CINXE.COM

Search results for: gravitation astrophysics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: gravitation astrophysics</title> <meta name="description" content="Search results for: gravitation astrophysics"> <meta name="keywords" content="gravitation astrophysics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="gravitation astrophysics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="gravitation astrophysics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 28</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: gravitation astrophysics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Accelerated Expansion of a Matter-Antimatter Universe and Gravity as an Electromagnetic Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maarten%20J.%20Van%20der%20Burgt">Maarten J. Van der Burgt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A universe containing matter and antimatter can only exist when matter and antimatter repel each other. Such a system, where like attracts like and like repels unlike, will always expand. Calculations made for such a symmetric universe demonstrate that the expansion is consistent with Hubble’s law, the observed increase in the expansion velocity with time, the initial high acceleration and the foam structure of the universe. Conversely, these observations can be considered as proof for a symmetrical universe and for antimatter possessing a negative gravitational mass. A second proof can be found by reinterpreting the behavior of relativistic moving charged particles. Attributing their behavior to a charge defect of √(1-v2/c2) instead of to a mass defect of 1/√(1-v2/c2) makes it plausible that gravitation is an electromagnetic force, as already suggested by Feynman. This would automatically imply that antimatter has a negative gravitational mass. These proofs underpin the untenability of the Weak Equivalence Principle which states that in a gravitational field all structure less point-like particles follow the same path. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=celestial%20mechanics" title="celestial mechanics">celestial mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmology" title=" cosmology"> cosmology</a>, <a href="https://publications.waset.org/abstracts/search?q=gravitation%20astrophysics" title=" gravitation astrophysics"> gravitation astrophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=origin%20of%20structure" title=" origin of structure"> origin of structure</a>, <a href="https://publications.waset.org/abstracts/search?q=miscellaneous%20%28matter%20and%20antimatter%29" title=" miscellaneous (matter and antimatter)"> miscellaneous (matter and antimatter)</a> </p> <a href="https://publications.waset.org/abstracts/57939/accelerated-expansion-of-a-matter-antimatter-universe-and-gravity-as-an-electromagnetic-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Causes for the Precession of the Perihelion in the Planetary Orbits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwan%20U.%20Kim">Kwan U. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sim"> Jin Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong%20Jin%20Jang"> Ryong Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Duk%20Kim"> Sung Duk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is Leverrier that discovered the precession of the perihelion in the planetary orbits for the first time in the world, while it is Einstein that explained the astronomical phenomenom for the first time in the world. The amount of the precession of the perihelion for Einstein’s theory of gravitation has been explained by means of the inverse fourth power force(inverse third power potential) introduced totheory of gravitation through Schwarzschild metric However, the methodology has a serious shortcoming that it is impossible to explain the cause for the precession of the perihelion in the planetary orbits. According to our study, without taking the cause for the precession of the perihelion, 6 methods can explain the amount of the precession of the perihelion discovered by Leverrier. Therefore, the problem of what caused the perihelion to precess in the planetary orbits must be solved for physics because it is a profound scientific and technological problem for a basic experiment in construction of relativistic theory of gravitation. The scientific solution to the problem proved that Einstein’s explanation for the planetary orbits is a magic made by the numerical expressions obtained from fictitious gravitation introduced to theory of gravitation and wrong definition of proper time The problem of the precession of the perihelion seems solved already by means of general theory of relativity, but, in essence, the cause for the astronomical phenomenon has not been successfully explained for astronomy yet. The right solution to the problem comes from generalized theory of gravitation. Therefore, in this paper, it has been shown that by means of Schwarzschild field and the physical quantities of relativistic Lagrangian redflected in it, fictitious gravitation is not the main factor which can cause the perihelion to precess in the planetary orbits. In addition to it, it has been shown that the main factor which can cause the perihelion to precess in the planetary orbits is the inverse third power force existing really in the relativistic region in the Solar system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20third%20power%20force" title="inverse third power force">inverse third power force</a>, <a href="https://publications.waset.org/abstracts/search?q=precession%20of%20the%20perihelion" title=" precession of the perihelion"> precession of the perihelion</a>, <a href="https://publications.waset.org/abstracts/search?q=fictitious%20gravitation" title=" fictitious gravitation"> fictitious gravitation</a>, <a href="https://publications.waset.org/abstracts/search?q=planetary%20orbits" title=" planetary orbits"> planetary orbits</a> </p> <a href="https://publications.waset.org/abstracts/192598/causes-for-the-precession-of-the-perihelion-in-the-planetary-orbits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Photon-Electron Interaction in the Different Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Borji">Vahid Borji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between photons and particles is a common phenomenon in nature that is discussed in order to obtain information about the environment and the conditions governing the phenomena. In the astrophysics, like others, we study these interactions to get useful knowledge and can be predict aftercoming events. One of the events is the transition of photon beam through medium with special conditions, like shocked medium. In our discussion, we have studied this situation and obtained results for different conditions that transition of photon depends on the energy of photon and distributions of electrons in medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20section" title="cross section">cross section</a>, <a href="https://publications.waset.org/abstracts/search?q=astrophysics" title=" astrophysics"> astrophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=GRB" title=" GRB"> GRB</a>, <a href="https://publications.waset.org/abstracts/search?q=photon" title=" photon"> photon</a> </p> <a href="https://publications.waset.org/abstracts/163852/photon-electron-interaction-in-the-different-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Hawking Radiation of Grumiller Black </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherwan%20Kher%20Alden%20Yakub%20Alsofy">Sherwan Kher Alden Yakub Alsofy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the relativistic Hamilton-Jacobi (HJ) equation and study the Hawking radiation (HR) of scalar particles from uncharged Grumiller black hole (GBH) which is affordable for testing in astrophysics. GBH is also known as Rindler modified Schwarzschild BH. Our aim is not only to investigate the effect of the Rindler parameter A on the Hawking temperature (TH ), but to examine whether there is any discrepancy between the computed horizon temperature and the standard TH as well. For this purpose, in addition to its naive coordinate system, we study on the three regular coordinate systems which are Painlev´-Gullstrand (PG), ingoing Eddington- Finkelstein (IEF) and Kruskal-Szekeres (KS) coordinates. In all coordinate systems, we calculate the tunneling probabilities of incoming and outgoing scalar particles from the event horizon by using the HJ equation. It has been shown in detail that the considered HJ method is concluded with the conventional TH in all these coordinate systems without giving rise to the famous factor- 2 problem. Furthermore, in the PG coordinates Parikh-Wilczek’s tunneling (PWT) method is employed in order to show how one can integrate the quantum gravity (QG) corrections to the semiclassical tunneling rate by including the effects of self-gravitation and back reaction. We then show how these corrections yield a modification in the TH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ingoing%20Eddington" title="ingoing Eddington">ingoing Eddington</a>, <a href="https://publications.waset.org/abstracts/search?q=Finkelstein" title=" Finkelstein"> Finkelstein</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinates%20Parikh-Wilczek%E2%80%99s" title=" coordinates Parikh-Wilczek’s"> coordinates Parikh-Wilczek’s</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamilton-Jacobi%20equation" title=" Hamilton-Jacobi equation"> Hamilton-Jacobi equation</a> </p> <a href="https://publications.waset.org/abstracts/20508/hawking-radiation-of-grumiller-black" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Central Finite Volume Methods Applied in Relativistic Magnetohydrodynamics: Applications in Disks and Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raphael%20de%20Oliveira%20Garcia">Raphael de Oliveira Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Rocha%20de%20Oliveira"> Samuel Rocha de Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed a new computer program in Fortran 90, in order to obtain numerical solutions of a system of Relativistic Magnetohydrodynamics partial differential equations with predetermined gravitation (GRMHD), capable of simulating the formation of relativistic jets from the accretion disk of matter up to his ejection. Initially we carried out a study on numerical methods of unidimensional Finite Volume, namely Lax-Friedrichs, Lax-Wendroff, Nessyahu-Tadmor method and Godunov methods dependent on Riemann problems, applied to equations Euler in order to verify their main features and make comparisons among those methods. It was then implemented the method of Finite Volume Centered of Nessyahu-Tadmor, a numerical schemes that has a formulation free and without dimensional separation of Riemann problem solvers, even in two or more spatial dimensions, at this point, already applied in equations GRMHD. Finally, the Nessyahu-Tadmor method was possible to obtain stable numerical solutions - without spurious oscillations or excessive dissipation - from the magnetized accretion disk process in rotation with respect to a central black hole (BH) Schwarzschild and immersed in a magnetosphere, for the ejection of matter in the form of jet over a distance of fourteen times the radius of the BH, a record in terms of astrophysical simulation of this kind. Also in our simulations, we managed to get substructures jets. A great advantage obtained was that, with the our code, we got simulate GRMHD equations in a simple personal computer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods" title="finite volume methods">finite volume methods</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20schemes" title=" central schemes"> central schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=fortran%2090" title=" fortran 90"> fortran 90</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20astrophysics" title=" relativistic astrophysics"> relativistic astrophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=jet" title=" jet"> jet</a> </p> <a href="https://publications.waset.org/abstracts/19952/central-finite-volume-methods-applied-in-relativistic-magnetohydrodynamics-applications-in-disks-and-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Constantin%20Z.%20Leshan">Constantin Z. Leshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must &#39;jump&#39; continually and &#39;vibrate&#39; due to the appearance of holes (impassable microscopic &#39;walls&#39; in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic &#39;walls&#39; due to the simple mechanical motion is impossible at small scale distances; it is impossible to &#39;trace&#39; a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime &#39;boils&#39; continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called &#39;random jumps&#39;: after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=border%20of%20the%20Universe" title="border of the Universe">border of the Universe</a>, <a href="https://publications.waset.org/abstracts/search?q=causality%20violation" title=" causality violation"> causality violation</a>, <a href="https://publications.waset.org/abstracts/search?q=perfect%20isolation" title=" perfect isolation"> perfect isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20jumps" title=" quantum jumps"> quantum jumps</a> </p> <a href="https://publications.waset.org/abstracts/55259/discontinuous-spacetime-with-vacuum-holes-as-explanation-for-gravitation-quantum-mechanics-and-teleportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Calculating All Dark Energy and Dark Matter Effects Through Dynamic Gravity Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sean%20Kinney">Sean Kinney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifest. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, using the math of Dynamic Gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need of exotic measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity" title="gravity">gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20gravity" title=" dynamic gravity"> dynamic gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title=" dark matter"> dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a> </p> <a href="https://publications.waset.org/abstracts/162095/calculating-all-dark-energy-and-dark-matter-effects-through-dynamic-gravity-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Calculating All Dark Energy and Dark Matter Effects through Dynamic Gravity Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sean%20Michael%20Kinney">Sean Michael Kinney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifests. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, use the math of Dynamic gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need for exotic measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20gravity" title="dynamic gravity">dynamic gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title=" dark matter"> dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a> </p> <a href="https://publications.waset.org/abstracts/162838/calculating-all-dark-energy-and-dark-matter-effects-through-dynamic-gravity-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Einstein’s General Equation of the Gravitational Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benzian">A. Benzian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generalization of relativistic theory of gravity based essentially on the principle of equivalence stipulates that for all bodies, the grave mass is equal to the inert mass which leads us to believe that gravitation is not a property of the bodies themselves, but of space, and the conclusion that the gravitational field must curved space-time what allows the abandonment of Minkowski space (because Minkowski space-time being nonetheless null curvature) to adopt Riemannian geometry as a mathematical framework in order to determine the curvature. Therefore the work presented in this paper begins with the evolution of the concept of gravity then tensor field which manifests by Riemannian geometry to formulate the general equation of the gravitational field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertia" title="inertia">inertia</a>, <a href="https://publications.waset.org/abstracts/search?q=principle%20of%20equivalence" title=" principle of equivalence"> principle of equivalence</a>, <a href="https://publications.waset.org/abstracts/search?q=tensors" title=" tensors"> tensors</a>, <a href="https://publications.waset.org/abstracts/search?q=Riemannian%20geometry" title=" Riemannian geometry"> Riemannian geometry</a> </p> <a href="https://publications.waset.org/abstracts/113632/einsteins-general-equation-of-the-gravitational-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Analysis the Trajectory of the Spacecraft during the Transition to the Planet&#039;s Orbit Using Aerobraking in the Atmosphere of the Planet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaw%20Min%20Tun">Zaw Min Tun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper focuses on the spacecraft’s trajectory transition from interplanetary hyperbolic orbit to the planet’s orbit using the aerobraking in the atmosphere of the planet. A considerable mass of fuel is consumed during the spacecraft transition from the planet’s gravitation assist trajectory into the planet’s satellite orbit. To reduce the fuel consumption in this transition need to slow down the spacecraft’s velocity in the planet’s atmosphere and reduce its orbital transition time. The paper is devoted to the use of the planet’s atmosphere for slowing down the spacecraft during its transition into the satellite orbit with uncertain atmospheric parameters. To reduce the orbital transition time of the spacecraft is controlled by the change of attack angles’ values at the aerodynamic deceleration path and adjusting the minimum flight altitude of the spacecraft at the pericenter of the planet’s upper atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobraking" title="aerobraking">aerobraking</a>, <a href="https://publications.waset.org/abstracts/search?q=atmosphere%20of%20the%20planet" title=" atmosphere of the planet"> atmosphere of the planet</a>, <a href="https://publications.waset.org/abstracts/search?q=orbital%20transition%20time" title=" orbital transition time"> orbital transition time</a>, <a href="https://publications.waset.org/abstracts/search?q=Spacecraft%E2%80%99s%20trajectory" title=" Spacecraft’s trajectory"> Spacecraft’s trajectory</a> </p> <a href="https://publications.waset.org/abstracts/46717/analysis-the-trajectory-of-the-spacecraft-during-the-transition-to-the-planets-orbit-using-aerobraking-in-the-atmosphere-of-the-planet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Creation and Annihilation of Spacetime Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dnyanesh%20P.%20Mathur">Dnyanesh P. Mathur</a>, <a href="https://publications.waset.org/abstracts/search?q=Gregory%20L.%20Slater"> Gregory L. Slater</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gravitation and the expansion of the universe at a large scale are generally regarded as two completely distinct phenomena. Yet, in general, relativity theory, they both manifest as 'curvature' of spacetime. We propose a hypothesis which treats these two 'curvature-producing' phenomena as aspects of an underlying process. This process treats spacetime itself as composed of discrete units (Plancktons) and is 'dynamic' in the sense that these elements of spacetime are continually being both created and annihilated. It is these two complementary processes of Planckton creation and Planckton annihilation which manifest themselves as - 'cosmic expansion' on the one hand and as 'gravitational attraction’ on the other. The Planckton hypothesis treats spacetime as a perfect fluid in the same manner as the co-moving frame of reference of Friedman equations and the Gullstrand-Painleve metric; i.e.Planckton hypothesis replaces 'curvature' of spacetime by the 'flow' of Plancktons (spacetime). Here we discuss how this perspective may allow a unified description of both cosmological and gravitational acceleration as well as providing a mechanism for inducing an irreducible action at every point associated with the creation and annihilation of Plancktons, which could be identified as the zero point energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20spacetime" title="discrete spacetime">discrete spacetime</a>, <a href="https://publications.waset.org/abstracts/search?q=spacetime%20flow" title=" spacetime flow"> spacetime flow</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20point%20energy" title=" zero point energy"> zero point energy</a>, <a href="https://publications.waset.org/abstracts/search?q=planktons" title=" planktons"> planktons</a> </p> <a href="https://publications.waset.org/abstracts/156001/creation-and-annihilation-of-spacetime-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Mredula">K. P. Mredula</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20C.%20Vakaskar"> D. C. Vakaskar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-resolution" title="multi-resolution">multi-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=Haar%20Wavelet" title=" Haar Wavelet"> Haar Wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation" title=" partial differential equation"> partial differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a> </p> <a href="https://publications.waset.org/abstracts/59280/algorithms-utilizing-wavelet-to-solve-various-partial-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Experimental Options for the Role of Dynamic Torsion in General Relativity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Ravlich">Ivan Ravlich</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Linscott"> Ivan Linscott</a>, <a href="https://publications.waset.org/abstracts/search?q=Sigrid%20Close"> Sigrid Close</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimental search for spin coupling in General Relativity via torsion has been inconclusive. In this work, further experimental avenues to test dynamic torsion are proposed and evaluated. In the extended theory, by relaxing the torsion free condition on the metric connection, general relativity is reformulated to relate the spin density of particles to a new quantity, the torsion tensor. In torsion theories, the spin tensor and torsion tensor are related in much the same way as the stress-energy tensor is related to the metric connection. Similarly, as the metric is the field associated with the metric connection, fields can be associated with the torsion tensor resulting in a field that is either propagating or static. Experimental searches for static torsion have thus far been inconclusive, and currently, there have been no experimental tests for propagating torsion. Experimental tests of propagating theories of torsion are proposed utilizing various spin densities of matter, such as interfaces in superconducting materials and plasmas. The experimental feasibility and observable bounds are estimated, and the most viable candidates are selected to pursue in detail in a future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title="general relativity">general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=gravitation" title=" gravitation"> gravitation</a>, <a href="https://publications.waset.org/abstracts/search?q=propagating%20torsion" title=" propagating torsion"> propagating torsion</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20density" title=" spin density"> spin density</a> </p> <a href="https://publications.waset.org/abstracts/77296/experimental-options-for-the-role-of-dynamic-torsion-in-general-relativity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> The Grand Unified Theory of Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tory%20Erickson">Tory Erickson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The "Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model introduces a framework aimed at unifying general relativity (GR) and quantum mechanics (QM). By proposing a concept of bidirectional spacetime, this model suggests that time can flow in more than one direction, thus offering a perspective on temporal dynamics. Integrated with spatial covariance and wave-particle duality in spacetime flow, the BST-SCWPDF Model resolves long-standing discrepancies between GR and QM. This unified theory has profound implications for quantum gravity, potentially offering insights into quantum entanglement, the collapse of the wave function, and the fabric of spacetime itself. The Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model offers researchers a framework for a better understanding of theoretical physics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=astrophysics" title="astrophysics">astrophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title=" general relativity"> general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=unification%20theory" title=" unification theory"> unification theory</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20physics" title=" theoretical physics"> theoretical physics</a> </p> <a href="https://publications.waset.org/abstracts/183765/the-grand-unified-theory-of-bidirectional-spacetime-with-spatial-covariance-and-wave-particle-duality-in-spacetime-flow-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Basic Properties of a Fundamental Particle: Behavioral-Physical and Visual Methods for the Study of Fundamental Particle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shukran%20M.%20Dadayev">Shukran M. Dadayev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To author's best knowledge, in this paper, the Basic Properties and Research methods of a Fundamental Particle is studied for the first time. That's to say, Fundamental Particle has not been discovered in the Nature yet. Because Fundamental Particle consists of specific Physical, Geometrical and Internal bases. Geometrical and Internal characteristics that are considered significant for the elementary and fundamental particles aren’t basic properties, characteristics or criteria of a Fundamental Particle. Of course, completely new Physical and Visual experimental methods of Quantum mechanics and Behavioral-Physical investigations of Particles are needed to study and discover the Fundamental Particle. These are new Physical, Visual and Behavioral-Physical experimental methods for describing and discovering the Fundamental Particle in the Nature and Microworld. Fundamental Particle consists of the same Energy-Mass-Motion system and a symmetry of Energy-Mass-Motion. Fundamental Particle supplies each of the elementary particles with the same Energy-Mass-Motion system at the same time and regulates each of the particles. Fundamental Particle gives Energy, Mass and Motion to each particles at the same time, each of the Particles consists of acquired Energy-Mass-Motion system and symmetry. Energy, Mass, Motion given by the Fundamental Particle to the particles are Symmetrical Equivalent and they remain in their primary shapes in all cases. Fundamental Particle gives Energy-Mass-Motion system and symmetry consisting of different measures and functions to each of the particles. The Motion given by the Fundamental Particle to the particles is Gravitation, Gravitational Interaction not only gives Motion, but also cause Motion by attracting. All Substances, Fields and Cosmic objects consist of Energy-Mass-Motion. The Field also includes specific Mass. They are always Energetic, Massive and Active. Fundamental Particle establishes the bases of the Nature. Supplement and Regulating of all the particles existing in the Nature belongs to Fundamental Particle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basic%20properties%20of%20a%20fundamental%20particle" title="basic properties of a fundamental particle">basic properties of a fundamental particle</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral-physical%20and%20visual%20methods" title=" behavioral-physical and visual methods"> behavioral-physical and visual methods</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-mass-motion%20system%20and%20symmetrical%20equivalence" title=" energy-mass-motion system and symmetrical equivalence"> energy-mass-motion system and symmetrical equivalence</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamental%20particle" title=" fundamental particle"> fundamental particle</a> </p> <a href="https://publications.waset.org/abstracts/94061/basic-properties-of-a-fundamental-particle-behavioral-physical-and-visual-methods-for-the-study-of-fundamental-particle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3744</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> An Exploratory Study Applied to Search Relationship between Humans and Universe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hashelaf">Mohamed Hashelaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Osdody"> Ahmed Al-Osdody</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we focused our efforts on one of the vaguest subjects in astrophysics that is the formation and evolution of the universe until the arrival of humans. Through an in-depth exploration of the origins of the universe, understanding what has happened since the Big Bang until now and checking the history of creation, we can answer questions about the future of life, the possibility of its existence elsewhere in the universe and to be able to understand how we came, what our role in the circle of life is and what the future of our development will be. Here is where we used systematic steps that allowed us first and foremost to identify the reason behind the big bang itself that formed a large cloud of cosmic dust. Then after a period of time from the expansion of the universe and its coolness, the initial molecules of gases from the cosmic cloud began to condense, forming a very dense field of gravity that after millions of years led to the formation of stars, galaxies, even earth and the else planets. Finally, it became clear before us that after the earth has formed, the existence of liquid water made it possible for life to form, starting from the bacteria all the way until the appearance of the humans that we know today. But it does not stop here. If we look and contemplate in ourselves as humans, we will understand that the universe is inside us and that’s what makes us exceptional. All of this means that just as life on earth was created, it could have been on other planets as well. It also means that we are the universe’s key to understand itself. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Big%20Bang" title="Big Bang">Big Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20dust" title=" cosmic dust"> cosmic dust</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20elements" title=" primary elements"> primary elements</a>, <a href="https://publications.waset.org/abstracts/search?q=universe" title=" universe"> universe</a> </p> <a href="https://publications.waset.org/abstracts/99846/an-exploratory-study-applied-to-search-relationship-between-humans-and-universe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Modeling Continuous Flow in a Curved Channel Using Smoothed Particle Hydrodynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indri%20Mahadiraka%20Rumamby">Indri Mahadiraka Rumamby</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Dwinanti%20Rika%20Marthanty"> R. R. Dwinanti Rika Marthanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Sjah"> Jessica Sjah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smoothed particle hydrodynamics (SPH) was originally created to simulate nonaxisymmetric phenomena in astrophysics. However, this method still has several shortcomings, namely the high computational cost required to model values with high resolution and problems with boundary conditions. The difficulty of modeling boundary conditions occurs because the SPH method is influenced by particle deficiency due to the integral of the kernel function being truncated by boundary conditions. This research aims to answer if SPH modeling with a focus on boundary layer interactions and continuous flow can produce quantifiably accurate values with low computational cost. This research will combine algorithms and coding in the main program of meandering river, continuous flow algorithm, and solid-fluid algorithm with the aim of obtaining quantitatively accurate results on solid-fluid interactions with the continuous flow on a meandering channel using the SPH method. This study uses the Fortran programming language for modeling the SPH (Smoothed Particle Hydrodynamics) numerical method; the model is conducted in the form of a U-shaped meandering open channel in 3D, where the channel walls are soil particles and uses a continuous flow with a limited number of particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smoothed%20particle%20hydrodynamics" title="smoothed particle hydrodynamics">smoothed particle hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title=" fluid mechanics"> fluid mechanics</a> </p> <a href="https://publications.waset.org/abstracts/149236/modeling-continuous-flow-in-a-curved-channel-using-smoothed-particle-hydrodynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Correlation Between Forbush-Decrease Amplitude Detected by Mountain Chacaltaya Neutron Monitor and Solar Wind Electric Filed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebwato%20Nasurudiin">Sebwato Nasurudiin</a>, <a href="https://publications.waset.org/abstracts/search?q=Akimasa%20Yoshikawa"> Akimasa Yoshikawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elsaid"> Ahmed Elsaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Mahrous"> Ayman Mahrous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the correlation between the amplitude of Forbush Decreases (FDs) detected by the Mountain Chacaltaya neutron monitor and the solar wind electric field (E). Forbush Decreases, characterized by sudden drops in cosmic ray intensity, are typically associated with interplanetary coronal mass ejections (ICMEs) and high-speed solar wind streams. The Mountain Chacaltaya neutron monitor, located at a high altitude in Bolivia, offers an optimal setting for observing cosmic ray variations. The solar wind electric field, influenced by the solar wind velocity and interplanetary magnetic field, significantly impacts cosmic ray transport in the heliosphere. By analyzing neutron monitor data alongside solar wind parameters, we found a high correlation between E and FD amplitudes with a correlation factor of nearly 87%. The findings enhance our understanding of space weather processes, cosmic ray modulation, and solar-terrestrial interactions, providing valuable insights for predicting space weather events and mitigating their technological impacts. This study contributes to the broader astrophysics field by offering empirical data on cosmic ray modulation mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmic%20rays" title="cosmic rays">cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=Forbush%20decrease" title=" Forbush decrease"> Forbush decrease</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20wind" title=" solar wind"> solar wind</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20monitor" title=" neutron monitor"> neutron monitor</a> </p> <a href="https://publications.waset.org/abstracts/188217/correlation-between-forbush-decrease-amplitude-detected-by-mountain-chacaltaya-neutron-monitor-and-solar-wind-electric-filed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Specification and Unification of All Fundamental Forces Exist in Universe in the Theoretical Perspective – The Universal Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surendra%20Mund">Surendra Mund</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At the beginning, the physical entity force was defined mathematically by Sir Isaac Newton in his Principia Mathematica as F ⃗=(dp ⃗)/dt in form of his second law of motion. Newton also defines his Universal law of Gravitational force exist in same outstanding book, but at the end of 20th century and beginning of 21st century, we have tried a lot to specify and unify four or five Fundamental forces or Interaction exist in universe, but we failed every time. Usually, Gravity creates problems in this unification every single time, but in my previous papers and presentations, I defined and derived Field and force equations for Gravitational like Interactions for each and every kind of central systems. This force is named as Variational Force by me, and this force is generated by variation in the scalar field density around the body. In this particular paper, at first, I am specifying which type of Interactions are Fundamental in Universal sense (or in all type of central systems or bodies predicted by my N-time Inflationary Model of Universe) and then unify them in Universal framework (defined and derived by me as Universal Mechanics in a separate paper) as well. This will also be valid in Universal dynamical sense which includes inflations and deflations of universe, central system relativity, Universal relativity, ϕ-ψ transformation and transformation of spin, physical perception principle, Generalized Fundamental Dynamical Law and many other important Generalized Principles of Generalized Quantum Mechanics (GQM) and Central System Theory (CST). So, In this article, at first, I am Generalizing some Fundamental Principles, and then Unifying Variational Forces (General form of Gravitation like Interactions) and Flow Generated Force (General form of EM like Interactions), and then Unify all Fundamental Forces by specifying Weak and Strong Interactions in form of more basic terms - Variational, Flow Generated and Transformational Interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Central%20System%20Force" title="Central System Force">Central System Force</a>, <a href="https://publications.waset.org/abstracts/search?q=Disturbance%20Force" title=" Disturbance Force"> Disturbance Force</a>, <a href="https://publications.waset.org/abstracts/search?q=Flow%20Generated%20Forces" title=" Flow Generated Forces"> Flow Generated Forces</a>, <a href="https://publications.waset.org/abstracts/search?q=Generalized%20Nuclear%20Force" title=" Generalized Nuclear Force"> Generalized Nuclear Force</a>, <a href="https://publications.waset.org/abstracts/search?q=Generalized%20Weak%20Interactions" title=" Generalized Weak Interactions"> Generalized Weak Interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=Generalized%20EM-Like%20Interactions" title=" Generalized EM-Like Interactions"> Generalized EM-Like Interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=Imbalance%20Force" title=" Imbalance Force"> Imbalance Force</a>, <a href="https://publications.waset.org/abstracts/search?q=Spin%20Generated%20Forces" title=" Spin Generated Forces"> Spin Generated Forces</a>, <a href="https://publications.waset.org/abstracts/search?q=Transformation%20Generated%20Force" title=" Transformation Generated Force"> Transformation Generated Force</a>, <a href="https://publications.waset.org/abstracts/search?q=Unified%20Force" title=" Unified Force"> Unified Force</a>, <a href="https://publications.waset.org/abstracts/search?q=Universal%20Mechanics" title=" Universal Mechanics"> Universal Mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=Uniform%20And%20Non-Uniform%20Variational%20Interactions" title=" Uniform And Non-Uniform Variational Interactions"> Uniform And Non-Uniform Variational Interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=Variational%20Interactions" title=" Variational Interactions"> Variational Interactions</a> </p> <a href="https://publications.waset.org/abstracts/169765/specification-and-unification-of-all-fundamental-forces-exist-in-universe-in-the-theoretical-perspective-the-universal-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Recombination Rate Coefficients for NIII and OIV Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahin%20A.%20Abdel-Naby">Shahin A. Abdel-Naby</a>, <a href="https://publications.waset.org/abstracts/search?q=Asad%20T.%20Hassan"> Asad T. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron-ion recombination data are needed for plasma modeling. The recombination processes include radiative recombination (RR), dielectronic recombination (DR), and trielectronic recombination (TR). When a free electron is captured by an ion with simultaneous excitation of its core, a doubly-exited intermediate state may be formed. The doubly excited state relaxes either by electron emission (autoionization) or by radiative decay (photon emission). DR process takes place when the relaxation occurs to a bound state by photon emission. Reliable laboratory astrophysics data (theory and experiment) for DR rate coefficients are needed to determine the charge state distribution in photoionized sources such as X-ray binaries and active galactic nuclei. DR rate coefficients for NIII and OIV ions are calculated using state-of-the-art multi-configuration Breit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. Level-resolved calculations for RR and DR rate coefficients from the ground and metastable initial states are produced in an intermediate coupling scheme associated with Δn = 0 (2→2) and Δn = 1 (2 →3) core-excitations. DR cross sections for these ions are convoluted with the experimental electron-cooler temperatures to produce DR rate coefficients. Good agreements are found between these rate coefficients and the experimental measurements performed at the CRYRING heavy-ion storage ring for both ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20data" title="atomic data">atomic data</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20process" title=" atomic process"> atomic process</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-ion%20collision" title=" electron-ion collision"> electron-ion collision</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmas" title=" plasmas"> plasmas</a> </p> <a href="https://publications.waset.org/abstracts/137671/recombination-rate-coefficients-for-niii-and-oiv-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Door Fan Test in New CED at Portopalo Test Site</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Noto">F. Noto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Castro"> M. Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Garraffo"> R. Garraffo</a>, <a href="https://publications.waset.org/abstracts/search?q=An.%20Mirabella"> An. Mirabella</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rizzo"> A. Rizzo</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Cuttone"> G. Cuttone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The door fan test is a verification procedure on the tightness of a room, necessary following the installation of saturation extinguishing systems and made mandatory according to the UNI 15004-1: 2019 standard whenever a gas extinguishing system is designed and installed. The door fan test was carried out at the Portopalo di Capo Passero headquarters of the Southern National Laboratories and highlighted how the Data Processing Center is perfectly up to standard, passing the door fan test in an excellent way. The Southern National Laboratories constitute a solid research reality, well established in the international scientific panorama. The CED in the Portopalo site has been expanded, so the extinguishing system has been expanded according to a detailed design. After checking the correctness of the design to verify the absence of air leaks, we carried out the door fan test. The activities of the LNS are mainly aimed at basic research in the field of Nuclear Physics, Nuclear and Particle Astrophysics. The Portopalo site will host some of the largest submarine wired scientific research infrastructures built in Europe and in the world, such as KM3NeT and EMSO ERIC; in particular, the site research laboratory in Portopalo will host the power supply and data acquisition systems of the underwater infrastructures, and a technological backbone will be created, unique in the Mediterranean, capable of allowing the connection, at abyssal depths, of dozens of real-time surveying and research structures of the marine environment deep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KM3Net" title="KM3Net">KM3Net</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20protection" title=" fire protection"> fire protection</a>, <a href="https://publications.waset.org/abstracts/search?q=door%20fan%20test" title=" door fan test"> door fan test</a>, <a href="https://publications.waset.org/abstracts/search?q=CED" title=" CED"> CED</a> </p> <a href="https://publications.waset.org/abstracts/148631/door-fan-test-in-new-ced-at-portopalo-test-site" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Validity of Universe Structure Conception as Nested Vortexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.%20Nabil">Khaled M. Nabil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces the Nested Vortexes conception of the universe structure and interprets all the physical phenomena according this conception. The paper first reviews recent physics theories, either in microscopic scale or macroscopic scale, to collect evidence that the space is not empty. But, these theories describe the property of the space medium without determining its structure. Determining the structure of space medium is essential to understand the mechanism that leads to its properties. Without determining the space medium structure, many phenomena; such as electric and magnetic fields, gravity, or wave-particle duality remain uninterpreted. Thus, this paper introduces a conception about the structure of the universe. It assumes that the universe is a medium of ultra-tiny homogeneous particles which are still undiscovered. Like any medium with certain movements, possibly because of a great asymmetric explosion, vortexes have occurred. A vortex condenses the ultra-tiny particles in its center forming a bigger particle, the bigger particles, in turn, could be trapped in a bigger vortex and condense in its center forming a much bigger particle and so on. This conception describes galaxies, stars, protons as particles at different levels. Existing of the particle&rsquo;s vortexes make the consistency of the speed of light postulate is not true. This conception shows that the vortex motion dynamic agrees with the motion of all the universe particles at any level. An experiment has been carried out to detect the orbiting effect of aggregated vortexes of aligned atoms of a permanent magnet. Based on the described particle&rsquo;s structure, the gravity force of a particle and attraction between particles as well as charge, electric and magnetic fields and quantum mechanics characteristics are interpreted. All augmented physics phenomena are solved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=astrophysics" title="astrophysics">astrophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmology" title=" cosmology"> cosmology</a>, <a href="https://publications.waset.org/abstracts/search?q=particles%E2%80%99%20structure%20model" title=" particles’ structure model"> particles’ structure model</a>, <a href="https://publications.waset.org/abstracts/search?q=particles%E2%80%99%20forces" title=" particles’ forces"> particles’ forces</a> </p> <a href="https://publications.waset.org/abstracts/124805/validity-of-universe-structure-conception-as-nested-vortexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Dual Duality for Unifying Spacetime and Internal Symmetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20C.%20Ni">David C. Ni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current efforts for Grand Unification Theory (GUT) can be classified into General Relativity, Quantum Mechanics, String Theory and the related formalisms. In the geometric approaches for extending General Relativity, the efforts are establishing global and local invariance embedded into metric formalisms, thereby additional dimensions are constructed for unifying canonical formulations, such as Hamiltonian and Lagrangian formulations. The approaches of extending Quantum Mechanics adopt symmetry principle to formulate algebra-group theories, which evolved from Maxwell formulation to Yang-Mills non-abelian gauge formulation, and thereafter manifested the Standard model. This thread of efforts has been constructing super-symmetry for mapping fermion and boson as well as gluon and graviton. The efforts of String theory currently have been evolving to so-called gauge/gravity correspondence, particularly the equivalence between type IIB string theory compactified on AdS5 × S5 and N = 4 supersymmetric Yang-Mills theory. Other efforts are also adopting cross-breeding approaches of above three formalisms as well as competing formalisms, nevertheless, the related symmetries, dualities, and correspondences are outlined as principles and techniques even these terminologies are defined diversely and often generally coined as duality. In this paper, we firstly classify these dualities from the perspective of physics. Then examine the hierarchical structure of classes from mathematical perspective referring to Coleman-Mandula theorem, Hidden Local Symmetry, Groupoid-Categorization and others. Based on Fundamental Theorems of Algebra, we argue that rather imposing effective constraints on different algebras and the related extensions, which are mainly constructed by self-breeding or self-mapping methodologies for sustaining invariance, we propose a new addition, momentum-angular momentum duality at the level of electromagnetic duality, for rationalizing the duality algebras, and then characterize this duality numerically with attempt for addressing some unsolved problems in physics and astrophysics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title="general relativity">general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20theory" title=" string theory"> string theory</a>, <a href="https://publications.waset.org/abstracts/search?q=duality" title=" duality"> duality</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetry" title=" symmetry"> symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=correspondence" title=" correspondence"> correspondence</a>, <a href="https://publications.waset.org/abstracts/search?q=algebra" title=" algebra"> algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum-angular-momentum" title=" momentum-angular-momentum"> momentum-angular-momentum</a> </p> <a href="https://publications.waset.org/abstracts/45918/dual-duality-for-unifying-spacetime-and-internal-symmetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Lead Chalcogenide Quantum Dots for Use in Radiation Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tom%20Nakotte">Tom Nakotte</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongmei%20Luo"> Hongmei Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead chalcogenide-based (PbS, PbSe, and PbTe) quantum dots (QDs) were synthesized for the purpose of implementing them in radiation detectors. Pb based materials have long been of interest for gamma and x-ray detection due to its high absorption cross section and Z number. The emphasis of the studies was on exploring how to control charge carrier transport within thin films containing the QDs. The properties of QDs itself can be altered by changing the size, shape, composition, and surface chemistry of the dots, while the properties of carrier transport within QD films are affected by post-deposition treatment of the films. The QDs were synthesized using colloidal synthesis methods and films were grown using multiple film coating techniques, such as spin coating and doctor blading. Current QD radiation detectors are based on the QD acting as fluorophores in a scintillation detector. Here the viability of using QDs in solid-state radiation detectors, for which the incident detectable radiation causes a direct electronic response within the QD film is explored. Achieving high sensitivity and accurate energy quantification in QD radiation detectors requires a large carrier mobility and diffusion lengths in the QD films. Pb chalcogenides-based QDs were synthesized with both traditional oleic acid ligands as well as more weakly binding oleylamine ligands, allowing for in-solution ligand exchange making the deposition of thick films in a single step possible. The PbS and PbSe QDs showed better air stability than PbTe. After precipitation the QDs passivated with the shorter ligand are dispersed in 2,6-difloupyridine resulting in colloidal solutions with concentrations anywhere from 10-100 mg/mL for film processing applications, More concentrated colloidal solutions produce thicker films during spin-coating, while an extremely concentrated solution (100 mg/mL) can be used to produce several micrometer thick films using doctor blading. Film thicknesses of micrometer or even millimeters are needed for radiation detector for high-energy gamma rays, which are of interest for astrophysics or nuclear security, in order to provide sufficient stopping power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colloidal%20synthesis" title="colloidal synthesis">colloidal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20chalcogenide" title=" lead chalcogenide"> lead chalcogenide</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20detectors" title=" radiation detectors"> radiation detectors</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a> </p> <a href="https://publications.waset.org/abstracts/93522/lead-chalcogenide-quantum-dots-for-use-in-radiation-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Microbial Dark Matter Analysis Using 16S rRNA Gene Metagenomics Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hana%20Barak">Hana Barak</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Sivan"> Alex Sivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariel%20Kushmaro"> Ariel Kushmaro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microorganisms are the most diverse and abundant life forms on Earth and account for a large portion of the Earth’s biomass and biodiversity. To date though, our knowledge regarding microbial life is lacking, as it is based mainly on information from cultivated organisms. Indeed, microbiologists have borrowed from astrophysics and termed the ‘uncultured microbial majority’ as ‘microbial dark matter’. The realization of how diverse and unexplored microorganisms are, actually stems from recent advances in molecular biology, and in particular from novel methods for sequencing microbial small subunit ribosomal RNA genes directly from environmental samples termed next-generation sequencing (NGS). This has led us to use NGS that generates several gigabases of sequencing data in a single experimental run, to identify and classify environmental samples of microorganisms. In metagenomics sequencing analysis (both 16S and shotgun), sequences are compared to reference databases that contain only small part of the existing microorganisms and therefore their taxonomy assignment may reveal groups of unknown microorganisms or origins. These unknowns, or the ‘microbial sequences dark matter’, are usually ignored in spite of their great importance. The goal of this work was to develop an improved bioinformatics method that enables more complete analyses of the microbial communities in numerous environments. Therefore, NGS was used to identify previously unknown microorganisms from three different environments (industrials wastewater, Negev Desert’s rocks and water wells at the Arava valley). 16S rRNA gene metagenome analysis of the microorganisms from those three environments produce about ~4 million reads for 75 samples. Between 0.1-12% of the sequences in each sample were tagged as ‘Unassigned’. Employing relatively simple methodology for resequencing of original gDNA samples through Sanger or MiSeq Illumina with specific primers, this study demonstrates that the mysterious ‘Unassigned’ group apparently contains sequences of candidate phyla. Those unknown sequences can be located on a phylogenetic tree and thus provide a better understanding of the ‘sequences dark matter’ and its role in the research of microbial communities and diversity. Studying this ‘dark matter’ will extend the existing databases and could reveal the hidden potential of the ‘microbial dark matter’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title=" dark matter"> dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Next%20Generation%20Sequencing" title=" Next Generation Sequencing"> Next Generation Sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=unknown" title=" unknown"> unknown</a> </p> <a href="https://publications.waset.org/abstracts/97387/microbial-dark-matter-analysis-using-16s-rrna-gene-metagenomics-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Coulomb-Explosion Driven Proton Focusing in an Arched CH Target</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Q.%20Wang">W. Q. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Yin"> Y. Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B.%20Zou"> D. B. Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Yu"> T. P. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Ouyang"> J. M. Ouyang</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Q.%20Shao"> F. Q. Shao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-energy-density state, i.e., matter and radiation at energy densities in excess of 10^11 J/m^3, is related to material, nuclear physics, astrophysics, and geophysics. Laser-driven particle beams are better suited to heat the matter as a trigger due to their unique properties of ultrashort duration and low emittance. Compared to X-ray and electron sources, it is easier to generate uniformly heated large-volume material for the proton and ion beams because of highly localized energy deposition. With the construction of state-of-art high power laser facilities, creating of extremely conditions of high-temperature and high-density in laboratories becomes possible. It has been demonstrated that on a picosecond time scale the solid density material can be isochorically heated to over 20 eV by the ultrafast proton beam generated from spherically shaped targets. For the above-mentioned technique, the proton energy density plays a crucial role in the formation of warm dense matter states. Recently, several methods have devoted to realize the focusing of the accelerated protons, involving externally exerted static-fields or specially designed targets interacting with a single or multi-pile laser pulses. In previous works, two co-propagating or opposite direction laser pulses are employed to strike a submicron plasma-shell. However, ultra-high pulse intensities, accurately temporal synchronization and undesirable transverse instabilities for a long time are still intractable for currently experimental implementations. A mechanism of the focusing of laser-driven proton beams from two-ion-species arched targets is investigated by multi-dimensional particle-in-cell simulations. When an intense linearly-polarized laser pulse impinges on the thin arched target, all electrons are completely evacuated, leading to a Coulomb-explosive electric-field mostly originated from the heavier carbon ions. The lighter protons in the moving reference frame by the ionic sound speed will be accelerated and effectively focused because of this radially isotropic field. At a 2.42×10^21 W/cm^2 laser intensity, a ballistic proton bunch with its energy-density as high as 2.15×10^17 J/m^3 is produced, and the highest proton energy and the focusing position agree well with that from the theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coulomb%20explosion" title="Coulomb explosion">Coulomb explosion</a>, <a href="https://publications.waset.org/abstracts/search?q=focusing" title=" focusing"> focusing</a>, <a href="https://publications.waset.org/abstracts/search?q=high-energy-density" title=" high-energy-density"> high-energy-density</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20acceleration" title=" ion acceleration"> ion acceleration</a> </p> <a href="https://publications.waset.org/abstracts/46064/coulomb-explosion-driven-proton-focusing-in-an-arched-ch-target" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Experimental and Numerical Investigation on the Torque in a Small Gap Taylor-Couette Flow with Smooth and Grooved Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Joseph">L. Joseph</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Farid"> B. Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ravelet"> F. Ravelet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fundamental studies were performed on bifurcation, instabilities and turbulence in Taylor-Couette flow and applied to many engineering applications like astrophysics models in the accretion disks, shrouded fans, and electric motors. Such rotating machinery performances need to have a better understanding of the fluid flow distribution to quantify the power losses and the heat transfer distribution. The present investigation is focused on high gap ratio of Taylor-Couette flow with high rotational speeds, for smooth and grooved surfaces. So far, few works has been done in a very narrow gap and with very high rotation rates and, to the best of our knowledge, not with this combination with grooved surface. We study numerically the turbulent flow between two coaxial cylinders where R1 and R2 are the inner and outer radii respectively, where only the inner is rotating. The gap between the rotor and the stator varies between 0.5 and 2 mm, which corresponds to a radius ratio η = R1/R2 between 0.96 and 0.99 and an aspect ratio Γ= L/d between 50 and 200, where L is the length of the rotor and d being the gap between the two cylinders. The scaling of the torque with the Reynolds number is determined at different gaps for different smooth and grooved surfaces (and also with different number of grooves). The fluid in the gap is air. Re varies between 8000 and 30000. Another dimensionless parameter that plays an important role in the distinction of the regime of the flow is the Taylor number that corresponds to the ratio between the centrifugal forces and the viscous forces (from 6.7 X 105 to 4.2 X 107). The torque will be first evaluated with RANS and U-RANS models, and compared to empirical models and experimental results. A mesh convergence study has been done for each rotor-stator combination. The results of the torque are compared to different meshes in 2D dimensions. For the smooth surfaces, the models used overestimate the torque compared to the empirical equations that exist in the bibliography. The closest models to the empirical models are those solving the equations near to the wall. The greatest torque achieved with grooved surface. The tangential velocity in the gap was always higher in between the rotor and the stator and not on the wall of rotor. Also the greater one was in the groove in the recirculation zones. In order to avoid endwall effects, long cylinders are used in our setup (100 mm), torque is measured by a co-rotating torquemeter. The rotor is driven by an air turbine of an automotive turbo-compressor for high angular velocities. The results of the experimental measurements are at rotational speed of up to 50 000 rpm. The first experimental results are in agreement with numerical ones. Currently, quantitative study is performed on grooved surface, to determine the effect of number of grooves on the torque, experimentally and numerically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taylor-Couette%20flow" title="Taylor-Couette flow">Taylor-Couette flow</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20gap%20ratio" title=" high gap ratio"> high gap ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=grooved%20surface" title=" grooved surface"> grooved surface</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed" title=" high speed"> high speed</a> </p> <a href="https://publications.waset.org/abstracts/31321/experimental-and-numerical-investigation-on-the-torque-in-a-small-gap-taylor-couette-flow-with-smooth-and-grooved-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Next-Generation Lunar and Martian Laser Retro-Reflectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simone%20Dell%27Agnello">Simone Dell&#039;Agnello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are laser retroreflectors on the Moon and no laser retroreflectors on Mars. Here we describe the design, construction, qualification and imminent deployment of next-generation, optimized laser retroreflectors on the Moon and on Mars (where they will be the first ones). These instruments are positioned by time-of-flight measurements of short laser pulses, the so-called 'laser ranging' technique. Data analysis is carried out with PEP, the Planetary Ephemeris Program of CfA (Center for Astrophysics). Since 1969 Lunar Laser Ranging (LLR) to Apollo/Lunokhod laser retro-reflector (CCR) arrays supplied accurate tests of General Relativity (GR) and new gravitational physics: possible changes of the gravitational constant Gdot/G, weak and strong equivalence principle, gravitational self-energy (Parametrized Post Newtonian parameter beta), geodetic precession, inverse-square force-law; it can also constraint gravitomagnetism. Some of these measurements also allowed for testing extensions of GR, including spacetime torsion, non-minimally coupled gravity. LLR has also provides significant information on the composition of the deep interior of the Moon. In fact, LLR first provided evidence of the existence of a fluid component of the deep lunar interior. In 1969 CCR arrays contributed a negligible fraction of the LLR error budget. Since laser station range accuracy improved by more than a factor 100, now, because of lunar librations, current array dominate the error due to their multi-CCR geometry. We developed a next-generation, single, large CCR, MoonLIGHT (Moon Laser Instrumentation for General relativity high-accuracy test) unaffected by librations that supports an improvement of the space segment of the LLR accuracy up to a factor 100. INFN also developed INRRI (INstrument for landing-Roving laser Retro-reflector Investigations), a microreflector to be laser-ranged by orbiters. Their performance is characterized at the SCF_Lab (Satellite/lunar laser ranging Characterization Facilities Lab, INFN-LNF, Frascati, Italy) for their deployment on the lunar surface or the cislunar space. They will be used to accurately position landers, rovers, hoppers, orbiters of Google Lunar X Prize and space agency missions, thanks to LLR observations from station of the International Laser Ranging Service in the USA, in France and in Italy. INRRI was launched in 2016 with the ESA mission ExoMars (Exobiology on Mars) EDM (Entry, descent and landing Demonstration Module), deployed on the Schiaparelli lander and is proposed for the ExoMars 2020 Rover. Based on an agreement between NASA and ASI (Agenzia Spaziale Italiana), another microreflector, LaRRI (Laser Retro-Reflector for InSight), was delivered to JPL (Jet Propulsion Laboratory) and integrated on NASA’s InSight Mars Lander in August 2017 (launch scheduled in May 2018). Another microreflector, LaRA (Laser Retro-reflector Array) will be delivered to JPL for deployment on the NASA Mars 2020 Rover. The first lunar landing opportunities will be from early 2018 (with TeamIndus) to late 2018 with commercial missions, followed by opportunities with space agency missions, including the proposed deployment of MoonLIGHT and INRRI on NASA’s Resource Prospectors and its evolutions. In conclusion, we will extend significantly the CCR Lunar Geophysical Network and populate the Mars Geophysical Network. These networks will enable very significantly improved tests of GR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title="general relativity">general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20retroreflectors" title=" laser retroreflectors"> laser retroreflectors</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20laser%20ranging" title=" lunar laser ranging"> lunar laser ranging</a>, <a href="https://publications.waset.org/abstracts/search?q=Mars%20geodesy" title=" Mars geodesy"> Mars geodesy</a> </p> <a href="https://publications.waset.org/abstracts/80376/next-generation-lunar-and-martian-laser-retro-reflectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10