CINXE.COM
Search results for: Chikungunya virus
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Chikungunya virus</title> <meta name="description" content="Search results for: Chikungunya virus"> <meta name="keywords" content="Chikungunya virus"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Chikungunya virus" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Chikungunya virus"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 683</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Chikungunya virus</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">683</span> Chikungunya Virus Infection among Patients with Febrile Illness Attending University of Maiduguri Teaching Hospital, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul-Dahiru%20El-Yuguda">Abdul-Dahiru El-Yuguda</a>, <a href="https://publications.waset.org/abstracts/search?q=Saka%20Saheed%20Baba"> Saka Saheed Baba</a>, <a href="https://publications.waset.org/abstracts/search?q=Tawa%20Monilade%20Adisa"> Tawa Monilade Adisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Bala%20Abubakar"> Mustapha Bala Abubakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Chikungunya (CHIK) virus, a previously anecdotally described arbovirus, is now assuming a worldwide public health burden. The CHIK virus infection is characterized by potentially life threatening and debilitating arthritis in addition to the high fever, arthralgia, myalgia, headache and rash. Method: Three hundred and seventy (370) serum samples were collected from outpatients with febrile illness attending University of Maiduguri Teaching Hospital, Nigeria, and was used to detect for Chikungunya (CHIK) virus IgG and IgM antibodies using the Enzyme Linked Immunosorbent Assays (ELISAs). Result: Out of the 370 sera tested, 39 (10.5%) were positive for presence of CHIK virus antibodies. A total of 24 (6.5%) tested positive for CHIK virus IgM only while none (0.0%) was positive for presence of CHIK virus IgG only and 15 (4.1%) of the serum samples were positive for both IgG and IgM antibodies. A significant difference (p<0.0001) was observed in the distribution of CHIK virus antibodies in relation to gender. The males had prevalence of 8.5% IgM antibodies as against 4.6% observed in females. On the other hand 4.6% of the females were positive for concurrent CHIK virus IgG and IgM antibodies when compared to a prevalence of 3.4% observed in males. Only the age groups ≤ 60 years and the undisclosed age group were positive for presence of CHIK virus IgG and/or IgM antibodies. No significant difference (p>0.05) was observed in the seasonal prevalence of CHIK virus antibodies among the study subjects Analysis of the prevalence of CHIK virus antibodies in relation to clinical presentation (as observed by Clinicians) of the patients revealed that headache and fever were the most frequently encountered ailments. Conclusion: The CHIK virus IgM and concurrent IgM and IgG antibody prevalence rates of 6.5% and 4.1% observed in this study indicates a current infection and the lack of IgG antibody alone observed shows that the infection is not endemic but sporadic. Recommendation: Further studies should be carried to establish the seasonal prevalence of CHIK virus infection vis-à-vis vector dynamics in the study area. A comprehensive study need to be carried out on the molecular characterization of the CHIK virus circulating in Nigeria with a view to developing CHIK virus vaccine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus" title="Chikungunya virus">Chikungunya virus</a>, <a href="https://publications.waset.org/abstracts/search?q=IgM%20and%20IgG%20antibodies" title=" IgM and IgG antibodies"> IgM and IgG antibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=febrile%20patients" title=" febrile patients"> febrile patients</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20linked%20immunosorbent%20assay" title=" enzyme linked immunosorbent assay"> enzyme linked immunosorbent assay</a> </p> <a href="https://publications.waset.org/abstracts/57517/chikungunya-virus-infection-among-patients-with-febrile-illness-attending-university-of-maiduguri-teaching-hospital-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">682</span> Using Baculovirus Expression Vector System to Express Envelop Proteins of Chikungunya Virus in Insect Cells and Mammalian Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tania%20Tzong">Tania Tzong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Yi%20Teng"> Chao-Yi Teng</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzong-Yuan%20Wu"> Tzong-Yuan Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, Chikungunya virus (CHIKV) transmitted to humans by Aedes mosquitoes has distributed from Africa to Southeast Asia, South America, and South Europe. However, little is known about the antigenic targets for immunity, and there are no licensed vaccines or specific antiviral treatments for the disease caused by CHIKV. Baculovirus has been recognized as a novel vaccine vector with attractive characteristic features of an optional vaccine delivery vehicle. This approach provides the safety and efficacy of CHIKV vaccine. In this study, bi-cistronic recombinant baculoviruses vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP were produced. Both recombinant baculovirus can express EGFP reporter gene in insect cells to facilitate the recombinant virus isolation and purification. Examination of vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP showed that this recombinant baculovirus could induce syncytium formation in insect cells. Unexpectedly, the immunofluorescence assay revealed the expression of E1 and E2 of CHIKV structural proteins in insect cells infected by vAc-CMV-CHIKV26S-Rhir-EGFP. This result may imply that the CMV promoter can induce the transcription of CHIKV26S in insect cells. There are also E1 and E2 expression in mammalian cells transduced by vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP. The expression of E1 and E2 proteins of insect and mammalian cells was validated again by Western blot analysis. The vector construction with dual tandem promoters, which is polyhedrin and CMV promoter, has higher expression of the E1 and E2 of CHIKV structural proteins than the vector construction with CMV promoter only. Most of the E1 and E2 proteins expressed in mammalian cells were glycosylated. In the future, the expression of structural proteins of CHIKV in mammalian cells is expected can form virus-like particle, so it could be used as a vaccine for chikungunya virus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chikungunya%20virus" title="chikungunya virus">chikungunya virus</a>, <a href="https://publications.waset.org/abstracts/search?q=virus-like%20particle" title=" virus-like particle"> virus-like particle</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccines" title=" vaccines"> vaccines</a>, <a href="https://publications.waset.org/abstracts/search?q=baculovirus%20expression%20vector%20system" title=" baculovirus expression vector system"> baculovirus expression vector system</a> </p> <a href="https://publications.waset.org/abstracts/16109/using-baculovirus-expression-vector-system-to-express-envelop-proteins-of-chikungunya-virus-in-insect-cells-and-mammalian-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">681</span> Clinical, Demographic and Molecular Characterization of Dengue, Chikungunya and Zika Viruses Causing Hemorrhagic Fever in North India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suruchi%20Shukla">Suruchi Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Shantanu%20Prakash"> Shantanu Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Amita%20Jain"> Amita Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Arboviral diseases are one of the most common causes of viral hemorrhagic fever (VHF). Of which, Dengue and Chikungunya pose a significant health problem in India. Arbovirus has a tendency to cross the territories and emerge in the new region. Considering the above issues, in the current study active surveillance was conducted among viral hemorrhagic fever (VHF) cases reported from Uttar Pradesh (UP), India. We studied the arboviral etiology of VHF; mainly Dengue, Chikungunya, and ZIKA. Methods: Clinical samples of 465 suspected VHF cases referred to tertiary care referral center of UP, India were enrolled in the study during a period from 15th May 2016 to 9th March 2018. Serum specimens were collected and analyzed for the presence of Dengue, Chikungunya, and ZIKA either by serology and/or by molecular assays. Results: Of all tested, 165 (35.4%) cases were positive for either Dengue or Chikungunya. Dengue (21.2%) was found to be the most prevalent, followed by Chikungunya, (6.6%). None of the cases tested positive for ZIKA virus. Serum samples of 35 (7.5%) cases were positive for both Dengue and Chikungunya. DEN-2 serotype was the most predominant serotype. Phylogenetic and sequence analysis of DEN-2 strains showed 100% clustering with the Cosmopolitan genotype strain. Bleeding from several sites, jaundice, abdominal pain, arthralgia, haemoconcentration, and thrombocytopenia were significantly higher in dengue hemorrhagic cases. However, the rash was significantly more common in Chikungunya patients. Most of the Dengue and Chikungunya positive cases (Age group 6-40 years) were seen in post monsoon season (September to November). Conclusion: Only one-third of total VHF cases are positive for either Dengue/Chikungunya or both. This necessitates the screening of other etiologies capable of causing hemorrhagic manifestations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viral%20hemorrhagic%20fever" title="viral hemorrhagic fever">viral hemorrhagic fever</a>, <a href="https://publications.waset.org/abstracts/search?q=dengue" title=" dengue"> dengue</a>, <a href="https://publications.waset.org/abstracts/search?q=chikungunya" title=" chikungunya"> chikungunya</a>, <a href="https://publications.waset.org/abstracts/search?q=zika" title=" zika"> zika</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/98091/clinical-demographic-and-molecular-characterization-of-dengue-chikungunya-and-zika-viruses-causing-hemorrhagic-fever-in-north-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">680</span> A Matched Case-Control Study to Asses the Association of Chikunguynya Severity among Blood Groups and Other Determinants in Tesseney, Gash Barka Zone, Eritrea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghirmay%20Teklemicheal">Ghirmay Teklemicheal</a>, <a href="https://publications.waset.org/abstracts/search?q=Samsom%20Mehari"> Samsom Mehari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Tesfay"> Sara Tesfay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: A total of 1074 suspected chikungunya cases were reported in Tesseney Province, Gash Barka region, Eritrea, during an outbreak. This study was aimed to assess the possible association of chikungunya severity among ABO blood groups and other potential determinants. Methods: A sex-matched and age-matched case-control study was conducted during the outbreak. For each case, one control subject had been selected from the mild Chikungunya cases. Along the same line of argument, a second control subject had also been designated through which neighborhood of cases were analyzed, scrutinized, and appeared to the scheme of comparison. Time is always the most sacrosanct element in pursuance of any study. According to the temporal calculation, this study was pursued from October 15, 2018, to November 15, 2018. Coming to the methodological dependability, calculating odds ratios (ORs) and conditional (fixed-effect) logistic regression methods were being applied. As a consequence of this, the data was analyzed and construed on the basis of the aforementioned methodological systems. Results: In this outbreak, 137 severe suspected chikungunya cases and 137 mild chikungunya suspected patients, and 137 controls free of chikungunya from the neighborhood of cases were analyzed. Non-O individuals compared to those with O blood group indicated as significant with a p-value of 0.002. Separate blood group comparison among A and O blood groups reflected as significant with a p-value of 0.002. However, there was no significant difference in the severity of chikungunya among B, AB, and O blood groups with a p-value of 0.113 and 0.708, respectively, and a strong association of chikungunya severity was found with hypertension and diabetes (p-value of < 0.0001); whereas, there was no association between chikungunya severity and asthma with a p-value of 0.695 and also no association with pregnancy (p-value =0.881), ventilator (p-value =0.181), air conditioner (p-value = 0.247), and didn’t use latrine and pit latrine (p-value = 0.318), among individuals using septic and pit latrine (p-value = 0.567) and also among individuals using flush and pit latrine (p-value = 0.194). Conclusions: Non- O blood groups were found to be at risk more than their counterpart O blood group individuals with severe form of chikungunya disease. By the same token, individuals with chronic disease were more prone to severe forms of the disease in comparison with individuals without chronic disease. Prioritization is recommended for patients with chronic diseases and non-O blood group since they are found to be susceptible to severe chikungunya disease. Identification of human cell surface receptor(s) for CHIKV is quite necessary for further understanding of its pathophysiology in humans. Therefore, molecular and functional studies will necessarily be helpful in disclosing the association of blood group antigens and CHIKV infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chikungunya" title="Chikungunya">Chikungunya</a>, <a href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus" title=" Chikungunya virus"> Chikungunya virus</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20outbreaks" title=" disease outbreaks"> disease outbreaks</a>, <a href="https://publications.waset.org/abstracts/search?q=case-control%20studies" title=" case-control studies"> case-control studies</a>, <a href="https://publications.waset.org/abstracts/search?q=Eritrea" title=" Eritrea"> Eritrea</a> </p> <a href="https://publications.waset.org/abstracts/133404/a-matched-case-control-study-to-asses-the-association-of-chikunguynya-severity-among-blood-groups-and-other-determinants-in-tesseney-gash-barka-zone-eritrea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">679</span> Assessment of Selected Marine Organisms from Malaysian Coastal Areas for Inhibitory Activity against the Chikungunya Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yik%20Sin%20Chan">Yik Sin Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Weng%20Sit"> Nam Weng Sit</a>, <a href="https://publications.waset.org/abstracts/search?q=Fook%20Yee%20Chye"> Fook Yee Chye</a>, <a href="https://publications.waset.org/abstracts/search?q=van%20Ofwegen%20Leen"> van Ofwegen Leen</a>, <a href="https://publications.waset.org/abstracts/search?q=de%20Voogd%20Nicole"> de Voogd Nicole</a>, <a href="https://publications.waset.org/abstracts/search?q=Kong%20Soo%20Khoo"> Kong Soo Khoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chikungunya fever is an arboviral disease transmitted by the Aedes mosquitoes. It has resulted in epidemics of the disease in tropical countries in the Indian Ocean and South East Asian regions. The recent spread of this disease to the temperate countries such as France and Italy, coupled with the absence of vaccines and effective antiviral drugs make chikungunya fever a worldwide health threat. This study aims to investigate the anti-chikungunya virus activity of selected marine organism samples collected from Malaysian coastal areas, including seaweeds (Caulerpa racemosa, Caulerpa sertularioides and Kappaphycus alvarezii), a soft coral (Lobophytum microlobulatum) and a sponge (Spheciospongia vagabunda). Following lyophilization (oven drying at 40C for K. alvarezii) and grinding to powder form, each sample was subjected to sequential solvent extraction using hexane, chloroform, ethyl acetate, ethanol, methanol and distilled water in order to extract bioactive compounds. The antiviral activity was evaluated using monkey kidney epithelial (Vero) cells infected with the virus (multiplicity of infection=1). The cell viability was determined by Neutral Red uptake assay. 70% of the 30 extracts showed weak inhibitory activity with cell viability ≤30%. Seven of the extracts exhibited moderate inhibitory activity (cell viability: 31%-69%). These were the chloroform, ethyl acetate, ethanol and methanol extracts of C. racemosa; chloroform and ethyl acetate extracts of L. microlobulatum; and the chloroform extract of C. sertularioides. Only the hexane and ethanol extracts of L. microlobulatum showed strong inhibitory activity against the virus, resulting in cell viabilities (mean±SD; n=3) of 73.3±2.6% and 79.2±0.9%, respectively. The corresponding mean 50% effective concentrations (EC50) for the extracts were 14.2±0.2 and 115.3±1.2 µg/mL, respectively. The ethanol extract of the soft coral L. microlobulatum appears to hold the most promise for further characterization of active principles as it possessed greater selectivity index (SI>5.6) compared to the hexane extract (SI=2.1). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral" title="antiviral">antiviral</a>, <a href="https://publications.waset.org/abstracts/search?q=seaweed" title=" seaweed"> seaweed</a>, <a href="https://publications.waset.org/abstracts/search?q=sponge" title=" sponge"> sponge</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20coral" title=" soft coral"> soft coral</a>, <a href="https://publications.waset.org/abstracts/search?q=vero%20cell" title=" vero cell"> vero cell</a> </p> <a href="https://publications.waset.org/abstracts/13323/assessment-of-selected-marine-organisms-from-malaysian-coastal-areas-for-inhibitory-activity-against-the-chikungunya-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">678</span> Study on the Incidence of Chikungunya Infection in Swat Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasib%20Zaman">Nasib Zaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Maneesha%20Kour"> Maneesha Kour</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rizwan"> Muhammad Rizwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazal%20Akbar"> Fazal Akbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract: Chikungunya fever is a re-emerging rapidly spreading mosquito-borne disease cause by Aedes albopictus and Aedes aegypti mosquito vectors. Currently, it is affecting millions of people globally. Objective: This study's main objective was to find the incidence of chikungunya fever in the Swat region and the factors associated with the spread of this infection. Method: This study was carried out in different areas of Swat. Blood samples and data were collected from selected patients, and a questionnaire was filled for each patient. 3-5ml of the specimen was taken from the patient's vein and serum, or plasma was separated by centrifugation. Chikungunya tests were performed for IgG and IgM antibodies. The data was analyzed by SPSS and Graph Paid Prism 5. Results: A total of 169 patients were included in this study, out of which 103 (60.9%) having age less than 30 years were positive for chikungunya infection and 66 (39.1%) having more than 30 years were negative for this infection. Only 1 (0.6%) were positive for both IgG and IgM antibody. About 15 (8.9%) patients have diagnosed with positive IgG antibodies, and 25 (26.6%) patients were positive for IgM positive antibodies. The infection rate was significantly higher in males compared to females 71 (59.6%) vs. 14 (38%) P value=0.088, OR=1.7. Conclusion: This study concludes clinical knowledge and awareness that are necessary for a diagnosis of chikungunya infection properly. Therefore it is important to educate people for the eradication of this infection. Recommendation: This study also recommends investigating the other risk factors associated with this infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chikungunya" title="Chikungunya">Chikungunya</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factor" title=" risk factor"> risk factor</a>, <a href="https://publications.waset.org/abstracts/search?q=Incidence" title=" Incidence"> Incidence</a>, <a href="https://publications.waset.org/abstracts/search?q=antibodies" title=" antibodies"> antibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquito" title=" mosquito"> mosquito</a> </p> <a href="https://publications.waset.org/abstracts/136558/study-on-the-incidence-of-chikungunya-infection-in-swat-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">677</span> Evaluation of Medicinal Plants, Catunaregam spinosa, Houttuynia cordata, and Rhapis excelsa from Malaysia for Antibacterial, Antifungal and Antiviral Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yik%20Sin%20Chan">Yik Sin Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bee%20Ling%20Chuah"> Bee Ling Chuah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Quan%20Chan"> Wei Quan Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ri%20Jin%20Cheng"> Ri Jin Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Hang%20Oon"> Yan Hang Oon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kong%20Soo%20Khoo"> Kong Soo Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Weng%20Sit"> Nam Weng Sit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, medicinal plants have been used to treat different kinds of ailments including infectious diseases. They serve as a good source of lead compounds for the development of new and safer anti-infective agents. This study aimed to investigate the antimicrobial potential of the leaves of three medicinal plants, namely Catunaregam spinosa (Rubiaceae; Mountain pomegranate), Houttuynia cordata (Saururaceae; "fishy-smell herb") and Rhapis excelsa (Arecaceae; “broadleaf lady palm”). The leaves extracts were obtained by sequential extraction using hexane, chloroform, ethyl acetate, ethanol, methanol and water. The antibacterial and antifungal activities were assessed using a colorimetric broth microdilution method against a panel of human pathogenic bacteria (Gram-positive: Bacillus cereus and Staphylococcus aureus; Gram-negative: Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and fungi (yeasts: Candida albicans, Candida parapsilosis and Cryptococcus neoformans; Moulds: Aspergillus fumigatus and Trichophyton mentagrophytes) respectively; while antiviral activity was evaluated against the Chikungunya virus on monkey kidney epithelial (Vero) cells by neutral red uptake assay. All the plant extracts showed bacteriostatic activity, however, only 72% of the extracts (13/18) were found to have bactericidal activity. The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were given by the hexane extract of C. spinosa against S. aureus with the values of 0.16 and 0.31 mg/mL respectively. All the extracts also possessed fungistatic activity. Only the hexane, chloroform and ethyl acetate extracts of H. cordata exerted inhibitory activity against A. fumigatus, giving the lowest fungal susceptibility index of 16.7%. In contrast, only 61% of the extracts (11/18) showed fungicidal activity. The ethanol extract of R. excelsa exhibited the strongest fungicidal activity against C. albicans, C. parapsilosis and T. mentagrophytes with minimum fungicidal concentration (MFC) values of 0.04–0.08 mg/mL, in addition to its methanol extract against T. mentagrophytes (MFC=0.02 mg/mL). For anti-Chikungunya virus activity, only chloroform and ethyl acetate extracts of R. excelsa showed significant antiviral activity with 50% effective concentrations (EC50) of 29.9 and 78.1 g/mL respectively. Extracts of R. excelsa warrant further investigations into their active principles responsible for antifungal and antiviral properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bactericidal" title="bactericidal">bactericidal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus" title=" Chikungunya virus"> Chikungunya virus</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=fungicidal" title=" fungicidal"> fungicidal</a> </p> <a href="https://publications.waset.org/abstracts/12520/evaluation-of-medicinal-plants-catunaregam-spinosa-houttuynia-cordata-and-rhapis-excelsa-from-malaysia-for-antibacterial-antifungal-and-antiviral-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">676</span> Chikungunya Virus Detection Utilizing an Origami Based Electrochemical Paper Analytical Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradakshina%20Sharma">Pradakshina Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagriti%20Narang"> Jagriti Narang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the critical significance in the early identification of infectious diseases, electrochemical sensors have garnered considerable interest. Here, we develop a detection platform for the chikungunya virus by rationally implementing the extremely high charge-transfer efficiency of a ternary nanocomposite of graphene oxide, silver, and gold (G/Ag/Au) (CHIKV). Because paper is an inexpensive substrate and can be produced in large quantities, the use of electrochemical paper analytical device (EPAD) origami further enhances the sensor's appealing qualities. A cost-effective platform for point-of-care diagnostics is provided by paper-based testing. These types of sensors are referred to as eco-designed analytical tools due to their efficient production, usage of the eco-friendly substrate, and potential to reduce waste management after measuring by incinerating the sensor. In this research, the paper's foldability property has been used to develop and create 3D multifaceted biosensors that can specifically detect the CHIKVX-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and transmission electron microscopy (TEM) were used to characterize the produced nanoparticles. In this work, aptamers are used since they are thought to be a unique and sensitive tool for use in rapid diagnostic methods. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV), which were both validated with a potentiostat, were used to measure the analytical response of the biosensor. The target CHIKV antigen was hybridized with using the aptamer-modified electrode as a signal modulation platform, and its presence was determined by a decline in the current produced by its interaction with an anionic mediator, Methylene Blue (MB). Additionally, a detection limit of 1ng/ml and a broad linear range of 1ng/ml-10µg/ml for the CHIKV antigen were reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensors" title="biosensors">biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=ePAD" title=" ePAD"> ePAD</a>, <a href="https://publications.waset.org/abstracts/search?q=arboviral%20infections" title=" arboviral infections"> arboviral infections</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20of%20care" title=" point of care"> point of care</a> </p> <a href="https://publications.waset.org/abstracts/158630/chikungunya-virus-detection-utilizing-an-origami-based-electrochemical-paper-analytical-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">675</span> Diffraction-Based Immunosensor for Dengue NS1 Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harriet%20Jane%20R.%20Caleja">Harriet Jane R. Caleja</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20I.%20Ballesteros"> Joel I. Ballesteros</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20R.%20Del%20Mundo"> Florian R. Del Mundo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dengue fever belongs to the world’s major cause of death, especially in the tropical areas. In the Philippines, the number of dengue cases during the first half of 2015 amounted to more than 50,000. In 2012, the total number of cases of dengue infection reached 132,046 of which 701 patients died. Dengue Nonstructural 1 virus (Dengue NS1 virus) is a recently discovered biomarker for the early detection of dengue virus. It is present in the serum of the dengue virus infected patients even during the earliest stages prior to the formation of dengue virus antibodies. A biosensor for the dengue detection using NS1 virus was developed for faster and accurate diagnostic tool. Biotinylated anti-dengue virus NS1 was used as the receptor for dengue virus NS1. Using the Diffractive Optics Technology (dotTM) technique, real time binding of the NS1 virus to the biotinylated anti-NS1 antibody is observed. The dot®-Avidin sensor recognizes the biotinylated anti-NS1 and this served as the capture molecule to the analyte, NS1 virus. The increase in the signal of the diffractive intensity signifies the binding of the capture and the analyte. The LOD was found to be 3.87 ng/mL while the LOQ is 12.9 ng/mL. The developed biosensor was also found to be specific for the NS1 virus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=avidin-biotin" title="avidin-biotin">avidin-biotin</a>, <a href="https://publications.waset.org/abstracts/search?q=diffractive%20optics%20technology" title=" diffractive optics technology"> diffractive optics technology</a>, <a href="https://publications.waset.org/abstracts/search?q=immunosensor" title=" immunosensor"> immunosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=NS1" title=" NS1"> NS1</a> </p> <a href="https://publications.waset.org/abstracts/38525/diffraction-based-immunosensor-for-dengue-ns1-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">674</span> A Comparative Study of Virus Detection Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Al%20amro">Sulaiman Al amro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alkhalifah"> Ali Alkhalifah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing number of computer viruses and the detection of zero day malware have been the concern for security researchers for a large period of time. Existing antivirus products (AVs) rely on detecting virus signatures which do not provide a full solution to the problems associated with these viruses. The use of logic formulae to model the behaviour of viruses is one of the most encouraging recent developments in virus research, which provides alternatives to classic virus detection methods. In this paper, we proposed a comparative study about different virus detection techniques. This paper provides the advantages and drawbacks of different detection techniques. Different techniques will be used in this paper to provide a discussion about what technique is more effective to detect computer viruses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20viruses" title="computer viruses">computer viruses</a>, <a href="https://publications.waset.org/abstracts/search?q=virus%20detection" title=" virus detection"> virus detection</a>, <a href="https://publications.waset.org/abstracts/search?q=signature-based" title=" signature-based"> signature-based</a>, <a href="https://publications.waset.org/abstracts/search?q=behaviour-based" title=" behaviour-based"> behaviour-based</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic-based" title=" heuristic-based "> heuristic-based </a> </p> <a href="https://publications.waset.org/abstracts/28688/a-comparative-study-of-virus-detection-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">673</span> Women's Perceptions of Zika Virus Prevention Recommendations: A Tale of Two Cities within Fortaleza, Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeni%20Stolow">Jeni Stolow</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Moses"> Lina Moses</a>, <a href="https://publications.waset.org/abstracts/search?q=Carl%20Kendall"> Carl Kendall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zika virus (ZIKV) reemerged as a global threat in 2015 with Brazil at its epicenter. Brazilians have a long history of combatting Aedes aegypti mosquitos as it is a common vector for dengue, chikungunya, and yellow fever. As a response to the epidemic, public health authorities promoted ZIKV prevention behaviors such as mosquito bite prevention, reproductive counseling for women who are pregnant or contemplating pregnancy, pregnancy avoidance, and condom use. Most prevention efforts from Brazil focused on the mosquito vector- utilizing recycled dengue approaches without acknowledging the context in which women were able to adhere to these prevention messages. This study used qualitative methods to explore how women in Fortaleza, Brazil perceive ZIKV, the Brazilian authorities’ ZIKV prevention recommendations, and the feasibility of adhering to these recommendations. A core study aim was to look at how women perceive their physical, social, and natural environment as it impacts women’s ability to adhere to ZIKV prevention behaviors. A Rapid Anthropological Assessment (RAA) containing observations, informational interviews, and semi-structured in-depth interviews were utilized for data collection. The study utilized Grounded Theory as the systematic inductive method of analyzing the data collected. Interviews were conducted with 35 women of reproductive age (15-39 years old), who primarily utilize the public health system. It was found that women’s self-identified economic class was associated with how strongly women felt they could prevent ZIKV. All women interviewed technically belong to the C-class, the middle economic class. Although all members of the same economic class, there was a divide amongst participants as to who perceived themselves as higher C-class versus lower C-class. How women saw their economic status was dictated by how they perceived their physical, social, and natural environment. Women further associated their environment and their economic class to their likelihood of contracting ZIKV, their options for preventing ZIKV, their ability to prevent ZIKV, and their willingness to attempt to prevent ZIKV. Women’s perceived economic status was found to relate to their structural environment (housing quality, sewage, and locations to supplies), social environment (family and peer norms), and natural environment (wetland areas, natural mosquito breeding sites, and cyclical nature of vectors). Findings from this study suggest that women’s perceived environment and economic status impact their perceived feasibility and desire to attempt behaviors to prevent ZIKV. Although ZIKV has depleted from epidemic to endemic status, it is suggested that the virus will return as cyclical outbreaks like that seen with similar arboviruses such as dengue and chikungunya. As the next ZIKV epidemic approaches it is essential to understand how women perceive themselves, their abilities, and their environments to best aid the prevention of ZIKV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aedes%20aegypti" title="Aedes aegypti">Aedes aegypti</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=prevention" title=" prevention"> prevention</a>, <a href="https://publications.waset.org/abstracts/search?q=qualitative" title=" qualitative"> qualitative</a>, <a href="https://publications.waset.org/abstracts/search?q=zika" title=" zika"> zika</a> </p> <a href="https://publications.waset.org/abstracts/107927/womens-perceptions-of-zika-virus-prevention-recommendations-a-tale-of-two-cities-within-fortaleza-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">672</span> Zika Virus NS5 Protein Potential Inhibitors: An Enhanced in silico Approach in Drug Discovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pritika%20Ramharack">Pritika Ramharack</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20E.%20S.%20Soliman"> Mahmoud E. S. Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The re-emerging Zika virus is an arthropod-borne virus that has been described to have explosive potential as a worldwide pandemic. The initial transmission of the virus was through a mosquito vector, however, evolving modes of transmission has allowed the spread of the disease over continents. The virus already been linked to irreversible chronic central nervous system (CNS) conditions. The concerns of the scientific and clinical community are the consequences of Zika viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides in vaccine development against the virus but there are still no FDA-approved drugs available. Rapid rational drug design and discovery research is fundamental in the production of potent inhibitors against the virus that will not just mask the virus, but destroy it completely. In silico drug design allows for this prompt screening of potential leads, thus decreasing the consumption of precious time and resources. This study demonstrates an optimized and proven screening technique in the discovery of two potential small molecule inhibitors of Zika virus Methyltransferase and RNA-dependent RNA polymerase. This in silico “per-residue energy decomposition pharmacophore” virtual screening approach will be critical in aiding scientists in the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-viral agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NS5%20protein%20inhibitors" title="NS5 protein inhibitors">NS5 protein inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=per-residue%20decomposition" title=" per-residue decomposition"> per-residue decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacophore%20model" title=" pharmacophore model"> pharmacophore model</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20screening" title=" virtual screening"> virtual screening</a>, <a href="https://publications.waset.org/abstracts/search?q=Zika%20virus" title=" Zika virus"> Zika virus</a> </p> <a href="https://publications.waset.org/abstracts/59456/zika-virus-ns5-protein-potential-inhibitors-an-enhanced-in-silico-approach-in-drug-discovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">671</span> Biopsy Proven Polyoma (BK) Virus in Saudi Kidney Recipients – Prevalence, Clinicopathological Features and Clinico-Pathological Correlations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Hamdan%20Al-Jahdali">Sarah Hamdan Al-Jahdali</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Alsaad"> Khaled Alsaad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al-Sayyari"> Abdullah Al-Sayyari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: To study the prevalence, clinicopathological features, risk factors and outcome of biopsy proven polyoma (BK) virus infection among Saudi kidney transplant recipients and compare them to negative BK virus group. Methods: We retrospectively reviewed the charts of all the patients with biopsy-proven polyoma (BK) virus infection in King Abdulaziz Medical City in Riyadh between 2005 and 2011. The details of clinical presentation, the indication for kidney biopsy, the laboratory findings at presentation, the natural history of the disease, thepathological findings, the prognosis as well as the response to therapy were all recorded. Results: Kidney biopsy was performed in 37 cases of unexplained graft dysfunction. BK virus was found in 10 (27%). Out of those 10, 3 (30%) ended with graft failure. BK virus occurred in all patients who received ATG induction therapy 100% versus 59.3% in the non BK virus patients (p=0.06). Furthermore, the risk of BK virus was much less in those who received acyclovir as an anti-viral prophylaxis as compared to those who did not receive it (p=0.01). Also, patients with BK virus weighed much less (mean 46.7±20.6 Kgs) than those without BK virus at time of transplantation (mean 64.3±12.1). Graft survival was better among deceased donor kidneys compared to living ones (P=0.016) and with older age (P=0.005). Conclusion: Our findings suggest the involvement of ATG induction therapy, the lack of antiviral prophylaxis therapy and lower weight at transplant as significant risk factors for the development of BK virus infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BKVAN" title="BKVAN">BKVAN</a>, <a href="https://publications.waset.org/abstracts/search?q=BKV" title=" BKV"> BKV</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney%20transpant" title=" kidney transpant"> kidney transpant</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/30336/biopsy-proven-polyoma-bk-virus-in-saudi-kidney-recipients-prevalence-clinicopathological-features-and-clinico-pathological-correlations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">670</span> Household Low Temperature MS2 (ATCC15597-B1) Virus Inactivation Using a Hot Bubble Column Evaporator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Garrido%20Sanchis">Adrian Garrido Sanchis</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Pashley"> Richard Pashley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MS2 (ATCC15597-B1) virus was used as a surrogate to estimate the inactivation rates for enteric viruses when using a hot air bubble column evaporator (HBCE) system in the treatment of household wastewater. In this study, we have combined MS2 virus surface charging properties with thermal inactivation rates, using an improved double layer plaque assay technique, in order to assess the efficiency of the HBCE process for virus removal in water. When bubbling a continuous flow of dry air, at 200°C, only heats the aqueous solution in the bubble column to about 50°C. Viruses are not inactivated by this solution temperature, as confirmed separately from water bath heating experiments. Hence, the efficiency of the HBCE process for virus removal in water appeared to be caused entirely by collisions between the hot air bubbles and the virus organisms. This new energy efficient treatment for water reuse applications can reduce the thermal energy required to only 25% (about 113.7 kJ/L) of that required for boiling (about 450 kJ/L). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MS2%20virus%20inactivation" title="MS2 virus inactivation">MS2 virus inactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reuse" title=" water reuse"> water reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20bubble%20column%20evaporator" title=" hot bubble column evaporator"> hot bubble column evaporator</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/84622/household-low-temperature-ms2-atcc15597-b1-virus-inactivation-using-a-hot-bubble-column-evaporator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">669</span> Survey of Potato Viral Infection Using Das-Elisa Method in Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maia%20Kukhaleishvili">Maia Kukhaleishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterine%20Bulauri"> Ekaterine Bulauri</a>, <a href="https://publications.waset.org/abstracts/search?q=Iveta%20Megrelishvili"> Iveta Megrelishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Shamatava"> Tamar Shamatava</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Chipashvili"> Tamar Chipashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant viruses can cause loss of yield and quality in a lot of important crops. Symptoms of pathogens are variable depending on the cultivars and virus strain. Selection of resistant potato varieties would reduce the risk of virus transmission and significant economic impact. Other way to avoid reduced harvest yields is regular potato seed production sampling and testing for viral infection. The aim of this study was to determine the occurrence and distribution of viral diseases according potato cultivars for further selection of virus-free material in Georgia. During the summer 2015- 2016, 5 potato cultivars (Sante, Laura, Jelly, Red Sonia, Anushka) at 5 different farms located in Akhalkalaki were tested for 6 different potato viruses: Potato virus A (PVA), Potato virus M (PVM), Potato virus S (PVS), Potato virus X (PVX), Potato virus Y (PVY) and potato leaf roll virus (PLRV). A serological method, Double Antibody Sandwich-Enzyme linked Immunosorbent Assay (DASELISA) was used at the laboratory to analyze the results. The result showed that PVY (21.4%) and PLRV (19.7%) virus presence in collected samples was relatively high compared to others. Researched potato cultivars except Jelly and Laura were infected by PVY with different concentrations. PLRV was found only in three potato cultivars (Sante, Jelly, Red Sonia) and PVM virus (3.12%) was characterized with low prevalence. PVX, PVA and PVS virus infection was not reported. It would be noted that 7.9% of samples were containing PVY/PLRV mix infection. Based on the results it can be concluded that PVY and PLRV infections are dominant in all research cultivars. Therefore significant yield losses are expected. Systematic, long-term control of potato viral infection, especially seed-potatoes, must be regarded as the most important factor to increase seed productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virus" title="virus">virus</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=infection" title=" infection"> infection</a>, <a href="https://publications.waset.org/abstracts/search?q=diseases" title=" diseases"> diseases</a> </p> <a href="https://publications.waset.org/abstracts/100087/survey-of-potato-viral-infection-using-das-elisa-method-in-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">668</span> Eradication of Apple mosaic virus from Corylus avellana L. via Cryotherapy and Confirmation of Virus-Free Plants via Reverse Transcriptase Polymerase Chain Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Kaya">Ergun Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Apple mosaic virus (ApMV) is an ilarvirus causing harmful damages and product loses in many plant species. Because of xylem and phloem vessels absence, plant meristem tissues used for meristem cultures are virus-free, but sometimes only meristem cultures are not sufficient for virus elimination. Cryotherapy, a new method based on cryogenic techniques, is used for virus elimination. In this technique, 0.1-0.3mm meristems are excised from organized shoot apex of a selected in vitro donor plant and these meristems are frozen in liquid nitrogen (-196 °C) using suitable cryogenic technique. The aim of this work was to develop an efficient procedure for ApMV-free hazelnut via cryotherapy technique and confirmation of virus-free plants using Reverse Transcriptase-PCR technique. 100% virus free plantlets were obtained using droplet-vitrification method involved cold hardening in vitro cultures of hazelnut, 24 hours sucrose preculture of meristems on MS medium supplemented with 0.4M sucrose, and a 90 min PVS2 treatment in droplets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplet%20vitrification" title="droplet vitrification">droplet vitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=hazelnut" title=" hazelnut"> hazelnut</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen" title=" liquid nitrogen"> liquid nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=PVS2" title=" PVS2"> PVS2</a> </p> <a href="https://publications.waset.org/abstracts/89231/eradication-of-apple-mosaic-virus-from-corylus-avellana-l-via-cryotherapy-and-confirmation-of-virus-free-plants-via-reverse-transcriptase-polymerase-chain-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">667</span> Global Analysis of HIV Virus Models with Cell-to-Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Pourbashash">Hossein Pourbashash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent experimental studies have shown that HIV can be transmitted directly from cell to cell when structures called virological synapses form during interactions between T cells. In this article, we describe a new within-host model of HIV infection that incorporates two mechanisms: infection by free virions and the direct cell-to-cell transmission. We conduct the local and global stability analysis of the model. We show that if the basic reproduction number R0 1, the virus is cleared and the disease dies out; if R0 > 1, the virus persists in the host. We also prove that the unique positive equilibrium attracts all positive solutions under additional assumptions on the parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HIV%20virus%20model" title="HIV virus model">HIV virus model</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-to-cell%20transmission" title=" cell-to-cell transmission"> cell-to-cell transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20stability" title=" global stability"> global stability</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20compound%20matrices" title=" second compound matrices"> second compound matrices</a> </p> <a href="https://publications.waset.org/abstracts/23412/global-analysis-of-hiv-virus-models-with-cell-to-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">666</span> Impact of Totiviridae L-A dsRNA Virus on Saccharomyces Cerevisiae Host: Transcriptomic and Proteomic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Luk%C5%A1a">Juliana Lukša</a>, <a href="https://publications.waset.org/abstracts/search?q=Bazil%C4%97%20Ravoityt%C4%97"> Bazilė Ravoitytė</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Servien%C4%97"> Elena Servienė</a>, <a href="https://publications.waset.org/abstracts/search?q=Saulius%20Serva"> Saulius Serva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Totiviridae L-A virus is a persistent Saccharomyces cerevisiae dsRNA virus. It encodes the major structural capsid protein Gag and Gag-Pol fusion protein, responsible for virus replication and encapsulation. These features also enable the copying of satellite dsRNAs (called M dsRNAs) encoding a secreted toxin and immunity to it (known as killer toxin). Viral capsid pore presumably functions in nucleotide uptake and viral mRNA release. During cell division, sporogenesis, and cell fusion, the virions remain intracellular and are transferred to daughter cells. By employing high throughput RNA sequencing data analysis, we describe the influence of solely L-A virus on the expression of genes in three different S. cerevisiae hosts. We provide a new perception into Totiviridae L-A virus-related transcriptional regulation, encompassing multiple bioinformatics analyses. Transcriptional responses to L-A infection were similar to those induced upon stress or availability of nutrients. It also delves into the connection between the cell metabolism and L-A virus-conferred demands to the host transcriptome by uncovering host proteins that may be associated with intact virions. To better understand the virus-host interaction, we applied differential proteomic analysis of virus particle-enriched fractions of yeast strains that harboreither complete killer system (L-A-lus and M-2 virus), M-2 depleted orvirus-free. Our analysis resulted in the identification of host proteins, associated with structural proteins of the virus (Gag and Gag-Pol). This research was funded by the European Social Fund under the No.09.3.3-LMT-K-712-19-0157“Development of Competences of Scientists, other Researchers, and Students through Practical Research Activities” measure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=totiviridae" title="totiviridae">totiviridae</a>, <a href="https://publications.waset.org/abstracts/search?q=killer%20virus" title=" killer virus"> killer virus</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptomics" title=" transcriptomics"> transcriptomics</a> </p> <a href="https://publications.waset.org/abstracts/146170/impact-of-totiviridae-l-a-dsrna-virus-on-saccharomyces-cerevisiae-host-transcriptomic-and-proteomic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">665</span> DNA Vaccine Study against Vaccinia Virus Using In vivo Electroporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jai%20Myung%20Yang">Jai Myung Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Na%20Young%20Kim"> Na Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Ho%20Shin"> Sung Ho Shin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adverse reactions of current live smallpox vaccines and potential use of smallpox as a bioterror weapon have heightened the development of new effective vaccine for this infectious disease. In the present study, DNA vaccine vector was produced which was optimized for expression of the vaccinia virus L1 antigen in the mouse model. A plasmid IgM-tL1R, which contains codon-optimized L1R gene, was constructed and fused with an IgM signal sequence under the regulation of a SV40 enhancer. The expression and secretion of recombinant L1 protein was confirmed in vitro 293 T cell. Mice were administered the DNA vaccine by electroporation and challenged with vaccinia virus. We observed that immunization with IgM-tL1R induced potent neutralizing antibody responses and provided complete protection against lethal vaccinia virus challenge. Isotyping studies reveal that immunoglobulin G2 (IgG2) antibody predominated after the immunization, indicative of a T helper type 1 response. Our results suggest that an optimized DNA vaccine, IgM-tL1R, can be effective in stimulating anti-vaccinia virus immune response and provide protection against lethal orthopoxvirus challenge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20vaccine" title="DNA vaccine">DNA vaccine</a>, <a href="https://publications.waset.org/abstracts/search?q=electroporation" title=" electroporation"> electroporation</a>, <a href="https://publications.waset.org/abstracts/search?q=L1R" title=" L1R"> L1R</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccinia%20virus" title=" vaccinia virus"> vaccinia virus</a> </p> <a href="https://publications.waset.org/abstracts/46318/dna-vaccine-study-against-vaccinia-virus-using-in-vivo-electroporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">664</span> Investigation of the Effects of Quercetin on Oxidative Stress in Cells Infected with Infectious Pancreatic Necrosis Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilek%20Zorlu%20Kaya">Dilek Zorlu Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sena%20%C3%87enesiz"> Sena Çenesiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Utku%20Duran"> Utku Duran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infectious pancreatic necrosis virus is a disease of great concern in aquaculture, causing mortality of 80 - 90% of the stocks in salmonid production. We aimed to investigate the efficacy of quercetin on oxidant and antioxidant parameters of infectious pancreatic necrosis virus, which is important for fish farming and economy in vitro. Quercetin experimental model was used in the cell culture of Oncorhynchus mykiss infected with infectious pancreatic necrosis virus. Malondialdehyde, ceruloplasmin, total oxidant capacity, total antioxidant levels, and glutathione-peroxidase were measured in the samples. As a result of the study, it was observed that quercetin can minimize the damage caused by scavenging free radicals in cells infected with infectious pancreatic necrosis virus. Thus, we think that an important development can be achieved for fish farming and the economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IPNV" title="IPNV">IPNV</a>, <a href="https://publications.waset.org/abstracts/search?q=oncorhynchus%20mykiss" title=" oncorhynchus mykiss"> oncorhynchus mykiss</a>, <a href="https://publications.waset.org/abstracts/search?q=TAS" title=" TAS"> TAS</a>, <a href="https://publications.waset.org/abstracts/search?q=TOS" title=" TOS"> TOS</a>, <a href="https://publications.waset.org/abstracts/search?q=quercetin" title=" quercetin"> quercetin</a> </p> <a href="https://publications.waset.org/abstracts/176688/investigation-of-the-effects-of-quercetin-on-oxidative-stress-in-cells-infected-with-infectious-pancreatic-necrosis-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">663</span> The Ebola Virus Disease and Its Outbreak in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osagiede%20Efosa%20Kelvin">Osagiede Efosa Kelvin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ebola virus disease (EVD); also Ebola hemorrhagic fever, is a disease of humans and other primates caused by Ebola viruses. Signs and symptoms typically start between two days and three weeks after contracting the virus as a fever, sore throat, muscle pain, and headaches. Then, vomiting, diarrhoea and rash usually follow, along with decreased function of the liver and kidneys. At this time, some people begin to bleed both internally and externally. The first death in Nigeria was reported on 25 July 2014: a Liberian-American with Ebola flew from Liberia to Nigeria and died in Lagos soon after arrival. As part of the effort to contain the disease, possible contacts were monitored –353 in Lagos and 451 in Port Harcourt On 22 September, the World Health Organisation reported a total of 20 cases, including eight deaths. The WHO's representative in Nigeria officially declared Nigeria Ebola-free on 20 October after no new active cases were reported in the follow-up contact. This paper looks at the Ebola Virus in general and the measures taken by Nigeria to combat its spread. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebola%20virus" title="Ebola virus">Ebola virus</a>, <a href="https://publications.waset.org/abstracts/search?q=hemorrhagic%20fever" title=" hemorrhagic fever"> hemorrhagic fever</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=outbreak" title=" outbreak"> outbreak</a> </p> <a href="https://publications.waset.org/abstracts/22666/the-ebola-virus-disease-and-its-outbreak-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">662</span> In vitro Antiviral Activity of Ocimum sanctum against Animal Viruses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjana%20Goel">Anjana Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Bhatia"> Ashok Kumar Bhatia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ocimum sanctum, a well known medicinal plant is used for various alignments in Ayurvedic medicines. It was found to be effective in treating the humans suffering from different viral infections like chicken pox, small pox, measles and influenza. In addition, curative effect of the plant in malignant patients was also reported. In the present study, leaves of this plant were screened against animal viruses i.e. Bovine Herpes Virus-type-1 (BHV-1), Foot and Mouth disease virus (FMDV) and Newcastle Disease Virus (NDV). BHV-1 and FMDV were screened in MDBK and BHK cell lines respectively using cytopathic inhibition test. While NDV was propagated in chick embryo fibroblast culture and tested by haemagglutination inhibition test. Maximum non toxic dose of aqueous extract of Ocimum sanctum leaves was calculated by MTT assay in all the cell cultures and nontoxic doses were used for antiviral activity against viruses. 98.4% and 85.3% protection were recorded against NDV and BHV-1 respectively. However, Ocimum sanctum extract failed to show any inhibitory effect on the cytopathic effect caused by FMD virus. It can be concluded that Ocimum sanctum is a very effective remedy for curing viral infections in animals also. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine%20herpes%20virus-type-1" title="bovine herpes virus-type-1">bovine herpes virus-type-1</a>, <a href="https://publications.waset.org/abstracts/search?q=foot%20and%20mouth%20disease%20virus" title=" foot and mouth disease virus"> foot and mouth disease virus</a>, <a href="https://publications.waset.org/abstracts/search?q=newcastle%20disease%20virus" title=" newcastle disease virus"> newcastle disease virus</a>, <a href="https://publications.waset.org/abstracts/search?q=Ocimum%20sanctum" title=" Ocimum sanctum"> Ocimum sanctum</a> </p> <a href="https://publications.waset.org/abstracts/69775/in-vitro-antiviral-activity-of-ocimum-sanctum-against-animal-viruses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">661</span> Negative RT-PCR in a Newborn Infected with Zika Virus: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vallejo%20Michael">Vallejo Michael</a>, <a href="https://publications.waset.org/abstracts/search?q=Acu%C3%B1a%20Edgar"> Acuña Edgar</a>, <a href="https://publications.waset.org/abstracts/search?q=Roa%20Juan%20David"> Roa Juan David</a>, <a href="https://publications.waset.org/abstracts/search?q=Pe%C3%B1uela%20Rosa"> Peñuela Rosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Parra%20Alejandra"> Parra Alejandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Casallas%20Daniela"> Casallas Daniela</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodriguez%20Sheyla"> Rodriguez Sheyla </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Congenital Zika Virus Syndrome is an entity composed by a variety of birth defects presented in newborns that have been exposed to the Zika Virus during pregnancy. The syndrome characteristic features are severe microcephaly, cerebral tissue abnormalities, ophthalmological abnormalities such as uveitis and chorioretinitis, arthrogryposis, clubfoot deformity and muscular tone abnormalities. The confirmatory test is the Reverse transcription polymerase chain reaction (RT-PCR) associated to the physical findings. Here we present the case of a newborn with microcephaly whose mother presented a confirmed Zika Virus infection during the third trimester of pregnancy, despite of the evident findings and the history of Zika infection the RT-PCR in amniotic and cerebrospinal fluid of the newborn was negative. RT-PCR has demonstrated a low sensibility in samples with low viral loads, reason why, we propose a clinical diagnosis in patients with clinical history of Zika Virus infection during pregnancy accompanied by evident clinical manifestations of the child. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congenital" title="congenital">congenital</a>, <a href="https://publications.waset.org/abstracts/search?q=Zika%20virus" title=" Zika virus"> Zika virus</a>, <a href="https://publications.waset.org/abstracts/search?q=microcephaly" title=" microcephaly"> microcephaly</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20transcriptase%20polymerase%20chain%20reaction" title=" reverse transcriptase polymerase chain reaction"> reverse transcriptase polymerase chain reaction</a> </p> <a href="https://publications.waset.org/abstracts/84563/negative-rt-pcr-in-a-newborn-infected-with-zika-virus-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">660</span> Inhibition of Mixed Infection Caused by Human Immunodeficiency Virus and Herpes Virus by Fullerene Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Nosik">Dmitry Nosik</a>, <a href="https://publications.waset.org/abstracts/search?q=Nickolay%20Nosik"> Nickolay Nosik</a>, <a href="https://publications.waset.org/abstracts/search?q=Elli%20Kaplina"> Elli Kaplina</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Lobach"> Olga Lobach</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Chataeva"> Marina Chataeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Lev%20Rasnetsov"> Lev Rasnetsov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and aims: Human Immunodeficiency Virus (HIV) infection is very often associated with Herpes Simplex Virus (HSV) infection but HIV patients are treated with a cocktail of antiretroviral drugs which are toxic. The use of an antiviral drug which will be active against both viruses like ferrovir found in our previous studies is rather actual. Earlier we had shown that Fullerene poly-amino capronic acid (FPACA) was active in case of monoinfection of HIV-1 or HSV-1. The aim of the study was to analyze the efficiency of FPACA against mixed infection of HIV and HSV. Methods: The peripheral blood lymphocytes, CEM, MT-4 cells were simultaneously infected with HIV-1 and HSV-1. FPACA was added 1 hour before infection. Cells viability was detected by MTT assay, virus antigens detected by ELISA, syncytium formation detected by microscopy. The different multiplicity of HIV-1/HSV-1 ratio was used. Results: The double viral HIV-1/HSV-1 infection was more cytopathic comparing with monoinfections. In mixed infection by the HIV-1/HSV-1 concentration of HIV-1 antigens and syncytium formations increased by 1,7 to 2,3 times in different cells in comparison with the culture infected with HIV-1 alone. The concentration of HSV-1 increased by 1,5-1,7 times, respectively. Administration of FPACA (1 microg/ml) protected cells: HIV-1/HSV-1 (1:1) – 80,1%; HIV-1/HSV-1 (1:4) – 57,2%; HIV-1/HSV-1 (1:8) – 46,3 %; HIV-1/HSV-1 (1:16) – 17,0%. Virus’s antigen levels were also reduced. Syncytium formation was totally inhibited in all cases of mixed infection. Conclusion: FPACA showed antiviral activity in case of mixed viral infection induced by Human Immunodeficiency Virus and Herpes Simplex Virus. The effect of viral inhibition increased with the multiplicity of HIV-1 in the inoculum. The mechanism of FPACA action is connected with the blocking of the virus particles adsorption to the cells and it could be suggested that it can have an antiviral activity against some other viruses too. Now FPACA could be considered as a potential drug for treatment of HIV disease complicated with opportunistic herpes viral infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20drug" title="antiviral drug">antiviral drug</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20immunodeficiency%20virus%20%28hiv%29" title=" human immunodeficiency virus (hiv)"> human immunodeficiency virus (hiv)</a>, <a href="https://publications.waset.org/abstracts/search?q=herpes%20simplex%20virus%20%28hsv%29" title=" herpes simplex virus (hsv)"> herpes simplex virus (hsv)</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20viral%20infection" title=" mixed viral infection"> mixed viral infection</a> </p> <a href="https://publications.waset.org/abstracts/29635/inhibition-of-mixed-infection-caused-by-human-immunodeficiency-virus-and-herpes-virus-by-fullerene-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">659</span> Frequency of Hepatitis C Virus in Diagnosed Tuberculosis Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Farooq%20Baig">Muhammad Farooq Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleem%20Qadeer"> Saleem Qadeer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The frequency of hepatitis C virus infection along with tuberculosis has not been widely investigated and very low statistics on rates of hepatitis C virus co-infection in tuberculosis patients. Hepatotoxicity is the major side effect of anti-tuberculosis therapy hepatitis HCVliver disease elevates the chances of hepatotoxicity up-to five folds. Objectives & Aim: To see the frequency of Hepatitis Cvirus infection amongst people with diagnosed Tuberculosis using gene X-pert technique. To evaluate the factors associated with HCVinfection in patients with MTBtuberculosis and to determine sensitivity and specificity of the tests. Study design: Comparative analytical study. Methodology: Three hundred and thirteen patients of tuberculosis diagnosed by Genexpert included while testing hepatitis C virus using immunochromotography rapid test technique, enzyme linked immunosorbent assay method and polymerase chain reaction test for confirmation. Results:Higher frequency of tuberculosis infection in males 57.8%, 42.5% between 20-39 years and 22% of hepatitis C virus infection in tuberculosis patients.The sensitivity of rapid test and enzyme-linked immunosorbent assay was 79% and 96% respectively while the specificity of rapid test and enzyme-linked immunosorbent assay was 91% and 99% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mycobactrium%20Tuberculosis" title="Mycobactrium Tuberculosis">Mycobactrium Tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=PC%27R" title=" PC'R"> PC'R</a>, <a href="https://publications.waset.org/abstracts/search?q=Gene%20x%20pert" title=" Gene x pert"> Gene x pert</a>, <a href="https://publications.waset.org/abstracts/search?q=Hepatitis%20C%20virus" title=" Hepatitis C virus"> Hepatitis C virus</a> </p> <a href="https://publications.waset.org/abstracts/170292/frequency-of-hepatitis-c-virus-in-diagnosed-tuberculosis-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">658</span> Prevalence Determination of Hepatitis D Virus Genotypes among HBsAg Positive Patients in Kerman Province of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khabat%20Barkhordari">Khabat Barkhordari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohammad%20Arabzadeh"> Ali Mohammad Arabzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hepatitis delta virus (HDV) is a RNA virus that needs the function of hepatitis B virus (HBV) for its propagation and assembly. Infection by HDV can occur spontaneously with HBV infection and cause acute hepatitis or develop as secondary infection in HBV suffering patients. Based on genome sequence analysis, HDV has several genotypes which show broad geographic and diverse clinical features. The aim of current study is determine the prevalence of hepatitis delta virus genotype in patients with positive HBsAg in Kerman province of Iran. This cross-sectional study a total of 400 patients with HBV infection attending the clinic center of Besat from 2012 to 2014 were included. We carried out ELISA to detect anti-HDV antibodies. Those testing positive were analyzed further for HDV-RNA and for genotyping using restriction fragment length polymorphism (RFLP) and RT-nested PCR- sequencing. Among 400 patients in this study, 67 cases (16.75 %) were containing anti-HDV antibody which we found HDV RNA in just 7 (1.75%) serum samples. Analysis of these 7 positive HDV showed that all of them have genotype I. According to current study the HDV prevalence in Kerman is higher than the reported prevalence of 6.6% for Iran as a whole and clade 1 (genotype 1) is the predominant clade of HDV in Kerman. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genotyping" title="genotyping">genotyping</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20delta%20virus" title=" hepatitis delta virus"> hepatitis delta virus</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20epidemiology" title=" molecular epidemiology"> molecular epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerman" title=" Kerman"> Kerman</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/36576/prevalence-determination-of-hepatitis-d-virus-genotypes-among-hbsag-positive-patients-in-kerman-province-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">657</span> Infectivity of Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) to Various Tsetse Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guler%20D.%20Uzel">Guler D. Uzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20G.%20Parker"> Andrew G. Parker</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20L.%20Mach"> Robert L. Mach</a>, <a href="https://publications.waset.org/abstracts/search?q=Adly%20Abd-Alla"> Adly Abd-Alla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several tsetse fly species (Diptera: Glossinidae) in natural or colonized populations can be infected with the salivary gland hypertrophy virus (SGHV), a circular dsDNA virus (Hytrosaviridae). The virus infection is mainly asymptomatic but, in some species under certain conditions, the infection can produce salivary gland hypertrophy (SGH) symptoms. In the laboratory colonized tsetse, flies with SGH have reduced fertility, which negatively affects colony performance. Therefore, a high prevalence of SGH in insect mass rearing represents a major challenge for tsetse control using the sterile insect technique. The main objective of this study is to analyze the impact of Glossina pallidipes SGHV infection in various tsetse species on mortality and productivity and its impact on the symbiotic bacteria. Hypertropied salivary glands (SG) were collected from G. pallidipes into phosphate buffered saline (PBS) to prepare suspension; 2 µl aliquots were injected into adults of several tsetse species (G. pallidipes (Gp), G. p. gambiensis (Gpg), G. brevipalpis (Gb), G. morsitans morsitans (Gmm), G. morsitans centralis (Gmc) and G. fuscipes (Gf)) and the change in virus and symbiont titers were analyzed using qPCR. The development of SGH in the F1 was detected by dissection 10 days after emergence and virus infection was confirmed by PCR. The impact of virus infection on fly mortality and productivity was recorded. 2 µl aliquots were also injected into 3rd instar larvae of the different species and the adult SGs assayed by PCR for virus. Virus positive SGs from each species were homogenized in PBS and pooled within species for injection into larvae of the same species. Flies injected with PBS were used as control. Injecting teneral flies with SGHV caused increasing virus titer over time in all species but no SGH was detected. Dissection of the F1 also showed no development of SGH except in Gp (the homologous host). Injection of SGHV did not have any impact on the prevalence of the tsetse symbionts, but an increase in Sodalis titer was observed correlated with fly age regardless of virus infection. The virus infection had a negative impact on productivity and mortality. SGHV injection into larvae of the different species produced SGHV infected glands in the adults determined by PCR with a rate of 60%, 27%, 16%, 7% and 7% for Gp, Gf, Gpg, Gmm and Gmc, respectively. Virus positive SGs observed in the heterologous species were smaller than SGH found in Gp. No virus positive SG was detected by PCR in Gb and no SGH was observed in any adults except in Gp. Injecting virus suspension from the virus positive SGs into conspecific larvae did not produce any adults with infected SGs (except in Gp). SGHV can infect all tested tsetse species. Although the virus can infect and increase in titer in other tsetse species and affect fly mortality and productivity, no vertical virus transmission was observed in other tsetse species with might indicate a transmission barrier in these species, and virus collected from flies injected as larvae was not infective by injection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20viruses" title="DNA viruses">DNA viruses</a>, <a href="https://publications.waset.org/abstracts/search?q=glossina" title=" glossina"> glossina</a>, <a href="https://publications.waset.org/abstracts/search?q=hytrosaviridae" title=" hytrosaviridae"> hytrosaviridae</a>, <a href="https://publications.waset.org/abstracts/search?q=symbiotic%20bacteria" title=" symbiotic bacteria"> symbiotic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=tsetse" title=" tsetse"> tsetse</a> </p> <a href="https://publications.waset.org/abstracts/55189/infectivity-of-glossina-pallidipes-salivary-gland-hypertrophy-virus-gpsghv-to-various-tsetse-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">656</span> Deformed Wing Virus and Varroa Destructor in the Local Honey Bee Colonies Apis mellifera intermissa in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Adjlane">Noureddine Adjlane</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Haddad"> Nizar Haddad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deformed Wing Virus (DWV) is considered as the most prevalent virus that dangerous the honeybee health worldwide today. In this study we aimed to evaluate the impact of the virus on honeybees (Apis mellifera intermissa) mortality in Algeria and we conducted the study on samples collected from the central area in the country. We used PCR for the diagnoses of the (DWV) in the diagnosis. The results had shown a high infestation in the sampled colonies and it represented 42% of the total sample. In this study, we found a clear role of both Varroa destructor mite and DWV on hive mortality in the experimented apiary. Further studies need to be conducted in order to give soled recommendations to the beekeepers, decision makers and stockholders of the Algerian beekeeping sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honey%20bee" title="honey bee">honey bee</a>, <a href="https://publications.waset.org/abstracts/search?q=DWV" title=" DWV"> DWV</a>, <a href="https://publications.waset.org/abstracts/search?q=Varroa%20destructor" title=" Varroa destructor"> Varroa destructor</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=infestation" title=" infestation "> infestation </a> </p> <a href="https://publications.waset.org/abstracts/2195/deformed-wing-virus-and-varroa-destructor-in-the-local-honey-bee-colonies-apis-mellifera-intermissa-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">655</span> Comparative Vector Susceptibility for Dengue Virus and Their Co-Infection in A. aegypti and A. albopictus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Soni">Monika Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Bhattacharya"> Chandra Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Siraj%20Ahmed%20Ahmed"> Siraj Ahmed Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Prafulla%20Dutta"> Prafulla Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dengue is now a globally important arboviral disease. Extensive vector surveillance has already established A.aegypti as a primary vector, but A.albopictus is now accelerating the situation through gradual adaptation to human surroundings. Global destabilization and gradual climatic shift with rising in temperature have significantly expanded the geographic range of these species These versatile vectors also host Chikungunya, Zika, and yellow fever virus. Biggest challenge faced by endemic countries now is upsurge in co-infection reported with multiple serotypes and virus co-circulation. To foster vector control interventions and mitigate disease burden, there is surge for knowledge on vector susceptibility and viral tolerance in response to multiple infections. To address our understanding on transmission dynamics and reproductive fitness, both the vectors were exposed to single and dual combinations of all four dengue serotypes by artificial feeding and followed up to third generation. Artificial feeding observed significant difference in feeding rate for both the species where A.albopictus was poor artificial feeder (35-50%) compared to A.aegypti (95-97%) Robust sequential screening of viral antigen in mosquitoes was followed by Dengue NS1 ELISA, RT-PCR and Quantitative PCR. To observe viral dissemination in different mosquito tissues Indirect immunofluorescence assay was performed. Result showed that both the vectors were infected initially with all dengue(1-4)serotypes and its co-infection (D1 and D2, D1 and D3, D1 and D4, D2 and D4) combinations. In case of DENV-2 there was significant difference in the peak titer observed at 16th day post infection. But when exposed to dual infections A.aegypti supported all combinations of virus where A.albopictus only continued single infections in successive days. There was a significant negative effect on the fecundity and fertility of both the vectors compared to control (PANOVA < 0.001). In case of dengue 2 infected mosquito, fecundity in parent generation was significantly higher (PBonferroni < 0.001) for A.albopicus compare to A.aegypti but there was a complete loss of fecundity from second to third generation for A.albopictus. It was observed that A.aegypti becomes infected with multiple serotypes frequently even at low viral titres compared to A.albopictus. Possible reason for this could be the presence of wolbachia infection in A.albopictus or mosquito innate immune response, small RNA interference etc. Based on the observations it could be anticipated that transovarial transmission may not be an important phenomenon for clinical disease outcome, due to the absence of viral positivity by third generation. Also, Dengue NS1 ELISA can be used for preliminary viral detection in mosquitoes as more than 90% of the samples were found positive compared to RT-PCR and viral load estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-infection" title="co-infection">co-infection</a>, <a href="https://publications.waset.org/abstracts/search?q=dengue" title=" dengue"> dengue</a>, <a href="https://publications.waset.org/abstracts/search?q=reproductive%20fitness" title=" reproductive fitness"> reproductive fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=viral%20quantification" title=" viral quantification"> viral quantification</a> </p> <a href="https://publications.waset.org/abstracts/86135/comparative-vector-susceptibility-for-dengue-virus-and-their-co-infection-in-a-aegypti-and-a-albopictus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">654</span> The Detection of Antibodies Against Shuni Virus in Cattle From Western Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barbra%20Bhebhe">Barbra Bhebhe</a>, <a href="https://publications.waset.org/abstracts/search?q=Melvyn%20Quan"> Melvyn Quan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A serological survey was done to detect antibodies against Shuni virus (SHUV) from cattle in Western Kenya. In Kenya the disease status of SHUV in cattle has never been established. It is a zoonotic virus and even though studies have been carried out as early as the 1960s, little research has been published and SHUV is still not a well-recognised Orthobunyavirus. One hundred serum samples were collected from healthy cattle in Kenya and tested for antibodies against SHUV by a serum neutralization assay. All antibody titre values were greater than 1:160, with most of the samples greater than 1:320. Of the samples tested, 87 % had titres greater than 1:320, 12% had a titre of 1:320 and 2% had a titre of 1:160. Samples were classified as positive if the antibody titre was ≥ 1:10 and negative if < 1:10. This study suggests that cattle are exposed commonly to SHUV, which may be endemic in Kenya. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuni%20virus" title="Shuni virus">Shuni virus</a>, <a href="https://publications.waset.org/abstracts/search?q=Orthobunyavuruses" title=" Orthobunyavuruses"> Orthobunyavuruses</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20neutralization%20test" title=" serum neutralization test"> serum neutralization test</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-culture" title=" cell-culture"> cell-culture</a> </p> <a href="https://publications.waset.org/abstracts/161488/the-detection-of-antibodies-against-shuni-virus-in-cattle-from-western-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus&page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus&page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>