CINXE.COM

Search results for: curved channel

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: curved channel</title> <meta name="description" content="Search results for: curved channel"> <meta name="keywords" content="curved channel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="curved channel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="curved channel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1409</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: curved channel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1409</span> Numerical Simulation of the Flow Channel in the Curved Plane Oil Skimmer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xing%20Feng">Xing Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanbin%20Li"> Yuanbin Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil spills at sea can cause severe marine environmental damage, including bringing huge hazards to living resources and human beings. In situ burning or chemical dispersant methods can be used to handle the oil spills sometimes, but these approaches will bring secondary pollution and fail in some situations. Oil recovery techniques have also been developed to recover oil using oil skimmer equipment installed on ships, while the hydrodynamic process of the oil flowing through the oil skimmer is very complicated and important for evaluating the recovery efficiency. Based on this, a two-dimensional numerical simulation platform for simulating the hydrodynamic process of the oil flowing through the oil skimmer is established based on the Navier-Stokes equations for viscous, incompressible fluid. Finally, the influence of the design of the flow channel in the curved plane oil skimmer on the hydrodynamic process of the oil flowing through the oil skimmer is investigated based on the established simulation platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20plane%20oil%20skimmer" title="curved plane oil skimmer">curved plane oil skimmer</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20channel" title=" flow channel"> flow channel</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF" title=" VOF"> VOF</a> </p> <a href="https://publications.waset.org/abstracts/76300/numerical-simulation-of-the-flow-channel-in-the-curved-plane-oil-skimmer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1408</span> MHD Flow in a Curved Duct with FCI under a Uniform Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yue%20Yan">Yue Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Nyung%20Kim"> Chang Nyung Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The numerical investigation of the three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with flow channel insert (FCI) is presented in this paper, based on the computational fluid dynamics (CFD) method. A uniform magnetic field is applied perpendicular to the duct. The interdependency of the flow variables is examined in terms of the flow velocity, current density, electric potential and pressure. The electromagnetic characteristics of the LM MHD flows are reviewed with an introduction of the electric-field component and electro-motive component of the current. The influence of the existence of the FCI on the fluid flow is investigated in detail. The case with FCI slit located near the side layer yields smaller pressure gradient with stable flow field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20duct" title="curved duct">curved duct</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20channel%20insert" title=" flow channel insert"> flow channel insert</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-metal" title=" liquid-metal"> liquid-metal</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic" title=" magnetohydrodynamic"> magnetohydrodynamic</a> </p> <a href="https://publications.waset.org/abstracts/25447/mhd-flow-in-a-curved-duct-with-fci-under-a-uniform-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1407</span> Failure Mechanism of Slip-Critical Connections on Curved Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bae%20Doobyong">Bae Doobyong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoo%20Jaejun"> Yoo Jaejun</a>, <a href="https://publications.waset.org/abstracts/search?q=Park%20Ilgyu"> Park Ilgyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Choi%20Seowon"> Choi Seowon</a>, <a href="https://publications.waset.org/abstracts/search?q=Oh%20Chang%20Kook"> Oh Chang Kook</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Variation of slip coefficient in slip-critical connections of curved plates. This paper presents the results of analytical investigations of slip coefficients in slip-critical bolted connections of curved plates. It may depend on the contact stress distribution at interface and the flexibility of spliced plate. Non-linear FEM analyses have been made to simulate the behavior of bolted connections of curved plates with various radiuses of curvature and thicknesses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slip%20coefficient" title="slip coefficient">slip coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=curved%20plates" title=" curved plates"> curved plates</a>, <a href="https://publications.waset.org/abstracts/search?q=slip-critical%20bolted%20connection" title=" slip-critical bolted connection"> slip-critical bolted connection</a>, <a href="https://publications.waset.org/abstracts/search?q=radius%20of%20curvature" title=" radius of curvature"> radius of curvature</a> </p> <a href="https://publications.waset.org/abstracts/45974/failure-mechanism-of-slip-critical-connections-on-curved-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1406</span> Dynamic Response of Doubly Curved Composite Shell with Embedded Shape Memory Alloys Wires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Ardali">Amin Ardali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Khalili"> Mohammadreza Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Rezai"> Mohammadreza Rezai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, dynamic response of thin smart composite panel subjected to low-velocity transverse impact is investigated. Shape memory wires are used to reinforced curved composite panel in a smart way. One-dimensional thermodynamic constitutive model by Liang and Rogers is used for estimating the structural recovery stress. The two degrees-of-freedom mass-spring model is used for evaluation of the contact force between the curved composite panel and the impactor. This work is benefited from the Hertzian linear contact model which is linearized for the impact analysis of curved composite panel. The governing equations of curved panel are provided by first-order shear theory and solved by Fourier series related to simply supported boundary condition. For this purpose, the equation of doubly curved panel motion included the uniform in-plane forces is obtained. By the present analysis, the curved panel behavior under low-velocity impact, and also the effect of the impact parameters, the shape memory wire and the curved panel dimensions are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubly%20curved%20shell" title="doubly curved shell">doubly curved shell</a>, <a href="https://publications.waset.org/abstracts/search?q=SMA%20wire" title=" SMA wire"> SMA wire</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20response" title=" impact response"> impact response</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20material" title=" smart material"> smart material</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a> </p> <a href="https://publications.waset.org/abstracts/49593/dynamic-response-of-doubly-curved-composite-shell-with-embedded-shape-memory-alloys-wires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1405</span> Computation of Drag and Lift Coefficients on Submerged Vanes in Open Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anshul%20Jain">Anshul Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Deepak%20Kumar"> P. Deepak Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20S.%20Dikshit"> P. K. S. Dikshit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To stabilize the riverbanks in the curved reaches of alluvial channels due to erosion and to stop sediment transportation, many models and theories have been put forth. One among such methods is to install flat vanes on the channel bed in predetermined manner. In practical, a relatively small no of vanes can produce bend flows which are practically uniform across the channel. The objective of the present study is to measure the drag and lift on such submerged vanes in open channels. Experiments were performed and the data collected have been presented and analyzed. Using the data collected herein, predictors for the coefficients of drag and lift have been developed. Such predictors yield the value of these coefficients for the known fluid properties and flow characteristic of the channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag" title="drag">drag</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a>, <a href="https://publications.waset.org/abstracts/search?q=vanes" title=" vanes"> vanes</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel" title=" open channel"> open channel</a> </p> <a href="https://publications.waset.org/abstracts/47361/computation-of-drag-and-lift-coefficients-on-submerged-vanes-in-open-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1404</span> CFD-DEM Modelling and Analysis of the Continuous Separation of Sized Particles Using Inertial Microfluidics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhu">Hui Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Wang"> Yuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shibo%20Kuang"> Shibo Kuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Aibing%20Yu"> Aibing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inertial difference induced by the microfluidics inside a curved micro-channel has great potential to provide a fast, inexpensive, and portable solution to the separation of micro- and sub-micro particles in many applications such as aerosol collections, airborne bacteria and virus detections, as well as particle sortation. In this work, the separation behaviors of different sized particles inside a reported curved micro-channel have been studied by a combined approach of computational fluid dynamics for gas and discrete element model for particles (CFD-DEM). The micro-channel is operated by controlling the gas flow rates at all of its branches respectively used to load particles, introduce gas streams, collect particles of various sizes. The validity of the model has been examined by comparing by the calculated separation efficiency of different sized particles against the measurement. On this basis, the separation mechanisms of the inertial microfluidic separator are elucidated in terms of the interactions between particles, between particle and fluid, and between particle and wall. The model is then used to study the effect of feed solids concentration on the separation accuracy and efficiency. The results obtained from the present study demonstrate that the CFD-DEM approach can provide a convenient way to study the particle separation behaviors in micro-channels of various types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD-DEM" title="CFD-DEM">CFD-DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20effect" title=" inertial effect"> inertial effect</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel" title=" microchannel"> microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/57240/cfd-dem-modelling-and-analysis-of-the-continuous-separation-of-sized-particles-using-inertial-microfluidics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1403</span> Study on Multi-Point Stretch Forming Process for Double Curved Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiwoo%20Park">Jiwoo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Junseok%20Yoon"> Junseok Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Kim"> Jeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Beomsoo%20Kang"> Beomsoo Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-point%20stretch%20forming" title="multi-point stretch forming">multi-point stretch forming</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20curved%20surface" title=" double curved surface"> double curved surface</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/7221/study-on-multi-point-stretch-forming-process-for-double-curved-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1402</span> A Note on MHD Flow and Heat Transfer over a Curved Stretching Sheet by Considering Variable Thermal Conductivity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Murtaza">M. G. Murtaza</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Tzirtzilakis"> E. E. Tzirtzilakis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ferdows"> M. Ferdows</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixed convective flow of MHD incompressible, steady boundary layer in heat transfer over a curved stretching sheet due to temperature dependent thermal conductivity is studied. We use curvilinear coordinate system in order to describe the governing flow equations. Finite difference solutions with central differencing have been used to solve the transform governing equations. Numerical results for the flow velocity and temperature profiles are presented as a function of the non-dimensional curvature radius. Skin friction coefficient and local Nusselt number at the surface of the curved sheet are discussed as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20stretching%20sheet" title="curved stretching sheet">curved stretching sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20thermal%20conductivity" title=" variable thermal conductivity"> variable thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/85972/a-note-on-mhd-flow-and-heat-transfer-over-a-curved-stretching-sheet-by-considering-variable-thermal-conductivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1401</span> Development of Imprinting and Replica Molding of Soft Mold Curved Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yung-Jin%20Weng">Yung-Jin Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Chi%20Chang"> Chia-Chi Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Yu%20Tsai"> Chun-Yu Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on the research of imprinting and replica molding of quasi-grey scale soft mold curved surface microstructure mold. In this paper, a magnetic photocuring forming system is first developed and built independently, then the magnetic curved surface microstructure soft mode is created; moreover, the magnetic performance of the magnetic curved surface at different heights is tested and recorded, and through experimentation and simulation, the magnetic curved surface microstructure soft mold is used in the research of quasi-grey scale soft mold curved surface microstructure imprinting and replica molding. The experimental results show that, under different surface curvatures and voltage control conditions, different quasi-grey scale array microstructures take shape. In addition, this paper conducts research on the imprinting and replica molding of photoresist composite magnetic powder in order to discuss the forming performance of magnetic photoresist, and finally, the experimental result is compared with the simulation to obtain more accurate prediction and results. This research is predicted to provide microstructure component preparation technology with heterogeneity and controllability, and is a kind of valid shaping quasi-grey scale microstructure manufacturing technology method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20mold" title="soft mold">soft mold</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic" title=" magnetic"> magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=curved%20surface" title=" curved surface"> curved surface</a> </p> <a href="https://publications.waset.org/abstracts/63938/development-of-imprinting-and-replica-molding-of-soft-mold-curved-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1400</span> Beam Methods Applications to the Design of Curved Pulsed Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timor%20Melamed">Timor Melamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we consider two methods for synthesizing a pulsed curved beam along a generic beam-axis trajectory. In the first approach, we evaluate the space-time aperture field distribution that radiates the beam along a predefined trajectory by constructing a time-dependent caustic surface around the beam-axis skeleton. We derive the aperture field delay to form a caustic of rays along the beam axis and extend this method to other points over the aperture. In the second approach, we harness the proven capabilities of beam methods to address the challenge of designing curved intensity profiles in three-dimensional free space. By leveraging advanced beam propagation techniques, we create and manipulate complex intensity patterns along arbitrarily curved trajectories, offering additional possibilities for precision control in various wave-based applications. Numerical examples are presented to demonstrate the robust capabilities of both methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulsed%20Airy%20beams" title="pulsed Airy beams">pulsed Airy beams</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20beams" title=" pulsed beams"> pulsed beams</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20curved%20beams" title=" pulsed curved beams"> pulsed curved beams</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20fields" title=" transient fields"> transient fields</a> </p> <a href="https://publications.waset.org/abstracts/192271/beam-methods-applications-to-the-design-of-curved-pulsed-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1399</span> Forced Vibration of a Planar Curved Beam on Pasternak Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akif%20Kutlu">Akif Kutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20Ermis"> Merve Ermis</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Eratl%C4%B1"> Nihal Eratlı</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20H.%20Omurtag"> Mehmet H. Omurtag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20beam" title="curved beam">curved beam</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20foundation" title=" elastic foundation"> elastic foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/73716/forced-vibration-of-a-planar-curved-beam-on-pasternak-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1398</span> Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youssef%20I.%20Hafez">Youssef I. Hafez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=river%20channel%20meandering" title="river channel meandering">river channel meandering</a>, <a href="https://publications.waset.org/abstracts/search?q=sinuosity" title=" sinuosity"> sinuosity</a>, <a href="https://publications.waset.org/abstracts/search?q=radius%20of%20curvature" title=" radius of curvature"> radius of curvature</a>, <a href="https://publications.waset.org/abstracts/search?q=meander%20arc%20length" title=" meander arc length"> meander arc length</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20excess%20energy%20theory" title=" uniform excess energy theory"> uniform excess energy theory</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20energy%20loss" title=" transverse energy loss"> transverse energy loss</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20bed%20slope" title=" transverse bed slope"> transverse bed slope</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20discharges" title=" flow discharges"> flow discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20loads" title=" sediment loads"> sediment loads</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size" title=" grain size"> grain size</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a> </p> <a href="https://publications.waset.org/abstracts/84221/evaluation-of-river-meander-geometry-using-uniform-excess-energy-theory-and-effects-of-climate-change-on-river-meandering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1397</span> Opportunities and Challenges of Omni Channel Retailing in the Emerging Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Ahmed">Salma Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kumar"> Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper develops and estimates a model for understanding the drivers and barriers for Omni-Channel retail. This study serves as one of the first attempt to empirically test the effect of various factors on Omni-channel retail. Omni-channel is relative new and evolving, we hypothesize three drivers: (1) Innovative sales and marketing opportunities, (2) channel migration, (3) Cross channel synergies; and three barriers: (1) Integrated sales and marketing operations, (2) Visibility and synchronization (3) Integration and Technology challenges. The findings from the study strongly support that Omni-channel effects exist between cross channel synergy and channel migration. However, it partially supports innovative sales and marketing operations. We also found the variables which we identified as barriers to Omni-channel retail have a strong impact on Omni-channel retail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retailing" title="retailing">retailing</a>, <a href="https://publications.waset.org/abstracts/search?q=multichannel" title=" multichannel"> multichannel</a>, <a href="https://publications.waset.org/abstracts/search?q=Omni-channel" title=" Omni-channel"> Omni-channel</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20market" title=" emerging market "> emerging market </a> </p> <a href="https://publications.waset.org/abstracts/24135/opportunities-and-challenges-of-omni-channel-retailing-in-the-emerging-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1396</span> Active Control of Multiferroic Composite Shells Using 1-3 Piezoelectric Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Kattimani">S. C. Kattimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article deals with the analysis of active constrained layer damping (ACLD) of smart multiferroic or magneto-electro-elastic doubly curved shells. The kinematics of deformations of the multiferroic doubly curved shell is described by a layer-wise shear deformation theory. A three-dimensional finite element model of multiferroic shells has been developed taking into account the electro-elastic and magneto-elastic couplings. A simple velocity feedback control law is employed to incorporate the active damping. Influence of layer stacking sequence and boundary conditions on the response of the multiferroic doubly curved shell has been studied. In addition, for the different orientation of the fibers of the constraining layer, the performance of the ACLD treatment has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20constrained%20layer%20damping%20%28ACLD%29" title="active constrained layer damping (ACLD)">active constrained layer damping (ACLD)</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20curved%20shells" title=" doubly curved shells"> doubly curved shells</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-electro-elastic" title=" magneto-electro-elastic"> magneto-electro-elastic</a>, <a href="https://publications.waset.org/abstracts/search?q=multiferroic%20composite" title=" multiferroic composite"> multiferroic composite</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20structures" title=" smart structures"> smart structures</a> </p> <a href="https://publications.waset.org/abstracts/61791/active-control-of-multiferroic-composite-shells-using-1-3-piezoelectric-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1395</span> Investigation on the Bogie Pseudo-Hunting Motion of a Reduced-Scale Model Railway Vehicle Running on Double-Curved Rails</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryoichi%20Kinoshita"> Ryoichi Kinoshita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an experimental and theoretical study on the bogie pseudo-hunting motion of a reduced-scale model railway vehicle, running on double-curved rails, is presented. Since the actual bogie hunting motion, occurring for real railway vehicles running on straight rails at high travelling speeds, cannot be obtained in laboratory conditions, due to the speed and wavelength limitations, a pseudo- hunting motion was induced by employing double-curved rails. Firstly, the test rig and the experimental procedure are described. Then, a geometrical model of the double-curved rails is presented. Based on such model, the variation of the carriage rotation angle relative to the bogies and the working conditions of the yaw damper are clarified. Vibration spectra recorded during vehicle travelling, on straight and double-curved rails, are presented and interpreted based on a simple vibration model of the railway vehicle. Ride comfort of the vehicle is evaluated according to the ISO 2631 standard, and also by using some particular frequency weightings, which account for the discomfort perceived during the reading and writing activities. Results obtained in this work are useful for the adequate design of the yaw dampers, which are used to attenuate the lateral vibration of the train car bodies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double-curved%20rail" title="double-curved rail">double-curved rail</a>, <a href="https://publications.waset.org/abstracts/search?q=octave%20analysis" title=" octave analysis"> octave analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20model" title=" vibration model"> vibration model</a>, <a href="https://publications.waset.org/abstracts/search?q=ride%20comfort" title=" ride comfort"> ride comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20vehicle" title=" railway vehicle"> railway vehicle</a> </p> <a href="https://publications.waset.org/abstracts/54593/investigation-on-the-bogie-pseudo-hunting-motion-of-a-reduced-scale-model-railway-vehicle-running-on-double-curved-rails" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1394</span> Numerical Investigations on the Coanda Effect </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florin%20Frunzulica">Florin Frunzulica</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandru%20Dumitrache"> Alexandru Dumitrache</a>, <a href="https://publications.waset.org/abstracts/search?q=Octavian%20Preotu"> Octavian Preotu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Coanda effect consists of the tendency of a jet to remain attached to a sufficiently long/large convex surface. Flows deflected by a curved surface have caused great interest during last fifty years a major interest in the study of this phenomenon is caused by the possibility of using this effect to aircraft with short take-off and landing, for thrust vectoring. It is also used in applications involving mixing two of more fluids, noise attenuation, ventilation, etc. The paper proposes the numerical study of an aerodynamic configuration that can passively amplify the Coanda effect. On a wing flaps with predetermined configuration, a channel is applied between two particular zones, a low-pressure one and a high-pressure another one, respectively. The secondary flow through this channel yields a gap between the jet and the convex surface, maintaining the jet attached on a longer distance. The section altering-based active control of the secondary flow through the channel controls the attachment of the jet to the surface and automatically controls the deviation angle of the jet. The numerical simulations have been performed in Ansys Fluent for a series of wing flaps-channel configurations with varying jet velocity. The numerical results are in good agreement with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blowing%20jet" title="blowing jet">blowing jet</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=Coanda%20effect" title=" Coanda effect"> Coanda effect</a>, <a href="https://publications.waset.org/abstracts/search?q=circulation%20control" title=" circulation control"> circulation control</a> </p> <a href="https://publications.waset.org/abstracts/67867/numerical-investigations-on-the-coanda-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1393</span> The Effect of Arbitrary Support Conditions on the Static Behavior of Curved Beams Using the Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Mottaghi%20T.">Hossein Mottaghi T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20R.%20Masoodi"> Amir R. Masoodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a finite curved element for analyzing the static behavior of curved beams within the elastic range. The objective is to enhance accuracy while reducing the number of elements by incorporating first-order shear deformations of Timoshenko beams. Initially, finite element formulations are developed by considering polynomial initial functions for axial, shear, and rotational deformations for a three-node element. Subsequently, nodal interpolation functions for this element are derived, followed by the construction of the element stiffness matrix. To enable the utilization of the stiffness matrix in the static analysis of curved beams, the constructed matrix in the local coordinates of the element is transformed to the global coordinate system using the rotation matrix. A numerical benchmark example is investigated to assess the accuracy and effectiveness of this method. Moreover, the influence of spring stiffness on the rotation of the endpoint of a clamped beam is examined by substituting each support reaction of the beam with a spring. In the parametric study, the effect of the central angle of the beam on the rotation of the beam's endpoint in a cantilever beam under a concentrated load is examined. This research encompasses various mechanical, geometrical, and boundary configurations to evaluate the static characteristics of curved beams, thus providing valuable insights for their analysis and examination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20beam" title="curved beam">curved beam</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=first-order%20shear%20deformation%20theory" title=" first-order shear deformation theory"> first-order shear deformation theory</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20support" title=" elastic support"> elastic support</a> </p> <a href="https://publications.waset.org/abstracts/186836/the-effect-of-arbitrary-support-conditions-on-the-static-behavior-of-curved-beams-using-the-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1392</span> The Material Behavior in Curved Glulam Beam of Jabon Timber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erma%20Desmaliana">Erma Desmaliana</a>, <a href="https://publications.waset.org/abstracts/search?q=Saptahari%20Sugiri"> Saptahari Sugiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Limited availability of solid timber in large dimensions becomes a problem. The demands of timbers in Indonesia is more increasing compared to its supply from natural forest. It is associated with the issues of global warming and environmental preservation. The uses of timbers from HTI (Industrial Planting Forest) and HTR (Society Planting Forest), such as Jabon, is an alternative source that required to solve these problems. Having shorter lifespan is the benefit of HTI/HTR timbers, although they are relatively smaller in dimension and lower in strength. Engineering Wood Product (EWP) such as glulam (glue-laminated) timber, is required to overcome their losses. Glulam is fabricated by gluing the wooden planks that having a thickness of 20 to 45 mm with an adhesive material and a certain pressure. Glulam can be made a curved beam, is one of the advantages, thus making it strength is greater than a straight beam. This paper is aimed to know the material behavior of curved glue-laminated beam of Jabon timber. Preliminary methods was to gain physical and mechanical properties, and glue spread strength of Jabon timber, which following the ASTM D-143 standard test method. Dimension of beams were 50 mm wide, 760 mm span, 50 mm thick, and 50 mm rise. Each layer of Jabon has a thickness of 5 mm and is glued with polyurethane. Cold press will be applied to beam laminated specimens for more than 5 hours. The curved glue-laminated beams specimens will be tested about the bending behavior. This experiments aims to obtain the increasing of load carrying capacity and stiffness of curved glulam beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20glulam%20beam" title="curved glulam beam">curved glulam beam</a>, <a href="https://publications.waset.org/abstracts/search?q=HTR%26HTI" title=" HTR&amp;HTI"> HTR&amp;HTI</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20carrying" title=" load carrying"> load carrying</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/39701/the-material-behavior-in-curved-glulam-beam-of-jabon-timber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1391</span> Mixing Behaviors of Shear-Thinning Fluids in Serpentine-Channel Micromixers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rei-Tang%20Tsai">Rei-Tang Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Yang%20Wu"> Chih-Yang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Yuan%20Chang"> Chia-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Ying%20Kuo"> Ming-Ying Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate the mixing behaviors of deionized (DI) water and carboxymethyl cellulose (CMC) solutions in C-shaped serpentine micromixers over a wide range of flow conditions. The flow of CMC solutions exhibits shear-thinning behaviors. Numerical simulations are performed to investigate the effects of the mean flow speed, fluid properties and geometry parameters on flow and mixing in the micromixers with serpentine channel of the same overall channel length. From the results, we can find the following trends. When fluid mixing is dominated by convection, the curvature-induced vortices enhance fluid mixing effectively. The mixing efficiency of a micromixer consisting of semicircular C-shaped repeating units with a smaller center-line radius is better than that of a micromixer consisting of major-segment repeating units with a larger center-line radius. The viscosity of DI water is less than the overall average apparent viscosity of CMC solutions, and so the effect of curvature-induced vortices on fluid mixing in DI water is larger than that in CMC solutions for the cases with the same mean flow speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20channel" title="curved channel">curved channel</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=non-newtonian%20fluids" title=" non-newtonian fluids"> non-newtonian fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a> </p> <a href="https://publications.waset.org/abstracts/25985/mixing-behaviors-of-shear-thinning-fluids-in-serpentine-channel-micromixers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1390</span> Analysis of Joint Source Channel LDPC Coding for Correlated Sources Transmission over Noisy Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Ben%20Abdessalem">Marwa Ben Abdessalem</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Zribi"> Amin Zribi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Bouall%C3%A8gue"> Ammar Bouallègue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a Joint Source Channel coding scheme based on LDPC codes is investigated. We consider two concatenated LDPC codes, one allows to compress a correlated source and the second to protect it against channel degradations. The original information can be reconstructed at the receiver by a joint decoder, where the source decoder and the channel decoder run in parallel by transferring extrinsic information. We investigate the performance of the JSC LDPC code in terms of Bit-Error Rate (BER) in the case of transmission over an Additive White Gaussian Noise (AWGN) channel, and for different source and channel rate parameters. We emphasize how JSC LDPC presents a performance tradeoff depending on the channel state and on the source correlation. We show that, the JSC LDPC is an efficient solution for a relatively low Signal-to-Noise Ratio (SNR) channel, especially with highly correlated sources. Finally, a source-channel rate optimization has to be applied to guarantee the best JSC LDPC system performance for a given channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AWGN%20channel" title="AWGN channel">AWGN channel</a>, <a href="https://publications.waset.org/abstracts/search?q=belief%20propagation" title=" belief propagation"> belief propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20source%20channel%20coding" title=" joint source channel coding"> joint source channel coding</a>, <a href="https://publications.waset.org/abstracts/search?q=LDPC%20codes" title=" LDPC codes"> LDPC codes</a> </p> <a href="https://publications.waset.org/abstracts/62721/analysis-of-joint-source-channel-ldpc-coding-for-correlated-sources-transmission-over-noisy-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1389</span> Unequal Error Protection of VQ Image Transmission System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khelifi%20Mustapha">Khelifi Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Moulay%20lakhdar"> A. Moulay lakhdar</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Elawady"> I. Elawady </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We will study the unequal error protection for VQ image. We have used the Reed Solomon (RS) Codes as Channel coding because they offer better performance in terms of channel error correction over a binary output channel. One such channel (binary input and output) should be considered if it is the case of the application layer, because it includes all the features of the layers located below and on the what it is usually not feasible to make changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vector%20quantization" title="vector quantization">vector quantization</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20error%20correction" title=" channel error correction"> channel error correction</a>, <a href="https://publications.waset.org/abstracts/search?q=Reed-Solomon%20channel%20coding" title=" Reed-Solomon channel coding"> Reed-Solomon channel coding</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a> </p> <a href="https://publications.waset.org/abstracts/21372/unequal-error-protection-of-vq-image-transmission-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1388</span> Modeling Continuous Flow in a Curved Channel Using Smoothed Particle Hydrodynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indri%20Mahadiraka%20Rumamby">Indri Mahadiraka Rumamby</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Dwinanti%20Rika%20Marthanty"> R. R. Dwinanti Rika Marthanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Sjah"> Jessica Sjah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smoothed particle hydrodynamics (SPH) was originally created to simulate nonaxisymmetric phenomena in astrophysics. However, this method still has several shortcomings, namely the high computational cost required to model values with high resolution and problems with boundary conditions. The difficulty of modeling boundary conditions occurs because the SPH method is influenced by particle deficiency due to the integral of the kernel function being truncated by boundary conditions. This research aims to answer if SPH modeling with a focus on boundary layer interactions and continuous flow can produce quantifiably accurate values with low computational cost. This research will combine algorithms and coding in the main program of meandering river, continuous flow algorithm, and solid-fluid algorithm with the aim of obtaining quantitatively accurate results on solid-fluid interactions with the continuous flow on a meandering channel using the SPH method. This study uses the Fortran programming language for modeling the SPH (Smoothed Particle Hydrodynamics) numerical method; the model is conducted in the form of a U-shaped meandering open channel in 3D, where the channel walls are soil particles and uses a continuous flow with a limited number of particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smoothed%20particle%20hydrodynamics" title="smoothed particle hydrodynamics">smoothed particle hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title=" fluid mechanics"> fluid mechanics</a> </p> <a href="https://publications.waset.org/abstracts/149236/modeling-continuous-flow-in-a-curved-channel-using-smoothed-particle-hydrodynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1387</span> Effect of Using Baffles Inside Spiral Micromixer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Delara%20Soltani">Delara Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajad%20Alimohammadi"> Sajad Alimohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Persoons"> Tim Persoons</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microfluidic technology reveals a new area of research in drug delivery, biomedical diagnostics, and the food and chemical industries. Mixing is an essential part of microfluidic devices. There is a need for fast and homogeneous mixing in microfluidic devices. On the other hand, mixing is difficult to achieve in microfluidic devices because of the size and laminar flow in these devices. In this study, a hybrid passive micromixer of a curved channel with obstacles inside the channel is designed. The computational fluid dynamic method is employed to solve governing equations. The results show that using obstacles can improve mixing efficiency in spiral micromixers. the effects of Reynolds number, number, and position of baffles are investigated. In addition, the effect of baffles on pressure drop is presented. this novel micromixer has the potential to utilize in microfluidic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=micromixer" title=" micromixer"> micromixer</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=spiral" title=" spiral"> spiral</a>, <a href="https://publications.waset.org/abstracts/search?q=reynolds%20number" title=" reynolds number"> reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/160077/effect-of-using-baffles-inside-spiral-micromixer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1386</span> Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Min%20Choi">Seok Min Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Bang"> Minho Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seuong%20Yun%20Kim"> Seuong Yun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungmin%20Lee"> Hyungmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Won-Gu%20Joo"> Won-Gu Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Hee%20Cho"> Hyung Hee Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The matrix cooling channel was used for gas turbine blade cooling passage. The matrix cooling structure is useful for the structure stability however the cooling performance of internal cooling channel was not enough for cooling. Therefore, we designed the rib configurations in the matrix cooling channel to enhance the cooling performance. The numerical simulation was conducted to analyze cooling performance of rib configured matrix cooling channel. Three different rib configurations were used which are vertical rib, angled rib and c-type rib. Three configurations were adopted in two positions of matrix cooling channel which is one fourth and three fourth of channel. The result shows that downstream rib has much higher cooling performance than upstream rib. Furthermore, the angled rib in the channel has much higher cooling performance than vertical rib. This is because; the angled rib improves the swirl effect of matrix cooling channel more effectively. The friction factor was increased with the installation of rib. However, the thermal performance was increased with the installation of rib in the matrix cooling channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=matrix%20cooling" title="matrix cooling">matrix cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=rib" title=" rib"> rib</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a> </p> <a href="https://publications.waset.org/abstracts/80524/numerical-simulation-of-effect-of-various-rib-configurations-on-enhancing-heat-transfer-of-matrix-cooling-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1385</span> Out-of-Plane Free Vibration of Functionally Graded Circular Curved Beams with Temperature Dependent Material Properties in Thermal Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Atashi">M. M. Atashi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Malekzadeh"> P. Malekzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A first known formulation for the out-of-plane free vibration analysis of functionally graded (FG) circular curved beams in thermal environment and with temperature dependent material properties is presented. The formulation is based on the first order shear deformation theory (FSDT), which includes the effects of shear deformation and rotary inertia due to both torsional and flexural vibrations. The material properties are assumed to be temperature dependent and graded in the direction normal to the plane of the beam curvature. The equations of motion and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the Hamilton’s principle. Differential quadrature method (DQM), as an efficient and accurate numerical method, is adopted to solve the thermoelastic equilibrium equations and the equations of motion. The fast rate of convergence of the method is investigated and the formulations are validated by comparing the results in the limit cases with the available solutions in the literature for isotropic circular curved beams. In addition, for FG circular curved beams with soft simply supported edges, the results are compared with the obtained exact solutions. Then, the effects of temperature rise, boundary conditions, material and geometrical parameters on the natural frequencies are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=out%20of%20plane" title="out of plane">out of plane</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=curved%20beams" title=" curved beams"> curved beams</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded" title=" functionally graded"> functionally graded</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20environment" title=" thermal environment"> thermal environment</a> </p> <a href="https://publications.waset.org/abstracts/27799/out-of-plane-free-vibration-of-functionally-graded-circular-curved-beams-with-temperature-dependent-material-properties-in-thermal-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1384</span> Adaptive Transmission Scheme Based on Channel State in Dual-Hop System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung-Jun%20Yu">Seung-Jun Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Jun%20Kim"> Yong-Jun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-In%20Baik"> Jung-In Baik</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung-Kyu%20Song"> Hyoung-Kyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a dual-hop relay based on channel state is studied. In the conventional relay scheme, a relay uses the same modulation method without reference to channel state. But, a relay uses an adaptive modulation method with reference to channel state. If the channel state is poor, a relay eliminates latter 2 bits and uses Quadrature Phase Shift Keying (QPSK) modulation. If channel state is good, a relay modulates the received symbols with 16-QAM symbols by using 4 bits. The performance of the proposed scheme for Symbol Error Rate (SER) and throughput is analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20transmission" title="adaptive transmission">adaptive transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20state" title=" channel state"> channel state</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-hop" title=" dual-hop"> dual-hop</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20modulation" title=" hierarchical modulation"> hierarchical modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=relay" title=" relay"> relay</a> </p> <a href="https://publications.waset.org/abstracts/52599/adaptive-transmission-scheme-based-on-channel-state-in-dual-hop-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1383</span> Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20D.%20Pastuszak">P. D. Pastuszak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20thermography" title="active thermography">active thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=curved%20structures" title=" curved structures"> curved structures</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a> </p> <a href="https://publications.waset.org/abstracts/39267/thermographic-tests-of-curved-gfrp-structures-with-delaminations-numerical-modelling-vs-experimental-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1382</span> Formation of Round Channel for Microfluidic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Zahra">A. Zahra</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20de%20Cesare"> G. de Cesare</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Caputo"> D. Caputo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nascetti"> A. Nascetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PDMS (Polydimethylsiloxane) polymer is a suitable material for biological and MEMS (Microelectromechanical systems) designers, because of its biocompatibility, transparency and high resistance under plasma treatment. PDMS round channel is always been of great interest due to its ability to confine the liquid with membrane type micro valves. In this paper we are presenting a very simple way to form round shape microfluidic channel, which is based on reflow of positive photoresist AZ® 40 XT. With this method, it is possible to obtain channel of different height simply by varying the spin coating parameters of photoresist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lab-on-chip" title="lab-on-chip">lab-on-chip</a>, <a href="https://publications.waset.org/abstracts/search?q=PDMS" title=" PDMS"> PDMS</a>, <a href="https://publications.waset.org/abstracts/search?q=reflow" title=" reflow"> reflow</a>, <a href="https://publications.waset.org/abstracts/search?q=round%20microfluidic%20channel" title=" round microfluidic channel"> round microfluidic channel</a> </p> <a href="https://publications.waset.org/abstracts/7886/formation-of-round-channel-for-microfluidic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1381</span> Performance Analysis of Curved U-Slot Patch Antenna with Enhanced Bandwidth and Isolation for Mimo Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umesh%20Kumar">Umesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar%20Shukla"> Arun Kumar Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20V.%20Ravindra%20Babu"> B. V. V. Ravindra Babu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a compact tri band Curved U-Slot patch antenna with improved bandwidth and isolation characteristics. The proposed antenna excited by coaxial feed resonates at tri band of 2.8 GHz, 4.1 GHz and 5.7 GHz for VSWR ≤ 1.5 with an improved bandwidth of 99.7% and also for getting high gain antenna of 11.31 dB. A 2×2 MIMO is developed using the proposed antenna giving an excellent isolation of 28 dB between the two antennas. The simulation results of return loss, Mutual Coupling, Gain, VSWR, Surface Current Distribution and Electrical Distribution are presented. By keeping the substrate thickness constant over various dielectric constants, simulations were carried out using MATLAB® and HFSS (High Frequency Structure Simulator) software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance%20analysis" title="performance analysis">performance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=curved%20U-slot%20patch" title=" curved U-slot patch"> curved U-slot patch</a>, <a href="https://publications.waset.org/abstracts/search?q=antenna%20with%20enhanced%20bandwidth" title=" antenna with enhanced bandwidth"> antenna with enhanced bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation%20for%20mimo%20systems" title=" isolation for mimo systems"> isolation for mimo systems</a> </p> <a href="https://publications.waset.org/abstracts/22214/performance-analysis-of-curved-u-slot-patch-antenna-with-enhanced-bandwidth-and-isolation-for-mimo-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1380</span> Simulation of Channel Models for Device-to-Device Application of 5G Urban Microcell Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Zormati">H. Zormati</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Chebil"> J. Chebil</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bel%20Hadj%20Tahar"> J. Bel Hadj Tahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Next generation wireless transmission technology (5G) is expected to support the development of channel models for higher frequency bands, so clarification of high frequency bands is the most important issue in radio propagation research for 5G, multiple urban microcellular measurements have been carried out at 60 GHz. In this paper, the collected data is uniformly analyzed with focus on the path loss (PL), the objective is to compare simulation results of some studied channel models with the purpose of testing the performance of each one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5G" title="5G">5G</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20model" title=" channel model"> channel model</a>, <a href="https://publications.waset.org/abstracts/search?q=60GHz%20channel" title=" 60GHz channel"> 60GHz channel</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter-wave" title=" millimeter-wave"> millimeter-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20microcell" title=" urban microcell"> urban microcell</a> </p> <a href="https://publications.waset.org/abstracts/81255/simulation-of-channel-models-for-device-to-device-application-of-5g-urban-microcell-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20channel&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20channel&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20channel&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20channel&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20channel&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20channel&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20channel&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20channel&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20channel&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20channel&amp;page=46">46</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20channel&amp;page=47">47</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20channel&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10