=author&query=Hakonen%2C+P">Pertti Hakonen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.05045v1-abstract-short" style="display: inline;"> Quadratic detection in linear mesoscopic transport systems produces cross terms that can be viewed as interference signals reflecting statistical properties of charge carriers. In electronic systems these cross term interferences arise from exchange effects due to Pauli principle. Here we demonstrate fermionic Hanbury Brown and Twiss (HBT) exchange phenomena due to indistinguishability of charge c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.05045v1-abstract-full').style.display = 'inline'; document.getElementById('1909.05045v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.05045v1-abstract-full" style="display: none;"> Quadratic detection in linear mesoscopic transport systems produces cross terms that can be viewed as interference signals reflecting statistical properties of charge carriers. In electronic systems these cross term interferences arise from exchange effects due to Pauli principle. Here we demonstrate fermionic Hanbury Brown and Twiss (HBT) exchange phenomena due to indistinguishability of charge carriers in a diffusive graphene system. These exchange effects are verified using current-current cross correlations in combination with regular shot noise (autocorrelation) experiments at microwave frequencies. Our results can be modeled using semiclassical analysis for a square-shaped metallic diffusive conductor, including contributions from contact transparency. The experimentally determined HBT exchange factor values lie between the calculated ones for coherent and hot electron transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.05045v1-abstract-full').style.display = 'none'; document.getElementById('1909.05045v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 235433 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.02885">arXiv:1907.02885</a> <span> [<a href="https://arxiv.org/pdf/1907.02885">pdf</a>, <a href="https://arxiv.org/format/1907.02885">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.094508">10.1103/PhysRevB.100.094508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photonic heat transport across a Josephson junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Thomas%2C+G">George Thomas</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.02885v2-abstract-short" style="display: inline;"> We present a detailed study of photonic heat transport across a Josephson junction coupled to two arbitrary linear circuits having different temperatures. First, we consider the linear approximation, in which a nonlinear Josephson potential is replaced by a quadratic one and the junction acts as an inductor. Afterwards, we discuss the effects of junction anharmonicity. We separately consider the w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.02885v2-abstract-full').style.display = 'inline'; document.getElementById('1907.02885v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.02885v2-abstract-full" style="display: none;"> We present a detailed study of photonic heat transport across a Josephson junction coupled to two arbitrary linear circuits having different temperatures. First, we consider the linear approximation, in which a nonlinear Josephson potential is replaced by a quadratic one and the junction acts as an inductor. Afterwards, we discuss the effects of junction anharmonicity. We separately consider the weak-coupling limit, in which the Bloch band structure of the junction energy spectrum plays an important role, and the opposite strong-coupling regime. We apply our general results to two specific models: a Josephson junction coupled to two Ohmic resistors and two resonators. We derive simple analytical approximations for the photonic heat flux in many limiting cases. We demonstrate that electric circuits with embedded Josephson junctions provide a useful platform for quantum thermodynamics experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.02885v2-abstract-full').style.display = 'none'; document.getElementById('1907.02885v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 094508 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.10848">arXiv:1903.10848</a> <span> [<a href="https://arxiv.org/pdf/1903.10848">pdf</a>, <a href="https://arxiv.org/format/1903.10848">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.12.024051">10.1103/PhysRevApplied.12.024051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crossover between electron-phonon and boundary resistance limited thermal relaxation in copper films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Wang%2C+L+B">L. B. Wang</a>, <a href="/search/?searchtype=author&query=Saira%2C+O+-">O. -P. Saira</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">J. P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.10848v1-abstract-short" style="display: inline;"> We observe a crossover from electron-phonon (ep) coupling limited energy relaxation to that governed by thermal boundary resistance (pp) in copper films at sub-kelvin temperatures. Our measurement yields a quantitative picture of heat currents, in terms of temperature dependences and magnitudes, in both ep and pp limited regimes, respectively. We show that by adding a third layer in between the co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.10848v1-abstract-full').style.display = 'inline'; document.getElementById('1903.10848v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.10848v1-abstract-full" style="display: none;"> We observe a crossover from electron-phonon (ep) coupling limited energy relaxation to that governed by thermal boundary resistance (pp) in copper films at sub-kelvin temperatures. Our measurement yields a quantitative picture of heat currents, in terms of temperature dependences and magnitudes, in both ep and pp limited regimes, respectively. We show that by adding a third layer in between the copper film and the substrate, the thermal boundary resistance is increased fourfold, consistent with an assumed series connection of thermal resistances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.10848v1-abstract-full').style.display = 'none'; document.getElementById('1903.10848v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 12, 024051 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05476">arXiv:1902.05476</a> <span> [<a href="https://arxiv.org/pdf/1902.05476">pdf</a>, <a href="https://arxiv.org/format/1902.05476">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.144504">10.1103/PhysRevB.99.144504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cross-correlated shot noise in three-terminal superconducting hybrid nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Zaikin%2C+A+D">Andrei D. Zaikin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05476v2-abstract-short" style="display: inline;"> We work out a unified theory describing both non-local electron transport and cross-correlated shot noise in a three-terminal normal-superconducting-normal (NSN) hybrid nanostructure. We describe noise cross correlations both for subgap and overgap bias voltages and for arbitrary distribution of channel transmissions in NS contacts. We specifically address a physically important situation of diffu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05476v2-abstract-full').style.display = 'inline'; document.getElementById('1902.05476v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05476v2-abstract-full" style="display: none;"> We work out a unified theory describing both non-local electron transport and cross-correlated shot noise in a three-terminal normal-superconducting-normal (NSN) hybrid nanostructure. We describe noise cross correlations both for subgap and overgap bias voltages and for arbitrary distribution of channel transmissions in NS contacts. We specifically address a physically important situation of diffusive contacts and demonstrate a non-trivial behavior of non-local shot noise exhibiting both positive and negative cross correlations depending on the bias voltages. For this case, we derive a relatively simple analytical expression for cross-correlated noise power which contains only experimentally accessible parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05476v2-abstract-full').style.display = 'none'; document.getElementById('1902.05476v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 144504 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.05655">arXiv:1901.05655</a> <span> [<a href="https://arxiv.org/pdf/1901.05655">pdf</a>, <a href="https://arxiv.org/format/1901.05655">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.99.063828">10.1103/PhysRevA.99.063828 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon blockade and the quantum-to-classical transition in the driven-dissipative Josephson pendulum coupled to a resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Pietik%C3%A4inen%2C+I">I. Pietik盲inen</a>, <a href="/search/?searchtype=author&query=Tuorila%2C+J">J. Tuorila</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Paraoanu%2C+G+S">G. S. Paraoanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.05655v2-abstract-short" style="display: inline;"> We investigate the driven quantum phase transition between the oscillating motion and the classical nearly free rotations of the Josephson pendulum coupled to a harmonic oscillator in the presence of dissipation. We refer to this as the Josephson-Rabi model. This model describes the standard setup of circuit quantum electrodynamics, where typically a transmon device is embedded in a superconductin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.05655v2-abstract-full').style.display = 'inline'; document.getElementById('1901.05655v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.05655v2-abstract-full" style="display: none;"> We investigate the driven quantum phase transition between the oscillating motion and the classical nearly free rotations of the Josephson pendulum coupled to a harmonic oscillator in the presence of dissipation. We refer to this as the Josephson-Rabi model. This model describes the standard setup of circuit quantum electrodynamics, where typically a transmon device is embedded in a superconducting cavity. We find that by treating the system quantum mechanically this transition occurs at higher drive powers than expected from an all-classical treatment, which is a consequence of the quasiperiodicity originating in the discrete energy spectrum of the bound states. We calculate the photon number in the resonator and show that its dependence on the drive power is nonlinear. In addition, the resulting multi-photon blockade phenomenon is sensitive to the truncation of the number of states in the transmon, which limits the applicability of the standard Jaynes-Cummings model as an approximation for the pendulum-oscillator system. We calculate the nth order correlation functions of the blockaded microwave photons and observe the differences between the rotating-wave approximation and the full multilevel Josephson-Rabi Hamiltonian with the counter-rotating terms included. Finally, we compare two different approaches to dissipation, namely the Floquet-Born-Markov and the Lindblad formalisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.05655v2-abstract-full').style.display = 'none'; document.getElementById('1901.05655v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 99, 063828 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.00750">arXiv:1810.00750</a> <span> [<a href="https://arxiv.org/pdf/1810.00750">pdf</a>, <a href="https://arxiv.org/ps/1810.00750">ps</a>, <a href="https://arxiv.org/format/1810.00750">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/pssr.201800256">10.1002/pssr.201800256 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic dissipation in superconducting junctions probed by qubit spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Galaktionov%2C+A+V">Artem V. Galaktionov</a>, <a href="/search/?searchtype=author&query=Zaikin%2C+A+D">Andrei D. Zaikin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.00750v1-abstract-short" style="display: inline;"> We propose to study frequency dependent intrinsic dissipation in a highly transparent Josephson junction by means of qubit spectroscopy. The spectral density of the effective dissipative bath may contain significant contributions from Andreev bound states coupled to fluctuations of the Josephson phase. Varying either the bias current applied to the junction or magnetic flux through a superconducti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00750v1-abstract-full').style.display = 'inline'; document.getElementById('1810.00750v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.00750v1-abstract-full" style="display: none;"> We propose to study frequency dependent intrinsic dissipation in a highly transparent Josephson junction by means of qubit spectroscopy. The spectral density of the effective dissipative bath may contain significant contributions from Andreev bound states coupled to fluctuations of the Josephson phase. Varying either the bias current applied to the junction or magnetic flux through a superconducting ring in the rf-SQUID setup, one can tune the level splitting value close to the bottom of the Josephson potential well. Monitoring the qubit energy relaxation time one can probe the spectral density of the effective dissipative bath and unambiguously identify the contribution emerging from Andreev levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00750v1-abstract-full').style.display = 'none'; document.getElementById('1810.00750v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Status Solidi RRL, 1800256 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.06870">arXiv:1809.06870</a> <span> [<a href="https://arxiv.org/pdf/1809.06870">pdf</a>, <a href="https://arxiv.org/format/1809.06870">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.230602">10.1103/PhysRevLett.122.230602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal First-Passage-Time Distribution of Non-Gaussian Currents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Singh%2C+S">Shilpi Singh</a>, <a href="/search/?searchtype=author&query=Menczel%2C+P">Paul Menczel</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Khaymovich%2C+I+M">Ivan M. Khaymovich</a>, <a href="/search/?searchtype=author&query=Peltonen%2C+J+T">Joonas T. Peltonen</a>, <a href="/search/?searchtype=author&query=Flindt%2C+C">Christian Flindt</a>, <a href="/search/?searchtype=author&query=Saito%2C+K">Keiji Saito</a>, <a href="/search/?searchtype=author&query=Rold%C3%A1n%2C+%C3%89">脡dgar Rold谩n</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.06870v1-abstract-short" style="display: inline;"> We investigate the fluctuations of the time elapsed until the electric charge transferred through a conductor reaches a given threshold value. For this purpose, we measure the distribution of the first-passage times for the net number of electrons transferred between two metallic islands in the Coulomb blockade regime. Our experimental results are in excellent agreement with numerical calculations… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06870v1-abstract-full').style.display = 'inline'; document.getElementById('1809.06870v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.06870v1-abstract-full" style="display: none;"> We investigate the fluctuations of the time elapsed until the electric charge transferred through a conductor reaches a given threshold value. For this purpose, we measure the distribution of the first-passage times for the net number of electrons transferred between two metallic islands in the Coulomb blockade regime. Our experimental results are in excellent agreement with numerical calculations based on a recent theory describing the exact first-passage-time distributions for any non-equilibrium stationary Markov process. We also derive a simple analytical approximation for the first-passage-time distribution, which takes into account the non-Gaussian statistics of the electron transport, and show that it describes the experimental distributions with high accuracy. This universal approximation describes a wide class of stochastic processes and can be used beyond the context of mesoscopic charge transport. In addition, we verify experimentally a fluctuation relation between the first-passage-time distributions for positive and negative thresholds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06870v1-abstract-full').style.display = 'none'; document.getElementById('1809.06870v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 230602 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.09838">arXiv:1806.09838</a> <span> [<a href="https://arxiv.org/pdf/1806.09838">pdf</a>, <a href="https://arxiv.org/ps/1806.09838">ps</a>, <a href="https://arxiv.org/format/1806.09838">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.115127">10.1103/PhysRevB.99.115127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heat switch and thermoelectric effects based on Cooper-pair splitting and elastic cotunneling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Kirsanov%2C+N+S">N. S. Kirsanov</a>, <a href="/search/?searchtype=author&query=Tan%2C+Z+B">Z. B. Tan</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Hakonen%2C+P+J">P. J. Hakonen</a>, <a href="/search/?searchtype=author&query=Lesovik%2C+G+B">G. B. Lesovik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.09838v3-abstract-short" style="display: inline;"> In this paper, we demonstrate that the hybrid normal-superconducting-normal (NSN) structure has potential for a multifunctional thermal device which could serve for heat flux control and cooling of microstructures. By adopting the scattering matrix approach, we theoretically investigate thermal and electrical effects emerging in such structures due to the Cooper pair splitting (CPS) and elastic co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.09838v3-abstract-full').style.display = 'inline'; document.getElementById('1806.09838v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.09838v3-abstract-full" style="display: none;"> In this paper, we demonstrate that the hybrid normal-superconducting-normal (NSN) structure has potential for a multifunctional thermal device which could serve for heat flux control and cooling of microstructures. By adopting the scattering matrix approach, we theoretically investigate thermal and electrical effects emerging in such structures due to the Cooper pair splitting (CPS) and elastic cotunneling phenomena. We show that a finite superconductor can, in principle, mediate heat flow between normal leads, and we further clarify special cases when this seems contradictory to the second law of thermodynamics. Among other things, we demonstrate that the CPS phenomenon can appear even in the simple case of a ballistic NSN structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.09838v3-abstract-full').style.display = 'none'; document.getElementById('1806.09838v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 115127 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.03956">arXiv:1804.03956</a> <span> [<a href="https://arxiv.org/pdf/1804.03956">pdf</a>, <a href="https://arxiv.org/format/1804.03956">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5033560">10.1063/1.5033560 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determining the parameters of a random telegraph signal by digital low pass filtering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Singh%2C+S">Shilpi Singh</a>, <a href="/search/?searchtype=author&query=Mannila%2C+E+T">Elsa T. Mannila</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Peltonen%2C+J+T">Joonas T. Peltonen</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.03956v2-abstract-short" style="display: inline;"> We propose a method to determine the switching rates of a random telegraph signal. We apply digital low pass filtering with varying bandwidth to the raw signal, evaluate the cumulants of the resulting distributions and compare them with the analytical prediction. This technique is useful in case of a slow detector with response time comparable to the time interval between the switching events. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.03956v2-abstract-full').style.display = 'inline'; document.getElementById('1804.03956v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.03956v2-abstract-full" style="display: none;"> We propose a method to determine the switching rates of a random telegraph signal. We apply digital low pass filtering with varying bandwidth to the raw signal, evaluate the cumulants of the resulting distributions and compare them with the analytical prediction. This technique is useful in case of a slow detector with response time comparable to the time interval between the switching events. We demonstrate the efficiency of this method by analyzing random telegraph signals generated by individual charge tunneling events in metallic single-electron transistors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.03956v2-abstract-full').style.display = 'none'; document.getElementById('1804.03956v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 112, 243101 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.01693">arXiv:1712.01693</a> <span> [<a href="https://arxiv.org/pdf/1712.01693">pdf</a>, <a href="https://arxiv.org/format/1712.01693">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.115422">10.1103/PhysRevB.99.115422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extreme reductions of entropy in an electronic double dot </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Singh%2C+S">Shilpi Singh</a>, <a href="/search/?searchtype=author&query=Rold%C3%A1n%2C+%C3%89">脡dgar Rold谩n</a>, <a href="/search/?searchtype=author&query=Neri%2C+I">Izaak Neri</a>, <a href="/search/?searchtype=author&query=Khaymovich%2C+I+M">Ivan M. Khaymovich</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Maisi%2C+V+F">Ville F. Maisi</a>, <a href="/search/?searchtype=author&query=Peltonen%2C+J+T">Joonas T. Peltonen</a>, <a href="/search/?searchtype=author&query=J%C3%BClicher%2C+F">Frank J眉licher</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.01693v2-abstract-short" style="display: inline;"> We experimentally study negative fluctuations of stochastic entropy production in an electronic double dot operating in nonequilibrium steady-state conditions. We record millions of random electron tunneling events at different bias points, thus collecting extensive statistics. We show that for all bias voltages the experimental average values of the minima of stochastic entropy production lie abo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.01693v2-abstract-full').style.display = 'inline'; document.getElementById('1712.01693v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.01693v2-abstract-full" style="display: none;"> We experimentally study negative fluctuations of stochastic entropy production in an electronic double dot operating in nonequilibrium steady-state conditions. We record millions of random electron tunneling events at different bias points, thus collecting extensive statistics. We show that for all bias voltages the experimental average values of the minima of stochastic entropy production lie above $-k_B$, where $k_B$ is the Boltzmann constant, in agreement with recent theoretical predictions for nonequilibrium steady states. Furthermore, we also demonstrate that the experimental cumulative distribution of the entropy production minima is bounded, at all times and for all bias voltages, by a universal expression predicted by the theory. We also extend our theory by deriving a general bound for the average value of the maximum heat absorbed by a mesoscopic system from the environment and compare this result with experimental data. Finally, we show by numerical simulations that these results are not necessarily valid under non-stationary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.01693v2-abstract-full').style.display = 'none'; document.getElementById('1712.01693v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 115422 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.01500">arXiv:1710.01500</a> <span> [<a href="https://arxiv.org/pdf/1710.01500">pdf</a>, <a href="https://arxiv.org/format/1710.01500">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-018-1863-x">10.1007/s10909-018-1863-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetometry with low resistance proximity Josephson junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Jabdaraghi%2C+R+N">R. N. Jabdaraghi</a>, <a href="/search/?searchtype=author&query=Peltonen%2C+J+T">J. T. Peltonen</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">J. P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.01500v1-abstract-short" style="display: inline;"> We characterize a niobium-based superconducting quantum interference proximity transistor (Nb-SQUIPT) built upon a Nb-Cu-Nb SNS weak link. The Nb-SQUIPT and SNS devices are fabricated simultaneously in two separate lithography and deposition steps, relying on Ar ion cleaning of the Nb contact surfaces. The quality of the Nb-Cu interface is characterized by measuring the temperature-dependent equil… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01500v1-abstract-full').style.display = 'inline'; document.getElementById('1710.01500v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.01500v1-abstract-full" style="display: none;"> We characterize a niobium-based superconducting quantum interference proximity transistor (Nb-SQUIPT) built upon a Nb-Cu-Nb SNS weak link. The Nb-SQUIPT and SNS devices are fabricated simultaneously in two separate lithography and deposition steps, relying on Ar ion cleaning of the Nb contact surfaces. The quality of the Nb-Cu interface is characterized by measuring the temperature-dependent equilibrium critical supercurrent of the SNS junction. In the Nb-SQUIPT device, we observe a maximum flux-to-current transfer function value of about 55 nA/桅_0 in the sub-gap regime of bias voltages. This results in suppression of power dissipation down to a few fW. The device can implement a low-dissipation SQUIPT, improving by up to two orders of magnitude compared to a conventional device based on an Al-Cu-Al SNS junction and an Al tunnel probe (Al-SQUIPT). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01500v1-abstract-full').style.display = 'none'; document.getElementById('1710.01500v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.00657">arXiv:1710.00657</a> <span> [<a href="https://arxiv.org/pdf/1710.00657">pdf</a>, <a href="https://arxiv.org/format/1710.00657">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physe.2018.02.019">10.1016/j.physe.2018.02.019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Approximate solutions to Mathieu's equation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Wilkinson%2C+S+A">Samuel A. Wilkinson</a>, <a href="/search/?searchtype=author&query=Vogt%2C+N">Nicolas Vogt</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitry S. Golubev</a>, <a href="/search/?searchtype=author&query=Cole%2C+J+H">Jared H. Cole</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.00657v1-abstract-short" style="display: inline;"> Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrodinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.00657v1-abstract-full').style.display = 'inline'; document.getElementById('1710.00657v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.00657v1-abstract-full" style="display: none;"> Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrodinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.00657v1-abstract-full').style.display = 'none'; document.getElementById('1710.00657v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.06448">arXiv:1705.06448</a> <span> [<a href="https://arxiv.org/pdf/1705.06448">pdf</a>, <a href="https://arxiv.org/format/1705.06448">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Noise of a superconducting magnetic flux sensor based on a proximity Josephson junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Jabdaraghi%2C+R+N">R. N. Jabdaraghi</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">J. P. Pekola</a>, <a href="/search/?searchtype=author&query=Peltonen%2C+J+T">J. T. Peltonen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.06448v1-abstract-short" style="display: inline;"> We demonstrate simultaneous measurements of DC transport properties and flux noise of a hybrid superconducting magnetometer based on the proximity effect (superconducting quantum interference proximity transistor, SQUIPT). The noise is probed by a cryogenic amplifier operating in the frequency range of a few MHz. In our non-optimized device, we achieve minimum flux noise $\sim 4\;渭桅_0/Hz^{1/2}$, s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06448v1-abstract-full').style.display = 'inline'; document.getElementById('1705.06448v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.06448v1-abstract-full" style="display: none;"> We demonstrate simultaneous measurements of DC transport properties and flux noise of a hybrid superconducting magnetometer based on the proximity effect (superconducting quantum interference proximity transistor, SQUIPT). The noise is probed by a cryogenic amplifier operating in the frequency range of a few MHz. In our non-optimized device, we achieve minimum flux noise $\sim 4\;渭桅_0/Hz^{1/2}$, set by the shot noise of the probe tunnel junction. The flux noise performance can be improved by further optimization of the SQUIPT parameters, primarily minimization of the proximity junction length and cross section. Furthermore, the experiment demonstrates that the setup can be used to investigate shot noise in other nonlinear devices with high impedance. This technique opens the opportunity to measure sensitive magnetometers including SQUIPT devices with very low dissipation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06448v1-abstract-full').style.display = 'none'; document.getElementById('1705.06448v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.06029">arXiv:1705.06029</a> <span> [<a href="https://arxiv.org/pdf/1705.06029">pdf</a>, <a href="https://arxiv.org/ps/1705.06029">ps</a>, <a href="https://arxiv.org/format/1705.06029">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.134509">10.1103/PhysRevB.96.134509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Andreev levels as a quantum dissipative environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Galaktionov%2C+A+V">A. V. Galaktionov</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Zaikin%2C+A+D">A. D. Zaikin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.06029v2-abstract-short" style="display: inline;"> We argue that at subgap energies quantum behavior of superconducting weak links can be exactly accounted for by an effective Hamiltonian for a Josephson particle in a quantum dissipative environment formed by Andreev levels. This environment can constitute an important source for intrinsic inelastic relaxation and dephasing in highly transparent weak links. We investigate the problem of macroscopi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06029v2-abstract-full').style.display = 'inline'; document.getElementById('1705.06029v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.06029v2-abstract-full" style="display: none;"> We argue that at subgap energies quantum behavior of superconducting weak links can be exactly accounted for by an effective Hamiltonian for a Josephson particle in a quantum dissipative environment formed by Andreev levels. This environment can constitute an important source for intrinsic inelastic relaxation and dephasing in highly transparent weak links. We investigate the problem of macroscopic quantum tunneling in such weak links demonstrating that -- depending on the barrier transmission -- the supercurrent decay can be described by three different regimes: ($i$) weak intrinsic dissipation, ($ii$) strong intrinsic dissipation and ($iii$) strong capacitance renormalization. Crossover between quantum and thermally-assisted supercurrent decay regimes can also be strongly affected by the Andreev level environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06029v2-abstract-full').style.display = 'none'; document.getElementById('1705.06029v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version, 6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 134509 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.09153">arXiv:1610.09153</a> <span> [<a href="https://arxiv.org/pdf/1610.09153">pdf</a>, <a href="https://arxiv.org/format/1610.09153">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.020501">10.1103/PhysRevB.96.020501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the Bloch-Siegert shift in a driven quantum-to-classical transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Pietik%C3%A4inen%2C+I">I. Pietik盲inen</a>, <a href="/search/?searchtype=author&query=Danilin%2C+S">S. Danilin</a>, <a href="/search/?searchtype=author&query=Kumar%2C+K+S">K. S. Kumar</a>, <a href="/search/?searchtype=author&query=Veps%C3%A4l%C3%A4inen%2C+A">A. Veps盲l盲inen</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Tuorila%2C+J">J. Tuorila</a>, <a href="/search/?searchtype=author&query=Paraoanu%2C+G+S">G. S. Paraoanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.09153v2-abstract-short" style="display: inline;"> We show that the counter-rotating terms of the dispersive qubit-cavity Rabi model can produce relatively large and nonmonotonic Bloch-Siegert shifts in the cavity frequency as the system is driven through a quantum-to-classical transition. Using a weak microwave probe tone, we demonstrate experimentally this effect by monitoring the resonance frequency of a microwave cavity coupled to a transmon a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.09153v2-abstract-full').style.display = 'inline'; document.getElementById('1610.09153v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.09153v2-abstract-full" style="display: none;"> We show that the counter-rotating terms of the dispersive qubit-cavity Rabi model can produce relatively large and nonmonotonic Bloch-Siegert shifts in the cavity frequency as the system is driven through a quantum-to-classical transition. Using a weak microwave probe tone, we demonstrate experimentally this effect by monitoring the resonance frequency of a microwave cavity coupled to a transmon and driven by a microwave field with varying power. In the weakly driven regime (quantum phase), the Bloch-Siegert shift appears as a small constant frequency shift, while for strong drive (classical phase) it presents an oscillatory behaviour as a function of the number of photons in the cavity. The experimental results are in agreement with numerical simulations based on the quasienergy spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.09153v2-abstract-full').style.display = 'none'; document.getElementById('1610.09153v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text (5+ pages and 4 figures) and Supplementary Information (13 pages and 7 figures). Updated to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 020501 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.05089">arXiv:1604.05089</a> <span> [<a href="https://arxiv.org/pdf/1604.05089">pdf</a>, <a href="https://arxiv.org/format/1604.05089">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.6.024005">10.1103/PhysRevApplied.6.024005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dispersive thermometry with a Josephson junction coupled to a resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Saira%2C+O+-">O. -P. Saira</a>, <a href="/search/?searchtype=author&query=Zgirski%2C+M">M. Zgirski</a>, <a href="/search/?searchtype=author&query=Viisanen%2C+K+L">K. L. Viisanen</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">J. P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.05089v2-abstract-short" style="display: inline;"> We have embedded a small Josephson junction in a microwave resonator that allows simultaneous dc biasing and dispersive readout. Thermal fluctuations drive the junction into phase diffusion and induce a temperature-dependent shift in the resonance frequency. By sensing the thermal noise of a remote resistor in this manner, we demonstrate primary thermometry in the range from 300 mK to below 100 mK… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.05089v2-abstract-full').style.display = 'inline'; document.getElementById('1604.05089v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.05089v2-abstract-full" style="display: none;"> We have embedded a small Josephson junction in a microwave resonator that allows simultaneous dc biasing and dispersive readout. Thermal fluctuations drive the junction into phase diffusion and induce a temperature-dependent shift in the resonance frequency. By sensing the thermal noise of a remote resistor in this manner, we demonstrate primary thermometry in the range from 300 mK to below 100 mK, and high-bandwidth (7.5 MHz) operation with a noise-equivalent temperature of better than 10 $\mathrm{渭K/\sqrt{Hz}}$. At a finite bias voltage close to a Fiske resonance, amplification of the microwave probe signal is observed. We develop an accurate theoretical model of our device based on the theory of dynamical Coulomb blockade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.05089v2-abstract-full').style.display = 'none'; document.getElementById('1604.05089v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">(v2) Added data on high-power readout; Reformatted and restructured main text; Language and typographical fixes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 6, 024005 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.03803">arXiv:1508.03803</a> <span> [<a href="https://arxiv.org/pdf/1508.03803">pdf</a>, <a href="https://arxiv.org/format/1508.03803">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.024501">10.1103/PhysRevB.93.024501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Maxwell's Demon Based on a Single Qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Pekola%2C+J+P">J. P. Pekola</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Averin%2C+D+V">D. V. Averin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.03803v3-abstract-short" style="display: inline;"> We propose and analyze Maxwell's demon based on a single qubit with avoided level crossing. Its operation cycle consists of adiabatic drive to the point of minimum energy separation, measurement of the qubit state, and conditional feedback. We show that the heat extracted from the bath at temperature $T$ can ideally approach the Landauer limit of $k_BT\ln 2$ per cycle even in the quantum regime. P… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.03803v3-abstract-full').style.display = 'inline'; document.getElementById('1508.03803v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.03803v3-abstract-full" style="display: none;"> We propose and analyze Maxwell's demon based on a single qubit with avoided level crossing. Its operation cycle consists of adiabatic drive to the point of minimum energy separation, measurement of the qubit state, and conditional feedback. We show that the heat extracted from the bath at temperature $T$ can ideally approach the Landauer limit of $k_BT\ln 2$ per cycle even in the quantum regime. Practical demon efficiency is limited by the interplay of Landau-Zener transitions and coupling to the bath. We suggest that an experimental demonstration of the demon is fully feasible using one of the standard superconducting qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.03803v3-abstract-full').style.display = 'none'; document.getElementById('1508.03803v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.03972">arXiv:1503.03972</a> <span> [<a href="https://arxiv.org/pdf/1503.03972">pdf</a>, <a href="https://arxiv.org/format/1503.03972">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4919892">10.1063/1.4919892 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Andreev Current for low temperature thermometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Faivre%2C+T">T. Faivre</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">J. P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.03972v2-abstract-short" style="display: inline;"> We demonstrate experimentally that disorder enhanced Andreev current in a tunnel junction between a normal metal and a superconductor provides a method to measure electronic temperature, specifically at temperatures below 200 mK when aluminium is used. This Andreev thermometer has some advantages over conventional quasiparticle thermometers: for instance, it does not conduct heat and its reading d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.03972v2-abstract-full').style.display = 'inline'; document.getElementById('1503.03972v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.03972v2-abstract-full" style="display: none;"> We demonstrate experimentally that disorder enhanced Andreev current in a tunnel junction between a normal metal and a superconductor provides a method to measure electronic temperature, specifically at temperatures below 200 mK when aluminium is used. This Andreev thermometer has some advantages over conventional quasiparticle thermometers: for instance, it does not conduct heat and its reading does not saturate until at lower temperatures. Another merit is that the responsivity is constant over a wide temperature range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.03972v2-abstract-full').style.display = 'none'; document.getElementById('1503.03972v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 106, 182602 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.01597">arXiv:1503.01597</a> <span> [<a href="https://arxiv.org/pdf/1503.01597">pdf</a>, <a href="https://arxiv.org/ps/1503.01597">ps</a>, <a href="https://arxiv.org/format/1503.01597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.184515">10.1103/PhysRevB.91.184515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lasing in circuit quantum electrodynamics with strong noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Marthaler%2C+M">M. Marthaler</a>, <a href="/search/?searchtype=author&query=Utsumi%2C+Y">Y. Utsumi</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.01597v1-abstract-short" style="display: inline;"> We study a model which can describe a superconducting single electron transistor (SSET) or a double quantum dot coupled to transmission-line oscillator. In both cases the degree of freedom is given by a charged particle, which couples strongly to the electromagnetic environment or phonons. We consider the case where a lasing condition is established and study the dependence of the average photon n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.01597v1-abstract-full').style.display = 'inline'; document.getElementById('1503.01597v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.01597v1-abstract-full" style="display: none;"> We study a model which can describe a superconducting single electron transistor (SSET) or a double quantum dot coupled to transmission-line oscillator. In both cases the degree of freedom is given by a charged particle, which couples strongly to the electromagnetic environment or phonons. We consider the case where a lasing condition is established and study the dependence of the average photon number in the resonator on the spectral function of the electromagnetic environment. We focus on three important cases: a strongly coupled environment with a small cut-off frequency, a structured environment peaked at a specific frequency and 1/f-noise. We find that the electromagnetic environment can have a substantial impact on the photon creation. Resonance peaks are in general broadened and additional resonances can appear. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.01597v1-abstract-full').style.display = 'none'; document.getElementById('1503.01597v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 184515 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.07221">arXiv:1502.07221</a> <span> [<a href="https://arxiv.org/pdf/1502.07221">pdf</a>, <a href="https://arxiv.org/ps/1502.07221">ps</a>, <a href="https://arxiv.org/format/1502.07221">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.085412">10.1103/PhysRevB.92.085412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Statistics of heat exchange between two resistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">J. P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.07221v2-abstract-short" style="display: inline;"> We study energy flow between two resistors coupled by an arbitrary linear and lossless electric circuit. We show that the fluctuations of energy transferred between the resistors are determined by random scattering of photons on an effective barrier with frequency dependent transmission probability $蟿(蠅)$. We express the latter in terms of the circuit parameters. Our results are valid in both quan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.07221v2-abstract-full').style.display = 'inline'; document.getElementById('1502.07221v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.07221v2-abstract-full" style="display: none;"> We study energy flow between two resistors coupled by an arbitrary linear and lossless electric circuit. We show that the fluctuations of energy transferred between the resistors are determined by random scattering of photons on an effective barrier with frequency dependent transmission probability $蟿(蠅)$. We express the latter in terms of the circuit parameters. Our results are valid in both quantum and classical regimes and for non-equilibrium electron distribution functions in the resistors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.07221v2-abstract-full').style.display = 'none'; document.getElementById('1502.07221v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Published version. New figures added, discussion extended</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 085412 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.6508">arXiv:1310.6508</a> <span> [<a href="https://arxiv.org/pdf/1310.6508">pdf</a>, <a href="https://arxiv.org/format/1310.6508">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.014508">10.1103/PhysRevB.89.014508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunneling and Relaxation of Single Quasiparticles in a Normal-Superconductor-Normal Single Electron Transistor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Heimes%2C+A">Andreas Heimes</a>, <a href="/search/?searchtype=author&query=Maisi%2C+V+F">Ville F. Maisi</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitri S. Golubev</a>, <a href="/search/?searchtype=author&query=Marthaler%2C+M">Michael Marthaler</a>, <a href="/search/?searchtype=author&query=Sch%C3%B6n%2C+G">Gerd Sch枚n</a>, <a href="/search/?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.6508v2-abstract-short" style="display: inline;"> We investigate the properties of a hybrid single electron transistor, involving a small superconducting island sandwiched between normal metal leads, which is driven by dc plus ac voltages. In order to describe its properties we derive from the microscopic theory a set of coupled equations. They consist of a master equation for the probability to find excess charges on the island, with rates depen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.6508v2-abstract-full').style.display = 'inline'; document.getElementById('1310.6508v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.6508v2-abstract-full" style="display: none;"> We investigate the properties of a hybrid single electron transistor, involving a small superconducting island sandwiched between normal metal leads, which is driven by dc plus ac voltages. In order to describe its properties we derive from the microscopic theory a set of coupled equations. They consist of a master equation for the probability to find excess charges on the island, with rates depending on the distribution of non-equilibrium quasiparticles. Their dynamics follows from a kinetic equation which accounts for the excitation by single-electron tunneling as well as the relaxation and eventual recombination due to the interaction with phonons. Our low-temperature results compare well with recent experimental findings obtained for ac-driven hybrid single-electron turnstiles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.6508v2-abstract-full').style.display = 'none'; document.getElementById('1310.6508v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.B 89,014508 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.5823">arXiv:1308.5823</a> <span> [<a href="https://arxiv.org/pdf/1308.5823">pdf</a>, <a href="https://arxiv.org/ps/1308.5823">ps</a>, <a href="https://arxiv.org/format/1308.5823">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.174509">10.1103/PhysRevB.88.174509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlocal transport and heating in superconductors under dual-bias conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Kolenda%2C+S">S. Kolenda</a>, <a href="/search/?searchtype=author&query=Wolf%2C+M+J">M. J. Wolf</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Zaikin%2C+A+D">A. D. Zaikin</a>, <a href="/search/?searchtype=author&query=Beckmann%2C+D">D. Beckmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.5823v2-abstract-short" style="display: inline;"> We report on an experimental and theoretical study of nonlocal transport in superconductor hybrid structures, where two normal-metal leads are attached to a central superconducting wire. As a function of voltage bias applied to both normal-metal electrodes, we find surprisingly large nonlocal conductance signals, almost of the same magnitude as the local conductance. We demonstrate that these sign… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.5823v2-abstract-full').style.display = 'inline'; document.getElementById('1308.5823v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.5823v2-abstract-full" style="display: none;"> We report on an experimental and theoretical study of nonlocal transport in superconductor hybrid structures, where two normal-metal leads are attached to a central superconducting wire. As a function of voltage bias applied to both normal-metal electrodes, we find surprisingly large nonlocal conductance signals, almost of the same magnitude as the local conductance. We demonstrate that these signals are the result of strong heating of the superconducting wire, and that under symmetric bias conditions, heating mimics the effect of Cooper pair splitting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.5823v2-abstract-full').style.display = 'none'; document.getElementById('1308.5823v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 174509 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1304.4054">arXiv:1304.4054</a> <span> [<a href="https://arxiv.org/pdf/1304.4054">pdf</a>, <a href="https://arxiv.org/ps/1304.4054">ps</a>, <a href="https://arxiv.org/format/1304.4054">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.197001">10.1103/PhysRevLett.110.197001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Model evidence of a superconducting state with a full energy gap in small cuprate islands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Black-Schaffer%2C+A+M">Annica M. Black-Schaffer</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitri S. Golubev</a>, <a href="/search/?searchtype=author&query=Bauch%2C+T">Thilo Bauch</a>, <a href="/search/?searchtype=author&query=Lombardi%2C+F">Floriana Lombardi</a>, <a href="/search/?searchtype=author&query=Fogelstr%C3%B6m%2C+M">Mikael Fogelstr枚m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1304.4054v1-abstract-short" style="display: inline;"> We investigate subdominant order parameters stabilizing at low temperatures in nano-scale high-T$_c$ cuprate islands, motivated by the recent observation of a fully gapped state in nanosized YBa$_2$Cu$_3$O$_{7-未}$ [D. Gustafsson {\it et al}, Nature Nanotech. {\bf 8}, 25 (2013)]. Using complementary quasi-classical and tight-binding Bogoliubov-de Gennes methods, we show on distinctly different prop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.4054v1-abstract-full').style.display = 'inline'; document.getElementById('1304.4054v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1304.4054v1-abstract-full" style="display: none;"> We investigate subdominant order parameters stabilizing at low temperatures in nano-scale high-T$_c$ cuprate islands, motivated by the recent observation of a fully gapped state in nanosized YBa$_2$Cu$_3$O$_{7-未}$ [D. Gustafsson {\it et al}, Nature Nanotech. {\bf 8}, 25 (2013)]. Using complementary quasi-classical and tight-binding Bogoliubov-de Gennes methods, we show on distinctly different properties dependent on the symmetry being $d_{x^2-y^2}+i s$ or $d_{x^2-y^2}+i d_{xy}$. We find that a surface-induced $d_{x^2-y^2}+i s$ phase creates a global spectroscopic gap which increases with applied magnetic field, consistent with experimental observation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.4054v1-abstract-full').style.display = 'none'; document.getElementById('1304.4054v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, three figures, accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 197001 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.5818">arXiv:1211.5818</a> <span> [<a href="https://arxiv.org/pdf/1211.5818">pdf</a>, <a href="https://arxiv.org/ps/1211.5818">ps</a>, <a href="https://arxiv.org/format/1211.5818">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.87.054406">10.1103/PhysRevB.87.054406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin torque switching of an in-plane magnetized system in a thermally activated region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Taniguchi%2C+T">Tomohiro Taniguchi</a>, <a href="/search/?searchtype=author&query=Utsumi%2C+Y">Yasuhiro Utsumi</a>, <a href="/search/?searchtype=author&query=Marthaler%2C+M">Michael Marthaler</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitri S. Golubev</a>, <a href="/search/?searchtype=author&query=Imamura%2C+H">Hiroshi Imamura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.5818v2-abstract-short" style="display: inline;"> The current dependence of the exponent of the spin torque switching rate of an in-plane magnetized system was investigated by solving the Fokker-Planck equation with low temperature and small damping and current approximations. We derived the analytical expressions of the critical currents, I_{c} and I_{c}^{*}. At I_{c}, the initial state parallel to the easy axis becomes unstable, while at I_{c}^… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.5818v2-abstract-full').style.display = 'inline'; document.getElementById('1211.5818v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.5818v2-abstract-full" style="display: none;"> The current dependence of the exponent of the spin torque switching rate of an in-plane magnetized system was investigated by solving the Fokker-Planck equation with low temperature and small damping and current approximations. We derived the analytical expressions of the critical currents, I_{c} and I_{c}^{*}. At I_{c}, the initial state parallel to the easy axis becomes unstable, while at I_{c}^{*} (\simeq 1.27 I_{c}) the switching occurs without the thermal fluctuation. The current dependence of the exponent of the switching rate is well described by (1-I/I_{c}^{*})^{b}, where the value of the exponent b is approximately unity for I < I_{c}, while b rapidly increases up to 2.2 with increasing current for I_{c} < I < I_{c}^{*}. The linear dependence for I < I_{c} agrees with the other works, while the nonlinear dependence for I_{c} < I < I_{c}^{*} was newly found by the present work. The nonlinear dependence is important for analysis of the experimental results, because most experiments are performed in the current region of I_{c} < I < I_{c}^{*}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.5818v2-abstract-full').style.display = 'none'; document.getElementById('1211.5818v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 87, 054406 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.2719">arXiv:1204.2719</a> <span> [<a href="https://arxiv.org/pdf/1204.2719">pdf</a>, <a href="https://arxiv.org/ps/1204.2719">ps</a>, <a href="https://arxiv.org/format/1204.2719">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Nonequilibrium quasiparticles and electron cooling by normal metal - superconductor tunnel junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Vasenko%2C+A+S">A. S. Vasenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.2719v1-abstract-short" style="display: inline;"> We consider a model NISIN system with two junctions in series, where N is a normal metal, S is a superconductor and I is an insulator. We assume that the resistance of the first junction is high, while the resistance of the second one is low. In this case the first junction cools the left normal electrode, while the second junction partially removes excited quasiparticles from the superconductor.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.2719v1-abstract-full').style.display = 'inline'; document.getElementById('1204.2719v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.2719v1-abstract-full" style="display: none;"> We consider a model NISIN system with two junctions in series, where N is a normal metal, S is a superconductor and I is an insulator. We assume that the resistance of the first junction is high, while the resistance of the second one is low. In this case the first junction cools the left normal electrode, while the second junction partially removes excited quasiparticles from the superconductor. We consider cooling properties of this double junction structure. It is shown that the cooling power depends strongly on the ratio of the resistances of the two junctions. In conclusion, we derive a generalized expression for the cooling power of a NIS tunnel junction taking into account charge imbalance effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.2719v1-abstract-full').style.display = 'none'; document.getElementById('1204.2719v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Workshop on Superconducting Nano-electronics Devices (Kluwer Academic, Dordrecht, 2002), p. 165 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.1787">arXiv:1203.1787</a> <span> [<a href="https://arxiv.org/pdf/1203.1787">pdf</a>, <a href="https://arxiv.org/ps/1203.1787">ps</a>, <a href="https://arxiv.org/format/1203.1787">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/338/1/012009">10.1088/1742-6596/338/1/012009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-local electron transport and Coulomb effects in three-terminal metallic conductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Zaikin%2C+A+D">A. D. Zaikin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.1787v1-abstract-short" style="display: inline;"> We demonstrate a close relation between Coulomb effects in non-local electron transport and non-local shot noise in three-terminal metallic conductors. Provided the whole structure is normal, cross-correlations in shot noise are negative and Coulomb interaction tends to suppress both local and non-local conductances of the system. The behavior of normal-superconducting-normal structures at subgap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.1787v1-abstract-full').style.display = 'inline'; document.getElementById('1203.1787v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.1787v1-abstract-full" style="display: none;"> We demonstrate a close relation between Coulomb effects in non-local electron transport and non-local shot noise in three-terminal metallic conductors. Provided the whole structure is normal, cross-correlations in shot noise are negative and Coulomb interaction tends to suppress both local and non-local conductances of the system. The behavior of normal-superconducting-normal structures at subgap energies is entirely different. In the tunneling limit non-local differential conductance of such systems are found to have an S-like shape and can turn negative at non-zero bias. At high transmissions crossed Andreev reflection yields positive noise cross-correlations and Coulomb anti-blockade of non-local electron transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.1787v1-abstract-full').style.display = 'none'; document.getElementById('1203.1787v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures. arXiv admin note: text overlap with arXiv:1007.2357</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Conf. Ser. 338, 012009 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.1700">arXiv:1202.1700</a> <span> [<a href="https://arxiv.org/pdf/1202.1700">pdf</a>, <a href="https://arxiv.org/ps/1202.1700">ps</a>, <a href="https://arxiv.org/format/1202.1700">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.075420">10.1103/PhysRevB.86.075420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Work fluctuation theorem for a classical circuit coupled to a quantum conductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Utsumi%2C+Y">Y. Utsumi</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Marthaler%2C+M">M. Marthaler</a>, <a href="/search/?searchtype=author&query=Sch%C3%B6n%2C+G">Gerd Sch枚n</a>, <a href="/search/?searchtype=author&query=Kobayashi%2C+K">Kensuke Kobayashi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.1700v1-abstract-short" style="display: inline;"> We propose a setup for a quantitative test of the quantum fluctuation theorem. It consists of a quantum conductor, driven by an external voltage source, and a classical inductor-capacitor circuit. The work done on the system by the voltage source can be expressed by the classical degrees of freedom of the LC circuit, which are measurable by conventional techniques. In this way the circuit acts as… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1700v1-abstract-full').style.display = 'inline'; document.getElementById('1202.1700v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.1700v1-abstract-full" style="display: none;"> We propose a setup for a quantitative test of the quantum fluctuation theorem. It consists of a quantum conductor, driven by an external voltage source, and a classical inductor-capacitor circuit. The work done on the system by the voltage source can be expressed by the classical degrees of freedom of the LC circuit, which are measurable by conventional techniques. In this way the circuit acts as a classical detector to perform measurements of the quantum conductor. We prove that this definition is consistent with the work fluctuation theorem. The system under consideration is effectively described by a Langevin equation with non-Gaussian white noise. Our analysis extends the proof of the fluctuation theorem to this situation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1700v1-abstract-full').style.display = 'none'; document.getElementById('1202.1700v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 86, 075420 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.7272">arXiv:1111.7272</a> <span> [<a href="https://arxiv.org/pdf/1111.7272">pdf</a>, <a href="https://arxiv.org/format/1111.7272">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.224505">10.1103/PhysRevB.85.224505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pure dephasing in flux qubits due to flux noise with spectral density scaling as $1/ f^伪$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Anton%2C+S+M">S. M. Anton</a>, <a href="/search/?searchtype=author&query=M%C3%BCller%2C+C">C. M眉ller</a>, <a href="/search/?searchtype=author&query=Birenbaum%2C+J+S">J. S. Birenbaum</a>, <a href="/search/?searchtype=author&query=O%27Kelley%2C+S+R">S. R. O'Kelley</a>, <a href="/search/?searchtype=author&query=Fefferman%2C+A+D">A. D. Fefferman</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Hilton%2C+G+C">G. C. Hilton</a>, <a href="/search/?searchtype=author&query=Cho%2C+H+-">H. -M. Cho</a>, <a href="/search/?searchtype=author&query=Irwin%2C+K+D">K. D. Irwin</a>, <a href="/search/?searchtype=author&query=Wellstood%2C+F+C">F. C. Wellstood</a>, <a href="/search/?searchtype=author&query=Sch%C3%B6n%2C+G">Gerd Sch枚n</a>, <a href="/search/?searchtype=author&query=Shnirman%2C+A">A. Shnirman</a>, <a href="/search/?searchtype=author&query=Clarke%2C+J">John Clarke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.7272v2-abstract-short" style="display: inline;"> For many types of superconducting qubits, magnetic flux noise is a source of pure dephasing. Measurements on a representative dc superconducting quantum interference device (SQUID) over a range of temperatures show that $S_桅(f) = A^2/(f/1 \hbox{Hz})^伪$, where $S_桅$ is the flux noise spectral density, $A$ is of the order of 1 $渭桅_0 \, \hbox{Hz}^{-1/2}$ and $0.61 \leq 伪\leq 0.95$; $桅_{0}$ is the flu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.7272v2-abstract-full').style.display = 'inline'; document.getElementById('1111.7272v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.7272v2-abstract-full" style="display: none;"> For many types of superconducting qubits, magnetic flux noise is a source of pure dephasing. Measurements on a representative dc superconducting quantum interference device (SQUID) over a range of temperatures show that $S_桅(f) = A^2/(f/1 \hbox{Hz})^伪$, where $S_桅$ is the flux noise spectral density, $A$ is of the order of 1 $渭桅_0 \, \hbox{Hz}^{-1/2}$ and $0.61 \leq 伪\leq 0.95$; $桅_{0}$ is the flux quantum. For a qubit with an energy level splitting linearly coupled to the applied flux, calculations of the dependence of the pure dephasing time $蟿_蠁$ of Ramsey and echo pulse sequences on $伪$ for fixed $A$ show that $蟿_蠁$ decreases rapidly as $伪$ is reduced. We find that $蟿_蠁$ is relatively insensitive to the noise bandwidth, $f_1 \leq f \leq f_2$, for all $伪$ provided the ultraviolet cutoff frequency $f_2 > 1/蟿_蠁$. We calculate the ratio $蟿_{蠁,E} / 蟿_{蠁,R}$ of the echo ($E$) and Ramsey ($R$) sequences, and the dependence of the decay function on $伪$ and $f_2$. We investigate the case in which $S_桅(f_0)$ is fixed at the "pivot frequency" $f_0 \neq 1$ Hz while $伪$ is varied, and find that the choice of $f_0$ can greatly influence the sensitivity of $蟿_{蠁,E}$ and $蟿_{蠁,R}$ to the value of $伪$. Finally, we present calculated values of $蟿_蠁$ in a qubit corresponding to the values of $A$ and $伪$ measured in our SQUID. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.7272v2-abstract-full').style.display = 'none'; document.getElementById('1111.7272v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 85, 224505 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.2666">arXiv:1110.2666</a> <span> [<a href="https://arxiv.org/pdf/1110.2666">pdf</a>, <a href="https://arxiv.org/ps/1110.2666">ps</a>, <a href="https://arxiv.org/format/1110.2666">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.125406">10.1103/PhysRevB.85.125406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coulomb blockade of non-local electron transport in metallic conductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Zaikin%2C+A+D">A. D. Zaikin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.2666v2-abstract-short" style="display: inline;"> We consider a metallic wire coupled to two metallic electrodes via two junctions placed nearby. A bias voltage applied to one of such junctions alters the electron distribution function in the wire in the vicinity of another junction thus modifying both its noise and the Coulomb blockade correction to its conductance. We evaluate such interaction corrections to both local and non-local conductance… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.2666v2-abstract-full').style.display = 'inline'; document.getElementById('1110.2666v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.2666v2-abstract-full" style="display: none;"> We consider a metallic wire coupled to two metallic electrodes via two junctions placed nearby. A bias voltage applied to one of such junctions alters the electron distribution function in the wire in the vicinity of another junction thus modifying both its noise and the Coulomb blockade correction to its conductance. We evaluate such interaction corrections to both local and non-local conductances demonstrating non-trivial Coulomb anomalies in the system under consideration. Experiments on non-local electron transport with Coulomb effects can be conveniently used to test inelastic electron relaxation in metallic conductors at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.2666v2-abstract-full').style.display = 'none'; document.getElementById('1110.2666v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version. 11 pages, 4 figures. New references added, discussion and introduction are extended, appendices added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 85, 125406 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1107.4240">arXiv:1107.4240</a> <span> [<a href="https://arxiv.org/pdf/1107.4240">pdf</a>, <a href="https://arxiv.org/ps/1107.4240">ps</a>, <a href="https://arxiv.org/format/1107.4240">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.2.011001">10.1103/PhysRevX.2.011001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Irreversibility on the Level of Single-Electron Tunneling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=K%C3%BCng%2C+B">B. K眉ng</a>, <a href="/search/?searchtype=author&query=R%C3%B6ssler%2C+C">C. R枚ssler</a>, <a href="/search/?searchtype=author&query=Beck%2C+M">M. Beck</a>, <a href="/search/?searchtype=author&query=Marthaler%2C+M">M. Marthaler</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Utsumi%2C+Y">Y. Utsumi</a>, <a href="/search/?searchtype=author&query=Ihn%2C+T">T. Ihn</a>, <a href="/search/?searchtype=author&query=Ensslin%2C+K">K. Ensslin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1107.4240v2-abstract-short" style="display: inline;"> We present a low-temperature experimental test of the fluctuation theorem for electron transport through a double quantum dot. The rare entropy-consuming system trajectories are detected in the form of single charges flowing against the source-drain bias by using time-resolved charge detection with a quantum point contact. We find that these trajectories appear with a frequency that agrees with th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.4240v2-abstract-full').style.display = 'inline'; document.getElementById('1107.4240v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1107.4240v2-abstract-full" style="display: none;"> We present a low-temperature experimental test of the fluctuation theorem for electron transport through a double quantum dot. The rare entropy-consuming system trajectories are detected in the form of single charges flowing against the source-drain bias by using time-resolved charge detection with a quantum point contact. We find that these trajectories appear with a frequency that agrees with the theoretical predictions even under strong nonequilibrium conditions, when the finite bandwidth of the charge detection is taken into account. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.4240v2-abstract-full').style.display = 'none'; document.getElementById('1107.4240v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review X 2, 011001 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.3134">arXiv:1105.3134</a> <span> [<a href="https://arxiv.org/pdf/1105.3134">pdf</a>, <a href="https://arxiv.org/ps/1105.3134">ps</a>, <a href="https://arxiv.org/format/1105.3134">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.075323">10.1103/PhysRevB.84.075323 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluctuation theorem for a double quantum dot coupled to a point-contact electrometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Utsumi%2C+Y">Y. Utsumi</a>, <a href="/search/?searchtype=author&query=Marthaler%2C+M">M. Marthaler</a>, <a href="/search/?searchtype=author&query=Schoen%2C+G">Gerd Schoen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.3134v2-abstract-short" style="display: inline;"> We study single-electron transport through a double quantum dot (DQD) monitored by a capacitively coupled quantum point-contact (QPC) electrometer. We derive the full counting statistics for the coupled DQD - QPC system and obtain the joint probability distribution of the charges transferred through the DQD and the QPC consistent with the fluctuation theorem (FT). The system can be described by a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.3134v2-abstract-full').style.display = 'inline'; document.getElementById('1105.3134v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.3134v2-abstract-full" style="display: none;"> We study single-electron transport through a double quantum dot (DQD) monitored by a capacitively coupled quantum point-contact (QPC) electrometer. We derive the full counting statistics for the coupled DQD - QPC system and obtain the joint probability distribution of the charges transferred through the DQD and the QPC consistent with the fluctuation theorem (FT). The system can be described by a master equation with tunneling rates depending of the counting fields and satisfying a generalized local detailed-balance relation. Furthermore, we derive universal relations between the non-linear corrections to the current and noise, which can be verified in experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.3134v2-abstract-full').style.display = 'none'; document.getElementById('1105.3134v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 84, 075323 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1012.3557">arXiv:1012.3557</a> <span> [<a href="https://arxiv.org/pdf/1012.3557">pdf</a>, <a href="https://arxiv.org/ps/1012.3557">ps</a>, <a href="https://arxiv.org/format/1012.3557">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.107.093901">10.1103/PhysRevLett.107.093901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lasing without Inversion in Circuit Quantum Electrodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Marthaler%2C+M">M. Marthaler</a>, <a href="/search/?searchtype=author&query=Utsumi%2C+Y">Y. Utsumi</a>, <a href="/search/?searchtype=author&query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&query=Shnirman%2C+A">A. Shnirman</a>, <a href="/search/?searchtype=author&query=Sch%C3%B6n%2C+G">Gerd Sch枚n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1012.3557v1-abstract-short" style="display: inline;"> We study the photon generation in a transmission line oscillator coupled to a driven qubit in the presence of a dissipative electromagnetic environment. It has been demonstrated previously that a population inversion in the qubit may lead to a lasing state of the oscillator. Here we show that the circuit can also exhibit the effect of "lasing without inversion". This is possible since the coupling… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.3557v1-abstract-full').style.display = 'inline'; document.getElementById('1012.3557v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1012.3557v1-abstract-full" style="display: none;"> We study the photon generation in a transmission line oscillator coupled to a driven qubit in the presence of a dissipative electromagnetic environment. It has been demonstrated previously that a population inversion in the qubit may lead to a lasing state of the oscillator. Here we show that the circuit can also exhibit the effect of "lasing without inversion". This is possible since the coupling to the dissipative environment enhances photon emission as compared to absorption, similar to the recoil effect which was predicted for atomic systems. While the recoil effect is very weak, and so far elusive, the effect described here should be observable with present circuits. We analyze the requirements for the system parameters and environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.3557v1-abstract-full').style.display = 'none'; document.getElementById('1012.3557v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 107, 093901 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.4409">arXiv:1011.4409</a> <span> [<a href="https://arxiv.org/pdf/1011.4409">pdf</a>, <a href="https://arxiv.org/ps/1011.4409">ps</a>, <a href="https://arxiv.org/format/1011.4409">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3518036">10.1063/1.3518036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak localization, Aharonov-Bohm oscillations and decoherence in arrays of quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitri S. Golubev</a>, <a href="/search/?searchtype=author&query=Semenov%2C+A+G">Andrew G. Semenov</a>, <a href="/search/?searchtype=author&query=Zaikin%2C+A+D">Andrei D. Zaikin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.4409v1-abstract-short" style="display: inline;"> Combining scattering matrix theory with non-linear $蟽$-model and Keldysh technique we develop a unified theoretical approach enabling one to non-perturbatively study the effect of electron-electron interactions on weak localization and Aharonov-Bohm oscillations in arbitrary arrays of quantum dots. Our model embraces (i) weakly disordered conductors (ii) strongly disordered conductors and (iii) me… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.4409v1-abstract-full').style.display = 'inline'; document.getElementById('1011.4409v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.4409v1-abstract-full" style="display: none;"> Combining scattering matrix theory with non-linear $蟽$-model and Keldysh technique we develop a unified theoretical approach enabling one to non-perturbatively study the effect of electron-electron interactions on weak localization and Aharonov-Bohm oscillations in arbitrary arrays of quantum dots. Our model embraces (i) weakly disordered conductors (ii) strongly disordered conductors and (iii) metallic quantum dots. In all these cases at $T \to 0$ the electron decoherence time is found to saturate to a finite value determined by the universal formula which agrees quantitatively with numerous experimental results. Our analysis provides overwhelming evidence in favor of electron-electron interactions as a universal mechanism for zero temperature electron decoherence in disordered conductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.4409v1-abstract-full').style.display = 'none'; document.getElementById('1011.4409v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 13 figures, invited paper, published in a special issue of Fiz. Nizk. Temp. (Kharkov) dedicated to Prof. Igor Kulik</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Fiz. Nizk. Temp. (Kharkov), 36, 1163 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1007.2357">arXiv:1007.2357</a> <span> [<a href="https://arxiv.org/pdf/1007.2357">pdf</a>, <a href="https://arxiv.org/ps/1007.2357">ps</a>, <a href="https://arxiv.org/format/1007.2357">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.82.134508">10.1103/PhysRevB.82.134508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Shot noise and Coulomb effects on non-local electron transport in normal-superconducting-normal heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Golubev%2C+D+S">Dmitri S. Golubev</a>, <a href="/search/?searchtype=author&query=Zaikin%2C+A+D">Andrei D. Zaikin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1007.2357v2-abstract-short" style="display: inline;"> We argue that Coulomb interaction can strongly influence non-local electron transport in normal-superconducting-normal structures and emphasize direct relation between Coulomb effects and non-local shot noise. In the tunneling limit non-local differential conductance is found to have an S-like shape and can turn negative at non-zero bias. At high transmissions crossed Andreev reflection yields pos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.2357v2-abstract-full').style.display = 'inline'; document.getElementById('1007.2357v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1007.2357v2-abstract-full" style="display: none;"> We argue that Coulomb interaction can strongly influence non-local electron transport in normal-superconducting-normal structures and emphasize direct relation between Coulomb effects and non-local shot noise. In the tunneling limit non-local differential conductance is found to have an S-like shape and can turn negative at non-zero bias. At high transmissions crossed Andreev reflection yields positive noise cross-correlations and Coulomb anti-blockade of non-local electron transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.2357v2-abstract-full').style.display = 'none'; document.getElementById('1007.2357v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 82, 134508 (2010) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Golubev%2C+D+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Golubev%2C+D+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Golubev%2C+D+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Golubev%2C+D+S&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>